
SQL Connection
Reference Manual

Version 10.1

Printed: June 2013

The information contained in this document is subject to change without notice and should not be construed
as a commitment by Synergex. Synergex assumes no responsibility for any errors that may appear in this
document.

The software described in this document is the proprietary property of Synergex and is protected by
copyright and trade secret. It is furnished only under license. This manual and the described software may be
used only in accordance with the terms and conditions of said license. Use of the described software without
proper licensing is illegal and subject to prosecution.

 Copyright 1997–1999, 2001–2013 by Synergex

Synergex, Synergy, Synergy/DE, and all Synergy/DE product names are trademarks or registered trademarks
of Synergex.

SQL Server and Windows are registered trademarks of Microsoft Corporation.

MySQL and Oracle are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and
other countries.

Informix is a trademark of IBM Corp.

Sybase is a registered trademark of Sybase, Inc.

All other product and company names mentioned in this document are trademarks of their respective
holders.

DCN SC-01-10.1_02

Synergex
2330 Gold Meadow Way
Gold River, CA 95670 USA

http://www.synergex.com
phone 916.635.7300
fax 916.635.6549

SQL Connection Reference Manual 10.1 (6/13) iii

Contents

Preface

About this manual vii
Manual conventions vii
Other resources viii
Product support information viii
Synergex Professional Services Group ix
Comments and suggestions ix

1 Welcome to SQL Connection

What Is SQL Connection? 1-2

Features and supported databases 1-2
Components and configurations 1-3

Installing, Configuring, and Initializing 1-6

Setting Options and Environment Variables 1-7

Using network initialization files to set network defaults 1-7

2 Creating SQL Connection Programs

Writing an SQL Connection Program 2-2

Basic program structure 2-3
Including ssql.def 2-4
Allocating a data area 2-4
Initializing SQL Connection 2-5
Database connections 2-5
Using cursors 2-6
Defining variables and binding data areas 2-6
Processing SQL statements 2-7
Using your program with different drivers and databases 2-7

Contents

iv SQL Connection Reference Manual 10.1 (6/13)

Function Call Flow 2-9

Building Connect Strings 2-16

Network string (opennet_info) syntax 2-19
Driver and database_info notes and examples 2-22
Using the SQL Server shared memory protocol 2-26

Cursors 2-27

Closing cursors 2-27
Reusing cursors 2-28
Cursor types 2-29
Specifying a cursor type 2-31

Data Mapping 2-33

Defining variables 2-33
Binding data 2-34

Data Conversion 2-36

Using %SSC_INDICATOR when updating a column with null 2-39
Converting dates and times 2-40
Numeric database columns 2-41

Updates and Locking 2-42

Row locking 2-42
Optimistic locking and unique row identifiers 2-44

Transactions and Autocommit 2-49

Row locking and transactions 2-50

Stored Procedures 2-51

Invoking stored procedures 2-52
Notes on Oracle stored procedures 2-52
Notes on SQL Server stored procedures 2-53

Optimization 2-54

3 Database Functions

%INIT_SSQL – Initialize SQL Connection 3-2
%SSC_BIND – Bind host variables for non-SELECT statement 3-3
%SSC_CANCEL – Cancel outstanding requests 3-5
%SSC_CLOSE – Hard close one or more open cursors 3-6
%SSC_CMD – Set database-specific options 3-7

Contents

SQL Connection Reference Manual 10.1 (6/13) v

%SSC_COMMIT – Start or commit a transaction 3-17
%SSC_CONNECT – Connect to a database channel 3-19
%SSC_DEFINE – Define host variables for the SELECT statement 3-21
%SSC_DESCSQL – Describe an SQL statement 3-23
%SSC_EXECIO – Execute a stored procedure with I/O parameters 3-26
%SSC_EXECUTE – Execute a non-SELECT statement (no I/O

parameters) 3-29
%SSC_INDICATOR – Retrieve indicator variables 3-33
%SSC_INIT – Initialize a database channel 3-35
%SSC_LARGECOL – Get or put a large binary or char column 3-38
%SSC_MOVE – Fetch rows of data 3-41
%SSC_OPEN – Open a cursor 3-43
%SSC_REBIND – Rebind host variables for a new query 3-49
%SSC_RELEASE – Release a database channel 3-50
%SSC_ROLLBACK – Roll back a transaction 3-52
%SSC_SCLOSE – Soft close one or more open cursors 3-54
%SSC_SQLLINK – Link a non-SELECT statement to cursor for a SELECT

statement 3-56
%SSC_STRDEF – Define a structure 3-58

4 Utility Functions

%SSC_GETDBID – Get database ID 4-2
%SSC_GETEMSG – Get database error message 4-4
%SSC_MAPMSG – Map a database-specific error code 4-6
%SSC_OPTION – Set or get date and time options 4-8

5 Error Logging and Messages

Troubleshooting and Error Logging 5-2

Once you can connect… 5-3

Error Messages 5-10

Synergy runtime error messages 5-10
Vortex API error messages 5-15
SQL OpenNet error messages 5-19
Socket errors 5-23
ODBC Driver Manager errors (Windows) 5-24

Contents

vi SQL Connection Reference Manual 10.1 (6/13)

Troubleshooting DLLLOAD Errors 5-25

Troubleshooting Socket Errors 5-27

Connection reset by peer (10054 or 54) 5-27
Connection refused (10061 or 61) 5-28

Glossary

Index

SQL Connection Reference Manual 10.1 (6/13) vii

Preface

About this manual
This manual contains information about Synergy/DE™ SQL Connection. It is written for users
who are already familiar with programming and database concepts. It presents some general
information on concepts, features, and procedures as they relate to SQL Connection (e.g., the
following SQL Server-specific concepts: client-side cursors, dynamic cursors, the firehose cursor,
keyset-driven cursors, server-side cursors, and static cursors). This manual includes information on
such topics as a starting point, but see your database documentation for complete information.

Manual conventions
Throughout this manual, we use the following conventions:

 In code syntax, text that you type is in Courier typeface. Variables that either represent or
should be replaced with specific data are in italic type.

 Optional arguments are enclosed in [italic square brackets]. If an argument is omitted and the
comma is outside the brackets, a comma must be used as a placeholder, unless the omitted
argument is the last argument in a subroutine. If an argument is omitted and the comma is
inside the brackets, the comma may also be omitted.

 Arguments that can be repeated one or more times are followed by an ellipsis…

 A vertical bar (|) in syntax means to choose between the arguments on each side of the bar.

 Data types are boldface. The data type in parentheses at the end of an argument description
(for example, (n)) documents how the argument will be treated within the routine. An a
represents alpha, a d represents decimal or implied-decimal, an i represents integer, and an n
represents numeric (which means the type can be d or i).

 The term “environment variable” refers to logicals on OpenVMS, as well as environment
variables on Windows and UNIX platforms.

 To “enter” data means to type it and then press ENTER. (“ENTER” refers to either the ENTER key
or the RETURN key, depending on your keyboard.)

Preface

viii SQL Connection Reference Manual 10.1 (6/13)

 This grid indicates on which platforms and in which environments a routine, statement, etc., is
supported: in traditional Synergy™ on Windows (WT), in Synergy .NET on Windows (WN),
on UNIX (U), or on OpenVMS (V). By “supported” we mean that the item performs a useful
function on that platform or environment. For example, an unsupported routine may cause a
compiler error or it may just not do anything.

WIN
 Items or discussions that pertain only to a specific operating system or environment are called

out with the name of the operating system.

Other resources
 ANSI SQL 92 documentation (ANSI X3.135-1992)

 xfODBC User’s Guide

 Synergy DBL Language Reference Manual

 Environment Variables & System Options

 Installation Configuration Guide

 Connectivity Series release notes (REL_CONN.TXT)

Product support information
If you cannot find the information you need in this manual or in the resources listed above, you can
reach the Synergy/DE Developer Support department at the following numbers:

800.366.3472 (in the U.S. and Canada)
916.635.7300 (in all other locations)

To learn about your Developer Support options, contact your Synergy/DE account manager at one
of the above numbers.

Before you contact us, make sure you have the following information:

 The version of the Synergy/DE product(s) you are running

 The name and version of the operating system you are running

 The name and version of the database system you are running

 The hardware platform you are using

 The error mnemonic and any associated error text (if you need help with a Synergy/DE error)

 The statement at which the error occurred

WT WN U V

Preface

SQL Connection Reference Manual 10.1 (6/13) ix

 The exact steps that preceded the problem

 What changed (for example, code, data, or hardware) before this problem occurred

 Whether the problem happens every time and whether it is reproducible in a small test program

 Whether your program terminates with a traceback, or whether you are trapping and
interpreting the error

 Returned error information from %SSC_GETEMSG

Reporting Synergy .NET issues
If you are having any of the following problems, please send us the complete set of source files to
re-create the issue, and send us the information in the BuildVersion.txt file, which is in
MSBuild\Synergex\VS2010 under the Program Files directory or the Program Files (x86)
directory.

 Visual Studio lock up or crash

 Compiler crash

 Unusual MSIL Assembler (ilasm.exe) issues

 “Invalid program” errors

 “JIT Compiler has encountered an internal limitation” error at runtime

For Visual Studio issues, zip the entire project.

Note that for untrapped errors, you won’t get a traceback, as you would with traditional Synergy.
Instead, you’ll get the Windows Dr. Watson box. And if you click Debug, you’ll go into the
debugger. If the program was not built with debug information, and you instead click Cancel, you’ll
get a traceback.

Synergex Professional Services Group
If you would like assistance implementing new technology or would like to bring in additional
experienced resources to complete a project or customize a solution, Synergex® Professional
Services Group (PSG) can help. PSG provides comprehensive technical training and consulting
services to help you take advantage of Synergex’s current and emerging technologies. For
information and pricing, contact your Synergy/DE account manager at 800.366.3472 (in the U.S.
and Canada) or 916.635.7300.

Comments and suggestions
We welcome your comments and suggestions for improving this manual. Send your comments,
suggestions, and queries, as well as any errors or omissions you’ve discovered, to
doc@synergex.com.

mailto:doc@synergex.com

1-1

1
Welcome to SQL Connection

What Is SQL Connection? 1-2

Introduces SQL Connection: its features, components, and configurations.

Installing, Configuring, and Initializing 1-6

Lists the requirements for running an SQL Connection program.

Setting Options and Environment Variables 1-7

Describes the SQL Connection environment variables and system options. Also describes the
initialization files used to set defaults.

Welcome to SQL Connection
What Is SQL Connection?

1-2 SQL Connection Reference Manual 10.1 (6/13)

What Is SQL Connection?
SQL Connection is an application program interface (API) that enables Synergy applications to use
SQL-based functions to access and manipulate data from various database systems. It consists of
two types of functions that are based on standard SQL-based operations:

 The database functions are directly related to SQL-based operations and data access. They
greatly simplify application development by reducing the total number of calls needed to
accomplish a wide variety of SQL functions. See chapter 3, “Database Functions.”

 The utility functions enable you to get information, map error codes, and set date and time
options during the execution of your Synergy application. See chapter 4, “Utility Functions.”

Each SQL Connection function generates a value and can be used any place a literal can be used in
a Synergy program. Except where noted, SQL Connection functions work with both traditional
Synergy and Synergy .NET.

There is a glossary at the end of this manual to clarify some of the terms we use, but throughout the
manual we assume you are familiar with relational database management system (RDBMS) and
SQL concepts. For information on a specific database operation, you may need to refer to the
documentation for your database.

Features and supported databases
SQL Connection conforms to ANSI-standard database communication methods SQLCA and
SQLDA (ANSI 89) and supports

 MySQL (version 5.1 and higher) on supported Windows, Linux, and AIX platforms.

 Oracle® (version 10 and higher) on all supported Windows, UNIX, and OpenVMS platforms.
Use version 10.2.0.4 or higher for OCI-related fixes.

 SQL Server (version 2008 and higher) on supported Windows platforms. Note that for SQL
Server 2008, only the VTX12_SQLNATIVE driver is supported.

 Synergy DBMS (version 7.1 and higher) on all supported Windows, UNIX, and OpenVMS
platforms.

SQL Connection has limited support for the following database systems. Note that support for these
databases may require assistance from Synergex Professional Services and additional support fees.
Contact your Synergy/DE account manager for details. (See “Product support information” on
page viii.)

 Informix® on UNIX systems

 ODBC-compliant databases on Windows systems

 Oracle Rdb on OpenVMS systems

 Sybase® on Windows and UNIX systems

Welcome to SQL Connection
What Is SQL Connection?

SQL Connection Reference Manual 10.1 (6/13) 1-3

Additional SQL Connection features include

 record-oriented or column-oriented bulk data access.

 built-in statement caching and SQL prefetch caching.

 automatic data-type conversion and binding of Synergy DBL variables with data.

 independence from Synergy DBL file I/O operations.

 support for up to seven concurrent database connections per program on UNIX and OpenVMS,
and up to 100 concurrent connections per program on Windows (for multi-threading). You can
open multiple databases simultaneously, and you can open the same database more than once
in an application (under the same user name or under a different user name).

Components and configurations
SQL Connection uses database drivers as the liaison between third-party data sources and your
Synergy application. These drivers enable Synergy applications to use database-independent,
SQL-based queries to access data from a variety of local or remote RDBMSs. For the most part,
these drivers reside on the same system as the data source, and each driver makes calls that conform
to a programming interface for the database (e.g., OCI for Oracle). See figure 1-1 below.

Figure 1-1. Database drivers and interfaces.

MySQL
database

Synergy application

SQL Connection function calls

remote
SQL Server
database

SQL Server
database driver,
VTX12_ODBC or

VTX12_SQLNATIVE

other
3rd-party

databases

other 3rd-party
ODBC drivers

ODBC
database driver,

VTX11

ODBC Driver
Manager

Oracle
database

Oracle
database driver,

VTX0_n

Oracle Rdb
database

(OpenVMS
only)

Oracle Rdb
database

driver

ODBC Driver
Manager

SQL Server
ODBC drivers

embedded C

MySQL
database driver,

VTX14

libmysql

local
SQL Server
database

shared memory
or TCP/IP TCP/IP

Oracle Call
Interface (OCI)

Welcome to SQL Connection
What Is SQL Connection?

1-4 SQL Connection Reference Manual 10.1 (6/13)

For client/server configurations, there are two ways to access remote data. You can use the network
component for Connectivity Series, SQL OpenNet, for the network layer, or you can connect
directly to a local client for the database and rely on the database to provide the network layer. We
recommend using SQL OpenNet. If you connect directly to the database client, the database driver
must be on each client. However, if you use SQL OpenNet, you need to put the database driver only
on the server, not the clients. (The only driver that clients need is VTX3, which is the SQL OpenNet
client. See figure 1-2 on page 1-5.) The primary advantage to using SQL OpenNet, however, is that
you’ll generally get better performance.

For a stand-alone configuration, you can generally connect directly using the Synergy database
driver for the database.

For information on connecting to databases, see “Building Connect Strings” on page 2-16.

For information on configuring SQL Connection and SQL OpenNet, see the “Configuring
Connectivity Series” chapter of the Installation Configuration Guide.

Welcome to SQL Connection
What Is SQL Connection?

SQL Connection Reference Manual 10.1 (6/13) 1-5

Figure 1-2. SQL OpenNet connections and direct connections (client/server and stand-alone).

client

network (TCP/IP)

SQL OpenNet
Sequence

On Windows:
1. Start sqld,
 which ...
2. Reads opennet.srv
3. Runs vtxnetd or
 vtxnet2

On UNIX and OpenVMS,
you start vtxnetd.

One of the following:
� A thread if vtxnetd.

This consists of one
.dll file.

� A process if vtxnet2.
This uses two files, an
.exe and a .dll. For
example, for MySQL,
vtx14.exe and
vtx14.dll.

A detached process
that uses an
executable and a
shared image. For
example, for Oracle,
VTX0.EXE and
VTX0_SO.EXE.

A process that uses
an executable and
an.so file. For
example, for Oracle,
VTX0 and VTX0.so.

VTX3

Client/server
connection using
SQL OpenNet

Direct connection (doesn't
use SQL OpenNet)

SQL Connection application
(Synergy DBL)

VTXna

bVTX0 for Oracle
VTX14 for MySQL

aVTX0_n for Oracle
VTX11 for ODBC
VTX12_ODBC or

 VTX12_SQLNATIVE
 for SQL Server
VTX14 for MySQL

cVTX0 for Oracle

Windows
server

SQL OpenNet
 server

(vtxnetd or vtxnet2
listener daemon)

database drivera

OpenVMS
server

SQL OpenNet
 server

(vtxnetd as
detached process)

database driverc

UNIX
server

SQL OpenNet
 server

(vtxnetd daemon
process)

database driverb

database or
database client

database or
database client

database or
database client

database or
database client

Welcome to SQL Connection
Installing, Configuring, and Initializing

1-6 SQL Connection Reference Manual 10.1 (6/13)

Installing, Configuring, and Initializing
To run an application that uses the SQL Connection API,

1. Install and configure SQL Connection and SQL OpenNet and start the SQL OpenNet server by
following the steps in the installation instructions and the “Configuring Connectivity Series”
chapter of the Installation Configuration Guide. The SQL OpenNet service has a display name of
“Synergy/DE OpenNet Server” and a service name of SynSQL.

2. Initialize SQL Connection. This instructs the Synergy runtime to allocate the necessary memory.

On OpenVMS, call %INIT_SSQL from your program. For information, see “Initializing SQL
Connection” on page 2-5.

On Windows and UNIX, there are two ways to do this:

 Call %OPTION from your program and use this function to set system option 48. For
information, see “Initializing SQL Connection” on page 2-5.

 Use the DBLOPT environment variable to set system option 48. You can set DBLOPT in the
system environment or (on Windows only) in synergy.ini. For information on DBLOPT, see
DBLOPT in the “Environment Variables” chapter of Environment Variables & System Options.

If you use DBLOPT to set system option 48, all Synergy programs use the extra memory that
Synergy runtime allocates for SQL Connection, even if these programs don’t use SQL Connection.
However, if you call %INIT_SSQL or %OPTION from your program, only programs that use
SQL Connection will use these extra resources.

Welcome to SQL Connection
Setting Options and Environment Variables

SQL Connection Reference Manual 10.1 (6/13) 1-7

Setting Options and Environment Variables
This section discusses the options you can set for SQL OpenNet. For information on

 configuring SQL Connection (and SQL OpenNet) for stand-alone or client/server access, see
the “Configuring Connectivity Series” chapter of the Installation Configuration Guide.

 database-specific options, see %SSC_CMD on page 3-7.

 date and time options, see %SSC_OPTION on page 4-8.

 logging options, see “Troubleshooting and Error Logging” on page 5-2.

 VORTEX_HOST_HIDEGPF, an environment variable that prevents the SQL OpenNet server
from shutting down if a thread fails, see VORTEX_HOST_HIDEGPF in the “Environment
Variables” chapter of Environment Variables & System Options.

 VORTEX_HOST_NOSEM, an environment variable that causes SQL OpenNet to crash when
there’s an access violation (enabling you to attach to the Windows debugger), see
VORTEX_HOST_NOSEM in the “Environment Variables” chapter of Environment Variables
& System Options for more information. (Note that this should only be used at the request of
Synergy/DE Developer Support.)

For information on how to set environment variables, see “Setting Environment Variables and
Initialization Settings” in the “Environment Variables” chapter of Environment Variables & System
Options.

Using network initialization files to set network defaults
There are three initialization files you can use to set network defaults:

 Net.ini enables you to specify an encryption key for the client and other options.

 Opennet.srv enables you to specify the filenames and parameters for the services run by the
Synergy/DE OpenNet Server service (SynSQL) on Windows.

 Startnet (UNIX) and STARTNET.COM (OpenVMS) enable you to set environment variables
on the server. (These also kill and restart SQL OpenNet server.)

Setting connect string defaults and encryption in net.ini

The net.ini file enables you to specify an encryption key for the client, specify time-outs, instruct
SQL Connection functions to return error codes for communication errors, and other options. When
you install Connectivity Series, the installation creates a default net.ini file with a default
encryption setting. To change settings in net.ini, use a text editor. Note the following:

 We recommend that you don’t change any net.ini setting except key_connect.

 The net.ini file must be on the client in the connect\synodbc\lib directory.

Welcome to SQL Connection
Setting Options and Environment Variables

1-8 SQL Connection Reference Manual 10.1 (6/13)

 The Connectivity Series installation (Windows), setsde (UNIX), or
SYS$MANAGER:CONNECT_STARTUP.COM (OpenVMS) sets the VORTEX_HOME
environment variable to the connect\synodbc directory, which contains the lib directory. Do not
change this setting.

Note that because VORTEX_HOME is set at the system level, if you install both 64-bit and
32-bit versions of Connectivity Series on the same 64-bit Windows machine, the last version
installed determines the VORTEX_HOME setting by overwriting the previous setting. So if
you do change net.ini, you’ll need to make sure you change the correct one.

 There can’t be any control characters in the net.ini file. If there are, you’ll get an “invalid
integer” error when you connect to the database.

 The net.ini file is not overwritten when you upgrade Connectivity Series, nor is it removed
when you uninstall. We distribute a file named net_base.ini (also located in the
connect\synodbc\lib directory), which contains default settings and can be used as a reference.

The following options can be set in net.ini.

key_connect Specifies a key for the algorithm used to encrypt user names and passwords for
the database and for the host (if vtxnetd or vtxnet2 is also started with the -k
option). This encrypts user names and passwords being sent across the wire. Use
the following syntax:

key_connect n

where n is any number between 1 and 2,147,483,647. Note that n must be set to
the same value on both the client (where it is set with this net.ini option) and the
server (where it is set with the -k option on the vtxnetd or vtxnet2 command
line). See “The vtxnetd and vtxnet2 Programs” in the “Configuring Connectivity
Series” chapter of the Installation Configuration Guide.

packetsize Sets the minimum network packet size used by SQL OpenNet. The default is
8192 bytes. This option defines a minimum size for an aggregate buffer, which is
a buffer created when data for multiple network packets needs to be sent to the
client. This mechanism reduces network traffic by combining packets and
sending them as a unit with the specified minimum size. To set this, use the
following syntax, where size is the size in bytes:

packetsize size

Note that changing the default packet size may cause performance problems.
This setting should not be less than the size of the prefetch buffer (specified with
the bufsize argument for %SSC_INIT) plus 200 bytes. If you are using a WAN
(wide area network), you may want to change this value to reduce load on the
network. The packet size used by the SQL OpenNet server is set by the
packetsize setting in the net.ini file on the client.

Welcome to SQL Connection
Setting Options and Environment Variables

SQL Connection Reference Manual 10.1 (6/13) 1-9

The following example net.ini file sets the service to connect to a Windows machine named
mywinserver, instructs the server to use the Oracle driver, sets the encryption key to 6541, and so
forth.

rem SQL OpenNet init file
hostnamesvc0 mywinserver!vtx0_10
key_connect 6541
packetsize 1300
port 1990
return_errno yes
read_timeout 60
write_timeout 60
hostenv0 ENV1=env_var_spec,ENV2=env_var_spec2

port Sets the communication port number (which defaults to the vtxnet setting in the
services file). Use the following syntax:

port port_number

See “Specifying the port number” in the Windows section of the “Configuring
Connectivity Series” chapter of the Installation Configuration Guide.

read_timeout Specifies how long (in seconds) SQL OpenNet should wait for a read operation
to complete. Use the following syntax:

read_timeout time

By default this is set to 0, which prevents a time-out.

return_errno Instructs SQL OpenNet to return an operating system error code (rather than -1)
if there’s a communication error. For example, if an attempt to connect to a
database on a server generates the TCP/IP socket error 10061, the
%SSC_CONNECT function will return “10061” if you set this option to yes, but
it will return “-1” if this option is set to no). Use the following syntax:

return_errno yes|no

By default return_errno is set to no.

write_timeout Specifies how long (in seconds) SQL OpenNet should wait for a write operation
to complete. Use the following syntax:

write_timeout time

By default this is set to 0, which prevents a time-out.

Welcome to SQL Connection
Setting Options and Environment Variables

1-10 SQL Connection Reference Manual 10.1 (6/13)

Using opennet.srv to set SQL OpenNet services and environment variables

To specify filenames and parameters for services run by SQL OpenNet on a Windows system, add
the service as a line in the opennet.srv file. Use the following syntax:

srv_file [-pport_no] [log]

where srv_file is the path and filename for the service (either vtxnet2 or vtxnetd) and port_no is
the port number. The log option creates a log file with a .log extension in the directory that contains
the service. If port_no is not specified, the default port number, 1958, is used.

For example, the following line executes the vtxnet2 service on port 1660 with logging:

vtxnet2.exe -k67834 -p1660 log

To set an environment variable in opennet.srv, use the following syntax:

env_variable=setting

The environment variable setting should precede the line that starts the service. For example:

VORTEX_HOST_LOGFILE=c:\vortex
vtxnet2.exe -k67834 -p1660 log

For more information, see “Customizing the opennet.srv file” in the Windows section of the
“Configuring Connectivity Series” chapter of the Installation Configuration Guide.

Using startnet to set environment variables

The startnet (UNIX) and STARTNET.COM (OpenVMS) files start SQL OpenNet Server. You
can also set environment variables in these files. Environment variables set in these files will be set
on the server when startnet or STARTNET.COM are run. Use the following syntax:

 In startnet (UNIX): env_variable=setting; export env_variable

 In STARTNET.COM (OpenVMS): define env_variable setting

Environment variable settings should precede the line that starts the SQL OpenNet server. For
example:

VORTEX_HOST_LOGFILE=usr2/vortex; export VORTEX_HOST_LOGFILE
nohup vtxnetd -p1958 log &
sleep 1

2-1

2
Creating SQL Connection Programs

Writing an SQL Connection Program 2-2

Discusses program structure, sample programs, including the definition file, allocating a data area,
initializing SQL Connection, making database connections, processing SQL statements, and using
your program with different drivers and databases.

Function Call Flow 2-9

Illustrates how SQL Connection routines can be used in your programs.

Building Connect Strings 2-16

Lists the database drivers and describes the syntax for connecting to databases.

Cursors 2-27

Explains how SQL Connection uses cursors, the different ways cursors can be closed, and cursor
reuse. Also describes supported cursor types and explains how to specify a cursor type.

Data Mapping 2-33

Explains how you can use variables in a SQL statement (rather than hard-coded column names) to
send data to and retrieve data from the database (i.e., binding and defining).

Data Conversion 2-36

Describes the recommended data flow for converting Synergy data types to database-specific data
types.

Updates and Locking 2-42

Describes the various locking methods that can ensure data integrity during update operations.

Transactions and Autocommit 2-49

Discusses autocommit and using %SSC_COMMIT and %SSC_ROLLBACK for transactions.

Stored Procedures 2-51

Explains stored procedures and describes how to create, test, and run them.

Optimization 2-54

Describes how to optimize your SQL Connection application.

Creating SQL Connection Programs
Writing an SQL Connection Program

2-2 SQL Connection Reference Manual 10.1 (6/13)

Writing an SQL Connection Program
The Connectivity Series distribution includes sample programs that illustrate the basic structure for
an SQL Connection program. These programs are in the connect\synsqlx subdirectory of the main
Synergy/DE installation directory.

The following examples work with MySQL, Oracle, SQL Server, Sybase, and Synergy databases.
They are distributed on all platforms.

The following example is for MySQL only. This is distributed only on Windows and UNIX
platforms.

The following example is for Oracle only. This is distributed on all platforms.

The following examples are for SQL Server only. These are distributed only on Windows platforms
and will run only if the Microsoft-supplied pubs sample database is installed. (See the comments in
the files for details.)

 exam_create_table.dbl Creates a table and inserts some rows of data. Run this
program first. Note that if you uncomment the “.define
MULTI_ROW_INSERT” line, this program performs a bulk
insert.

 exam_fetch.dbl Contains a simple query. Retrieves rows inserted by
exam_create_table.dbl.

 exam_multirow_fetch.dbl Contains a multi-row query. Retrieves rows inserted by
exam_create_table.dbl.

 exam_fetch_update.dbl Contains a simple update. Retrieves rows inserted by
exam_create_table.dbl (by using a bind variable in the
WHERE clause) and then updates the data using
%SSC_SQLLINK. Uses a cached cursor to update additional
data by calling %SSC_REBIND with a different value for the
bind variable.

 stp_mysql.dbl Calls a stored procedure to access table created by
exam_create_table.dbl.

 stp_ora.dbl Calls a stored procedure to access table created by
exam_create_table.dbl.

 stp_odbc.dbl,
stp_sqlsrv1.dbl,
stp_sqlsrv2.dbl

Call stored procedures to access the table created by
exam_create_table.dbl. These all work with VTX12_ODBC
and VTX12_SQLNATIVE.

(Connectivity Series also includes stp_sqlsrv.dbl, which
works with the deprecated VTX12_2000 database driver.)

Creating SQL Connection Programs
Writing an SQL Connection Program

SQL Connection Reference Manual 10.1 (6/13) 2-3

The Connectivity Series distribution (all platforms) also includes exam_saveviews.dbl, an example
program for saving views for xfODBC.

VMS
When linking SQL Connection programs on OpenVMS, be sure to use the ssqlrtl.opt link options
file (instead of synrtl.opt).

Basic program structure
To ensure your program works properly with the SQL Connection API, write your program to do
the following:

 Include the ssql.def file. (See “Including ssql.def” on page 2-4.)

 Allocate a data area. (See “Allocating a data area” on page 2-4.)

 Initialize SQL Connection. (See “Initializing SQL Connection” on page 2-5.)

 Connect to a database. (See “Database connections” on page 2-5.)

 Open one or more cursors. (See “Cursors” on page 2-27.)

 Define variables and bind data areas. (See “Data Mapping” on page 2-33.)

 Process the required SQL statements for each cursor. (See “Processing SQL statements” on
page 2-7.)

 Close the cursors. (See “Cursors” on page 2-27.)

 Disconnect from the database. (See “Database connections” on page 2-5.)

Note that the sequence of the above and the details vary. For example, SELECT statements are
typically processed as follows:

1. Assign values to bind area.

2. Open a cursor and bind data variables.

3. Define data for the result row.

4. Fetch and load data into defined data fields.

5. Process the fetched data.

6. Repeat the fetch, load, and process steps until complete.

7. Close the cursor.

Creating SQL Connection Programs
Writing an SQL Connection Program

2-4 SQL Connection Reference Manual 10.1 (6/13)

Non-SELECT statements, on the other hand, are typically processed as follows:

1. Open a cursor and bind data variables.

2. Assign values to the bind area.

3. Execute the statement. (This does the actual bind.)

4. Repeat the assign and execute statements until complete.

5. Close the cursor.

See “Function Call Flow” on page 2-9 for details on the function call sequences used for different
types of queries and updates.

Including ssql.def
The ssql.def file contains the definitions needed for SQL Connection. You must use the .include
compiler directive in your SQL Connection program to include ssql.def, which is located in the
synergyde/connect directory. Because the CONNECTDIR environment variable is set generally set
to this directory, you can use CONNECTDIR in the .include statement to locate ssql.def. For
example:

.include "CONNECTDIR:ssql.def"

For more information, see .INCLUDE in the “Preprocessor and Compiler Directives” chapter of the
Synergy DBL Language Reference Manual. And for more information on CONNECTDIR, see
“Appendix A: Environment Variables” in the xfODBC User’s Guide.

Allocating a data area
To receive data from or send data to a database, your program must allocate a data area for the
incoming and outgoing data. To enable your program to do this, create a record with variables that
correspond to the data you’ll be reading from or writing to the database. For example:

.align
literal samples ;Data area for retrieved data (Variables for defining)

deptnum ,i4
deptname ,a6
division ,a15

.align
record data ;Data area for data to insert (Variables for binding)

s_deptnum ,[MX_VARS] i2 ,1,2,3,
s_deptname ,[MX_VARS] a6 ,"SDM","SUPP","ACCT"
s_division ,[MX_VARS] a15 ,"ACCOUNT", "INTERNAL S"

& ,"OFFICE MIS"

For more information on data area allocation, see the “Defining Data” chapter of the Synergy DBL
Language Reference Manual.

Creating SQL Connection Programs
Writing an SQL Connection Program

SQL Connection Reference Manual 10.1 (6/13) 2-5

Initializing SQL Connection
For an SQL Connection program to run, you must initialize SQL Connection. This instructs the
Synergy runtime to allocate the necessary memory.

You can initialize SQL Connection with the DBLOPT environment variable (see “Installing,
Configuring, and Initializing” on page 1-6), or you can initialize SQL Connection from your
program. To initialize SQL Connection from your program, do one of the following:

 For Windows and UNIX systems, use the %OPTION function to set system option 48. For
example:

sts = %option(48,1) ;Sets option 48 and assigns the return value to
; a variable (sts).

For more information, see %OPTION in the “System-Supplied Subroutines and Functions”
chapter of the Synergy DBL Language Reference Manual.

 For OpenVMS systems, call the %INIT_SSQL function. For example:

xcall init_ssql ;Initializes SQL Connection.

For more information, see %INIT_SSQL on page 3-2.

Database connections
Connecting to a database essentially means logging on to a database. Once logged on, a connection
is established and maintained by SQL Connection as an open database channel. Once a connection
is established, each SQL statement is processed by the native SQL processor within the database
engine. SQL Connection simply passes the SQL statement through to the database.

Be careful not to exceed the maximum number of concurrent connections. On UNIX and
OpenVMS, SQL Connection enables you to maintain up to seven concurrent connections to one or
more heterogeneous databases in a client/server configuration. On Windows, to accommodate
multi-threading, you can have up to 100 connections. If your application deals with multiple
database servers, you may want to connect to the same database more than once, but remember that
each connection requires a separate log-on to the database. On the other hand, you can disconnect
and reconnect to the same database without increasing the number of connections.

.NET
Note that with Synergy .NET in a multi-threaded environment, you must ensure that each thread
uses a separate connection (i.e., a separate channel), and note that channels are not automatically
shut down when threads terminate.

We don’t recommend recycling (pooling) connections, particularly for Oracle databases. You may
want to consider recycling connections if there is generally a large period of elapsed time (e.g., over
15 minutes) between connection attempts, but you should never recycle Oracle connections
because the OCI library that SQL Connection uses can’t handle connection recycling well.

Creating SQL Connection Programs
Writing an SQL Connection Program

2-6 SQL Connection Reference Manual 10.1 (6/13)

Connecting to a database
To connect to a database, use the %SSC_INIT function to initialize a database channel, and then
use the %SSC_CONNECT function with a connect string to connect to a database channel (and
specify the database, user name, password, and so forth). The syntax of the connect string is
dependent on the database and configuration. (See “Building Connect Strings” on page 2-16.)

if (%ssc_init(dbchn)) ;Initialize a database channel.
goto err_exit

Writes(1, "Connecting to database. Please wait...")
if (%ssc_connect(dbchn, user)) ;Connect to database using the connect

goto err_exit ; string represented by the user
; variable and the database channel
; represented by dbchn.

For more information, see %SSC_INIT on page 3-35 and %SSC_CONNECT on page 3-19.

Disconnecting from a database
To disconnect from a database and release the database channel, use the %SSC_RELEASE
function. For example:

if (%ssc_release(dbchn)) ;Release the database channel
goto err_exit ; represented by the dbchn variable.

For more information, see %SSC_RELEASE on page 3-50.

Using cursors
SQL Connection uses two types of cursor: logical and database. When you initialize a database
channel with %SSC_INIT, you’ll allocate logical cursors, but otherwise, you’ll create, use, and
close database cursors. %SSC_OPEN opens a new cursor, %SSC_SCLOSE and %SSC_CLOSE
close cursors (soft close or hard close), and various SQL Connection routines accept a cursor ID so
they can access data and update the database via a cursor. You can also use %SSC_CMD to set
cursor options. See “Cursors” on page 2-27 for information.

Defining variables and binding data areas
You can use variables to store data sent to and received from the database. Defined variables store
data received from a database; bind variables store data that’s sent to a database. To create defined
variables, you use %SSC_DEFINE or %SSC_STRDEF. For a bind variable, you pass a placeholder
in the SQL statement and then pass the bind variable in %SSC_OPEN, %SSC_BIND, or
%SSC_SQLLINK. See “Defining variables and binding data areas” on page 2-6 for information.

Creating SQL Connection Programs
Writing an SQL Connection Program

SQL Connection Reference Manual 10.1 (6/13) 2-7

Processing SQL statements
Once you open a cursor and, if necessary, map the data, you can process an SQL statement in one of
three ways, depending on type of SQL statement. See table below.

Supported SQL statement syntax differs from one database to another. However, most databases
support the ANSI SQL syntax. If you want to write a truly database-independent application, you
must avoid database-specific syntax in your SQL statements.

Stored procedures are highly recommended to boost database performance. Stored procedures can
enhance program modularity and reduce development costs. In a client/server configuration,
well-written stored procedures can also greatly reduce network traffic. Note, however, that stored
procedures are database dependent and therefore cannot be used in a truly database-independent
application. See “Stored Procedures” on page 2-51 for more information.

Using your program with different drivers and databases
Keep the following in mind when working with different databases and drivers:

 Connect string syntax and connection issues differ for each database driver. See “Building
Connect Strings” on page 2-16 for information.

 Some databases have their own SQL constructs which won’t work with other databases. Avoid
database-specific SQL if you plan to use your program with different databases.

 Stored procedure syntax differs for each database. For example, use the ODBC CALL escape
sequence if you are using an ODBC driver:

sqlp = "{call read_salary (:1, :2, :3)}"
if (%ssc_open(dbchn, cur1, sqlp, SSQL_NONSEL))

For more information, see “Stored Procedures” on page 2-51 and the stp_*.dbl example files
included in the Connectivity Series distribution.

Type Function Description

SELECT statement %SSC_MOVE Loads desired data to the program data area.

Non-SELECT statement %SSC_EXECUTE Executes an SQL statement.

Stored procedure %SSC_EXECIO Executes a stored procedure and passes
parameters, but doesn’t accept a result set.

%SSC_EXECUTE Executes a stored procedure without parameters or
a result set.

%SSC_MOVE Retrieves data from a SQL Server stored
procedure result set.

Creating SQL Connection Programs
Writing an SQL Connection Program

2-8 SQL Connection Reference Manual 10.1 (6/13)

 Different databases and database drivers produce different errors. If your program was written
to handle errors from one database and driver, don’t expect to get the same errors when you
move to another database or use another database driver. For example, if you use an ODBC
database driver, you will get ODBC errors.

 Different drivers use different %SSC_CMD options. See %SSC_CMD on page 3-7.

 Cursors work differently for different databases. See “Cursors” on page 2-27.

 Autocommit works differently on different databases, so transactions that make sense for one
database/driver combination may not work for another. For example, if you accessed SQL
Server with the deprecated VTX12_2000 database driver, any operation that modified the
database (UPDATE, DROP TABLE, etc.) would have triggered an implicit commit unless
there was an explicit transaction in progress, so there was no need to call to %SSC_COMMIT
after one of these operations. On the other hand, with Oracle databases, databases accessed
with VTX11, or SQL Server databases when accessed with VTX12_SQLNATIVE,
autocommit is turned off by default, so you do need to use %SSC_COMMIT to commit the
transaction before calling %SSC_RELEASE. If you don’t, you will lose changes;
%SSC_RELEASE rolls back pending transactions. For more information, see “Transactions
and Autocommit” on page 2-49.

 Updates and locking work differently for different databases. See “Updates and Locking” on
page 2-42.

Note the following for SQL Server, and for more notes and tips on using SQL Server with SQL
Connection, see “SQL Server notes and examples” on page 2-23.

 We recommend that you use vtxnetd, rather than vtxnet2.

 Unlike MySQL, Oracle, and Synergy databases, all columns and indices for SQL Server
databases default to a case-insensitive ordering using the SQL_Latin1_General_CP1_CI_AS
collation sequences. This means that reports using an ORDER BY, an index, or a relational
operator (>, <, ==, and so forth) in an SQL statement will work differently for SQL Server than
for other databases (including Synergy databases, which use an ANSI collation sequence).
Additionally, for characters such as underscore (_) and dash (-), SQL Server will return results
in an order that’s different than other databases, even though for both ASCII and Synergy
DBL, an underscore is considered higher than a dash.

 For information on connecting to SQL Server on Windows clusters, see the Synergex
KnowledgeBase article 100000654.

Creating SQL Connection Programs
Function Call Flow

SQL Connection Reference Manual 10.1 (6/13) 2-9

Function Call Flow
The following diagrams illustrate the function call flow for each of the primary SQL commands
that you might use in your SQL Connection program:

 “Simple query” on page 2-10

 “Multirow query” on page 2-11

 “Simple atomic update” on page 2-12

 “Bulk update” on page 2-13

 “Insert” on page 2-14

 “Stored Procedure” on page 2-15

Creating SQL Connection Programs
Function Call Flow

2-10 SQL Connection Reference Manual 10.1 (6/13)

Simple query
1. Initialize SQL Connection.

2. Connect to database.

3. Set up SQL statement.

4. Open cursor with
SSQL_SELECT and
SSQL_STANDARD.

5. Test for errors.

6. Define destination variables.

7. While rows are available, fetch
data with %SSC_MOVE.

8. At end of query, if new
identical query, use
%SSC_OPEN or
%SSC_REBIND.

9. Close cursor.

10. Release connection if no more
operations.

For examples, see

 exam_fetch.dbl

 exam_fetch_update.dbl
(for %SSC_REBIND
example)

See “Writing an SQL
Connection Program” on
page 2-2 for information on
these programs.

%SSC_INIT

error

end of file
(EOF)?

no

set up
SQL statement

%SSC_DEFINE

new
identical
query?

display error
message%SSC_CLOSE

%SSC_RELEASE

yes

no

%SSC_REBIND

yes

error

 optional

%SSC_CONNECT

%SSC_OPEN

%SSC_MOVE

%SSC_GETEMSG

Creating SQL Connection Programs
Function Call Flow

SQL Connection Reference Manual 10.1 (6/13) 2-11

Multirow query
1. Initialize SQL Connection.

2. Connect to database.

3. Set up SQL statement.

4. Open cursor with SSQL_SELECT
and SSQL_STANDARD.

5. Test for errors.

6. Define destination variables or use
arrays for %SSC_DEFINE.

7. Fetch data with %SSC_MOVE.

8. If not end of file (EOF), process
returned data for each returned row
and get more data. (The number of
rows returned is available as the
row_count argument for
%SSC_MOVE.)

9. Rebind if required.

10. End transaction by committing it or
by rolling it back if there’s an error.

11. Release connection if no more
operations.

For an example, see
exam_multirow_fetch.dbl. See
“Writing an SQL Connection
Program” on page 2-2 for
information on this program.

error

end of file
(EOF)?no

%SSC_CONNECT

set up
SQL statement

%SSC_DEFINE

process
each row

rebind?

display error
message%SSC_CLOSE

%SSC_RELEASE

yes

no

%SSC_REBIND

yes

error

%SSC_COMMIT

%SSC_COMMIT

%SSC_INIT

%SSC_OPEN

%SSC_MOVE

%SSC_GETEMSG

%SSC_ROLLBACK

%SSC_STRDEF
(optional)

Creating SQL Connection Programs
Function Call Flow

2-12 SQL Connection Reference Manual 10.1 (6/13)

Simple atomic update
1. Initialize SQL Connection.

2. Connect to database.

3. Start transaction with
%SSC_COMMIT.

4. Set up SELECT statement.

5. Open cursor with SSQL_SELECT
and SSQL_POSITION, binding
variables as necessary.

6. Define variables.

7. Set up update statement with
%SSC_SQLLINK, binding
variables for update.

8. Fetch data with %SSC_MOVE.

9. Execute update with
SSQL_STANDARD.

10. Close cursor.

11. End transaction by committing it or
by rolling it back if there’s an error.

12. Release connection if no more
operations.

For an example, see
exam_fetch_update.dbl. See
“Writing an SQL Connection
Program” on page 2-2 for
information on this program.

more
updates

%SSC_INIT

%SSC_CONNECT

set up
select statement

%SSC_DEFINE

%SSC_MOVE

display error
message%SSC_COMMIT

%SSC_CLOSE

%SSC_COMMIT

%SSC_SQLLINK

%SSC_RELEASE

update
data

error

error

error

%SSC_OPEN

%SSC_GETEMSG

%SSC_CLOSE

%SSC_ROLLBACK

%SSC_EXECUTE

%SSC_MOVE

Creating SQL Connection Programs
Function Call Flow

SQL Connection Reference Manual 10.1 (6/13) 2-13

Bulk update
1. Initialize SQL Connection.

2. Connect to database.

3. Start transaction with
%SSC_COMMIT.

4. Set up SQL statement.

5. Open cursor with SSQL_SELECT
and SSQL_POSITION, binding
variables as necessary.

6. Define variables.

7. Set up update statement with
%SSC_SQLLINK, binding
variables as necessary.

8. Fetch data with %SSC_MOVE.

9. Execute update statement with
%SSC_EXECUTE
(SSQL_STANDARD).

10. If there are more rows, fetch data
(%SSC_MOVE) and then execute
update (%SSC_EXECUTE) in
loop.

11. Close cursor with soft close.

12. End transaction
(%SSC_COMMIT).

13. If you want to rebind the SELECT
statement, start a transaction,
rebind, and loop through the first
%SSC_MOVE,
%SSC_EXECUTE,
%SSC_MOVE, %SSC_SCLOSE,
and %SSC_COMMIT to end the
transaction.

14. Close cursor with soft close
(%SSC_SCLOSE).

15. Release connection if no more
operations (%SSC_RELEASE).

more updates

���������

������	��
��

set up SQL statement

������
���

display error
message

�������
	�

������

��

update data

error

������	����
�������

error

error

�������
	�

�����	�
�

�������

���

������	�

�����
�
���

������
�
���

������	

����������	����
�������

������
����

������	�

������	�����
�!"#�

Creating SQL Connection Programs
Function Call Flow

2-14 SQL Connection Reference Manual 10.1 (6/13)

Insert
1. Initialize SQL Connection.

2. Connect to database.

3. Start transaction with
%SSC_COMMIT.

4. Set up SQL statement.

5. Open cursor with SSQL_NONSEL.

6. Test for errors.

7. Set up data.

8. Execute statement with
SSQL_STANDARD.

9. Loop until done.

10. End transaction by committing it or
by rolling it back if there’s an error.

11. Close cursor.

12. Release connection if no more
operations.

For an example, see
exam_create_table.dbl. See
“Writing an SQL Connection
Program” on page 2-2 for
information on this program.

%SSC_INIT

error

%SSC_CONNECT

set up
SQL statement

display error
message%SSC_CLOSE

%SSC_RELEASE

yes

no

set up data

%SSC_COMMIT

%SSC_COMMIT

%SSC_OPEN

%SSC_EXECUTE

more
data?

%SSC_ROLLBACK

%SSC_GETEMSG

Creating SQL Connection Programs
Function Call Flow

SQL Connection Reference Manual 10.1 (6/13) 2-15

Stored Procedure
1. Initialize SQL Connection.

2. Connect to database.

3. Set up SQL statement.

4. Open cursor with SSQL_NONSEL.

5. Test for errors.

6. Set up bound data (%SSC_EXECIO
only).

7. Execute stored procedure.

8. Test for errors.

9. Process any returned data
(%SSC_EXECIO only).

10. Loop until done.

11. Close cursor.

12. Release connection if no more
operations. For examples, see

 stp_mysql.dbl

 stp_odbc.dbl

 stp_ora.dbl

 stp_sqlsrv1.dbl

 stp_sqlsrv2.dbl

See “Writing an SQL Connection
Program” on page 2-2 for information
on these programs.

To fetch data from a SQL Server result set, use a combination of %SSC_OPEN with
%SSC_MOVE (rather than %SSC_EXECIO or %SSC_EXECUTE) as illustrated in the diagram in
“Multirow query” on page 2-11 and the stp_sqlsrv1.dbl and stp_sqlsrv2.dbl example programs.

Note that with stored procedures, transactions typically take place inside the stored procedure, not
outside with %SSC_COMMIT.

error

%SSC_CONNECT

set up
SQL statement

display error
message

%SSC_RELEASE

yes

no

error

process results

%SSC_INIT

%SSC_OPEN

%SSC_EXECIO or
%SSC_EXECUTE

%SSC_GETEMSG

%SSC_CLOSE

rebind new
variables?

%SSC_EXECIO
only

Creating SQL Connection Programs
Building Connect Strings

2-16 SQL Connection Reference Manual 10.1 (6/13)

Building Connect Strings
To connect to a database, you must pass a connect string to %SSC_CONNECT. A connect string
contains the information needed to access a database. This differs for each database, but it generally
includes information such as database name, user name, and password. The connect string also
specifies whether SQL OpenNet will be used for the network layer.

There are two forms of connect string. The first, which starts with the driver argument, connects
directly to a local database or database client. With this form, the database client must provide the
network layer if necessary:

driver:database_info

The second, which starts with net:, uses SQL OpenNet for the network layer:

net:database_info@opennet_info

For example, the following uses SQL OpenNet to connect to an Oracle database on a Windows
server (win_srv).

net:my_uid/my_pwd@win_srv!VTX0_10

For more examples, see “Driver and database_info notes and examples” on page 2-22.

Arguments
driver

The name of the database driver to be used. See “Driver and database_info” on page 2-18.

database_info

Information (user name, password, etc.) needed for database access. See “Driver and
database_info” on page 2-18 for syntax.

opennet_info

Information needed to access an SQL OpenNet service on the machine that has the target
database or database client. See “Network string (opennet_info) syntax” on page 2-19.

Discussion
When accessing a local database (i.e., a database or database client on the same machine as the
SQL Connection program), use the first connect string form listed above, which connects directly
to the database or database client. For a local connection there is generally no need for SQL
OpenNet. (However, SQL OpenNet is needed for 32-bit SQL Connection applications on 64-bit
Windows machines.) If you connect directly to a client for a remote database, the database network
facilities (rather than SQL OpenNet) are used for the network layer, as illustrated in figure 2-1.

Creating SQL Connection Programs
Building Connect Strings

SQL Connection Reference Manual 10.1 (6/13) 2-17

When accessing a remote database, we recommend using the second connect string form (the form
that starts with net:), which uses SQL OpenNet for the network layer. The second form connects to
the SQL OpenNet server specified in opennet_info and uses database_info to access the database or
database client on the server machine, as illustrated in figure 2-2.

There are two advantages to using SQL OpenNet for a connection over a network: it generally
results in better performance, and the database driver for the target database does not need to be
installed on each client (a requirement when connecting directly).

Figure 2-1. Connecting directly to a local database or database client.

Figure 2-2. Using SQL OpenNet to connect to a database or database client.

If the database is on
another machine, the
database client handles
the remainder of the
connection.

database_info

database or
database client

SQL
Connection
application

database

client

network (TCP/IP)

If the database is on
another machine, the
database client
handles the remainder
of the connection.

SQL
OpenNet
service

database_info

database or
database client

server

opennet_info

SQL
Connection
application

vtx3

If you use a DSN, it
is on this machine.

database

Creating SQL Connection Programs
Building Connect Strings

2-18 SQL Connection Reference Manual 10.1 (6/13)

Driver and database_info

The following table defines the database_info syntax for the different drivers.

Driver and Database_info Syntax

Database driver database_info

Oracle 9 on
Windows

VTX0_9 userid/password[/net_service_name]

See “Oracle notes and examples” on page 2-22.
Oracle 10 on
Windows

VTX0_10

Oracle 11 on
Windows

VTX0_11

Oracle on UNIX
and OpenVMS

VTX0

Oracle Rdba

a. Support for these databases may require assistance from Synergex Professional Services and additional support
fees. Contact your Synergy/DE account manager for details. See “Synergex Professional Services Group” on
page ix.

VTX1 schema_name

Sybasea VTX2 userid[/[password]/[database_name]/[server]/
[appname]/[language][/charset]]

SQL OpenNet VTX3 n/a. This is the SQL OpenNet client. It is used when the
connect string starts with net:.

Synergy Database VTX4 userid/[password]/sdms:connect_file

Informixa VTX5 database_name

ODBC-complianta VTX11 userid/[password]/dsn

See “VTX11 (ODBC) notes and examples” on page 2-23.

SQL Server VTX12_ODBC
(ODBC)

userid/[password]/dsn

or
userid/[password]/[database_name]/
[server_name[\\instance_name]]/[app_name]/
[language][/other_options]

See “SQL Server notes and examples” on page 2-23.

VTX12_SQLNATIVE
(SQL Native Client)

MySQL VTX14 userid/[password]/[database]/[server]

See “MySQL connect string examples” on page 2-25.

Creating SQL Connection Programs
Building Connect Strings

SQL Connection Reference Manual 10.1 (6/13) 2-19

Note the following for driver:

 On Windows, a database driver consists of a DLL and an executable, which are located in the
synergyde\connect directory. (The driver argument represents both.) Do not include a path for
driver—just the driver name itself.

 On UNIX, driver is a shared object (an .so file) that is installed in the synergyde/connect
directory. Driver can include a path on UNIX, but there’s no need to specify one unless you
move the shared object to a directory other than synergyde/connect.

 On OpenVMS, driver is a database driver (an .exe shared image file) that is located in the
SYS$COMMON:[SYSLIB] directory. Do not include a path for driver—just the driver name
itself.

Network string (opennet_info) syntax
The opennet_info argument (see “Arguments” on page 2-16) provides the information needed to
connect to an SQL OpenNet service on a machine that has either the database or a client for the
database. Here is the syntax:

@[port:]host[([domain\]uid/pwd)]!driver[,ENV_VAR=env_spec,…]

Arguments
port

(optional) The port number for communicating with SQL OpenNet server. Specify this only if
you want to override the default, which is generally 1958. See “Port settings” on page 2-21.

host

The IP address or name of the machine that has the database or database client. Note that
server names can be up to 64 characters long.

([domain\]uid/pwd)

(optional) Login information (user ID and password) for an account on the host machine or, if
domain is also specified, an account on a domain (Windows only). Note that this is different
than the user ID and password for the database, which are passed as database_info in the
connect string.

driver

The name of the database driver to be used. See “Driver and database_info” on page 2-18.

ENV_VAR=env_spec

(optional) An environment variable definition stored in or used by the target database
(generally for specifying or locating data files).

Creating SQL Connection Programs
Building Connect Strings

2-20 SQL Connection Reference Manual 10.1 (6/13)

Discussion
The network string (opennet_info) is the part of a connect string that starts with an “at” sign (@). It
is included only when SQL OpenNet is used (i.e., when the connect string starts with net:). In the
following, for example, the bold text is the network string (win_srv is host, and
VTX12_SQLNATIVE is driver):

net:my_uid/my_pwd/my_dsn@win_srv!VTX12_SQLNATIVE

For more examples, see “Driver and database_info notes and examples” on page 2-22.

Note the following for domain, uid, and pwd:

 Use these only if the -a option is specified for vtxnetd or vtxnet2. (See “The vtxnetd and
vtxnet2 Programs” in the “Configuring Connectivity Series” chapter of the Installation
Configuration Guide for information.)

 The parentheses and slashes are required for these arguments—e.g.,
(my_domain\my_uid/my_pwd). Use the backslash only if you specify a Windows domain.

Note that when using vtxnet2 to access a database on a Windows server, the “Log on as a batch
job” option must be set for the user account specified by uid. Domain user accounts must have a
group policy that includes the “Log on as a batch job” option.

Overriding delimiters in a network string

SQL OpenNet uses special characters as string delimiters: the at sign (@), colon (:), and
exclamation point (!). In the network part of a connect string, each of these delimiters conveys a
specific instruction to the SQL OpenNet processor and generally is not passed by the processor
unless an identical character follows the first. If you want to pass an at sign, colon, or exclamation
point as part of an environment variable definition, or at any other place in the network connect
string, you must use a duplicate at sign, colon, or exclamation point to ensure that the parser will
interpret the statement correctly.

For example, @unix_srv in the following connect string is the host name of the computer
containing the database.

net:my_uid/my_pwd@@unix_srv!/usr/synergyde/connect/VTX0

In the following, DBDATA is set to datdir!.

net:my_uid/my_pwd@unix_srv!/usr/synergyde/connect/VTX0,DBDATA=datdir!!

The following connect string uses two “at” signs to force the first to become the delimiter for a
network string for a second server. (See the Synergex KnowledgeBase article 100002075 for more
information on this configuration.)

net:my_uid/my_pwd@88.0.0.12!/usr/bin/VTX3@@unix_srv2!/bin/VTX0

Creating SQL Connection Programs
Building Connect Strings

SQL Connection Reference Manual 10.1 (6/13) 2-21

Port settings

To make a connection with SQL OpenNet, the port setting on the client must match the port number
for the SQL OpenNet server. For example, if vtxnetd is started on port 1990, the client must use
port 1990 to connect to it.

On Windows and UNIX servers, you can specify the port number in

 the vtxnet setting in the TCP/IP services file, which is in %windir%\system32\drivers\etc on
Windows and /etc on UNIX. This is the default port setting, but it is used only when the port is
not specified in the vtxnetd or vtxnet2 start-up command.

 the vtxnetd or vtxnet2 command line in opennet.srv (on Windows) or the vtxnetd command
line in the startnet script (on UNIX). This overrides the services file setting.

On an OpenVMS server, the default (1958) is hard-coded, but you can override that by setting a
port number in the vtxnetd command line in NET.COM.

For more information on server-side port settings, see the “Configuring Connectivity Series”
chapter of the Installation Configuration Guide.

On clients, you can specify the port number in

 the vtxnet setting in the TCP/IP services file, on Windows (%windir%\system32\drivers\etc)
and UNIX (/etc). This is the default port setting, but it is used only when there is no other port
setting on the client. For more information, see the “Configuring Connectivity Series” chapter
of the Installation Configuration Guide.

 a port setting in net.ini. If set here, this overrides the services setting only. (Connect string
settings override a port setting in net.ini.) For more information, see “Setting connect string
defaults and encryption in net.ini” on page 1-7.

 a port setting in the connect string. If set here, this overrides all other port settings for the
client.

A quick way to ensure your port settings match is to use either the synxfpng utility (with the -x
option) or the vtxping utility without specifying a port in the command line. If the connection is
successful, the port settings match. For details, see “The vtxping Utility” in the “Configuring
Connectivity Series” chapter of the Installation Configuration Guide and “The synxfpng Utility” in
the “Configuring xfServer” chapter of the Installation Configuration Guide.

Creating SQL Connection Programs
Building Connect Strings

2-22 SQL Connection Reference Manual 10.1 (6/13)

Driver and database_info notes and examples
The following sections discuss arguments for the database_info portion of a connect string (see
“Driver and database_info” on page 2-18) and provide examples for several of the supported
databases/drivers.

Oracle notes and examples
The net_service_name argument in database_info specifies a database instance and is required if
the database has multiple instances. Note that the spelling of the database instance name must
match the spelling used in the SQL*Net configuration file TNSNAMES.ORA. As an alternative to
the net_service_name argument, you can use the ENV_VAR argument documented in “Network
string (opennet_info) syntax” on page 2-19 to set the Oracle system ID (SID) for the instance. See
Oracle documentation for more information.

We recommend using SQL OpenNet for network connections, but you can connect directly to an
Oracle database via the Oracle client. If you do, note the following:

 Oracle will use SQL*Net to make the connection, so the connect string must use SQL*Net
syntax. (See Oracle documentation.) For example, the following connects to an Oracle 11
server named oracle_srv:

VTX0_11:my_uid/my_pwd/oracle_srv

 You must first run the Oracle script oraenv to connect directly to an Oracle database on UNIX.

We recommend against recycling database connections, See “Database connections” on page 2-5.

Connect string examples for Oracle

The following connects directly to a local Oracle 10 database or database client on a Windows
machine. Database_info is my_uid/my_pwd.

VTX0_10:my_uid/my_pwd

The next connect string uses SQL OpenNet to connect to a Windows server (win_srv). No port
number is specified, so the default is used.

net:my_uid/my_pwd@win_srv!VTX0_10

The next uses SQL OpenNet to connect to a UNIX server. Note that the connect string includes a
path for the database driver (VTX0). This is necessary if the database driver is not in the
synergyde/connect directory.

net:my_uid/my_pwd@unix_srv!/usr/my_dir/connect/VTX0

Creating SQL Connection Programs
Building Connect Strings

SQL Connection Reference Manual 10.1 (6/13) 2-23

The next example also uses SQL OpenNet to connect to a UNIX server. Host_uid/host_pwd is used
to log on to the server (unix_srv), and my_uid/my_pwd is used to log on to the database on the
server. Again, because the database driver isn’t in the synergyde/connect directory, the connect
string includes a path for the database driver.

net:my_uid/my_pwd@unix_srv(host_uid/host_pwd)!/usr/mydir/connect/VTX0

The following uses SQL OpenNet to connect to an OpenVMS server.

net:my_uid/my_pwd/my_instance.com@vms_srv!VTX0

VTX11 (ODBC) notes and examples
To access a database using the ODBC database driver (VTX11), a user or system DSN must be
defined for the database. For SQL OpenNet connections, the DSN must be on the server. For direct
connections, the DSN must be on the clients. See Microsoft documentation for information on
DSNs.

Connect string examples for VTX11

The following example connects directly to an ODBC-compliant database (in other words, it
doesn’t use SQL OpenNet). Database_info is my_uid/my_pwd/my_dsn. Information on the
database is in the DSN (my_dsn).

VTX11:my_uid/my_pwd/my_dsn

The next example uses SQL OpenNet to connect to a Windows server (win_srv). Database_info is
my_uid/my_pwd/my_dsn.

net:my_uid/my_pwd/my_dsn@win_srv!VTX11

SQL Server notes and examples
The Connectivity Series distribution includes two database drivers for SQL Server:

 VTX12_SQLNATIVE, which uses the Microsoft SQL Native Client ODBC driver

 VTX12_ODBC, which uses the ODBC API

For best performance, we recommend using VTX12_SQLNATIVE. And note that you must use it
to use shared memory access (which we recommend whenever you use SQL OpenNet; see “Using
the SQL Server shared memory protocol” on page 2-26).

For SQL Server, there are two forms of syntax for the database_info section of the connect string
(see “Driver and database_info” on page 2-18):

 If the database_info section has two forward slashes, the first form (userid/[password]/dsn) is
used to interpret the connect information.

 If there are more than two forward slashes, the second form is used. The second form enables
you to create DSN-less connections.

Creating SQL Connection Programs
Building Connect Strings

2-24 SQL Connection Reference Manual 10.1 (6/13)

The other_options part of the second form of database_info represents a string that can contain
SQLDriverConnect() options that are specific to SQL Server. (See Microsoft documentation for
information.) This string can contain multiple options separated by semicolons (;). The following
connect string, for example, uses the SQL Server shared memory protocol (Network=dbmslpcn)
and passes a DSN specification (DSN=my_dsn):

VTX12_SQLNATIVE:my_uid/my_pwd/////Network=dbmslpcn;DSN=my_dsn

For DSN-less connections, you can also pass Driver={odbc_driver} as other_options, where
odbc_driver is a driver name returned by SQLDrivers(). (Without this setting, SQL Connection
uses an ODBC driver of its own choosing.) The following uses SQL Server Native Client 11.0:

VTX12_SQLNATIVE:uid/pwd/pubs/srv///Driver={SQL Server Native Client 11.0}

We recommend using DSNs because they include client configuration information that would
otherwise need to be set separately. We also recommend making DSN access local when you set up
the SQL Server database instance.

 For a SQL OpenNet connections, DSNs must be system DSNs on the server (see figure 2-2 on
page 2-17). For direct connections, DSNs must be user or system DSNs on the clients.

 For VTX12_ODBC, DSNs must be configured for ODBC. For VTX12_SQLNATIVE, DSNs
must be configured for one of the SQL Native Client versions.

Unless you’re using Windows authentication, make sure your SQL Server database is set up to use
SQL Server authentication. For example, for SQL Server 2012 you can use SQL Server
Management Studio to set the “SQL Server and Windows Authentication mode” option.

For more information on connections to SQL Server, see “Using your program with different
drivers and databases” on page 2-7.

Connect string examples for SQL Server

The first example below illustrates the first form of database_info syntax: (userid/[password]/dsn).
It creates a direct connection (i.e., SQL OpenNet is not used), and the information in the DSN
determines whether the database is local or remote.

VTX12_ODBC:my_uid/my_pwd/my_dsn

The next example is also for a direct connection, but it uses the second form of database_info
syntax. Note that it continues on a second line, and note that the DSN (my_dsn) is passed in the
other_options part of database_info. The connection will use the SQL Server shared memory
protocol (which improves performance) because the connect string includes Network=dbmslpcn. It
will also use multiple active result sets (MARS) because the connect string sets
MARS_Connection=yes.

VTX12_SQLNATIVE:my_uid/my_pwd/my_db////Network=dbmslpcn;DSN=my_dsn;
MARS_Connection=yes

Creating SQL Connection Programs
Building Connect Strings

SQL Connection Reference Manual 10.1 (6/13) 2-25

The next example is also for a direct connection, uses the second form of database_info, and
continues on a second line. But with this example, no DSN, user ID, or password is specified.
Instead, the connect string instructs SQL Server to use Windows authentication
(Trusted_connection=yes) for the user ID and password, and the SQL Server driver is specified by
passing Driver={SQL Server Native Client 10.0}. Both are passed as other_options. My_db is the
database name, and my_instance is the instance name. The period before my_instance indicates
that the instance is on the local machine.

VTX12_SQLNATIVE://my_db/.\\my_instance///
Driver={SQL Server Native Client 10.0};Trusted_connection=yes

The following also specifies an instance name (TESTDB):

vtx12_sqlnative:sql_user/sql_user//MY_SERVER\\TESTDB

The following example uses SQL OpenNet to connect to a Windows server. Database_info is
my_uid/my_pwd/my_dsn, port is 1960, and host is win_srv.

net:my_uid/my_pwd/my_dsn@1960:win_srv!VTX12_ODBC

The next example, which is continued on a second line, uses SQL OpenNet to connect to a port
number 1960 on a Windows server (win_srv).

net:my_uid/my_pwd/my_db////Network=dbmslpcn;DSN=my_dsn;
MARS_Connection=yes@1960:win_srv!VTX12_SQLNATIVE

MySQL connect string examples
Connections to MySQL use the MySQL database driver, VTX14.

The following connect string is for a direct connection (i.e., it doesn’t use SQL OpenNet).
Database_info is my_uid/my_pwd/my_db.

VTX14:my_uid/my_pwd/my_db

This next example uses SQL OpenNet to connect to a Windows server (win_srv). Database_info is
my_uid/my_pwd/my_db.

net:my_uid/my_pwd/my_db@win_srv!VTX14

The next example uses SQL OpenNet to connect to a Linux server (linux_srv). Because the
database driver isn’t in the synergyde/connect directory, the connect string includes a path for the
driver.

net:my_uid/my_pwd/my_db@linux_srv!/usr/my_dir/connect/VTX14

Creating SQL Connection Programs
Building Connect Strings

2-26 SQL Connection Reference Manual 10.1 (6/13)

Using the SQL Server shared memory protocol
For improved performance for connections to SQL Server, use the SQL Server shared memory
protocol. This reduces the number of TCP/IP sockets used for a connection, making it less likely
that all of the sockets for the server machine will be used at one time, which can greatly impede
performance. Note the following:

 For remote databases, the SQL Server shared memory protocol is available only if you use
VTX12_SQLNATIVE and if you use SQL OpenNet for all network connections. So, if you use
a DSN, for example, the DSN must be on the machine that has the SQL Server database.

 For connections that use DSNs, select “(local)” as the server name in the DSN configuration
screen, and prefix this with “LPC:” (without quotes)—i.e., LPC:(local). See figure 2-3 below.

 For DSN-less connections, use the second form of syntax for database_info and either omit the
server name from the database_info string or add “Network=dbmslpcn” to the other_options
string. (This setting specifies the shared memory network library for SQL Server.) For
example, the following establishes a connection to a local database:

VTX12_SQLNATIVE:my_uid/my_pwd/my_db////Network=dbmslpcn

The next example uses SQL OpenNet to connect to a remote database:

net:my_uid/my_pwd/my_db////Network=dbmslpcn@win_srv!VTX12_SQLNATIVE

Figure 2-3. Specifying LPC:(local) as the server for a DSN when using VTX12_ODBC.

Creating SQL Connection Programs
Cursors

SQL Connection Reference Manual 10.1 (6/13) 2-27

Cursors
SQL Connection uses two types of cursor: database cursors and a special SQL Connection
mechanism called logical cursors. A database cursor is a processed SQL statement (one that the
database has parsed, optimized, and so forth—i.e., a cached execution plan) and/or the database
mechanism for traversing and maintaining a position on a row in the result set. Logical cursors, on
the other hand, are SQL Connection mechanisms for accessing cursors, including soft-closed
cursors. You’ll allocate logical cursors when you initialize a database channel (%SSC_INIT), but
otherwise, consider all discussions of cursors in this manual to be discussions of database cursors.
(Under the hood, however, SQL Connection uses logical cursors to streamline data access.)

With SQL Connection, you interact with cursors by

 opening a new cursor or reusing a cursor when you pass an SQL statement to %SSC_OPEN.

 optionally using %SSC_CMD to set options for subsequently opened cursors.

 passing the cursor ID to other SQL Connection routines that require it to access data or update
the database (%SSC_BIND, %SSC_MOVE, and so forth).

 hard-closing or soft-closing the cursor.

Closing cursors
Reusing cursors can improve performance, but cursors take up resources that you’ll generally want
to release as soon as possible. So SQL Connection includes two ways to close cursors: soft closing
(%SSC_SCLOSE) and hard closing (%SSC_CLOSE).

 Soft closing frees some database resources on SQL Server, but on other databases it increases
the chance that the database will retain the cached results, if results are still pending for the
operation. Soft closing may enable the database to cache the execution plan and just rebind
variables. Results depend on your database.

In general, consider soft closing the cursor (by calling %SSC_SCLOSE) if your program will
redo the same operation soon or frequently and if your program just retrieves one row or keeps
retrieving until the database has no more data for the statement. See “Reusing cursors” on
page 2-28 for more information.

 Hard closing frees all memory for reuse and frees database resources associated with the
cursor, including removing the cached execution plan and all locks, closing the database
cursor, and so forth. In general, consider hard closing the cursor (by calling %SSC_CLOSE) if
you know that your program will not reuse a statement soon or frequently, or if no more data
will be retrieved for the statement. Additionally, note that %SSC_COMMIT,
%SSC_RELEASE, and %SSC_ROLLBACK will also hard close cursors.

Because databases hold a cache of previously used statements, a database cache may
reach its limit (resulting in a severe decrease in performance) if you do not hard close.

Creating SQL Connection Programs
Cursors

2-28 SQL Connection Reference Manual 10.1 (6/13)

.NET
Note that with Synergy .NET in a multi-threaded environment, cursors are not automatically closed
when threads terminate.

Reusing cursors
For optimal performance, reuse a cursor if the statement will be reused soon or frequently. Cursor
reuse can significantly improve database and network performance. It saves time opening the
cursor, and it uses less memory. SQL Connection enables you to reuse cursors if

 the database allows cursor reuse.

 the cursor is still open or has been soft-closed.

 the SQL statement in %SSC_OPEN is identical in every way to the SQL statement previously
used with the cursor.

In other words, reuse a cursor if you are processing the same SQL statement several times with the
same or different bind data.

In brief, these are the steps that an SQL Connection application and the database take to process an
SQL statement if you don’t reuse a cursor:

1. Open cursor.

2. Process the SQL statement:

 Check cache. Is there an identical statement in the cache? If so, use cached entry and go to
step 3.

 Parse. Is the statement correct? Does the syntax make sense?

 Bind. Do specified data objects (tables and columns) exist?

 Check authorization. Is the user allowed to access the data?

 Plan access. How is this data to be accessed?

 Optimize. How can data be retrieved more efficiently?

3. Bind parameters.

4. Execute the statement (e.g., fetch data).

5. Close the cursor.

When a cursor is reused, however, the application skips the initial step of processing the SQL
statement. This alone saves a great deal of overhead since initial processing is typically a very
expensive process, using as much as 10 times the resources as other steps. The reused cursor
rebinds only the variables containing new data and eliminates the need for re-parsing the entire
statement. You can then fetch new data and rebind the host variables as many times as necessary.

Creating SQL Connection Programs
Cursors

SQL Connection Reference Manual 10.1 (6/13) 2-29

SQL Connection reuses cursors in conjunction with the %SSC_OPEN, %SSC_SCLOSE (as
mentioned in “Closing cursors” above), %SSC_REBIND, %SSC_EXECUTE, and
%SSC_EXECIO functions. For an example, see the example section for %SSC_CLOSE on
page 3-6.

Note the following:

 When using SQL statements with conditions, use bind variables (not literals) for the conditions
to ensure that the SQL statement matches the SQL statement originally used with the cursor.

 Avoid using string arithmetic to build SQL statements. Instead, use literals.

 Be sure to explicitly end transactions. If you do not explicitly commit or roll back, it’s up to the
database to determine how to end the transaction, which may lead to unexpected results,
including running out of resources.

 You can use Vortex API logging to find out how well you’ve optimized cursor usage. See
“Using Vortex API logging to verify optimization” on page 5-7 for information.

 If you are fetching a row and you plan to perform a positioned update, you can use
%SSC_SQLLINK to link the update statement to the open SELECT cursor rather than opening
another cursor for the update statement. See %SSC_SQLLINK on page 3-56 for more
information.

Cursor types
The options argument for %SSC_OPEN and some of the %SSC_CMD options enable you to create
forward-only, dynamic, keyset-driven, and static cursors, though not all databases support all of
these types. Additionally, in some cases a cursor can be a scrolling cursor, which enables you to
determine which row will be retrieved with the next fetch (by setting an SSQL_CMD_SCROLL
option in a call to %SSC_CMD). Non-scrolling cursors, on the other hand, always retrieve the next
row. Supported cursor types are briefly discussed below, but see your database documentation for
more information, and see “Specifying a cursor type” on page 2-31 for information on how to select
the cursor type for a statement. Note the following:

 To determine which type of cursor works best for your statements, perform timing tests and
examine the database performance logs.

 If you change the SQL Connection cursor type when reusing a cursor (in other words, when
passing a cursor number in the dbcursor argument for %SSC_OPEN), the cache for cursor
reuse for identical statements is flushed.

Creating SQL Connection Programs
Cursors

2-30 SQL Connection Reference Manual 10.1 (6/13)

Forward-only. Forward-only cursors are generally the most efficient cursors for read operations
because for some databases, an entire result set may be cached on the client or in a network buffer.
(Changes made to the database after the result set is established are not reflected in the result set.)
Additionally, forward-only cursors

 are the only type of cursor most databases support. This is the default setting for all but
VTX12_ODBC and VTX12_SQLNATIVE (which have a default setting of dynamic).

 may support updates, except when using VTX12_ODBC or VTX12_SQLNATIVE. Note that
forward-only cursors don’t support positioned updates when using VTX11.

 cannot be scrolling cursors.

 are client-side cursors when accessing a SQL Server database.

 enable you to have multiple concurrently active statements. Note, however, that this may not be
true if you are accessing SQL Server with VTX12_ODBC or VTX12_SQLNATIVE. For these
drivers, forward-only cursors generally don’t support multiple concurrently active statements
because SQL Server returns the “default result set” (also known as a firehose cursor) when a
cursor is set to forward-only (and SSQL_STANDARD, an %SSC_OPEN option). This default
result set must be processed before another statement can be issued, which limits the client to
one active SQL statement at a time. (If you attempt to issue an SQL statement while a previous
statement is still active, you may get a “Connection is busy with results for another hstmt”
error.) However, when using multiple active result sets (MARS) with SQL Server, this may not
be a limitation.

Dynamic. Dynamic (also known as sensitive) is a SQL Server cursor type that reflects all changes
to the database made by other users. A dynamic cursor may be better than a forward-only cursor for
a large result set if only part of the result set will be read, or if the result set is too large for the
network buffer used for forward-only cursors. Additionally, dynamic cursors

 can be used only with VTX11 (if the database supports them), VTX12_ODBC, and
VTX12_SQLNATIVE. It is the default setting for VTX12_ODBC and VTX12_SQLNATIVE
(for application compatibility with other databases). However, we recommend using the
forward-only setting when possible. See “Specifying a cursor type” on page 2-31.

 are the only cursors you can use to update data or delete rows when using VTX12_ODBC or
VTX12_SQLNATIVE.

 can be scrolling cursors.

 are server-side cursors.

 enable you to have multiple concurrently active statements.

Creating SQL Connection Programs
Cursors

SQL Connection Reference Manual 10.1 (6/13) 2-31

Keyset-driven. This is a SQL Server cursor type that is updated only with changes made to rows
that existed when the statement was executed (not rows inserted after the result set was
established). Keyset-driven cursors are usually the least efficient cursors. Additionally,
keyset-driven cursors

 can be used only with VTX11 (if the database supports them), VTX12_ODBC, or
VTX12_SQLNATIVE.

 don’t support updates.

 create a temporary table in the temporary database.

 can be scrolling cursors.

 are server-side cursors.

 enable you to have multiple concurrently active statements.

Static. Static (also known as insensitive) is a SQL Server cursor type that does not reflect any
changes made to the database after the result set was established. Static cursors are the most
efficient scrolling cursors. Additionally, static cursors

 can be used only with VTX11 (if the database supports them), VTX12_ODBC, or
VTX12_SQLNATIVE.

 don’t support updates.

 create a temporary table in the temporary database.

 can be scrolling cursors.

 are server-side cursors.

 enable you to have multiple concurrently active statements.

Specifying a cursor type
To specify the type of cursor you want, use cursor options for %SSC_OPEN, %SSC_CMD, or
both.

To create a forward-only cursor (a static cursor that cannot be made to scroll), call %SSC_CMD
with the SSQL_CURSOR_FORWARD_ONLY option (or the SSQL_CURSOR_DEFAULT
option) before calling %SSC_OPEN. Then make sure the %SSC_OPEN call does not include any
of the SSQL_SCROLL options. Note the following:

 For all database drivers except VTX12_ODBC and VTX12_SQLNATIVE, the default cursor
type is forward-only, so you can just omit any %SSC_CMD or %SSC_OPEN option that
would set a type. (For compatibility with other databases, the default setting for
VTX12_ODBC and VTX12_SQLNATIVE is dynamic.)

 For VTX12_ODBC and VTX12_SQLNATIVE, using %SSC_CMD to set
SSQL_CURSOR_DEFAULT (or SSQL_CURSOR_FORWARD_ONLY) without setting any
other cursors options (for example, scrolling options) causes SQL Server to return the default

Creating SQL Connection Programs
Cursors

2-32 SQL Connection Reference Manual 10.1 (6/13)

result set, which is also known as the firehose cursor. Generally, the default result set is faster
than other cursor types for SQL Server, but there are some limitations. See the note under
“Forward-only” on page 2-30.

 For SQL Server, you can also create a forward-only server-side cursor by specifying the
%SSC_CMD command SSQL_RO_CURSOR when specifying dynamic, keyset-driven, or
static cursors. Note, however, that in this case, SQL Server will not return the default result set
(the firehose cursor). You must use %SSC_CMD to set SSQL_CURSOR_DEFAULT (or
SSQL_CURSOR_FORWARD_ONLY) as mentioned above.

To create a dynamic, keyset-driven, or static cursor, do one of the following:

 Use the SSQL_CURSOR_TYPE options in a call to %SSC_CMD and then, if you want a
scrolling cursor, pass SSQL_SCROLL in the %SSC_OPEN call. (Note that to make a cursor
scrollable, you must use one of the SSQL_SCROLL options for %SSC_OPEN.)

 Without setting any SSQL_CURSOR_TYPE options (for %SSC_CMD), call %SSC_OPEN
with one of the SSQL_SCROLL options.

For VTX12_ODBC and VTX12_SQLNATIVE,

 if you use static or dynamic cursors and your application does not update the
database, we recommend setting the SSQL_RO_CURSOR option (an %SSC_CMD
option). This option instructs SQL Connection to use fast-forward cursors
(SQL_CO_FFO) when possible.

 watch for implicit conversions, which adversely affect performance and indicate that
you are using the wrong cursor type for the statement. To detect implicit cursor
conversions, use SQL Connection logging (see “SQL Connection logging” on
page 5-5). For example, if you are using dynamic or keyset-driven cursors, SQL Server
will generate “Success with info” messages when it automatically changes cursor type.

 SQL Server uses pessimistic locking when using dynamic cursors and the (UPDLOCK
ROWLOCK) hint. See “Row locking” on page 2-42.

 The default concurrency setting for a cursor is SQL_CONCUR_READ_ONLY.
However, when you use SSQL_POSITION or SSQL_FORUPDATE, VTX12_ODBC
uses SQL_CONCUR_LOCK.

See Microsoft Developer Network (MSDN) documentation for more information on these
topics.

Creating SQL Connection Programs
Data Mapping

SQL Connection Reference Manual 10.1 (6/13) 2-33

Data Mapping
As you add SQL statements to your program, you can use variables to store data sent to and
received from the database. This is called data mapping. Defined variables store data received from
a database. Bind variables store data that’s sent to a database.

Defining variables
If your SQL Connection program includes an SQL statement that returns data, you must use
defined variables to store the returned data. To do this, declare a variable for each column that will
be returned from the query. Then, in a call to %SSC_DEFINE, specify the declared variables in the
order that their corresponding columns are specified in the SQL statement. %SSC_DEFINE maps
the variables to the returned columns of data. Finally, call %SSC_MOVE to fetch the data into the
variables. Note that you may want to use %SSC_STRDEF rather than %SSC_DEFINE if you are
passing many variables. Depending on the number of variables you pass, %SSC_STRDEF may
improve performance. For more information, see the following:

 %SSC_DEFINE on page 3-21

 %SSC_MOVE on page 3-41

 %SSC_STRDEF on page 3-58

The following example illustrates how you can handle an SQL statement that returns just one row
of data:

sqlp="SELECT deptnum FROM org1 WHERE division=:1"
if (%ssc_open(dbchn, cur1, sqlp, SSQL_SELECT,, 1, a_bind_var))

goto err_exit
if (%ssc_define(dbchn, cur1, 1, a_deptnum)) ;Map variable to column.

goto err_exit
sts = %ssc_move(dbchn, cur1) ;Fetch data into defined variable.

If the SQL statement returns more than one row of data, put the %SSC_MOVE call in a loop. For
example:

sqlp="SELECT deptnum, deptname, hrdate, salary FROM org1
; WHERE division=:1"
if (%ssc_open(dbchn, cur1, sqlp, SSQL_SELECT,, 1, a_bind_var))

goto err_exit
if (%ssc_define(dbchn, cur1, 4,a_deptnum, a_deptname, a_hrdate,
; a_salary)) ;Map variables to columns.

goto err_exit

Since SQL Connection always attempts to convert data for given types, make sure you use
the proper data types for both defining and binding. In addition, remember that data
conversion is a database-specific operation. See “Data Conversion” on page 2-36 for the
recommended use of data types.

Creating SQL Connection Programs
Data Mapping

2-34 SQL Connection Reference Manual 10.1 (6/13)

do forever
begin

sts = %ssc_move(dbchn, cur1, 1, rowcnt) ;Fetch a row of data into
. ; defined variables.
.
.

Binding data
For data that’s sent to the database, you can use bind variables to bind the data, rather than
hard-coding the data in the SQL statement. You can bind

 data that updates the database—for example, data in the VALUES clause of an INSERT
statement or the SET clause of an UPDATE statement.

 data that’s part of the selection criteria—for example, data in a WHERE or LIKE clause.

Binding enables the database to prepare an SQL statement once and then reuse the prepared
statement as many times as your program sends new data for the statement. (For information on
resubmitting a statement after updating bind variables, see %SSC_REBIND on page 3-49.)

When you bind data, you map the data with a one-to-one mapping method (one Synergy DBL
variable holds one column of data in the database row) on a column-by-column basis.

Binding takes place when the query is executed, which for SELECT statements happens with
%SSC_OPEN and for non-SELECT statements happens with %SSC_EXECUTE or
%SSC_EXECIO. For example, if you bind the host variable ordnum to a SELECT statement and
ordnum equals 2 when %SSC_OPEN is called, the SELECT statement will use 2 for the query even
if the ordnum value is changed to 3 before %SSC_MOVE is called. However, for a non-SELECT
statement, the value 3 would be used because the variable ordnum is evaluated by
%SSC_EXECUTE, which would follow %SSC_MOVE.

Specifying bind variables
To use a bind variable, put a placeholder (described below) in the SQL statement and pass a bind
variable in an %SSC_OPEN, %SSC_BIND, or %SSC_SQLLINK call.

 With %SSC_OPEN, you can bind variables for SELECT and non-SELECT statements.

 With %SSC_BIND and %SSC_SQLLINK, you can bind variables only for non-SELECT
statements.

 If you have linked a statement to a SELECT cursor (using %SSC_SQLLINK), a subsequent
call to %SSC_STRDEF binds variables for the original SELECT statement, and a subsequent
call to %SSC_BIND binds variables for the linked statement.

Creating SQL Connection Programs
Data Mapping

SQL Connection Reference Manual 10.1 (6/13) 2-35

For example, the following INSERT statement has six placeholders in the VALUES clause, and the
%SSC_OPEN call has six bind variables that correspond to the placeholders: “:1” is a placeholder
for deptnum, and “:2” is a placeholder for deptname, and so forth. If necessary, the statement could
also have a WHERE clause with additional bind variables.

sqlp = "INSERT INTO ORG1 (DEPTNUM, DEPTNAME, MANAGER, DIVISION, "
& "HRDATE, SALARY) VALUES (:1,:2,:3,:4,to_date(:5,'MM/DD/YYYY'),:6)"

if (%ssc_open(dbchn, cur1, sqlp, SSQL_NONSEL, SSQL_STANDARD, MX_VARS,
& deptnum, deptname, manager, division, hrdate, salary))

goto err_exit

For Oracle databases, the placeholder numbers determine the order in which the variables are used.
For other databases, bind variables are used in the order they are specified in the %SSC_OPEN,
%SSC_BIND, or %SSC_SQLLINK call; the placeholder number does not affect the order for these
databases, but it is required. Note the following:

 Do not duplicate a number.

 Use consecutive numbers starting with 1.

Note that you can also use %SSC_STRDEF to bind (and define) variables for SELECT and
non-SELECT statements. When possible use %SSC_OPEN, %SSC_BIND, or %SSC_SQLLINK,
but for SELECT statements, you cannot bind more than 248 variables unless you use
%SSC_STRDEF. And for non-SELECT statements, you cannot bind more than 256 variables
unless you use %SSC_STRDEF or use multiple %SSC_BIND calls with 256 or less bind variables
in each call.

Also note that if you use a bind variable to hold an operand for a LIKE clause, be sure to use a
database trim function to trim trailing spaces. (For example, use RTRIM with SQL Server or TRIM
with Oracle.) If you don’t, the trailing spaces will be evaluated as part of the LIKE clause. For
example, if the bind variable is an a10, for example, and the LIKE clause operand is “a%”, the
LIKE will specify a match for a% plus eight trailing spaces. In this case, for example, “anderson”
would be overlooked.

Creating SQL Connection Programs
Data Conversion

2-36 SQL Connection Reference Manual 10.1 (6/13)

Data Conversion
SQL Connection automatically converts Synergy data types to database-specific data types when
data flow is from a Synergy application to the database. And database-specific data types are
converted into Synergy data types when data flow is from the database to a Synergy application.
Note the following:

 For information on binding and defining large binary or character columns, see the
%SSC_LARGECOL Discussion on page 3-39.

 If you store implied-decimal values as whole numbers (programmatically handling the decimal
point), you must use the ^D() function to convert variables that store the whole numbers into
the correct implied-decimal format for sending data to and receiving data from the database. If
you don’t, only the whole number part of a decimal value will be stored. For example, if you
use a d10 variable (instead of a d10.2) for a currency field, the value 100.02 will be truncated
to the whole number 100. For information on ^D(), see ^D in the “System-Supplied
Subroutines and Functions” chapter of the Synergy DBL Language Reference Manual.

 Date-to-numeric conversions result in Julian date values that are compatible with %NDATE.

Data conversion when binding

When binding host variables to database columns, SQL Connection makes the following data
conversions:

Note the following:

 For alpha host variables, fields that start with a binary 0 become null. Depending on the
database, data for alpha host variables may be converted in other cases as well. For example a
blank field or a field filled with spaces may be converted to null or to a single space. It may
also remain as is. And a field with trailing blanks may be trimmed for varchar. For information
on an option that controls the way Oracle treats data for alpha host variables, see
SSQL_TRIMCHAR on page 3-15.

 For decimal and implied decimal host variables, blanks become zeros, ASCII zeros remain
zeros, and host variables that start with binary zero (see note below) become null values.

Binding Synergy DBL host variables… …to database columns

Alpha Binary, char, date, datetime, varchar

Decimal Numeric

Implied decimal Float, numeric

Integer Integer, numeric

System.String Binary, char, date, datetime, varchar

Creating SQL Connection Programs
Data Conversion

SQL Connection Reference Manual 10.1 (6/13) 2-37

 For integer host variables, binary zeros remain binary zeros. There is no way to store a null
value using a bound integer field.

 For binary columns with SQL Server or Oracle, %SSC_EXECIO treats the data as a char field
and trims trailing spaces, unless you can use the SSQL_EXBINARY option. (If you use the
SSQL_EXBINARY option, %SSC_EXECIO uses the given data and length.) %SSC_MOVE
always preserves binary column data.

 To bind a null value to a char, date, datetime, numeric, or float database column, set the first
character position of your alpha or decimal field to binary zero with %CHAR(0). If you are
using a decimal field, you will need to use the ^A() function to cast it as an alpha. (You cannot
store a null value using a bound integer field.) See “Using %SSC_INDICATOR when updating
a column with null” on page 2-39 for a method for doing this, and remember to reset the
column to its original value before using it with anything other than an %SSC_ function.

For more information about ^A and %CHAR, see ^A and %CHAR in the “System-Supplied
Subroutines and Functions” chapter of the Synergy DBL Language Reference Manual.

 For non-array operations, SQL Connection can convert data in System.String bind variables to
char, date, datetime, or varchar and, when using %SSC_LARGECOL, to binary.
(System.String bind variables are not supported for array-based operations.)

Data conversion when defining

When loading database columns to defined host variables, SQL Connection makes the following
conversions:

Loading database columns… …to defined Synergy DBL host variables

Binary Alpha, System.String

Char Alpha, System.String

Currency Implied decimal

Date Alpha, decimal, integer, System.String

Datetime (including datetime derivatives, such
as DATETIMEOFFSET for SQL Server)

Alpha, System.String

Double Implied decimal

Float Implied decimal

Integer Decimal, integer

Number Decimal, implied decimal, integer

Numeric Decimal, implied decimal

Creating SQL Connection Programs
Data Conversion

2-38 SQL Connection Reference Manual 10.1 (6/13)

Note the following:

 For alpha host variables, nulls become blanks.

 When using an alpha variable to receive data from a datetime column with microsecond
precision, make sure the format string for %SSC_OPTION includes the UUUUUU mask.

 For binary columns, %SSC_EXECIO converts binary zeros to spaces and trims trailing spaces,
unless you pass the SSQL_EXBINARY option. (If you use the SSQL_EXBINARY option,
%SSC_EXECIO uses the data as is.) %SSC_MOVE, on the other hand, always preserves
binary zeros when retrieving data from binary columns.

 For decimal, implied decimal, and integer host variables, nulls become zeros.

 If a Synergy DBL host variable is not large enough to hold the data value assigned to it, the
data value will be truncated. The original size of the data value can be determined using
%SSC_INDICATOR. For more information, see %SSC_INDICATOR on page 3-33.

 You must use %SSC_INDICATOR to determine if a fetched column was returned with a null
value.

 For non-array operations, SQL Connection can move the data in char, date, datetime, varchar,
or (when using %SSC_LARGECOL) binary columns to System.String define variables.
(System.String define variables are not supported for array-based operations.)

Time Alpha, System.String

Timestamp Alpha, System.String

Varchar Alpha, System.String

Loading database columns… …to defined Synergy DBL host variables

Creating SQL Connection Programs
Data Conversion

SQL Connection Reference Manual 10.1 (6/13) 2-39

Using %SSC_INDICATOR when updating a column with null
When binding a char, date, datetime, numeric or float column with null, you can use
%SSC_INDICATOR to determine if the column is currently null. You can then use this information
to determine if the update value should be stored as null.

1. Initialize SQL Connection (%SSC_INIT),
connect to the database (%SSC_CONNECT),
and start the transaction (%SSC_COMMIT), as
illustrated in the diagrams in “Function Call
Flow” on page 2-9.

2. Open a cursor with SSQL_SELECT and
SSQL_POSITION, and set up the SELECT
statement, binding variables as necessary.

3. Define variables.

4. Set up the update statement with
%SSC_SQLLINK, binding variables as
necessary.

5. Use %SSC_INDICATOR to record null status
for retrieved columns.

6. Fetch data with %SSC_MOVE.

7. Execute the update statement with
%SSC_EXECUTE (SSQL_STANDARD).

Test int_array elements (returned from the
%SSC_INDICATOR call) to determine if
database columns contain null values before the
update. If a column is null and the bind variable
for the column is blank and alpha or zero and
decimal or implied decimal, set the first
character in the bound field to %CHAR(0),
which is binary zero. This instructs the database
store the value as null.

8. If there are more rows, fetch data
(%SSC_MOVE) and then execute update
(%SSC_EXECUTE) in a loop.

9. Rebind and close the cursor and release the
connection and commit the transaction as necessary. See “Bulk update” on page 2-13 for
information.

more updates

%SSC_DEFINE

%SSC_MOVE

%SSC_EXECUTE

%SSC_INDICATOR

%SSC_OPEN

%SSC_SQLLINK

%SSC_MOVE

Update data. If the field is blank and
alpha or zero and decimal or implied
decimal, set first character position to

binary zero.

%SSC_CLOSE, %SSC_COMMIT, etc.

Initialize, connect,
and start transaction.

Use int_array elements to determine if
databases columns contain nulls.

Creating SQL Connection Programs
Data Conversion

2-40 SQL Connection Reference Manual 10.1 (6/13)

Converting dates and times
Date and time columns are defined differently for different databases. For example, in Oracle and
Synergy databases, dates have the date data type. In SQL Server, dates and times have the datetime
data type. When you’re using SQL Connection functions to write to the database, the SQL
statements you pass must use the correct formats and commands for the database. Unfortunately,
there are no standard commands for this. For example, for Oracle and Synergy databases, you use
the TO_DATE() or CAST() functions, and for SQL Server you use the CONVERT() function
(unless you’re using a d8 variable with the YYYYMMDD format, as discussed below).

On the other hand, when you’re using SQL Connection functions to read dates and times from the
database, these functions pass a date and/or time to your application that’s been converted to either
an alpha value (if it’s passed to an alpha variable) or a Julian date value (if it’s passed to a numeric
variable).

 If a date or time value is converted to an alpha value, you can use the %SSC_OPTION function
to set the date/time mask. This specifies the format for the date or time.

 If a date or time value is converted to a Julian date value, the value is based on the SQL
Connection Julian base date. You can get and set the Julian base date with the %SSC_OPTION
function. (Note that we don’t recommend changing this value.) For information on Synergy
DBL routines that handle Julian dates, see the “System-Supplied Subroutines and Functions”
chapter of the Synergy DBL Language Reference Manual. For more information on the Julian
base date and the date/time format mask, see %SSC_OPTION on page 4-8.

What if your application uses d6 or d8 variables for dates? Because SQL Connection functions
convert returned dates to Julian date values for numeric variables, you won’t be able to use d6 or d8
variables in SQL Connection functions to directly receive dates unless you want to use the Synergy
DBL Julian routines. Otherwise, you’ll need to cast these numeric fields as alpha fields. For
example, the following sets date_field to eight digits of the Julian date value if date_field is
defined as a d8:

sts = %SSC_DEFINE(dbchn, cur1, 1, date_field)

The following, however, casts the date as an alpha field:

sqlp = "SELECT or_odate FROM orders WHERE or_number=3"
If (%ssc_open(dbchn, cur1, sqlp, SSQL_SELECT))

goto err_exit
sts = %SSC_OPTION(dbchn, SSQL_GETOPT, date_base, date_format, null)
date_format = "DDMMYYYY"
sts = %SSC_OPTION(dbchn, SSQL_SETOPT, date_base, date_format, null)
sts = %SSC_DEFINE(dbchn, cur1, 1, ^A(date_field))

Creating SQL Connection Programs
Data Conversion

SQL Connection Reference Manual 10.1 (6/13) 2-41

In this case, if the retrieved date is February 6, 1958, date_field will be set to 06021958. To then
write this value back to a database, you could do something like the following for Oracle or
SQL Server:

sts = %SSC_OPEN(dbchn, cur1, "insert into orders(or_date) where
& or_number=3 values(to_date(:1, "DDMMYYYY")",
& SSQL_NONSEL, SSQL_STANDARD, 1, ^A(date_field))

When writing to an Oracle or SQL Server database, if your program uses a d8 variable and the
YYYYMMDD format for the date, you don’t need to use TO_DATE() or CONVERT() to write the
date to the database. (The YYYYMMDD format is the default for these databases.) You will,
however, need to convert the d8 into an alpha with the ^A() function.

For a date conversion example, see exam_create_table.dbl in the connect\synsqlx subdirectory of
the main Synergy/DE installation directory.

Numeric database columns
To maximize the portability of your code to various databases, we recommend using the numeric
type for columns when writing CREATE TABLE statements. Creating a database column as
numeric will ensure that the column will map to a database data type suitable for commercial data
storage equivalent to at least a d28.10. Some databases also allow integer storage. SQL Connection
will translate between the database numeric data types and the Synergy DBL variables, whether
they are integer, decimal, or implied decimal.

Creating SQL Connection Programs
Updates and Locking

2-42 SQL Connection Reference Manual 10.1 (6/13)

Updates and Locking

When multiple users access and modify data from the same database, there can be data access
conflicts (multiple users attempting to access the same data) and update conflicts (different versions
of the same data being modified and committed to the database at the same time). This is possible
because users of front-end applications can simultaneously access the same data on the same
database. Additionally, when a user accesses data for viewing or modifying, one or more rows of
data are copied from the database into network buffers or into host variables in the front-end
application. From this point on, or until the data is stored back into the database, the data the user
views may no longer be the same as the data residing in the database. Other users may have
accessed and modified the data between the time the user accessed data and the time the data was
committed.

To prevent conflicts and ensure data integrity, relational database management systems (RDBMSs)
provide controls that enable developers to specify how data will be accessed. Row locking is one
such method that’s commonly employed, but it differs from one database management system to
another. And in some situations, the front-end application must be able to verify that updates made
to the database by one user do not overwrite updates made by another user (see “Optimistic locking
and unique row identifiers” on page 2-44).

Row locking
To balance the need for good performance against the potential for data conflicts when multiple
users access a database, two types of locking are generally employed by database engines:
pessimistic locking and optimistic locking. In simple terms,

 pessimistic locking assumes that multiple users might be accessing the same data and attempts
to prevent conflicts. Pessimistic locking locks data for much of the duration of a transaction.
For SQL Connection (when the correct commands are used) pessimistic locking locks rows
from the first fetch with %SSC_MOVE or insert until the transaction ends with
%SSC_COMMIT, and an error is returned if another user attempts to access locked data. (See
figure 2-4 below.)

 optimistic locking assumes that there will not be a conflict for data resources and therefore
relies on the front-end application to ensure data integrity. When optimistic locking is used and
data is committed by a user, the database engine does not check to see if data has been accessed
by another user, and you may get lock failures at write time rather than read time.

This section presents general information on concepts, features, and procedures that differ
from one database management system to another. We include this information as a
starting point; for complete information on these subjects, see your database
documentation.

Creating SQL Connection Programs
Updates and Locking

SQL Connection Reference Manual 10.1 (6/13) 2-43

Different databases management systems use different methods to initiate locking. For many that
follow ANSI standards, a SELECT FOR UPDATE operation invokes the database engine’s inherent
locking method (which typically is pessimistic). For example, Oracle uses pessimistic locking
when a SELECT FOR UPDATE operation is performed. On the other hand, when using SQL
Server with the VTX12_ODBC or VTX12_SQLNATIVE database driver, pessimistic locking is
generally invoked automatically on SELECT if you use a dynamic cursor (the default for
VTX12_ODBC and VTX12_SQLNATIVE) with the UPDLOCK hint and, optionally, the
ROWLOCK hint. Otherwise, SQL Server does not use row locking with these database drivers.
Also note that when rows have been selected with the UPDLOCK hint, a commit does not release
locks.

Figure 2-4. Pessimistic versus semi-optimistic locking.

Pessimistic

row locked

instructs database
to use FOR
BROWSE mode

start transaction
(%SSC_COMMIT)

fetch row
(%SSC_MOVE)

update
(%SSC_EXECUTE)

end transaction
(%SSC_COMMIT)

pass SQL statement
(%SSC_OPEN)

row locked

instructs database
to use row locking

lock released a lock released

link statements
(%SSC_SQLLINK)

aWhen rows have been selected with the
UPDLOCK hint on SQL Server, a commit does
not release locks (a Microsoft restriction). Use
%SSC_SCLOSE to remove locks in this situation.

Semi-optimistic

Creating SQL Connection Programs
Updates and Locking

2-44 SQL Connection Reference Manual 10.1 (6/13)

Optimistic locking and unique row identifiers
The concept of unique row identifiers is central to relational database operation. For row locking to
occur at all, the database engine must be able to identify each row with a unique identifier, or
pointer. For example, SQL Server enables you to include a rowversion (timestamp) column. In an
SQL database table, the unique identifier is usually derived from some combination of the row
location within the database and a unique numeric value or timestamp.

For optimistic locking, you can compare these values in your SQL Connection program to
determine if a row has been updated by another user or process. You can then write your program to
handle both successful and failed comparisons. Verifying unique row identifiers

 provides an additional safeguard for data integrity.

 enables you to write an application that locks data resources more efficiently with lower
overhead than would be achieved by depending on the database’s inherent locking mechanism.
This increased efficiency is achieved because with unique row identifiers you can lock
resources on a row-by-row basis, affecting only those rows where the unique identifier hasn’t
changed and locking them only for the duration of the update transaction. Using unique row
identifiers can reduce contention for data in a multi-user application and thereby lead to
increased throughput for all other application requests.

 improves performance for positioned updates on some databases, such as Oracle. Because
SQL Connection can use the unique row identifier for an update, the database doesn’t have to
use the index a second time to locate the fetched row via a WHERE clause.

Note that SQL Connection has a convenient method for using unique row identifier information as
a condition for update. See “Using SQL Connection’s automatic verification” on page 2-48 for
information.

Allowing the database engine to use pessimistic locking may result in longer locks on data
and increased demand on database resources, especially when many users access a
database simultaneously.

 As an alternative, you can use unique row identifier information to optimize
transactions when using pessimistic locking. This enables SQL Connection to use the
unique row identifier information retrieved with the fetch to locate the fetched rows on
update (instead of having to go through the index). See “Optimistic locking and unique
row identifiers” below for more information.

 For SQL Server, we recommend using a select cursor and an update cursor with a
primary key constraint rather than using FOR UPDATE OF and %SSC_SQLLINK
(positioned update mode). Using positioned update mode is about 25% slower.

Creating SQL Connection Programs
Updates and Locking

SQL Connection Reference Manual 10.1 (6/13) 2-45

MySQL and optimistic locking
To verify a unique row identifier for a MySQL database, use the method described in “Using SQL
Connection’s automatic verification” on page 2-48 or use a CURRENT_TIMESTAMP clause with
a timestamp column in an ON UPDATE statement. For an example of the latter, see the
exam_create_table.dbl sample program included in the Connectivity Series distribution.

SQL Server and optimistic locking
SQL Server provides the following methods for client-side concurrency control:

 Cursors, as defined by SQL Server, enable applications to perform a positional fetch within
result sets and update rows. The client and server data-access components work in unison to
manage concurrent data access and consistency. See %SSC_CMD on page 3-7 and SQL Server
documentation for more information.

 At a lower level, a rowversion pseudo column enables you to manually control data
concurrency. See “Using a rowversion column” below.

 Globally unique identifiers (GUIDs) also enable you to manually control data concurrency. See
“Using GUID columns” below.

You can use the method described in “Using SQL Connection’s automatic verification” on
page 2-48, but for performance reasons, it’s not recommended for SQL Server.

Using a rowversion column

With SQL Server, you can use a rowversion column to ensure data integrity. The rowversion
column has a user-defined varbinary(8) data type and is updated with the current date and time
when an INSERT or UPDATE command is executed. When creating a table, you can optionally
specify a rowversion column, but note that a table can have only one such column and that
rowversion columns are accessible to client applications only as read-only columns. (In addition to
identifying the row, these IDs also identify a version of the row—i.e., the state of a given row at a
given time. If you change the contents of a row, the row’s ID column will get a new value. Think of
it as an RFA, a record file address, that changes every time a column in the row is updated.)

Rowversion columns are particularly useful for synchronizing multiple remote databases that are
replications of a central database. For example, when data in several remote databases is committed
to a large central database on a periodic basis, the rowversion column can be used to verify that
modified data is not overwritten with earlier data.

Note the following:

 In SQL statements, you must enter the column name as rowversion or timestamp in lowercase
letters.

 If you do not specify the rowversion column when creating a table in a SQL Server database,
you will get an error with SQL Connection when using SSQL_FORUPDATE.

See SQL Server documentation for more information.

Creating SQL Connection Programs
Updates and Locking

2-46 SQL Connection Reference Manual 10.1 (6/13)

Using GUID columns

You can use the NEWID() Transact-SQL function to create a globally unique identifier value
(GUID) for a row. To produce a unique identifier value in an inserted row, either the table must have
a DEFAULT clause specifying the NEWID() function, or this function must be included in the
INSERT statement (which is not necessary for a rowversion column). However, unlike a
rowversion column, you can fetch GUID column values with a SELECT statement. (Rowversion
columns are invisible to SELECT queries.)

The following example demonstrates how to create a unique identifier both automatically and
manually. The first INSERT statement automatically creates a NEWID() value for the GUID
column (triggered by the DEFAULT NEWID() clause in the CREATE TABLE command). The
second INSERT manually generates the value.

CREATE TABLE e_anniv (
guid UNIQUEIDENTIFIER CONSTRAINT Guid_Default DEFAULT NEWID(),
Start_Date DATETIME,
Employee_Name VARCHAR(60),
)

GO
INSERT INTO e_anniv (Start_Date, Employee_Name) VALUES ('7/1/1976','John')
INSERT INTO e_anniv VALUES (NEWID(), '3/8/1982','Mary')
GO

Note that you should use an a16 to store GUIDs in your SQL Connection program, and if you use a
GUID in a stored procedure, you must use SSQL_EXBINARY.

Oracle Server and optimistic locking
For Oracle, you cannot write client-side concurrency code for optimistic locking unless you are
using Oracle 10g or later with the ORA_ROWSCN column when the table is set up with
ROWDEPENDENCIES enabled. In this case, you can retrieve the SCN in a binary field and use it
in a WHERE clause.

You can, however, use ROWID values to identify the current row during updates and deletes.
ROWID has the format BBBBBBBB.RRRR.FFFF (hexadecimal), where BBBBBBBB is the block in
the database file, RRRR is the row in the block (0 = first row), and FFFF is the database file. For
example, 0000000E.000A.0007 denotes the 11th row in the 15th block in the 7th file.

Note the following:

 Adding a FOR UPDATE clause locks fetched rows.

 If you want to use COMMITs and FETCHs with two different cursors, do not use the
CURRENT OF clause. CURRENT OF links cursors, so the COMMIT statement will close the
operation and make good all updates. You will also lose the selected result set. Instead, select
the ROWID and use that value to identify the current row during the update or delete.

Creating SQL Connection Programs
Updates and Locking

SQL Connection Reference Manual 10.1 (6/13) 2-47

Oracle Rdb and optimistic locking
Oracle Rdb uses DBKEY as a unique row identifier. DBKEY values are binary values. When you
access a row by DBKEY, the database system can retrieve, delete, or update that row directly,
without accessing an index or sequentially scanning a table row by row.

By default, DBKEY values are guaranteed to be valid until you end the transaction in which you
retrieve them. However, DBKEY values will remain valid until you detach from the database if you
include the clause DBKEY SCOPE IS ATTACH when you declare the schema for the database to
which the DBKEY values belong.

To specify a DBKEY as a value expression, use the keyword DBKEY. This keyword is valid only in
a selection list (to retrieve DBKEY values) or in a basic predicate with the equal (=) operator (to
access rows by the DBKEY values your program retrieves). For example, your program might
contain the following types of statements for accessing an Oracle Rdb database:

SELECT col_1, col_2, DBKEY INTO col_1_parm, col_2_parm, dbkey_parm
FROM table_a WHERE col_1 = input_retrieval_parm

UPDATE table_a SET col_2 = update_parm WHERE DBKEY = dbkey_parm

Informix and optimistic locking
With Informix, the ROWID keyword can be used in RDSQL statements to refer to the C-ISAM
record number associated with a row in a database table. ROWID can be thought of as a hidden
column in every table. SELECT statements will not return ROWID values unless you specify
ROWID in the column list. The following example returns the ROWID value for each row:

SELECT ROWID, * FROM table

The next statement, however, does not return ROWID:

SELECT * FROM table

ROWID can also be used in WHERE clauses to select rows based on their C-ISAM record number.
This feature is especially useful when there are no other unique columns in a table. For example:

SELECT ROWID, * FROM table WHERE ROWID > 7

Note that if a row is deleted from the table, its ROWID may be assigned to a new row.

Even though DBKEY values are stored in binary format in the schema, you must declare
the host variable into which your program stores a DBKEY as a character string. The size of
the character string depends on which operating system Oracle Rdb is running. Check
Oracle documentation for the required length of the character string for each operating
system.

Creating SQL Connection Programs
Updates and Locking

2-48 SQL Connection Reference Manual 10.1 (6/13)

Using SQL Connection’s automatic verification
SQL Connection has a convenient method for using unique row identifier information as a
condition for update. This method frees you from having to code row identifier comparisons in your
SQL Connection program. With this method, the unique row identifier information is saved when
the row is fetched, and then it is automatically used as a condition for the update. You can think of
it as an under-the-hood WHERE clause that compares the fetched row identifier with the row
identifier that is there at the update—something like “WHERE current_row_id = fetched_row_id”.

1. Use a SELECT FOR UPDATE statement and specify the SSQL_FORUPDATE and
SSQL_POSITION options in your call to %SSC_OPEN.

2. Use %SSC_SQLLINK in conjunction with %SSC_EXECUTE.

Note that for performance reasons we don’t recommend using SELECT FOR UPDATE statements
with SQL Server (see note in “Row locking” on page 2-42). However, if you do use this method,
note that you must have both a rowversion (timestamp) column (see “Using a rowversion column”
on page 2-45) and a unique index.

Creating SQL Connection Programs
Transactions and Autocommit

SQL Connection Reference Manual 10.1 (6/13) 2-49

Transactions and Autocommit
When a database engine is configured with autocommit on, all SQL operations are committed as
soon as they are executed. For better performance and transaction control, however, we recommend
that you turn autocommit off and use the SQL Connection functions %SSC_COMMIT and
%SSC_ROLLBACK to control transaction blocks, as in the following typical process:

begin transaction (%SSC_COMMIT)
update order data
if error on update

rollback (%SSC_ROLLBACK)
else

update customer
if error on update customer

rollback (%SSC_ROLLBACK)
else

commit (%SSC_COMMIT)
endif

endif

Unless you use autocommit, all transactions must either be committed with %SSC_COMMIT or
rolled back with %SSC_ROLLBACK. The default is database-dependent, but for all databases
%SSC_COMMIT or %SSC_ROLLBACK must be used after data access (DML) operations, and
you should call %SSC_COMMIT before invoking a DML operation (this includes insert, update,
delete, and select commands). Note, however, that the database determines if %SSC_COMMIT
must be called before the database is actually modified. (See %SSC_COMMIT on page 3-17 and
%SSC_ROLLBACK on page 3-52 for more information.)

If a database engine employs a cursor caching mechanism, it is critical to explicitly end
transactions. If you do not, the cache will quickly exhaust system resources.

If you are accessing an Oracle database, Oracle recommends that you explicitly end every
transaction in your application with a COMMIT or ROLLBACK statement. This includes the
final transaction, the one before you disconnect. If the application terminates abnormally
and you have not done this, the last uncommitted transaction is automatically rolled back.

Creating SQL Connection Programs
Transactions and Autocommit

2-50 SQL Connection Reference Manual 10.1 (6/13)

Row locking and transactions
While write transactions or read-with-lock transactions are in process, affected data rows are locked
by the database engine. Depending on the type of lock, adjacent rows may be locked as well (for
example, in page-level locking). A lock persists until the database engine commits or rolls back the
data, thereby closing the transaction and releasing any affected rows. However, note the following:

 If autocommit is off and you don’t commit the transaction using %SSC_COMMIT, SQL
Connection will automatically roll back any pending transactions when the %SSC_RELEASE
function is called. For more information on locking, see “Updates and Locking” on page 2-42.

 A commit does not cause VTX12_ODBC or VTX12_SQLNATIVE to automatically release
locks for rows selected with an UPDLOCK hint. (This is a Microsoft restriction.) If the
application won’t read another row, be sure to use %SSC_SCLOSE to remove such locks.
Additionally, use %SSC_SCLOSE before a rebind if you do not immediately close the cursor
with %SSC_CLOSE.

Creating SQL Connection Programs
Stored Procedures

SQL Connection Reference Manual 10.1 (6/13) 2-51

Stored Procedures
A stored procedure is a pre-compiled, ready-to-execute command stored in a database and managed
as a database object. Stored procedures run as stand-alone programs on the database server and are
invoked by internal or external requests. Internal requests originate within the database and are
invoked by other stored procedures, triggers, and agents. External requests originate from remote
client applications, local server applications, and other database systems.

One of the primary advantages of stored procedures is that they enable you to move application
code and business logic to the server. There are other advantages, and there are some disadvantages.

Advantages:

 Less redundancy. A stored procedure is available to all applications that access a database. This
enables you to store business logic in one place—the database—rather than in each
application.

 Consistency. A stored procedure provides a single process for all users, eliminating
inconsistencies that are likely to occur when logic is coded separately in each application that
accesses the database.

 Maintainability. Stored procedures recognize changes to database schemas. Although stored
procedures are pre-compiled, stored procedures verify column definitions when they are run. If
there are changes, these changes and any necessary data type conversions are made at runtime.

 Manageable, well-defined logic modules. Stored procedures are modified independently of the
application source code and perform a single task.

 Faster execution. It’s often faster to run stored procedures than to run lengthy or repetitive SQL
operations. See related disadvantage below.

 Reduced network traffic. An operation that would otherwise send hundreds of lines of SQL
code over a network can be made into a stored procedure, which requires the network to handle
only one statement: the statement that invokes the stored procedure.

 Security. A user can be given permission to execute a stored procedure even if the user doesn’t
have permission to execute the procedure’s statements directly. You can create a very secure
and extensible environment by creating applications that use only stored procedures.

 Additional prefetch information. With a single database call, client applications can retrieve the
result of an operation as well as the number of rows in the result set.

Disadvantages:

 Lack of portability. Stored procedures are not portable from one brand of database to another.
For example, SQL Server and Sybase cannot run stored procedures created for Oracle, and
Oracle cannot run stored procedures created for SQL Server or Sybase.

 Potential for reduced performance. Overburdening the server with stored procedure
processing, in addition to standard RDBMS tasks, may degrade database performance.

Creating SQL Connection Programs
Stored Procedures

2-52 SQL Connection Reference Manual 10.1 (6/13)

 Difficult debugging. Nested stored procedures (stored procedures called by other stored
procedures) are difficult to debug. Stored procedures invoked from event-driven triggers are
even more difficult to debug.

 Reduced stability. If a stored procedure that was installed as an external DLL and run within
the address space of the database engine fails, the server may also fail.

Invoking stored procedures
Use one of the following methods to invoke a stored procedure in an SQL Connection program:

 To fetch data from a SQL Server result set, use the %SSC_OPEN / %SSC_MOVE method
illustrated in the example programs stp_sqlsrv1.dbl and stp_sqlsrv2.dbl. Note that this
method works only with SQL Server, and you must include the EXECUTE command in the
SQL statement that invokes the stored procedure.

 If the stored procedure requires parameters, use %SSC_EXECIO. This works with any
database supported by SQL Connection, but it cannot be used to retrieve data from a SQL
Server result set. For SQL Server, you do not need to include the EXECUTE command. You
can just pass the name of the stored procedure followed by parameters. See the example
programs stp_ora.dbl, stp_odbc.dbl, and stp_sqlsrv.dbl.

 For other cases, use %SSC_EXECIO or %SSC_EXECUTE. These work with any database
supported by SQL Connection.

For an illustration of the function call flow for the latter two methods, see “Stored Procedure” on
page 2-15. For information on the example programs, see “Writing an SQL Connection Program”
on page 2-2.

Notes on Oracle stored procedures
For Oracle databases, stored procedures are called subprograms. There are two types of Oracle
subprogram, both of which are written in PL/SQL, a procedural language extension of SQL. These
two types are procedures and functions. Procedures and functions are similar. Both are typically
written to perform a single task, but functions return a value, so you can use them within SQL
expressions. This includes WHERE clauses in SQL statements and control structures within
PL/SQL. However, to use a procedure, you must pass the procedure by name (in an %SSC_OPEN
call), and you must use the %SSC_EXECIO function. For an example, see stp_ora.dbl, a file
included in the Connectivity Series distribution.

In essence, subprograms are named PL/SQL blocks that have been compiled into p-code and stored
in an Oracle database. Once the p-code is in the database, it is ready to run. Subprograms may take
and return user-supplied parameters, and any application connected to a database can access the
database’s subprograms by name. When an application accesses a subprogram, the subprogram is
passed to the PL/SQL engine, which maintains a single copy of the subprogram for all applications
to use.

Creating SQL Connection Programs
Stored Procedures

SQL Connection Reference Manual 10.1 (6/13) 2-53

Subprograms are created and modified with the CREATE OR REPLACE PROCEDURE statement.
Packages are created and modified with the CREATE OR REPLACE PACKAGE statement.

Refer to Oracle documentation to learn more about creating packages and writing PL/SQL
subprograms.

For information on invoking stored procedures, see “Invoking stored procedures” on page 2-52.

Using packages to group subprograms
Related Oracle subprograms can be grouped into packages. Packages are named PL/SQL modules
that provide a convenient method for grouping logically related components (types, items, and
subprograms). Packages also enable you to create public and private components. Public
components can be called from and shared with internal and external callers. Private components
are available only to components within the same package.

If a subprogram is part of a package, the PL/SQL engine loads the entire package the first time the
subprogram is used. Thereafter, calls to any of the components in the package are processed
immediately and without additional overhead. Public variables and cursors persist for the duration
of a session and remain unaffected by transactions.

Notes on SQL Server stored procedures
SQL Server refers to its version of SQL as Transact-SQL (T-SQL). T-SQL includes not only
standard SQL, but also procedural language extensions that enable you to create user-defined stored
procedures. In SQL Server, stored procedures are named T-SQL blocks that may take and return
user-supplied parameters. Stored procedures are parsed, optimized, and then saved in the database.
When a stored procedure is called, the T-SQL processor loads the procedure, runs the procedure,
and then retains the executable image. Subsequent calls to the stored procedure use this cached
in-memory version, reducing system overhead and improving performance.

In addition to user-defined stored procedures, SQL Server includes two other types of stored
procedure: system stored procedures and extended stored procedures. System stored procedures are
used to perform many administrative functions. These procedures are created and stored in the
master database and their names begin with the sp_ prefix. Extended stored procedures enable you
to create external routines in programming languages that enable you to create dynamic-link
libraries (DLLs). Extended stored procedures are run and appear to end-users as user-defined stored
procedures.

SQL Server stored procedures are created with the T-SQL CREATE PROCEDURE statement and
modified with the ALTER PROCEDURE statement. See Microsoft documentation for information
on T-SQL and writing stored procedures.

For information on invoking stored procedures, see “Invoking stored procedures” on page 2-52.

Creating SQL Connection Programs
Optimization

2-54 SQL Connection Reference Manual 10.1 (6/13)

Optimization
To illustrate the importance of optimizing your SQL code, imagine the following scenario: Your
Synergy data processing application runs in an office with approximately 100 simultaneous users.
Each user requires 50 to 100 open cursors at any given moment, and each cursor requires about
10K for memory allocation. For cursors alone, this could quickly absorb up to 100 MB in database
resources. To handle this demand as efficiently as possible, SQL Connection enables you to
optimize your SQL Connection application in several ways, such as reusing cursors.

This section introduces some of the issues that affect performance. Refer to your database
documentation for additional information.

Reusing cursors
For optimal performance, it may be best to reuse a cursor if you’re going to redo the same operation
a little later in your program. Cursor reuse can significantly improve database and network
performance. It saves time opening the cursor, and it uses less memory. See “Reusing cursors” on
page 2-28.

Optimizing data transfer
One advantage of relational databases, especially in client/server situations, is that you can retrieve
only those fields (or columns) that you intend to update. In other words, you may not need to
transfer all columns in a row, unlike with ISAM files for which the entire record is retrieved. If you
take advantage of this capability, you can potentially cut down on a great deal of network traffic.

To optimize data retrieval across a network, we suggest that you consider using subroutines to
access data from the database and that you have multiple versions depending on the job being
performed. The goal is to transfer the least amount of data possible.

Creating tables
Table creation is the slowest operation for a relational database. Using a database table as a work
file (or “scratch” space) will lead to poor performance. Keep in mind that it is seldom necessary to
maintain transaction integrity on the work files.

Instead of creating a relational database table as a scratch space, you should consider using a
standard Synergy ISAM file for this purpose. ISAM files will always outperform a relational
database in these situations. In fact, many database consultants recommend using a mixture of
ISAM and relational files for high performance online transaction processing (OLTP). If you must
use a database table, consider leaving work tables created, with the data removed, instead of
deleting and recreating them.

Creating SQL Connection Programs
Optimization

SQL Connection Reference Manual 10.1 (6/13) 2-55

Optimizing atomic operations with %SSC_SQLLINK
Two cursors are often used for data access and updates. The first cursor is used to fetch the data
from the database, and the second cursor is used to update the data for each row fetched. (In this
mode of operation, autocommit is usually used.) To reduce resource requirements and overhead for
an atomic operation, SQL Connection allows positioned update mode, which enables you to update
a single row using the same cursor you fetched the row with. In other words, the same cursor that’s
opened for the %SSC_MOVE function can be used to commit data with the %SSC_SQLLINK /
%SSC_EXECUTE combination. See %SSC_SQLLINK on page 3-56, and for an example, see
exam_fetch_update.dbl, which is in the connect\synsqlx subdirectory of the main Synergy/DE
installation directory.

Improving network performance with prefetch caching
To improve network performance and reduce database operations, SQL Connection uses prefetch
caching for fetches made with %SSC_MOVE (but not %SSC_EXECIO) if the cursor is opened
with SSQL_SELECT and SSQL_STANDARD and if none of the %SSC_OPEN options that
disable caching are passed.

If SQL Connection is able to use prefetch caching (and the cache size is optimal), only one network
packet transfer is necessary to retrieve the result set for an SQL statement. However, if prefetch
caching is not used, network packets are sent in both directions for every operation needed for the
SQL statement. SQL Connection uses prefetch caching for both direct and SQL OpenNet
connections.

The default prefetch buffer size is 32,768 bytes, but you can change this by passing a different value
for the bufsize argument for %SSC_INIT. See the %SSC_INIT Discussion on page 3-35.

Note that some fetch/open combinations may require long searches for more data to fill the prefetch
buffer when there is no more data to be returned. If this is the case, consider using SSQL_ONECOL
or SSQL_POSITION (%SSC_OPEN options) to prevent prefetch caching.

Selecting the optimal cursor type
If you use the VTX12_ODBC, VTX12_SQLNATIVE, or VTX11 database driver, you may be able
to improve performance by changing the type of cursor that your application uses. The
%SSC_OPEN and %SSC_CMD functions have several options that enable you to do this. For
example, if your application reads large amounts of data from a SQL Server database and you use
VTX12_ODBC or VTX12_SQLNATIVE, you can probably improve performance by setting the
cursor type to forward-only (SSQL_CURSOR_FORWARD_ONLY) and read-only
(SSQL_RO_CURSOR). For more information, see “Cursor types” on page 2-29.

Reducing the number of sockets used for SQL Server
When connecting to SQL Server, you can use the SQL Server shared memory protocol, which can
greatly improve performance by reducing the number of TCP/IP sockets used for a connection. See
“Using the SQL Server shared memory protocol” on page 2-26.

Creating SQL Connection Programs
Optimization

2-56 SQL Connection Reference Manual 10.1 (6/13)

Reducing memory and enabling more concurrent users
There are a couple of ways to reduce the memory used by an SQL Connection application, which
may enable it to support more concurrent users.

The first method is to lower the maxcur and maxcol values passed to %SSC_INIT. This works on
all platforms. For more information, see %SSC_INIT on page 3-35.

The second method is to use the -s option for vtxnetd running on a Windows server. Reducing the
-s setting reduces the size of the thread stack allocated to vtxnetd, which lowers the amount of
memory used for SQL OpenNet. For more information, see “The vtxnetd and vtxnet2 Programs” in
the “Configuring Connectivity Series” chapter of the Installation Configuration Guide.

Optimizing queries
A query’s construction can greatly affect an SQL Connection program’s performance. Below are
some suggestions, but you should also refer to some general SQL reference works and your
database documentation.

 Be sure to include either table names or pseudonyms when defining columns in a SELECT
statement, especially when there is a join. For example:

SELECT a.name,b.address FROM accounts a, addresses b WHERE
b.account_id = a.id

This relieves the query optimizer from having to determine where a column has come from and
from checking for conflicts (i.e., columns with the same name in other tables). Additionally, if
someone later adds a column with the same name as a column used in your query, it won’t
cause a conflict, which would prevent the query from working.

 Use an ORDER BY clause if you expect a query to return more than one column. Otherwise,
data may be returned in seemingly random order, especially if there is no primary key
constraint.

 Do not use a function in a WHERE clause. This can cause very poor performance because it
prevents the query optimizer from using an index, resulting in a full table scan. Generally, you
can eliminate the need for functions in WHERE clauses by optimizing data storage. For
example, if a field is used only in uppercase form, store it that way. Or, if you must allow
mixed case, consider creating a second column with the data in upper case and lower case just
for searching.

 Never use a null in a WHERE clause. Such clauses (e.g., “WHERE column_name=null”) are
often the result of columns that default to null. It’s better to give the column a different default
value, one that’s meaningless in the context. For example for a column that defines a customer
credit limit, you could use -1 as the default.

 Review the query plan to make sure your query is optimized. See your database documentation
for information.

3-1

3
Database Functions

SQL Connection database functions are directly related to SQL-based operations and data access.
Each database function returns a value and can be used any place a literal can be used in a Synergy
program.

%INIT_SSQL – Initialize SQL Connection ...3-2

%SSC_BIND – Bind host variables for non-SELECT statement ..3-3

%SSC_CANCEL – Cancel outstanding requests ...3-5

%SSC_CLOSE – Hard close one or more open cursors ..3-6

%SSC_CMD – Set database-specific options ..3-7

%SSC_COMMIT – Start or commit a transaction ...3-17

%SSC_CONNECT – Connect to a database channel...3-19

%SSC_DEFINE – Define host variables for the SELECT statement ..3-21

%SSC_DESCSQL – Describe an SQL statement ..3-23

%SSC_EXECIO – Execute a stored procedure with I/O parameters...3-26

%SSC_EXECUTE – Execute a non-SELECT statement (no I/O parameters)3-29

%SSC_INDICATOR – Retrieve indicator variables..3-33

%SSC_INIT – Initialize a database channel...3-35

%SSC_LARGECOL – Get or put a large binary or char column ..3-38

%SSC_MOVE – Fetch rows of data ..3-41

%SSC_OPEN – Open a cursor ...3-43

%SSC_REBIND – Rebind host variables for a new query ..3-49

%SSC_RELEASE – Release a database channel...3-50

%SSC_ROLLBACK – Roll back a transaction..3-52

%SSC_SCLOSE – Soft close one or more open cursors ...3-54

%SSC_SQLLINK – Link a non-SELECT statement to cursor for a SELECT statement............3-56

%SSC_STRDEF – Define a structure ..3-58

Database Functions
%INIT_SSQL

3-2 SQL Connection Reference Manual 10.1 (6/13)

%INIT_SSQL – Initialize SQL Connection

value = %INIT_SSQL

Return value
value

This function always returns 0. (i)

Arguments
None.

Discussion
%INIT_SSQL initializes SQL Connection on OpenVMS and allocates necessary memory. (On
Windows and UNIX systems, set system option 48 to initialize the SQL Connection system and to
instruct the runtime to allocate the necessary memory.) For more information, see “Installing,
Configuring, and Initializing” on page 1-6.

V

When you’re using SQL Connection on OpenVMS, you must make %INIT_SSQL the first
function call.

Database Functions
%SSC_BIND

SQL Connection Reference Manual 10.1 (6/13) 3-3

%SSC_BIND – Bind host variables for non-SELECT statement

value = %SSC_BIND(dbchannel, dbcursor, numvars, var[, …])

Return value
value

This function returns an integer result. (i)

SSQL_NORMAL Success

SSQL_FAILURE Failure

Arguments
dbchannel

An internal database channel previously initialized using %SSC_INIT and connected by
%SSC_CONNECT. (n)

dbcursor

The logical cursor number within the range from 1 through the maximum number specified by
maxcur during %SSC_INIT. The cursor must have been opened by %SSC_OPEN. (n)

numvars

The number of bind variables in the non-SELECT statement, up to the maximum number of
columns specified by the maxcol argument in %SSC_INIT. If numvars is negative, the bind
variables are overwritten rather than appended. If numvars is positive, the bind variables are
appended to the variables for the non-SELECT statement. (n)

var

Host variable(s) to be bound to the non-SELECT statement. The number of var variables
passed must equal the value of numvars. (a, n, or String)

WT WN U V

Database Functions
%SSC_BIND

3-4 SQL Connection Reference Manual 10.1 (6/13)

Discussion
%SSC_BIND binds host variables to variables for a non-SELECT statement. It affects only
variables that are used when %SSC_EXECUTE is called. See “Binding data” on page 2-34 for
more information on binding, and note the following:

 The total number of bind variables used by %SSC_EXECUTE must match the number of
columns defined by the non-SELECT statement for an open cursor. For example, if there are
20 host variables in an UPDATE statement, you could use one %SSC_BIND call to append
definitions for all 20 variables, or two %SSC_BIND calls with 10 variables each, or any other
combination, as long as the number of variables defined by %SSC_BIND exactly matches the
number of variables described by %SSC_OPEN in the non-SELECT statement before
%SSC_EXECUTE is called.

 The String data type (System.String) is not supported for var for array-based operations.

 If you use ^VARARGARRAY, note that numvars is the last declared argument for this routine.

Examples
The following example shows how to bind two Synergy DBL variables associated with cur1.

record order_rec
ord_num ,d6
ord_cust ,d6

.

.

.

sqlp = "UPDATE orders SET or_number = :1 WHERE or_customer = :2
if (%ssc_open(dbchn, cur1, sqlp, SSQL_NONSEL))

goto err_exit
if (%ssc_bind(dbchn, cur1, 2, ord_num, ord_cust))

goto err_exit
if (%ssc_execute(dbchn, cur1, 1))

goto err_exit

Database Functions
%SSC_CANCEL

SQL Connection Reference Manual 10.1 (6/13) 3-5

%SSC_CANCEL – Cancel outstanding requests

value = %SSC_CANCEL(dbchannel)

Return value
value

This function returns an integer result. (i)

SSQL_NORMAL Success

Arguments
dbchannel

An internal database channel previously initialized using %SSC_INIT and connected by
%SSC_CONNECT. (n)

Discussion
%SSC_CANCEL cancels outstanding database requests when a user cancels a database operation.
The results of the function depend on the database, and some databases, such as Oracle Rdb, don’t
support this type of call. For these databases, nothing is canceled; the function simply returns
SSQL_NORMAL. Databases that do support a cancel, however, may do the following: cancel any
outstanding database requests, cancel execution of current SQL statements (or the entire set of
currently processing batch commands), and flush and pending results.

Use this function only in program-exit routines that are called when the user cancels a database
operation—for example, in a routine that’s called after CTRL+C is trapped or in a close method for a
Windows application.

WT WN U V

Database Functions
%SSC_CLOSE

3-6 SQL Connection Reference Manual 10.1 (6/13)

%SSC_CLOSE – Hard close one or more open cursors

value = %SSC_CLOSE(dbchannel, dbcursor[, …])

Return value
value

This function returns an integer result. (i)

SSQL_NORMAL Success

Arguments
dbchannel

An internal database channel previously initialized using %SSC_INIT and connected by
%SSC_CONNECT. (n)

dbcursor

One or more logical cursor numbers within the range from 1 through the maximum number
specified by maxcur during %SSC_INIT. (n)

Discussion
%SSC_CLOSE hard closes one or more logical cursors opened with %SSC_OPEN. A hard close
closes the cursor on the target database. (For information on soft closes, see “Cursors” on page 2-27
and %SSC_SCLOSE on page 3-54.)

The cursor(s) specified with dbcursor must have been opened by %SSC_OPEN. Once you close a
logical cursor, that cursor is no longer valid. (Note that if dbcursor is not an open cursor, you will
get a return value of SSQL_NORMAL, not SSQL_FAILURE.)

The dbcursor argument is cleared to 0 when a cursor is hard closed.

If you use ^VARARGARRAY, note that dbcursor is the last declared argument for this routine.

Examples
For an example that uses %SSC_CLOSE, see %SSC_COMMIT on page 3-17.

WT WN U V

Note the following:

 A commit or rollback transaction may or may not close open cursors automatically. You
should always explicitly close cursors before a commit or rollback.

 A table can be dropped (that is, deleted or removed) only if all cursors are hard closed.

Database Functions
%SSC_CMD

SQL Connection Reference Manual 10.1 (6/13) 3-7

%SSC_CMD – Set database-specific options

value = %SSC_CMD(dbchannel, [dbcursor], option, parstring)

Return value
value

This function returns an integer result. (i)

SSQL_NORMAL Success

SSQL_FAILURE Failure

Arguments
dbchannel

An internal database channel previously initialized using %SSC_INIT and connected by
%SSC_CONNECT. (n)

dbcursor

(optional) This argument is currently ignored. (n)

option

An option that executes a database-specific command. (n)

parstring

Parameters for the specified option. Parameters must be separated by spaces. The maximum
size of the string is 60 characters. (a)

Discussion
%SSC_CMD executes a database-specific command (option).

Supported option values are listed in the “Option” column in the table below and are defined in the
ssql.def file distributed with Connectivity Series. Note the following:

 If the option value is not supported by the database driver, it is ignored.

 Option settings whose duration of setting is listed as “Connection” in the table below last for
the duration of the connection or until a subsequent %SSC_CMD call changes the setting.

 Many of these options affect subsequent opens with %SSC_OPEN, but don’t affect current
cursors.

WT WN U V

Database Functions
%SSC_CMD

3-8 SQL Connection Reference Manual 10.1 (6/13)

Database-Specific Options

Option Description/parameters Database driver(s)
Duration
of setting

SSQL_CACHE_CHAIN Instructs %SSC_RELEASE to cache
connections and preserves the cache when
chaining to other programs.
Parameters: none
See “SSQL_CACHE_CHAIN” on page 3-11.

All (on Windows and
UNIX only)

Runtime
instance

SSQL_CACHE_CONNECTION Instructs %SSC_RELEASE to cache
connections, but allows cached connections to
be closed when chaining to other programs.
Parameters: none
See “SSQL_CACHE_CONNECTION” on
page 3-12.

All (on Windows and
UNIX only)

Runtime
instance

SSQL_CMD_SCROLL For a scrolling cursor, determines which result
set row will be retrieved with the next fetch.
Parameters:
SSQL_SCROLL_CURRENT
SSQL_SCROLL_FIRST
SSQL_SCROLL_LAST
SSQL_SCROLL_NEXT (default)
SSQL_SCROLL_PRIOR
SSQL_SCROLL_ABSOLUTE
SSQL_SCROLL_RELATIVE
See “SSQL_CMD_SCROLL” on page 3-12.

VTX0
VTX11
VTX12_ODBC
VTX12_SQLNATIVE

Cursor

SSQL_CURSOR_TYPE Sets an ODBC cursor type for the next
%SSC_OPEN.
Parameters:
SSQL_CURSOR_DYNAMIC
SSQL_CURSOR_FORWARD_ONLY
SSQL_CURSOR_KEYSET_DRIVEN
SSQL_CURSOR_STATIC
The default for the VTX12_* drivers is
SSQL_CURSOR_DYNAMIC.
The default for VTX11 is
SSQL_CURSOR_FORWARD_ONLY.
See “SSQL_CURSOR_TYPE” on page 3-13.

VTX11
VTX12_ODBC
VTX12_SQLNATIVE

Connection

Database Functions
%SSC_CMD

SQL Connection Reference Manual 10.1 (6/13) 3-9

SSQL_KEEP_OPEN Prevents runtime from closing connections on a
program chain.
Parameters: none
See “SSQL_KEEP_OPEN” on page 3-13.

All (on Windows and
UNIX only)

Runtime
instance

SSQL_LANGVER Specifies Oracle parser syntax compatibility.
Parameters:
OCI_NTV_SYNTAX
OCI_V7_SYNTAX (default)
OCI_V8_SYNTAX
See “SSQL_LANGVER” on page 3-13.

VTX0_n Connection

SSQL_NEW_BLOBS Specifies use of BLOB/CLOB instead of LONG
RAW/LONG.
Parameters: yes|no
Default is no.
See “SSQL_NEW_BLOBS” on page 3-14.

VTX0 (when
connected to
Oracle 9, Oracle 10,
or Oracle 11)

Connection

SSQL_ODBC_AUTOCOMMIT Turns autocommit on or off. Yes turns
autocommit on, which means that every SQL
statement is automatically committed.
Parameters: yes|no
Default is no for SQL Server and MySQL,
yes for ODBC and Synergy Database.

VTX11
VTX4
VTX12_ODBC
VTX12_SQLNATIVE
VTX14

Connection

SSQL_OLD_ZONEDDATE Specifies pre-7.1 behavior if %SSC_MOVE is
used to move date fields to zoned fields.
Parameters: none
See “SSQL_OLD_ZONEDDATE” on page 3-14.

All Connection

SSQL_ONEPID Ensures that a single process is used for a
transaction.
Parameters: yes|no
Default is no.
See “SSQL_ONEPID” on page 3-14.

VTX2 Connection

Database-Specific Options (Continued)

Option Description/parameters Database driver(s)
Duration
of setting

Database Functions
%SSC_CMD

3-10 SQL Connection Reference Manual 10.1 (6/13)

SSQL_RAWDATE Specifies whether to return date/time
untouched.
Parameters: yes|no
Default is no.
See “SSQL_RAWDATE” on page 3-14.

All Connection

SSQL_RETURN_ROWID Determines whether a row ID will be returned for
each SQL statement.
Parameters: yes|no
Default is yes.
See “SSQL_RETURN_ROWID” on page 3-14.

VTX0
VTX5

Connection

SSQL_RO_CURSOR Specifies fast-forward cursors (SQL_CO_FFO)
if possible for next cursor opened with
%SSC_OPEN.
Parameters: yes|no
Default is no.
See “SSQL_RO_CURSOR” on page 3-14.

VTX12_ODBC
VTX12_SQLNATIVE

Connection

SSQL_SQL_BULK_INSERT Enables or disables bulk inserts.
Parameters: yes|no
Default is no.
See “SSQL_SQL_BULK_INSERT” on
page 3-15.

VTX12_ODBC
VTX12_SQLNATIVE

Connection

SSQL_SYB_BLANK Specifies whether to return blank instead of null.
Parameters: yes|no
Default is no.
See “SSQL_SYB_BLANK” on page 3-15.

VTX2 Connection

SSQL_TIMEOUT Sets resource time-out to n number of seconds.
Parameters: n
Default is 0 for Oracle (i.e., no time-out),
60 seconds for SQL Server, and
database-dependent for other drivers.
(For example, the default for MySQL is 50
seconds, and to change this, you must change
the configuration for MySQL.)
See “SSQL_TIMEOUT” on page 3-15.

All Connection

Database-Specific Options (Continued)

Option Description/parameters Database driver(s)
Duration
of setting

Database Functions
%SSC_CMD

SQL Connection Reference Manual 10.1 (6/13) 3-11

SSQL_CACHE_CHAIN

On Windows and UNIX, this option instructs %SSC_RELEASE to cache database connections and
preserves the cache when chaining to other programs. When SSQL_CACHE_CHAIN is in effect,
any program you chain to must still call %SSC_INIT and %SSC_CONNECT for each database
connection, but %SSC_CONNECT checks connections cached by %SSC_RELEASE and uses one
if possible. For a cached connection to be used, however, the connection string passed to
%SSC_CONNECT must be identical to the connection string used for the cached connection. Note
the following:

 This option is identical to SSQL_CACHE_CONNECTION, except that with
SSQL_CACHE_CONNECTION, cached connections are closed when a program chains.

 You can use the force_release argument for %SSC_RELEASE to override this setting. See
%SSC_RELEASE on page 3-50 for more information.

 On OpenVMS, this option causes errors.

SSQL_TRIMCHAR Changes data type (dty) for character string
conversions.
Parameters: dty
Default is 1, which is VARCHAR.
See “SSQL_TRIMCHAR” on page 3-15.

VTX0 Connection

SSQL_TXN_ISOLEVEL Sets the ODBC cursor isolation level.
Parameters:
SSQL_TXN_READ_COMMITTED
SSQL_TXN_READ_UNCOMMITTED
SSQL_TXN_REPEATABLE_READ
SSQL_TXN_SERIALIZABLE
See “SSQL_TXN_ISOLEVEL” on page 3-16.

VTX11
VTX12_ODBC
VTX12_SQLNATIVE

Connection

SSQL_USEDB Specifies a database name for connections
strings in subsequent %SSC_OPEN calls.
Parameters: dbname
No default.
See “SSQL_USEDB” on page 3-16.

VTX2
VTX12_ODBC
VTX12_SQLNATIVE

Connection

Database-Specific Options (Continued)

Option Description/parameters Database driver(s)
Duration
of setting

Database Functions
%SSC_CMD

3-12 SQL Connection Reference Manual 10.1 (6/13)

SSQL_CACHE_CONNECTION

This option is identical to SSQL_CACHE_CHAIN except that with this option, cached connections
are closed when a program chains. Note that it is generally better to use SSQL_CACHE_CHAIN
and maintain the connection cache. Use SSQL_CACHE_CONNECTION only if connection
strings for the new program (the program that is assuming control) are different than the connection
strings in the original program.

On OpenVMS, this option causes errors.

SSQL_CMD_SCROLL

Determines which row will be retrieved in the next fetch for a scrolling cursor (a cursor opened
with one of the %SSC_OPEN options that begin with SSQL_SCROLL):

For more information on scrolling cursors, see “Cursor types” on page 2-29 and “Specifying a
cursor type” on page 2-31.

SSQL_SCROLL_CURRENT The row at the current cursor position

SSQL_SCROLL_FIRST The first row in the result set

SSQL_SCROLL_LAST The last row in the result set

SSQL_SCROLL_NEXT The row that follows the row at the current cursor position
(default)

SSQL_SCROLL_PRIOR The row that proceeds the row at the current position

SSQL_SCROLL_ABSOLUTE±n A specific row in the result set where n is the number of
the row you want retrieved with the next fetch. If n is a
positive number, the nth row from the beginning of the
result set will be fetched. If n is a negative number, the nth
row from the end of the result set will be fetched. If n is 0,
the row at the current cursor position will be the next row
fetched. The following, for example, retrieves data from
the third row from the end of the result set:

sts=(%ssc_cmd(dbchn, cur2, SSQL_CMD_SCROLL,
& SSQL_SCROLL_ABSOLUTE-3))

SSQL_SCROLL_RELATIVE±n A specific row relative to the current cursor position where
n is the number of the rows beyond the current cursor
position if n is positive. If negative, the nth row before the
current cursor position will be fetched. If n is 0, the row at
the current cursor position will be the next row fetched.
The following, for example, retrieves data from the next
row (the row that follows the current cursor position):

sts=(%ssc_cmd(dbchn, cur2, SSQL_CMD_SCROLL,
& SSQL_SCROLL_RELATIVE+1))

Database Functions
%SSC_CMD

SQL Connection Reference Manual 10.1 (6/13) 3-13

SSQL_CURSOR_TYPE

This option sets the database cursor type for subsequent %SSC_OPEN calls:

For information on cursors, including cursor types and how to set them, see “Cursors” on page 2-27
and your database documentation. Additionally, note the following:

 None of these options create a scrolling cursor unless you also use one of the scrolling options
for %SSC_OPEN (options that begin with SSQL_SCROLL). For example, if you set
SSQL_CURSOR_DYNAMIC in an %SSC_CMD call and don’t use any of the scrolling
options in the %SSC_OPEN call, the cursor will be dynamic (if supported by the database) and
forward-only.

 The %SSC_OPEN scrolling options (except SSQL_SCROLL) override the
SSQL_CURSOR_TYPE options. So if you set SSQL_CURSOR_STATIC and then set
SSQL_SCROLL_DYNAMIC in the %SSC_OPEN call, the cursor will be opened as a
scrolling dynamic cursor. (However, if you set SSQL_CURSOR_STATIC in an %SSC_CMD
call and then set SSQL_SCROLL in and %SSC_OPEN call, the cursor will be opened as a
scrolling static cursor.)

SSQL_KEEP_OPEN

On Windows and UNIX, this option ensures that the Synergy runtime does not shut down
connections in a program chain. If you use this option, do not use %SSC_INIT or
%SSC_CONNECT in a program you’re chaining to.

On OpenVMS, this options causes errors.

SSQL_LANGVER

Specifies the version of the Oracle parser to be used.

SSQL_CURSOR_DEFAULT Default cursor (same as
SSQL_CURSOR_FORWARD_ONLY)

SSQL_CURSOR_DYNAMIC Dynamic cursor

SSQL_CURSOR_FORWARD_ONLY Forward-only cursor

SSQL_CURSOR_KEYSET_DRIVEN Keyset-driven cursor

SSQL_CURSOR_STATIC Static cursor

OCI_NTV_SYNTAX Instructs the database driver to use the default parser for
the Oracle database the program is connected to.

OCI_V7_SYNTAX Instructs the database driver to use Oracle7 syntax. This is
the default.

OCI_V8_SYNTAX Instructs the database driver to use Oracle8 syntax.

Database Functions
%SSC_CMD

3-14 SQL Connection Reference Manual 10.1 (6/13)

SSQL_NEW_BLOBS

Instructs Oracle to use BLOB or CLOB data rather than LONG RAW or LONG data.

SSQL_ODBC_AUTOCOMMIT

Enables you to turn autocommit mode on or off.

SSQL_OLD_ZONEDDATE

Restores pre–version 7 behavior when date fields are retrieved into decimal fields with
%SSC_MOVE. When SSQL_OLD_ZONEDDATE is set, decimal fields are treated as alpha fields
when used in conjunction with an %SSC_OPTION date-time mask. For this pre–version 7 behavior
to take effect, this option must be set before using %SSC_OPEN.

SSQL_ONEPID

Instructs the database to use a single process for operations. We don’t recommend using this option,
though it does work with Sybase. And, while it may eliminate some deadlock errors, it can also
adversely affect performance. Additionally, nested queries (for example, combined fetch and
update operations) won’t work if it is set.

SSQL_RAWDATE

Returns date/time untouched (doesn’t convert date/time to the data type of the defined variable).

SSQL_RETURN_ROWID

Determines whether a row ID will be returned for each SQL statement when using VTX0 (Oracle),
or VTX5 (Informix). By default a row ID will not be returned.

SSQL_RO_CURSOR

Instructs SQL Connection to use fast-forward cursors (SQL_CO_FFO) if possible, so we
recommend using this option. However, this option applies only if your application uses
VTX12_ODBC or VTX12_SQLNATIVE, uses static or dynamic cursors, and does not update the
database.

Database Functions
%SSC_CMD

SQL Connection Reference Manual 10.1 (6/13) 3-15

SSQL_SQL_BULK_INSERT

If you use array variables in an %SSC_EXECUTE call for a SQL Server database, this option
enables you to use bulk inserts, which improve performance. However, note that you should use
this option only when no concurrent database activity is expected for the affected rows. You can use
this option, for instance, to improve performance when loading initial data into database tables.
Note the following:

 The bulk insert feature does not use the full SQL statement passed in %SSC_OPEN. It uses the
table information and the bind variables (:1, :2, etc.), but ignores the rest of the statement.

 There must be as many bind variables as there are columns in the table, including any
timestamp column. The first bind variable corresponds to the first column in the table, the
second bind variable corresponds to the second column, and so forth.

 If there is a timestamp column in the table, you must pass an empty string ("") for this column
if there is no data for the row.

 Dates inserted using bulk insert must have the “YYYY-MM-DD” format.

 SQL statements for bulk inserts cannot contain functions.

SSQL_SYB_BLANK

Specifies that a single blank VARCHAR data field should return a space instead of null on Sybase.

SSQL_TIMEOUT

Specifies the time-out for resource waits, such as locking on the database. SSQL_TIMEOUT sets
the number of seconds to wait before returning a resource error (such as a locked row). Note that
some databases (Oracle, for example) do not support a timeout setting. And note that on any
resource error, the timeout value is ignored and the database returns an error immediately.

SSQL_TRIMCHAR

Defines the Oracle data type used for character conversions from SQL Connection to Oracle
database char and varchar columns. Dty is the Oracle data type to use; see your Oracle
documentation for the values of different Oracle data types.

1 Instructs SQL Connection to use the VARCHAR data type when converting to a char
field so that no trailing blanks are stored. If a field consists entirely of spaces, the field
will be stored as null. This is the default.

96 Instructs SQL Connection to use the CHAR data type when converting string data so
that trailing blanks are stored.

Database Functions
%SSC_CMD

3-16 SQL Connection Reference Manual 10.1 (6/13)

SSQL_TXN_ISOLEVEL

Specifies the ODBC cursor isolation level.

The default is database dependent. See your database documentation for more information.

For SQL Server, if your application does not update the database, we recommend that you set the
%SSC_CMD option SSQL_TXN_ISOLEVEL to SSQL_TXN_READ_UNCOMMITTED.

SSQL_USEDB

Specifies a default database name (database_name) for connect strings passed in subsequent
%SSC_OPEN calls when connecting to SQL Server or Sybase.

If you’ve submitted an SQL statement and want to use it for another database, use this option
(rather than a USE DATABASE command) to specify the new database. (A USE DATABASE
command generally causes errors in this situation because it allows cached statements for the
original database to be used rather than submitting the statement anew to the specified database.)

The following example from the exam_fetch.dbl example program uses %SSC_CMD to select the
SQL Server database “PUBS”.

if (%ssc_cmd(dbchn, cur3, SSQL_USEDB, "pubs")) exit

SSQL_TXN_READ_COMMITTED

SSQL_TXN_READ_UNCOMMITTED

SSQL_TXN_REPEATABLE_READ

SSQL_TXN_SERIALIZABLE

Database Functions
%SSC_COMMIT

SQL Connection Reference Manual 10.1 (6/13) 3-17

%SSC_COMMIT – Start or commit a transaction

value = %SSC_COMMIT(dbchannel[, mode])

Return value
value

This function returns an integer result. (i)

SSQL_NORMAL Success

SSQL_FAILURE Failure

Arguments
dbchannel

An internal database channel previously initialized using %SSC_INIT and connected by
%SSC_CONNECT. (n)

mode

(optional) Indicates whether to start and/or commit a transaction. (The default differs from one
database to another, and mode is ignored if a database does not support different transaction
states.) (n)

SSQL_TXON Start a transaction. If a transaction already exists for dbchannel, commit
that transaction first.

SSQL_TXOFF Commit the transaction for dbchannel.

Discussion
Depending on mode, %SSC_COMMIT either commits a transaction, starts a new transaction, or
both. If it commits a transaction, it hard-closes any associated cursors.

 If you pass SSQL_TXOFF, %SSC_COMMIT commits the transaction for dbchannel.

 If you pass SSQL_TXON and your database supports explicit transactions, %SSC_COMMIT
starts a new transaction for dbchannel. If a transaction already exists for dbchannel,
%SSC_COMMIT first commits that transaction and then starts the new one.

WT WN U V

Database Functions
%SSC_COMMIT

3-18 SQL Connection Reference Manual 10.1 (6/13)

For databases, such as SQL Server, that support both explicit and implicit transactions,
%SSC_COMMIT starts an explicit transaction. For databases that don’t support explicit
transactions (such as Oracle), %SSC_COMMIT does not start a transaction. In this case,

 the first data access (DML) operation (%SSC_OPEN, %SSC_EXECECUTE,
%SSC_EXECIO) starts an implicit transaction.

 %SSC_COMMIT commits the data to the database, and SSQL_TXON has the same affect as
SSQL_TXOFF.

For more information, see “Transactions and Autocommit” on page 2-49.

Examples
The following example demonstrates the use of %SSC_COMMIT.

sqlp = "INSERT INTO org1 (deptnum, deptname, manager,"
& " division, stdate, budget) VALUES (:1,:2,:3,:4,"
& ":5,:6)"

if (%ssc_commit(dbchn, SSQL_TXON)) ;Start the
goto err_exit ; transaction

if (%ssc_open(dbchn, cur2, sqlp, SSQL_NONSEL,
& SSQL_STANDARD, 6, deptnum, deptname,
& manager, division, stdate, budget))
goto err_exit

for ix from 1 thru MX_REC ;Do insert
begin

call load_data ;Load data to bind
; area
;Execute insert
; statement

if (%ssc_execute(dbchn, cur2, SSQL_STANDARD))
goto err_exit

end
if (%ssc_sclose(dbchn, cur2))

goto err_exit
if (%ssc_commit(dbchn, SSQL_TXOFF)) ;Commit the

goto err_exit ; change

Database Functions
%SSC_CONNECT

SQL Connection Reference Manual 10.1 (6/13) 3-19

%SSC_CONNECT – Connect to a database channel

value = %SSC_CONNECT(dbchannel, constring)

Return value
value

This function returns an integer result. (i)

SSQL_NORMAL Success

SSQL_FAILURE Failure

Arguments
dbchannel

The intended database channel. The range is 1 to 100 on Windows, and 1 to 7 on UNIX and
OpenVMS. (n)

constring

A connection string. This argument varies according to database and configuration, but has a
maximum size of 256. (a)

Discussion
%SSC_CONNECT connects to a database channel initialized by %SSC_INIT. (See “Database
connections” on page 2-5 for more information.)

Note that every call to %SSC_CONNECT should be paired with a call to %SSC_RELEASE,
unless you use the %SSC_CMD option SSQL_KEEP_OPEN. (For information on
SSQL_KEEP_OPEN, see %SSC_CMD on page 3-7.)

For information on connect strings you can pass as constring, see “Building Connect Strings” on
page 2-16.

If the %SSC_CMD option SSQL_KEEP_OPEN is in force, passing the number for a database
channel (dbchannel) that was opened by a prior program in a program chain will cause a runtime
error.

WT WN U V

On OpenVMS, if a channel is not explicitly released with %SSC_RELEASE, the associated
license will not be released. Use the logging available with the SSQLLOG environment
variable to verify that there is an %SSC_RELEASE call for every %SSC_CONNECT call.
For information on SSQLLOG logging, see “SQL Connection logging” on page 5-5.

Database Functions
%SSC_CONNECT

3-20 SQL Connection Reference Manual 10.1 (6/13)

Examples
The following example uses a case statement to determine what connect string to use.

case (MY_SSQL_SYSTEM) of ;MY_SSQL_SYSTEM - user defined
begincase

SQLSRVR: user = "VTX12_odbc:sa/manager" ;Do setup of connect string
ORACLE: user = "VTX0_10:sa/manager"

endcase
else

user = "sa/manager" ;Default database connection
if (%ssc_connect(dbchn, user))

goto err_exit

The next example tests for a SQL Server database (SSQL_DID_SQLSRV).

user = "sa/manager" ;Default database
if (%ssc_connect(dbchn, user)) ; connection

goto err_exit
if (%ssc_getdbid(dbchn, dbid)) ;Get the database ID

goto err_exit
if (dbid.eq.SSQL_DID_SQLSRV)

if (%ssc_cmd(dbchn, SSQL_USEDB, "synergex"))
goto err_exit

Database Functions
%SSC_DEFINE

SQL Connection Reference Manual 10.1 (6/13) 3-21

%SSC_DEFINE – Define host variables for the SELECT statement

value = %SSC_DEFINE(dbchannel, dbcursor, numvars, var[, …])

Return value
value

This function returns an integer result. (i)

SSQL_NORMAL Success

SSQL_FAILURE Failure

Arguments
dbchannel

An internal database channel previously initialized using %SSC_INIT and connected by
%SSC_CONNECT. (n)

dbcursor

The logical cursor number within the range from 1 through the maximum number specified by
maxcur during %SSC_INIT. The cursor must have been opened by %SSC_OPEN. (n)

numvars

The number of host variables in the SELECT statement, up to the maximum number of
columns specified by the maxcol argument in %SSC_INIT. If numvars is negative, the define
variables are overwritten rather than appended. (n)

var

One to numvars host variables. The number of var variables passed must equal the value of
numvars. (a, n, or String)

Discussion
%SSC_DEFINE defines host variables to variables specified in a SELECT statement. Depending
on the numvars setting, the definitions are either appended to the variables for the SELECT
statement, or the SELECT statement variables are overwritten with the host variable definitions.
%SSC_DEFINE affects only those variables that are used when %SSC_EXECUTE is called.

The total number of defined variables used by %SSC_MOVE must match the number of columns
defined by the SELECT statement for an open cursor. For example, if there are 20 host variables in
the SELECT statement, you could use one %SSC_DEFINE to append definitions for all 20
variables, or two %SSC_DEFINEs with 10 variables each, or any other combination as long as the

WT WN U V

Database Functions
%SSC_DEFINE

3-22 SQL Connection Reference Manual 10.1 (6/13)

number of variables defined by %SSC_DEFINE exactly matches the number of variables described
by %SSC_OPEN in the SELECT statement before %SSC_MOVE is called:

 %SSC_DEFINE generates an error if the number of variables defined by one or more
%SSC_DEFINEs exceeds the number of columns defined in the SELECT statement.

 %SSC_MOVE generates an error if the number of variables defined by all calls to
%SSC_DEFINE does not exactly match the number required by the SQL statement used in
%SSC_OPEN.

You can use %SSC_DESCSQL if you are uncertain about the number of variables to define (for
example, if you use a SELECT * statement). For more information, see %SSC_DESCSQL on
page 3-23. For more information on defining variables, see “Defining variables” on page 2-33.

Note the following:

 The String data type (System.String) is not supported for var for array-based operations, and is
not supported for Synergy .NET.

 Do not use the Synergy DBL INIT statement for a String variable or a record that includes a
String variable after passing that variable in a call to %SSC_DEFINE (unless you immediately
pass it again in another call to %SSC_DEFINE). This will cause a runtime error.

If you use ^VARARGARRAY, note that numvars is the last declared argument for this routine.

Examples
The following example shows how to define four Synergy DBL variables associated with cur1 and
two variables associated with cur2.

record order_rec
ord_num ,d6
ord_cust ,d6
ord_odate ,a10
ord_sdate ,a10

record customer_rec
cust_num ,d6
cust_name ,a30

.

.

.
sqlp = "SELECT or_number, or_customer, or_date, orsdate FROM orders"
if (%ssc_open(dbchn, cur1, sqlp, SSQL_SELECT))

goto err_exit
if (%ssc_define(dbchn, cur1, 4, ord_num, ord_cust, ord_odate, ord_sdate))

goto err_exit

sqlp = "SELECT or_number, or_customer FROM orders WHERE or_customer = 101"
if (%ssc_open(dbchn, cur2, sqlp, SSQL_SELECT))

goto err_exit
if (%ssc_define(dbchn, cur2, 2, cust_num, cust_name)

goto err_exit

Database Functions
%SSC_DESCSQL

SQL Connection Reference Manual 10.1 (6/13) 3-23

%SSC_DESCSQL – Describe an SQL statement

value = %SSC_DESCSQL(dbchannel, dbcursor, numvars, description)

Return value
value

This function returns an integer result. (i)

SSQL_NORMAL Success

SSQL_FAILURE Failure

Arguments
dbchannel

An internal database channel previously initialized using %SSC_INIT and connected by
%SSC_CONNECT. (n)

dbcursor

The logical cursor number within the range from 1 through the maximum number specified by
maxcur during %SSC_INIT. The cursor must have been opened by %SSC_OPEN. (n)

numvars

The maximum number of variables that can be returned in the description array. (n)

description

A returned record description. See the ssc_desc record in Examples below for the record
layout. (a)

Discussion
This routine provides a way of finding out the number of variables you should define with an
%SSC_DEFINE, and describes an SQL statement associated with the specified cursor.

With %SSC_DEFINE you must define the same number of variables as are defined by the number
of SELECT columns, although you may not always know this number ahead of time. For example,
when you use a SELECT * statement, %SSC_DESCSQL can determine the number of columns
returned.

WT WN U V

Database Functions
%SSC_DESCSQL

3-24 SQL Connection Reference Manual 10.1 (6/13)

If the number of variables specified in the description argument is less than the number of columns
defined in the SELECT statement, only the number of specified variables will be loaded.

Examples
The following example shows an SQL statement description layout in which var_descs is the
layout of each column description.

.define MX_VARS ,255
record ssc_desc

var_nmbr ,d3 ;Number of variables used
group var_descs ,[MX_VARS] a

var_name ,a30
var_type ,d2 ;Possible var_types are the following:
var_len ,d5 ; 0-integer
var_dec ,d2 ; 1-char

end group ; 2-number
; 3-null-terminated char
; 4-packed decimal
; 5-zoned decimal
; 8-float
; 9-varchar
; 10-large binary object (blob)
; 11-large character object (clob)
; 12-datetime
; 80-varlen blob
; 81-Unicode char UTF-8 format
; 82-Unicode char UTF-16 format
; 83-Unicode char UCS-2 format
; 84-Unicode char UCS-4 format
; 85-Unicode LOB UTF-8 format
; 86-Unicode varchar UTF-8 format
; 87-Unicode varchar UTF-16 format
; 88-Unicode varchar UCS-2 format
; 89-Unicode varchar UCS-4 format
; 99-binary
; If var_type is an integer, var_len
; will always return the value of 10
;

;Get SQL variable descriptions
sqlstm = "SELECT * FROM org WHERE deptnum = :1"
if (%ssc_open(dbchn, cur2, sqlstm, SSQL_SELECT,

& SSQL_STANDARD, 1, deptnum))
goto err_exit

The data fields returned are the returned values from the database and do not always
make sense. For example, Oracle won’t always return information in var_len for an integer
that is 1, 2, 4, or 8 bytes.

Database Functions
%SSC_DESCSQL

SQL Connection Reference Manual 10.1 (6/13) 3-25

;Open cursor #3 with
; an SQL SELECT statement

if (%ssc_descsql(dbchn, cur2, MX_VARS, ssc_desc))
goto err_exit

for ix from 1 thru var_nmbr ;Display them
begin

sqlvar = var_descs(ix)
display(1, "COL #", %string(ix), ": ",

& var_name, %string(var_type), " ",
& %string(var_len))

writes(1, "COL #", %string(ix), ": ", var_name, %string(var_type),
& " ", %string(var_len), ".", %string(var_dec))
end

;Define for maximum variables and control actual number of variables
; with var_nmbr
sts=%ssc_define(dbchn,cur2,var_nmbr,var1,var2,var3,var4,var5,var6,var7,

& var8,var9,var10,...varn)

Database Functions
%SSC_EXECIO

3-26 SQL Connection Reference Manual 10.1 (6/13)

%SSC_EXECIO – Execute a stored procedure with I/O parameters

value = %SSC_EXECIO(dbchannel, dbcursor, [ncount], [numvars][, type, var, arg][, …])

Return value
value

This function returns an integer result, which is either the return result of a stored procedure, an
error code returned by the database, or one of the following. (Negative values are considered an
error.) (i)

SSQL_NORMAL Success

SSQL_FAILURE Failure

Arguments
dbchannel

An internal database channel previously initialized using %SSC_INIT and connected by
%SSC_CONNECT. (n)

dbcursor

The logical cursor number within the range from 1 through the maximum number specified by
maxcur in the %SSC_INIT call. The cursor must have been opened by %SSC_OPEN. (n)

ncount

(optional) The number of rows to execute. The default value is 1. Only certain databases
(Oracle, SQL Server, and Sybase) support multirow operations. If this argument is used with a
database that does not support multirow move, ncount must be set to 1. (n)

numvars

(optional) The number of host variables for sending to or receiving from the stored procedure.
(The maxcol argument, as specified in %SSC_INIT, specifies the maximum value for
numvars.) If you pass numvars, you must also include the type, var, and arg arguments. The
number of times you include the type, var, arg series must equal the value of numvars. (n)

WT WN U V

Database Functions
%SSC_EXECIO

SQL Connection Reference Manual 10.1 (6/13) 3-27

type

(optional) The type of the first host variable. (This is required if numvars is passed.) Note that
if you pass SSQL_EXBINARY, you must also pass one of the other types and connect the two
with a plus sign (+)—for example, SSQL_EXBINARY+SSQL_OUTPUT. (n)

SSQL_INPUT Input

SSQL_OUTPUT Output

SSQL_INOUT Input and output

SSQL_OUTDATE Output date field (to conform to pre-7.1 zoned conversion rules)

SSQL_EXBINARY A binary column (instructs %SSC_EXECIO to leave the data as is; see
the Discussion below)

var

(optional) The first host variable. (This is required if numvars is passed.) (a, n, or String)

arg

(optional) The name of the argument in the stored procedure. (This is required if numvars is
passed.) (a)

Discussion
%SSC_EXECIO executes stored procedures that use input/output parameters. It does not set cursor
properties and does not accept a result set. For more information on using stored procedures with
SQL Connection, see “Stored Procedures” on page 2-51.

Note the following:

 When retrieving data into alpha fields, %SSC_EXECIO converts binary zeros to spaces and
trims trailing spaces unless you use the SSQL_EXBINARY option. If you use this option,
%SSC_EXECIO passes the data as is.

 When sending alpha variable data to a SQL Server or Oracle database, %SSC_EXECIO trims
trailing spaces unless you use the SSQL_EXBINARY option. If you use this option,
%SSC_EXECIO preserves the original length.

 Using %SSC_INDICATOR for SSQL_INOUT parameters is not possible because the
indicator used internally in SQL Connection cannot be set to –1, or the INOUT bound data
would be interpreted as null. SQL Connection depends on the initial state of the indicator
variable set to –1 to be able to detect rows that are null or not fetched.

Database Functions
%SSC_EXECIO

3-28 SQL Connection Reference Manual 10.1 (6/13)

 Be careful not to confuse the return value with the SSQL_NOMORE return value for
%SSC_MOVE. If you need to know if the rows were actually transferred as a result of a stored
procedure reading data, you should return the row count (or number of rows returned) as one of
your passed parameters. This way you can tell if your stored procedure was successful.
%SSC_EXECIO differs from %SSC_EXECUTE and %SSC_MOVE in this area regarding
row count.

 If you pass ncount as a number greater than 1, you must use arrays for the host/bind variables;
otherwise, an error is generated.

 Do not use a String (System.String) variable for var for SSQL_OUTPUT or SSQL_INOUT if
the returned data could be larger than the size of the variable.

.NET
 The String data type (System.String) is not supported in Synergy .NET.

 If you use ^VARARGARRAY, note that numvars is the last declared argument for this routine.

Examples
The Connectivity Series distribution includes example programs (in the connect\synsqlx directory)
that use %SSC_EXECIO with stored procedures:

 For an Oracle example, see stp_ora.dbl.

 For SQL Server examples, see stp_odbc.dbl.

 For MySQL, see stp_mysql.dbl.

Database Functions
%SSC_EXECUTE

SQL Connection Reference Manual 10.1 (6/13) 3-29

%SSC_EXECUTE – Execute a non-SELECT statement (no I/O
parameters)

value = %SSC_EXECUTE(dbchannel, dbcursor, [option], [ncount][, row_count])

Return value
value

This function returns an integer result. (i)

SSQL_NORMAL Success

SSQL_FAILURE Failure

Arguments
dbchannel

An internal database channel previously initialized using %SSC_INIT and connected by
%SSC_CONNECT. (n)

dbcursor

The logical cursor number within the range from 1 through the maximum number specified by
maxcur during %SSC_INIT. The cursor must have been opened by %SSC_OPEN. (n)

option

(optional) The type of operation. If you specify SSQL_LARGECOL, you can combine it with
one of the other options by joining the options with a plus sign (+)—for example,
SSQL_POSITION+SSQL_LARGECOL. (n)

SSQL_LARGECOL Use this if you’ll use %SSC_LARGECOL for a large binary or
character column. (See the Discussion below.)

SSQL_POSITION Use this for a linked cursor (i.e., if you use %SSC_SQLLINK).

SSQL_STANDARD Use this for a non-linked cursor (i.e., if you don’t use
%SSC_SQLLINK). (default)

ncount

(optional) The number of rows to execute. The default value is 1. (n)

Only certain databases (Oracle, Sybase, and SQL Server) support multirow operations. If this
argument is used with databases that do not support multirow moves, ncount must be set to 1
(the default value).

WT WN U V

Database Functions
%SSC_EXECUTE

3-30 SQL Connection Reference Manual 10.1 (6/13)

row_count

(optional) Returned number of rows affected by executing the SQL statement associated with
dbcursor. This count is valid only when value is returned as SSQL_NORMAL. If value is
SSQL_NORMAL, a return value of zero for row_count indicates that there are no matches for
the statement’s WHERE clause. (n)

Discussion
%SSC_EXECUTE executes a non-SELECT statement and returns the result. (It does not set cursor
properties and does not accept a result set.) This function is typically used to insert, delete, and
update data. It can also be used to run a non-parameterized stored procedures in some cases (see
“Invoking stored procedures” on page 2-52).

Note the following:

 Data is physically bound at %SSC_EXECUTE time (unlike SELECT statements where data is
actually bound at %SSC_OPEN or %SSC_REBIND time).

 Input variables can be bound using %SSC_OPEN or %SSC_STRDEF. In database terms, this
could be considered a direct execute without a previous prepare operation.

 If %SSC_EXECUTE follows an %SSC_SQLLINK call (i.e., if you pass SSQL_POSITION),
it executes the linked statement rather than the original SELECT statement.

 When putting data for a large binary or character column, use the SSQL_LARGECOL option
in conjunction with %SSC_LARGECOL. This instructs %SSC_EXECUTE to use the data in
the string argument (buf) passed in the call to %SSC_LARGECOL. (If you don’t use
SSQL_LARGECOL and %SSC_LARGECOL, you can put no more than 65,533 bytes for a
column.) See %SSC_LARGECOL on page 3-38.

Examples
The following examples execute non-SELECT SQL statements. Note that for the first example, if
the SQL statement is valid, but no rows meet the WHERE clause criteria, the function will return
SSQL_NORMAL, and rows_returned will be returned as zero.

sqlp = "UPDATE customers SET cust_limit = 5000 WHERE cust_rtype > 1"

if (%ssc_open(dbchn, cur1, sqlp, SSQL_NONSEL))
goto err_exit

If you have submitted a query and want to use the query for another database, do not use
%SSC_EXECUTE to specify a different database. Instead use SSQL_USEDB, an
%SSC_CMD option. (See SSQL_USEDB on page 3-16.) %SSC_EXECUTE generally
causes errors in this situation because it allows cached statements from the original
database to be used rather than submitting the statement to the newly specified database.

Database Functions
%SSC_EXECUTE

SQL Connection Reference Manual 10.1 (6/13) 3-31

if (%ssc_execute(dbchn, cur1, SSQL_STANDARD,, rows_returned))
goto err_exit

if (rows_returned) ;If any row met the "cust_rtype" criterion...
.
.
.

The next example drops a table named org:

if (%ssc_open(dbchn, cur1, "DROP TABLE org", SSQL_NONSEL))
goto err_exit

if (%ssc_execute(dbchn, cur1, SSQL_STANDARD))
goto err_exit

The following example is for SQL Server:

sqlp = "CREATE TABLE org1 (deptnum int NOT NULL, deptname"
& " char(6) NOT NULL, manager int NOT NULL, division"
& " char(15) NOT NULL, stdate datetime, budget numeric)"

if (%ssc_open(dbchn, cur1, sqlp, SSQL_NONSEL))
goto err_exit

;Execute the SQL in
; standard mode

if (%ssc_execute(dbchn, cur1, SSQL_STANDARD))
goto err_exit

The following example is for Oracle:

sts = %ssc_commit(dbchn, SSQL_TXON) ;Begin transaction mode
sqlp = "INSERT INTO org1 (deptnum, deptname, manager, division, "

& "hrdate, salary) VALUES (:1,:2,:3,:4,to_date(:5,"MM/DD/YYYY"),:6)"
;Open another cursor

if (%ssc_open(dbchn, cur2, sqlp, SSQL_NONSEL, SSQL_STANDARD, 6,
& deptnum, deptname, manager,
& division, hrdate, salary))
goto err_exit

for ix from 1 thru MX_REC ;Do insert
begin ;Load data to bind area

deptnum = s_deptnum(ix)
deptname = s_deptname(ix)
manager = s_manager(ix)
division = s_division(ix)
hrdate = s_hrdate(ix)
salary = s_salary(ix)

;Execute insert statement

Database Functions
%SSC_EXECUTE

3-32 SQL Connection Reference Manual 10.1 (6/13)

if (%ssc_execute(dbchn, cur2, SSQL_STANDARD))
goto err_exit

end
sts = %ssc_commit(dbchn, SSQL_TXOFF) ;Commit the change and end

; transaction mode
if (%ssc_close(dbchn, cur2))

goto err_exit

For another example of %SSC_EXECUTE, one that includes an example of a bulk insert, see
exam_create_table.dbl, which is in the connect\synsqlx subdirectory of the main Synergy/DE
installation directory.

Database Functions
%SSC_INDICATOR

SQL Connection Reference Manual 10.1 (6/13) 3-33

%SSC_INDICATOR – Retrieve indicator variables

value = %SSC_INDICATOR(dbchannel, dbcursor, int_array, [ncount][, vars])

Return value
value

This function returns an integer result. (i)

SSQL_NORMAL Success

Arguments
dbchannel

An internal database channel previously initialized using %SSC_INIT and connected by
%SSC_CONNECT. (n)

dbcursor

The logical cursor number within the range from 1 through the maximum number specified by
maxcur during %SSC_INIT. The cursor must have been opened by %SSC_OPEN. (n)

int_array

A real array whose elements will be filled with SQL indicator variables. (n)

ncount

(optional) The row of a multirow operation whose status you want returned. The default value
is 1. (n)

vars

(optional) The number of vars moved, up to a maximum of int_array elements. (a or n)

Discussion
The value for each element in int_array relays the status of either the defined variables in the output
order specified by %SSC_DEFINE or %SSC_STRDEF, or the defined variables in the output and
in/out order specified by %SSC_EXECIO.

Possible returned values for each element in int_array:

WT WN U V

– 1 The column is null (or no data was moved in the last statement).

0 The column was moved successfully.

> 0 The data was truncated, and the non-truncated size is reported.

Database Functions
%SSC_INDICATOR

3-34 SQL Connection Reference Manual 10.1 (6/13)

Examples
The following is an example of retrieving the status of two SELECT columns, deptnum and
deptname. In particular, this example reports the status of moving deptnum into the host variable
and whether deptname was returned as a null or the data was truncated.

sqlp = "SELECT deptnum, deptname FROM org WHERE deptnum = 1"
if (ssc_open(dbchn, cur2, sqlp, SSQL_SELECT, SSQL_STANDARD))

goto error_exit
if (ssc_define(dbchn, cur2, 2, deptnum, deptname))

goto error_exit
if (ssc_move(dbchn, cur2, 1))

goto error_exit
if (ssc_indicator(dbchn, cur2, intarray))

goto error_exit
writes(15, "status of deptnum is"+%string(intarray[1]))
writes(15, "status of deptname is"+%string(intarray[2]))

Database Functions
%SSC_INIT

SQL Connection Reference Manual 10.1 (6/13) 3-35

%SSC_INIT – Initialize a database channel

value = %SSC_INIT(dbchannel, [maxcur], [maxcol], [bufsize][, dbcursor])

Return value
value

This function returns an integer result. (i)

SSQL_NORMAL Success

SSQL_FAILURE Failure

Arguments
dbchannel

An internal database channel to be used for a connection. The range is 1 to 100 on Windows,
and 1 to 7 on UNIX and OpenVMS. (n)

maxcur

(optional) The number of logical cursors to allocate for the channel. The default is 128. (n)

maxcol

(optional) The maximum number of columns that can be returned from a query. The default
is 254. (n)

bufsize

(optional) The internal buffer size (in bytes) used for prefetch caching. The default
is 32768. (n)

dbcursor

(optional) The number of database cursors to allocate for the channel. The default is
maxcur. (n)

Discussion
%SSC_INIT must be the first function call when using SQL Connection, except

 on OpenVMS where %INIT_SSQL must be called prior to %SSC_INIT.

 in a program you chain to when using the SSQL_KEEP_OPEN option for %SSC_CMD. In
this case, do not use %SSC_INIT in the program you chain to.

WT WN U V

Database Functions
%SSC_INIT

3-36 SQL Connection Reference Manual 10.1 (6/13)

%SSC_INIT initializes an SQL Connection session, establishes an internal structure containing
information used by %SSC_CONNECT and other routines, and provides a method for defining
communication with the low-level structures. The internal structure is accessed by dbchannel,
which is analogous to a channel established in a Synergy DBL OPEN statement. See “Database
connections” on page 2-5 for more information, and note the following:

 You can have up to seven concurrently open channels on UNIX and OpenVMS and up to 100
concurrently open channels on Windows (to accommodate multi-threading).

 We recommend using .DEFINE identifiers for channel numbers.

 SQL Connection assigns a logical cursor to each SQL Statement. If maxcur is set to a value
that is greater than the dbcursor setting, SQL Connection is able to cache cursors by mapping
multiple logical cursors to a single database cursor. Because logical cursors require less
memory than database cursors, this improves performance. For optimal performance, set
maxcur to the maximum number of SQL statements that will be open (and soft-closed)
concurrently.

 If you use %SSC_SCLOSE, the value of dbcursor should be the maximum concurrent number
of open cursors plus a percentage of the soft-closed cursors.

 Ideally, maxcol should be set to the largest number of columns of any table within the
connected database.

 The maximum values for maxcur, maxcol, bufsize, and dbcursor are database dependent.

 We recommend that you test with bufsize set to a higher value than the default—for example,
65536. This may improve performance.

 If 0 is specified for bufsize, the size of at least one row will be used for the prefetch buffer.

 To conserve memory and resources, you can use values that are less than the defaults for
maxcur, maxcol, bufsize, and dbcursor. Note that reducing the memory used by an application
may enable it to support more concurrent users (see “Reducing memory and enabling more
concurrent users” on page 2-56).

 If you specify a previously initialized channel in a call to %SSC_INIT and there is an open
connection, the open connection will be closed unless SSQL_KEEP_OPEN is set. When
SSQL_KEEP_OPEN is set, %SSC_INIT calls on previously opened channels are ignored.

Database Functions
%SSC_INIT

SQL Connection Reference Manual 10.1 (6/13) 3-37

Examples
The following is an example of SQL channel initialization using database channel 1 and setting 32
concurrent cursors, 100 maximum columns, and a 5000-byte prefetch buffer size.

dbchn = 1 ;Use database channel 1
if (%ssc_init(dbchn, 32, 100, 5000))

goto err_exit ;Initializes connection to use 32
 ; concurrent cursors, 100 maximum columns,
; and 5000-byte prefetch buffer size

if (%ssc_connect(dbchn, user))
goto err_exit

Database Functions
%SSC_LARGECOL

3-38 SQL Connection Reference Manual 10.1 (6/13)

%SSC_LARGECOL – Get or put a large binary or char column

value = %SSC_LARGECOL(dbchannel, dbcursor, buf, opts, col, len[, binary])

Return value
value

This function returns an integer result. (i)

SSQL_NORMAL Success

SSQL_FAILURE Failure

Arguments
dbchannel

An internal database channel previously initialized using %SSC_INIT and connected by
%SSC_CONNECT. (n)

dbcursor

The logical cursor number (within the range from 1 through the maximum number specified by
maxcur during %SSC_INIT). The cursor must have been opened by %SSC_OPEN. (n)

buf

The data for the column. For a get, a new string is created for buf. For a put, the data to be put
must be passed in buf. (String)

opts

The operation option. (n)

SSQL_LARGEGET Get large binary or character data.

SSQL_LARGEPUT Put large binary or character data.

col

The column position (zero based). (n)

len

For a get, this must be the length of the string returned into the host variable by %SSC_MOVE.
For a put, this is the returned length of the put string. (n)

binary

(optional) If passed, this indicates that the column is a binary column, which prevents
%SSC_LARGECOL from removing trailing characters. (n)

WT WN U V

Database Functions
%SSC_LARGECOL

SQL Connection Reference Manual 10.1 (6/13) 3-39

Discussion
%SSC_LARGECOL puts or gets large binary column (BLOB) or large character column (CLOB)
data. In SQL Server, for example, these are VARCHAR(MAX) and VARBINARY(MAX) fields.

This routine takes a Synergy/DE String object and, for a get, creates a new String object. By using
the Synergy/DE System.String data type, the object can exceed 65,535 bytes. Remember, though,
that to access a String object that’s greater than 65,535 bytes on a 32-bit system, you must range
into the string. (See “String” in the “Defining Data” chapter of the Synergy DBL Language
Reference Manual.)

To get large binary column or large character column data, do the following:

1. Specify the SSQL_LARGECOL and SSQL_SELECT options in the %SSC_OPEN call for the
statement.

2. Use %SSC_DEFINE to set up an i4 host variable for the column.

3. Call %SSC_MOVE. %SSC_MOVE retrieves the size of the column and saves it in the i4 host
variable.

4. After each %SSC_MOVE call, pass the i4 variable as the len argument in the %SSC_LARGECOL
call.

To put large binary column or large character column data, do the following:

1. Specify SSQL_NONSEL in the %SSC_OPEN call for the statement. (Don’t specify
SSQL_LARGECOL here. You’ll do that in step 3.)

2. Before calling %SSC_EXECUTE, call %SSC_LARGECOL to set up the buffer (buf) that will be
bound with %SSC_EXECUTE.

3. Call %SSC_EXECUTE, specifying SSQL_LARGECOL.

Examples
The following code segment demonstrates how to get VARCHAR(MAX) data from a SQL Server
database.

record data
 buffer ,string

length ,i4
.
.
.
sqlp = "select bcol from btab where btab_id = :1"
if (sts = %ssc_open(dbchn, cur1, sqlp, SSQL_SELECT,

& SSQL_STANDARD + SSQL_LARGECOL, 1, id))
goto err_exit

Database Functions
%SSC_LARGECOL

3-40 SQL Connection Reference Manual 10.1 (6/13)

if (sts = %ssc_define(dbchn, cur1, 1, length)
if (sts = %ssc_move(dbchn, cur1) != ssql_success)

goto err_exit
if (sts = %ssc_largecol(dbchn, cur1, buffer, SSQL_LARGEGET, 0, length))

;Where "0" (the col parameter) is the first column of bcol
goto err_exit

if (sts = %ssc_sclose(dbchn, cur1))
goto err_exit

Database Functions
%SSC_MOVE

SQL Connection Reference Manual 10.1 (6/13) 3-41

%SSC_MOVE – Fetch rows of data

value = %SSC_MOVE(dbchannel, dbcursor, [ncount], [row_count], [compute_flg][, warn])

Return value
value

This function returns an integer result. (i)

SSQL_NORMAL Success

SSQL_FAILURE Failure

SSQL_NOMORE No more data found for current result set

Arguments
dbchannel

An internal database channel previously initialized using %SSC_INIT and connected by
%SSC_CONNECT. (n)

dbcursor

The logical cursor number within the range from 1 through the maximum number specified by
maxcur during %SSC_INIT. The cursor must have been opened by %SSC_OPEN. (n)

ncount

(optional) The number of rows to fetch. This argument defaults to 1 for databases that do not
support multirow fetch. (n)

row_count

(optional) Returned number of rows actually fetched by the SQL statement associated with
dbcursor. This count is valid only when value is returned as SSQL_NORMAL. (n)

compute_flg

This argument is no longer supported.

warn

(optional) A variable that is set to 1 if one or more rows return a warning status (such as “data
columns truncated”). (n)

WT WN U V

Database Functions
%SSC_MOVE

3-42 SQL Connection Reference Manual 10.1 (6/13)

Discussion
%SSC_MOVE fetches one or more rows of data into host variables defined by %SSC_DEFINE or
%SSC_STRDEF. For multirow fetches, %SSC_MOVE returns SSQL_NOMORE if not all
requested rows are fetched. (If you request a four-row fetch, for example, but %SSC_MOVE is able
to fetch only three rows, %SSC_MOVE returns SSQL_NOMORE.) You can use row_count to find
out how many rows were actually fetched.

Note the following:

 %SSC_MOVE works only with SELECT statements and SQL Server stored procedures, so the
%SSC_OPEN call that precedes %SSC_MOVE must set SSQL_SELECT. (%SSC_MOVE
fetches rows for a SELECT cursor, even if there’s an intervening call to %SSC_SQLLINK.)

 For large binary columns and large character columns, if you pass SSQL_LARGECOL in the
%SSC_OPEN call, %SSC_MOVE returns the field length (rather than the data) into the host
variables defined for the columns. You then use %SSC_LARGECOL calls to fetch the data.
(If you don’t pass SSQL_LARGECOL in the %SSC_OPEN call, %SSC_MOVE fetches the
column as a 65,533-byte binary or char column. If the data is longer than 65,533 bytes, the data
will be truncated.) See %SSC_LARGECOL on page 3-38 for more information.

 %SSC_MOVE can be used to fetch data from a SQL Server stored procedure result set. See
“Invoking stored procedures” on page 2-52, and see stp_sqlsrv.dbl and stp_sqlsrv2.dbl for
examples.

Examples
The following example shows how to move column data to a Synergy DBL data area.

sqlp = "SELECT deptnum, deptname"
& " FROM org WHERE deptnum = :1"

sts=%ssc_open(dbchn, cur2, sqlp, SSQL_SELECT, SSQL_STANDARD, 1, deptnum)
sts=%ssc_define(dbchn, cur2, 2, deptnum, deptname)
; Get dnum to SELECT rows
display(g_terminal, "Enter Department Number: ")
reads(g_terminal, %a(dnum))
; Do fetch and display rows to screen one row at a time
do forever

begin
sts = %ssc_move(dbchn, cur2, 1)
if (sts.eq.SSQL_FAILURE) then ;ERROR

goto err_exit
else if (sts.eq.SSQL_NOMORE) ;EOF

exitloop
writes(g_terminal, %string(deptnum) + ", " + deptname)

end

For an example of a single row fetch, see exam_fetch.dbl. For an example of a multirow fetch, see
exam_multirow_fetch.dbl. These example files are in the connect\synsqlx subdirectory of the
main Synergy/DE installation directory.

Database Functions
%SSC_OPEN

SQL Connection Reference Manual 10.1 (6/13) 3-43

%SSC_OPEN – Open a cursor

value = %SSC_OPEN(dbchannel, dbcursor, statement, type, [options], [numvars][, var, …])

Return value
value

This function returns one of the following. (i)

SSQL_NORMAL Success

SSQL_FAILURE Failure

Arguments
dbchannel

An internal database channel previously initialized using %SSC_INIT and connected by
%SSC_CONNECT. (n)

dbcursor

The ID number for the cursor. This argument serves two purposes: it returns the ID number for
the cursor for statement, and it determines whether %SSC_OPEN will simply open a new
cursor for the statement or whether it will attempt to reuse a cursor. (n)

 If dbcursor is passed as a value of zero, %SSC_OPEN opens a new cursor and returns the
number for that cursor in dbcursor.

 If dbcursor is passed as a non-zero value, %SSC_OPEN reuses the cursor if it can (see
“Multiple cursors, dbcursor, and cursor reuse” on page 3-45) and returns the same cursor
number. If %SSC_OPEN is unable to reuse the cursor, it hard closes it and opens a new
cursor.

statement

An SQL statement. (a)

type

The SQL statement type: (n)

SSQL_SELECT SELECT statement or the name of a SELECT stored procedure.

SSQL_NONSEL Non-SELECT statement (such as INSERT, UPDATE, or DELETE).

WT WN U V

Database Functions
%SSC_OPEN

3-44 SQL Connection Reference Manual 10.1 (6/13)

options

(optional) Sets options used to configure a cursor. (All but SSQL_LARGECOL are useful only
with cursors for SELECT statements.) You can pass more than one option by joining the
options with a plus sign (+). For more information on the following options (including a table
that lists which options can be used together in the same call), see “The options argument” on
page 3-46. (n)

SSQL_SCROLL Creates a scrolling cursor of the type specified with an
SSQL_CURSOR option in a previous call to
%SSC_CMD. If no SSQL_CURSOR option has been
set, creates a cursor of the default type for the
database.

This can be used only with VTX0, VTX11,
VTX12_ODBC, or VTX12_SQLNATIVE.

SSQL_SCROLL_DYNAMIC Creates a scrolling dynamic cursor. This can be used
only with VTX11, VTX12_ODBC, or
VTX12_SQLNATIVE.

SSQL_SCROLL_KEYSET Creates a scrolling keyset-driven cursor. This can be
used only with VTX11, VTX12_ODBC, or
VTX12_SQLNATIVE.

SSQL_SCROLL_READ_ONLY Creates a scrolling static cursor. This can be used only
with VTX11, VTX12_ODBC, or
VTX12_SQLNATIVE.

SSQL_LARGECOL Enables SQL Connection to use %SSC_LARGECOL
to get or put large binary columns or large character
columns. See %SSC_LARGECOL on page 3-38.

SSQL_FORUPDATE Informs SQL Connection that the SQL statement
(statement) passed to %SSC_OPEN contains a FOR
UPDATE OF clause. This is required if statement
contains a FOR UPDATE OF clause.

SSQL_ONECOL Explicitly disables prefetch caching.

SSQL_POSITION Creates a positioned cursor that is positioned at the
first record that meets the criteria for the query.

SSQL_STANDARD Creates a standard (non-positioned) cursor, and when
used without other options for the options argument,
enables prefetch caching.

numvars

(optional) The number of variables (var, …) bound to statement. This must be set to the
number of var arguments passed. (n)

Database Functions
%SSC_OPEN

SQL Connection Reference Manual 10.1 (6/13) 3-45

var

(optional) Host variable to be bound to statement. You can pass more than one var argument
(by separating them with commas). The number of var arguments you pass must equal the
number passed as numvars. For information on binding host variables, see “Data Mapping” on
page 2-33. (a, n, or String)

Discussion
%SSC_OPEN opens a cursor and associates it with the passed SQL statement (statement). The
cursor is opened on the database channel specified by dbchannel. This section discusses
%SSC_OPEN options and issues, but for more information on cursors, including information on
cursor types and specifying cursor behavior with %SSC_OPEN and %SSC_CMD cursor options,
see “Cursors” on page 2-27. Note the following:

 The String data type (System.String) is not supported for var for array-based operations.

 Do not use %SSC_OPEN with SSQL_SELECT and a server-side cursor for non-cursor related
stored procedures, and do not use these if the SQL statement includes the EXEC SQL
command for a stored procedure that returns no rows (this may cause “No cursor” warnings).
Instead, use %SSC_OPEN with SSQL_NONSEL (and %SSC_EXECUTE).

 If you use ^VARARGARRAY, note that numvars is the last declared argument for this routine.

Multiple cursors, dbcursor, and cursor reuse

You can open multiple cursors concurrently. The maximum number cursors you can open is set by
the maxcur argument for %SSC_INIT (though the number of actual database cursors that can be
open concurrently is set by the dbcursor argument for %SSC_INIT and is limited by your
database’s capacity).

Note that you may not need to open a new cursor for each SQL statement. If you’re going to reuse
the same operation soon, it’s best to reuse a cursor. (When a cursor is reused, the application skips
the initial step of processing the SQL statement, which is typically a very resource-intensive
process.) See “Reusing cursors” on page 2-28.

 If you pass a value of 0 as dbcursor in an %SSC_OPEN call, SQL Connection automatically
searches to see if there’s already a cached cursor on the database that can be reused for the
statement. If there is one, SQL Connection uses this cursor.

 If you pass a non-zero value as dbcursor, SQL Connection attempts to reuse the cursor that
corresponds to the non-zero value.

Additionally, if you are fetching a row and you plan to perform a positioned update, you can use
%SSC_SQLLINK to link the update statement to the open SELECT cursor rather than opening
another cursor for the update statement. See %SSC_SQLLINK on page 3-56.

Database Functions
%SSC_OPEN

3-46 SQL Connection Reference Manual 10.1 (6/13)

The options argument

The options argument enables you to specify

 a scrolling cursor type.

 whether the cursor will be positioned.

 whether the SQL statement passed to %SSC_OPEN contains a FOR UPDATE OF clause.

 how SQL Connection will retrieve or write large amounts of binary or char data. (See
%SSC_LARGECOL on page 3-38.)

 whether SQL Connection will use prefetch caching.

The SSQL_SCROLL options for %SSC_OPEN specify scrolling cursor types. (For SQL Server,
these are ODBC API cursor types.) With a scrolling cursor you can determine which row will be
retrieved with the next fetch. (You do this by setting an SSQL_CMD_SCROLL option with
%SSC_CMD; see SSQL_CMD_SCROLL on page 3-12.) Note the following:

 You can specify only one SSQL_SCROLL option in a call to %SSC_OPEN. (For information
on which arguments can be passed together in an %SSC_OPEN call, see the table below.)

 The SSQL_SCROLL options for %SSC_OPEN override %SSC_CMD cursor type options if
they conflict.

 The SSQL_SCROLL options for %SSC_OPEN, SSQL_LARGECOL, and SSQL_ONECOL
disable prefetch caching. If you pass none of these, but you do pass SSQL_SELECT and
SSQL_STANDARD, SQL Connection uses prefetch caching which increases fetch
(%SSC_MOVE) performance. (See “Improving network performance with prefetch caching”
on page 2-55 for more information.)

 %SSC_CMD cursor type options do not by themselves create scrolling cursors: you must also
specify one of the SSQL_SCROLL options to get a scrolling cursor.

For descriptions of and information on specifying cursor types (using %SSC_OPEN and/or
%SSC_CMD), including information on creating a forward-only cursor (there’s no %SSC_OPEN
option for this), see “Specifying a cursor type” on page 2-31.

For the other options (SSQL_LARGECOL, SSQL_FORUPDATE, etc.), note the following:

 If you use SELECT to select a row and you need to lock the row for update, use positioned
mode by setting SSQL_POSITION+SSQL_FORUPDATE (unless you’re accessing a SQL
Server database—see the note in “Row locking” on page 2-42). Positioned cursors allow other
positioned operations (such as statements with UPDATE WHERE CURRENT OF on some
databases), but note that some databases, such as Oracle Rdb, do not allow positioned mode.

 If you use SSQL_FORUPDATE, your SQL statement must include a FOR UPDATE OF
clause. If your database does not use FOR UPDATE OF to invoke row locking, SQL
Connection converts the SQL statement to a statement that does invoke row locking. For
example, if you are using a Sybase database, SQL Connection converts the SELECT FOR
UPDATE statement to a SELECT FOR BROWSE statement. For more information, see
“Updates and Locking” on page 2-42.

Database Functions
%SSC_OPEN

SQL Connection Reference Manual 10.1 (6/13) 3-47

See the table below for information on which options can be combined in a single %SSC_OPEN
call. For example:

sts=%ssc_open(dbchn, cur1, sqlp, SSQL_SELECT,
& SSQL_STANDARD+SSQL_LARGECOL)

Examples
The following example opens three SQL statement cursors simultaneously.

if (%ssc_connect(dbchn, user)) ;Connects to database
goto err_exit

;Open cursor #1
sqlp = "SELECT deptnum, deptname FROM org WHERE deptnum"

& " = 10"
if (%ssc_open(dbchn, cur1, sqlp, SSQL_SELECT, SSQL_STANDARD))

goto err_exit
;Open cursor #2 where bind1 matches with :1

sqlstm = "SELECT deptnum, deptname, manager, division"
& " FROM org WHERE deptnum = :1"

SS
Q

L_
ST

A
ND

AR
D

SS
Q

L _
PO

SI
TI

O
N

SS
Q

L _
FO

R
UP

D
AT

E

SS
Q

L _
LA

RG
EC

O
L

SS
Q

L_
O

NE
CO

L

SS
Q

L _
SC

RO
LL

SS
Q

L _
SC

RO
LL

_R
EA

D
_O

N
LY

SS
Q

L _
SC

RO
LL

_D
YN

A
M

IC

SS
Q

L_
SC

RO
LL

_K
EY

SE
T

SSQL_STANDARD   

SSQL_POSITION      

SSQL_FORUPDATE     

SSQL_LARGECOL        

SSQL_ONECOL        

SSQL_SCROLL  

SSQL_SCROLL_READ_ONLY  

SSQL_SCROLL_DYNAMIC    

SSQL_SCROLL_KEYSET    

Database Functions
%SSC_OPEN

3-48 SQL Connection Reference Manual 10.1 (6/13)

if (%ssc_open(dbchn, cur2, sqlstm, SSQL_SELECT,
& SSQL_STANDARD, 1, bind1))
goto err_exit

;Open cursor #3
sqlp = "INSERT INTO org (deptnum, deptname, manager,"

& " division, stdate, budget) VALUES (:1,:2,:3,:4,"
& " :5,:6)"

if (%ssc_open(dbchn, cur3, sqlp, SSQL_NONSEL,
& SSQL_STANDARD, 6, deptnum, deptname, manager,
& division, stdate, budget))
goto err_exit

;where deptnum matches with :1, deptname matches with :2, etc.

For another example, see exam_fetch.dbl, which is in the connect\synsqlx subdirectory of the main
Synergy/DE installation directory.

Database Functions
%SSC_REBIND

SQL Connection Reference Manual 10.1 (6/13) 3-49

%SSC_REBIND – Rebind host variables for a new query

value = %SSC_REBIND(dbchannel, dbcursor)

Return value
value

This function returns an integer result. (i)

SSQL_NORMAL Success

SSQL_FAILURE Failure

Arguments
dbchannel

An internal database channel previously initialized using %SSC_INIT and connected by
%SSC_CONNECT. (n)

dbcursor

The logical cursor number within the range from 1 through the maximum number specified by
maxcur during %SSC_INIT. The cursor must have been opened by %SSC_OPEN. (n)

Discussion
%SSC_REBIND resubmits the SELECT statement for a SELECT cursor (SSQL_SELECT) and
updates bind variables for the statement. Note that %SSC_REBIND

 does not update defined variables.

 does not resubmit statements linked to a SELECT cursor (by using %SSC_SQLLINK). If there
is an intervening %SSC_SQLLINK call between the %SSC_OPEN that creates the SELECT
cursor and the %SSC_REBIND, the %SSC_REBIND call will resubmit the SELECT
statement defined in the %SSC_OPEN call.

Because %SSC_REBIND does not reprocess defined variables, it is more efficient when
resubmitting a SELECT statement than using another %SSC_OPEN call, which would reparse the
entire statement.

Examples
For an example of rebinding host variables, see exam_fetch_update.dbl, which is in the
connect\synsqlx subdirectory of the main Synergy/DE installation directory.

WT WN U V

Database Functions
%SSC_RELEASE

3-50 SQL Connection Reference Manual 10.1 (6/13)

%SSC_RELEASE – Release a database channel

value = %SSC_RELEASE(dbchannel[, force_release])

Return value
value

This function returns an integer result. (i)

SSQL_NORMAL Success

SSQL_FAILURE Failure

Arguments
dbchannel

An internal database channel previously initialized using %SSC_INIT and connected by
%SSC_CONNECT. (n)

force_release

(optional) Overrides the %SSC_CMD options SSQL_CACHE_CHAIN and
SSQL_CACHE_CONNECTION when passed as non-zero. (n)

Discussion
%SSC_RELEASE closes all logical cursors, rolls back pending transactions, and frees the database
channel number. It also closes the associated database connection unless one of the following
%SSC_CMD options is set. Note that these options are available only on Windows and UNIX.

 SSQL_CACHE_CHAIN—This option instructs %SSC_RELEASE to cache connections and
preserves the cache when chaining to other programs.

 SSQL_CACHE_CONNECTION—This option also instructs %SSC_RELEASE to cache
connections, but preserves the cache only for the life of the current program. Cached
connections are closed when chaining to other programs.

These options can be overridden by passing force_release as a non-zero value:

 If force_release is passed as non-zero, %SSC_RELEASE closes connections, regardless of
SSQL_CACHE_CHAIN or SSQL_CACHE_CONNECTION settings.

 If force_release is not passed or is passed as zero, %SSC_RELEASE caches connections if
either option is in force.

%SSC_RELEASE should be the last function call for a database channel unless you want to keep
the connection open (not cached) across a chain of applications. In this case, use %SSC_CMD and
set the SSQL_KEEP_OPEN option, which is available only on Windows and UNIX.

WT WN U V

Database Functions
%SSC_RELEASE

SQL Connection Reference Manual 10.1 (6/13) 3-51

After a call to %SSC_RELEASE, a call to %SSC_INIT must be issued prior to a call to
%SSC_CONNECT. Every call to %SSC_CONNECT should be paired with calls to
%SSC_RELEASE and %SSC_INIT.

Examples
The following code segment demonstrates how to release connections when multiple connections
have been made.

if (%ssc_connect(dbchn, user))
goto err_exit

if (%ssc_connect(dbchn1, user))
goto err_exit

.

.

.
if (%ssc_release(dbchn1))

begin
sts = %ssc_getemsg(dbchn1, msg, len)
if (len)

writes(1, "DB1: " + msg(1,len))
else

writes(1, "DB1: Release failed - No error message available.")
sts = %ssc_release(dbchn1)

end
.
.
.
if (%ssc_release(dbchn))

begin
sts = %ssc_getemsg(dbchn, msg, len)
if (len)

writes(1, "DB0:" + msg(1,len))
else

writes(1, "DB0: Release failed - No error message available.")
sts = %ssc_release(dbchn)

end

Database Functions
%SSC_ROLLBACK

3-52 SQL Connection Reference Manual 10.1 (6/13)

%SSC_ROLLBACK – Roll back a transaction

value = %SSC_ROLLBACK(dbchannel[, mode])

Return value
value

This function returns an integer result. (i)

SSQL_NORMAL Success

SSQL_FAILURE Failure

Arguments
dbchannel

An internal database channel previously initialized using %SSC_INIT and connected by
%SSC_CONNECT. (n)

mode

(optional) Indicates whether to roll back and/or start a transaction. (The default differs from
one database to another, and mode is ignored for databases that don’t support different
transaction states.) (n)

SSQL_TXOFF Roll back the transaction for dbchannel.

SSQL_TXON Roll back current transaction for dbchannel (if there is one) and start a
new explicit transaction.

Discussion
Depending on mode, %SSC_ROLLBACK either rolls back a transaction, starts a new transaction,
or both, If it rolls back a transaction, it hard-closes any associated cursors.

 If you pass SSQL_TXOFF, %SSC_ROLLBACK rolls back the transaction for dbchannel.

 If you pass SSQL_TXON, and your database supports explicit transactions,
%SSC_ROLLBACK starts a new transaction for dbchannel. If a transaction already exists for
dbchannel, %SSC_ROLLBACK first rolls back that transaction and then starts the new one.

WT WN U V

Database Functions
%SSC_ROLLBACK

SQL Connection Reference Manual 10.1 (6/13) 3-53

For databases, such as SQL Server, that support both explicit and implicit transactions,
%SSC_ROLLBACK starts an explicit transaction. However, for Oracle and other databases that
don’t support explicit transactions, %SSC_ROLLBACK does not start a transaction. In this case,

 the first data access (DML) operation (%SSC_OPEN, %SSC_EXECECUTE,
%SSC_EXECIO) starts an implicit transaction.

 %SSC_ROLLBACK rolls back the transaction, and SSQL_TXON has the same affect as
SSQL_TXOFF.

For more information, see “Transactions and Autocommit” on page 2-49.

Examples
The following example shows how to roll back or commit a transaction, depending on the user’s
selection.

if (abandon) then
if (%ssc_rollback(dbchn, SSQL_TXOFF))

goto err_exit
else

if (%ssc_commit(dbchn, SSQL_TXOFF))
goto err_exit

Synergy databases do not support rollbacks. However, this call will still change the
transaction mode.

Database Functions
%SSC_SCLOSE

3-54 SQL Connection Reference Manual 10.1 (6/13)

%SSC_SCLOSE – Soft close one or more open cursors

value = %SSC_SCLOSE(dbchannel, dbcursor[, …])

Return value
value

This function returns an integer result. (i)

SSQL_NORMAL Success

Arguments
dbchannel

An internal database channel previously initialized using %SSC_INIT and connected by
%SSC_CONNECT. (n)

dbcursor

One or more logical cursor numbers within the range from 1 through the maximum number
specified by maxcur during %SSC_INIT. These cursors must have been opened by
%SSC_OPEN. (n)

Discussion
%SSC_SCLOSE soft closes one or more logical cursors opened in %SSC_OPEN. A soft close
enables SQL Connection to reuse the associated database cursor, if there is one. For information on
closing and reusing cursors, see “Closing cursors” on page 2-27 and “Reusing cursors” on
page 2-28. Note the following:

 Use %SSC_SCLOSE only when you will reuse the cursor. Otherwise, use %SSC_CLOSE to
free dbcursor and its resources.

 A table cannot be dropped (that is, deleted) unless all cursors are hard closed.

 If you’ve specified fewer database cursors than logical cursors (with %SSC_INIT),
SQL Connection may hard close cursors that have been soft closed with %SSC_SCLOSE.
However, when a cursor is reused with %SSC_OPEN, the result is the same as if the cursor had
not been hard closed. In this way, SQL Connection manages a cache of cursors for you.

 For SQL Server, %SSC_SCLOSE frees cursor resources, including locks, for cursors for
SELECT statements.

 The database cache may reach its limit, which will result in a severe decrease in performance if
you do not hard close cursors.

 If you use ^VARARGARRAY, note that dbcursor is the last declared argument for this routine.

WT WN U V

Database Functions
%SSC_SCLOSE

SQL Connection Reference Manual 10.1 (6/13) 3-55

Examples
The following code segment shows re-use of a soft closed cursor (the SELECT statement isn’t
re-parsed).

sqlp = "SELECT name, id, type FROM objects "
& " WHERE name = :1 AND type = :2"

do forever
begin

call get_name_and_type ;Set the search name and type
if (sts = %ssc_open(dbchn, cur1, sqlp, SSQL_SELECT,

& SSQL_STANDARD, 2, spec, stype))
goto err_exit

if (%ssc_define(dbchn, cur1, 3, name, id, type))
goto err_exit

sts = %ssc_move(dbchn, cur1, 1)
if (sts.eq.SSQL_NOMORE) then

exitloop
else if (sts.eq.SSQL_FAILURE)

goto err_exit
call do_processing
if (sts = %ssc_slose(dbchn, cur1))

goto err_exit
end

Database Functions
%SSC_SQLLINK

3-56 SQL Connection Reference Manual 10.1 (6/13)

%SSC_SQLLINK – Link a non-SELECT statement to cursor for a
SELECT statement

value = %SSC_SQLLINK(dbchannel, dbcursor, statement[, numvars][, var, …])

Return value
value

This function returns an integer result. (i)

SSQL_NORMAL Success

Arguments
dbchannel

An internal database channel previously initialized using %SSC_INIT and connected by
%SSC_CONNECT. (n)

dbcursor

The logical cursor number within the range from 1 through the maximum number specified by
maxcur during %SSC_INIT. The cursor must have been opened by %SSC_OPEN. (n)

statement

The SQL statement. (a)

numvars

(optional) The number of bound host variables that follow. Note that numvars cannot exceed
the value of maxcol passed in the %SSC_INIT call. (n)

var

(optional) Host variables to be bound to the non-SELECT statement. If numvars is passed, the
number of var arguments passed must equal the value of numvars. (n)

Discussion
%SSC_SQLLINK links a new non-SELECT statement to an already opened SELECT statement
cursor, clears all defined variables and bound variables, and rebinds variables for the new
non-SELECT statement to follow. The primary use of %SSC_SQLLINK is to update the current
row just fetched through %SSC_MOVE (with the SSQL_POSITION and SSQL_FORUPDATE
options set in the %SSC_OPEN for the cursor).

WT WN U V

Database Functions
%SSC_SQLLINK

SQL Connection Reference Manual 10.1 (6/13) 3-57

Note the following:

 Note that you can call %SSC_MOVE and %SSC_EXECUTE multiple times for the same set
of %SSC_OPEN and %SSC_SQLLINK statements, which enables you to repeatedly fetch and
update rows using the same cursor.

 To bind more than 250 variables for a statement specified by %SSC_SQLLINK, put up to 250
variables in the %SSC_SQLLINK call, then put the remainder in one or more %SSC_BIND
calls.

 Don’t put a restriction clause in the update statement passed to %SSC_SQLLINK. When you
specify SSQL_POSITION and SSQL_FORUPDATE in the %SSC_OPEN call for the cursor,
SQL Connection automatically positions the cursor so restrictions aren’t necessary for the
update statement.

 If you use ^VARARGARRAY, note that numvars is the last declared argument for this routine.

For more information on binding host variables, see “Binding data” on page 2-34.

Examples
For an example, see exam_fetch_update.dbl, which is in the connect\synsqlx subdirectory of the
main Synergy/DE installation directory.

Database Functions
%SSC_STRDEF

3-58 SQL Connection Reference Manual 10.1 (6/13)

%SSC_STRDEF – Define a structure

value = %SSC_STRDEF(dbchannel, dbcursor, element_num, layout_def, rec)

Return value
value

This function returns an integer result. (i)

SSQL_NORMAL Success

Arguments
dbchannel

An internal database channel previously initialized using %SSC_INIT and connected by
%SSC_CONNECT. (n)

dbcursor

The logical cursor number. This must be between 1 and the maximum number specified by
maxcur during %SSC_INIT (inclusive). The cursor must have been opened by
%SSC_OPEN. (n)

element_num

The number of array elements in each field of rec. (When using element_num, be aware that
not all databases support bulk insertions or allow multirow operations. For more information,
see %SSC_INIT on page 3-35.) (n)

layout_def

A record that describes the layout of rec. (a)

rec

The record SQL Connection will use at execution time to bind or define data. The layout_def
structure describes the layout for this record. (a)

WT WN U V

Database Functions
%SSC_STRDEF

SQL Connection Reference Manual 10.1 (6/13) 3-59

Discussion
%SSC_STRDEF provides an alternative way to bind and define data (see “Data Mapping” on
page 2-33). It’s generally best to use %SSC_OPEN, %SSC_BIND, %SSC_SQLLINK, or
%SSC_DEFINE instead. (For the most part, %SSC_STRDEF has been superseded by support for
real arrays in these and other SQL Connection functions.) However, use %SSC_STRDEF if

 you need more than 248 variables for a SELECT statement or more than 256 bind variables for
a non-SELECT statement. (See “Binding data” on page 2-34.)

 you are passing many variables to %SSC_DEFINE, %SSC_OPEN, or %SSC_SQLLINK. In
this case, using %SSC_STRDEF may improve performance.

Note that if %SSC_STRDEF follows an %SSC_SQLLINK call, %SSC_STRDEF binds variables
only for the original SELECT statement (not the linked statement).

Examples
.define ELMNT_NUM 5
.include "ssql.def"

record ar_data ;Data record structure
s_dnum ,[ELMNT_NUM]i4
s_dnam ,[ELMNT_NUM]a6
s_dman ,[ELMNT_NUM]d4
s_ddiv ,[ELMNT_NUM]a10

static record layout_def
snm_vars ,d3 ;Number of variables
group ssql_vars ,[4]a ;Array of field

; definitions
sfld_typ ,a1 ;Field type (A/D/I)
sfld_siz ,d5 ;Field length
sfld_dec ,d2 ;Field decimal point length

endgroup

record row_count, i4

proc
.
.
.
;Build the structure definition
if.NOT. snm_vars

begin
snm_vars = 4
ssql_vars[1].sfld_typ = 'I'
ssql_vars[1].sfld_siz = 4
ssql_vars[1].sfld_dec = 0
ssql_vars[2].sfld_typ = 'A'

Database Functions
%SSC_STRDEF

3-60 SQL Connection Reference Manual 10.1 (6/13)

ssql_vars[2].sfld_siz = 6
ssql_vars[2].sfld_dec = 0
ssql_vars[3].sfld_typ = 'D'
ssql_vars[3].sfld_siz = 4
ssql_vars[3].sfld_dec = 0
ssql_vars[4].sfld_typ = 'A'
ssql_vars[4].sfld_siz = 10
ssql_vars[4].sfld_dec = 0

end

;Set the SQL statement
sqlp = "SELECT deptnum, deptname, manager, division FROM org"
if (%ssc_open(dbchannel, cur3, sqlp, SSQL_SELECT))

goto err_exit

;Define the structure for ELMNT_NUM elements in each array
if (%ssc_strdef(dbchannel, cur3, ELMNT_NUM, layout_def, ar_data))

goto err_exit

;Fetch the five rows at once
sts = %ssc_move(dbchannel, cur3, ELMNT_NUM, row_count)
for ix from 1 thru row_count

begin
anum = s_dnum[ix]
writes(1, anum + s_dnam[ix] + %a(s_dman[ix]) + s_ddiv[ix])

end
if (%ssc_close(dbchannel, cur3))

goto err_exit.

4-1

4
Utility Functions

SQL Connection utility functions enable you to get information, map error codes, and set date and
time options during the execution of your Synergy application. Each utility function returns a value
and can be used any place a literal can be used in a Synergy program.

%SSC_GETDBID – Get database ID...4-2

%SSC_GETEMSG – Get database error message ...4-4

%SSC_MAPMSG – Map a database-specific error code...4-6

%SSC_OPTION – Set or get date and time options...4-8

Utility Functions
%SSC_GETDBID

4-2 SQL Connection Reference Manual 10.1 (6/13)

%SSC_GETDBID – Get database ID

value = %SSC_GETDBID(dbchannel, dbid)

Return value
value

This function returns an integer result. (i)

SSQL_NORMAL Success

SSQL_FAILURE Failure

Arguments
dbchannel

An internal database channel previously initialized using %SSC_INIT. (n)

dbid

The returned database ID. (n)

Discussion
%SSC_GETDBID gets the database ID for the specified database channel. The following table lists
the possible database IDs.

WT WN U V

Database IDs

Database system ID ID# Database

SSQL_DID_NONE n/a Not connected (or released by
%SSC_RELEASE)

SSQL_DID_ORACLE 0 Oracle

SSQL_DID_RDB 1 Oracle Rdba

SSQL_DID_SYBASE 2 Sybasea

SSQL_DID_SDAPI 4 Synergy Database

Utility Functions
%SSC_GETDBID

SQL Connection Reference Manual 10.1 (6/13) 4-3

Examples
The following example demonstrates how to use %SSC_GETDBID:

user = "sa/manager" ;Default database connection
if (%ssc_connect(dbchn, user))

goto err_exit
if (%ssc_getdbid(dbchn, dbid)) ;Get the database ID

goto err_exit
if (dbid.eq.SSQL_DID_SQLSRV)

if (%ssc_cmd(dbchn, cur1, SSQL_USEDB, "Synergex"))
goto err_exit ;Cur1 ignored

SSQL_DID_INFORMIX 5 Informixa

SSQL_DID_OLEDB 8 OLE DB-complianta

SSQL_DID_ODBC 11 ODBC-complianta

SSQL_DID_SQLSRV 12 SQL Server

SSQL_DID_MYSQL 14 MySQL

a. Support for these databases may require assistance from Synergex Professional Services and
additional support fees. Contact your Synergy/DE account manager for details. See “Synergex
Professional Services Group” on page ix.

Database IDs (Continued)

Database system ID ID# Database

Utility Functions
%SSC_GETEMSG

4-4 SQL Connection Reference Manual 10.1 (6/13)

%SSC_GETEMSG – Get database error message

value = %SSC_GETEMSG(dbchannel, msg, len, [row_count][, errno])

Return value
value

This function returns an integer result. (i)

SSQL_NORMAL Success

SSQL_FAILURE Failure

Arguments
dbchannel

An internal database channel previously initialized using %SSC_INIT. This argument has a
maximum size of 1024. (a)

msg

Returned with the extended error message. (a)

len

Returned with the length of the error message. (n)

row_count

(optional) Returned count of rows affected in the last call to %SSC_EXECUTE,
%SSC_MOVE, or %SSC_EXECIO. This count is valid only when value is returned as
SSQL_NORMAL. (n)

errno

(optional) Returned with the last database-specific error number. For Synergy databases, this is
the Synergy Database API error number. (n)

If this number is negative, it’s probably a Vortex API error message (see “Vortex API error
messages” on page 5-15).

Discussion
%SSC_GETEMSG returns Vortex API, SQL OpenNet, socket, database errors, and if you’re using
an ODBC database driver (VTX11, VTX12_ODBC, or VTX12_SQLNATIVE), ODBC Driver
Manager warnings and errors. (It doesn’t, however, return Synergy runtime errors. You’ll need to
trap Synergy runtime errors in your program—see “Trapping runtime errors” in the “Error
Messages” chapter of Synergy Tools—and you’ll need to use Vortex API logging to view socket
errors.)

WT WN U V

Utility Functions
%SSC_GETEMSG

SQL Connection Reference Manual 10.1 (6/13) 4-5

Some databases return multiple message lines for %SSC_GETEMSG. These lines are separated by
the null character (%char(0)). For an example of message decoding, see printmsg.dbl. (You’ll find
this file in the connect\synsqlx subdirectory of the main Synergy/DE installation directory.)

Examples
The following code segment displays a connection failure error message.

if (%ssc_connect(dbchn, user))
goto err_exit

.

.

.
err_exit,

sts = %ssc_getemsg(dbchn, msg, len)
if (len)
writes(1, msg(1,len))

else
writes(1, "No error message available.")

Utility Functions
%SSC_MAPMSG

4-6 SQL Connection Reference Manual 10.1 (6/13)

%SSC_MAPMSG – Map a database-specific error code

value = %SSC_MAPMSG(dbchannel, mapfile, dfltcode, mapcode)

Return value
value

This function returns an integer result. (i)

SSQL_NORMAL Success

SSQL_FAILURE Failure

Arguments
dbchannel

An internal database channel previously initialized using %SSC_INIT and connected by
%SSC_CONNECT. (n)

mapfile

The filename (without filename extension) that contains the error code mapping. (a)

dfltcode

The code to return if no match is found in the map file. (n)

mapcode

Returned with the mapped code. (n)

Discussion
%SSC_MAPMSG maps a database-specific error code to a generic error code.

The text file that mapfile is set to must contain two numbers in each line: the first number is the
database-specific error code (most are negative), and the second number is the matching generic
error code that you want returned. SQL Connection opens the error code mapping file once for each
open database channel and appends the xx filename extension to the name of the mapfile text file,
where xx is the database ID from the last %SSC_GETDBID function call.

When a status value of SSQL_FAILURE is returned, you can call this function to get the map
message code. You can then process general error messages in your own error processing system.

WT WN U V

Utility Functions
%SSC_MAPMSG

SQL Connection Reference Manual 10.1 (6/13) 4-7

Examples
The following code segment demonstrates how to map a database-specific error code to an
application generic error code using an Oracle database (with a mapfile of my_map.0).

mapfile = "my_map"
sts = %ssc_getemsg(dbchn, msg, len,, ecode)
sts = %ssc_mapmsg(dbchn, mapfile, ecode, map_code)
call do_case_map_code

The contents of the first line of the file if it mapped Oracle error –2 to a returned error 3 would be

–2 3

Utility Functions
%SSC_OPTION

4-8 SQL Connection Reference Manual 10.1 (6/13)

%SSC_OPTION – Set or get date and time options

value = %SSC_OPTION(dbchannel, mode, base_date, format_string, null_mask)

Return value
value

This function returns an integer result: (i)

SSQL_NORMAL Success

SSQL_FAILURE Failure

Arguments
dbchannel

An internal database channel previously initialized using %SSC_INIT and connected by
%SSC_CONNECT. (n)

mode

One of the following modes: (n)

SSQL_SETOPT Set the following options.

SSQL_GETOPT Get the following options.

base_date

Returns or sets a value that’s used to adjust numeric dates (decimal or integer) fetched from the
database. We recommend leaving base_date set to its default, which is -1721378. See the
Discussion below for instructions. (n)

format_string

Returns or sets the date/time format string. The maximum number of characters is 64. The
default mask is DD-MON-YYYY. (a)

null_mask

Returns or sets a value that is bit OR’d to the field when a column is described and nulls are
allowed. This is for internal use only. Leave this option set to its default value, which is 0. (n)

WT WN U V

Utility Functions
%SSC_OPTION

SQL Connection Reference Manual 10.1 (6/13) 4-9

Discussion
%SSC_OPTION either gets current date and time option settings or sets date and time options. To
get the current date and time option settings, use SSQL_GETOPT.

To set an option, do the following:

1. Call %SSC_OPTION using SSQL_GETOPT to retrieve current settings into variables.

2. Assign new values to the variables whose settings you want to change.

3. Call %SSC_OPTION using SSQL_SETOPT. This will update the setting for any variable whose
value you changed in step 2, but will leave other options with their original settings.

Base_date determines the base date for fetched dates. When a date is fetched into a numeric output
variable, the date is translated into a Julian date, which is a value that represents the number of days
between the returned date and the beginning of AD 1. The value of base_date is then added to or (if
it’s negative) subtracted from the Julian date. (A positive value moves the base date forward to a
later AD year. A negative value moves the base date back to a BC year.) We recommend that you
leave base_date set to its default (-1721378), which is compatible with the Synergy DBL routines
%NDATE and %JPERIOD.

The following table lists the formatting options for date/time data. The width of the resulting data is
determined by the length of the mask.

Date/Time Formatting Characters

Sequence Description

YYYY Four-digit year

YY Two-digit year

RR Two-digit year from another century—this is a sliding window
format based on 20

MM Two-digit month of year (01-12)

MON Three-character month (all uppercase)

mon Three-character month (all lowercase)

Mon Three-character month (1st character uppercase)

MONTH Fully named month (all uppercase)

month Fully named month (all lowercase)

Month Fully named month (1st character uppercase)

DDD Three-digit day of year (001-366)

Utility Functions
%SSC_OPTION

4-10 SQL Connection Reference Manual 10.1 (6/13)

DD Two-digit day of month (01-31)

D Single-digita day of week (1-7)b

DY Three-character day (all uppercase)

dy Three-character day (all lowercase)

Dy Three-character day (1st character uppercase)

DAY Fully named day (all uppercase)

day Fully named day (all lowercase)

Day Fully named day (1st character uppercase)

HH12 Two-digit hour (00-11)

HH,HH24 Two-digit hour (00-23)

MI Two-digit minutes (00-59)

SS Two-digit seconds (00-59)

SSSSS Seconds past midnight (00000-86399)

J Julian daya

Q Single-digita quarter of year (0-4)

UUUUUU Microsecond (datetime only)

W Single-digita week of the month (1-4)b

WW Two-digit week of the year (01-52)

other Delimiting character: slash (/), dash (-), etc.

a. A single-character mask will not work if it is the only character in a format string. It will work if there
are other characters (mask characters and/or non-mask characters).

b. Weeks start with Sunday.

Date/Time Formatting Characters (Continued)

Sequence Description

Utility Functions
%SSC_OPTION

SQL Connection Reference Manual 10.1 (6/13) 4-11

Note the following:

 Adding th (which not case sensitive) to any uppercase digit mask appends ST, ND, RD, or TH,
as appropriate, to the date string at the indicated place. For lowercase digit masks, lowercase
letters are appended.

 When embedding characters in a string that’s part of the mask, enclose in double quotes any
characters that are valid masks. For example, if you want the word “day” as part of the format,
enclose it in double quotes as in the following: ‘DDDth “day”’.

The following table lists some example date/time values, some masks that could be applied to those
values, and the results.

Examples
The following example changes the date format mask. Note that %SSC_OPTION is called twice, as
recommended in the the Discussion above.

sts = %ssc_option(dbchn, SSQL_GETOPT, date_base, date_fmt, null_mask)
date_fmt = "MM-DD-YYYY"
sts = %ssc_option(dbchn, SSQL_SETOPT, date_base, date_fmt, null_mask)

Retrieved date Mask Result

Feb 6, 1958 "DD/MM/YYYY" “06/02/1958”

Feb 6, 1958 "qth quarter of YY" “1st quarter of 58”

Feb 6, 1958 "YYYYMMDD" “19580206”

Nov 1, 1995 20:48:46 "HH12:MI on Day" “08:48 on Wednesday”

Dec 1, 1994 'DDDth "day"' 335TH day

5-1

5
Error Logging and Messages

Troubleshooting and Error Logging 5-2

Describes how to use the various logging options available to SQL Connection programs to log
errors and track function calls and operations.

Error Messages 5-10

Lists errors you’ll see with the various logging options and %SSC_GETEMSG.

Troubleshooting DLLLOAD Errors 5-25

Discusses causes of DLLLOAD errors and strategies for troubleshooting them.

Troubleshooting Socket Errors 5-27

Discusses causes of socket errors and strategies for troubleshooting them.

Error Logging and Messages
Troubleshooting and Error Logging

5-2 SQL Connection Reference Manual 10.1 (6/13)

Troubleshooting and Error Logging
The first step in troubleshooting is to make sure Connectivity Series is configured correctly and that
your SQL Connection application can successfully connect to the database. (For client/server
configurations, this means that you must be able to connect to the SQL OpenNet server.) The
following utilities and logging options help you do this:

If Connectivity Series appears to be configured correctly, but you are still unable to connect,

 check encryption settings on the client (in net.ini) and on the server (in the vtxnetd or vtxnet2
command line). Make sure these match (or try connecting after removing these settings from
both locations), and make sure net.ini is in the directory specified by VORTEX_HOME. (Note
that if you have both 32-bit and 64-bit Connectivity Series on a 64-bit Windows machine,
VORTEX_HOME is set by the last version installed.) See “Using network initialization files to
set network defaults” on page 1-7 for more information, and note that mismatched encryption
settings or the inability to access net.ini encryption settings, can cause a variety of errors when
connecting. These include invalid user name, null password, invalid connect string syntax, and
data source name errors.

 for SQL Server, make sure you are using SQL Server authentication (not just Windows
authentication, which SQL Connection can’t use). For example, for SQL Server 2008, make
sure the “SQL Server and Windows Authentication mode” option is selected in the Security
section of Server Properties.

 dltest This utility lists needed Connectivity Series DLLs and states whether SQL
Connection can find them. To use dltest, run it from the command line. It is in
the synergyde\connect directory and has no options or arguments.

 vtxping and
synxfpng

These enable you to ping an SQL OpenNet server so you can verify that you
can connect in a client/server configuration. Vtxping and synxfpng (when
used with the -x option) are nearly identical, but synxfpng has a verbose
option (-v) that lists socket calls as they succeed or fail, which can be useful
when debugging. For more information, see “The vtxping Utility” in the
“Configuring Connectivity Series” chapter of the Installation Configuration
Guide and “The synxfpng Utility” in the “Configuring xfServer” chapter of
Installation Configuration Guide.

 vtxnetd/
vtxnet2
logging

If you set the log option for either of these, a log file (tcm_pid.log) records
connection requests and, if the program can’t start a worker thread or process,
logs the reason for the failure. You may be able to use this to determine why a
connection fails in a client/server configuration. This log also records ping and
kill requests. See “The vtxnetd and vtxnet2 Programs” in the Configuring
Connectivity Series” chapter of the Installation Configuration Guide.

 SSQLLOG This environment variable (part of SQL Connection logging; see “SQL
Connection logging” on page 5-5) enables you to see the connect string (with
the password masked by asterisks) sent to the database when a connection
fails. It works for both client/server and stand-alone configurations.

Error Logging and Messages
Troubleshooting and Error Logging

SQL Connection Reference Manual 10.1 (6/13) 5-3

In addition to the logging options listed above, the Connectivity Series installation automatically
sets the environment variable VORTEX_HOST_SYSLOG, which instructs the SQL OpenNet
server to generate messages for the event log (Windows), syslog (UNIX), or the operator console
(OpenVMS) when an attempt to connect to an SQL OpenNet server causes fatal errors. We don’t
recommend changing this setting. For more information, see VORTEX_HOST_SYSLOG in the
“Environment Variables” chapter of Environment Variables & System Options.

Once you can connect…
Once you know that your SQL Connection application can connect to the database, you can use the
types of logging discussed in this chapter: SQL Connection logging, Vortex API logging, Vortex
host logging, and database-specific logging. Figure 5-1 on page 5-4 illustrates where these types of
logging apply once the program has connected to the database. (With the exception of the
SSQLLOG environment variable mentioned above, the types of logging discussed in this chapter
are useful only when your SQL Connection application has successfully connected to the database.)
In general, because networks and OpenNet Server complicate matters, it’s best to start by using
logging in a stand-alone configuration. Then, when your program works smoothly in a stand-alone
configuration, move to a client/server configuration.

We also recommend the following:

 Check the return value of all SQL Connection function calls, use %SSC_GETEMSG to
retrieve error messages (see %SSC_GETEMSG on page 4-4), and process all error codes as
necessary.

 Use bounds checking (-qcheck or /CHECK_BOUNDS), which instructs the runtime to report
errors if your program subscripts outside the bounds of a field. Additionally, for SQL
Connection, bounds checking makes sure that stack records are not used for %SSC_ function
operations, which would lead to memory corruption.

If you can’t solve a problem by examining the log files, save the log files and call Synergy/DE
Developer Support. Support will also need a description of the problem and the version numbers of
all relevant software and hardware—especially the Synergy/DE version, operating system,
database, and database version.

 SQL Connection
logging

Records cursor status and SQL Connection API calls. Use this to find SQL
Connection API calls in your code that behave differently than expected.
For more information, see “SQL Connection logging” on page 5-5.

 Vortex API and
Vortex host
logging

Record SQL commands and SQL Connection internal information. You
can use these to see how an SQL statement is broken down into commands,
and you can use these for performance tuning. For more information, see
“Vortex API logging” on page 5-6 and “Vortex host logging” on page 5-8.

 Database-specific
logging

Use database-specific logging to examine database-specific errors. For
information on database-specific logging for Synergy databases, see
“Synergy DBMS logging (Synergy database driver only)” on page 5-9.

Error Logging and Messages
Troubleshooting and Error Logging

5-4 SQL Connection Reference Manual 10.1 (6/13)

Figure 5-1. Errors and logging for a program that has successfully connected.

network

Synergy application

%SSC_* API calls

Synergy runtime

Which
configuration?

SQL Connection
 API calls

SQL Connection
API interface

SQL OpenNet
client

SQL OpenNet
server

client/
server

stand-
alone

SQL OpenNet
error messages b

database

database-specific
API calls

database-specific errors
(Synergy database driver

error messages if Synergy
Database, ODBC Driver

Manager errors when using
VTX11 or VTX12_ODBC) b

database-specific
libraries

LoggingError type

Synergy Runtime
error messages a

SQL Connection
logging

Vortex API
 logging

Vortex host
 logging

Vortex API
 error messages b

database-specific logging
(Synergy DBMS logging if
Synergy Database)

aSynergy Runtime error messages are
not returned with %SSC_GETEMSG.
These are errors you trap in your
program.
bErrors returned by %SSC_GETEMSG.

Error Logging and Messages
Troubleshooting and Error Logging

SQL Connection Reference Manual 10.1 (6/13) 5-5

SQL Connection logging
SQL Connection logging enables you to track SQL Connection API operations, see the connection
string used when a connection fails, list open cursors, and create a detailed log for use by
Synergy/DE Developer Support.

To use SQL Connection logging, set one of these environment variables in synergy.ini (Windows
only) or in the environment. For client/server configurations, set them on the client.

Set… To… Explanation

SSQLLOG 1 Creates the SSQLX.LOG log file in your working directory, which lists
 SQL Connection API operations in the order they were sent to the SQL

Connection API interface.
 %SSC_xxx function calls as well as errors and warnings (in certain

circumstances).
 open cursors if one of the following errors occurs: $ERR_CURSERR (“ID not

select error” or “ID must be a non select cursor”) or $ERR_NOMORECURS
(“No more available open cursors”).

 the connect string (with the password masked by asterisks) that is sent to the
database when a connection fails.

This log also indicates whether an %SSC_OPEN call reused a cursor, closed a
cursor and then reopened it, reopened a closed cursor, or created a new cursor.

SQLJUSTINTIME 1 Records cursor status on error condition. Helps you determine why an operation
fails by creating the log file ssqlerr.log (in your working directory), which contains
an open cursor listing. If ssqlerr.log already exists, new logging is appended to
the current file, potentially creating a very large file. Note that you cannot use this
if SSQLLOG is set.

Error Logging and Messages
Troubleshooting and Error Logging

5-6 SQL Connection Reference Manual 10.1 (6/13)

Vortex API logging
Vortex API logging enables you to see the exact SQL commands passed to the SQL OpenNet client
(in a client/server configuration) or to the database driver (in a stand-alone configuration). You can
use this information to debug SQL statements, and you can use it to verify optimization. (See
“Using Vortex API logging to verify optimization” below.)

To use Vortex API logging, set one or more of the following environment variables in net.ini
(Windows only) or in the environment. Set them on the client in a client/server configuration.

Set… To… Explanation

VORTEX_API_LOGFILE Filespec Logs the exact SQL commands passed to the SQL OpenNet client (if
client/server) or database driver (if stand-alone). If you set this without
setting VORTEX_API_LOGOPTS, a list of operations with a total count
for each operation is recorded.
Note: Don’t specify an extension for the filename (or a version number
on OpenVMS). SQL Connection automatically appends the process ID
(filename_pid) and an extension (.log). If you specify an extension on
OpenVMS, no log file will be created.

VORTEX_API_LOGOPTS Options Must be used with VORTEX_API_LOGFILE, and must be set to one or
more of the following. To set more than one option, separate options
with the plus sign—for example, FULL+TIME.
APPEND—Appends logging information to existing file.
ERROR—Logs only statements with errors.
FULL—Specifies full logging. Note: If your program opens multiple
database channels concurrently, you must also set MULTI (or you’ll get
an error).
MULTI—Creates a separate file for each channel when using multiple
database channels.
PLAY—Enables Synergy/DE Developer Support to playback an
operation.
RECORD—Logs data for Synergy/DE Developer Support.
SQL—Creates a file that contains SQL commands. Specify the
filename (minus extension) and path (optional) with
VORTEX_API_LOGFILE. The extension is .sql.
TIME—Logs execution time for statements.

Error Logging and Messages
Troubleshooting and Error Logging

SQL Connection Reference Manual 10.1 (6/13) 5-7

Using Vortex API logging to verify optimization

You can use Vortex API logging to find out how well you’ve optimized cursor usage. (We suggest
you use VORTEX_API_LOGOPTS=TIME.) The final page of the log lists counts of Vortex API
calls and indicates which operations reuse cursors.

 OPEN statements that reuse cursors are listed as OPENFETCH statements.

 FETCH statements that reuse cursors are listed as FETCHNEXT statements.

 The names of all other statements that reuse cursors end in 2.

In the following example, the EXEC2 count indicates that 100 EXEC statements reused cursors,
and the OPENFETCH count indicates that 200 open statements reused cursors.

EXEC 5
EXEC2 100
OPEN 20
OPENFETCH 200

For best performance, each statement should have more operations that reuse cursors than
operations that don’t.

Note that you can also use SSQLLOG (SQL Connection logging) to see if cursors are being opened
and closed for a series of identical SELECT statements, where a single cursor with
%SSC_SCLOSE (or no close at all) should be used.

Error Logging and Messages
Troubleshooting and Error Logging

5-8 SQL Connection Reference Manual 10.1 (6/13)

Vortex host logging
Like Vortex API logging, Vortex host logging records SQL commands. But Vortex host logging
logs these commands as they are passed from the SQL OpenNet server to the database driver. You
can use this information to debug SQL statements and to verify optimization. (See “Using Vortex
API logging to verify optimization” above for information.)

To use Vortex host logging, set one or more of the environment variables listed in the following
table. Set these on the server.

 On Windows, set them in the opennet.srv file before starting vtxnetd or vtxnet2.

 On UNIX, set them in the environment before starting vtxnetd.

 On OpenVMS, set them as system-wide logicals before starting the server.

Set… To… Explanation

VORTEX_HOST_LOGFILE Filespec Logs SQL commands as they are passed from SQL OpenNet to the
database driver. If you set this without setting
VORTEX_HOST_LOGOPTS, a list of operations along with a total
count for each operation is recorded.
Note: Don’t specify an extension for the filename (or a version number
on OpenVMS). SQL Connection automatically appends the process ID
(filename_pid) and an extension (.log). If you specify an extension on
OpenVMS, no log file will be created.

VORTEX_HOST_LOGOPTS Options Must be used with VORTEX_HOST_LOGFILE, and must be set to one
or more of the following. To set more than one option, separate options
with the plus sign—for example, FULL+TIME.
APPEND—Appends logging information to existing file.
ERROR—logs error statements only.
FULL—Specifies full logging. If your program opens multiple database
channels concurrently, MULTI must also be set (or you’ll get an error).
MULTI—Creates a separate file for each channel when using multiple
database channels. Set automatically when running vtxnetd on
Windows.
PLAY—Enables Synergy/DE Developer Support to playback an
operation.
RECORD—logs data for Synergy/DE Developer Support.
SQL—Creates a file that contains SQL commands. Specify the filename
(minus extension) and path (optional) with VORTEX_HOST_LOGFILE.
The extension is .sql.
TIME—logs execution time for statements.

Error Logging and Messages
Troubleshooting and Error Logging

SQL Connection Reference Manual 10.1 (6/13) 5-9

Synergy DBMS logging (Synergy database driver only)
If you’re connecting to a Synergy database driver, Synergy DBMS logging enables you to create a
log of Synergy database driver operations. You can also create a detailed log for Synergy/DE
Developer Support.

For information on Synergy DBMS logging, see the “Data Access Errors and Error Logging”
chapter of the xfODBC User’s Guide.

Error Logging and Messages
Error Messages

5-10 SQL Connection Reference Manual 10.1 (6/13)

Error Messages
The %SSC_GETEMSG function returns Vortex API, SQL OpenNet, socket, database errors, and if
you’re using an ODBC database driver (VTX11, VTX12_ODBC, or VTX12_SQLNATIVE), it
returns ODBC Driver Manager warnings and errors. It doesn’t, however, return Synergy runtime
errors. You’ll need to trap Synergy runtime errors in your program (see “Trapping runtime errors”
in the “Error Messages” chapter of Synergy Tools), and you’ll need to use Vortex API logging to
view socket errors.

For information on database-specific errors, see your database documentation. (For Synergy
database driver error messages, see “Data Access Errors” in the “Data Access Errors and Error
Logging” chapter of the xfODBC User’s Guide.)

Synergy runtime error messages
You can trap the following runtime errors in your SQL Connection program. To see the associated
error text, use SQL Connection logging, or use $ERR_CATCH in conjunction with
%ERR_TRACEBACK. The following errors apply to stand-alone configurations and clients in
client/server configurations.

Synergy Runtime Error Messages

Mnemonic Error text Explanation

$ERR_ARGSIZ Field or array count
(size) smaller than
statement count (ct)

You used an array argument with fewer dimensions than
the row count, or you specified fewer arguments than the
statement defined.

$ERR_AXUNSUP Unsupported feature Your program uses an option that is not supported for the
database driver. For example, this error could be caused
by specifying SSQL_SCROLL_DYNAMIC, an option for
%SSC_OPEN, with any database driver other than
VTX11, VTX12_ODBC, or VTX12_SQLNATIVE.

$ERR_BADDATATYP Wrong data type An argument with an invalid data type has been passed
to a function. Check the argument list for the correct data
type.

$ERR_CHNUSE DB channel in use The dbchannel argument passed to %SSC_CONNECT
has already been used for an active connection.

Error Logging and Messages
Error Messages

SQL Connection Reference Manual 10.1 (6/13) 5-11

$ERR_CURSERR ID must be a non select
cursor

The cursor ID passed to a non-SELECT processing
function (such as %SSC_EXECIO or %SSC_EXECUTE)
is not associated with a non-SELECT statement.

ID not SELECT cursor The cursor ID passed to a SELECT processing function
(such as %SSC_MOVE or %SSC_DEFINE) is not
associated with a SELECT statement.

Invalid cursor ID The cursor ID is not associated with an active open
cursor.

$ERR_NOMEM Not enough memory
(needed x, had y)

This operation could not be performed with the available
memory. This error occurs only after all memory has
been reorganized and all unnecessary segments have
been freed.

$ERR_NOMORECURS No more available open
cursors

You have attempted to open a cursor when the maximum
number of open cursors defined in %SSC_INIT has
already been reached.

$ERR_NOOPEN Invalid DB index channel
used

The dbchannel argument is not a valid connection to the
database. This may be caused by a failure to establish
the channel correctly with %SSC_INIT and
%SSC_CONNECT, or it may be a problem with the
environment. (For example, it may be that database
channels were not opened with consecutive numbers
starting with 1, a requirement for %SSC_INIT.)
To troubleshoot, run the SQL Connection example
programs for your database.
 If you are able to run the SQL Connection example

programs, the problem lies with the way your program
initializes and/or connects to database channels. Use
the code for the SQL Connection example programs
as a guide.

 If you get errors when you run the SQL Connection
example programs, there may be a problem with your
environment. (For example, you may get DLLLOAD
errors.)

Synergy Runtime Error Messages (Continued)

Mnemonic Error text Explanation

Error Logging and Messages
Error Messages

5-12 SQL Connection Reference Manual 10.1 (6/13)

$ERR_CURSERR ID must be a non select
cursor

The cursor ID passed to a non-SELECT processing
function (such as %SSC_EXECIO or %SSC_EXECUTE)
is not associated with a non-SELECT statement.

ID not SELECT cursor The cursor ID passed to a SELECT processing function
(such as %SSC_MOVE or %SSC_DEFINE) is not
associated with a SELECT statement.

Invalid cursor ID The cursor ID is not associated with an active open
cursor.

$ERR_NOMEM Not enough memory
(needed x, had y)

This operation could not be performed with the available
memory. This error occurs only after all memory has
been reorganized and all unnecessary segments have
been freed.

$ERR_NOMORECURS No more available open
cursors

You have attempted to open a cursor when the maximum
number of open cursors defined in %SSC_INIT has
already been reached.

$ERR_NOOPEN Invalid DB index channel
used

The dbchannel argument is not a valid connection to the
database. This may be caused by a failure to establish
the channel correctly with %SSC_INIT and
%SSC_CONNECT, or it may be a problem with the
environment. (For example, it may be that database
channels were not opened with consecutive numbers
starting with 1, a requirement for %SSC_INIT.)
To troubleshoot, run the SQL Connection example
programs for your database.
 If you are able to run the SQL Connection example

programs, the problem lies with the way your program
initializes and/or connects to database channels. Use
the code for the SQL Connection example programs
as a guide.

 If you get errors when you run the SQL Connection
example programs, there may be a problem with your
environment. (For example, you may get DLLLOAD
errors.)

Synergy Runtime Error Messages (Continued)

Mnemonic Error text Explanation

Error Logging and Messages
Error Messages

SQL Connection Reference Manual 10.1 (6/13) 5-13

$ERR_NOSQL SQL Connection
installation error or
DBLOPT48 not set

You have called an SQL Connection routine before
initializing SQL Connection. On Windows and UNIX
systems, SQL Connection is initialized by setting system
option #48 using either DBLOPT or %OPTION. On
OpenVMS systems, you must call %INIT_SSQL to
initialize SQL Connection. See “Initializing SQL
Connection” on page 2-5 for more information.
Note that on Windows, ssqlx.dll must be present when
initializing SQL Connection. On UNIX systems,
SSQLX.so must be present.

$ERR_SQLERR Initialize Synergy SQL
by calling %INIT_SSQL
first (OpenVMS)

You have called an SQL Connection routine before
initializing SQL Connection. On Windows and UNIX
systems, SQL Connection is initialized by setting system
option #48 using either DBLOPT or %OPTION. On
OpenVMS systems, you must call %INIT_SSQL to
initialize SQL Connection. See “Initializing SQL
Connection” on page 2-5 for more information.
Note that on Windows, ssqlx.dll must be present when
initializing SQL Connection. On UNIX systems,
SSQLX.so must be present.

Initialize Synergy SQL
by setting DBLOPT 48
(Windows and UNIX)

Synergy SQL ERROR:
uninitialized system
called

Synergy SQL ERROR:
Licensing error Demo
period expired

Your 14-day demo period has expired. Please contact
Synergex or your Synergy/DE supplier for a configuration
key.

Synergy SQL ERROR:
Licensing error
Maximum users
exceeded

The maximum license capacity in the License Manager
has been reached. (In other words, the number of log-ins
on your system is greater than the licensed number of
users.) Either contact your Synergy/DE supplier for
another configuration key so you can increase the
number of users, or wait until someone logs out.

Synergy SQL ERROR:
Licensing error Product
not installed

SQL Connection is not configured correctly. See the
“Configuring Connectivity Series” chapter of the
Installation Configuration Guide for assistance.

Synergy Runtime Error Messages (Continued)

Mnemonic Error text Explanation

Error Logging and Messages
Error Messages

5-14 SQL Connection Reference Manual 10.1 (6/13)

$ERR_WRITLIT Writing into a literal You have attempted to change the value of an alpha,
decimal, implied-decimal, or integer literal. Generally,
this error occurs when you pass a literal or an expression
to a function that requires a variable, and the function
attempts to modify the argument.

$ERR_WROARG Not enough arguments The number of arguments passed to a function is
different than the number of arguments needed for the
function.

Number of variables
(var_ct) does not match
SELECT- column count
(col_ct)

Too few variables were defined when %SSC_MOVE was
called. The cursor passed to %SSC_MOVE is associated
with a SELECT statement that returns a greater number
of columns than the number of variables defined for
them.

Synergy Runtime Error Messages (Continued)

Mnemonic Error text Explanation

Error Logging and Messages
Error Messages

SQL Connection Reference Manual 10.1 (6/13) 5-15

Vortex API error messages
The %SSC_GETEMSG function returns the following Vortex API error messages. Errors apply to
stand-alone configurations and clients in client/server configurations.

Vortex API Error Messages

Mnemonic Error text Explanation

BADCONV Data conversion failed The requested data conversion failed. Check that the requested
data is of the appropriate type. For example, this error will occur if
you request a character column to be fetched into an integer and
the column includes characters that aren’t numbers.

BADSQLDA SQLDA is invalid This is an internal error. Turn on Vortex API logging, repeat the
steps that caused the error, and then call Synergy/DE Developer
Support. (For information on Vortex API logging, see “Vortex API
logging” on page 5-6.)

BLOBCOL Invalid BLOB column ID The column specified in the SELECT command is not a large
binary object (BLOB) column. Check your SQL statement.

BLOBFILE BLOB file operation
operation_name failed

For an RDBMS that keeps large binary object (BLOB) data in
external files, various file operations could fail. Make sure the
process owner has write permissions to the directory.

BLOBLEN BLOB length mismatch This is an internal error. Turn on Vortex API logging, repeat the
steps that caused the error, and then call Synergy/DE Developer
Support. (For information on Vortex API logging, see “Vortex API
logging” on page 5-6.)

BLOBPROC Cannot return BLOB data
via a stored procedure

To return binary large object (BLOB) or character large object
(CLOB) data, use BLOB/CLOB-specific functions. Some
relational databases cannot return BLOB or CLOB data through
stored procedure calls.

DLLENTRY Could not find DB
driver entry point
entry_point_name
(handle: handle_name)

The loaded DLL or shared library does not contain the expected
entry point. Typically, this happens when the wrong DLL has been
loaded and occurs only on machines that support DLLs. Verify
that none of the vtx* DLLs or VTX* shared objects have been
overwritten by other DLLs and that there are no other DLLs in the
path with the same name. Finally, make sure that any resources
that the DLL needs are available. You can determine which
resources are required for a shared library on most UNIX systems
with the ldd command. (You must use third-party tools to do this
on Windows systems.)

Error Logging and Messages
Error Messages

5-16 SQL Connection Reference Manual 10.1 (6/13)

DLLLOAD Could not load DLL_name
(errno: error_number)

Could not load a needed DLL or shared library. The DLL or
shared library may be missing, it may be invalid (incorrectly
named or an incorrect version), its file specification may be
missing from PATH (on Windows) or from the library path (on
UNIX), or the listed DLL or shared library may not be able to
access third-party DLLs or shared libraries it needs. See
“Troubleshooting DLLLOAD Errors” on page 5-25 for more
information.

DRVCMDI Expected an integer
parameter

The %SSC_CMD function expects the command line’s first token
to be an integer. Correct your code.

DRVCMDP Invalid parameter A parameter to the %SSC_CMD function is invalid. Correct your
code.

DRVCONF Driver not configured This is an internal error that typically indicates that the database
driver process (VTX0_10, for example) terminated abnormally.
Turn on Vortex host logging, repeat the steps that caused the
error, collect any relevant information from the Windows event log
(if you’re on Windows), and call Synergy/DE Developer Support.
(For information on Vortex host logging, see “Vortex host logging”
on page 5-8.)

DRVMULTI Driver must be specified
when multiple are present

On Windows and UNIX systems, you must specify the driver
names when more than one driver is linked. (If only one driver is
present, the driver name is optional.) Additionally, for ISAM
access, the connect string must contain “sdms:”. For example:
genesis:public//sdms:passport

See “Building Connect Strings” on page 2-16 for more
information.

DRVNOTF Driver driver_name not
found

The connect string specifies a driver that your installation of SQL
Connection is not built to support. Make sure the driver in the
connect string is correct.

FETCURCLO Attempting a FETCH from
a closed cursor,
cursor_name

The cursor used for the FETCH has previously been closed.
Check your program logic to make sure it doesn’t use a cursor
that’s been closed.

FLIPOVER Flip buffer overflow This error occurs if too many parameters are specified. The
current limit is approximately 250 parameters. Note that multiple
dimensions are not included in this limit.

Vortex API Error Messages (Continued)

Mnemonic Error text Explanation

Error Logging and Messages
Error Messages

SQL Connection Reference Manual 10.1 (6/13) 5-17

INVCUR Invalid cursor The cursor has not been initialized. Set the cursor to -1 before the
first call, and do not modify it after subsequent calls.

INVCURPOS Invalid cursor for
positioned EXEC

The cursor must be a valid cursor from a previous %SSC_OPEN
call.

INVDATE Invalid date/time The format of the date or time data is invalid. Format the date or
time correctly. See “Converting dates and times” on page 2-40 for
information on formatting dates.

INVDRVVER DB version mismatch
(expected: driver_name,
found version_number)

The version of the database driver is not at the same level as the
SQL OpenNet runtime library. This error is most common when
SQL OpenNet client/server is being used, but can also occur if an
older driver has been linked with a newer runtime library. Make
sure the client and the server are running the same version of
SQL Connection.

INVNUM Invalid (internal) number The data being converted is invalid. Call Synergy/DE Developer
Support.

INVUPD Invalid UPDATE statement Invalid UPDATE statement for binary large object (BLOB)
processing. This is a Sybase-specific error. Verify the syntax of
the UPDATE statement.

MANYBIND Too many bind(host)
variables

There are too many bind variables specified for a particular stored
procedure or prepared statement. Make sure the number of bind
variables matches the number of bind variable positions in the
statement.

MANYCCUR Too many concurrently
open cursors (cursor
name: cursor number)

There are too many cursors open. Either allocate more cursors
with %SSC_INIT or close cursors you don’t need.

MANYCOLS Too many columns
(number) returned by query

The query returns more columns than the database channel has
been set to accept. Either modify the query to return fewer
columns, or use the maxcol argument for %SSC_INIT to increase
the number of columns that a query can return. The default
maximum is 254 columns. See %SSC_INIT on page 3-35 for
more information.

MANYLCUR Too many logical cursors Too many logical cursors have been requested. Use %SSC_INIT
to allocate more.

Vortex API Error Messages (Continued)

Mnemonic Error text Explanation

Error Logging and Messages
Error Messages

5-18 SQL Connection Reference Manual 10.1 (6/13)

NOCONN Not connected A connect must be performed before any other operation.

NODRV No DB driver linked When generated for an %SSC_CONNECT call, check the
connect string. This error indicates that the database driver
specified in the connect string is not available. When generated
for a call to any other function, this error indicates that there has
been an attempt to reuse a channel that has been released with
%SSC_RELEASE, so check your code.

NOMEM Out of memory This is a fatal error. Either there is no more heap memory
available (which is rare), or the heaps have been corrupted. Notify
your system administrator.

n/a Null password given: logon
denied

Encryption is set incorrectly on the client or the server, or the
net.ini file cannot be found. Check the encryption settings and
make sure VORTEX_HOME is set to the correct directory. See
“Using network initialization files to set network defaults” on
page 1-7.

ORAOOPT oopt() requires two integer
parameters

Oracle’s oopt() function requires two integer parameters. See
Oracle’s OCI documentation for information.

POSBROW Position EXEC requires a
‘for browse’ cursor

A positioned EXECute (UPDATE or DELETE) requires a
previously opened and positioned cursor. Open the cursor in FOR
BROWSE mode. This error occurs only in SQL Server and
Sybase.

POSEXEC Position EXEC requires an
open cursor

A positioned EXECute (UPDATE or DELETE) requires a
previously opened and positioned cursor. Verify your program
logic.

UNDESDTY Unknown DESCRIBEd
data type (name
type_value)

The data type of a described data type is unknown. This may
occur if a relational database introduces a new data type while an
older database-specific library is being used. Call Synergy/DE
Developer Support.

UNSUPFNC Unsupported function
(function_name:
function_number)

An unsupported database driver function has been encountered.
In most cases, this is the result of a call to a routine or operation
that is not supported by your version of the driver or database.
Call Synergy/DE Developer Support.

Vortex API Error Messages (Continued)

Mnemonic Error text Explanation

Error Logging and Messages
Error Messages

SQL Connection Reference Manual 10.1 (6/13) 5-19

SQL OpenNet error messages
The %SSC_GETEMSG function returns the following SQL OpenNet error messages. Errors apply
only to clients in client/server configurations.

SQL OpenNet Error Messages

Mnemonic Error text Explanation

AUTHBAD Invalid authentication
syntax

The connect string syntax in invalid. Make sure the
([domain/]uid/pwd) part of the network string follows the host
name. Note that this user ID and password are for the host
machine, not the database. See “Network string
(opennet_info) syntax” on page 2-19 for more information.

n/a Authentication failed User and password authentication failed on the server. If
you’re using a Windows server, make sure the user has “log
on as batch job” privileges on the server. In addition, make
sure the user and password are correct in the connect string
and encryption is set to the same value on both the client and
the server.

AUTHFAIL Authentication on service
failed

You are not authorized to use the requested host service.
Make sure the ([domain\]uid/pwd) part of the network string
is correct or contact your system administrator. Note that this
user ID and password are for the host machine, not the
database. See “Network string (opennet_info) syntax” on
page 2-19 for more information.

AUTHREQ Host host_name requires
authentication

The host you are connecting to requires additional
authentication. If the -a option is set for vtxnetd or vtxnet2,
the connect string must include a username and password for
an account on the machine or an account for a domain that
the machine is part of (in addition to any database log-in
information). If you’ve done this, make sure the username and
password are correct. See “Network string (opennet_info)
syntax” on page 2-19 for more information.

BADINI ‘net.ini’ file is either missing
or invalid

The net.ini file is either missing or invalid. Make sure there’s
a net.ini file on the client and that it’s valid.

Error Logging and Messages
Error Messages

5-20 SQL Connection Reference Manual 10.1 (6/13)

CONFIG Expected a CONFIG call This is an internal error that typically indicates that the
database driver process (VTX0_10, for example) terminated
abnormally. Collect any relevant information from the event
log (Windows), syslog (UNIX), or the operator console
(OpenVMS), and then call Synergy/DE Developer Support.
You may be asked to use Vortex host logging and/or Synergy
DBMS logging to assist. For information, see “Vortex host
logging” on page 5-8 and “Synergy DBMS logging (Synergy
database driver only)” on page 5-9.

Connect:errno: See “Socket errors” on page 5-23.

DLLENTRY Could not find DB driver
entry point

The loaded DLL does not contain the expected entry point.
Typically this happens when the wrong DLL has been loaded
and occurs only on machines that support DLLs. Call
Synergy/DE Developer Support.

DLLLOAD Could not load DLL A needed DLL or shared library could not be loaded. The DLL
or shared library may be missing, it may be invalid (incorrectly
named or an incorrect version), its file specification may be
missing from PATH (on Windows) or from the library path (on
UNIX), or the listed DLL or shared library may not be able to
access third-party DLLs or shared libraries it needs. See
“Troubleshooting DLLLOAD Errors” on page 5-25 for more
information.

DLLSAFE Loaded DLL is not thread
safe

The loaded DLL is not thread safe. (Not all database drivers
are.) To avoid this error, run the single-threaded daemon,
vtxnet2.exe.

SQL OpenNet Error Messages (Continued)

Mnemonic Error text Explanation

Error Logging and Messages
Error Messages

SQL Connection Reference Manual 10.1 (6/13) 5-21

EXECFAIL Exec program_name failed
on host host_name
errno=nnn

The service (program_name) specified in the network
connection string could not be started. This will occur if the
service could not be found, does not have the correct
permissions, or is not listed as a valid service.
 Make sure the service exists, is listed as a valid service,

and that you are connecting with the correct user name
and password.

 Use vtxnetd/vtxnet2 logging and check the tcm_pid.log
file. See “The vtxnetd and vtxnet2 Programs” in the
Configuring Connectivity Series” chapter of the Installation
Configuration Guide for information.

 Check your operating system documentation for
information on the error number (nnn).

HOSTNOTFOUND Host host_name not found The network does not recognize host_name as a server
name. Contact your network administrator or try using ping,
vtxping, or synxfpng (with -x option) to check for the server.
Make sure the spelling of host_name is correct.

n/a Invalid integer The number specified for the encryption key is invalid or the
net.ini file is corrupt. Verify that the key is set to an integer
value in the correct range, and make sure the net.ini file has
no control characters.

n/a Invalid connect string
syntax
(uid/pwd/datasource)

The syntax of the connect string is invalid or there’s a problem
with encryption. Verify the syntax of the connect string and
make sure both client and server are running versions of
Connectivity Series that support encryption (version 8.1 and
later). In addition, make sure the encryption setting in net.ini
(on the client) matches the encryption setting on the server
(set with the vtxnetd/vtxnet2 -k option).

INVHOSTSYN Invalid host/service name
syntax

The syntax for the host or service name is invalid. For
information on connect string syntax, see “Building Connect
Strings” on page 2-16.

SQL OpenNet Error Messages (Continued)

Mnemonic Error text Explanation

Error Logging and Messages
Error Messages

5-22 SQL Connection Reference Manual 10.1 (6/13)

INVVER NET version mismatch
(host: host_ver, client:
client_ver)

The version of SQL OpenNet on the server is different than
the version on the client. For example, because 1000352 is
the number for 8.1 versions of SQL OpenNet, and 1000400 is
the number for version 8.3 and higher, the following message
indicates that a client with version 8.3 or higher is attempting
to access a version 8.1 SQL OpenNet server:

NET version mismatch (host: 1000352, client:
1000400)

Make sure both client and server use the same version of
Connectivity Series.

KEEPALIVE Setting SO_KEEPALIVE
failed

This indicates that the socket option KEEPALIVE failed or
was not set. Call Synergy/DE Developer Support.

LINGER Setting SO_LINGER failed This indicates that the socket option LINGER failed or was not
set. Call Synergy/DE Developer Support.

NOINTR Host cannot be interrupted Your program requested an %SSC_CANCEL operation, but
the host you are trying to cancel cannot handle interrupts.
Modify your program so that it doesn’t call the cancel
operation.

NOMEM Out of memory This is a fatal error. Either there is no more heap memory
available (which is rare), or the heaps have been corrupted.
Notify your system administrator.

Recv:errno See “Socket errors” on page 5-23.

SERVNOTFOUND Service/Protocol name not
found

The service or protocol cannot be found. Make sure the port
used for the client matches the port used for the SQL
OpenNet server.

SOCKET Socket() failed SQL Connection is unable to open a socket. The operating
system may have run out of file descriptors. Notify your
system administrator.

UNDBID Unknown Database ID An unknown database ID is specified in net.ini. Use the
syntax documented in “Setting connect string defaults and
encryption in net.ini” on page 1-7.

SQL OpenNet Error Messages (Continued)

Mnemonic Error text Explanation

Error Logging and Messages
Error Messages

SQL Connection Reference Manual 10.1 (6/13) 5-23

Socket errors
The following are the most common TCP/IP socket errors when using SQL Connection. See
“Troubleshooting Socket Errors” on page 5-27 for information.

Error text Error numbera Explanation

Connection reset by
peer

10054 (WSAECONNRESET) on
Windows
54 (ECONNRESET) on UNIX
and OpenVMS

This error indicates that a connection to the server has
been closed. For information, see “Connection reset by
peer (10054 or 54)” on page 5-27.

Connection refused 10061 (WSAECONNREFUSED)
on Windows
61 (ECONNREFUSED) on UNIX
and OpenVMS

This error indicates that the SQL Connection program
can’t make a connection to the SQL OpenNet server.
For information, see “Connection refused (10061 or 61)”
on page 5-28.

Unknown Error If this error occurs on the server and there are no errors
on the client, the SQL Connection program should
ignore it and terminate normally.
If this error occurs on the client, it indicates that although
a connection was gracefully closed by the server, the
client was not prepared for it.This is generally caused by
either a version mismatch or by network latency issues
where the final packet sent by the server is not received
before the default server socket shutdown is initiated.
This could occur, for example, if the initial connect fails
with an error. See the event log (Windows), syslog
(UNIX), or operator console (OpenVMS) for information
on the problem.

a. For UNIX and OpenVMS, 54 and 61 are common error numbers, but error numbers vary for different platforms.

Error Logging and Messages
Error Messages

5-24 SQL Connection Reference Manual 10.1 (6/13)

ODBC Driver Manager errors (Windows)
The %SSC_GETEMSG function may return the following ODBC Driver Manager error message,
which occurs only if you use the VTX11, VTX12_ODBC, or VTX12_SQLNATIVE database
drivers. This error applies to stand-alone connections and servers in client/server connections.

Error text Explanation

Connection is busy with results for
another hstmt

Most likely this is caused by an SQL Connection program that uses
client-side cursors but has multiple concurrently active result sets.
(Client-side cursors support only a single active result set.) Use server-side
cursors.

Data Source name not found and no
default driver specified

The DSN specified in the connect string doesn’t exist (check the spelling),
encryption is set incorrectly on the client or the server, or the net.ini file
cannot be found. Check the encryption settings and make sure
VORTEX_HOME is set to the correct directory. See “Using network
initialization files to set network defaults” on page 1-7.
If you are on a 64-bit Windows machine, it could be that the DSN has not
been defined by the right version of the Microsoft ODBC Administrator. For
example, if a 32-bit application is accessing a local database on a system
with both 32-bit and 64-bit Synergy/DE, the DSN must be created by the
32-bit ODBC Administrator. For more information, see “Adding a user or
system DSN” in the “Configuring Data Access” chapter of the xfODBC
User’s Guide.

Error Logging and Messages
Troubleshooting DLLLOAD Errors

SQL Connection Reference Manual 10.1 (6/13) 5-25

Troubleshooting DLLLOAD Errors
DLLLOAD errors indicate that one of the Connectivity Series components can’t load a needed
DLL or shared library. The DLL or shared library may be missing, it may be invalid (incorrectly
named or an incorrect version), its file specification may be missing from PATH (on Windows) or
from the library path (on UNIX), the listed DLL or shared library may not be able to access
third-party DLLs or shared libraries it needs, or if you’re on UNIX, the setuid (+s) bit may be set
for the Synergy runtime (dbr). DLLLOAD errors occur only on machines that support either DLLs
or shared libraries, and these errors are generally caused by a problem with the way Connectivity
Series is installed or, on UNIX, by a failure to run setsde correctly.

To troubleshoot, run the dltest utility from the command line. (The dltest utility is in the connect
directory and has no options or arguments.) This utility indicates whether needed Connectivity
Series DLLs or shared libraries can be accessed, and if you’re on UNIX, it tells you the name of the
library path environment variable (for example, SHLIB_PATH on HP-UX 32-bit or LIBPATH on
IBM AIX 32-bit). In addition, note the following:

 Make sure all of the resources that the DLL or shared library needs are available. For example,
on Windows if you get a DLLLOAD error for GDS0.DLL, it may be that Connectivity Series
can’t find one of the DLLs required by GDS0.DLL. (These include SDMS22.DLL and
VTXIPC.DLL.) If you get a DLLLOAD error for one of the Synergy database drivers, such as
vtx0_10.DLL (a driver for Oracle on Windows) or vtx12.DLL (the default driver for SQL
Server on Windows), it may be that the target database isn’t set up correctly or that DLLs for
the target database are inaccessible.

 On Windows, you can use the Dependency Walker utility (depends.exe) to determine
which resources are required for a DLL. You can download Dependency Walker from
http://www.dependencywalker.com.

 On most UNIX systems, you can use the ldd command to determine which resources are
required for a shared library.

 On UNIX, make sure the setuid (+s) bit is not set for the Synergy runtime (dbr). The setuid bit
prevents the library path environment variable from being used. This will cause DLLLOAD
errors, though it won’t affect the ability of dltest to access needed .so files.

Error Logging and Messages
Troubleshooting DLLLOAD Errors

5-26 SQL Connection Reference Manual 10.1 (6/13)

 On UNIX, if dltest can access all the needed .so files (and the setuid bit is not the problem),
there are a few possible causes:

 For SQL OpenNet, it may be that setsde isn’t run before vtxnetd attempts to implement
the SQL OpenNet server. Check the rc file and make sure setsde is run before startnet.

 For an SQL Connection client application, it may be that setsde isn’t run for the process
before the application is started. For example, if you run an SQL Connection application
from a UNIX processor, such as “cron” or “at”, be sure to run setsde from the shell script
you use to execute your program. The setsde script must be run before the SQL
Connection application.

 It may be that the target database isn’t set up correctly (in other words, that the database
equivalent of setsde hasn’t been run) or that shared libraries for the target database are
inaccessible. On most UNIX systems, you can use the ldd command to determine which
resources are required for a shared library.

For information on which Synergy shared libraries are causing the error, run dltest from the rc
file (directly before the startnet command) or from the UNIX command (“cron”, “at”, etc.)
that runs the SQL Connection client application. Remember that the problem may be that
Connectivity Series cannot access a third-party shared library needed by the shared library
listed in the error (for example, clntsh.so may be inaccessible to VTX0.so when using Oracle).

Error Logging and Messages
Troubleshooting Socket Errors

SQL Connection Reference Manual 10.1 (6/13) 5-27

Troubleshooting Socket Errors
TCP/IP socket errors have the following mnemonics:

 Connect:errno:error

 Recv:errno:error

where error is the text for the socket error.

To view socket errors, use Vortex API logging or %SSC_GETEMSG. On UNIX systems, see
/usr/include/errno.h. On Windows systems, you can find these errors in winsock.h or winsock2.h,
which are typically distributed with Microsoft’s Platform Software Development Kit (SDK). For
details on Microsoft error codes, see Microsoft documentation.

Connection reset by peer (10054 or 54)
The “Connection reset by peer” socket error, which is 10054 (WSAECONNRESET) on Windows
and generally 54 (ECONNRESET) on UNIX and OpenVMS, indicates that a connection to the
server has been closed. This could be caused by a fatal error on the server, the server stopping, a
network problem, or even a connection problem.

1. If the error has the form “connect:errorno:error”, use vtxping (or synxfpng with the -x option) to
test your ability to connect to the server. Otherwise, skip to step 2. The vtxping and synxfpng
utilities print reports to the screen. This information can be used by your network administrator to
resolve TCP/IP network socket communication problems.

 If you can connect, then the network, the server, and the Synergy/DE OpenNet Server service
(SynSQL) are working. Continue with step 2.

 If you can’t connect, make sure that the server is running, that the SynSQL service is running
on the server, and that vtxping or synxfpng is using the correct port.

For information on vtxping, see “The vtxping Utility” in the “Configuring Connectivity Series”
chapter of the Installation Configuration Guide. For information on synxfpng, see “The synxfpng
Utility” in the “Configuring xfServer” chapter of the Installation Configuration Guide.

2. Check and correct the following, which may solve the problem if it is caused by network timing
issues:

 If you’re using network licensing, make sure License Manager is configured as a network
server.

 Make sure the server was rebooted after the Connectivity Series components were installed.

 Check the system-level PATH on the server. It should include the connect directory.

 Use vtxnetd or vtxnet2 logging and check the resulting tcm_pid.log file. Then check the event
log on Windows, syslog on UNIX, or the operator console on OpenVMS. (For information on
vtxnetd and vtxnet2 logging, see “The vtxnetd and vtxnet2 Programs” in the “Configuring
Connectivity Series” chapter of the Installation Configuration Guide.)

Error Logging and Messages
Troubleshooting Socket Errors

5-28 SQL Connection Reference Manual 10.1 (6/13)

 Make sure the file(s) for the database driver you are using are in the connect directory on the
server. On Windows, there are two files: an .exe and a .dll (e.g., vtx0_10.exe and vtx0_10.dll
for Oracle). On UNIX, this is an .so file (e.g., vtx0.so). On OpenVMS, this is an .exe file (e.g.,
vtx0.exe).

 Make sure there is no more than one vtxnet2 process running on the server. If there’s more
than one, use vtxkill to kill the processes; then restart the service.

3. If you’re on Windows or UNIX, run the dltest utility to make sure Connectivity Series DLLs or
shared libraries are loading properly. (The dltest utility is a command line utility in the
synergyde\connect directory and has no options.)

4. Make sure the connect string in the client application is referencing a valid driver and database.

5. If you get this socket error again, use vtxnetd or vtxnet2 logging and check the event log on
Windows, syslog on UNIX, or the operator console on OpenVMS.

For additional troubleshooting steps for prior versions of Connectivity Series, see the Synergex
KnowledgeBase article 100001607.

Connection refused (10061 or 61)
The “Connection refused” socket error, which is 10061 (WSAECONNREFUSED) on Windows
and is generally 61 (ECONNREFUSED) on UNIX and OpenVMS, indicates that the SQL
Connection program can’t make a connection to the SQL OpenNet server. The SQL OpenNet
server may not be running, it may not use the port that’s specified in the connect string (or the
default port if you didn’t specify a port in the connect string), or the host specified in the connect
string may be incorrect.

1. Use vtxping (or synxfpng with the -x option) to test your ability to connect to the server. (For
information on vtxping, see “The vtxping Utility” in the “Configuring Connectivity Series” chapter
of the Installation Configuration Guide. For information on synxfpng, see “The synxfpng Utility”
in the “Configuring xfServer” chapter of the Installation Configuration Guide.)

The vtxping and synxfpng utilities print reports to the screen. This information can be used by
your network administrator to resolve TCP/IP network socket communication problems.

 If you can connect, then the network, the server, and the Synergy/DE OpenNet Server service
(SynSQL) are working. Continue with step 2.

 If you can’t connect, make sure that the server is running, that the SynSQL service is running
on the server, and that vtxping or synxfpng is using the correct port.

2. Make sure the port number specified in the connect string matches the port number used by the
SQL OpenNet server, which is either the default port number or the port number used when starting
vtxnetd or vtxnet2. For information on starting vtxnetd or vtxnet2, and for information on the
default port number for a server, see the “Configuring Connectivity Series” chapter of the
Installation Configuration Guide.

Error Logging and Messages
Troubleshooting Socket Errors

SQL Connection Reference Manual 10.1 (6/13) 5-29

UNIX
If you find that the SQL OpenNet server is running and the port is correct, it may be that server is
terminating when the user that started it logs out. To run the server in the background and keep it
running after you log out, use the nohup command. For example:

nohup vtxnetd &

For more information, see “Starting and stopping SQL OpenNet for SQL Connection” in the UNIX
section of the “Configuration Connectivity Series” chapter of the Installation Configuration Guide.

SQL Connection Reference Manual 10.1 (6/13) Glossary-1

Glossary

autocommit A mode in which each SQL operation results in a transaction that is
automatically committed after the statement is executed.

bind variable A host variable used for sending data values to the database.

BLOB (binary large object) Binary data that exceeds a database’s normal
maximum column size for binary data..

channel A database connection control. Each connection (log-in) is maintained
by channel ID.

client-side cursor (SQL Server concept) A cursor implemented on the client for a result
set that’s cached on the client. The firehose cursor (though it’s not a
true cursor) is the only client-side cursor for SQL Server.

CLOB (character large object) Character data that exceeds a database’s
normal maximum column size for character data.

commit A procedure that finishes a transaction and makes changes permanent.

concurrency control Methods used by relational databases to ensure that changes made to
data by one user are not overwritten with changes made concurrently
by other users. The two main types of concurrency control are
optimistic locking and pessimistic locking.

connect string A string use by SQL Connection to connect to and log onto a database.
The connect string is passed in a call to %SSC_CONNECT. If SQL
OpenNet is used for the network layer, the connect string includes a
network string (see network string).

connection A database log-in.

cursor A processed SQL statement (one that's been parsed, optimized, etc.,
by the database) and/or an associated database mechanism that
traverses a result set and maintains a position on a row in the result set.
With SQL Connection, cursors are accessed using the number
returned in the dbcursor argument for %SSC_OPEN.

See also logical cursor.

Glossary

Glossary-2 SQL Connection Reference Manual 10.1 (6/13)

defined variable A host variable used for storing data values retrieved from the
database.

direct connection A database connection that does not use SQL OpenNet. Direct
connections must be to a local database or database client. Connect
strings for direct connections start with the name or keyword of a
database driver (e.g., VTX0).

drop table To delete or remove a table from a database.

dynamic cursor (SQL Server concept) A server-side cursor that reflects all changes
made to the underlying data while the cursor is open. Dynamic cursors
are also known as sensitive cursors, and are the only cursors you can
use with SQL Server for updates and deletes. Dynamic cursors are the
default cursors for VTX12_ODBC and VTX12_SQLNATIVE.

fetch An operation that retrieves a row or a set of rows from a result set.
Cursor settings and type determine which row(s) will be fetched. For
SQL Connection, %SSC_MOVE performs fetches.

firehose cursor (SQL Server concept) Not really a cursor, but instead the
recommended mechanism when using VTX12_ODBC or
VTX12_SQLNATIVE. With a firehose cursor, data is cached on the
client and is forward-only and read-only. Firehose cursors minimize
overhead and are faster than real cursors (dynamic, static, etc.), but
they return only one row at a time, and with a firehose cursor, you can
have only one active statement for a connection (though MARS may
allow multiple active statements in some cases). No other statement
can be executed until all results have been fetched or until the
statement has been cancelled.

FOR BROWSE mode The default database locking mode. Optimistic locking is used; the
lock is advisory only. The application must check whether data has
changed before updating.

FOR UPDATE mode A data locking method that invokes the database engine’s inherent
locking method, typically a pessimistic lock. Oracle, for example, uses
pessimistic locking when a SELECT FOR UPDATE operation is
performed.

forward-only cursor A cursor that cannot be scrolled. With a forward-only cursor, the next
row fetched will be the next row in the result set. Forward-only cursors
are the only type of cursor that most databases support and are the
default when using any SQL Connection database driver except
VTX12_ODBC or VTX12_SQLNATIVE.

Glossary

SQL Connection Reference Manual 10.1 (6/13) Glossary-3

GUID A globally unique identification number used like ROWID. GUIDs
are guaranteed to be unique not only to the database, but everywhere:
no other computer in the world will generate a duplicate of a GUID
value.

host variable A Synergy DBL variable used to store database data. See defined
variable and bind variable.

insensitive cursor See static cursor.

keyset-driven cursor (SQL Server concept) A server-side cursor that reflects updates made
to rows that were part of the result set when it was established. Keyset-
driven cursors do not reflect deletes or inserts.

logical cursor An SQL Connection mechanism for caching soft-closed cursors.

network string A string that contains the information needed to connect to an SQL
OpenNet service on a machine that has either the database or a client
for the database. Network strings are part of connect strings (see
connect string).

non-positioned cursor A logical cursor that can’t be used for positioned updates, but that is
more efficient in other cases.

optimistic locking An approach to concurrency control where the database does not lock
data accessed for update or delete. Optimistic locking assumes that the
front-end application will ensure data integrity. The advantage to
optimistic locking is that it improves throughput. The disadvantage is
that a user may be able to access rows of data only to get an error
when attempting to write data to those rows because another user who
concurrently accessed the data submitted changes first.

pessimistic locking An approach to concurrency control that locks data resources for
much of the duration of a transaction. For SQL Connection (when the
correct commands are used), pessimistic locking locks rows from the
first fetch (with %SSC_MOVE) or an insert until the transaction ends
with %SSC_COMMIT, and an error is returned if another user
attempts to access locked data. The advantage to pessimistic locking is
that users are always able to submit changes to records and delete
records without the possibility that these changes will conflict with
other users’ changes. The disadvantage is that throughput may suffer.

pointer An identifier stored in a database and used by the database engine to
keep track of data locations, usually by row. Analogous to a ROWID.

Glossary

Glossary-4 SQL Connection Reference Manual 10.1 (6/13)

positioned When discussing cursors, the current processing location for the result
set. For example, if an application fetches the first two rows of a result
set, the cursor will be positioned on the third row. With some
databases, SQL Connection enables an application to move directly to
a specific position in a cursor without performing a fetch.

positioned update A change (update, insert, or delete) made to the underlying data at the
current processing location of the result set (the row where the cursor
is currently positioned). Positioned updates are invoked by a WHERE
CURRENT OF clause in the update statement or by a FOR UPDATE
OF clause in the select statement.

prefetch buffer A memory resource used for improving network performance. Data
from the database is retrieved and held in the prefetch buffer in
anticipation of a function call.

pseudo-column A relational database column that is part of a database table but is
typically invisible to the end-user. ROWID is the most common
example.

result set A dataset that contains the results of a select statement. Result set is
synonymous with rowset.

rollback A procedure that reverses any pending changes during the current
transaction, instead of committing them. Rollbacks can occur, for
instance, in the event of data locking.

row locking See optimistic locking and pessimistic locking.

row size The aggregate size of each returned row.

ROWID A pseudo-column used in relational database to uniquely identify each
row in the database. Typically this column is not retrieved during
SELECT * operations.

rowset See result set.

scrolling cursor A server-side cursor that enables you to determine which row will be
retrieved with the next fetch. Using the %SSC_CMD option,
SSQL_CMD_SCROLL, you can specify whether the next fetched row
will be the current row, the first row in the result set, the last row in the
result set, or a row at a given location in the result set (specified with
an absolute or relative value).

sensitive cursor See dynamic cursor.

Glossary

SQL Connection Reference Manual 10.1 (6/13) Glossary-5

server-side cursor (SQL Server concept) A cursor implemented on the server. Only
fetched rows are sent to the client. Server-side cursors generally offer
more functionality than client-side cursors, but they usually don’t
perform as well.

SQL OpenNet A Connectivity Series component that enables SQL Connection (and
xfODBC) to work in a client/server configuration. For more
information, see the “Configuring Connectivity Series” chapter of the
Installation Configuration Guide.

SQL OpenNet connection A database connection that uses SQL OpenNet for the network layer.
Connect strings for SQL OpenNet connections start with “net:”.

standard cursor See non-positioned cursor.

static cursor (SQL Server concept) A server-side cursor that does not reflect any
changes made to the database after the result set was established.
Static cursors are also known as insensitive cursors or snapshot
cursors.

stored procedure A pre-compiled, ready-to-execute command stored in a database and
managed as a database object. Stored procedures may limit portability.

timestamp column For SQL Server, this is analogous to the ROWID column. It uniquely
identifies each row in a relational database by issuing a datetime stamp
for the last moment data was committed in each row.

update To change data in a database. The terms “update” and “edit” are often
used interchangeably.

vtxnetd/vtxnet2 The SQL OpenNet connection manager. For more information, see the
“Configuring Connectivity Series” chapter of the Installation
Configuration Guide.

SQL Connection Reference Manual 10.1 (6/13) Index-1

Index

Numerics
64-bit Windows 1-8

A
alpha data conversion

binding 2-36
defining 2-37, 2-40, 3-14, 3-27

arrays
binding and defining 3-59
SQL Server bulk inserts with 3-15
%SSC_EXECIO requirement 3-28

authentication on host 2-16, 2-19
autocommit 2-8, 2-49, 3-9, 3-14

B
base date 4-8, 4-9
binary data conversion

binding 2-36, 2-37
defining 2-37, 2-38, 3-27

binary large column (BLOB) data
putting and getting 3-38 to 3-40
specifying for Oracle 3-9

binding 2-34 to 2-35
columns with null 2-39
data conversion for 2-36
with %SSC_BIND 3-3 to 3-4
with %SSC_OPEN 3-45
with %SSC_REBIND 3-49

bounds checking 5-3
bulk inserts

enabling for SQL Server 3-10, 3-15
example program for 2-2
program flow for 2-13

C
caching

connections 3-8, 3-11, 3-12, 3-50
cursors. See cursor caching
database 2-27, 2-49
prefetch 2-55, 3-35, 3-44, 3-46

channels
connecting to 3-19
initializing 2-6, 3-35 to 3-37
releasing 3-50 to 3-51
separate log files for, generating 5-6, 5-8

char data
conversion when binding 2-36, 2-37, 3-11, 3-15
conversion when defining 2-37, 2-38
determining if column is null 2-39

character large column (CLOB) data
putting and getting 3-38 to 3-40
specifying for Oracle 3-9

/CHECK_BOUNDS 5-3
client

commands sent to, logging 5-6 to 5-7
concurrency control for 2-44 to 2-48
encryption key for 1-8
packetsize setting on 1-8

client/server configurations 1-3 to 1-5
connect strings for 2-16, 2-19 to 2-21
SQL shared memory protocol for 2-26
troubleshooting connections in 5-2
See also Installation Configuration Guide

client-side cursors 2-30
closing cursors 2-27, 3-6, 3-54
clusters, Windows (MCSC) 2-8
columns, ordering for SQL Server 2-8
commands (database driver-specific) 3-7 to 3-16
committing transactions 3-17 to 3-18
concurrency control 2-42 to 2-48
concurrent cursors 3-45

D

Index-2 SQL Connection Reference Manual 10.1 (6/13)

connect strings 2-16 to 2-21
defaults for, setting in net.ini 1-7
string delimiters in 2-20

CONNECTDIR environment variable 2-4
connecting to a database 2-5 to 2-6, 2-16 to 2-25
connections

caching 3-8, 3-11, 3-12, 3-50
DSN-less 2-18
in program chains 3-8, 3-9, 3-11
recycling (pooling) 2-5
syntax for. See connect strings
troubleshooting 5-2

conversions
currency 2-37
cursor, implicit 2-32
data 2-36 to 2-41, 3-14

currency conversions 2-37
CURRENT OF clause and Oracle 2-46
CURRENT_TIMESTAMP clause, row locking in

MySQL and 2-45
cursor caching 2-27 to 2-30, 3-36, 3-54

example program for 2-2
%SSC_EXECUTE and 3-30
%SSC_OPEN and 3-45

cursors 2-27 to 2-32
caching. See cursor caching
closing 2-27, 3-6, 3-54
database 2-27
dynamic (sensitive) 2-30, 2-32, 3-44
fast-forward (SQL_CO_FFO) 2-32, 3-10, 3-14
firehose (SQL Server) 2-30
forward-only 2-30, 2-31
implicit, conversions 2-32
isolation level, specifying 3-11, 3-16
keyset-driven 2-31, 2-32
logging for 5-5, 5-7
logical 2-27
multiple concurrent 3-45
non-positioned 3-46
ODBC type, setting 3-8, 3-13
opening 3-43 to 3-48
optimistic locking for SQL Server and 2-45
positioned 3-46
reusing 2-28 to 2-29, 3-43
scrolling 3-8, 3-12, 3-46
static (insensitive) 2-31, 2-32
types 2-29 to 2-32
updates, for 3-46

D
data

access conflicts 2-42
conversion 2-36 to 2-41, 3-14
fetching rows of 3-41
large binary or character (BLOB or CLOB) 3-9, 3-38

to 3-40
mapping. See binding; defining
moving 3-41, 3-42
transfer, optimizing 2-54

database channels. See channels
database cursors 2-27
database drivers 2-18 to 2-25

commands specific to 3-7 to 3-16
databases

caching for 2-27, 2-49
connecting to 2-5 to 2-6, 2-16 to 2-25
default name for (Sybase, SQL Server) 3-11, 3-16
disconnecting from 2-6, 3-50 to 3-51
drivers for. See database drivers
error codes for, mapping 4-6
error messages, getting 4-4 to 4-5
portability between 2-7
system IDs for 4-2
systems supported 2-18

date conversions 2-37
date/time

base date 4-8, 4-9
conversions 2-37, 2-40 to 2-41, 3-14
formats 4-8 to 4-11

DBKEY and row locking in Oracle Rdb 2-47
DBLOPT and system option 48 1-6
decimal conversions 2-36
default result set for SQL Server 2-30
defaults

base date 4-8, 4-9
connect strings, for 1-7
cursor 2-30
database names for new cursors 3-16
date/time format mask 4-8
port number 2-21
prefetch buffer size 2-55
SQL OpenNet, for 1-7 to 1-10

defining (data mapping) 2-33, 2-39, 3-21 to 3-22
data conversion for 2-37

depends.exe (Dependency Walker) 5-25
describing SQL statements 3-23
disconnecting from a database 2-6, 3-50 to 3-51

E

SQL Connection Reference Manual 10.1 (6/13) Index-3

DLLLOAD errors, troubleshooting 5-25 to 5-26
dltest, troubleshooting with 5-2, 5-25
double data conversion 2-37
drivers. See database drivers
DSN-less connections (SQL Server) 2-18

shared memory protocol and 2-26
DSNs

connect string syntax and 2-18, 2-24
SQL OpenNet and 2-17 to 2-21
SQL Server shared memory protocol and 2-26
VTX11 and 2-23

dynamic cursors 2-30, 2-32, 3-44

E
encryption key, setting in net.ini 1-8
environment variables 1-7 to 1-10

CONNECTDIR 2-4
DBLOPT 1-6
SQLJUSTINTIME 5-5
SSQLLOG 5-5
VORTEX_API_LOGFILE 5-6
VORTEX_API_LOGOPTS 5-6
VORTEX_HOME 1-8
VORTEX_HOST_HIDEGPF 1-7
VORTEX_HOST_LOGFILE 5-8
VORTEX_HOST_LOGOPTS 5-8
VORTEX_HOST_NOSEM 1-7
VORTEX_HOST_SYSLOG 5-3

error codes 1-9, 4-6
error messages 5-10 to 5-24

DLLLOAD errors 5-25 to 5-26
getting 4-4 to 4-5
logging 5-2 to 5-9
ODBC Driver Manager 5-24
socket 5-23, 5-27 to 5-29
SQL OpenNet 5-19 to 5-22
Synergy runtime 5-10 to 5-14
Vortex API 5-15 to 5-18

exam_* example programs 2-2
executing 2-7

non-SELECT statements 3-26 to 3-28, 3-29 to 3-32
SELECT statements 3-41
stored procedures 2-52

F
fast-forward (SQL_CO_FFO) cursors 2-32, 3-10, 3-14
fetching rows 3-41
firehose cursor (SQL Server) 2-30
float conversions 2-37
FOR UPDATE clauses, row locking and 2-43, 2-46
formats, date/time 4-8 to 4-11
forward-only cursors 2-30, 2-31
function call flow 2-9 to 2-15

G
getting

database error messages 4-4
database IDs 4-2
date and time options 4-8
large binary or character columns (BLOB or

CLOB) 3-38 to 3-40

H
hard closing cursors 2-27, 3-6
host variables

mapping. See binding; defining
non-SELECT statements, defining for 3-3
rebinding 3-49
SELECT statements, defining for 3-21, 3-23
stored procedures, defining for 3-26

host, authentication on 2-16, 2-19

I
IDs for databases 4-2
implicit cursor conversions 2-32
implied decimal conversion 2-36
including ssql.def 2-4
indicator variables, retrieving 3-33
indices, ordering for SQL Server 2-8
Informix

client-side concurrency for 2-47
connect string syntax for 2-18
database system ID 4-3

INIT statements and String variables 3-22
%INIT_SSQL function 3-2
initialization files 1-7 to 1-10
initialization options, setting 1-6

K

Index-4 SQL Connection Reference Manual 10.1 (6/13)

initializing
database channels 3-35 to 3-37
SQL Connection 2-5, 3-2
system option 48 and 1-6

insensitive cursors 2-31, 2-32
inserts, bulk. See bulk inserts
integer conversions 2-36, 2-37
intrinsic functions 1-2
isolation level for ODBC cursors 3-11, 3-16

K
key for encryption, setting 1-8
keyset-driven cursors 2-31, 2-32

L
ldd UNIX command, troubleshooting with 5-25
linking

on OpenVMS 2-3
SQL statements to open cursors 3-56 to 3-57

locking 2-42 to 2-48
“Log on as a batch job option“ 2-20
logging 5-2 to 5-9
logical cursors 2-27
logicals. See environment variables

M
mapping

data 2-33 to 2-35
database error codes 4-6

MARS (multiple active result sets) 2-24, 2-25
moving data 3-41, 3-42
multi-row moves 3-41
MySQL 1-2

connect string syntax for 2-18
database system ID for 4-3
example programs 2-2
optimistic locking and 2-45

N
.NET 1-2

cursors and 2-28
database connections and 2-5
%SSC_DEFINE and String 3-22
%SSC_EXECIO and String 3-28

net_base.ini file 1-8

net.ini file 1-7 to 1-9
network initialization files 1-7 to 1-10
network performance, improving 2-55
network string, options for 1-8
NEWID() function and row locking in SQL Server 2-46
“No cursor” warnings 3-45
non-positioned cursors 3-46
non-SELECT statements

cursors for 2-4, 3-43
defining variables for 3-3 to 3-4
executing 3-26 to 3-28, 3-29 to 3-32
processing 2-7
stored procedures and 3-26
See also SQL statements

null
binding and defining 2-36, 2-37, 2-39
%SSC_INDICATOR and 3-33
Sybase VARCHAR data field and 3-10

number column conversions 2-37
numeric conversions 2-37
numeric database columns, converting to 2-41

O
OCI_*_SYNTAX options 3-13
ODBC

binding variables 2-35
connection issues 2-23
cursor isolation level, specifying 3-11, 3-16
cursor type, setting 3-8, 3-13
database drivers for. See VTX11; VTX12_ODBC;

VTX12_SQLNATIVE
database system ID 4-3

ODBC Driver Manager errors 5-24
OLE DB, database system ID for 4-3
OLTP (online transaction processing) 2-54
opening cursors 3-43 to 3-48
opennet.srv file 1-7, 1-10
operating system error codes, returning 1-9
operations, using single process for 3-9, 3-14
optimistic locking 2-42, 2-44
optimization 2-54 to 2-56

pessimistic locking, for 2-44
verifying with Vortex logging 5-7, 5-8

%OPTION and system option 48 1-6

P

SQL Connection Reference Manual 10.1 (6/13) Index-5

options
database-specific 3-7 to 3-16
date and time 4-8 to 4-11
encryption 1-8
error code 1-9
initialization 1-6, 2-5
logging 5-2 to 5-9
network packet size 1-8
system option 48 1-6
time-out 1-9, 3-15
See also environment variables; SSQL_ entries

Oracle 1-2
binding variables 2-35
BLOB or CLOB data, using with 3-9
character conversions, specifying type for 3-11, 3-15
client-side concurrency for 2-46
connection issues 2-22
database drivers for. See VTX0; VTX0_9; VTX0_10
database system ID 4-2
examples 2-2
packages and subprograms 2-53
parser version, specifying 3-9, 3-13
Rdb. See Rdb (Oracle)

oraenv script (Oracle) 2-22

P
packages 2-53
packetsize setting 1-8
parser version for Oracle, specifying 3-9, 3-13
passwords

encrypting 1-8
for host machine, specifying 2-19

performance. See optimization
pessimistic locking 2-42, 2-44
PL/SQL 2-52
pooling connections 2-5
port number, setting 2-21

in connect string 2-19
in net.ini 1-9
in opennet.srv 1-10

positioned cursors 3-46
positioned update mode 2-44, 2-55
prefetch caching 2-55, 3-35, 3-44, 3-46
printmsg.dbl 4-5
process, using one for operations 3-9, 3-14

processing SQL statements 2-7
program chains, connections in 3-9
programs. See SQL Connection programs
putting large binary or character columns (BLOB or

CLOB) 3-38 to 3-40

Q
-qcheck 5-3
queries

optimizing 2-56
submitting with %SSC_OPEN 3-43 to 3-48

query plans, using for optimization 2-56

R
Rdb (Oracle)

client-side concurrency for 2-47
connect string syntax for 2-18
database system ID 4-2

read operations, setting time-outs for 1-9
rebinding host variables 3-49
recycling connections 2-5
releasing database channels 3-50 to 3-51
return_errno setting 1-9
reusing cursors 2-28 to 2-29, 3-43
rolling back transactions 3-52
row IDs

optimistic locking and 2-44 to 2-48
returning for SQL statements 3-10, 3-14

row locking 2-42 to 2-48
invoking 2-43
transactions and 2-50

ROWID 2-44 to 2-48
ROWLOCK hint 2-43
rows, fetching 3-41
rowversion columns (SQL Server) 2-45
runtime errors 5-10 to 5-14

S
SCN (Oracle) and row locking 2-46
scrolling cursors 3-8, 3-12, 3-46
SELECT statements

cursors for 2-3, 3-43
defining variables for 3-21 to 3-22
describing 3-23
processing 2-7
row updating and 3-56
See also SQL statements

S

Index-6 SQL Connection Reference Manual 10.1 (6/13)

sensitive (dynamic) cursors 2-30, 2-32, 3-44
server, authentication on 2-19
setting

connect string defaults 1-7
cursor type 2-31 to 2-32
environment variables 1-7 to 1-10
port number 1-9, 2-21
shared memory protocol (SQL Server) 2-26
See also options

setuid bit, making sure it’s not set 5-25
shared memory protocol (SQL Server) 2-26
socket errors 5-23, 5-27 to 5-29
soft closing cursors 2-27, 3-54
SQL Connection programs 2-2 to 2-56

basic structure 2-3
call flow 2-9 to 2-15
linking on OpenVMS 2-3

SQL OpenNet 1-4
errors 5-19 to 5-22
options 1-7
string delimiters 2-20
syntax for connections 2-16 to 2-21
troubleshooting 5-2

SQL Server 1-2
authentication setting 5-2
bulk inserts, enabling for 3-10, 3-15
client-side concurrency and 2-45
connect string syntax for 2-18
connection issues 2-23 to 2-25
database drivers for. See VTX12_ODBC;

VTX12_SQLNATIVE
database system ID for 4-3
default database name, specifying 3-11, 3-16
default result set (firehose cursor) 2-30
DSN-less connections 2-18
DSNs and. See DSNs
examples 2-2
GUIDs and 2-46
ordering of columns, indices 2-8
rowversion columns and 2-45
shared memory protocol 2-26
stored procedures and 2-53
windows clusters and 2-8

SQL statements
cancelling execution of 3-5
describing 3-23
linking 3-56 to 3-57

non-SELECT. See non-SELECT statements
processing 2-7
SELECT. See SELECT statements

SQL_Latin1_General_CP1_CI_AS collation
sequences 2-8

SQLJUSTINTIME environment variable 5-5
sqlserver (keyword) 2-18
%SSC_BIND function 3-3 to 3-4
%SSC_CANCEL function 3-5
%SSC_CLOSE function 2-27, 3-6
%SSC_CMD function 3-7 to 3-16
%SSC_COMMIT function 3-17 to 3-18
%SSC_CONNECT function 3-19
%SSC_DEFINE function 3-21 to 3-22, 3-23
%SSC_DESCSQL function 3-23
%SSC_EXECIO function 2-7, 3-26 to 3-28
%SSC_EXECUTE function 2-7, 2-55, 3-29 to 3-32

cursor caching and 3-30
%SSC_GETDBID function 4-2
%SSC_GETEMSG function 4-4 to 4-5, 5-3
%SSC_INDICATOR function 2-39, 3-33
%SSC_INIT function 3-35 to 3-37
%SSC_LARGECOL function 3-38 to 3-40
%SSC_MAPMSG function 4-6
%SSC_MOVE function 2-7, 2-55, 3-41
%SSC_OPEN function 3-43 to 3-48

cursor caching and 3-45
%SSC_OPTION function 4-8
%SSC_REBIND function 3-49
%SSC_RELEASE function 3-50 to 3-51

connection caching 3-8, 3-11, 3-12
%SSC_ROLLBACK function 3-52
%SSC_SCLOSE function 2-27, 3-54
%SSC_SQLLINK function 2-55, 3-56 to 3-57
%SSC_STRDEF function 3-58
SSQL_CACHE_CHAIN option 3-8, 3-11, 3-50
SSQL_CACHE_CONNECTION option 3-8, 3-12, 3-50
SSQL_CMD_SCROLL option 3-8, 3-12
SSQL_CURSOR_ options 3-8, 3-13
SSQL_DID_ database IDs 4-2
SSQL_EXBINARY option 3-27
SSQL_FAILURE. See entries for specific functions
SSQL_FORUPDATE option 3-44, 3-46, 3-47
SSQL_GETOPT option 4-8
SSQL_INOUT option 3-27
SSQL_INPUT option 3-27
SSQL_KEEP_OPEN option 3-9, 3-50
SSQL_LANGVER option 3-9, 3-13

T

SQL Connection Reference Manual 10.1 (6/13) Index-7

SSQL_LARGECOL option 3-29, 3-44, 3-47
SSQL_LARGEGET option 3-38
SSQL_LARGEPUT option 3-38
SSQL_NEW_BLOBS option 3-9
SSQL_NOMORE option 3-41
SSQL_NONSEL statement type 2-4, 3-43
SSQL_NORMAL. See entries for specific functions
SSQL_ODBC_AUTOCOMMIT option 3-9, 3-14
SSQL_OLD_ZONEDDATE option 3-9, 3-14
SSQL_ONECOL option 2-55, 3-44, 3-47
SSQL_ONEPID option 3-9, 3-14
SSQL_OUTDATE option 3-27
SSQL_OUTPUT option 3-27
SSQL_POSITION option 2-55, 3-29, 3-44, 3-47
SSQL_RAWDATE option 3-10, 3-14
SSQL_RETURN_ROWID option 3-10, 3-14
SSQL_RO_CURSOR option 3-10, 3-14
SSQL_SCROLL option 3-44, 3-47
SSQL_SCROLL_ options 3-12, 3-44, 3-47
SSQL_SELECT statement type 2-3, 3-43
SSQL_SETOPT option 4-8
SSQL_SQL_BULK_INSERT option 3-10, 3-15
SSQL_STANDARD option 3-29, 3-44, 3-46, 3-47
SSQL_SYB_BLANK option 3-10, 3-15
SSQL_TIMEOUT option 3-10, 3-15
SSQL_TRIMCHAR option 3-11, 3-15
SSQL_TXN_ options 3-11, 3-16
SSQL_TXOFF option 3-17, 3-52
SSQL_TXON option 3-17, 3-52
SSQL_USEDB option 3-11, 3-16
ssql.def file 2-4, 3-7
ssqlerr.log file 5-5
SSQLLOG environment variable 5-5
ssqlrtl.opt file (OpenVMS) 2-3
ssqlx.log file 5-5
stand-alone configurations 1-3 to 1-5
standard cursors 3-46
starting transactions 3-17 to 3-18
startnet file (and STARTNET.COM) 1-7, 1-10
static cursors 2-31, 2-32
stored procedures 2-51 to 2-53

function call flow 2-15
transactions and 2-15

stp_* example programs 2-2
String data type. See System.String
string delimiters for connect strings 2-20

structures, defining 3-58
subprograms. See stored procedures
Sybase

connect string syntax 2-18
database system ID 4-2
default database name, specifying 3-11, 3-16
stored procedures and 2-53
VARCHAR, returning instead of null 3-10, 3-15

Synergy Database 1-2
connect string syntax for 2-18
database system ID 4-2

Synergy DBMS logging 5-9
Synergy .NET. See .NET
Synergy runtime errors 5-10 to 5-14
synxfpng, troubleshooting with 5-2
system option 48 1-6
System.String

conversions 2-36, 2-37, 3-28
%SSC_DEFINE and 3-22
%SSC_EXECIO and 3-28

T
tables, creating 2-54
TCP/IP socket errors 5-23, 5-27 to 5-29
tempdb database 2-31
temporary database 2-31
time columns 2-38
time-outs, setting 1-9, 3-10, 3-15
times. See date/time
timestamp columns 2-45

conversions 2-38
Transact SQL (T-SQL) 2-53
transactions 2-49 to 2-50

committing 3-17 to 3-18
differences between databases 2-8
OLTP 2-54
reusing cursors and 2-29
rollback 3-52
row locking and 2-42 to 2-44, 2-50
single process for 3-9
%SSC_RELEASE and 3-50
starting 3-17 to 3-18
stored procedures and 2-15

troubleshooting 5-2, 5-25
truncation 2-36, 2-38

U

Index-8 SQL Connection Reference Manual 10.1 (6/13)

U
updates 2-42 to 2-48

bulk. See bulk inserts
conflicting 2-42
opening cursors for 3-46

UPDLOCK hint 2-43, 2-50
user names

encrypting 1-8
for host machines, specifying 2-19

utility functions 1-2

V
varchar

character conversions on Oracle, used for 3-11, 3-15
conversion 2-38
returning instead of null on Sybase 3-10, 3-15

variables
determining number for %SSC_DEFINE 3-23
environment. See environment variables
host. See host variables
indicator 3-33
mapping. See binding; defining

Vortex API
errors 5-15 to 5-18
logging 5-6 to 5-7

Vortex host logging 5-8
Vortex initialization files 1-7 to 1-10
VORTEX_API_LOGFILE environment variable 5-6
VORTEX_API_LOGOPTS environment variable 5-6
VORTEX_HOME environment variable 1-8
VORTEX_HOST_HIDEGPF environment variable 1-7
VORTEX_HOST_LOGFILE environment variable 5-8
VORTEX_HOST_LOGOPTS environment variable 5-8
VORTEX_HOST_NOSEM environment variable 1-7
VORTEX_HOST_SYSLOG environment variable 5-3
VTX0 database driver 2-18, 2-22
VTX0_9 database driver 2-18
VTX0_10 database driver 2-18
VTX0_11 database driver 2-18
VTX1 database driver 2-18
VTX4 database driver 2-18
VTX5 database driver 2-18
VTX11 database driver 2-18, 2-23

binding variables 2-35
cursor type, optimal 2-55

VTX12_ODBC database driver 2-23 to 2-24
binding variables 2-35
connect strings and 2-18
cursor type, optimal 2-55
cursors and 2-32
row locking and 2-43

VTX12_SQLNATIVE database driver 2-23 to 2-24
binding variables 2-35
connect strings and 2-18
cursor type, optimal 2-55
cursors and 2-32
row locking and 2-43

VTX14 database driver 2-18
vtxnet2 and vtxnetd

authentication option for 1-8, 2-20
encryption setting for 1-8
“Log on as a batch job” option (vtxnet2) 2-20
log option for 5-2

vtxping, troubleshooting with 5-2

W
WHERE clauses, optimizing 2-56
Windows 64-bit 1-8
Windows authentication (SQL Server) 5-2
Windows clusters (MCSC) 2-8
write operations, setting time-outs for 1-9

	SQL Connection Reference Manual
	Contents
	Preface
	1 Welcome to SQL Connection
	What Is SQL Connection?
	Features and supported databases
	Components and configurations

	Installing, Configuring, and Initializing
	Setting Options and Environment Variables
	Using network initialization files to set network defaults

	2 Creating SQL Connection Programs
	Writing an SQL Connection Program
	Basic program structure
	Including ssql.def
	Allocating a data area
	Initializing SQL Connection
	Database connections
	Using cursors
	Defining variables and binding data areas
	Processing SQL statements
	Using your program with different drivers and databases

	Function Call Flow
	Building Connect Strings
	Network string (opennet_info) syntax
	Driver and database_info notes and examples
	Using the SQL Server shared memory protocol

	Cursors
	Closing cursors
	Reusing cursors
	Cursor types
	Specifying a cursor type

	Data Mapping
	Defining variables
	Binding data

	Data Conversion
	Using %SSC_INDICATOR when updating a column with null
	Converting dates and times
	Numeric database columns

	Updates and Locking
	Row locking
	Optimistic locking and unique row identifiers

	Transactions and Autocommit
	Row locking and transactions

	Stored Procedures
	Invoking stored procedures
	Notes on Oracle stored procedures
	Notes on SQL Server stored procedures

	Optimization

	3 Database Functions
	%INIT_SSQL – Initialize SQL Connection
	%SSC_BIND – Bind host variables for non-SELECT statement
	%SSC_CANCEL – Cancel outstanding requests
	%SSC_CLOSE – Hard close one or more open cursors
	%SSC_CMD – Set database-specific options
	%SSC_COMMIT – Start or commit a transaction
	%SSC_CONNECT – Connect to a database channel
	%SSC_DEFINE – Define host variables for the SELECT statement
	%SSC_DESCSQL – Describe an SQL statement
	%SSC_EXECIO – Execute a stored procedure with I/O parameters
	%SSC_EXECUTE – Execute a non-SELECT statement (no I/O parameters)
	%SSC_INDICATOR – Retrieve indicator variables
	%SSC_INIT – Initialize a database channel
	%SSC_LARGECOL – Get or put a large binary or char column
	%SSC_MOVE – Fetch rows of data
	%SSC_OPEN – Open a cursor
	%SSC_REBIND – Rebind host variables for a new query
	%SSC_RELEASE – Release a database channel
	%SSC_ROLLBACK – Roll back a transaction
	%SSC_SCLOSE – Soft close one or more open cursors
	%SSC_SQLLINK – Link a non-SELECT statement to cursor for a SELECT statement
	%SSC_STRDEF – Define a structure

	4 Utility Functions
	%SSC_GETDBID – Get database ID
	%SSC_GETEMSG – Get database error message
	%SSC_MAPMSG – Map a database-specific error code
	%SSC_OPTION – Set or get date and time options

	5 Error Logging and Messages
	Troubleshooting and Error Logging
	Once you can connect…

	Error Messages
	Synergy runtime error messages
	Vortex API error messages
	SQL OpenNet error messages
	Socket errors
	ODBC Driver Manager errors (Windows)

	Troubleshooting DLLLOAD Errors
	Troubleshooting Socket Errors
	Connection reset by peer (10054 or 54)
	Connection refused (10061 or 61)

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Send us your comments

	OSWS:
	OSWN:
	OSU:
	OSV:

