
xfODBC User’s Guide

Version 10.1

Printed: June 2013

The information contained in this document is subject to change without notice and should not be construed
as a commitment by Synergex. Synergex assumes no responsibility for any errors that may appear in this
document.

The software described in this document is the proprietary property of Synergex and is protected by
copyright and trade secret. It is furnished only under license. This manual and the described software may be
used only in accordance with the terms and conditions of said license. Use of the described software without
proper licensing is illegal and subject to prosecution.

 Copyright 2000–2013 by Synergex

Synergex, Synergy, Synergy/DE, and all Synergy/DE product names are trademarks or registered trademarks
of Synergex.

ActiveX, MS-DOS, and Windows are registered trademarks of Microsoft Corporation.

All other product and company names mentioned in this document are trademarks of their respective
holders.

DCN OD-01-10.1_02

Synergex
2330 Gold Meadow Way
Gold River, CA 95670 USA

http://www.synergex.com
phone 916.635.7300
fax 916.635.6549

xfODBC User’s Guide 10.1 (6/13) iii

Contents

Preface

About this manual ix
Manual conventions ix
Other resources x
Product support information x
Synergex Professional Services Group xi
Comments and suggestions xi

Part 1: Introduction to xfODBC

1 Welcome to xfODBC

What Is xfODBC? 1-2

xfODBC components 1-3
xfODBC requirements and installation 1-8

How Third-Party Applications Use xfODBC 1-11

The Steps to ODBC Access 1-13

2 Using the Sample Database As a Tutorial

Part 2: Preparing for ODBC Access

3 Preliminary Steps

Setting Up a Repository 3-2

Handling a repository shared by multiple databases 3-7

System Catalog Generation Issues 3-12

Setting Options and File Locations 3-18

Specifying file locations 3-18
Setting catalog generation options 3-23
Setting environment variables 3-30

Contents

iv xfODBC User’s Guide 10.1 (6/13)

4 Creating a System Catalog

Generating the System Catalog 4-2

Generating a system catalog from the command line 4-3
Using DBA to generate a system catalog 4-6

Regenerating the System Catalog 4-9

Regenerating the system catalog with dbcreate 4-9
Regenerating the system catalog with DBA 4-12
Preserving views 4-13

Errors and Troubleshooting 4-14

Troubleshooting 4-14
Dbcreate error and warning messages 4-15

5 Setting Up a Connect File

Creating the Connect File 5-2

The dictsource and datasource Lines 5-3

Setting the convert_error Option 5-4

Synergy Driver Logging 5-5

6 Viewing and Customizing the System Catalog

Understanding DBA, the Customization Program 6-2

Starting DBA 6-2
DBA menus and windows 6-3
Using lists 6-5
Exiting 6-6
DBA error messages 6-7

Opening the System Catalog in DBA 6-10

Opening a system catalog from DBA 6-10
Opening a system catalog from the command line 6-11
If the system catalog won’t open... 6-11

Customizing Users and Groups 6-13

Initializing users and groups 6-13
Viewing groups 6-14
Creating a group 6-15
Modifying a group 6-16

Contents

xfODBC User’s Guide 10.1 (6/13) v

Deleting a group 6-16
Viewing users in a group 6-16
Viewing all users 6-17
Adding a user 6-17
Modifying a user 6-18
Deleting a user 6-18

Customizing Tables and Table Elements 6-19

Viewing and customizing tables 6-19
Viewing and deleting columns 6-23
Viewing indexes in a table 6-25

Generating and Editing a Conversion Setup File 6-27

Generating the conversion setup file from DBA 6-27
Generating the conversion setup file from the command line 6-28
Editing the conversion setup file 6-29

Verifying the System Catalog 6-31

Comparing the system catalog to repository definitions 6-31
Comparing the system catalog to a database 6-32

7 Creating Routines for User-Defined Data Types

Introduction 7-2

Using xfodbcusr.c As a Template 7-3

Functions in xfodbcusr.c 7-3

Using xfodbcusr.c As an Example 7-6

8 Configuring Data Access

Setting Security Levels 8-2

Understanding access levels for tables and groups 8-2

Setting Up Access with DSNs 8-4

Setting Runtime Data Access Options 8-13

Formats for returned dates and times 8-13
Converting dates returned without centuries 8-14
Treating invalid dates as null data 8-15
Masks for dates and times in SQL statements 8-15
Setting the base date for Julian day conversions 8-15

Contents

vi xfODBC User’s Guide 10.1 (6/13)

Recognizing the MCBA deleted-record characters 8-16
Changing the way xfODBC describes strings 8-16
Creating a file for query processing options 8-17

System Catalog Caching 8-18

Using syngenload 8-19
Using logging to determine if a system catalog is cached 8-21
Troubleshooting system catalog caching 8-22

SQL OpenNet Client Options in net.ini 8-26

Part 3: Accessing Data

9 Accessing a Synergy Database

The Basic Steps 9-2

Third-Party Software Requirements 9-3

Troubleshooting Data Access 9-4

Record Locking and Transactions with xfODBC 9-7

Accessing Synergy Data with ADO 9-8

Accessing Synergy Data in a .NET Environment 9-10

System requirements for the Synergy/DE Data Provider for .NET 9-11
Using the Synergy/DE Data Provider for .NET 9-12
Operators, functions, classes, and exceptions 9-21

Examples 9-33

Using ODBC Test to test a query 9-33
Adding a data connection and retrieving data in Visual Studio 9-35

10 Optimizing Data Access

Optimizing with Keys 10-2

What are keys? 10-2
How xfODBC uses keys 10-2
Defining keys 10-5
Keys with literals 10-6
Tags and optimization 10-8

Contents

xfODBC User’s Guide 10.1 (6/13) vii

Creating Efficient SQL Statements 10-9

Optimizing with restriction clauses 10-9
Operators and optimization 10-9
AND and OR clauses 10-10
ORDER BY clauses 10-10
Checking the order of the FROM clause for a SQL89 join 10-10
Avoid mixing SQL92 and SQL89 syntax 10-11

Using an ODBC-Enabled Application 10-12

Optimizing with pass-through queries 10-12

Tracking Performance 10-13

Determining which indexes are used 10-13
Using Synergy DBMS logging 10-13

11 Data Access Errors and Error Logging

Error Logging 11-2

Using the log files 11-5

Editing the SQL Message File 11-10

Data Access Errors 11-11

Troubleshooting Socket Errors 11-32

Connection reset by peer (10054 or 54) 11-32
Connection refused (10061 or 61) 11-33

Appendix A: Environment Variables

Data Access Variables A-2

System Catalog Generation Variables A-5

Other Environment Variables Used by xfODBC A-7

Appendix B: SQL Support

Conventions, Names, and Identifier Case B-3

Statements that Access Data B-4

SELECT B-4
Creating subqueries and inline views B-8
Joins B-10

Contents

viii xfODBC User’s Guide 10.1 (6/13)

Notes on Clauses, Columns, and Aliases B-15

WHERE B-16
ORDER BY B-21
GROUP BY B-22
HAVING B-23
FROM B-23
FOR UPDATE OF B-24
CASE B-24
UNION B-26
Computed columns B-27
Text columns B-27
Table aliases B-27
Column aliases B-28

Aggregate Functions B-29

Scalar Functions B-32

Bitwise Functions B-45

Statements that Modify Data B-46

DELETE B-47
INSERT B-47
UPDATE B-48

Statements that Define the Schema (DDL) B-50

CREATE INDEX B-51
CREATE SYNONYM B-52
CREATE TABLE B-53
CREATE VIEW B-55
DROP SYNONYM B-55
DROP TABLE B-56
DROP VIEW B-56

Statements that Set Options B-57

SET OPTION B-57

Restrictions B-64

ODBC Reserved Words B-65

Glossary

Index

xfODBC User’s Guide 10.1 (6/13) ix

Preface

About this manual
This guide serves two groups of ODBC users: developers who create Synergy™ databases and are
responsible for making them ODBC-enabled, and end-users who use xfODBC as a tool for
accessing data. With these different audiences in mind, we divided the xfODBC User’s Guide into
three parts: Part 1 provides an overview of xfODBC and ODBC technology and should be read by
both developers and end-users. Part 2 is written for developers and explains how to generate system
catalogs from Synergy repository definitions. Part 3 is intended for developers end-users and
explains the steps required to access data.

The xfODBC User’s Guide is written for users who are already familiar with database concepts and
terminology and with the platforms discussed in this guide.

Manual conventions
Throughout this manual, we use the following conventions:

 In code syntax, text that you type is in Courier typeface. Variables that either represent or
should be replaced with specific data are in italic type.

 Optional arguments are enclosed in [italic square brackets]. If an argument is omitted and the
comma is outside the brackets, a comma must be used as a placeholder, unless the omitted
argument is the last argument in a subroutine. If an argument is omitted and the comma is
inside the brackets, the comma may also be omitted.

 Arguments that can be repeated one or more times are followed by an ellipsis...

 A vertical bar (|) in syntax means to choose between the arguments on each side of the bar.

 Data types are boldface. The data type in parentheses at the end of an argument description
(for example, (n)) documents how the argument will be treated within the routine. An a
represents alpha, a d represents decimal or implied-decimal, an i represents integer, and an n
represents numeric (which means the type can be d or i).

 The term “environment variable” refers to logicals on OpenVMS, as well as environment
variables on Windows and UNIX platforms.

 To “enter” data means to type it and then press ENTER. (“ENTER” refers to either the ENTER key
or the RETURN key, depending on your keyboard.)

Preface

x xfODBC User’s Guide 10.1 (6/13)

WIN
Items or discussions that pertain only to a specific operating system or environment are called out
with the name of the operating system.

Other resources
 Synergy/DE™ Connectivity Series release notes (REL_CONN.TXT) and the release notes for

the Synergy/DE Data Provider for .NET (REL_SDP.TXT)

 Installation Configuration Guide

 Repository User’s Guide

 Environment Variables & System Options

 Getting Started with Synergy/DE

Product support information
If you cannot find the information you need in this manual or in the resources listed above, you can
reach the Synergy/DE Developer Support department at the following numbers:

800.366.3472 (in the U.S. and Canada)
916.635.7300 (in all other locations)

To learn about your Developer Support options, contact your Synergy/DE account manager at one
of the above numbers.

Before you contact us, be sure you have the following information:

 The version of the Synergy/DE product(s) you are running (both client and server)

 The name and version of the operating system you are running

 The name and version of the ODBC-enabled application you are using

 The hardware platform you are using

 The error mnemonic and any associated error text (for ODBC-reported errors)

 The exact steps that preceded the problem

 What changed (for example, code, data, or hardware) before the problem occurred

 Whether the problem happens every time and whether it is reproducible in a small test program

 The following xfODBC logs: Synergy DBMS logging (on Windows—use
SDMS_AUDIT_SRV), Vortex API logging (use VORTEX_API_LOGFILE and
VORTEX_API_LOGOPTS=FULL), ODBC trace logging. See “Error Logging” on page 11-2
for information on xfODBC logging.

Preface

xfODBC User’s Guide 10.1 (6/13) xi

Note that Synergex® provides support for ODBC access to Synergy data. Synergex cannot support
your ODBC application and may refer you to your application provider.

Synergex Professional Services Group
If you would like assistance implementing new technology or would like to bring in additional
experienced resources to complete a project or customize a solution, Synergex Professional
Services Group (PSG) can help. PSG provides comprehensive technical training and consulting
services to help you take advantage of Synergex’s current and emerging technologies. For
information and pricing, contact your Synergy/DE account manager at 800.366.3472 (in the U.S.
and Canada) or 916.635.7300.

Comments and suggestions
We welcome your comments and suggestions for improving this manual. Send your comments,
suggestions, and queries, as well as any errors or omissions you’ve discovered, to
doc@synergex.com.

mailto:doc@synergex.com

Part 1: Introduction to xfODBC

This section contains information for end-users and developers. It contains an overview of
xfODBC and describes the steps to making a Synergy database accessible to ODBC-enabled
applications.

1-1

1
Welcome to xfODBC

What Is xfODBC? 1-2

Describes xfODBC, the ODBC standard, and the role of each xfODBC component in the
development or runtime process.

How Third-Party Applications Use xfODBC 1-11

Describes how xfODBC makes it possible for an ODBC-enabled application, such as Crystal
Reports®, to access a Synergy database.

The Steps to ODBC Access 1-13

Provides an overview of the steps to follow to make a Synergy database accessible to
ODBC-enabled applications.

Welcome to xfODBC
What Is xfODBC?

1-2 xfODBC User’s Guide 10.1 (6/13)

What Is xfODBC?
xfODBC is a package of components that enables you to make your Synergy data accessible to
third-party applications that can use ODBC (applications such as Crystal Reports, Microsoft
Access, Microsoft Query, and Visual Basic). For example, xfODBC includes the xfODBC Database
Administrator (DBA) and dbcreate programs, which enable you to create system catalogs from
your Synergy repository definitions, and it includes the xfODBC driver, which uses system catalogs
to provide ODBC access to your Synergy database. See “xfODBC components” on page 1-3 .

At the heart of xfODBC is a technological standard called Open Database Connectivity (ODBC).
Through ODBC drivers, ODBC enables a wide variety of applications to access various databases
by ensuring that both the databases and the third-party applications conform to a standard set of
rules for data access. When you instruct an ODBC-enabled application to communicate with a
database, the application first calls the Microsoft-supplied ODBC Driver Manager. The ODBC
Driver Manager then calls the ODBC driver that communicates with that particular database.
(For xfODBC, this is the xfODBC driver.) The ODBC driver translates messages and data between
the application and the database, using an ODBC version of SQL to communicate with the
application, and using the database’s version of SQL to communicate with the database.

xfODBC supports up to 1,024 concurrent ODBC handles (which generally have a one-to-one
correspondence with connections) and can access Synergy Database files, relative files, tagged
files, and ASCII text files. (You can read data from ASCII text files, but you can’t update them.)

The xfODBC driver supports the ODBC version 2.5 API (level 1) and SQL92 entry level syntax
plus extensions. It supports up to 64 table references (including inline views and table joins).

 See RESTRICT.TXT, a text file distributed with Synergy/DE, for information on restrictions
to ODBC version 2.5 API support.

 See “Appendix B: SQL Support” for information on SQL statements, commands, and
functions supported by xfODBC.

Figure 1-1. An ODBC-enabled application accessing a Synergy database.

For updating Synergy databases, we strongly recommend using a Synergy application
that’s designed to efficiently maintain database integrity. If you use an ODBC-enabled
application to update a Synergy database, you may run into record-locking issues.

ODBC-enabled
application

Synergy
database

xfODBC
driver

Welcome to xfODBC
What Is xfODBC?

xfODBC User’s Guide 10.1 (6/13) 1-3

xfODBC components
xfODBC consists of several components. The main component, the xfODBC driver, enables you to
access your Synergy data from third-party applications. Before the driver can do this, however, your
Synergy database must be prepared for ODBC access. To prepare a Synergy database for ODBC
access, a system catalog must be generated from the database’s repository files. System catalogs
describe Synergy databases in a way that the xfODBC driver can understand (see “System catalog”
on page 1-5).

The following sections describe all of the files and components used to

 prepare a Synergy database for ODBC access (administrative components).

 access a Synergy database with the xfODBC driver (runtime components).

Administrative components
Figure 1-2 illustrates how the administrative components work together to generate and verify a
system catalog. These components are described in the sections that follow. (The generation
process itself is described in detail in chapter 4, “Creating a System Catalog.”)

Figure 1-2. Administrative components generating a system catalog.

System catalog

Database
Administrator

(DBA)

dbcreate

Optional

Repository files

Connect file
Conversion
setup file

Welcome to xfODBC
What Is xfODBC?

1-4 xfODBC User’s Guide 10.1 (6/13)

Synergy database

To use xfODBC, you’ll need a Synergy database. A Synergy database consists of files of one of the
following types:

 Synergy ISAM files. We strongly recommend using ISAM files with xfODBC because they
enable the xfODBC driver to create additional keys for optimization. A Synergy database can
contain tagged files, which are ISAM files that contain multiple types of records.

 Relative files, which contain a single type of data record with a single record number key.

 ASCII text files. You can read data from ASCII text files sequentially, but you can’t update
them. There is no key.

The Synergy database is a runtime component. It is not directly involved in the creation of a system
catalog. Repository files are used to create the system catalog.

Repository files

Repository files refer to the ISAM files generated by Synergy/DE Repository; these files describe
and define the actual data files, providing index, tag, field, structure, and key information, along
with other definitions. They often have the filenames rpsmain and rpstext (along with the .ism
filename extension and, for Windows and UNIX, the .is1 filename extensions). xfODBC uses
repository data definitions to create data definitions in system catalogs.

When the term repository (all lowercase) is used, it refers to the repository files (rpsmain and
rpstext, or their equivalents in your database); the term Repository (capital “R”) refers to the
Synergy application you use to define your repository files.

For more information on using Repository, see the Repository User’s Guide.

Connect file

The connect file is a text file you create to tell xfODBC where to find your Synergy data files and
the system catalog that describes those data files. The connect file can also be used to define
environment variables used by the xfODBC driver, set the convert_error option (which instructs the
xfODBC driver to treat invalid dates as null data), and set Synergy driver logging (which enables
you to determine if a system catalog is cached). You must have a connect file to open the system
catalog in DBA.

For more information, see chapter 5, “Setting Up a Connect File.”

Conversion setup file

The conversion setup file is a text file that stores information about table locations and access
levels. You will probably use DBA to create and modify this file automatically, but you can also
perform these steps manually with a text editor. DBA and dbcreate can use the conversion setup
file when regenerating a system catalog. For information, see “Generating and Editing a
Conversion Setup File” on page 6-27.

Welcome to xfODBC
What Is xfODBC?

xfODBC User’s Guide 10.1 (6/13) 1-5

Database Administrator program (DBA)

With its graphical user interface, the xfODBC Database Administrator (DBA) program enables you
to manage system catalogs. Use DBA to initialize user and group access to your database; create a
conversion setup file; generate, maintain, customize, and verify your system catalogs; and run
dbcreate. You can start DBA from the command line or from the Synergy Control Panel (in
Windows Control Panel).

dbcreate utility

The dbcreate utility generates system catalogs using repository definitions in repository files
(rpsmain and rpstext files, as they’re commonly named). The repository definitions must contain
all the structure, tag, field, and key information you need in the system catalog.

You can run this utility from the command line or from within DBA. For more information on
generating a system catalog, see chapter 4, “Creating a System Catalog.”

Runtime components
The runtime components enable you to access Synergy data from ODBC-enabled applications.
Some of these components are distributed with xfODBC. Others must be created for your Synergy
data—namely the system catalog, the connect file, a DSN, and possibly an environment setup file.

Figure 1-3 on page 1-10 illustrates how xfODBC runtime components work together to access
Synergy data.

Synergy database

A Synergy database can consist of Synergy ISAM files, relative files, tagged files, or ASCII text
files. We use the term data files to refer to the files that make up a Synergy database. See “Synergy
database” on page 1-4.

System catalog

For ODBC-enabled applications to access a Synergy database, a system catalog is required. The
system catalog is generated by dbcreate or DBA and provides a “translation” of the Synergy
database in a form that the xfODBC driver can understand. You might think of the system catalog as
a kind of road map that contains “directions” for xfODBC, providing table location, column, key,
access, and other necessary information about the Synergy database.

The dbcreate utility and the DBA program enable you to generate a system catalog from repository
files. The DBA program also enables you to view and modify your system catalog files.

A system catalog is composed of tables for database files and ten system tables (see table below). In
Windows and UNIX environments, these tables are composed of two ISAM files with the .ism and
.is1 filename extensions. In OpenVMS, these are composed of one ISAM file with the .ism
extension. Each system table contains specific information about the Synergy database, except the
GENESIS_DUAL table, which is a read-only table with a synonym (dual) and with one row and
one column that’s used for statements that require a single row—for example, “SELECT curdate()
FROM dual”.

Welcome to xfODBC
What Is xfODBC?

1-6 xfODBC User’s Guide 10.1 (6/13)

Without the user and group files (sodbc_users.*, sodbc_groups.*), there is no user or
password validation when connecting to the database, and all connected users have
read-only access to all tables in the database. Be sure to generate these files (see
“Generating the System Catalog” on page 4-2) and keep them with the other system
catalog files.

System Catalog Files

Table name Filenames Contents

GENESIS_COLUMNS GENESIS_COLUMNS.ISM
GENESIS_COLUMNS.IS1

Field size, type, and position
information

GENESIS_DEPENDS GENESIS_DEPENDS.ISM
GENESIS_DEPENDS.IS1

SQL view dependency information
and information about the names,
owners, and database names for
the views

GENESIS_DUAL GENESIS_DUAL.ISM
GENESIS_DUAL.IS1

A read-only table with one row and
one column for operations such as
“SELECT curdate() FROM dual”

GENESIS_FORKEYS GENESIS_FORKEYS.ISM
GENESIS_FORKEYS.IS1

Foreign key information

GENESIS_INDEXES GENESIS_INDEXES.ISM
GENESIS_INDEXES.IS1

Access keys

GENESIS_TABLES GENESIS_TABLES.ISM
GENESIS_TABLES.IS1

File, structure, access level, and
tag information

GENESIS_VIEWS GENESIS_VIEWS.ISM
GENESIS_VIEWS.IS1

SQL view definitions, which include
information such as view name and
the query used to create the view

GENESIS_XCOLUMNS GENESIS_XCOLUMNS.ISM
GENESIS_XCOLUMNS.IS1

Column references for access key
segments

Does not appear as a table
in DBA

SODBC_GROUPS.ISM
SODBC_GROUPS.IS1

Group ID, group name, number of
users assigned to each group,
group access level, and group
description

Does not appear as a table
in DBA

SODBC_USERS.ISM
SODBC_USERS.IS1

User name, password, user’s full
name, and group ID

Welcome to xfODBC
What Is xfODBC?

xfODBC User’s Guide 10.1 (6/13) 1-7

DSN

A data source name (DSN) is a text file that contains the information needed to access a database
(the name of the connect file, user and password information, and so forth). Once you’ve created a
DSN for a database, users can access the database from an ODBC-enabled application by selecting
the DSN. DSNs make connection details invisible to end-users and free end-users from having to
remember the location of the data files and other connection information. See “Setting Up Access
with DSNs” on page 8-4 for information.

Environment setup file

The optional environment setup file is a text file you write to define the data environment variables
that are used by xfODBC when locating Synergy data files. The environment setup file is typically
used to set environment variables that are used in the Open filename field of a repository file
definition.

For more information on using an environment setup file, see “Setting environment variables in an
environment setup file” on page 3-34.

xfODBC driver

The xfODBC driver is a DLL (tod32.dll or tod64.dll) called by the ODBC Driver Manager
whenever a third-party, ODBC-enabled application accesses a Synergy database. The xfODBC
driver uses a connect file to locate Synergy data files and the system catalog. Using the system
catalog as a road map, the driver then reads the data files and transfers data between the database
and the third-party application.

Synergy database driver

They Synergy database driver (vtx4) enables the xfODBC driver to access Synergy databases. The
Synergy database driver directly processes SQL commands.

External components
The following are not part of xfODBC, but they work with xfODBC.

ODBC Driver Manager

A DLL provided by Microsoft that opens and closes ODBC drivers as directed by an
ODBC-enabled application.

ODBC-enabled application

A 32-bit application running on Windows that uses the ODBC API to access databases. Crystal
Reports, Microsoft Access, and Microsoft Query are examples. Synergy applications that use SQL
Connection are also “ODBC-enabled.”

Welcome to xfODBC
What Is xfODBC?

1-8 xfODBC User’s Guide 10.1 (6/13)

SQL OpenNet

A Synergy product that enables xfODBC to work in a client/server configuration. Figure 1-3 on
page 1-10 illustrates how SQL OpenNet works with xfODBC runtime components to access
Synergy data.

For more information on SQL OpenNet, see the “Configuring Connectivity Series” chapter of the
Installation Configuration Guide.

The Synergy/DE Data Provider for .NET

An ADO.NET data provider that enables access from .NET applications and Visual Studio to
Synergy databases. The Synergy/DE Data Provider for .NET includes all of the functionality of the
.NET Framework data provider for ODBC (which it wraps), along with support for the Entity
Framework. It enables you to create an entity data model (EDM) and then modify and query the
EDM (and, by extension, the Synergy database) using LINQ to Entities and Entity SQL. The
Synergy/DE Data Provider for .NET also includes a Visual Studio plug-in (a DDEX provider) that
enables you to create Visual Studio data connections for Synergy databases.

For information on the Synergy/DE Data Provider for .NET, see “Accessing Synergy Data in a
.NET Environment” on page 9-10.

xfODBC requirements and installation
You’ll need to install xfODBC for both development and deployment of an ODBC-accessible
Synergy database. General requirements are listed below. See the installation instructions and the
“Configuring Connectivity Series” chapter of the Installation Configuration Guide for more
information.

For development, you’ll need Connectivity Series on the development machine. You’ll also need
Synergy data files and a Synergy repository that defines them. See chapter 3, “Preliminary Steps,”
for more information.

For deployment of an ODBC-accessible Synergy database, you’ll need the following, and you may
need to set data access options. (See chapter 8, “Configuring Data Access.”)

Component
Location in client/server
configuration

Connect file Server

System catalog Server

DSN Client

Synergy data files Server

32-bit or 64-bit ODBC-enabled
Windows-based application

Client

Welcome to xfODBC
What Is xfODBC?

xfODBC User’s Guide 10.1 (6/13) 1-9

For a stand-alone deployment, you’ll need to install Connectivity Series.

For a client/server deployment, you’ll need the following (see figure 1-3 on page 1-10):

 Connectivity Series on the server

 Either Connectivity Series or the xfODBC Client on the client

 A TCP/IP network set up between the client systems and the server system

In a client/server configuration, xfODBC uses SQL OpenNet for the network layer. The SQL
OpenNet client must be installed on each client machine (it’s installed with either Connectivity
Series or the xfODBC Client), and the SQL OpenNet server must be installed on the server
(it’s installed with Connectivity Series).

The Connectivity Series installation includes all xfODBC components (development and
deployment, client and server). The xfODBC Client installation includes only those components
that are needed for an xfODBC client:

 Licensing information

 The xfODBC driver, (tod32.dll or tod64.dll)

 The SQL OpenNet client, vtx3.dll

 Dltest.exe, which enables you to get a list of needed Connectivity Series DLLs (see “Error
Logging” on page 11-2 for more information)

 The error message file, sql.msg, which contains the error messages xfODBC and SQL
OpenNet display when they encounter errors (see “Editing the SQL Message File” on
page 11-10)

 The net.ini file, which enables you to set an encryption key, time-outs, and other network
settings for SQL OpenNet (see “SQL OpenNet Client Options in net.ini” on page 8-26)

 The vtxping utility, which enables you to test SQL OpenNet connections (see “The vtxping
Utility” in the “Configuring Connectivity Series” chapter of the Installation Configuration
Guide)

For information on requirements for third-party software, see “Third-Party Software
Requirements” on page 9-3.

For information on requirements for the Synergy/DE Data Provider for .NET, see “System
requirements for the Synergy/DE Data Provider for .NET” on page 9-11.

Welcome to xfODBC
What Is xfODBC?

1-10 xfODBC User’s Guide 10.1 (6/13)

Figure 1-3. xfODBC and SQL OpenNet components accessing Synergy data.

server

client

network (TCP/IP)SQL OpenNet
Sequence

On Windows:
1. Start sqld,
 which ...
2. Reads opennet.srv
3. Runs vtxnetd or
 vtxnet2

On UNIX and OpenVMS,
you start vtxnetd.

One of the following:
• A thread if vtxnetd.

This consists of one
.dll file (vtx4.dll).

• A process if vtxnet2.
This uses two files,
an .exe and a .dll file
(vtx4.exe and vtx4.dll).

A detached process
that uses an executable
and a shared image
(VTX4.EXE and
VTX4_SO.EXE).

A process that uses
an executable and
an .so file (VTX4
and VTX4.so).

VTX3

client/server
connection using
SQL OpenNet

direct connection
(doesn't use SQL
OpenNet)—stand-
alone only

ODBC-enabled application

VTX4 Synergy
database

Windows server

SQL OpenNet
 server

(vtxnetd or vtxnet2
listener daemon)

database driver

OpenVMS server

SQL OpenNet
 server

(vtxnetd as
detached process)

database driver

UNIX server

SQL OpenNet
 server

(vtxnetd daemon
process)

database driver

tod32 or
tod64

Synergy
database

system catalog

connect file

Synergy
database

system catalog

connect file

Synergy
database

system catalog

connect file

Welcome to xfODBC
How Third-Party Applications Use xfODBC

xfODBC User’s Guide 10.1 (6/13) 1-11

How Third-Party Applications Use xfODBC
When a user opens a 32-bit ODBC-enabled application, such as Crystal Reports, and accesses a
Synergy database, the following components are called or read: ODBC Driver Manager, the
xfODBC driver, your connect file, the system catalog, and the Synergy database.

The xfODBC process can be summarized by the following steps:

1. The ODBC-enabled application (Crystal Reports in figure 1-4) makes a request to the ODBC
Driver Manager, which loads the xfODBC driver and establishes an interface between the
application and xfODBC.

2. xfODBC reads the data environment variables set in the environment setup file (optional).

3. xfODBC reads the information in the DSN.

4. xfODBC prompts the user for any information that’s missing from the DSN.

5. xfODBC reads the connect file and then locates the system catalog and data files.

6. xfODBC reads the system catalog for a road map of the Synergy database and then verifies the user
name and password against the registered users in the system catalog.

Figure 1-4. Crystal Reports accessing a Synergy database in a stand-alone configuration.

Synergy database

xfODBC driver

Login window

Connect file

Synergy
database driver

DSN

System catalog
(ISAM files)

Environment
setup file
(optional)

ODBC Driver Manager

One time
Continuous

Crystal Reports

Welcome to xfODBC
How Third-Party Applications Use xfODBC

1-12 xfODBC User’s Guide 10.1 (6/13)

7. The ODBC-enabled application passes the SQL-based request to xfODBC, which then passes it to
the Synergy database driver.

8. The Synergy database driver retrieves the requested data and passes it on to xfODBC, which
“translates” it into a form recognized by the ODBC-enabled application.

Welcome to xfODBC
The Steps to ODBC Access

xfODBC User’s Guide 10.1 (6/13) 1-13

The Steps to ODBC Access
To prepare Synergy data for ODBC access, you’ll need to create a system catalog, a connect file,
and a DSN. In addition, you’ll need a Synergy repository that defines the data in the Synergy
database, and you’ll need to install xfODBC.

A summary of the steps
The following is a summary of the steps you’ll follow as you use xfODBC to generate a system
catalog, modify the system catalog, and then access your Synergy database. To use these steps with
the sample database, see chapter 2, “Using the Sample Database As a Tutorial.”

Installing and configuring xfODBC

1. Install Synergy/DE Professional Series, including the Connectivity Series component, on your
system.

Setting catalog generation options

2. Prepare your environment and set options for system catalog generation. See “Setting Options and
File Locations” on page 3-18.

Generating a system catalog

3. Generate a system catalog from your repository definitions. Initialize users and groups. See
“Generating the System Catalog” on page 4-2.

Creating a connect file

4. Create a connect file that specifies the current location of the Synergy database. See “Creating the
Connect File” on page 5-2.

Customizing the system catalog

5. Use DBA to open your system catalog. See “Opening the System Catalog in DBA” on page 6-10.

6. Modify the users and groups you initialized earlier, and assign group access levels. See
“Customizing Users and Groups” on page 6-13 and “Setting Security Levels” on page 8-2.

7. Make any necessary changes to the system catalog tables or columns and their attributes. See
“Customizing Tables and Table Elements” on page 6-19.

8. If necessary, set table access levels in your conversion setup file and regenerate the system catalog,
specifying the conversion setup file as input. See “Generating and Editing a Conversion Setup File”
on page 6-27 and “Regenerating the System Catalog” on page 4-9.

Creating a DSN

9. Create a DSN to access your data. See “Setting Up Access with DSNs” on page 8-4.

Welcome to xfODBC
The Steps to ODBC Access

1-14 xfODBC User’s Guide 10.1 (6/13)

Setting data-access options

10. Set options that affect the way xfODBC accesses data. See “Setting Runtime Data Access Options”
on page 8-13.

Accessing your Synergy database

For more information on these steps, see chapter 9, “Accessing a Synergy Database.”

11. Open a third-party, ODBC-enabled application.

12. In the third-party application, choose the DSN for the Synergy database. (The third-party
application calls the ODBC Driver Manager, which in turn calls xfODBC.)

13. If necessary, at the log-in window enter your user name and password. You should now be able to
access the Synergy database from the third-party application.

2-1

2
Using the Sample Database As a
Tutorial

This tutorial guides you through the steps needed to prepare a Synergy database for access by an
ODBC-enabled application. As you follow these steps, you will do the following:

 Set catalog generation options

 Generate a system catalog

 Create a connect file

 Customize the system catalog by adding users and groups, deleting a table, and changing a
table’s access level

 Regenerate the system catalog

You will do all of this with the sample database, so you don’t have to practice on your own data.
The sample database is included in the Connectivity Series distribution. (It is not included in the
xfODBC Client installation.) This database includes a repository and is stored in the
connect\synodbc\dat and connect\synodbc\dict subdirectories of the main Synergy/DE installation
directory.

Use this tutorial with a stand-alone xfODBC configuration or on the server of a client/server
configuration.

For Windows Vista and higher, you may need to change the GENESIS_HOME
environment variable setting and move the sample database and repository to a writable
location outside of Program Files so that files can be created and updated. If you do this,
adjust the procedures in this tutorial to use the new location.

Using the Sample Database As a Tutorial
Install xfODBC

2-2 xfODBC User’s Guide 10.1 (6/13)

1. Install xfODBC

The first step is to install xfODBC. Follow the installation instructions, and refer to the
“Configuring Connectivity Series” chapter of the Installation Configuration Guide.

2. Set file locations and options

Once you’ve installed xfODBC, you need to set some options and file locations. These settings
prepare your environment for the next step in the process, generating a system catalog. To prepare
for system catalog generation, set xfODBC environment variables as follows. (For information on
how to set environment variables, see “Setting environment variables” on page 3-30.)

You may want to set other environment variables that set system catalog generation options. For
information, see “Setting Options and File Locations” on page 3-18.

The remainder of this tutorial assumes that during installation you set the Synergy directory
as /usr/synergyde in a UNIX environment or DKA600:[SYNERGYDE] on OpenVMS. If your
Synergy directory has another name or location, you must substitute that name or location
in the examples.

 RPSMFIL Set to the path and filename of the sample repository main file. For
example:

RPSMFIL=%CONNECTDIR%synodbc\dict\rpsmain.ism

For more information, see “Specifying repository file locations” on
page 3-22.

 RPSTFIL Set to the path and filename of the sample repository text file. For
example:

RPSTFIL=%CONNECTDIR%synodbc\dict\rpstext.ism

For more information, see “Specifying repository file locations” on
page 3-22.

 SODBC_CNVFIL Make sure this is not set. This should not be set until the conversion
setup file has been created. For more information on this variable, see
“Specifying a conversion setup file” on page 3-26.

Using the Sample Database As a Tutorial
Generate the system catalog from DBA

xfODBC User’s Guide 10.1 (6/13) 2-3

3. Generate the system catalog from DBA

To make Synergy data accessible to ODBC-enabled applications, you must create a system catalog
for the database. The system catalog is generated from repository definitions and provides the
information the xfODBC driver needs to access the data files.

You can generate the system catalog from the command line using the dbcreate utility, or you can
generate it from the xfODBC Database Administrator (DBA), a program that you can also use to
modify the system catalog. For this tutorial, we’ll generate the system catalog both ways. In this
step, we’ll use DBA to generate it; in the next step (“Generate the system catalog from the
command line” on page 2-5), we’ll use the dbcreate utility to generate it from the command line.

1. Open DBA by doing one of the following:

 In Windows Control Panel, select Synergy Control Panel, and then click “xfODBC DBA.”

 Type the following at a Windows or UNIX prompt:

dbr SODBC_DBA:xfdba.dbr

 Type the following at an OpenVMS prompt:

$ RUN SODBC_DBA:XFDBA.EXE

2. From the Catalog menu in DBA, select Generate. (In UNIX and OpenVMS environments, press
CTRL+P to activate the DBA menu. For more information, see “Understanding DBA, the
Customization Program” on page 6-2.)

The following message is displayed:

No system catalog connected.

3. Click OK or press ENTER.

4. In the Generate System Catalog window, fill and set the following fields and options:

Main repository. This field sets the path and filename of the repository main file. (By default, this
field contains the value of the RPSMFIL environment variable.) Make sure this field contains one
of the following:

 On Windows:

CONNECTDIR:synodbc\dict\rpsmain.ism

 On UNIX:

CONNECTDIR:synodbc/dict/rpsmain.ism

 On OpenVMS:

DKA600:[CONNECT.SYNODBC.DICT]RPSMAIN.ISM

Using the Sample Database As a Tutorial
Generate the system catalog from DBA

2-4 xfODBC User’s Guide 10.1 (6/13)

Text repository. This field sets the path and filename of the repository text file. (By default, this
field contains the value of the RPSTFIL environment variable.) Make sure this field contains one of
the following:

 On Windows:

CONNECTDIR:synodbc\dict\rpstext.ism

 On UNIX:

CONNECTDIR:synodbc/dict/rpstext.ism

 On OpenVMS:

DKA600:[CONNECT.SYNODBC.DICT]RPSTEXT.ISM

Dictsource path. This field specifies where the system catalog will be saved. Type one of the
following paths:

 On Windows,

CONNECTDIR:synodbc\dict

 On UNIX,

CONNECTDIR:synodbc/dict

 On OpenVMS,

DKA600:[CONNECT.SYNODBC.DICT]

Conversion setup. Clear this field.

Field report view. Clear this option to generate the system catalog from all repository fields. If this
option is selected, the system catalog won’t include fields for which the “No report view” option is
set in the repository.

Update option. Leave the default option (Clear and re-create catalog) selected. This option ensures
that the system catalog is generated from scratch. Before generating, DBA clears existing system
catalog files from the directory you specify in the Dictsource path field.

Initialize users and groups. Select this option to ensure that the initial groups (SYSTEM and
USER) and the initial users (DBADMIN, DBA, and PUBLIC) are created. These initial users and
groups enable you to open the system catalog in DBA and customize the system catalog.

Overwrite existing. This option instructs DBA to overwrite existing users and groups. It is
available only when the “Initialize users and groups” option is selected. It has no effect if you’re
generating a system catalog for the first time, but if you’ve generated a system catalog and made
changes to the initial set of user and groups, these changes will be lost if you select this option.

5. Click OK or press ENTER.

6. When DBA is finished generating the system catalog, a message (“System catalog generated”) is
displayed. Click OK or press ENTER.

For more information, see “Generating the System Catalog” on page 4-2.

Using the Sample Database As a Tutorial
Generate the system catalog from the command line

xfODBC User’s Guide 10.1 (6/13) 2-5

4. Generate the system catalog from the command line

There are two ways to generate a system catalog: from DBA and from the command line. “Generate
the system catalog from DBA” on page 2-3 uses the first method. In this section, you’ll use the
second method; you’ll use the dbcreate utility to generate a system catalog from the command line.

Once you have completed the previous step (“Generate the system catalog from DBA”), you’ve
generated the system catalog, so you can skip this step. If you want to try generating the system
catalog from the command line, however, follow the procedure in this section.

To generate the system catalog from the command line, enter the following command:

dbcreate -c -p -r rpsmain rpstext

The -c option clears and regenerates the system catalog, the -p option creates a default set of users
and groups, and the -r option specifies the location and name of the repository main file and
repository text file. (If you don’t include the -r option, dbcreate uses the RPSMFIL and RPSTFIL
environment variable settings.)

You should now have several ISAM files that begin with GENESIS_ or SODBC_ in the current
working directory. To generate the system catalog in any other directory, enter a command with the
following syntax:

dbcreate -c -p -d target_directory -r rpsmain rpstext

where target_directory is the location the system catalog will be saved to. For more information,
see “Generating the System Catalog” on page 4-2.

5. Create a connect file

The next step is to create a connect file. You’ll need a connect file to customize the system catalog
and to create a data source name (DSN), which is required for ODBC access. Connect files contain
information on where the Synergy data files and the system catalog are located. Connect files can
also contain environment variable settings and data access settings.

The xfODBC distribution includes a sample connect file, sodbc_sa, located in the directory that the
GENESIS_HOME environment variable is automatically set to (connect\synodbc). You can use
this connect file to complete the tutorial, or you can create your own as an exercise.

Every connect file must have a dictsource line and a datasource line. The dictsource line specifies
the directory where your system catalog will be located, and the datasource line specifies the
directory where your Synergy data files reside. You can also set some environment variables in the
connect file. If you use any environment variables in the Open filename field of Repository file
definitions, this file is the best place to define those variables. It’s better than defining them system
wide (where they’re not needed), and it keeps them all in one location.

Using the Sample Database As a Tutorial
Open the system catalog

2-6 xfODBC User’s Guide 10.1 (6/13)

For the sample database, the connect file must contain three lines: the dictsource line, the
datasource line, and a line that sets the XFDBTUT environment variable.

 For Windows:

dictsource "C:\Program Files\Synergex\SynergyDE\connect\synodbc\dict\"
datasource ";C:\\Program Files\\Synergex\\SynergyDE\\connect\\syn-
odbc\\dat;"
XFDBTUT=C:\Program Files\Synergex\SynergyDE\connect\synodbc\dat

 For UNIX:

dictsource /usr/synergyde/connect/synodbc/dict
datasource ;/usr/synergyde/connect/synodbc/dat;
XFDBTUT=/usr/synergyde/connect/synodbc/dat

 For OpenVMS:

dictsource DKA600:[SYNERGYDE.CONNECT.SYNODBC.DICT]
datasource ;DKA600:[SYNERGYDE.CONNECT.SYNODBC.DAT];
XFDBTUT=DKA600:[SYNERGYDE.CONNECT.SYNODBC.DAT]

If you make your own connect file, create a text file with the above lines. Then, to make sure you
created the connect file correctly, compare the file you create to the sample connect file, sodbc_sa.

For more information, see chapter 5, “Setting Up a Connect File.”

6. Open the system catalog

Once you’ve generated a system catalog and created a connect file, you can view and customize the
system catalog.

1. Open the DBA program if it isn’t already open. (See step 1 on page 2-3 for instructions.)

2. From the Catalog menu, select Open.

The Open System Catalog window opens.

3. Enter the connect file name, user name, and password name in the Open System Catalog window.
Note that the user name and password are case sensitive.

In the Connect file field, enter the name of the connect file. If you created your own connect file,
enter its filename here. Otherwise, type

sodbc_sa

In the User name field, type

DBADMIN

In the Password field, type

MANAGER

Using the Sample Database As a Tutorial
Modify the users and groups

xfODBC User’s Guide 10.1 (6/13) 2-7

Alternatively, you can type an entire connect string in the Connect file field—for example,
DBADMIN/MANAGER/sodbc_sa. (The syntax for a connect string is
username/password/connect_filename.) If you do this, leave the User name and Password fields
blank.

Note that you can also open the system catalog from the command line. To do this, close DBA; then
do one of the following:

 Type the following at a Windows or UNIX prompt:

dbr SODBC_DBA:xfdba.dbr -c DBADMIN/MANAGER/sodbc_sa

 Type the following at an OpenVMS prompt:

$ XFDBA -C DBADMIN/MANAGER/SODBC_SA

For more information, see “Opening the System Catalog in DBA” on page 6-10.

7. Modify the users and groups

Once you’ve opened the system catalog in DBA, you can view and customize users and groups; you
can view tables, columns, indexes, and segments; and you can delete tables and columns.

1. From the Maintenance menu, select Groups. Then, from the Group Maintenance menu, select
New Group.

The Group window is displayed.

2. In the Group window, fill in the following fields:

Group name. Enter a temporary group name, such as TEMPGRP.

Access level. Enter an access level of 102. (You may want to test different access levels to see how
they affect read/write access. For more information on access levels, see “Setting Security Levels”
on page 8-2.)

Description. Enter a description, such as “Temporary group”, and then click OK or press ENTER.
Notice the Group ID in the Group List window; it should be 3.

If you get an error message that says “Login failed: unable to open user file”, it may be that

 the users and groups were not initialized when you generated the system catalog.

 one of the entries may have been spelled incorrectly.

 the case of the user name or password was incorrect.

Try opening the system catalog again, double-checking the case and the spelling. If you still
aren’t able to open it, regenerate the system catalog by following the instructions in
“Generate the system catalog from DBA” on page 2-3 or “Generate the system catalog
from the command line” on page 2-5. Make sure you either select the Initialize users and
groups option (in DBA) or set the -p option (for the command line). Once you’ve
regenerated the system catalog, open the system catalog in DBA.

Using the Sample Database As a Tutorial
Generate a conversion setup file

2-8 xfODBC User’s Guide 10.1 (6/13)

3. Close the Group List window.

4. From the Maintenance menu, select Users. Then, from the User Maintenance menu, select
New User. The User window is displayed.

5. In the User window, fill in the following fields:

User name. Enter a temporary user name, such as TempUser.

Password. Enter a password for this user, such as DBAPSWD. Remember that the password and
user name are case sensitive.

Group ID. Assign the user to the new temporary group by entering 3 in this field.

Full name. Enter the user’s full name, or enter a description of the user, such as “Temporary user”.

6. Click OK or press ENTER, and then close the User List window.

7. From the Maintenance menu, select Groups. Notice that the TEMPGRP now has one user assigned
to it.

8. Close the Group List window.

8. Generate a conversion setup file

Conversion setup files are text files that contain information on tables in the data files. This
information includes table names, table access levels, and data file locations, among other things.
Using a conversion setup file, you can change the access level of a table or add a table back into the
system catalog. Additionally, if you use DBA to delete a table from the system catalog, you can use
a conversion setup file to preserve that change when you regenerate. See “Generating and Editing a
Conversion Setup File” on page 6-27.

1. From the Catalog menu, select Generate Conversion Setup File.

2. Click OK or press ENTER to generate the conversion setup file to the displayed path and name.

3. If the file already exists, another window is displayed. Click OK or press ENTER to overwrite the
existing file.

4. Set the SODBC_CNVFIL environment variable to the path and filename of the conversion setup
file you just generated. (For more information, see “Specifying a conversion setup file” on
page 3-26.) For example:

SODBC_CNVFIL=GENESIS_HOME:sodbccnv.ini

For more information on generating a conversion setup file, see “Generating and Editing a
Conversion Setup File” on page 6-27.

Using the Sample Database As a Tutorial
Edit the conversion setup file

xfODBC User’s Guide 10.1 (6/13) 2-9

9. Edit the conversion setup file

Once you’ve generated the conversion setup file, you can use a text editor to do the following:

 Mark a table as IN or OUT. This determines whether the table will be considered when the
system catalog is regenerated. For information, see “IN | OUT” on page 6-29.

 Change a table’s access level.

 Change a table’s data file location.

1. Open the conversion setup file sodbccnv.ini with a text editor. Notice the following:

 Each of the four data tables is set to IN.

 Each data table has an access level of 100.

 Each data table specifies the XFDBTUT environment variable for opening the data file.

2. Change the access level of the ORDERS table to 101 and the PLANTS table to 200. An access level
of 101 allows read/write access for users with an access level of 101 or greater; an access level of
200 allows read-only access for users with an access level of 200 or greater. See “Setting Security
Levels” on page 8-2.

3. Save your changes and close the file.

For more information, see “Editing the conversion setup file” on page 6-29.

10. Remove a table from the system catalog

You can use DBA to delete a table from the system catalog, but the table will be added back if you
regenerate the system catalog. To remove a table and keep it out—even if you regenerate—use a
conversion setup file.

1. Make sure the SODBC_CNVFIL environment variable is set to the location of your conversion
setup file.

2. In DBA, open the system catalog for the sample database.

3. From the Maintenance menu, select Tables.

4. Highlight the VENDORS table and select Delete Table from the Table Maintenance menu.
A prompt will be displayed.

5. Click OK or press ENTER to delete the table.

6. Open the conversion setup file in a text editor. Note that the VENDOR table is set to OUT, so it is
not available to an ODBC-enabled application. Before you deleted the VENDORS table, this was
set to IN, but because the SODBC_CNVFIL environment variable is set, tables deleted from the
DBA are automatically set to OUT in the conversion setup file. (If SODBC_CNVFIL is not set
when you delete a table in DBA, the conversion setup file will not be automatically updated.) Note
that you can also change a table’s IN|OUT setting by editing the conversion setup file.

For more information, see “Deleting a table” on page 6-21.

Using the Sample Database As a Tutorial
Change a table’s access level

2-10 xfODBC User’s Guide 10.1 (6/13)

11. Change a table’s access level

To change a table’s access level, you must edit the conversion setup file and then regenerate the
system catalog, using the conversion setup file as input.

1. Using a text editor open the conversion setup file.

2. On the CUSTOMERS line, change ACC=100 to ACC=101. This changes the CUSTOMERS table
from a read-only table to a table that can be viewed and changed by users that belong to groups
with access levels of 101 or greater. For more information, see “Setting Security Levels” on
page 8-2.

3. Save the conversion setup file.

To complete this change, you must regenerate the system catalog, using the conversion setup file as
input. As the system catalog is regenerated, DBA reads the conversion setup file and makes any
changes specified in this file to the system catalog.

12. Regenerate the system catalog

After making changes to the conversion setup file, regenerate the system catalog. You can
regenerate the system catalog from the command line or from DBA. If you generate from the
command line, use the -i option and specify the conversion setup file’s path and filename after the
option. (See “Using a conversion setup file” on page 4-10.) If you use DBA to regenerate, make
sure the Conversion setup field of the Generate System Catalog window contains the conversion
setup file name. For information, see “Regenerating the System Catalog” on page 4-9.

13. Access your data with an ODBC-enabled application

Now that you’ve set file locations and options, generated a system catalog, and created a connect
file, you’re almost ready to access the sample database with odbc-enabled applications. There is,
however, one more requirement: in most cases, you must have a DSN (data source name). DSNs
contain the information needed to access a database. For example, a DSN may contain the name of
the connect file as well as user and password information. You can create a DSN for the sample
database or you can use the system DSN (named xfODBC) included with the Connectivity Series
installation. For information on DSNs, see “Setting Up Access with DSNs” on page 8-4. Note the
following:

 It is possible to connect via ADO or ADO.NET without a DSN. See “DSN-less connections”
on page 9-9 and “Connection strings” on page 9-18.

 See “Examples” on page 9-33 for examples that take you through the steps of accessing data.

Part 2: Preparing for ODBC Access

This section is for developers. It explains how to use xfODBC and its utilities to generate,
modify, and verify system catalogs as well as how to create connect files and DSNs.

3-1

3
Preliminary Steps

Before you generate a system catalog, you must define the database schema in a repository and set
any needed environment variables for file locations, data conversion options, and other system
catalog generation options.

Setting Up a Repository 3-2

Outlines the procedure you should follow to create a repository xfODBC can use to generate a
system catalog. This section also explains how to choose tags that optimize performance.

System Catalog Generation Issues 3-12

Explains data conversion issues you should understand before you generate a system catalog.

Setting Options and File Locations 3-18

Describes how to set environment variables to specify file locations, system catalog generation
options, and data conversion options.

Preliminary Steps
Setting Up a Repository

3-2 xfODBC User’s Guide 10.1 (6/13)

Setting Up a Repository
To generate a system catalog for a Synergy database, xfODBC must have access to a repository,
which is a set of files that define the schema of the database. Repositories are created with
Synergy/DE Repository and contain definitions for structures, fields, keys, relations, files, and tags.

You can use the following procedure to set up your repository, or you can enlist the help of
Synergex Professional Services to optimize an existing repository for ODBC access or to create a
new repository from your data files. For information, contact your Synergy/DE account manager.

The following steps outline the process for creating a repository for xfODBC. (For information on
setting up a repository to use multiple databases, see “Handling a repository shared by multiple
databases” on page 3-7.) When you’re finished, your repository should contain the following:

 A complete set of structures, tags, fields, and file information

 Templates for similar fields

 Well-chosen keys and relations

Before you define your repository

Plan and define your keys when you create your data files. Then, when you create the repository,
create an access key for each of the data file keys. For more information on keys, see “Optimizing
with Keys” on page 10-2.

1. Gather record layout information

Start by gathering information about the database. You’ll need all the record layout, key, and tag
information for the data files. Sources of information include

 definition files (also called include files). These files contain data definitions and can be added
to your program with .INCLUDE statements. For information on definition files, see
.INCLUDE in the “Preprocessor and Compiler Directives” chapter of the Synergy DBL
Language Reference Manual.

 FDL or XDL files used to create the data files. If your data files were created with FDL or XDL
files, you can print these files and use the information in them to manually define structures,
fields, tags, and keys in your repository. For information on XDL and FDL, see “ISAM
Definition Language” in the “Synergy DBMS” chapter of Synergy Tools. On OpenVMS, you
can use the following to generate an FDL file:

ANALYZE/RMS/FDL filename

 parameter files. You can use the ipar utility to generate parameter files, which are files that list
record layout and key information for ISAM files. Although these files can be used as input for
the bldism utility, they’re also useful when creating a repository; they list data file information
in a readable format. You can use this information to manually define structures in Repository.
For information, see “ipar” in the “Synergy DBMS” chapter of Synergy Tools.

Preliminary Steps
Setting Up a Repository

xfODBC User’s Guide 10.1 (6/13) 3-3

As you gather record layout information,

 list the primary key and all secondary keys for each record layout. Keep track of the key order.
See step 8 for information on keys.

 list all tags for the records. See step 7 for information on tags.

 identify template candidates. See step 4 for information on templates.

2. Create a new repository

To create a new repository, open Synergy/DE Repository and select Create New Repository from
the Utilities menu. For more information, see “Creating a New Repository” in the “Utility
Functions” chapter of the Repository User’s Guide.

3. Create structures

Structures are record definitions or compilations of field and key characteristics for a particular file
or files. Create a structure for each record layout in your data files. If you have a file with multiple
record layouts, you must create a structure for each. See the “Working with Structures” chapter of
the Repository User’s Guide.

4. Create templates

A template is a set of characteristics that can be applied to multiple fields. Templates simplify
maintenance and enable you to maintain consistency. For example, if several fields share some
characteristics including Alternate name, you can create a template for the fields. Then, when you
change the Alternate name for the template, the Alternate name is automatically updated for all the
template’s fields. For more information, see “Defining Field Templates” in the “Working with
Fields” chapter of the Repository User’s Guide.

5. Define fields and import field definitions

Use record layout information from step 1 to define fields for each structure. Note the following:

 If you have include files, you can use these to load field definitions directly into your
repository. See “Loading Fields from a Definition File” in the “Working with Fields” chapter
of the Repository User’s Guide.

 Assign the templates you created in step 4 to the fields they were created for.

TIP
A single repository can be used to define multiple databases if the files, structures, and
fields in the databases are identical. For information, see “Handling a repository shared by
multiple databases” on page 3-7.

If a template specifies an Alternate name, that template can be applied to only one field per
structure.

Preliminary Steps
Setting Up a Repository

3-4 xfODBC User’s Guide 10.1 (6/13)

 If you want a field to have a different name in the system catalog then it has in the repository,
use the Alternate name option. You can specify an Alternate name in a template or in the field
itself. This option enables you to normalize names and to replace cryptic names with names
your customers can understand (which we strongly recommend). For example, if a field that
contains a customer number has the name “cf_1” in the repository, you can use Alternate name
to give it the name “Customer_number” in the system catalog. When users access the database
with an ODBC-enabled application, they will see “Customer_number” as the column name.

If you specify an Alternate name, it will be used only if SODBC_ODBCNAME is set when the
system catalog is generated. For information on the Alternate name field, see “Display
information” in the “Working with Fields” chapter of the Repository User’s Guide. For
information on SODBC_ODBCNAME, see “Renaming columns for clarity” on page 3-24.

 To prevent xfODBC from accessing a field, set the Excluded by ReportWriter option for that
field. This causes the field to be omitted from the system catalog. (For example, you can use
this option to omit overlay fields, which present alternative views of a database.) For
information on setting the Excluded by ReportWriter option, see “Basic field information” in
the “Working with Fields” chapter of the Repository User’s Guide. (For information on an
option that causes xfODBC to ignore Excluded by ReportWriter settings, see “Including and
omitting fields” on page 3-23.)

 If you create an overlay field, set it to read-only. (Set the Read-only option in Repository or use
the READONLY repository schema keyword.) If a field is not in an INSERT statement’s
column list, the INSERT statement sets the field to null unless it is read-only. If the field is an
overlay field, the overlay and the fields that make up the overlay are set to null (even if the
overlay is not in the statement’s column list). To prevent this, set overlay fields to read-only in
the repository (and then regenerate the system catalog).

 If you use a format string to define a decimal point for a decimal field in Repository, you can
either set SODBC_USEFORMAT or do the following. (See “Using decimal information in the
repository format string” on page 3-27 for information on SODBC_USEFORMAT.)

1. Create an implied decimal overlay field that matches the precision of the format string. For
example, if you have a d6 field with a format string that specifies the XXXX.XX format,
create an overlay field with a d6.2 data type.

2. Use the Repository Alternate name option to specify an Alternate name that’s identical to
the original field. For example, if the field is named in_price, set the Alternate name for
the overlay field to in_price.

3. Set the Repository Excluded by ReportWriter option for the original field (not the overlay
field). This will prevent the original field from becoming part of the system catalog, unless
the SODBC_CNVOPT environment variable is set. For information on this variable, see
“Including and omitting fields” on page 3-23.

If the field is a key segment, overlaying it with multiple overlay fields will prevent dbcreate
from creating an index for the overlay fields. See “Create keys” on page 3-5 for information.

Preliminary Steps
Setting Up a Repository

xfODBC User’s Guide 10.1 (6/13) 3-5

6. Change .INCLUDE statements in code

If you loaded data definitions from an include file into your repository, you will want to change the
.INCLUDE statements in your code to include the repository definitions rather than the files. For
information, see .INCLUDE in the “Preprocessor and Compiler Directives” chapter of the Synergy
DBL Language Reference Manual.

7. Create tags to describe multiple structures in a file

If some of your structures are related, you may have them grouped in one file. (You’ll assign
structures to files in step 10 on page 3-6.) If you have more than one structure in a file, create a tag
for each structure, a tag that uniquely identifies the structure in the file, and make sure you
construct the tags so they can be optimized. See “Tags and optimization” on page 10-8 for
information.

For information on how to define a tag, see “Defining Tags” in the “Working with Structures”
chapter of the Repository User’s Guide.

8. Create keys

Keys are portions of a record structure that individually identify records and enable records to be
quickly accessed and sorted. Your data files may already have keys. However, for xfODBC to use
keys, they must be defined in the repository before the system catalog is generated. You can define
two types of keys in a repository: access keys, which mirror keys defined in the database, and
foreign keys, which are keys defined only in the repository. Foreign keys enable you to define
additional relations that can’t be defined with access keys.

Keep in mind that the keys you choose will greatly affect the performance of SQL queries, so
choose them carefully.

Note the following:

 Foreign keys are used only if an ODBC-enabled application supports the ODBC API function
SQLForeignKeys.

 The xfODBC driver considers the first unique access key to be the primary key. Note that the
ADO.NET Entity Framework must have a primary key, so if you plan to use the Entity
Framework, make sure each file has a unique key.

See “Optimizing with Keys” on page 10-2 for more information on what keys are, how xfODBC
uses keys, and how to define keys for optimal performance.

For information on preventing xfODBC from including keys, see “Omitting keys” on page 3-24.

Preliminary Steps
Setting Up a Repository

3-6 xfODBC User’s Guide 10.1 (6/13)

9. Define files in Repository

File definitions are the Repository mechanism for storing information (name, file type, etc.) for
data files associated with a repository. Create file definitions for all data files that are described by a
repository’s structures. See the “Working with Files” chapter of the Repository User’s Guide.

Note that for file definitions, you must specify the filename in the Open filename field (which is in
the Repository’s File Definition window). However, you can specify the location of the data file in
either the Open filename field or the datasource line of the connect file. (You cannot specify a
filename in the datasource line.) The Open filename field has precedence; xfODBC uses the
datasource line only if the Open filename field does not specify a path or environment variable. For
example, if a data file for the repository is c:\datafiles\mydata.ism, and you enter only
mydata.ism in the Open filename field, you must have the following datasource line in the
connect file:

datasource ;c:\\datafiles;

Note the following:

 For client/server configurations, the path must be local to the server.

 If you use an environment variable for the path or the path and filename, be sure to set the
environment variable in the connect file, in an environment setup file, or in the environment
(not in synergy.ini). In a client/server configuration, set it on the server.

For information on the datasource line, see “Creating the Connect File” on page 5-2.

10. Assign structures to files

Once you’ve created file definitions for the data files described by your repository, assign structures
to those files. Every structure that you want included as a table in the system catalog must be
assigned to a file definition. If a file contains multiple record layouts, assign all corresponding
structures to that file.

For more information, see “Assigning Structures to Files” in the “Working with Files” chapter of
the Repository User’s Guide.

11. Define relations between structures

Relations enable you to link the keys for one structure to the keys for other structures. For example,
if you create a relation between a customer ID key for a transaction structure with a customer ID
key for a customer structure, you can create SQL statements that retrieve transaction information
and associated customer information. (For an example of a relation to a table with a literal tag, see
“Keys with literals” on page 10-6.)

When the system catalog is generated, structure relations are imported as table relations. Note that
most ODBC-enabled applications aren’t able to interpret table relations.

Preliminary Steps
Setting Up a Repository

xfODBC User’s Guide 10.1 (6/13) 3-7

12. Validate, verify, and compare

When you have finished defining your repository, do the following in order:

 Validate your repository with the Validate Repository utility. This utility validates all values
specified for repository definitions (field options, structure options, template options, and so
forth). See “Validating Your Repository” in the “Utility Functions” chapter of the Repository
User’s Guide for more information.

 Verify your repository with the Verify Repository utility. This utility verifies the integrity
(internal consistency) of your repository. The Verify Repository utility attempts to repair any
problem it discovers. See “Verifying Your Repository” in the “Utility Functions” chapter of the
Repository User’s Guide for more information.

 Use the Compare Repository to Files (fcompare) utility to compare the repository definitions
to your Synergy database files. This is available from the Utilities menu in S/DE Repository
and from the command line. See “Comparing a Repository to ISAM Files” in the “Utility
Functions” chapter of the Repository User’s Guide and fcompare in the “Synergy DBMS”
chapter of Synergy Tools.

Be sure to run these utilities and fix all errors and warnings before you generate the system catalog.
Once the system catalog is generated, there is no connection between the system catalog and the
repository. If you make changes to the repository after you generate the system catalog, the changes
will not be reflected in the system catalog unless you regenerate it.

Handling a repository shared by multiple databases
A single repository can be used to define multiple databases if the file, structure, and field
definitions for the databases are identical. The names of data files, however, do not need to be the
same for each database. You could, for example, create data files named companyA for one
database and companyB for another database. However, if the databases have the same names for
the data files, each database’s files must be in a separate location.

There are four common ways to handle a repository shared by multiple databases:

 Specifying a filename (but no path) in the Open filename field (see page 3-8). If generating a
single system catalog suits your purpose, this method is generally the most convenient. You
generate a single system catalog for all the databases, use the datasource line in each connect
file to set the path for the data files, and use a separate connect file for each database.

 Using an environment variable in the Open filename field (see page 3-9). For this method, you
generate a single system catalog for all the databases, but instead of using the datasource line
in the connect files, you set an environment variable to determine which database is accessed.

Preliminary Steps
Setting Up a Repository

3-8 xfODBC User’s Guide 10.1 (6/13)

 Using a conversion setup file to change the Open filename field (see page 3-9). If you want to
create a separate system catalog for each database, this is generally the most convenient
method. You enter whatever you want in the Open filename file and then use a conversion
setup file to edit the data file locations before generating a system catalog. With this method,
you also use a separate connect file for each database.

 Using USR_DD_FILNAM to change replaceable characters (see page 3-10). If you use the
RPS_FILNAM_METHOD in Synergy/DE ReportWriter to interpret the Open filename field in
your repository, this method is probably the best. You create a routine that interprets
replaceable characters in the Open filename field. You rebuild the DBA program to include the
new routine, and then use a conversion setup file to invoke the routine as you generate a system
catalog for each database.

For information on the Open filename field, see “Defining a New File” in the “Working with Files”
chapter of the Repository User’s Guide.

Specifying a filename (but no path) in the Open filename field
With this method, you’ll generate a single system catalog that will be used for all the databases
defined by the repository. Then, when you use an ODBC-enabled application to access one of the
databases, the datasource line in the database’s connect file will determine which database to
access.

1. For each file in the repository, enter only a filename in the Open filename field. Do not include a
path. For example:

customer.ism

2. Generate the system catalog. The system catalog will include data file specifications, but these will
include only the filenames, no paths.

3. Create a connect file and DSN for each set of data files. In each connect file, set the datasource line
to the directory that contains the data files for the database. For example:

datasource ;c:\\databases\\company4\\dat;

4. Test by accessing the databases. Make sure each DSN uses the correct connect file and accesses the
correct database.

The procedures in the following sections are overviews. For more information on individual
steps, see the corresponding documentation elsewhere in this manual.

Preliminary Steps
Setting Up a Repository

xfODBC User’s Guide 10.1 (6/13) 3-9

Using an environment variable in the Open filename field
With this method, you’ll generate a single system catalog that will be used for all the databases
defined by the repository. Then, when you select a DSN in an ODBC-enabled application, an
environment variable setting will determine which database is accessed.

1. Enter an environment variable in the Open filename field for each file in the repository. The
environment variable can take the place of the path, the filename, or both. For example:

COMPANY:plants.ism

Make sure the environment variable is followed by a colon—even if the environment variable is for
both the path and filename (which is a good way to handle data files whose names and locations are
different for each database). For example:

ACME_PLANTS:

2. Generate the system catalog. The environment variable will take the place of hard-coded paths in
the system catalog.

3. Create a connect file and DSN for each database that the repository describes.

4. Before accessing the database, set the environment variables you entered in the Open filename
field.

Note that a good place to set this environment variable is in the connect files. This way the variable
is redefined each time you use one of the connect files to access a database. For example, one of the
connect files might have the following:

COMPANY=c:\databases\companyabc\dat

The other connect files would have different settings. For example:

COMPANY=c:\databases\companyxyz\dat

5. Test by accessing the databases. Make sure each DSN uses the correct connect file and accesses the
correct database.

Using a conversion setup file to change the Open filename field
With this method, you’ll generate a conversion setup file and then use this file to generate a
different system catalog for each database.

1. In the Open filename field for each file in the repository, enter a value. Later in this procedure
(step 5), you’ll replace all or part of this value.

For example:

&&&&&&customer.ism

2. Generate a system catalog for a database. Be sure to initialize users and groups.

Preliminary Steps
Setting Up a Repository

3-10 xfODBC User’s Guide 10.1 (6/13)

3. Create a connect file for each database that the repository describes. Set the dictsource line in each
connect file to the directory that will contain the system catalog files.

4. Create a conversion setup file for the system catalog.

5. Open the conversion setup file in a text editor and edit the data file settings. For example, if a data
file setting is

&&&&&&customer.ism

you could change the setting to something like

c:\companyabc\customer.ism

6. Regenerate the system catalog. If you use DBA to regenerate, be sure to use the Clear and re-create
catalog, Initialize users and groups, and Conversion setup options. If you use dbcreate, be sure to
use the -c, -p, and -i options. Use the conversion setup file you edited in step 5.

7. Open the system catalog in DBA. Then open the Table list (Maintenance > Tables). The tables
should have the correct path for the database. (See the Open filename column of the Table List.)

8. Repeat step 5 through step 7 for each database.

9. Test by accessing the databases. Make sure each DSN uses the correct connect file, and make sure
the dictsource line in each connect file accesses the correct system catalog.

Using USR_DD_FILNAM to change replaceable characters
With this method, you’ll create a routine that interprets replaceable characters in the Open filename
field. Then you’ll rebuild DBA, create a conversion setup file, and use the conversion setup file to
invoke the USR_DD_FILNAM routine as you generate a system catalog for each database.

This method is particularly useful if your repository already has replaceable characters used by the
RPS_FILNAM_METHOD in ReportWriter. For information on RPS_FILNAM_METHOD, see
“Modifying Filenames at Runtime” in the “Customizing ReportWriter Routines” chapter of the
ReportWriter User’s Guide.

1. In the Open filename field for each file in the repository, enter a value with replaceable characters.
(If your repository was designed to use RPS_FILNAM_METHOD, skip this step; the Open
filename field will already have replaceable characters.)

For example:

c:\####\customer.ism

2. Create a routine to interpret the replaceable characters in the Open filename field, and then rebuild
DBA. For information, see “Replacing the default USR_DD_FILNAM routine” on page 3-11. This
routine will replace the default USR_DD_FILNAM routine.

3. Generate a system catalog.

4. Create a connect file for the system catalog.

Preliminary Steps
Setting Up a Repository

xfODBC User’s Guide 10.1 (6/13) 3-11

5. Open the system catalog in DBA, and generate a conversion setup file. As the conversion setup file
is generated, replaceable characters in the Open filename field are interpreted by the
USR_DD_FILNAM routine you wrote. Check the generated conversion setup file to make sure the
paths are correct.

6. Regenerate the system catalog using the conversion setup file as input.

Replacing the default USR_DD_FILNAM routine

1. Write your USR_DD_FILNAM routine and save it as a .dbl file (for example, my_usr.dbl). See
xfdbusr.dbl, a file included in your Connectivity Series distribution, for an example of a
customized USR_DD_FILNAM routine.

2. Make sure

 PATH contains the location of dbcreate.

 DBLDIR is set in synergy.ini to your Synergy root directory.

 WND is set in synergy.ini to your UI Toolkit directory.

3. Move to the directory that contains the DBA program, which is xfdba.dbr (on Windows and
UNIX) or xfdba (on OpenVMS). Typically this file is in the connect\synodbc\dba directory.

4. From the command line, compile the file you created in step 1. For example:

dbl my_usr

5. Replace the USR_DD_FILNAM routine in the DBA program’s object library. For example:

dblibr -r xfdbalib.olb my_usr.dbo

6. Do one of the following:

 Rebuild DBA by entering one of the following.

On UNIX or Windows:

xfdbabld

On OpenVMS:

$ @XFDBABLD

This command executes a batch file, script, or DCL command file.

 Use the dblink command at a command prompt. For example:

dblink -o xfdba.dbr xfdbaprc.dbo xfdbalib.olb WND:tklib.elb

When you use DBA to generate the conversion setup file and the system catalog, DBA will now use
the USR_DD_FILNAM you wrote to convert open filenames in the conversion setup file.

Preliminary Steps
System Catalog Generation Issues

3-12 xfODBC User’s Guide 10.1 (6/13)

System Catalog Generation Issues
Keep the following in mind as you prepare to create a system catalog from your repository.

Access levels

When generated, all tables have an initial read-only access level set at 100. For information on
access levels, see “Setting Security Levels” on page 8-2.

Arrays

Because the current SQL API does not support arrays, each element in an array field is mapped to a
separate column and given a name that consists of the array name, the element’s position in the
array, and pound signs (#) to delineate position values. For example, a [2,2] array with the name
myarray will be mapped as the following columns: myarray#1#1, myarray#1#2, myarray#2#1, and
myarray#2#2. These are the names you use to access data in myarray—for example:

SELECT myarray#2#2 FROM mytable WHERE myarray#1#1 = 100

This is also true of groups and struct fields that are arrays, except that for these, dbcreate also
generates a read-only overlay field that includes all of the fields in the array. For example, if a
repository has a group or struct field named myarray that’s a [2,2] array with a single field, myfield,
the group or struct field will be mapped to the following columns: myarray (the overlay field),
myarray#1#1myfield, myarray#1#2myfield, myarray#2#1myfield, and myarray#2#2myfield.

Note the following:

 To use a character other than the pound sign (#) to delineate position values, use the
SODBC_TOKEN environment variable. See “Changing the position delimiter used for arrays”
on page 3-25 for information.

 For array fields (but not groups or struct arrays), you can instruct dbcreate to generate a single
overlay column for all elements. See “Generating one column for an array field” on page 3-25.

AutoSeq and AutoTime fields

AutoSeq and AutoTime fields are 8-byte read-only ISAM key fields that are automatically
populated with appropriate values by the ISAM layer. AutoSeq is a generated number that is
guaranteed to be unique within an ISAM file, and AutoTime is a timestamp that records the last
date and time that a record was inserted or modified. See “Keys in ISAM files” in the “Synergy
DBMS” chapter of Synergy Tools for more information.

Preliminary Steps
System Catalog Generation Issues

xfODBC User’s Guide 10.1 (6/13) 3-13

Data types

The dbcreate utility generates system catalog columns with the following SQL types:

Data Types

Repository data type SQL type

Alpha SQL_VARCHAR

AutoSeq SQL_BIGINT

AutoTime SQL_TIMESTAMP

Binary SQL_BINARY

Boolean SQL_BIT

Date SQL_TYPE_DATE

Decimal d1 and d2 SQL_TINYINT

d3 and d4 SQL_SMALLINT

d5 through d9 SQL_INTEGER

d10 and higher (except d16.6) SQL_DECIMAL

d16.6 SQL_FLOAT

Enum SQL_INTEGER

Integer i1 SQL_TINYINT

i2 SQL_SMALLINT

i4 SQL_INTEGER

i8 SQL_BIGINT

Time (HHMM or HHMMSS) SQL_TYPE_TIME

Preliminary Steps
System Catalog Generation Issues

3-14 xfODBC User’s Guide 10.1 (6/13)

Note the following:

 For an enum field, dbcreate generates an integer system catalog column that provides access
only to the value side of the enumeration. For example, if you have an enumeration with three
members—“tree” with a value of 1, “shrub” with a value of 2, and “groundcover” with a value
of 3—a query that includes this column will return only 1, 2, or 3. (It will not return the
member names “tree,” “shrub,” and “groundcover.”) Note that you can use the DECODE scalar
function to simulate an enumeration—for example:

DECODE(plant_type, 1, 'tree', 2, 'shrub', 3, 'groundcover')

 Time columns are returned as System.TimeSpan for ADO.NET. See “Time columns and
ADO.NET” on page 9-20.

 Fields with the struct data type are treated as groups. See “Groups and struct fields” on
page 3-16.

 Data in user fields can be manipulated by the xfODBC routines for user-defined data types. See
chapter 7, “Creating Routines for User-Defined Data Types.”

For more information on data types in Repository, see “Basic field information” in the “Working
with Fields” chapter of the Repository User’s Guide.

User Alpha SQL_VARCHAR

Binary SQL_BINARY

Date with YYYYMMDDHHMISS or
YYYYMMDDHHMISSUUUUUU format
in the User data field

SQL_TIMESTAMP

Date with HHMM or HHMMSS SQL_TYPE_TIME

Date with any other value in the User
data field

SQL_TYPE_DATE

Numeric SQL_DECIMAL

Data Types (Continued)

Repository data type SQL type

Preliminary Steps
System Catalog Generation Issues

xfODBC User’s Guide 10.1 (6/13) 3-15

Date and time fields

When a system catalog is generated, date and time columns are generated as described below. For
information on how date and time data is returned from a database and how dates and times must be
specified in SQL statements, see “Setting Runtime Data Access Options” on page 8-13.

SQL time columns are generated from repository fields with the Time type or with one of the
following formats specified in the Repository “User data” field (e.g., ^CLASS^=HHMM), where
HH is the hour (in 24-hour format), MM is the minutes, and SS is the seconds:

HHMM
HHMMSS

SQL date columns are generated from AutoTime fields and repository fields with one of the
following formats specified in the Repository Class field or User data field:

where YY is the last two digits of the year, YYYY is the year and century, MM is the month, Mon
is the three-letter month abbreviation (Jan, Feb, etc.), DD is the day of the month, HH is the hour,
MI is the minute, PP is the period, SS is the second, UUUUUU is the microsecond, JJJ is the Julian
day count from the first of the year, and JJJJJJ is the Julian day count from SYNBASEDATE or the
default base date, which is 1752-09-14 (i.e., 14 September 1752). (For information on
SYNBASEDATE, see “Setting the base date for Julian day conversions” on page 8-15.) Note the
following:

 Date formats 1 through 6 can be specified in Repository by selecting the corresponding date
format in the Class field. And date formats 7 through 23 can be selected by defining the field as
“User” in the Type field in Repository and by including the following in the “User data” field
(where date_format is one of the above formats):

^CLASS^=date_format

See “Basic field information” in the “Working with Fields” chapter of the Repository User’s
Guide for more information.

 When generating a system catalog, each date field that doesn’t include a century (a YY date) is
formatted as a date with a rolling century (an RR date). This enables the xfODBC driver to
display the date correctly. See “Converting dates returned without centuries” on page 8-14 for
information on how xfODBC converts RR dates as it accesses a database.

1. YYMMDD 9. MMDDYYYY 17. JJJYY

2. YYYYMMDD 10. MMDDYY 18. JJJYYYY

3. YYJJJ 11. DDMonYY 19. JJJJJJ

4. YYPP 12. DDMonYYYY 20. PPYY

5. YYYYPP 13. MonDDYY 21. PPYYYY

6. YYYYJJJ 14. MonDDYYYY 22. YYYYMMDDHHMISS

7. DDMMYY 15. YYMonDD 23. YYYYMMDDHHMISSUUUUUU

8. DDMMYYYY 16. YYYYMonDD

Preliminary Steps
System Catalog Generation Issues

3-16 xfODBC User’s Guide 10.1 (6/13)

Groups and struct fields

By default, if a field is part of a group or struct field in the repository, the group name or the struct
name is added to the beginning of the field name to create the name for the column in the system
catalog. For instance, the field myfield in the group mygroup becomes mygroupmyfield in the
system catalog, and a field named myfield that’s part of a struct field named mystruct becomes
mystructmyfield in the system catalog. These are the names you can use to access data in the group
or struct field—for example:

SELECT mystructmyfield FROM mytable

Note the following:

 If the repository specifies a member prefix for the group, the member prefix is used instead of
the group name. (Member prefixes do no apply to struct fields.)

 To omit group and struct field names from column names, use the SODBC_NOGROUPNAME
environment variable. See “Removing group and struct names from column names” on
page 3-25.

 If the group or struct field is an array, each element is mapped to a separate column and all
array fields are included in a read-only overlay column as described in “Arrays” on page 3-12.

Open filename field (S/DE Repository)

For greater flexibility, use environment variables in the Open filename field of Repository file
definitions to specify the location of your data files. These environment variables are stored in the
system catalog and must also be set in the system in which the database is installed, generally in the
environment setup file or the connect file. For information, see “Using an environment variable in
the Open filename field” on page 3-9.

You can also use the USR_DD_FILNAM routine in the xfODBC Database Administrator (DBA)
program to customize the Open filename field when you generate a system catalog. For more
information, see “Using USR_DD_FILNAM to change replaceable characters” on page 3-10.

Overlay fields

xfODBC supports overlay fields.

Relations

Relations established between tables, as defined in Repository, are supported in xfODBC. Use of
relations is application dependent.

Preliminary Steps
System Catalog Generation Issues

xfODBC User’s Guide 10.1 (6/13) 3-17

Structures and table names

The dbcreate utility generates a caution if you attempt to generate a system catalog from a
structure assigned to more than one file definition unless you use the ODBC table name option in
Repository. If you use this option to assign an ODBC table name to file/structure combinations,
dbcreate will use the ODBC table names, rather than the structure names, in the generated system
catalog. See the “Assigning Structures to Files” in the “Working with Files” chapter of the
Repository User’s Guide for information. (Note that this is not related to the
SODBC_ODBCNAME environment variable, which enables you to use the field name specified in
the Repository Alternate name field attribute.)

Temporary files

By default, when dbcreate generates a system catalog, it includes tables that describe temporary
files (files for which the Repository Temporary flag is set). To omit tables that describe temporary
files, set the SODBC_TMPOPT environment variable as described in “Excluding tables attached to
temporary files” on page 3-26.

User-defined data types

For information on creating routines that manipulate data in user fields, see chapter 7, “Creating
Routines for User-Defined Data Types.”

Zeros, spaces, and null values

For information on how xfODBC interprets zeros, spaces, and null values, and for information on
how to prevent fields from being updated with null values (and other values that xfODBC considers
null), see “Preventing null updates and interpreting spaces, zeros, and null values” on page 3-27.

Other field attributes

The dbcreate utility and DBA also use the following repository settings as column attributes in the
system catalog:

 Field size, type, and precision

 “Excluded by ReportWriter” settings (see “Including and omitting fields” on page 3-23)

 Alternate name, if SODBC_ODBCNAME is set when the system catalog is generated (see
“Renaming columns for clarity” on page 3-24)

 Negative-allowed and range validation attributes, which are used to determine if numeric fields
are signed or unsigned (see “Instructing dbcreate to ignore the “Negative allowed?” field in
Repository” on page 3-24)

Preliminary Steps
Setting Options and File Locations

3-18 xfODBC User’s Guide 10.1 (6/13)

Setting Options and File Locations
The following sections list ways you can set file locations, generation options, and data conversion
options. Many of these can be set with environment variables, some of which are set at installation.
Other environment variables aren’t set until you set them. Note the following:

 For information on system catalog generation settings you make with dbcreate or DBA
options, see “Generating a system catalog from the command line” on page 4-3 and “Using
DBA to generate a system catalog” on page 4-6.

 We use the term “environment variable” for all platforms, even though the term isn’t generally
used for OpenVMS. If you’re on OpenVMS, substitute “logical” for “environment variable.”

 For information on how to set environment variables and what we mean by “system-wide” and
“the environment”, see “Setting system-wide variables” on page 3-30 and “Setting variables in
the environment” on page 3-31.

 See “Appendix A: Environment Variables” for a full list of xfODBC environment variables.

Specifying file locations
Before you can generate a system catalog, you must specify the location of data files (see
“Specifying the location of data files” on page 3-21). If you’ve set any environment variables in an
environment setup file, you must also specify the location of that file (see “Specifying the location
of an environment setup file” on page 3-20).

In addition, other file locations must be set before you can open a system catalog in DBA, use a
conversion setup file, or access data with an ODBC-enabled application. See

 “Specifying the connect file location (GENESIS_HOME)” on page 3-19. This is set
automatically, but you can change the setting.

 “Specifying a conversion setup file” on page 3-26. This is necessary only if you’ve created a
conversion setup file.

Specifying the location of DBA and dbcreate
The location of the DBA program is automatically set. Although it’s seldom necessary, you can
change this setting. See “SODBC_DBA” on page A-7.

The location of dbcreate is automatically set system-wide when you install xfODBC (except on
64-bit Windows). This enables you to run dbcreate from the directory that contains the system
catalog.

 On 32-bit Windows and on UNIX, the location of dbcreate is added to the PATH setting.

 On OpenVMS, dbcreate is set as a DCL command when xfODBC is installed.

Note that for client/server configurations, the location of dbcreate should be set on the server.

Preliminary Steps
Setting Options and File Locations

xfODBC User’s Guide 10.1 (6/13) 3-19

Specifying the connect file location (GENESIS_HOME)
The GENESIS_HOME environment variable must be set to the directory that contains the connect
files, which specify the location of system catalogs and data files. (See chapter 5, “Setting Up a
Connect File.”) It is used by the xfODBC driver, DBA, and dbcreate, and it’s used when you
generate system catalogs, when you modify system catalogs, and when you connect to the database.
Note the following:

 GENESIS_HOME is required and is automatically set when you install xfODBC. You can,
however, change this setting. Note that because GENESIS_HOME is set at the system level, if
you install both 32-bit and 64-bit versions of Connectivity Series on the same 64-bit Windows
machine, the last version installed determines the GENESIS_HOME setting by overwriting the
previous setting. In this case, we recommend that you set GENESIS_HOME to a location
outside Program Files and use it for both 32-bit and 64-bit.

 For stand-alone configurations on Windows and UNIX, GENESIS_HOME must be set in the
environment.

 For stand-alone configurations on OpenVMS, GENESIS_HOME must be set in
CONNECT_STARTUP.COM.

 In client/server configurations, GENESIS_HOME must be set in opennet.srv on the server,
and it must be set before starting the SQL OpenNet server (which only uses settings made
before it’s started and doesn’t use settings in synergy.ini). Note that as distributed,
opennet.srv already defines GENESIS_HOME. Additionally, GENESIS_HOME must also be
set in the environment on the client unless you set GENESIS_MSG_FILE.

 For Windows Vista and higher, we recommend that you change the GENESIS_HOME setting
and move files for the sample database and repository to a writable location outside of Program
Files so that files can be created and updated.

If you change the setting for GENESIS_HOME, xfODBC may not be able to locate the error
message file, which is required to generate a system catalog. If the GENESIS_MSG_FILE
environment variable is not set, xfODBC looks for the error message file in
GENESIS_HOME\lib. See “Specifying the name and location of the error message file”
below for more information.

Preliminary Steps
Setting Options and File Locations

3-20 xfODBC User’s Guide 10.1 (6/13)

Specifying the name and location of the error message file
To generate a system catalog, xfODBC must be able to locate the error message file. If the
GENESIS_MSG_FILE environment variable is set, dbcreate uses this setting to locate the file. If
this variable is not set, dbcreate attempts to locate the default error message file, sql.msg, in the
GENESIS_HOME\lib directory. Note the following:

 When you install Connectivity Series, GENESIS_MSG_FILE is automatically set to sql.msg,
the default error message file. Note, however, that if you install both 32-bit and 64-bit versions
of Connectivity Series on a 64-bit Windows machine, the last version installed determines
which sql.msg file this is set to. (The 32-bit installation and the 64-bit installation each have an
sql.msg file.)

 If you set GENESIS_MSG_FILE, set it in the environment, and set it to the path and filename
of the error message file. For client/server configurations, it must be set in the environment on
the client and on the server. (For services such as web servers that use the xfODBC driver, you
can use the Env. variables field in the xfODBC Setup window to set this on the client. For
information, see “Adding a user or system DSN” on page 8-5.)

For information on editing the sql.msg file, see “Editing the SQL Message File” on page 11-10.

Specifying the location of an environment setup file
An environment setup file is a file that you write to define environment variables that are used by
xfODBC when locating Synergy data files. It typically has an .ini filename extension and is placed
in the GENESIS_HOME directory, although these are not requirements. (For information on
environment setup files, see “Setting environment variables in an environment setup file” on
page 3-34.)

To use an environment setup file, the SODBC_INIFIL environment variable must be set to the path
and filename of the environment setup file. Note the following:

 SODBC_INIFIL is used by the xfODBC driver when you connect to a database. (It is not used
by DBA or dbcreate, so it is not used when you create or modify a system catalog.)

 In a stand-alone configuration, set SODBC_INIFIL in a connect file or in the environment.

 In a client/server configuration, set SODBC_INIFIL in the environment on the server or in the
opennet.srv file (Windows only).

 SODBC_INIFIL is not set during installation.

If SODBC_INIFIL is set in the environment when you access your Synergy data, xfODBC
will ignore environment variables set in the connect file. To use environment variables set in
the connect file, either make sure SODBC_INIFIL is not set or is set in the connect file.

Preliminary Steps
Setting Options and File Locations

xfODBC User’s Guide 10.1 (6/13) 3-21

Specifying the location of data files
For repository files, you can specify the path and filename

 at the command-line for dbcreate. (See “Generating a system catalog from the command line”
on page 4-3.)

 in the Generate System Catalog window of the DBA program. (See “Using DBA to generate a
system catalog” on page 4-6.)

For Synergy data files, you can specify

 the filename or the path and filename in the Open filename field of Repository. If the path is
not specified here, xfODBC uses the path in the datasource line of the connect file.

 the path in the dictsource or datasource line of the connect file. Settings in these lines are used
if no path is specified in the Repository Open filename field, and the datasource setting is used
only if no data files exist in the dictsource directory. xfODBC always gets the data file name
from the Open filename field. (See “The dictsource and datasource Lines” on page 5-3.)

Note that we recommend using an environment variable to specify the path in Open filename
field of the repository rather than relying on dictsource or datasource.

There are two types of environment variable you can use to specify the location of data files:

 User-created data location variables—i.e., environment variables you create and use in the
place of hard-coded paths and filenames.

 Repository file location variables. These are RPSDAT, RPSMFIL, and RPSTFIL. These
environment variables are automatically set by the installation (except on 64-bit Windows),
and in some cases xfODBC automatically uses their settings.

User-created data location variables

Rather than hard-coding a path in the Open filename field of Repository, you can define your own
data-location environment variables from the command line for dbcreate or with the Generate
System Catalog window of DBA. Note the following:

 These variables can be used for both system catalog generation and data access. For example,
if you use one of these variables at the command line for dbcreate or in the Generate System
Catalog window of DBA, the variable is used to locate the repository files used to generate the
system catalog. On the other hand, if you use one of these variables in the Open filename field
of Repository or in the datasource line of the connect file, xfODBC uses the variable to locate
database files for data access.

 User-created data location variables can be defined in the connect file, in an environment setup
file, and in the environment.

 For client/server configurations, user-created data location variables must be defined on the
server.

Preliminary Steps
Setting Options and File Locations

3-22 xfODBC User’s Guide 10.1 (6/13)

 To access data, xfODBC uses the following steps to resolve data-location variables that point to
database files:

1. If SODBC_INIFIL is not set or is set in the connect file, xfODBC first considers variables
defined in the connect file. (If SODBC_INIFIL is set in the environment, xfODBC ignores
environment variables set in the connect file.)

2. Next, xfODBC searches the environment setup file for variable definitions.

3. xfODBC then considers variables defined in the current environment, and then it considers
variables defined system-wide (for both stand-alone and client/server configurations).

4. Finally, if xfODBC is still not able to resolve the variable after checking the connect file,
the environment setup file, and the environment and system-wide definitions, xfODBC
returns an error message indicating that the file was not found.

If you use a hard-coded path in the Open filename field of a Repository file definition, at the
command line for DBA or dbcreate, or in the Generate System Catalog Window of the DBA, this
path is the only one xfODBC considers when attempting to locate the data file.

See “Create a connect file” on page 2-5 for an example data location variable, XFDBTUT, that
works with the tutorial. See step 4 on page 4-7 for an example used in the Generate System Catalog
window of DBA.

Specifying repository file locations

When locating repository files for generating the system catalog, DBA and dbcreate search in
different ways:

 The dbcreate utility looks first to the command line and uses any repository files specified by
the -r option. If the command line doesn’t include the -r option, dbcreate uses the RPSMFIL
and RPSTFIL environment variable settings. If these aren’t set, dbcreate looks for the
rpsmain.ism and rpstext.ism files in the directory specified by the RPSDAT environment
variable. If these files don’t exist in this location, dbcreate returns an error.

 DBA looks first to the RPSMFIL and RPSTFIL environment variable settings. If these have
been set, DBA uses the settings to pre-fill the Main repository and Text repository fields of the
Generate System Catalog input window. If you change these fields, the new values will
override the RPSMFIL and RPSTFIL settings. If RPSMFIL and RPSTFIL are blank, the Main
repository and Text repository fields will be blank when the Generate System Catalog input
window opens.

Note the following:

 RPSDAT specifies the location (path only, not filename) of the repository files. This variable
works only if the repository files are named rpsmain.ism and rpstext.ism. dbcreate uses this
variable, but DBA does not.

 RPSMFIL specifies the path and filename of the repository main file. Both dbcreate and DBA
use this variable.

Preliminary Steps
Setting Options and File Locations

xfODBC User’s Guide 10.1 (6/13) 3-23

 RPSTFIL specifies the path and filename of the repository text file. Both dbcreate and DBA
use this variable.

 The installation automatically sets RPSDAT, RPSMFIL, and RPSTFIL (except on 64-bit
Windows), but they’re not required for xfODBC. If your repository files are not in one of these
directories, you must hand-code the paths to the repository files to generate or modify the
system catalog.

 On Windows, these variables must be set in the environment or in synergy.ini. (Note that
dbcreate doesn’t use environment variables set in synergy.ini.)

 For UNIX and OpenVMS, these variables must be set in the environment.

Setting catalog generation options
In addition to the options you set at the command line for dbcreate or in the Generate System
Catalog window of DBA, you can specify some system catalog generation options by setting
environment variables and S/DE Repository options. You are not required to set any of these
options, but if you set any of the environment variables documented here, you must set them in the
environment. We recommend creating a batch file, shell script, or DCL command file, setting the
environment variables in this file, and then running the file before using the DBA program or
dbcreate.

See “Setting Runtime Data Access Options” on page 8-13 for information on options that affect the
way xfODBC behaves as it accesses data, including more settings that determine how the xfODBC
driver interprets data.

Including and omitting fields
If the S/DE Repository option “Excluded by ReportWriter” is checked for a field, dbcreate will not
include the field in the system catalog, so the field will not be available to ODBC-enabled
applications. To include the field in the system catalog, clear this option in Repository. (See
“Defining a New Field” in the “Working with Fields” chapter of the Repository User’s Guide for
information.) However, if you want all fields to be included in the system catalog, regardless of
their “Excluded by ReportWriter” settings, set the SODBC_CNVOPT environment variable.

Note the following:

 To include all fields, set SODBC_CNVOPT to 1.

 Set this variable in the environment. For client/server configurations, set it where you run
dbcreate.

 If a field is used as a structure tag or key segment, it’s automatically included, regardless of the
report exclusion flag or the SODBC_CNVOPT setting.

Preliminary Steps
Setting Options and File Locations

3-24 xfODBC User’s Guide 10.1 (6/13)

Omitting keys
By default all keys defined in the repository are used to define indexes in the system catalog. To
omit a key from the system catalog, set the S/DE Repository option “Excluded by ODBC” for the
key definition. (See “Defining Keys” in the “Working with Files” chapter of the Repository User’s
Guide for more information.) Note that this option does not affect the inclusion of fields in the
system catalog (even fields specified in the key definition), just the key. Every field that is a key or
key segment is included in the system catalog. See “Tags and optimization” on page 10-8 for
recommendations that utilize this option.

Instructing dbcreate to ignore the “Negative allowed?” field in Repository
The dbcreate utility and the xfODBC driver distinguish between signed and unsigned numeric
fields. When dbcreate generates a system catalog, it checks the “Negative allowed?” repository
setting to determine if the resulting column will be signed or unsigned.

 If the “Negative allowed?” setting is No, the resulting column will be unsigned.

 If the “Negative allowed?” setting is Only, OrZero, or Yes, the resulting column will be signed
unless a range that includes only positive values is assigned to the field, in which case the
column will be unsigned.

Prior to Connectivity Series version 8.3, dbcreate ignored the “Negative allowed?” field and set all
fields to signed unless they had validation ranges that were limited to positive values (in which case
the resulting columns were unsigned). To revert to this behavior, set the SODBC_NOUNSIGNED
environment variable to any value.

 By default, SODBC_NOUNSIGNED is not set.

 Set SODBC_NOUNSIGNED in the environment. For client/server configurations, set it where
you run dbcreate.

 Set SODBC_NOUNSIGNED before generating the system catalog.

Renaming columns for clarity
Repository field names that are short and cryptic may not make good column names. As an
alternative, you can use Alternate name field values (specified in the repository) as column names
by setting the SODBC_ODBCNAME environment variable. When SODBC_ODBCNAME is set,
xfODBC uses a field’s Alternate name value if it’s set; otherwise it uses the field’s name. Note the
following:

 To use the values in the Repository Alternate name field as column names, set
SODBC_ODBCNAME to 1.

 Set SODBC_ODBCNAME in the environment. For client/server configurations, set it where
you run dbcreate.

Note that this is not related to the Repository ODBC table name option, which enables you to
assign ODBC table names to file/structure combinations.

Preliminary Steps
Setting Options and File Locations

xfODBC User’s Guide 10.1 (6/13) 3-25

Generating one column for an array field
By default, each element in an array field is mapped to a separate column in the system catalog (see
“Arrays” on page 3-12). You can, however, use the SODBC_COLLAPSE environment variable to
instruct dbcreate to map all elements of an array field to a single system catalog column if the
number of elements in the array is greater than or equal to the limit you specify—that is, the
number you set SODBC_COLLAPSE to. (Note that you should use SODBC_COLLAPSE if a
system catalog table will have more than 254 columns. Some ODBC-enabled applications do not
permit tables with more than 254 columns.)

For example, if you set SODBC_COLLAPSE to 10 and your repository has a structure with three
array fields—one with six elements, one with eight elements, and one with 10 elements—the
corresponding table in the system catalog will have 15 columns: six for the first array, eight for the
second array, and 1 for the third array (because it reached the limit set by SODBC_COLLAPSE).

Note the following:

 If you set SODBC_COLLAPSE, set it in the environment. For client/server configurations, set
it in the environment where you run dbcreate.

 SODBC_COLLAPSE does not affect group arrays. Group arrays cannot be collapsed.

Changing the position delimiter used for arrays
When you generate a system catalog for a repository that has an array field, each element in the
array is mapped as a separate system catalog column with a name that consists of the array name,
the element’s position in the array, and pound signs (#) to delineate position values. (See “Arrays”
on page 3-12) For example, a [2,2] array field with the name myarray will be mapped to the
following: myarray#1#1, myarray#1#2, myarray#2#1, and myarray#2#2.

You can, however, change the character used to delineate position values by setting the
SODBC_TOKEN environment variable to the character you want to use. (Make sure you set it to a
valid SQL identifier value for your ODBC applications.) For example, if you set
SODBC_TOKEN=_, the myarray field described above would result in the following system
catalog columns: myarray_1_1, myarray_1_2, myarray_2_1, and myarray_2_2.

If you set SODBC_TOKEN, set it in the environment. For client/server configurations, set it where
you run dbcreate.

Removing group and struct names from column names
By default, if a field is part of a group or struct field in the repository, the group or struct name is
added to the field name to create the column name for the system catalog. (See “Groups and struct
fields” on page 3-16 for information.) To omit group and struct names from column names, use the
SODBC_NOGROUPNAME environment variable—but do this only if you are certain the resulting
column names will be unique.

Preliminary Steps
Setting Options and File Locations

3-26 xfODBC User’s Guide 10.1 (6/13)

Note the following:

 Set SODBC_NOGROUPNAME to any value to omit group and struct names.

 Set this variable before generating your system catalog.

 Set this variable in the environment. For client/server configurations, set it where you run
dbcreate.

Excluding tables attached to temporary files
By default, when dbcreate generates a system catalog, it includes tables that describe temporary
files (files for which the Repository Temporary flag is set). To exclude tables attached to temporary
files from the system catalog, set SODBC_TMPOPT to 1. Set SODBC_TMPOPT in the
environment. For client/server configurations, set it where you run dbcreate.

Specifying a conversion setup file
Conversion setup files are used when you regenerate a system catalog. They enable you to make
changes to system catalog settings, such as the paths and filenames for data files, access levels for
tables, and so forth. To use a conversion setup file, you must generate one and then specify it before
or as you use DBA or dbcreate to regenerate the system catalog. (For information on what you can
do with a conversion setup file and on generating one, see “Generating and Editing a Conversion
Setup File” on page 6-27.)

To specify a conversion setup file as you use dbcreate or DBA, use the -i command line option for
dbcreate, or use the Conversion setup field in the Generate System Catalog window of the DBA.
For information on dbcreate command line options, see “Generating a system catalog from the
command line” on page 4-3. For information on the Conversion setup field, see “Using DBA to
generate a system catalog” on page 4-6.

To specify the file before you use DBA or dbcreate, set the SODBC_CNVFIL environment
variable to the path and filename of the conversion setup file. If SODBC_CNVFIL is set, DBA and
dbcreate automatically use the conversion setup file whenever you regenerate the system catalog.
You won’t need to set a command line option, and the Generate System Catalog window of DBA
will automatically specify the conversion setup file. In addition, if SODBC_CNVFIL is set, tables
you delete in DBA will also be marked for deletion in the conversion setup file.

If a group or struct field is an array, dbcreate generates a column for each element in the
array (in addition to an overlay column), using the naming convention documented in
“Arrays” on page 3-12. However, if SODBC_NOGROUPNAME is set, instead of using the
group or struct name as part of the names for these columns, the names will start with
“GR”. For example, if a repository has a group or struct field named myarray, that is a [2,2]
array with a single field, myfield, the group or struct field will be mapped to the following
columns: myarray (the overlay field), GR#1#1MYFIELD, GR#1#2MYFIELD,
GR#2#1MYFIELD, and GR#2#2MYFIELD.

Preliminary Steps
Setting Options and File Locations

xfODBC User’s Guide 10.1 (6/13) 3-27

Note the following:

 The SODBC_CNVFIL environment variable should not be set until the conversion setup file
has been created.

 If the SODBC_CNVFIL environment variable is set, it must be set in the environment.

 For client/server configurations, set SODBC_CNVFIL where you run dbcreate, and put the
conversion setup file where it can be accessed by dbcreate.

 If you use the conversion setup file command line option (-i) for dbcreate without specifying a
filename, the conversion setup file is not used—even if SODBC_CNVFIL is set.

Using decimal information in the repository format string
If your repository has a field that’s not an implied decimal, but has a format string with a decimal
point, you can instruct dbcreate and DBA’s Generate option to use the decimal information in the
format string to create an implied decimal column in the system catalog. To do this, set the
SODBC_USEFORMAT environment variable to 1 before you generate the system catalog. For
example, if SODBC_USEFORMAT is set to 1 and your repository has a d5 field with an XXX.XX
format string, the field will appear as a d5.2 column in the system catalog.

Note the following:

 To use the decimal information in the format string, set SODBC_USEFORMAT to 1.

 Set SODBC_USEFORMAT in the environment. For client/server configurations, set it where
you run dbcreate.

Preventing null updates and interpreting spaces, zeros, and null values
xfODBC uses the “Null allowed” setting for a column to determine the following:

 Whether an alpha, decimal, date, or time column can be updated with a null value or some
other value that xfODBC considers equivalent to null (spaces for alpha fields and alpha dates,
and zeros for decimal and time fields).

 How nulls and spaces in some columns are interpreted. See “How spaces, null values, and
zeros are interpreted when read from a database” on page 3-29.

Note that if “Null allowed” is set to no for a column, the column must be included in every INSERT
statement for the table.

While in DBA, changes you make to tables automatically and immediately update both the
system catalog and the conversion setup file specified by the SODBC_CNVFIL
environment variable. Be careful to use SODBC_CNVFIL to specify the exact conversion
setup file for the system catalog you are modifying before you open DBA.

Preliminary Steps
Setting Options and File Locations

3-28 xfODBC User’s Guide 10.1 (6/13)

To see what this setting is for a column, use SQLDescribeCol to get the NullablePtr setting:

 If NullablePtr=SQL_NULLABLE=1, nulls are allowed for the column (i.e., “Null allowed” is
set to yes).

 If NullablePtr=SQL_NO_NULLS=0, nulls are not allowed (i.e., “Null allowed” is set to no).

You can also use the DBA program to view the “Null allowed” setting for the column (see
“Viewing information about a column” on page 6-24).

Setting “Null allowed” for a column

To set this property for a column, set the “Null allowed” Repository option for the field before
generating the system catalog. (See “Validation information” in the “Working with Fields” chapter
of the Repository User’s Guide.)

 If the “Null allowed” Repository option is set to Yes or No for a repository field, dbcreate uses
this setting for the system catalog column it generates for that field. For alpha, date, decimal,
and time fields, you can set this option to Yes, No, or Default. For other fields, it can be set
only to No or Default.

 If the “Null allowed” Repository option is set to Default for a repository field, the system
catalog column generated for that field will be set to allow nulls unless it is a Boolean, binary,
or integer field, or a non-date field that is part of the definition for the first key for the table.
(The SODBC_NONULL environment variable changes this behavior, but this environment
variable is deprecated. See SODBC_NONULL in the “Environment Variables” chapter of
Environment Variables & System Options for more information.)

The “Null allowed” setting is yes for columns that are part of a table added with CREATE TABLE
unless you use NOT NULL in the CREATE TABLE statement. See CREATE TABLE on
page B-53.

We recommend that you set every repository field used in a key definition to preclude nulls
(i.e., set the Repository “Null allowed” option for the field to No), except those fields that
must actually be able to accept null values. This is particularly important if you access your
data in a .NET environment. The ADO.NET Entity Framework does not use nullable fields
to optimize queries and ignores primary keys that contain nullable fields.

Preliminary Steps
Setting Options and File Locations

xfODBC User’s Guide 10.1 (6/13) 3-29

How spaces, null values, and zeros are interpreted when read from a database

When reading from a database, the xfODBC driver interprets spaces and null values differently for
some columns depending on how “Null allowed” is set. Note the following:

 xfODBC interprets zero-length strings as nulls.

 xfODBC interprets invalid data as null, unless you set the convert_error option (see “Setting
the convert_error Option” on page 5-4).

 The behavior for user types is the same as their base types. For example, see the Alpha row in
the table below for information on how the “Null allowed” property affects user-defined alpha
fields.

Data type Column value
If “Null allowed” is yes,a
value read as…

a. I.e., if SQL DescribeCol returns NullablePtr=SQL_NULLABLE=1 for the column.

If “Null allowed” is no,b
value read as…

b. I.e., if SQL DescribeCol returns NullablePtr=SQL_NO_NULLS=0 for the column.

Alpha Spaces Null Spaces

Null Spaces (filled to max length) Spaces (filled to max length)

Binary Zero Zero Zero

Boolean Zero False False

Decimal Spaces Null Zero

Zero Zero Zero

Null Null Zero

Date Spaces Null Null

Zero Null Null

Null Null 1-1-0001

Integer Zero Zero Zero

Time Spaces Null Null

Zero Null Null

Null Null 00:01

Preliminary Steps
Setting Options and File Locations

3-30 xfODBC User’s Guide 10.1 (6/13)

Setting environment variables
This section describes the methods you can use to set environment variables. The method you
should use depends on the configuration of xfODBC (client/server or stand-alone), what programs
you want the setting to affect, and whether you are using Windows, UNIX, or OpenVMS. You can
set environment variables by

 typing them at a Windows, UNIX, or OpenVMS prompt. See page 3-31.

 writing a batch file, shell script, or DCL command file that runs in the same environment you
run dbcreate in. See page 3-32.

 entering them in the connect file. (This is especially useful for data file locations.) See
page 3-33.

 entering them in the xfODBC Setup window. See page 3-34.

 creating an environment setup file, setting the variables in this file, and setting
SODBC_INIFIL to the name of this setup file. See page 3-34.

 entering them in synergy.ini. See page 3-34.

 entering them in opennet.srv. See page 3-35.

 entering them in net.ini. See page 8-26.

 entering them in System Properties on Windows. See page 3-35.

 entering them in a log-in file on UNIX. See page 3-35.

 entering them in a log-in file on OpenVMS. See page 3-35.

Environment variables are capitalized in our documentation to distinguish them from filenames and
paths, which are usually lowercase or a combination of uppercase and lowercase. You are not
required to follow the case in our examples when you enter commands and statements on Windows
or OpenVMS systems, but you must for UNIX.

Setting system-wide variables

On Windows and OpenVMS, environment variables for services and ODBC-enabled applications
must be set system wide. On UNIX, which doesn’t support system-wide environment variables,
you must set environment variables before starting the program or service that uses them. (Often
it’s convenient to do this with a shell script.)

For client/server configurations, set environment variables only on the server. Environment
variables set on the client are not recognized.

Preliminary Steps
Setting Options and File Locations

xfODBC User’s Guide 10.1 (6/13) 3-31

To set a system-wide environment variable,

 on Windows, set it in the Environment Variables window or on the Environment tab. See
“Setting environment variables in System Properties” on page 3-35.

 on OpenVMS, use the /SYS command when you set the environment variables. For an
example, see “Setting environment variables in a batch file, shell script, or DCL command file”
on page 3-32.

Setting variables in the environment

When we use the term “the environment” to describe where an environment variable should be set,
you should set it

 at a Windows, UNIX, or OpenVMS prompt.

 in a batch file, shell script, or DCL command file.

 in a log-in file on UNIX or OpenVMS.

 in the Environment Variables window or on the Environment tab. See “Setting environment
variables in System Properties” on page 3-35.

Note that this list does not include environment variables set in a connect file, environment setup
file, synergy.ini, or opennet.srv. This is because variables set in these locations are available only
to the Connectivity Series products that use them. They’re not available to other programs running
in the environment.

Setting environment variables from a Windows, UNIX, or OpenVMS prompt
Environment variables set at a command prompt are temporary. They exist only in the current
environment and do not apply when you leave the environment. For example:

 At a Windows prompt, enter

SET DATA=%GENESIS_HOME%\dat

 At a UNIX prompt, enter

DATA=$GENESIS_HOME/dat; export DATA

 At an OpenVMS prompt, enter

DEFINE DATA GENESIS_HOME:[DAT]

In these examples, the environment variable DATA is set to a directory named “dat”, a subdirectory
of the GENESIS_HOME directory.

Preliminary Steps
Setting Options and File Locations

3-32 xfODBC User’s Guide 10.1 (6/13)

Setting environment variables in a batch file, shell script, or DCL command file
You can also set environment variables from a batch file (Windows), shell script (UNIX), or DCL
command file (OpenVMS). The advantage of this method is that the variables are set only when
necessary. Moreover, they are no longer in effect once the current process terminates—for example,
when you close a Command Prompt window in Windows, log off in OpenVMS, or exit a shell on
UNIX. (Note that on UNIX, an environment variable must be exported to the shell for it to be
available to additional programs run from the shell.) This is a particularly good way to store
variables that need to be set only for system catalog generation.

1. Using a text editor, create a batch file, shell script, or DCL command file and set xfODBC
environment variables in the file. Use standard environment variable syntax. For example:

 Windows:

set SODBC_CNVOPT=1

 UNIX:

SODBC_CNVOPT=1 ;export SODBC_CNVOPT

 OpenVMS:

DEFINE/SYS SODBC_CNVOPT 1

(/SYS is optional. It sets the environment variable as a system-wide logical on OpenVMS.)

2. From the command line, run the batch file, script, or DCL command file.

3. After running the file, run dbcreate or DBA from the command line in the same environment.

On UNIX and OpenVMS, your xfODBC distribution includes shell scripts (setodbc and startnet)
or a DCL command file (STARTNET.COM) you can use to specify environment variables. Note
the following:

 These files are replaced every time you install Connectivity Series. So if you set an
environment variable in one of these files, you’ll have to reset it after installing.

 To use setodbc on UNIX, you must have configured your session for Synergy/DE by running
setsde. For information, see “SQL Connection and xfODBC on UNIX” in the “Configuring
Connectivity Series” chapter of the Installation Configuration Guide.

 If you use startnet or STARTNET.COM, environment variable settings should precede the
line that starts the SQL OpenNet server. On UNIX, this is the vtxnetd command. On
OpenVMS, this is the command that runs NET.COM. For example:

SODBC_ODBCNAME=1; export SODBC_ODBCNAME
nohup vtxnetd -p1958 log &
sleep 1

Preliminary Steps
Setting Options and File Locations

xfODBC User’s Guide 10.1 (6/13) 3-33

Setting environment variables in a connect file
You can also use your connect file to define environment variables for the xfODBC driver. These
definitions are read by the xfODBC driver when connecting to a database and remain in effect for
the duration of the connection. Environment variables set in the connect file are used to locate data
files and set some data access options. Note the following:

 Do not include the SET (Windows), EXPORT (UNIX), or DEFINE (OpenVMS) commands in
the environment variable definition, and do not use other environment variables in the
definition. For example, the following illustrates the syntax used to set an environment variable
on a Windows system.

XFDBTUT=C:\Program Files\Synergex\SynergyDE\connect\synodbc\dat

 If SODBC_INIFIL is set in the environment, xfODBC won’t use environment variable settings
in the connect file. If SODBC_INIFIL is set in the connect file, xfODBC looks to the connect
file for environment variable definitions before it looks in the environment setup file. (See
“Specifying the location of an environment setup file” on page 3-20 for more information.)

 If you define more than one environment variable, put them on separate lines. For example:

CUST=c:\data\customer.ism
ORDER=c:\data\orders.ism
PLANTS=c:\data\plants.ism

The following connect file examples set an environment variable named XFDBTUT (an
environment variable used in the sample Synergy database and set in the sample connect file):

 Windows:

dictsource "C:\Program Files\Synergex\SynergyDE\connect\synodbc\dict\"
datasource ";C:\\Program Files\\Synergex\\SynergyDE\\connect\\syn-
odbc\\dat;"
XFDBTUT=C:\Program Files\Synergex\SynergyDE\connect\synodbc\dat

 UNIX:

dictsource /usr/synergyde/connect/synodbc/dict
datasource ;/usr/synergyde/connect/synodbc/dat;
XFDBTUT=/usr/synergyde/connect/synodbc/dat

 OpenVMS:

dictsource DKA300:[SYNERGYDE.CONNECT.SYNODBC.DICT]
datasource ;DKA300:[SYNERGYDE.CONNECT.SYNODBC.DATA];
XFDBTUT=DKA300:[SYNERGYDE.CONNECT.SYNODBC.DATA]

For more information on connect files, see chapter 5, “Setting Up a Connect File.”

If you set SYNCENTURY and SYNBASEDATE, you must set them in the connect file if the
connect file is on the server.

Preliminary Steps
Setting Options and File Locations

3-34 xfODBC User’s Guide 10.1 (6/13)

Setting environment variables in the xfODBC Setup window
The xfODBC Setup window has two fields you can use to set environment variables used for data
access (not system catalog generation).

 The “Appended to connect string” field, which enables you to define environment variables
used by the target database on a server. Note that to use this field, you must use SQL OpenNet
(i.e., you must select Net in the “Vortex driver” field of the xfODBC Setup window).

 The “Env. variables” field, which enables you to set environment variables used by the
xfODBC driver on the client. This is the only place these environment variables can be set for
services such as web servers that use the xfODBC driver.

For information on the xfODBC Setup window and the syntax for setting environment variables in
these fields, see “Adding a user or system DSN” on page 8-5.

Setting environment variables in an environment setup file
An environment setup file is one way to store and activate all of the data environment variables you
need when connecting to a Synergy database. An environment setup file is a text file you write; it
typically has an .ini filename extension and is placed in the GENESIS_HOME directory, though
these are not requirements. Note the following:

 Define environment variables in the same way you define them in a connect file (except that
you can use environment variables in the definition)—for example:

XFDBTUT=%CONNECTDIR%synodbc\dat

 Assign the environment setup file’s path and filename to SODBC_INIFIL in the environment.
For stand-alone configurations, it can also be set in the connect file. For client/server
configurations, it must be set on the server in the environment or in the opennet.srv file
(Windows only). xfODBC is coded to look for a file assigned to this variable and to read it for
data environment variables.

Setting environment variables in synergy.ini (Windows)
Because the DBA program, xfdba.dbr, is a Synergy application and can read synergy.ini, you can
use this to set environment variables used by DBA. This is read every time you run dbr, the
Synergy runtime.

The following is an example of an environment variable set in synergy.ini:

SODBC_DBA=%CONNECTDIR%synodbc\dba

Note that in synergy.ini, SET is not included in the syntax, and an environment variable can be
used as part of another environment variable’s definition.

The xfODBC driver and dbcreate don’t recognize environment variables set in synergy.ini.

Preliminary Steps
Setting Options and File Locations

xfODBC User’s Guide 10.1 (6/13) 3-35

Setting environment variables in opennet.srv (Windows)
Environment variables used by the SQL OpenNet server can be defined in the opennet.srv file. For
example, as distributed, the opennet.srv file defines GENESIS_HOME before starting the
Synergy/DE OpenNet Server service (SynSQL):

GENESIS_HOME=%CONNECTDIR%synodbc\
.
.
.
vtxnetd.exe -k67834 -p1958 log

This sets the environment variable and then launches the service, overriding any system-set
variable. Note that SET is omitted.

For more information on opennet.srv, see “Customizing the opennet.srv file” in the Windows
section of the “Configuring Connectivity Series” chapter of the Installation Configuration Guide.

Setting environment variables in System Properties
On Windows, you can set system-wide environment variables from System Properties. Select
System, available from Windows Control Panel. (You may also need to select “Advanced System
Settings” or click “Change settings.”) Go to the Advanced tab of the System Properties window,
click the Environment Variables button, and then click the New button under the System variables
area of the dialog box.

Setting environment variables in log-in files on UNIX
On UNIX systems, you can set environment variables in the log-in file. The log-in file for UNIX
systems is .profile if you’re using Bourne or Korn shell; if you’re using C Shell, the log-in file is
.login. After setting an environment variable on UNIX, you must export it unless you have the
“auto-export” feature turned on in your shell. (Refer to your UNIX reference manual for details on
auto-export. Not all UNIX systems offer this option.)

For example:

GENESIS_HOME=$CONNECTDIR/synodbc
export PATH GENESIS_HOME

Setting environment variables in log-in files on OpenVMS
On OpenVMS systems, you can set environment variables (logicals) in your user log-in file or in
the system-wide log-in file located in SYS$MANAGER. You can also set system-wide
environment variables in SYS$MANAGER:CONNECT_STARTUP.COM, but remember that
this file is replaced every time you install Synergy products. The following is an example of an
environment variable set in a log-in file:

$ DEFINE GENESIS_HOME SYNERGYDE$ROOT:[CONNECT.SYNODBC]

4-1

4
Creating a System Catalog

To make Synergy data accessible to ODBC-enabled applications, you must create a system catalog.
The system catalog is generated from repository definitions and provides the information the
xfODBC driver needs to access the data files.

Generating the System Catalog 4-2

Describes how to generate a system catalog with dbcreate and the xfODBC Database
Administrator (DBA) program.

Regenerating the System Catalog 4-9

Explains when it’s necessary to regenerate a system catalog and describes how to regenerate a
system catalog with dbcreate and DBA.

Errors and Troubleshooting 4-14

Explains how to troubleshoot difficulties you may encounter when generating a system catalog.
Also lists and explains errors you may encounter when generating a system catalog.

Creating a System Catalog
Generating the System Catalog

4-2 xfODBC User’s Guide 10.1 (6/13)

Generating the System Catalog
Before generating a system catalog,

 install xfODBC. See “xfODBC requirements and installation” on page 1-8.

 define your database’s schema in a repository. See “Setting Up a Repository” on page 3-2.

 set any needed environment variables for file locations, data conversion options, and other
system catalog generation options. See “System Catalog Generation Issues” on page 3-12 and
“Setting Options and File Locations” on page 3-18.

You can set some system catalog generation options when you generate. See “Generating a
system catalog from the command line” on page 4-3 and “Using DBA to generate a system
catalog” on page 4-6.

You should also compare the repository definitions to the Synergy database files. See “Validate,
verify, and compare” on page 3-7.

Once you’ve done these things, you’re ready to generate the system catalog. you can generate the
system catalog from the command line using the dbcreate utility, or you can generate it from the
xfODBC Database Administrator (DBA), a program that you can also use to modify the system
catalog. We recommend you use dbcreate. The dbcreate utility enables you to see messages that
document the system catalog generation process.

When you generate a system catalog, dbcreate or DBA will

 read file/structure combinations defined in your repository.

 create a system catalog that consists of the ISAM files listed in “System catalog” on page 1-5.

 create a unique data entry in the system catalog for each file/structure combination in your
repository.

 create an initial set of users and groups. Note that these will be created only if you set the
initialization option in dbcreate or DBA. Without the initial set of users and groups, you won’t
be able to customize the system catalog. See “Initializing users and groups” on page 6-13 for
details on the initial set of users and groups.

For information on generating a system catalog or a set of system catalogs for databases that share
a repository, see “Handling a repository shared by multiple databases” on page 3-7.

To generate a system catalog, xfODBC must be able to locate the error message file. For
information, see “Specifying the name and location of the error message file” on page 3-20.

Creating a System Catalog
Generating the System Catalog

xfODBC User’s Guide 10.1 (6/13) 4-3

Generating a system catalog from the command line
You can run dbcreate from the command line on a Windows, UNIX, or OpenVMS system. For
client/server configurations, dbcreate must be run from the server. Dbcreate is in the connect
subdirectory of the main Synergy/DE installation directory. (For information on options used to
regenerate a system catalog, see “Regenerating the system catalog with dbcreate” on page 4-9.)

Use the following syntax:

dbcreate [option] [...]

where option is one of the following:

-? Displays online help for dbcreate command-line options. This option is the same
as -h).

-h Displays online help for dbcreate command-line options. This option is the same
as -?).

-c Generates a system catalog from a repository. If it’s generated to a directory that
already contains a system catalog, the system catalog is overwritten. (User and group
files, however, are not created or overwritten unless this option is used in conjunction
with -p.) This option is the default if you generate to a directory that doesn’t have a
system catalog.

If you use a conversion setup file with the -i option, tables marked as OUT are omitted
from the system catalog.

-x Updates a system catalog. If the repository has new structures, the new structures are
added to the system catalog as new tables. If the repository has structures that are
different than the corresponding tables in the system catalog, these tables are updated.
(They wouldn’t be updated if you used the -u option.) User and group files are not
affected unless this option is used with -p.

If you use a conversion setup file, tables marked as OUT are not overwritten or
removed. Settings in the conversion setup file are applied for tables marked as IN.

-u Adds new structures as new tables in the system catalog. Tables that are already part
of the system catalog are not updated. (User and group files are not affected unless
this option is used in conjunction with -p.) This is the default if you generate to a
directory that already contains a system catalog.

Conversion setup file settings are ignored if you use this option.

-r Specifies the location and name of the repository main file and repository text file.
Use the following syntax:

-r repository_main_file repository_text_file

This option overrides RPSMFIL, RPSTFIL, and RPSDAT settings.

Creating a System Catalog
Generating the System Catalog

4-4 xfODBC User’s Guide 10.1 (6/13)

-d Specifies the directory where the system catalog will be created. Use the following
syntax:

-d target_directory

If you don’t use this option to specify a location, the system catalog will be created in
the working directory.

-p When used with -i, this option creates user and group system catalog files, if they
don’t already exist, initializing them with default values. (If user and group files
already exist, -i will prevent -p from initializing them.) When used without -i, this
option initializes existing users and groups, but won’t create user and group files if
they don’t already exist.

The -p option does not affect system catalog files other than the user and group files,
and it may be used in conjunction with the -c, -x, -u, and -n options (in addition to -i).
It can also be used alone after other system catalog files have been created, but
dbcreate will attempt to regenerate the system catalog.

For more information, see “Initializing users and groups” on page 6-13.

-n Prevents changes to existing users and groups, but enables dbcreate to create user and
group system catalog files if they don’t already exist. This option is meaningful only
when used with the -p option.

-i Specifies a conversion setup file or specifies that no conversion setup file is to be
used. Use the following syntax:

-i [conversion_setup_file]

where conversion_setup_file (optional) specifies the name and, optionally, the path of
the conversion setup file. If you use the -i option without specifying a
conversion_setup_file, dbcreate does not use a conversion setup file—even if the
SODBC_CNVFIL environment variable is set. If you specify a filename without
specifying a path, dbcreate looks for the file in the current working directory. This
option overrides the SODBC_CNVFIL setting.

For client/server configurations, the conversion setup file must be on the server.

-l Creates a log file to record the messages generated by the dbcreate command. Use
the following syntax:

-l log_file

where log_file specifies the path and filename for the log file. If you don’t specify a
path, the file is saved to the current working directory. If the -l option is not used,
messages are printed to the screen rather than a log file.

If you use the -l option without specifying the -v option, dbcreate logs only cautions
and errors. For structure and other pertinent information, use the -v option with the -l
option.

Creating a System Catalog
Generating the System Catalog

xfODBC User’s Guide 10.1 (6/13) 4-5

Do not use an environment variable in the path specification for the log file. If you do,
no log file will be generated. Also, you must include a filename extension. If you
don’t, you’ll get an error and the system catalog won’t be generated.

-v Creates a more detailed log than the -l option alone. (The log will include
informational messages). When used in conjunction with the -l option, writes the log
to a log file. (When used without the -l option, the log is written to the screen.) This
option can be used with -c, -u, or -x. (Note that if you use -v with -x or -u and a
conversion setup file, the log incorrectly indicates that conversion setup file settings
are applied. Instead, none are applied if used with -u. If used with -x, only settings for
tables marked as IN are applied.)

The syntax is the same on Windows, UNIX, and OpenVMS systems. The only difference is the way
paths are specified. Paths must conform to the platform’s standard (for example, c:\my_data on
Windows systems versus /usr/my_data on UNIX systems). Note the following:

 On OpenVMS, the dbcreate utility is set up as a verb. So if you pass more than eight
parameters to dbcreate, you must enclose the parameters in quotes. Each option counts for one
parameter, and each path specification counts for a parameter. The following command, for
example, has nine parameters, so they must be enclosed in quotes:

$ DBCREATE "-C -R DATA:RPSMAIN DATA:RPSTEXT -P -D CAT: -l LG.TXT"

 If you use dbcreate without the -r option, dbcreate will use the RPSMFIL, RPSTFIL, and
RPSDAT environment variables to locate the repository main file and the repository text file.

 You don’t have to specify -c, -x, or -u, but if you do, you must specify only one of these
options. If you don’t specify any of them, dbcreate uses the default option, which is -u if the
system catalog exists or -c if the system catalog doesn’t already exist.

Examples

For the following examples, assume your repository files are named rpsmain and rpstext and are
located in a directory defined by the environment variable DATA. In addition, assume that you want
the system catalog files created in a directory defined by the environment variable TARGET. The
first example works on Windows and UNIX; the second works on OpenVMS:

dbcreate -c -r DATA:rpsmain DATA:rpstext -p -d TARGET:

$ DBCREATE -C -R DATA:RPSMAIN DATA:RPSTEXT -P -D TARGET:

When you first use dbcreate to generate a new system catalog from your repository
definitions, you must add the -p option to initialize users and groups. This command
creates user and group files (sodbc_users.* and sodbc_groups.*) along with other
system catalog files. Without these files there is no user or password validation when
connecting to the database, and all connected users have read-only access to all tables. Be
sure to generate these files and keep them with the other system catalog files.

Creating a System Catalog
Generating the System Catalog

4-6 xfODBC User’s Guide 10.1 (6/13)

Using DBA to generate a system catalog
This section describes how to generate a system catalog from the DBA program. We recommend,
however, that you generate system catalogs from the command line using the dbcreate utility. The
dbcreate utility enables you to see messages that document the generation process.

For client/server configurations, DBA must be run from the server.

1. Start DBA by opening Windows Control Panel, selecting Synergy Control Panel, and clicking
“xfODBC DBA”. Or start it by the following at a Windows or UNIX prompt:

dbr SODBC_DBA:xfdba.dbr

To open DBA from an OpenVMS prompt, type the following:

$ RUN SODBC_DBA:XFDBA.EXE

2. From the Catalog menu, select Generate. (For information on using the menus and windows in
DBA, see “Understanding DBA, the Customization Program” on page 6-2.)

If you have not yet opened a system catalog, a window is displayed with the following message:

No system catalog connected.

3. Click OK or press ENTER. The Generate System Catalog window is displayed. (See figure 4-1.)

Figure 4-1. The Generate System Catalog window.

Creating a System Catalog
Generating the System Catalog

xfODBC User’s Guide 10.1 (6/13) 4-7

4. Fill in the fields in the Generate System Catalog window with the appropriate file locations and
filenames, and select the appropriate options:

Main repository. Enter the name and location of your repository main file (for example,
rpsmain.ism). If the RPSMFIL environment variable is set, this field is automatically populated
with the RPSMFIL setting (a path and filename). If RPSMFIL is not set, but RPSDAT is, this field
is automatically populated with the RPSDAT setting (a path) and the rpsmain.ism filename.

Text repository. Enter the name and location of your repository text file (for example,
rpstext.ism). If the RPSTFIL environment variable is set, this field is automatically populated with
the RPSTFIL setting (a path and filename). If RPSTFIL is not set, but RPSDAT is, this field is
automatically populated with the RPSDAT setting (a path) and the rpstext.ism filename.

Dictsource path. Enter the directory in which you’d like to place the system catalog files. If you’re
regenerating a system catalog and you used the -c command-line option when starting DBA, this
field is filled with the path specified in the dictsource line of the connect file.

Conversion setup. If you’re regenerating an existing system catalog and you want to use a
conversion setup file as input, enter the path and filename of the conversion setup file here. If
you’ve set the SODBC_CNVFIL environment variable, DBA automatically fills this field with the
setting for this variable. If you have not set this variable and you don’t enter the filename in this
field, DBA will not use a conversion setup file. Note that for client/server configurations, the
conversion setup file must be on the server.

Field report view. Clear this option if you want DBA to ignore repository report view flag settings
and include all fields—both viewable and non-viewable. Select this option if you want DBA to omit
fields with report view flag settings of non-viewable. Note, however, that fields defined as keys or
tags in Repository are always included in the system catalog.

Update option. If you’re generating a new system catalog, leave the default option, Clear and
re-create catalog, selected. (This isn’t the default if you opened a system catalog before step 2.)

 To update a system catalog by generating only tables that do not already exist, select the first
option, “Only add new tables.” Existing system catalog files are not changed. (This is
equivalent to using the -u option when using dbcreate from the command line.)

 To update a system catalog based on changes to the repository, select the second option, “Add
new tables and update existing tables.” This option overwrites existing tables in the system
catalog, and it adds any new table definitions. By itself, it does not create or overwrite user or
group files. If you use a conversion setup file, tables marked as OUT are not overwritten or
removed. (This is equivalent to using the -x option when using dbcreate from the command
line.)

 To clear the system catalog and then regenerate it, select the “Clear and re-create catalog”
option. This option creates tables in the system catalog as they are defined in the repository. If
you use a conversion setup file, tables marked OUT are omitted from the system catalog. (This
is equivalent to using the -c option when using dbcreate from the command line.)

Creating a System Catalog
Generating the System Catalog

4-8 xfODBC User’s Guide 10.1 (6/13)

Initialize users and groups. Select this option to create or restore the default set of users and
groups. If you select this option without selecting the Overwrite existing option, DBA creates the
default set of users and groups only if the system catalog has no users and groups. However, if you
select this option and the Overwrite existing option, DBA creates the default users and groups, even
if the system catalog already has users and groups. In this case, DBA regenerates the sodbc_users
and sodbc_groups files in the directory specified as the dictsource path in the connect file, and all
changes you’ve made to users and groups are lost.

For information on the default set of users and groups, see “Initializing users and groups” on
page 6-13.

Overwrite existing. Select this option to overwrite existing users and groups. This option is only
available when the Initialize users and groups option is selected. If you select this option, all
changes you’ve made to users and groups are lost.

5. Click OK or press ENTER in the Generate System Catalog window to start the generation.

Unless an error occurs, an information window will open and display the message “System catalog
generated.” If there’s an error, a log file (ConvErrs.log) will be created in the connect\synodbc
directory (for Windows versions prior to Vista) or in your TEMP directory (for Vista and higher
versions of Windows).

6. Make sure the system catalog has a table for each structure you want included. If any are missing,
see “Errors and Troubleshooting” on page 4-14.

When you first generate a new system catalog from your repository definitions, you must
use the “Initialize users and groups” option, which creates user and group files
(sodbc_users.* and sodbc_groups.*). Without these files there is no user or password
validation when connecting to the database, and all connected users have read-only
access to all tables. Be sure to generate these files and keep them with the other system
catalog files.

Creating a System Catalog
Regenerating the System Catalog

xfODBC User’s Guide 10.1 (6/13) 4-9

Regenerating the System Catalog
Typically, you will need to regenerate the system catalog if you have

 manually made changes to the conversion setup file.

 changed the location of the Synergy data tables.

 used S/DE Repository to make changes to the repository files.

You may also consider regenerating if you are distributing several system catalogs all based on the
same repository definitions. For more information, see “Handling a repository shared by multiple
databases” on page 3-7.

You do not need to regenerate for changes made to tables with DBA. These changes automatically
update the relevant catalog files. Rather, regenerating the system catalog may reverse these changes
if you’re not careful choosing generation options and fail to use a conversion setup file when
necessary.

Regenerating the system catalog with dbcreate
To regenerate the system catalog with dbcreate, use the syntax and options listed in “Generating a
system catalog from the command line” on page 4-3. Use the same repository files you used to
generate the system catalog, and make sure the target directory is the directory that contains the
existing system catalog files. By default, dbcreate uses the -u option, but there are other options
that control the ways tables are updated, enable you to initialize users and groups, and enable you to
use a conversion setup file. See “Examples” on page 4-11.

Controlling updates to tables
When you regenerate a system catalog from the command line, there are three options for updating
tables. The first two are

 the -c option—use this option to clear the tables in the system catalog and then regenerate it.

 the -x option—use this option to overwrite the tables in the system catalog based on changes to
the repository.

The difference between -c and -x is that -c creates the system catalog from scratch. It clears the
system catalog and then generates a new one from the repository files. If a table in the existing
system catalog is not part of the repository, it won’t be part of the new system catalog. In addition,
if you use a conversion setup file, all tables marked as OUT are omitted. On the other hand, -x
overwrites existing table definitions in the system catalog files only when a change has been made
to a table in the repository. If tables have been added to the repository, they are added to the system
catalog. If you use a conversion setup file, tables marked as OUT are not overwritten or removed.

Creating a System Catalog
Regenerating the System Catalog

4-10 xfODBC User’s Guide 10.1 (6/13)

The third option is -u. This is the default setting when you regenerate a system catalog. If you
explicitly specify the -u option, or if you type dbcreate without either the -x or the -c options, the
system catalog will be updated, but only new tables will be added. Tables that already exist will not
be changed or removed.

Initializing users and groups with dbcreate
Users and groups are not automatically initialized when you regenerate a system catalog. To
initialize them as you regenerate, use the -p option for dbcreate. If no users or groups exist for the
system catalog, use -p and -n. (The -n option instructs dbcreate to create user and group system
catalog files if there are none. if there are user and group system catalog files, it instructs dbcreate
not to make changes to them.) See “Generating a system catalog from the command line” on
page 4-3 for more information on these options.

For more information, see “Initializing users and groups” on page 6-13.

Using a conversion setup file
Note that both the -i option and the SODBC_CNVFIL environment variable affect the way
dbcreate uses conversion setup files.

 If you set the SODBC_CNVFIL environment variable, dbcreate automatically uses the
conversion setup file that this variable is set to. If SODBC_CNVFIL is not set, you must use
the -i option (with a filename) to use a conversion setup file. For information on the
SODBC_CNVFIL environment variable, see “Specifying a conversion setup file” on
page 3-26.

 If you use the -i option without specifying a filename after the -i, dbcreate does not use a
conversion setup file—even if the SODBC_CNVFIL environment variable is set.

 The -i option overrides the SODBC_CNVFIL setting.

For information on creating conversion setup files, see “Generating and Editing a Conversion Setup
File” on page 6-27.

If you regenerate the system catalog after making changes to the repository files, we
suggest you use the -c option, which clears the tables in the system catalog before
regenerating it. Other options may not fully update your the system catalog contents.

Initializing users and groups removes users and groups you’ve added, removes
modifications you’ve made to users and groups, and restores users and groups to their
default settings.

Creating a System Catalog
Regenerating the System Catalog

xfODBC User’s Guide 10.1 (6/13) 4-11

Examples
For the following examples, assume your repository files are named rpsmain and rpstext and are
located in a directory defined by the environment variable DATA. In addition, assume that you want
the system catalog files created in a directory defined by the environment variable TARGET.

Adding a new table definition to an existing system catalog

To add a new table definition to an existing system catalog, create the new structure definition in
Repository; then enter one of the following at the command line:

 On Windows or UNIX:

dbcreate -u -r DATA:rpsmain DATA:rpstext -d TARGET:

 On OpenVMS:

$ DBCREATE -U -R DATA:RPSMAIN DATA:RPSTEXT -D TARGET:

Changing an existing table definition in a system catalog

To change an existing table definition in a system catalog, change the existing structure definition
in Repository; then enter one of the following at the command line:

 On Windows or UNIX:

dbcreate -x -r DATA:rpsmain DATA:rpstext -d TARGET:

 On OpenVMS:

$ DBCREATE -X -R DATA:RPSMAIN DATA:RPSTEXT -D TARGET:

Creating the default user and group files in a specified directory

To create the default user and group files in a specified directory, enter one of the following at the
command line:

 On Windows or UNIX:

dbcreate -r DATA:rpsmain DATA:rpstext -p -d TARGET:

 On OpenVMS:

$ DBCREATE -R DATA:RPSMAIN DATA:RPSTEXT -P -D TARGET:

Creating the default user and group files if they don’t already exist

To create default user and group files in current directory—but only if they don’t already exist,
enter one of the following at the command line:

 On Windows or UNIX:

dbcreate -r DATA:rpsmain DATA:rpstext -p -n

 On OpenVMS:

$ DBCREATE -R DATA:RPSMAIN DATA:RPSTEXT -P -N

Creating a System Catalog
Regenerating the System Catalog

4-12 xfODBC User’s Guide 10.1 (6/13)

Removing a single table from a system catalog

To remove a single table from a system catalog, remove the structure definition in Repository; then
enter one of the following at the command line:

 On Windows or UNIX:

dbcreate -c -r DATA:rpsmain DATA:rpstext -d TARGET:

 On OpenVMS:

$ DBCREATE -C -R DATA:RPSMAIN DATA:RPSTEXT -D TARGET:

Regenerating the system catalog with DBA
Although this section describes how to regenerate a system catalog with DBA, we recommend that
you use dbcreate instead. The dbcreate utility enables you to see messages that document the
generation process.

1. Start DBA from either Synergy Control Panel (in Windows Control Panel) or the command line.
See “Command line options” on page 6-2.

2. Open the system catalog in DBA. See “Opening the System Catalog in DBA” on page 6-10.

3. From the Catalog menu, select Generate.

4. If necessary, change any of the default settings in the Generate System Catalog window. If you
want to use a conversion setup file, for example, make sure the Conversion setup field is filled. If
you’ve set the SODBC_CNVFIL environment variable, this field is automatically filled with this
variable’s setting. For information on options in the Generate System Catalog window, see step 4
on page 4-7.

5. Click OK or press ENTER.

6. When the process is complete, press ENTER.

Unless an error occurs, an information window will open displaying the message “System catalog
generated.” If there’s an error, a log file (ConvErrs.log) is created in the connect\synodbc directory
(for Windows versions prior to Vista) or in your TEMP directory (for Vista and higher versions of
Windows).

Creating a System Catalog
Regenerating the System Catalog

xfODBC User’s Guide 10.1 (6/13) 4-13

Preserving views
To preserve views in a system catalog when you regenerate, do one of the following:

 Use the -u or -x options (rather than -c) when you regenerate the system catalog with dbcreate.

 Use the “Only add new tables” option or the “Add new tables and update existing tables”
option when using the DBA program.

 Write a program that saves view information, and run that program before you regenerate your
catalog. Then, after the catalog has been regenerated, use the output from the program to
re-create the views. The Connectivity Series distribution includes an example SQL Connection
program, exam_saveviews.dbl (in the connect\synsqlx directory), that illustrates this.

Creating a System Catalog
Errors and Troubleshooting

4-14 xfODBC User’s Guide 10.1 (6/13)

Errors and Troubleshooting

Troubleshooting
If you are having difficulty generating a system catalog from your Synergy database, the problem
may lie in the repository files themselves or possibly in the generation process. In addition to this
section, you may want to read, “If the system catalog won’t open...” on page 6-11 and “Verifying
the System Catalog” on page 6-31.

If you’re encountering problems when you attempt to access data with an ODBC-enabled
application, see “Troubleshooting Data Access” on page 9-4. For information on troubleshooting
system catalog caching, see “Troubleshooting system catalog caching” on page 8-22.

Check your repository files

To find problems (such as missing keys) in the repository files themselves, you may need to look at
them using S/DE Repository. For information on how repository files should be set up and checked,
see “Setting Up a Repository” on page 3-2.

Check file locations

 Make sure your repository files are in the location you expect.

 Is RPSMFIL set in the environment? Does it point to the directory where your repository main
file is located?

 Is RPSTFIL set in the environment? Does it point to the directory where your repository text
file is located?

 If you are using repository files other than those indicated by the RPSMFIL and RPSTFIL
environment variables, have you specified their filenames and paths at the command line or
in DBA?

Check the conversion setup file

If you have created a conversion setup file and are using it as input for the creation of the system
catalog,

 is it located in the directory indicated by the SODBC_CNVFIL environment variable, and is
SODBC_CNVFIL set in the environment?

 are all of the IN|OUT arguments set to include the tables you want in the system catalog?

 does it include environment variables indicating table locations? Are these variables set in the
environment?

If you are using dbcreate to generate the system catalog and you want to input a conversion setup
file other than the one specified by the SODBC_CNVFIL environment variable,

 did you indicate the filename of the new conversion setup file as an argument?

Creating a System Catalog
Errors and Troubleshooting

xfODBC User’s Guide 10.1 (6/13) 4-15

Setting variables for generation options

 To ensure that your data is read correctly by an ODBC-enabled application, have you set the
necessary variables for generation options before attempting to generate the system catalog?
These variables may include SODBC_CNVFIL, SODBC_CNVOPT, SODBC_COLLAPSE,
SODBC_INIFIL, SODBC_ODBCNAME, and SODBC_TMPOPT.

 See “System Catalog Generation Issues” on page 3-12 for information on potential data
conversion issues.

Dbcreate error and warning messages
This section lists errors and warnings you may encounter when using the dbcreate utility. For
information on DBA errors, see “DBA error messages” on page 6-7. For information on data access
errors, see “Data Access Errors” on page 11-11.

ASCII Structure structure_name: no keys found

ASCII files do not have keys. This is an informational message, not a warning or error.

Cannot open logfile log_file

The specified log file name or path cannot be used. Check the filename, path, file permissions, and
available disk space.

Column column_name maximum name length exceeded

The name column_name has exceeded 30 characters and has been truncated. This is most likely to
occur with groups, struct fields, and arrays. Use the group prefix or Alternate name to create shorter
names.

Column column_name, unsupported date type: coltype

The column uses an unsupported date format mask (YYPP, YYYYPP, or RRPP). Define the field as
user-defined in the repository and modify xfodbcusr.dll for Windows, XFODBCUSR.so for UNIX
or xfodbcusr_so.exe for OpenVMS to properly handle columns with these data types. See
chapter 7, “Creating Routines for User-Defined Data Types,” for more information.

Caution: Table table_name, key key_name, literal literal_name value does not match
table tag value, relation dropped

A relation has a literal segment whose value does not match the tag criteria for the related segment.
Change the literal segment to match tag criteria.

DDINFO-ERR: Cannot open filename

The specified file could not be found.

DDINFO-ERR: ddc_keyx called with a null

This is an internal error. Call Synergy/DE Developer Support.

Creating a System Catalog
Errors and Troubleshooting

4-16 xfODBC User’s Guide 10.1 (6/13)

DDINFO-ERR: ddc_keyx dc_io() failure

This is an internal error. Call Synergy/DE Developer Support.

DDINFO-ERR: Error opening conversion setup file filename

The specified conversion setup file cannot be found.

DDINFO-ERR: Field field_name exceeds maximum 2000: length

The length (length) of field field_name exceeds the maximum allowable length of 2000 bytes.
Shorten the field name.

DDINFO-ERR: Field field_name is used as a key segment

The arrayed field field_name is a key segment in the repository. This is not supported. To work
around this, create an overlay that consists of the entire array.

DDINFO-ERR: No fields defined for structure: structure_name

The structure structure_name does not contain any field definitions. Check your repository.

DDINFO-ERR: No keys defined for structure: structure_name

Each structure used to generate the system catalog must have at least one key, but the structure
structure_name has no key. Define a key for the structure.

DDINFO-ERR: No repository or schema file found

This is an internal error. Call Synergy/DE Developer Support.

DDINFO-ERR: version mismatch: cannot convert version repository_version

The repository was created with an unsupported version of Synergy/DE Repository. xfODBC
supports repositories created with Repository version 7.x or greater. Re-create the repository.

DDINFO-WARN: Field field_name exceeds maximum 2000 - MSACCESS may fail.

The field field_name is too long and may cause Microsoft Access to fail.

DDINFO-WARN: Field field_name Precision changed to precision based on format

The repository format string for field field_name caused dbcreate to assign a different precision for
the field in the system catalog.

DDINFO-WARN: Field field_name (odbc field alt_name) not found

Dbcreate could not find the field field_name (with the alternate name of alt_name).

Creating a System Catalog
Errors and Troubleshooting

xfODBC User’s Guide 10.1 (6/13) 4-17

DDINFO-WARN: Overlay Key key_name field field_name has an overlay offset -
GENIX overlay key not created

An index was not created for field_name because dbcreate does not create an index for an overlay
field that has an offset. See “Indexes for overlay segments” on page 10-3.

DDINFO-WARN: Key key_name segment seg_name length is less than total length
of overlaid fields

The key segment seg_name is an overlay field whose length is less than the total length of the fields
it overlays. Dbcreate was probably not able to use the segment as defined. This generally indicates
that there is a problem with the repository or file definition because a key should never partially
encompass an overlaid field. If dbcreate was not able to use the segment, it and subsequent
segments are omitted from the index.

DDINFO-WARN: Key key_name segment seg_name is an overlay containing field
field_name which exceeds key length.

The key segment seg_name overlays a field (field_name) that exceeds the key length. Dbcreate was
probably not able to use the segment as defined. This generally indicates that there is a problem
with the repository or file definition because a key should never partially encompass an overlaid
field. If dbcreate was not able to use the segment, it and subsequent segments are omitted from the
index.

DDINFO-WARN: key_name not equal to length of all segments.

The length of the key key_name is not equal to the length of all of its segments. Dbcreate may have
been able to use the segments as defined, but this generally indicates that there is a problem with
the repository or file definition because a key should never partially encompass an overlaid field. If
dbcreate was not able to use a segment, that and subsequent segments are omitted from the index.

DDINFO-WARN: seg_name exceeds field field_name length. Segment ignored.

The length of the segment seg_name exceeds the length of the field (field_name) for the key.
Dbcreate was probably not able to use the segment as defined. This generally indicates that there is
a problem with the repository or file definition because a key should never partially encompass an
overlaid field. If dbcreate was not able to use the segment, it and subsequent segments are omitted
from the index.

DDINFO-WARN: Overlay exceeds key_name length. Segment seg_name ignored.

Segment seg_name is an overlay field whose fields exceed the length of the key (key_name).
Dbcreate was probably not able to use the segment as defined. This generally indicates that there is
a problem with the repository or file definition because a key should never partially encompass an
overlaid field. If dbcreate was not able to use the segment, it and subsequent segments are omitted
from the index.

Creating a System Catalog
Errors and Troubleshooting

4-18 xfODBC User’s Guide 10.1 (6/13)

DDINFO-WARN: Overlay not contiguous

A key overlays fields that are not contiguous, so dbcreate is not able to use this key to create an
index.

Duplicate column column_name

Either the same alternate name has been assigned to more than one field, or truncated names are the
same.

 Alternate names must be unique.

 Column names are truncated if they exceed 30 characters. If you have two column names
whose first 30 characters are identical, xfODBC will see them as identical names. This is most
likely to occur with groups, struct fields, or arrays. To see if this is the case, use the -v option
with dbcreate. If truncated column names are the cause, use the group prefix or Alternate
name to create shorter names.

If neither of these is the cause, call Synergy/DE Developer Support.

ERROR: Cannot open files (ddc_init:data)

An error occurred while opening the repository files. Call Synergy/DE Developer Support.

ERROR: GENESIS_FORKEYS entry, primary_table, primary_key, key,
primary_column, column, foreign_table

There are duplicate relations for the table primary_table.

ERROR: GENESIS_HOME environment variable not found

The GENESIS_HOME environment variable is not set. See “Specifying the connect file location
(GENESIS_HOME)” on page 3-19 for information on setting this variable.

ERROR: Index index_name, column column_name not found

The given index references a field that is not defined. Often, this is caused by a field that is
incorrectly defined as invisible. If not, call Synergy/DE Developer Support.

ERROR: sdms_init failed

An internal function failed. Call Synergy/DE Developer Support.

ERROR: table_name: SDMS error

A Synergy DBMS error occurred while accessing the table. Notify your system administrator.

ERROR: Table lookup error: (ddc_fname: data)

An error occurred while retrieving the list of table definitions. Use the DBA program to compare
the system catalog to the repository definitions. For information, see “Comparing the system
catalog to repository definitions” on page 6-31.

Creating a System Catalog
Errors and Troubleshooting

xfODBC User’s Guide 10.1 (6/13) 4-19

Index index_name, column column_name datatype mismatch

The data type of the index segment does not match the one defined in the corresponding column
definition. Verify your repository definition for this index and its segments.

Index index_name, column column_name decimal datatype mismatch

A column is defined as type decimal but is defined as another data type when specified as a segment
of the key. If the key value can be negative, change the file key type. If the key cannot be negative,
change repository definition of the key segment to an alpha data type. See “Optimizing with Keys”
on page 10-2.

Index index_name, column column_name not found

The index references a field that is not defined. Verify the repository.

Index index_name, column column_name not used due to date windowing

An ordered key could not be created because the date column contains a two-digit century.

Index index_name, column column_name not used due to unordered date

The column column_name uses a user-defined date type (one specified with ^CLASS^) that does
not start with the year. See chapter 7, “Creating Routines for User-Defined Data Types,” for
information on creating routines to handle the date.

Index index_name, column column_name, unsupported segment type seg_type

The segment data type for column column_name in index index_name is not supported. Subsequent
segment definitions for this index will be ignored. Verify your repository definition for this index
and its segments. Unsupported data types include external, user-defined, case-insensitive, and
unsigned integer. The literal data type is supported for foreign keys only, and then only when
specified as the first segment.

Index index_name dropped

The given index definition was dropped because the first segment has an unsupported segment type.
Verify your repository definition for this index and its segments.

Index index_name, duplicate column column_name

There is a duplicate column name in the specified index. Check the repository definition for the
specified index.

Index index_name, overlay index created

A segment within a key is an overlay. xfODBC will optimize by creating another key with all the
columns, including the columns defined by the overlay.

Creating a System Catalog
Errors and Troubleshooting

4-20 xfODBC User’s Guide 10.1 (6/13)

Invalid option Expected LOGFIL parameter

You must specify a log file when you use the dbcreate -l option. Use the following syntax:

-l log_file

where log_file specifies the path and filename for the log file.

Invalid option Expected PATH parameter

You must specify a path when you use the dbcreate -d option. Use the following syntax:

-d target_directory

where target_directory is the directory where the system catalog files will be created.

Invisible field field_name ignored

The invisible field definition field_name is ignored. This is an informational message.

Maximum command line length (max_len) exceeded

There are too many characters in the fields of the Generate System Catalog window. The DBA
program resolves any environment variables, combines the fields in this window into a single
command line, and sends the command line to dbcreate.

Message file not available. ERRNO: number

xfODBC cannot find the error message file. (By default, the error message file is named sql.msg.)
Set the GENESIS_MSG_FILE environment variable to the path and filename of the error message
file. Alternatively, you can put the sql.msg file in a directory named lib that’s in the directory
GENESIS_HOME is set to (in other words, GENESIS_HOME:lib).

No file link found for related structure

One of the structures for a relation has not been assigned to a file.

No indexes defined for table table_name

Index definitions for table_name are invalid. Verify the repository and use fcompare to compare
the repository definitions to your Synergy database files. See “Validate, verify, and compare” on
page 3-7 for information.

Null key ‘index_name’ ignored

Null keys are ignored.

Null key index_name, optimization reduced

Null keys can be used only for equality operations. Whenever possible, declare keys as unique with
no duplicates, non-null values, or negative values. This enables xfODBC to optimize ORDER BY
statements.

Creating a System Catalog
Errors and Troubleshooting

xfODBC User’s Guide 10.1 (6/13) 4-21

Partial catalog exists, specify -c option

The catalog generation failed and the system catalog is not complete. Regenerate the system
catalog using dbcreate with the -c option.

Primary key from_table.key.column(ordinal_position) is smaller than foreign key
to_table.key.column(ordinal_position)

The primary key segment size is smaller than the foreign key it references. Verify the repository
definitions for the primary and foreign keys to ensure the column counts match.

Primary key table_name.key_name, Foreign key table_name.key_name, column
count mismatch[. Relation dropped.]

The number of segments in the primary key does not match the number of columns in the foreign
key. Verify the repository definition for both the primary and foreign key. If the first segment is a
literal and there is not more than one segment in the foreign key table, the relation will be dropped.

Primary key index index_name not found

A primary key is missing. xfODBC may have found an error when attempting to create the key.
Check the repository definition for index_name and/or regenerate the system catalog with the
verbose (-v) and log file (-l log_file) options to determine if there is a problem with index_name.

Structure structure_name: No fields found

No field definitions were found for the structure structure_name. Verify the repository and use
fcompare to compare the repository definitions to your Synergy database files. See “Validate,
verify, and compare” on page 3-7 for information.

Structure structure_name: No keys found

No keys were found for the structure structure_name. Verify the repository and use fcompare to
compare the repository definitions to your Synergy database files. See “Validate, verify, and
compare” on page 3-7 for information.

Structure structure_name: Not found

The structure structure_name could not be found. Verify the repository and use fcompare to
compare the repository definitions to your Synergy database files. See “Validate, verify, and
compare” on page 3-7 for information.

Structure structure_name: Unknown error

An unknown error was returned for the given structure. Verify the repository and use fcompare to
compare the repository definitions to your Synergy database files. See “Validate, verify, and
compare” on page 3-7 for information.

Creating a System Catalog
Errors and Troubleshooting

4-22 xfODBC User’s Guide 10.1 (6/13)

Table table_name is already defined

A duplicate table name was found when updating the system catalog. Regenerate the system
catalog using dbcreate with the -c option.

Table table_name, column column_name not found

The column (column_name) was not found in the table (table_name). Check the repository field
attributes for table_name.

Table table_name, primary index index_name, column column_name not found

An index definition references a column that does not exist. Verify the index and column definition
using repository and/or regenerate the system catalog using dbcreate with the logging (-l log_file)
and verbose (-v) options.

5-1

5
Setting Up a Connect File

For each system catalog you create, you must create a unique connect file. You’ll need a connect
file to open a system catalog in the xfODBC Database Administrator (DBA) program, and you’ll
need a connect file to access data. The connect file contains information on the location of the
Synergy data files and the system catalog. You can also use it to set the convert_error option,
Synergy driver logging, and environment variables for the xfODBC driver. You can create connect
files in Windows, UNIX, and OpenVMS environments.

Creating the Connect File 5-2

Explains how to create a connect file and what it must contain.

The dictsource and datasource Lines 5-3

Explains how to specify the location of the system catalog and the data files.

Setting the convert_error Option 5-4

Explains how instruct the xfODBC driver to treat invalid dates as null data.

Synergy Driver Logging 5-5

Explains how to set Synergy driver logging, which enables you to determine if a system catalog is
cached.

Setting Up a Connect File
Creating the Connect File

5-2 xfODBC User’s Guide 10.1 (6/13)

Creating the Connect File
Use a text editor to create a connect file, and then save the file in your GENESIS_HOME directory
with whatever name you choose. Connect files should reside in the directory specified by the
GENESIS_HOME environment variable even if the data and system catalog files are located in
other directories. (See “Specifying the connect file location (GENESIS_HOME)” on page 3-19.)

Connect files must contain

 a dictsource line, which specifies the directory that contains, or will contain, your system
catalog.

 a datasource line, which specifies the directory or directories that contain your Synergy data
files.

Connect files can also contain

 the convert_error setting. (See “Setting the convert_error Option” on page 5-4.)

 commands that invoke Synergy driver logging for system catalog caching. (See “Synergy
Driver Logging” on page 5-5.)

 environment variable settings. (See “Setting environment variables in a connect file” on
page 3-33.)

Figure 5-1 shows the connect file for the sample database on Windows. The sample connect file
and database are included in the Connectivity Series distribution.

Figure 5-1. The sample connect file for Windows.

Setting Up a Connect File
The dictsource and datasource Lines

xfODBC User’s Guide 10.1 (6/13) 5-3

The dictsource and datasource Lines
The dictsource line must specify the full path to the directory that contains (or will contain) your
system catalog and, optionally, your data files.

The datasource line must specify the full path to the directory or directories that contain your
Synergy data files. However, it is used only if a filename, but no path, is set in the Open filename
field of the Repository file definition and no data files exist in the dictsource directory. For
example, if you specified only a filename, such as mydata.ism, in the Open filename field, and
there were no data files in the dictsource directory, the datasource specification will by used to
locate mydata.ism. Note that this line is required even if it isn’t used.

The following is a Windows example. The dictsource specification is straightforward, but notice the
format of the datasource line: the path must begin and end with a semicolon, and double slashes are
used to represent a single backslash in the path.

dictsource "C:\Program Files\Synergex\SynergyDE\connect\synodbc\dict\"
datasource ";C:\\Program Files\\Synergex\\SynergyDE\\connect\\syn-
odbc\\dat;"

The syntax for dictsource and datasource in a UNIX or OpenVMS connect file is the same, but
paths must conform to the platform’s standard.

The following is a UNIX example:

dictsource /usr/synergyde/connect/synodbc/dict
datasource ;/usr/synergyde/connect/synodbc/dat;

The following is an OpenVMS example:

dictsource DKA600:[SYNERGYDE.CONNECT.SYNODBC.DICT]
datasource ;DKA600:[SYNERGYDE.CONNECT.SYNODBC.DICT];

If the data files are in more than one directory, separate directories with a semicolon. For example:

datasource ;c:\\syndata;c:\\syndata2;c:\\syndata3;

If there are spaces in the path, the path (including semicolons for datasource) must be enclosed in
double quotes. For example:

dictsource "c:\my files\dict"
datasource ";c:\\my files\\dat;"

We don’t recommend using dictsource or datasource lines for the location of data files.
Instead, use an environment variable for the path in the Repository Open filename field.

When using SQL OpenNet, don’t use UNC (uniform naming convention) paths or paths that
include mapped drives. The service may not have the privilege to map the drive.

Setting Up a Connect File
Setting the convert_error Option

5-4 xfODBC User’s Guide 10.1 (6/13)

Setting the convert_error Option
By default, the xfODBC driver treats invalid dates as null. You can, however, use the convert_error
option to instruct the xfODBC driver to allow SELECT statements to fail if they encounter invalid
dates rather than treating them as null.

 If you don’t set convert_error, or if you set it to no, invalid dates are treated as null data unless
they are in user-defined date columns.

 If you set convert_error to yes, SELECT statements will fail if they encounter invalid date data.

To set convert_error, add a line with the following syntax to the end of the connect file:

convert_error yes|no

For example:

dictsource "C:\Program Files\Synergex\SynergyDE\connect\synodbc\dict\"
datasource ";C:\\Program
Files\\Synergex\\SynergyDE\\connect\\synodbc\\dat;"
convert_error yes

Note the following:

 Use all lowercase characters for yes and no.

 Do not use an equal sign (=) or any other symbol.

Setting Up a Connect File
Synergy Driver Logging

xfODBC User’s Guide 10.1 (6/13) 5-5

Synergy Driver Logging
You can use Synergy driver logging to determine if a system catalog is cached. By adding the
following lines to your connect file, xfODBC will log the path and name for the shared memory file
and list errors encountered while attempting to use shared memory.

logfile file_spec
loglevel 1

where file_spec is the path and filename of the log file you want to create.

Note that we don’t recommend adding these lines before starting the SQL OpenNet server. See
“System Catalog Caching” on page 8-18 for more information.

6-1

6
Viewing and Customizing the System
Catalog

Once you’ve generated a system catalog and created a connect file, you can view and customize the
system catalog. The xfODBC Database Administrator (DBA) program enables you to view and
customize users and groups; view tables, columns, indexes, and segments; and delete tables and
columns. A conversion setup file enables you to change the access level of a table or add a table
back into the system catalog. Additionally, if you use DBA to delete a table from the system
catalog, you can use a conversion setup file to preserve that change when you regenerate.

Understanding DBA, the Customization Program 6-2

Explains how to start DBA, use the DBA command-line options, use the DBA menus and lists,
enter data, and exit DBA. Also lists and explains errors you may encounter when using DBA.

Opening the System Catalog in DBA 6-10

Explains how to open a system catalog in DBA.

Customizing Users and Groups 6-13

Explains how to initialize, add, delete, and modify groups and users. Also explains how to set
access levels for groups.

Customizing Tables and Table Elements 6-19

Explains how to use DBA to view database tables and their attributes, including columns, indexes
and segments. Also explains how to delete tables and columns, change a table’s access level, add
deleted tables back into the system catalog, and change the location of a table’s data file.

Generating and Editing a Conversion Setup File 6-27

Explains how to generate, edit, and use a conversion setup file.

Verifying the System Catalog 6-31

Explains how to compare the system catalog to the repository files it’s based on.

Viewing and Customizing the System Catalog
Understanding DBA, the Customization Program

6-2 xfODBC User’s Guide 10.1 (6/13)

Understanding DBA, the Customization Program
DBA enables you to view and customize elements of the system catalog. This section explains how
to use DBA command-line options, menus, windows, and lists. For information on opening a
system catalog in DBA, see “Opening the System Catalog in DBA” on page 6-10.

Starting DBA

To start DBA, do one of the following:

 In Windows Control Panel, select Synergy Control Panel, and then click “xfODBC DBA.”

 Use the following syntax at a Windows or UNIX prompt:

dbr SODBC_DBA:xfdba.dbr [option] [...]

 Use the following syntax on an OpenVMS system:

XFDBA [option] [...]

Command line options
-c (optional) Specifies the user name, password, and connect file. If you use this option,

DBA opens the system catalog specified in the connect file. Use the following syntax:

-c connect_string

where connect_string has the following format:

username/password/connect_filename

For information and examples, see “Opening a system catalog from the command
line” on page 6-11.

-g (optional) Generates a conversion setup file. Use the following syntax:

-g conversion_setup_file

where conversion_setup_file specifies the path and filename of the generated file.
This setting overrides the SODBC_CNVFIL environment variable setting. Note that
for client/server configurations, the conversion setup file must be on the server.

-i (optional) Initializes existing user and group files to default values. For information
and examples, see “Initializing users and groups” on page 6-13.

To run DBA on a UNIX system, you must have configured your session for the Synergy/DE
runtime by running setsde. For information, see “UNIX Requirements” in the
“Requirements and Considerations” chapter of the Installation Configuration Guide.

Viewing and Customizing the System Catalog
Understanding DBA, the Customization Program

xfODBC User’s Guide 10.1 (6/13) 6-3

-v (optional) Creates a verification log that lists each table and compares stored counts
with actual record counts. Use the following syntax:

-v verification_log

where verification_log specifies the path and filename of the generated log file. If you
don’t specify a path, the verification log is saved to the current working directory.

DBA menus and windows
When you first enter DBA, the main DBA window is displayed.

Activating and deactivating the menu bar
You can select an entry from a menu as long as the menu bar is active. To activate or deactivate the
menu bar,

 on Windows, click the menu bar or press ALT.

 on UNIX and OpenVMS, press CTRL+P.

Note the following:

 Paths specified with DBA command-line options must conform to the platform’s
standard (for example, c:\my_data on Windows systems versus /usr/my_data on UNIX
systems).

 The -c option can be used by itself, but all other DBA command-line options must be
used in conjunction with the -c option.

Figure 6-1. The main DBA window.

Menu bar

Information line

Viewing and Customizing the System Catalog
Understanding DBA, the Customization Program

6-4 xfODBC User’s Guide 10.1 (6/13)

Selecting a menu or menu entry
There are three ways to make a menu selection:

 Arrow keys

 Quick-select characters

 Shortcuts

To use arrow keys and quick-select characters, the menu bar must be active. To use shortcuts, the
menu bar does not need to be active; shortcuts bypass the menu.

Use the left and right arrow keys to move across the menu headings in the menu bar. Use the up and
down arrow keys to move among menu entries. Press ENTER to select a highlighted entry.

A quick-select character is a single character that accesses a menu entry. When a menu is pulled
down, you can type the quick-select character to select the menu entry. For example, if you pull
down the General menu and then type b, the About window will open.

A shortcut is a key or key sequence associated with a menu entry—for example, F4 for Exit. You
can use a shortcut anytime the associated entry is valid; the menu does not have to be active.
Shortcuts are different for each type of terminal and can be reassigned by your system manager. To
view the shortcuts for your particular terminal, pull down any menu. Shortcuts are listed to the right
of menu entries.

Skipping a field
If a field is optional and does not have a default value, you can leave the field blank by pressing
ENTER. If an optional field has a default value, you can clear the field by pressing the spacebar or
the BACKSPACE key. Then press ENTER to move to the next field.

Moving between fields
On Windows, press SHIFT+TAB to move to the previous field in the current input window, and press
TAB to move to the next field in the current input window.

On UNIX and OpenVMS, use the UP ARROW key or select Previous Field from the Input menu or
List menu to return to the previous field in the current input window. If the cursor is positioned on
the first field in a window, the cursor moves to the last field in the window. Use the DOWN ARROW
key or select Next Field from the Input menu or List menu to move the cursor to the next field in an
input window.

Moving the cursor in a line of text
To move the cursor to the left or right within a line of text, use the left or right arrow key.

On UNIX and OpenVMS you can move the cursor by selecting the Move Left or Move Right entry
in the Input menu or List menu.

Viewing and Customizing the System Catalog
Understanding DBA, the Customization Program

xfODBC User’s Guide 10.1 (6/13) 6-5

Entering data
After you have finished typing data for a particular field, press ENTER to enter it.

Abandoning your changes

Resetting a field to its original value on UNIX or OpenVMS

To restore the data in a field to its original state on UNIX or OpenVMS (the state it was in before
you typed anything), select Reset Field from the Input menu.

Abandoning changes to all fields

When you select Abandon from the General menu, any data you entered in the current input
window is ignored. The original data for that window is restored, and you are returned to the
previous window or menu.

On Windows, you can also click the close button to abandon changes for the current input window.

Using lists
To edit a list entry, highlight the entry and press ENTER. If it can be edited, an input window opens.

Figure 6-2. The User List in DBA.

Viewing and Customizing the System Catalog
Understanding DBA, the Customization Program

6-6 xfODBC User’s Guide 10.1 (6/13)

Moving among entries in a list

Searching the Table List

If you’re in the Table List, you can search for an entry by selecting Find from the List menu. An
input window is displayed. Enter the name or partial name of the entry you wish to find. DBA
highlights the first matching entry in the list.

Viewing hidden areas of the Table List

When you view the Table List, columns or a portion of a column may extend beyond the edge of the
Table List window. To view hidden areas of the Table List, select Toggle View from the List menu.

Exiting a list
To exit a list, press F4.

Exiting

Exiting the current function
To save your changes and exit the current input window or list, select Exit from the General menu
or use the Exit shortcut (F4). You are returned to the previous window or menu.

To exit an input window without saving any changes, select Abandon from the General menu or use
the Abandon shortcut (CTRL+A).

Exiting DBA
There are two ways to exit DBA:

 Exit each input window and list until the main window is displayed. Then, from the General
menu, press the Exit shortcut again or select Quit.

 To exit DBA immediately, click the close box (on Windows) or select Quit from the General
menu. DBA will quit regardless of the input window or list that’s currently open.

To… From the list menu, select…

Move to the previous entry Previous Entry

Move to the next entry Next Entry

View the previous page of entries Previous Page

View the next page of entries Next Page

Move to the first entry Top Entry

Move to the last entry Bottom Entry

Viewing and Customizing the System Catalog
Understanding DBA, the Customization Program

xfODBC User’s Guide 10.1 (6/13) 6-7

DBA error messages
This section lists errors you may encounter when using the xfODBC Database Administrator
(DBA) program. For information on errors you may encounter when generating a system catalog,
see “Dbcreate error and warning messages” on page 4-15. For information on data access errors,
see “Data Access Errors” on page 11-11.

Cannot connect to catalog - connect_filename

The specified connect file does not exist in the GENESIS_HOME directory.

 Verify that the GENESIS_HOME environment variable is set correctly. See “Specifying the
connect file location (GENESIS_HOME)” on page 3-19 for information.

 Verify that you have placed the connect file connect_filename in the GENESIS_HOME
directory.

 Verify that you have entered the full filename for the connect file, including filename extension
if applicable.

Cannot delete a system catalog table

You cannot delete system catalog tables (GENESIS_*) in DBA.

Cannot delete group: group_name

The group you are trying to delete has users assigned to it. Delete the associated users; then delete
the group.

Cannot open GENESIS_TABLES.ISM table

The system table file cannot be opened. Verify that the system table files
GENESIS_TABLES.ISM and GENESIS_TABLES.IS1 (in Windows and UNIX environments)
are in the dictsource directory specified in your connect file. (OpenVMS systems should have the
GENESIS_TABLES.ISM file. Windows and UNIX systems should have both files.)

Cannot open system catalog in path

The path specified on the dictsource line in the connect file is invalid. Verify that the dictsource
path contains the system catalog files, GENESIS_*. If the dictsource path contains an environment
variable, verify that this variable is set in the environment.

Dictionary source path not found in the connect file

The path specified by dictsource in the connect file does not exist. Verify that the connect file
contains a dictsource specification and that the path specified actually exists. If the dictsource path
contains an environment variable, verify that this variable is set in the environment.

Duplicate group ID specified, try again

The group ID you specified already exists. Re-enter group information.

Viewing and Customizing the System Catalog
Understanding DBA, the Customization Program

6-8 xfODBC User’s Guide 10.1 (6/13)

Duplicate user name specified, try again

The combination of user name, password, and group ID you entered for a new user already exists.
Re-enter the user information.

ERROR: Cannot open one of the system catalog tables

While verifying the database, DBA could not open one of the system catalog tables. Check that all
system catalog files are in the dictsource directory specified in the connect file.

ERROR: Index index_name - segment column field column_name not found

While verifying the database, DBA could not find a segment in the system column table.
Regenerate the system catalog using dbcreate or DBA (Catalog > Generate). If the problem
persists, you’ll need to open your repository and make corrections to your data definitions.

ERROR: Index index_name not found

While verifying the database, DBA could not find an index in the system column table. Regenerate
the system catalog using dbcreate or DBA (Catalog > Generate). If the problem persists, you must
open your repository and make corrections to your data definitions.

Error reading initialization file

A file error has occurred while reading the conversion setup file. Open the conversion setup file
with a text editor and verify that all data files exist in the specified directories. If environment
variables are used, verify that those variables are set in the environment.

Incomplete group record

To complete the group record, fill in a group name and access level.

Incomplete user record

To complete the user record, fill in a user name, password, and group ID.

Invalid group ID specified, try again

The group ID you entered is invalid. For a list of valid group IDs, select User Maintenance >
Select Group.

Login failed: invalid group access: user_ID

The user does not have the necessary access level to open the system catalog. To use DBA, the user
must belong to a group with an access level of 254 or 255. If no such user exists, you may need to
re-initialize users and groups for the system catalog you are attempting to open.

Login failed: invalid group ID: group_ID

The user’s group ID was not found in the system group file. Use a different user to open the system
catalog. This indicates that the user or group catalog files have become corrupt. You may need to
re-initialize users and groups.

Viewing and Customizing the System Catalog
Understanding DBA, the Customization Program

xfODBC User’s Guide 10.1 (6/13) 6-9

Login failed: invalid password

The password entered does not match the password assigned to the user. Enter the correct
password.

Login failed: invalid user name: user_name

The user name entered does not match any in the system user table.

Login failed: missing user ID

No user name was entered. Enter a user name in the User name field of the Open System Catalog
window, or enter a string with the following format in the Connect file field of the Open System
Catalog window: user_ID/password/connect_filename.

Login failed: unable to open group file

The system group files cannot be accessed. Verify that the system group files (sodbc_groups.*) are
in the dictsource directory specified in the connect file.

Login failed: unable to open user file

The system user files cannot be accessed. Verify that the system user files (sodbc_users.*) are in
the dictsource directory specified in the connect file.

Missing argument for option_name option

The -c, -g, and -v options must be followed by an argument:

-c connect_string
-g conversion_setup_path&filename
-v verify_log_path&filename

No window library file found

Set SODBC_DBA to the directory containing xfdba.is1 (in Windows and UNIX environments),
and xfdba.ism. These are the UI Toolkit window library files for the DBA program. The xfdba.dbr
file must also be in this directory.

Too many arguments for option option

The -c, -g, and -v options must have only one argument, and the -i option must not have an
argument.

WARNING: the name name is one of the SQL reserved words

While verifying the database, DBA has discovered that an SQL reserved word is used for a column
names. The SQL parser is cannot execute the SQL statement. Use S/DE Repository to change name
to one that is not reserved by SQL. For a list of SQL reserved words, see “ODBC Reserved Words”
on page B-65.

Viewing and Customizing the System Catalog
Opening the System Catalog in DBA

6-10 xfODBC User’s Guide 10.1 (6/13)

Opening the System Catalog in DBA
To open a system catalog, you must have a connect file, and the user you log in with must have an
access level of 254 or 255. If you initialized users and groups, your system catalog already has two
such users: DBADMIN and DBA.

There are two ways to open a system catalog in the DBA program:

 By opening DBA and then selecting Catalog > Open

 By specifying the connect string when you open DBA from the command line

Opening a system catalog from DBA
1. Start DBA, and then from the Catalog menu, select Open.

2. In the Open System Catalog window (shown in figure 6-3), fill in the fields individually or enter a
connect string in the Connect file field using the following syntax:

user_name/password/connect_filename.

Connect file. The name of the connect file for the system catalog. Unless you specify a path, the
connect file must be in the GENESIS_HOME directory. Optionally, you can enter the entire
connect string in this field.

User name. A case-sensitive alphanumeric entry stored in the system catalog. The default user
names are DBADMIN, DBA, and PUBLIC. By default, DBADMIN and DBA belong to groups
with access levels that enable them to open the system catalog in DBA. The PUBLIC user does not.

Password. A case-sensitive alphanumeric entry stored in the system catalog. The default password
for the DBADMIN user and the DBA user is MANAGER.

3. Click OK. If DBA can open the system catalog, the Open System Catalog window will close, and
the information line at the bottom of the main DBA window will have the message “Connected to
catalog connect_filename as user_name.”

Figure 6-3. The Open System Catalog window.

Viewing and Customizing the System Catalog
Opening the System Catalog in DBA

xfODBC User’s Guide 10.1 (6/13) 6-11

Opening a system catalog from the command line
You can open DBA and your system catalog in one step from the command line. (Note that you can
specify other command-line options after the -c option. See “Command line options” on page 6-2.)

 At a Windows or UNIX prompt, use the following syntax:

dbr SODBC_DBA:xfdba.dbr -c connect_string

 At an OpenVMS prompt, use the following syntax:

$ XFDBA -C connect_string

where connect_string has the user_name/password/connect_filename format.

The DBA program will open. If DBA can open the system catalog, the information line at the
bottom of the main DBA window will have the message “Connected to catalog connect_filename as
user_name.” If DBA cannot open the system catalog, no message will appear in the information
line.

For example, to open the system catalog for the sample database in a Windows or UNIX
environment, enter

dbr SODBC_DBA:xfdba.dbr -c DBADMIN/MANAGER/sodbc_sa

To open the system catalog for the sample database in an OpenVMS environment, enter

$ XFDBA -C DBADMIN/MANAGER/SODBC_SA

These examples assume that your connect file is sodbc_sa, that SODBC_DBA is set to the
directory where the DBA program resides, and that GENESIS_HOME is set to the directory where
the connect file resides.

If the system catalog won’t open...
If you can’t open a system catalog, typically it’s because xfODBC can’t locate the necessary data
files and system catalog files. Make sure the files are stored in the expected directories and that the
connect file and environment variables are set correctly.

Check your connect file
 Did you enter the entire connect filename, including the file extension (if applicable), when

connecting to the system catalog?

 Note the dictsource line in the connect file. Is the specified directory valid? Is the line
formatted correctly?

 Did you use environment variables in the Open filename field in Repository? If so, you can
define those variables in the connect file.

Viewing and Customizing the System Catalog
Opening the System Catalog in DBA

6-12 xfODBC User’s Guide 10.1 (6/13)

Verify environment variables
Because environment variables enable xfODBC to locate files, it’s important to verify their settings.

 GENESIS_HOME—Is this variable set correctly? For client/server configurations, was it set
before the SQL OpenNet server was started? See “Specifying the connect file location
(GENESIS_HOME)” on page 3-19 for information.

 SODBC_DBA—Is this variable set correctly? See “Specifying the location of DBA and
dbcreate” on page 3-18 for information.

Verify the log-in
 Do you have user and group files?

 When entering the connect string, did you type the user name and password exactly as stored?
They are case sensitive.

Viewing and Customizing the System Catalog
Customizing Users and Groups

xfODBC User’s Guide 10.1 (6/13) 6-13

Customizing Users and Groups
Users and groups enable you to control access to your database and your system catalog. If you
initialized users and groups, your system catalog already has a default set of users and groups. You
can use these as they are, or you can modify them. You can also create your own users and groups.

A user’s access level is determined by membership in a group. To create users with varying access
levels,

1. Create groups.

2. Define the access levels for each group.

3. Assign users to those groups.

For information on how group access levels and table access levels work together, see “Setting
Security Levels” on page 8-2.

Initializing users and groups
DBA and dbcreate have options that enable you to initialize users and groups—that is, create or
return to an initial, default set of users and groups. This default set includes three default users and
two default groups. (See the table below.) You can initialize users and groups as you generate or
regenerate a system catalog (see “Generating the System Catalog” on page 4-2 and “Initializing
users and groups with dbcreate” on page 4-10). And you can initialize users and groups for an
existing system catalog without regenerating the system catalog, as described below.

For information on access levels, see “Setting Security Levels” on page 8-2.

When you modify users or groups in DBA, the system catalog is updated automatically. You
do not need to regenerate the system catalog.

Initializing user and groups removes users and groups you’ve added, removes
modifications you’ve made, and restores users and groups to their default settings.

User name Password Assigned group Access level

DBA MANAGER SYSTEM 254

DBADMIN MANAGER SYSTEM 254

PUBLIC No password USER 100

Viewing and Customizing the System Catalog
Customizing Users and Groups

6-14 xfODBC User’s Guide 10.1 (6/13)

To use DBA to initialize users and groups without regenerating the system catalog,

1. Open the system catalog in DBA. Close any open lists or input windows.

2. From the Maintenance menu, select Initialize Users & Groups.

The following prompt is displayed:

Do you want to overwrite the existing table?

3. To initialize users and groups, select Yes.

To initialize users and groups from the command line without regenerating the system catalog, do
one of the following. (For information on DBA command-line options, see “Command line
options” on page 6-2.)

 At a Windows or UNIX prompt, use the following syntax:

dbr SODBC_DBA:xfdba.dbr -c connect_string -i

 At an OpenVMS prompt, use the following:

$ XFDBA -C connect_string -I

where connect_string has the user_name/password/connect_filename format.

For example, to initialize users and groups for the sample database in a Windows or UNIX
environment, enter

dbr SODBC_DBA:xfdba.dbr -c DBADMIN/MANAGER/sodbc_sa -i

To initialize users and groups for the sample database in OpenVMS, enter

$ XFDBA -C DBADMIN/MANAGER/SODBC_SA -I

These examples assume that your connect file is sodbc_sa, that SODBC_DBA is set to the
directory where the DBA program resides, and that the connect file is located in the
GENESIS_HOME directory.

Viewing groups
To view groups, close any open lists and input windows and select Groups from the Maintenance
menu of DBA. The Group List window is displayed, as shown in figure 6-4.

The Group List window displays a list of groups with the following information:

GID. An automatically assigned group ID number.

Name. The alphanumeric identifier for each group.

Users. The number of users assigned to each group.

Access. The access level of each user in the group (numeric, from 0 to 255).

Description. A brief description of each group.

Viewing and Customizing the System Catalog
Customizing Users and Groups

xfODBC User’s Guide 10.1 (6/13) 6-15

Creating a group
You can create up to 999,999 groups, and you can assign a maximum of 255 users to a group.

1. Open the Group List window. (See “Viewing groups” on page 6-14.)

2. From the Group Maintenance menu, select New Group. The Group window is displayed, as show
in figure 6-5.

3. Enter data in each field as described below.

Group ID. An automatically assigned group number. This field is not modifiable.

Group name. Enter an alphanumeric identifier of up to 10 characters.

Access level. Enter a number between 0 and 255 that determines users’ read/write access to data.
This level determines the access level of all users in the group. Note that a group must be set to at
least 100 for users in that group to access the database.

We recommend that you use levels 254 and 255 for administrative users only. For more information
on setting access levels, see “Setting Security Levels” on page 8-2.

Figure 6-4. The Group List window.

Figure 6-5. The Group window.

Viewing and Customizing the System Catalog
Customizing Users and Groups

6-16 xfODBC User’s Guide 10.1 (6/13)

Num of users. The total number of users assigned to this group. This field is not modifiable and is
set to zero when you’re adding a new group.

Description. (optional) Enter an alphanumeric description of up to two lines of 30 characters.

4. Select OK or press F4.

Modifying a group
1. Open the Group List window. (See “Viewing groups” on page 6-14.)

2. In the Group List window, highlight the group you want to modify.

3. From the Group Maintenance menu, select Modify Group.

4. Make any changes. Then select OK or press F4.

Deleting a group
1. Open the Group List window. (See “Viewing groups” on page 6-14.)

2. In the Group List window, highlight the group you want to delete.

3. From the Group Maintenance menu, select Delete Group.

A window is displayed with the selected group’s name and description and the following prompt:

Do you want to delete the current entry?

4. To delete the group, select Yes.

Note that you can’t delete a group that has users. The users must first be deleted or assigned to other
groups.

Viewing users in a group
1. Open the Group List window. (See “Viewing groups” on page 6-14.)

2. Highlight the group in the Group List window.

3. From the Group Maintenance menu, select View Users.

The User List window opens. For information on this window, see “Viewing all users” on
page 6-17.

To modify a user, see “Modifying a user” on page 6-18.

Viewing and Customizing the System Catalog
Customizing Users and Groups

xfODBC User’s Guide 10.1 (6/13) 6-17

Viewing all users
To view a list of all users in the system catalog, close any open lists or input windows and select
Users from the Maintenance menu. (You can also view a list of users for a specific group. See
“Viewing users in a group” above.)

The User List window displays the following information for each user:

Name. A case-sensitive alphanumeric identifier that you assign.

Password. A case-sensitive alphanumeric identifier. Users are not required to have passwords.

Full name. The user’s full name.

GID. The ID of the group the user belongs to.

Adding a user
You can add up to 255 users to a group.

1. Open the User List window. (See “Viewing all users” above.)

2. From the User Maintenance menu, select New User. The User window is displayed, as shown in
figure 6-7.

3. Enter data in each field as described below.

User name. Enter an alphanumeric identifier for the user you are creating. It can be up to 10
characters long. This field corresponds to the Name column in the User List window and is case
sensitive.

Password. (optional) Enter an alphanumeric password. It can be up to 10 characters long.
Passwords are case-sensitive and are visible only to users who can open DBA (users with an access
level of 254 or greater). The following characters are not allowed: ~ @ # $ % ^ & * _ +
= \ } { " , : ? / < > ! '

Figure 6-6. The User List window.

Viewing and Customizing the System Catalog
Customizing Users and Groups

6-18 xfODBC User’s Guide 10.1 (6/13)

Group ID. Enter the ID of the group you want to assign a user to. A user’s access level is
determined by the group it belongs to. To view a list of available groups, select Select Group from
the User Maintenance menu.

Full name. (optional) Enter the user’s full name. It can be up to 40 characters long.

Description. (optional) Enter an alphanumeric description of the user. The description can be up to
60 characters long.

Modifying a user
1. Open the User List window. See “Viewing all users” on page 6-17.

2. Highlight the user in the User List window.

3. From the User Maintenance menu, select Modify User.

4. Make any changes. Then select OK or press F4.

Deleting a user
1. Open the User List window. See “Viewing all users” on page 6-17.

2. Highlight the user in the User List window.

3. From the User Maintenance menu, select Delete User.

A window is displayed with the selected user’s user name, full name, and the following prompt:

Do you want to delete the current entry?

4. To delete the user, select Yes.

Figure 6-7. The User window.

Viewing and Customizing the System Catalog
Customizing Tables and Table Elements

xfODBC User’s Guide 10.1 (6/13) 6-19

Customizing Tables and Table Elements
You can use DBA to view tables, columns, indexes, and segments, and to delete tables and
columns. And you can use a conversion setup file to change a table’s access level, to add deleted
tables back into the system catalog, and to change the path and filename for a table’s data files.

Viewing and customizing tables

Viewing the tables in your system catalog
1. Open a system catalog in DBA. Close any open input windows or lists.

2. From the Maintenance menu, select Tables. The Table List window displays the following.

Table name. The alphanumeric name of the table.

Type. The type of table:

SYSTEM System table (created by dbcreate)

DATA Data table (from your Synergy database)

Owner. The table owner. If the table was generated from a repository, this is “Public” (all users). If
an ODBC application created it, the owner is the user who created it. Owner can’t be modified.

Open filename. The name of the file that contains this table. Notice that the Open filename field
may include an environment variable, which must be set in the connect file, in an environment
setup file, or in the environment. This field corresponds to the Open filename field in Repository.

Figure 6-8. The Table List window.

Viewing and Customizing the System Catalog
Customizing Tables and Table Elements

6-20 xfODBC User’s Guide 10.1 (6/13)

Access. The access level assigned to each table, which is 100 by default. You can change this level
with a conversion setup file. See “Modifying table access levels” on page 6-22.

The creation date for the system catalog is listed in the information line at the bottom of the list.

To view hidden areas of the Table List, select Toggle View from the List menu.

Viewing a specific table

1. Open the Table List window. (See “Viewing the tables in your system catalog” on page 6-19.)

2. In the Table List Window, highlight the table name.

3. From the Table Maintenance menu, select View Table. The Table window displays the following
information about the table you selected. (Note that you cannot modify the information in this
read-only window.)

Table owner. The table’s owner. This is “Public” if generated from S/DE Repository.

Table name. The alphanumeric name of the table.

Table type. The type of table:

SYSTEM System table (created by dbcreate)

DATA Data table (from your Synergy database)

File type. The type of file:

ISAM
RELATIVE
ASCII (ASCII sequential)

Access level. The access level assigned to this table. (For more information about access levels,
see “Modifying table access levels” on page 6-22.)

of columns. The number of columns in the table.

Record size. The number of characters (bytes) allowable in a single record in this table.

File name. The actual name and location of the data file including an environment variable, if
applicable. This corresponds to the Open filename field in the Table List.

Locating a table in a long list

1. Make sure the Table List window is active. (If the Table window is open, close it.)

2. From the List menu, select Find.

3. In the small window that’s displayed, type the table name and select OK. The DBA program
highlights the first match.

The Find feature does not support wildcard characters, such as asterisk (*) or question mark (?).

4. To view the attributes of the highlighted table, press ENTER.

Viewing and Customizing the System Catalog
Customizing Tables and Table Elements

xfODBC User’s Guide 10.1 (6/13) 6-21

Deleting a table
Deleting a table removes user access to that table, and it removes the table, its columns, and its
indexes only from the system catalog. The repository definition, relations, and the actual data file
remain unaltered (only the reference to the data table is removed from the system catalog). Note
that you cannot delete the system tables (see “System catalog” on page 1-5 for a list of system
tables).

To use DBA to delete a table,

1. Open the Table List window. (See “Viewing the tables in your system catalog” on page 6-19.)

2. In the Table List window, highlight the name of the table to be deleted.

3. From the Table Maintenance menu, select Delete Table.

A window is displayed with the selected table’s name, file location, and the following prompt:

Do you want to delete the current entry?

To delete a table from the system catalog and keep it out, even if you regenerate the system catalog,
do the following:

1. Generate a conversion setup file.

2. Set the SODBC_CNVFIL environment variable to the conversion setup file.

3. Delete the table in DBA using the above procedure.

Alternatively, you can change the IN|OUT setting for the table to OUT by manually editing the
conversion setup file. For information, see “Generating and Editing a Conversion Setup File” on
page 6-27.

4. Do one of the following:

 Use dbcreate from the command line to regenerate the system catalog. Be sure to use the -c
option and to specify the conversion setup file as input.

 Use DBA to regenerate the system catalog. Be sure to use the “Clear and recreate catalog”
option and to specify the conversion setup file as input.

Rather than using DBA to delete a table, we recommend that you use DROP TABLE or
make such changes using S/DE Repository and then regenerate the system catalog.

If the SODBC_CNVFIL environment variable is set to the location and filename of the
conversion setup file, deleting a table in DBA automatically sets the conversion setup file’s
IN|OUT setting for the table to OUT. This prevents DBA and dbcreate from reinserting the
table if you regenerate the system catalog using the -c option with dbcreate or the “Clear
and recreate catalog” option with DBA.

Viewing and Customizing the System Catalog
Customizing Tables and Table Elements

6-22 xfODBC User’s Guide 10.1 (6/13)

Adding a deleted table back into the system catalog
There are two ways to add a deleted table back into the system catalog. You can regenerate the
system catalog without using a conversion setup file and then regenerate the conversion setup file,
or you can do the following:

1. Generate a conversion setup file.

2. Open the conversion setup file in a text editor and manually change the IN|OUT setting for the
table.

3. Using the conversion setup file as input, regenerate the system catalog.

For more information, see “Generating and Editing a Conversion Setup File” on page 6-27 and
“Regenerating the System Catalog” on page 4-9.

Modifying table access levels
When you first generate the system catalog, all tables are set by default with an access level of 100
(except the GENESIS_* tables, which are set to 0). To change these access levels,

1. Generate a conversion setup file.

2. Open the conversion setup file in a text editor and manually change the levels.

3. Using the conversion setup file as input, regenerate the system catalog.

For more information, see “Generating and Editing a Conversion Setup File” on page 6-27 and
“Regenerating the System Catalog” on page 4-9.

In the example in figure 6-9, the access levels for the Orders, Plants, and Vendors tables have been
modified.

Figure 6-9. Conversion setup file with modified access levels.

We recommend setting table access levels to even numbers. An even-numbered access
level enables the xfODBC driver to read from, but not write to a table. If you set a table’s
access level to an odd number, a user may update a record that’s in use by another
application.

Viewing and Customizing the System Catalog
Customizing Tables and Table Elements

xfODBC User’s Guide 10.1 (6/13) 6-23

Changing the location of table data files
1. Generate a conversion setup file.

2. Open the conversion setup file in a text editor and manually change the path and filename of the
data file.

3. Using the conversion setup file as input, regenerate the system catalog.

For more information, see “Generating and Editing a Conversion Setup File” on page 6-27 and
“Regenerating the System Catalog” on page 4-9.

Viewing and deleting columns

Viewing columns in a table
You can view a list of all the columns in a table, and you can view the attributes of each individual
column.

Note that the terms column and field are often used interchangeably. When a database is presented
visually as a data sheet, typically the top row lists all the columns. On a form in which a user enters
data, these columns are represented as fields. For our purposes, a repository field is equivalent to a
system catalog column.

To view a list of columns in a table,

1. Open the Table List window. (See “Viewing the tables in your system catalog” on page 6-19.)

2. In the Table List Window, highlight a table name.

3. From the Table Maintenance menu, select View Columns.

The Column List window displays a list of the columns, sorted by offset, along with attributes of
these columns.

Column name. Heading name for each data column.

Type. Synergy data type for the column (ALPHA, DATE, USER, etc.).

Size. The size of the field (in bytes) before the system catalog was generated.

Precision. The number of characters to the right of the decimal point in an implied-decimal field.

Position. Column’s start position (in bytes) from the leftmost character in the record. The columns
in this window are sorted by their offset position.

Viewing and Customizing the System Catalog
Customizing Tables and Table Elements

6-24 xfODBC User’s Guide 10.1 (6/13)

Viewing information about a column
To view more complete information about an individual column,

1. Open the Column List window. (See “Viewing columns in a table” on page 6-23.)

2. In the Column List window, highlight the column.

3. From the Column Maintenance menu, select View Column.

The Column window displays the following information. You cannot modify the information in this
read-only window.

Column name. Name of the column.

SQL type. Data type as defined by the SQL_DescribeCol ODBC API function (SQL_TIME,
SQL_BIT, etc.).

The following fields are in the “Synergy details” portion of the Column window.

Type. The Synergy data type (ALPHA, DATE, etc.).

Position. The column’s start position (in bytes) from the leftmost character in the record.

Size. The size of the field as defined in S/DE Repository.

Signed. Indicates whether a numeric column in the system catalog is signed or unsigned (which is
determined by whether “Negative allowed” or a positive range of values is selected for the
corresponding field in the repository).

Precision. The number of characters to the right of the decimal point in an implied-decimal field. If
an implied-decimal field has no characters to the right of the decimal point, this field is blank.

User data. The information entered in the S/DE Repository User data field. It can contain any
string of up to 30 characters and is available only for user-defined repository fields. xfODBC
checks the content of this field when it generates a system catalog. If this field contains a string in
the format ^CLASS^=date_format, xfODBC interprets the column as a date with the specified
format. See “Date and time fields” on page 3-15.

The following fields are in the “Support details” portion of the Column window.

Type. Internal data type used by xfODBC:

Ordinal position. Ordinal position of the column in the record. A column with an ordinal position
of 1 appears at the leftmost position in a data sheet when viewed using an ODBC-enabled database
application.

Length. For use by Synergy/DE Developer Support.

Internal format. For use by Synergy/DE Developer Support.

Null allowed. Indicates whether a null value (or equivalent) is allowed in this column: Y for yes
or N for no. See “Preventing null updates and interpreting spaces, zeros, and null values” on
page 3-27.

Viewing and Customizing the System Catalog
Customizing Tables and Table Elements

xfODBC User’s Guide 10.1 (6/13) 6-25

Deleting a column

1. Open the Column List window. See “Viewing columns in a table” on page 6-23.

2. In the Column List window, highlight the column to be deleted.

3. From the Column Maintenance menu, select Delete Column.

A window is displayed with the selection’s table name, column name, and the following prompt:

Do you want to delete the current entry?

Deleting a column removes only its reference from the system catalog. This action does not delete
actual data. However, a deleted column is no longer accessible to an ODBC-enabled application.

Viewing indexes in a table
Indexes are a superset of keys. They’re defined in your repository, and they enable quicker access to
records.

1. Open the Table List window. See “Viewing the tables in your system catalog” on page 6-19.

2. In the Table List window, highlight the table.

3. From the Table Maintenance menu, select View Indexes.

The Index List window displays a list of indexes with the following information:

Index. The name of the index as defined in the repository.

Type. The index type:

UNIQUE
NON-UNIQUE (duplicates allowed)

Segments. The number of segments for the index.

Note the following:

 Using DBA to delete tables and columns can lead to unpredictable results. We strongly
recommend that you make such changes using S/DE Repository and then regenerate
the system catalog.

 You cannot delete columns from the system tables, tables in the system catalog whose
names start with GENESIS_.

Viewing and Customizing the System Catalog
Customizing Tables and Table Elements

6-26 xfODBC User’s Guide 10.1 (6/13)

Viewing segments for an index
1. Open the Index List window. (See “Viewing indexes in a table” on page 6-25.)

2. In the Index List window, highlight the index; then select View Segments from the Index
Maintenance menu.

The Segment List window displays the following information:

Segment#. The sequence of the segment in the index.

Field name. The field name of the index segment.

Order. The sort order of the index: ASC for ascending or DESC for descending.

Viewing and Customizing the System Catalog
Generating and Editing a Conversion Setup File

xfODBC User’s Guide 10.1 (6/13) 6-27

Generating and Editing a Conversion Setup File
Conversion setup files are text files that contain information on tables in the data files. This
information includes table names, table access levels, whether a table will be part of the system
catalog, data file locations, as well as information about the conversion setup file itself (name,
version of DBA used to generate it, and the date it was generated). For an example, see figure 6-11
on page 6-29.

Conversion setup files are used when you regenerate a system catalog and enable you to

 change the path and filename specifications of the data files.

 change the access level of a table.

 remove a table from the system catalog.

 add a deleted table back into a system catalog.

 prevent a table from being added back into a system catalog if the system catalog is
regenerated. Although you can use DBA to delete a table from the system catalog, you must
use a conversion setup file to keep it out of the system catalog when regenerating.

To use a conversion setup file,

1. Generate the file. There are two ways to do this. You can open the system catalog and then generate
the file from DBA, or you can generate the file from the command line. See “Generating the
conversion setup file from the command line” on page 6-28.

2. Make any necessary changes to the conversion setup file. See “Editing the conversion setup file” on
page 6-29.

3. Using the conversion setup file, regenerate the system catalog. See “Regenerating the System
Catalog” on page 4-9.

Generating the conversion setup file from DBA
1. Open the system catalog in DBA. (See “Opening the System Catalog in DBA” on page 6-10.) Close

any open input lists or windows.

2. From the Catalog menu, select Generate Conversion Setup File.

The Generate Conversion Setup File window opens and prompts you for the name and location of
the conversion setup file.

If the SODBC_CNVFIL environment variable is set, this window opens with the name and location
that SODBC_CNVFIL specifies. If the SODBC_CNVFIL environment variable is not set, this
window is automatically populated with the following path and filename:
GENESIS_HOME:SODBCCNV.INI.

3. Enter the full path and filename for the conversion setup file you want to generate (or accept the
default), and then click OK. You can use environment variables as shown in figure 6-10.

Viewing and Customizing the System Catalog
Generating and Editing a Conversion Setup File

6-28 xfODBC User’s Guide 10.1 (6/13)

DBA generates the conversion setup file, which reflects the current table attributes. Once you’ve
created the conversion setup file, you can use this file to affect the way the system catalog is
regenerated. See “Regenerating the System Catalog” on page 4-9.

Generating the conversion setup file from the command line
To generate a conversion setup file from the command line, do one of the following:

 At a Windows or UNIX prompt, use the following syntax:

dbr SODBC_DBA:xfdba.dbr -c connect_string -g filename

 At an OpenVMS prompt, use the following syntax:

$ XFDBA -C connect_string -G filename

where connect_string has the user_name/password/connect_filename format and filename is the
full path and filename of the conversion setup file.

The following examples generate a conversion setup file named cnv.ini in a directory named data.

Windows:

dbr SODBC_DBA:xfdba -c DBADMIN/MANAGER/sodbc_sa -g c:\data\cnv.ini

UNIX:

dbr SODBC_DBA:xfdba -c DBADMIN/MANAGER/sodbc_sa -g /usr/data/cnv.ini

OpenVMS:

$ XFDBA -C DBADMIN/MANAGER/SODBC_SA -G DKA600:[DATA]CNV.INI

For information on DBA command line options, see “Command line options” on page 6-2.

Figure 6-10. Specifying the path and filename for a conversion setup file.

This procedure opens DBA, generates the conversion setup file you specify—without
prompting you for confirmation—and then closes DBA, returning you to the command line.

Viewing and Customizing the System Catalog
Generating and Editing a Conversion Setup File

xfODBC User’s Guide 10.1 (6/13) 6-29

Editing the conversion setup file
Using a text editor, you can modify the conversion setup file in the following ways:

 Mark a table IN or OUT, so that it can be included in or excluded from a system catalog.

 Change access level for the data tables.

 Change the file location of a table in the system catalog.

Figure 6-11 shows a conversion setup file. This sample was generated on Windows from the sample
database and was then modified: the IN/OUT setting for the Vendors table was set to OUT.

Each table is listed with the following:

table_name [IN|OUT][ACC=access_level][OPEN=path]

table_name

The name of a table in your Synergy data files. In figure 6-11, the conversion setup file lists
four tables: CUSTOMERS, ORDERS, PLANTS, and VENDORS.

IN | OUT

(optional) Determines whether the table is considered when the system catalog is regenerated.
If you use dbcreate with the -x option or DBA with the “Add new tables and update existing
tables” option, tables marked as OUT are not overwritten or removed. If you use dbcreate with
the -c option or DBA with the “Clear and recreate catalog” option, tables marked as OUT are
omitted from the system catalog. The default is IN. In figure 6-11, for example, the Vendors
table has been marked as OUT. If the system catalog is regenerated using this file and the -c
option (dbcreate) or the “Clear and recreate catalog” option (DBA), the vendors table will no
longer be accessible to an ODBC-enabled application. Note that data files are not altered; the
Vendor table will remain as part of the database.

Whenever you manually change the conversion setup file, you must regenerate the system
catalog for the changes to go into effect. See “Regenerating the System Catalog” on
page 4-9.

Figure 6-11. A conversion setup file for the sample database.

Viewing and Customizing the System Catalog
Generating and Editing a Conversion Setup File

6-30 xfODBC User’s Guide 10.1 (6/13)

access_level

(optional) Access level of the table. This can be any numeric value from 0 to 255. The default
value is 100. See “Modifying table access levels” on page 6-22.

path

(optional) Location and name of the data file for the table_name table. If this option is not
specified or if no path or environment variable precedes the filename specified in the Open
filename field of the Repository file definition, the datasource specification in the connect file
is used. In figure 6-11, the Vendors table is part of the ISAM file named customer.

Viewing and Customizing the System Catalog
Verifying the System Catalog

xfODBC User’s Guide 10.1 (6/13) 6-31

Verifying the System Catalog
If you’ve made changes to a system catalog, you may want to verify that the system catalog tables
still match the definitions in the repository or the database.

Comparing the system catalog to repository definitions
You can create a verification log that lists table names, file names, the number of columns read and
defined for each table, and the number of indexes read for each table. You can create this file from
the DBA program or from the command line.

Using DBA to create a verification log
1. Open the system catalog in DBA. Close any open lists or input windows.

2. From the Catalog menu, select Verify.

The Verify System Catalog window opens and prompts you for a name and location.

3. Accept the default or enter a new location and name. Then select OK.

A message displays telling you how many tables were verified and how many errors were found.
However, be sure to read the log file. It contains more complete information.

4. Select OK.

Creating a verification log from the command line
To create a verification log from the command line, use the following syntax at a Windows or
UNIX prompt:

dbr SODBC_DBA:xfdba.dbr -c connect_string -v verify_file

or use the following syntax at an OpenVMS prompt:

$ XFDBA -C connect_string -V verify_file

where connect_string has the user_name/password/connect_filename format and verify_file is the
full path and filename for the verification log.

The following examples generate a verification log named vrfy.log in a directory named data.

Windows:

dbr SODBC_DBA:xfdba.dbr -c DBADMIN/MANAGER/sodbc_sa -g c:\data\vrfy.log

UNIX:

dbr SODBC_DBA:xfdba.dbr -c DBADMIN/MANAGER/sodbc_sa -g /usr/data/vrfy.log

Viewing and Customizing the System Catalog
Verifying the System Catalog

6-32 xfODBC User’s Guide 10.1 (6/13)

OpenVMS:

$ XFDBA -C DBADMIN/MANAGER/SODBC_SA -G DKA600:[DATA]VRFY.LOG

For information on DBA command-line options, see “Command line options” on page 6-2.

Comparing the system catalog to a database
You can compare the tables in the system catalog to the data definitions in a database. You can do
this from the command line or from the DBA program. The results of the comparison are saved to a
log file.

For information on comparing from the command line, see fcompare in the “Synergy DBMS”
chapter of Synergy Tools.

Using DBA to compare the system catalog to a database
1. Open the system catalog in DBA. Close any open lists or input windows.

2. From the Catalog menu, select Compare to Files.

The Compare System Catalog to Files window opens.

3. Fill in or select from the following:

Connect file. Enter a connect file name or accept the default. The connect file determines which
database and system catalog will be compared.

Option. Select All to compare all tables in the system catalog to the database. Select Specific to
compare one system catalog table to the database.

Table name. If you selected the Specific option for the Option field, enter the name of the table you
want compared to the database. This is available only if Specific is selected for the Option field.

Verify data. Select this option to verify data in the ISAM files. (Data definitions are compared
regardless of this setting, but data is verified only if this option is selected.) This option is available
only if Specific is selected for the Option field.

Log file. Enter the path and name for the log file. The log file will contain the results of the
comparison.

Verbose logging. Select this option if you want to generate additional (verbose) output
information.

4. Click OK.

7-1

7
Creating Routines for User-Defined
Data Types

Introduction 7-2

Gives examples of the kinds of user-defined data routines you can create.

Using xfodbcusr.c As a Template 7-3

Explains xfodbcusr.c, a template you can use to create user-defined data routines.

Using xfodbcusr.c As an Example 7-6

Guides you through the steps you’ll follow to create and troubleshoot user-defined data routines.

Creating Routines for User-Defined Data Types
Introduction

7-2 xfODBC User’s Guide 10.1 (6/13)

Introduction
If your repository contains user-defined fields—fields created as user type fields in
S/DE Repository—you can write C language routines to manipulate user-defined field data as it’s
read from and written to the database. (This is similar to creating user-overloadable ReportWriter
routines.) For example, if a user-defined field stores street addresses in mixed-case characters, and
you want the xfODBC driver’s output to be in all uppercase characters, you can create a routine to
convert the addresses as they’re read from the database. And if you want the addresses converted to
mixed-case characters as they’re input, you can also create a routine to do that.

To create a user-defined data routine,

 on Windows, you’ll create a DLL named xfodbcusr.dll in the connect subdirectory of the main
Synergy/DE installation directory.

 on UNIX, you’ll create a shared library, XFODBCUSR.so, in the connect subdirectory of the
main Synergy/DE installation directory.

 on OpenVMS, you’ll create a shared image, xfodbcusr_so.exe. The logical
XFODBCUSR_SO (set in CONNECT_STARTUP.COM) will point to the location of this
shared image.

These are the files that the xfODBC driver calls for user-defined data routines. Create 32-bit
versions for 32-bit Connectivity Series. Create 64-bit versions for 64-bit Connectivity Series. These
files must reside on the same machine as the data. For client/server configurations, this means the
file must reside on the server.

To help you learn to create your own user-defined data routines, we’ve created a tutorial that steps
you through the process; see “Using xfodbcusr.c As an Example” on page 7-6. And see “Using
xfodbcusr.c As a Template” on page 7-3 for information on xfodbcusr.c, a C language source file
that you can use as a template for your user-defined data routines. Note the following:

 User-defined data routines are called for all user type fields except those that have ^CLASS^
embedded within the user data string. ^CLASS^ is reserved for a subset of date storage formats
supported by xfODBC. For more information, see “Date and time fields” on page 3-15.

 For information on using user-defined fields as tags or keys, see “Setting Up a Repository” on
page 3-2 and “Optimizing with Keys” on page 10-2.

 The Connectivity Series distribution includes base versions and working versions of the files
used for user-defined data type routines (the files discussed in this chapter). The base versions
are in the connect\synodbc\usr\base directory. Do not make changes to these files—they are
included so you always have original versions. The working versions are in the
connect\synodbc\user directory (except for xfodbcusr.dll on Windows, XFODBCUSR.so on
UNIX, or xfodbcusr_so.exe on OpenVMS—these are in the connect directory). When you
install Connectivity Series, the installation replaces base versions of these files to ensure you
always have the latest versions. To preserve your changes, however, working versions are
replaced only if they are unchanged.

Creating Routines for User-Defined Data Types
Using xfodbcusr.c As a Template

xfODBC User’s Guide 10.1 (6/13) 7-3

Using xfodbcusr.c As a Template
To make creating user-defined data routines convenient, we’ve included a template file,
xfodbcusr.c, in the xfODBC installation. This file has the source code, written in C, for the file that
the xfODBC driver calls for user-defined data routines.

 On Windows, this file is a DLL, xfodbcusr.dll.

 On UNIX, this file is a shared library, XFODBCUSR.so.

 On OpenVMS, this file is a shared image, xfodbcusr_so.exe.

Until you overwrite it, this DLL, shared library, or shared image simply returns a value of 1, which
tells the xfODBC driver that there’s no data manipulation to be done. (If, in Repository, you’ve
changed the user-defined fields from alpha to numeric or date, the return value of 1 will indicate an
error.) However, if you want to add user-defined data routines, you can do so by adding the code for
these routines to xfodbcusr.c and then creating a new version of the DLL, shared library, or shared
image from this source file. The following section describes the routines included in xfodbcusr.c.
To see an example of how xfodbcusr.c can be used to create user-defined data routines, see “Using
xfodbcusr.c As an Example” on page 7-6.

Functions in xfodbcusr.c
xfodbcusr.c has four functions:

 user_to_alpha()—code added to this function manipulates alpha user type field data as it’s read
from a database.

 user_to_number()—code added to this function manipulates numeric and date user type field
data as it’s read from a database.

 alpha_to_user()—code added to this function manipulates alpha user type field data as it’s
written to a database.

 number_to_user()—code added to this function manipulates numeric and date user type field
data as it’s written to a database.

Unless you’ve modified xfodbcusr.c, these functions already have code that’s been commented out
by #ifdef statements. (You’ll need this code to complete the example in “Using xfodbcusr.c As an
Example” on page 7-6.) To add your own data-manipulation routines, replace this code with the
routines you’ve written.

user_to_alpha
int user_to_alpha(char *tablename, char *columnname,

char *userstr, char *recdata, char *indata,
int inlen, int maxoutlen, char *outdata,
int *outlen);

Creating Routines for User-Defined Data Types
Using xfodbcusr.c As a Template

7-4 xfODBC User’s Guide 10.1 (6/13)

user_to_number
int user_to_number(char *tablename, char *columnname,

char *userstr, char *recdata, char *indata,
int inlen, char *outdata);

alpha_to_user
int alpha_to_user(char *tablename, char *columnname,

char *userstr, char *recdata, char *indata,
int inlen, int maxoutlen, char *outdata,
int *outlen);

number_to_user
int number_to_user(char *tablename, char *columnname,

char *userstr, char *recdata, char *indata,
char *outdata);

Arguments
tablename

The name of the table. (null-terminated string)

columnname

The name of the column. (null-terminated string)

userstr

The string from the User data field in a Repository field definition. (null-terminated string)

recdata

The full record. This is passed so the routine can use other values in the record.

indata

Input data string. This is the string that the routine will convert.

 For the user_to_alpha() function, indata is an alpha string.

 For the user_to_number() function, the format of indata is determined by the format of the
user-defined field in your system catalog.

 For the alpha_to_user() function, indata is an alpha string.

 For number_to_user() function, indata is formatted as a 28.10 Synergy DBL zoned
decimal for user-defined numeric fields and is formatted as a YYYYMMDD date for
user-defined date fields.

inlen

The length of the input data string.

Creating Routines for User-Defined Data Types
Using xfodbcusr.c As a Template

xfODBC User’s Guide 10.1 (6/13) 7-5

maxoutlen

Maximum output data length. Not currently used.

outdata

Output data string. This is the string produced by the routine.

 For the alpha_to_user() and number_to_user() functions, your routine determines the
format of outdata.

 For the user_to_alpha() function, outdata must be formatted as an alpha string.

 For the user_to_number() function, if the string is from a user-defined numeric field,
outdata must be formatted as a 28.10 Synergy DBL zoned decimal. If the string is from a
user-defined date field, outdata must be formatted as a YYYYMMDD date.

outlen

Output data string length. Not currently used.

Return values

The functions in xfodbcusr.c return these values:

> 0 Instructs the driver not to use outdata. If the data is from a numeric or date field, a
number greater than zero indicates an error (as does any number other than zero).

0 Instructs the driver to use outdata.

< 0 Indicates that there has been a data conversion error. Note that the application that’s
accessing the data may not display an error and may not continue to process data.

Note the following:

 If your system catalog was generated from a repository with numeric or date
user-defined fields, your routines must include conditional statements that set the
outdata value. The tutorial uses column and table names, but you can also use userstr
or recdata. In addition, outdata must have a value, and the routine must return a value
of 0.

 A routine for user-defined data can return a null date for a SELECT operation. To do
this, fill the user_to_number() outdata argument with either eight zeros or eight spaces.
Both designate a null date value.

Creating Routines for User-Defined Data Types
Using xfodbcusr.c As an Example

7-6 xfODBC User’s Guide 10.1 (6/13)

Using xfodbcusr.c As an Example
This tutorial guides you through the steps needed to create user-defined data routines. As you
follow the tutorial, you’ll modify xfodbcusr.c to include routines that

 convert addresses to mixed-case characters as they’re input and all uppercase characters as
they’re retrieved by an application.

 change dates to the fifteenth of the month as they’re output, and the first of the month as they’re
written by an application.

 store customer limits for Oregon customers to $2000.75, no matter what number you enter, and
add $200.00 to customer limits for Oregon customers as the limit is retrieved from the
database.

Once you’ve modified the code in xfodbcusr.c, you’ll compile and link the modified file as
xfodbcusr.dll (Windows), XFODBCUSR.so (UNIX), or xfodbcusr_so.exe (OpenVMS). You can
then watch it work as you use xfODBC to read and write data to the sample database supplied with
the xfODBC installation.

Note that these routines are designed to work only with the sample database that’s included with the
xfODBC installation, and that these routines, like all user-defined data routines, can’t change the
size of a field, only the contents.

1. Open Repository and do the following:

 Set the xfODBC sample database as the current repository. The repository files for the sample
database are located in the connect\synodbc\dict subdirectory of the main Synergy/DE
installation directory.

 Change the CUST_STREET field in the CUSTOMERS structure from type alpha to type user,
and set the class to alpha.

 Change the CUST_LIMIT field in the CUSTOMERS structure from type decimal to type user,
and set the class to numeric.

 Change the OR_ODATE field in the ORDERS structure from type date to type user, and set the
class to date.

 Save your changes as you exit Repository.

For help with any of the tasks in this step, see the Repository User’s Guide.

2. Run dbcreate with the -x or -c option (overwrite or create). Either option will work. For
information on dbcreate options, see “Generating a system catalog from the command line” on
page 4-3.

3. Open xfodbcusr.c in a text editor. (You’ll find this file in the connect\synodbc\user subdirectory of
the main Synergy/DE installation directory.) Remove or comment out the #ifdef and #endif lines
from all four of the functions: user_to_alpha(), user_to_number(), alpha_to_user(), and
number_to_user(). For client/server configurations, uncomment the section for your host machine’s
operating system. Save your changes and close the file.

Creating Routines for User-Defined Data Types
Using xfodbcusr.c As an Example

xfODBC User’s Guide 10.1 (6/13) 7-7

4. Run one of the following:

 On Windows, run makeusr.bat.

 On UNIX, run makeusr.

 On OpenVMS, run makeusr.com.

You’ll find these files in the connect\synodbc\user subdirectory of the main Synergy/DE
installation directory. These files compile xfodbcusr.c, link it, and save it as one of the following:

 xfodbcusr.dll on Windows

 XFODBCUSR.so on UNIX

 xfodbcusr_so.exe on OpenVMS

To compile and link using Microsoft Developer Studio (Visual C/C++ version 6.0 or higher), create
a new Windows-32 Dynamic-Linked Library project, add xfodbcusr.c, and then build.

5. Copy the DLL, shared library, or shared image you just created to the connect subdirectory of the
main Synergy/DE installation directory. This will overwrite the xfodbcusr.dll, XFODBCUSR.so,
or xfodbcusr_so.exe file that’s already there. For client/server configurations, copy this to the
connect subdirectory of the main Synergy/DE installation directory on the server.

VMS
Note that for OpenVMS, the XFODBCUSR_SO logical must be set to the path and filename of the
xfodbcusr_so.exe shared image. See “XFODBCUSR_SO (OpenVMS)” on page A-8 for more
information.

6. Start an ODBC-enabled application, and access the data in the sample database. (For help with this
step, see chapter 9, “Accessing a Synergy Database.”) Note the following:

 All text in the CUST_STREET column is capitalized.

 All dates in the OR_ODATE column are set to the first of the month.

 CUST_LIMIT values for customers who live in Oregon (OR) are $200.00 greater than other
CUST_LIMIT values.

7. To verify that addresses are converted to mixed-case characters as they’re input and all uppercase
characters as they’re retrieved by an application, do the following:

 From the ODBC-enabled application, INSERT or UPDATE a row, changing the
CUST_STREET value to all uppercase characters.

 Return to Repository, and change CUST_STREET back to type alpha.

 Generate a system catalog for the sample database by running dbcreate.

 Finally, return to the ODBC-enabled application and access the sample database. The text in
the CUST_STREET column should be in mixed case.

Creating Routines for User-Defined Data Types
Using xfodbcusr.c As an Example

7-8 xfODBC User’s Guide 10.1 (6/13)

8. To verify that dates are stored as the fifteenth of the month and display as the first of the month
when retrieved, do the following:

 From the ODBC-enabled application, INSERT or UPDATE a row, changing the OR_ODATE
value to any date other than the fifteenth. This date will be displayed as the first, but stored as
the fifteenth.

 In Repository, change for OR_ODATE back to type date.

 Generate a system catalog for the sample database by running dbcreate.

 Finally, return to the ODBC-enabled application, access the sample database, and notice that
the date in the OR_ODATE column is the fifteenth.

9. To verify that customer limits for Oregon customers are stored as $2000.75 and that $200.00 is
added when they’re retrieved, do the following:

 From the ODBC-enabled application, INSERT or UPDATE a row, changing CUST_LIMIT to
any value.

 In Repository, change CUSTOMER_LIMIT back to decimal.

 Generate a system catalog for the sample database by running dbcreate.

 Return to the ODBC-enabled application, access the sample database, and notice that if you
changed a CUST_LIMIT for a customer from Oregon, the numeric_to_user() function changed
the limit to $2000.75, no matter what you entered. If the customer isn’t from Oregon, the limit
you entered is stored.

You can also use the following methods to debug user-defined data routines:

 Create an alpha overlay column on the user-defined column and compare the values in an
ODBC-enabled application.

 Create a separate system catalog and connect file that use the same data but without
user-defined fields. Then run the ODBC-enabled application with both system catalogs, and
compare the output.

8-1

8
Configuring Data Access

Setting Security Levels 8-2

Explains how group and table access levels work together to control users’ access to data.

Setting Up Access with DSNs 8-4

Explains how to add, customize, and delete data source names (DSNs) for Synergy data.

Setting Runtime Data Access Options 8-13

Discusses options that affect the way xfODBC behaves as it accesses data.

System Catalog Caching 8-18

Describes how to optimize data access by caching system catalogs. When a system catalog is
cached, the xfODBC driver consults the catalog in memory rather than re-reading the catalog from
disk for each new command.

SQL OpenNet Client Options in net.ini 8-26

Discusses SQL OpenNet settings that affect xfODBC, including an encryption key setting for the
client, time-outs, and a setting that instructs SQL OpenNet to return error codes for communication
errors.

Configuring Data Access
Setting Security Levels

8-2 xfODBC User’s Guide 10.1 (6/13)

Setting Security Levels
Access to your database is controlled by the access levels assigned to tables and groups. When you
generate a system catalog, tables are assigned a default access level. When you initialize users and
groups, dbcreate or the xfODBC Database Administrator (DBA) program creates default groups
(which contain default users) with predefined access levels. After initialization, you can manage
access to your database by creating your own groups with appropriate access levels and creating a
conversion setup file to customize the access level of your tables.

Understanding access levels for tables and groups
Both tables and groups have access levels, which range from 0 to 255. The access level of a group
applies to all users in the group. For users in a group to access a table, that group must have an
access level equal to or greater than the table’s access level. Access levels are further defined by
odd and even numbers. Even numbers allow read-only access; odd numbers allow read/write
access. This applies to both tables and groups.

Refer to the table below to see how the levels and read/write access of tables and groups interact.
Note the following:

 Users in group 1 cannot access table B because their access level (100) is less than that of the
table (101). Note that a group must be set to at least 100 for users in that group to access the
database.

 Even with an access level of 254, group 3 cannot write to table B because 254 is an even
number, meaning group 3 has read-only access.

 In order for a group to have read/write access to a table, both the group and the table must have
an odd-numbered access level. Otherwise, the group will have only read access.

 Users in a group with an access level of 255 are “super users”: they have read/write access to
all tables—even tables with read-only access.

Without the user and group files (sodbc_user.*, sodbc_group.*), there is no user or
password validation when connecting to the database, and all connected users have
read-only access to all database tables. Be sure to generate these files (see “Generating
the System Catalog” on page 4-2) and keep them with the other system catalog files.

Group 1
access=100 (R)

Group 2
access=101 (R/W)

Group 3
access=254 (R)

Group 4
access=255 (R/W)

Table A
access=100 (R)

Read Read Read Read/write

Table B
access=101 (R/W)

No access Read/write Read Read/write

Configuring Data Access
Setting Security Levels

xfODBC User’s Guide 10.1 (6/13) 8-3

When you generate your system catalog, all tables are assigned an access level of 100 (read-only)
by default. You can use a conversion setup file to change table access levels. For information, see
“Modifying table access levels” on page 6-22.

When you initialize users and groups, DBA creates three default users (DBA, DBADMIN, and
PUBLIC) and two default groups (SYSTEM and USER). You can use DBADMIN to assign and
modify group access levels. We recommend that only the system administrator be assigned to a
group with an access level of 254 or higher. For information on how to assign and modify group
access levels, see “Creating a group” on page 6-15.

To update data in a Synergy database, we strongly recommend using a Synergy
application that’s designed to efficiently maintain database integrity. If you use an
ODBC-enabled application to write to a Synergy database, you may run into record-locking
issues. For information, see “Statements that Modify Data” on page B-46.

Configuring Data Access
Setting Up Access with DSNs

8-4 xfODBC User’s Guide 10.1 (6/13)

Setting Up Access with DSNs
Using the ODBC Data Source Administrator, you can create and manage data source names
(DSNs). Each DSN has a name and contains information needed to access a database—for
example, the name of the connect file and user and password information. Once you’ve created a
DSN for a database, users can access the database from an ODBC-enabled application by selecting
the DSN. DSNs free end-users from having to enter the location of the data files and other
connection information.

When you install xfODBC, the installation adds a sample DSN named xfODBC. Except for some
default settings, this DSN specifies one thing: it specifies that the Vortex driver is “Genesis,” which
means that the DSN is for a local database. Users can access any local ODBC-enabled Synergy
database with this DSN, but they will be prompted for a connect file, user name, and password
because these aren’t specified in the DSN. You can modify this DSN and you can create your own.

User DSNs, system DSNs, and file DSNs
There are three types of DSN: user DSNs, system DSNs, and file DSNs. Typically, ODBC-enabled
applications can use all of these. Some older versions of Microsoft Query, however, use only file
DSNs.

 User DSNs are data sources that are available to one user on one machine. User DSNs contain
all or part of the information needed to access a Synergy database: connect file, user name,
password, and port.

 System DSNs are available to all users of one machine, and (like user DSNs) system DSNs
contain all or part of the information needed to access a Synergy database.

 File DSNs can be made available to all users who have the same driver and are on the same
network. Non-sharable file DSNs are set to directly access an existing user DSN. They contain
a reference to a user DSN, but nothing else. Typically non-sharable file DSNs are used in place
of user DSNs for versions of Microsoft Query that don’t support user DSNs. Non-sharable file
DSNs can also be placed on a client, network machine, or stand-alone system. But if a
non-sharable file DSN is placed on a network machine, it must reference user DSNs on the
clients. Changes you make to a non-sharable DSN are automatically applied to the
corresponding user DSN.

We don’t recommend sharable file DSNs because you have to manually edit the Windows
registry to create them.

On Windows, you must have write privileges to the Windows registry to create or modify a
DSN. If you don’t, you’ll get a “Writing config data failed” error.

Configuring Data Access
Setting Up Access with DSNs

xfODBC User’s Guide 10.1 (6/13) 8-5

Adding a user or system DSN
1. Open the ODBC Data Source Administrator, which is available from Windows Control Panel. Be

sure to use the correct version of this utility:

 32-bit applications require 32-bit DSNs for ODBC access. To create 32-bit DSNs, 32-bit
Connectivity Series must be installed. 32-bit DSNs are created by the 32-bit ODBC
administrator, odbcad32.exe (which is located in %windir%\SysWOW64 on 64-bit machines).

 64-bit applications require 64-bit DSNs for ODBC access. To create 64-bit DSNs, 64-bit
Connectivity Series must be installed on a 64-bit Windows machine. 64-bit DSNs are created
by the native 64-bit ODBC Administrator.

Note that on 64-bit Windows machines, there is usually a mixture of 32-bit and 64-bit applications,
especially when using Visual Studio to develop 64-bit applications. For an ODBC connection that
could involve both 32-bit and 64-bit applications, we recommend that you create both a 32-bit DSN
and a 64-bit DSN that are identical in all aspects (including name).

Once you’ve opened the ODBC Data Source Administrator on 64-bit Windows, you can determine
which version is running by doing one of the following:

 On Windows 8, look at the title bar, which indicates wether this program is 32-bit or
64-bit—e.g., “ODBC Data Source Administrator (32-bit)”.

 For versions of Windows prior to Windows 8, open Windows Task Manager and find the
odbcad32.exe entry. If the image name ends in *32 (see figure 8-1), the 32-bit version of the
ODBC Data Source Administrator is running. Otherwise, the 64-bit version is running.

Figure 8-1. Determining which ODBC Data Source Administrator is running.

Obcad32.exe entry
with *32, indicating
that the 32-bit
version is running

Configuring Data Access
Setting Up Access with DSNs

8-6 xfODBC User’s Guide 10.1 (6/13)

2. On the User DSN or System DSN tab of the ODBC Data Source Administrator window, click the
Add button. The Create New Data Source window opens and lists the currently available ODBC
drivers.

3. In the Create New Data Source window, select xfODBC.

4. Click Finish.

5. In the xfODBC Setup window, enter the data source information in the following fields.

Data source name. Enter a descriptive name to identify the DSN. You must use valid MS-DOS
characters for this. For example, do not use the backslash or parentheses characters.

Description. Enter a description of the DSN. This is optional.

i

Figure 8-2. Adding a DSN.

Configuring Data Access
Setting Up Access with DSNs

xfODBC User’s Guide 10.1 (6/13) 8-7

Appended to connect string. Enter a string you want sent via SQL OpenNet to the server. This is
optional and is typically used to define environment variables on the server under the direction of
Synergy/DE Developer Support. To do this, use the following syntax (note the initial comma):

, ENV_VAR=env_spec[, …]

where ENV_VAR is an environment variable and env_spec is the definition of the environment
variable. You can specify multiple environment variables by separating them with commas. Note
the following:

 To use this field, you must use SQL OpenNet—i.e., select Net in the Vortex driver field.

 With a Windows server, use this field only when using vtxnet2.

 The SQL OpenNet server uses special characters as string delimiters: the at sign (@), colon (:),
and exclamation point (!). In connect strings, each of these delimiters conveys a specific
instruction to the SQL OpenNet processor and generally is not passed by the processor unless
an identical character follows the first. If you are using an at sign, colon, or exclamation point
in an environment variable definition, or at any other place in the string, you must use a
duplicate at sign, colon, or exclamation point to ensure that the parser will interpret the
statement correctly.

Vortex driver. Select Net for a client/server configuration. Select Genesis for a stand-along
configuration. (The Net option instructs xfODBC to use SQL OpenNet. The Genesis option
instructs xfODBC to connect to the database directly—i.e., without using SQL OpenNet.)

Note that to use Net, the SQL OpenNet server must be running on the host specified in the Host
field.

Host. If you select Net for the “Vortex driver” field, enter the host name for the machine on which
the database resides. Host names can be up to 64 characters long. Note the following:

 When using vtxnet2 on Windows, the account for this user must have the “log on as a batch
job” privilege. See “The vtxnetd and vtxnet2 Programs” in the “Configuring Connectivity
Series” chapter of the Installation Configuration Guide for information on vtxnet2 and
vtxnetd.

 If the -a option is set for vtxnetd or vtxnet2, you must specify a user name and password after
the host name:

host_name([domain\]uid/pwd)

where uid and pwd are the user name and password for an account on the host machine or, if
domain is specified, an account on a domain (Windows only).

 By default the user and password are encrypted as they are sent across the network via SQL
OpenNet. For information on changing encryption settings, see “SQL OpenNet Client Options
in net.ini” on page 8-26.

Port. If the data files are on a remote machine, enter the port address for the computer on which the
database resides. See “Port settings” on page 8-11 for more information.

Configuring Data Access
Setting Up Access with DSNs

8-8 xfODBC User’s Guide 10.1 (6/13)

User name. Enter the user name exactly as it is stored in the system catalog; this field is case
sensitive. You can leave this field blank if you would like the end-user to be prompted for a user
name when accessing a Synergy database.

By default the user name and password are encrypted as they are sent across the network via SQL
OpenNet. For information on changing encryption settings, see “SQL OpenNet Client Options in
net.ini” on page 8-26.

Password. Enter the password for the user exactly as it is stored in the system catalog; this field is
case sensitive. Leave this field blank if you would like the end-user to be prompted for a password
when accessing a Synergy database.

Connect file. Enter the connect file name. Connect files must be located in the directory specified
by the GENESIS_HOME environment variable. In a client/server configuration, the connect file
must be in the GENESIS_HOME directory on the server. You can leave this field blank if you
would like users to be prompted to supply the connect file (which might be useful for testing). Note,
however, that you must specify a connect file here in order to use the DSN with the Synergy/DE
Data Provider for .NET.

Env. variables. Use this to define environment variables used by the xfODBC driver on the client.
For services that use the xfODBC driver, such as web servers, this is the only place these
environment variables can be set (unless you set them in the system environment and reboot the
server). For example, for a web server in a client/server configuration, you can use this field to set
any of the VORTEX_API_ environment variables, VORTEX_ODBC_CHAR, or
VORTEX_ODBC_TIME. For a web server with a local database, you can use this field to set
GENESIS_HOME as well.

To set environment variables in this field, use the following syntax:

ENV_VAR=env_spec[, …]

where ENV_VAR is an environment variable to be set on the client, and env_spec is the definition of
the environment variable. You can specify multiple environment variables by separating them with
commas.

Statements. The number of logical cursors to allocate for the connection. (xfODBC assigns a
logical cursor to each SQL statement.) If this option is set to a value that is greater than the
DB cursors setting, xfODBC is able to cache cursors by mapping multiple logical cursors to a
single database cursor. Because logical cursors require less memory than database cursors, this
improves performance. For optimal performance, set this option to the maximum number of SQL
statements that will be open concurrently. Valid values are 4 through 1024. The default is 256.

DB cursors. The number of database cursors to allocate for the connection. Valid values are 4
through 256. The default is 64. This should be set to a value that’s less than Statements.

Columns. The maximum number of columns that can be returned for a query. Enter the number of
columns of the largest table in the database. Valid values are 4 through 1024. The default is 256.

Configuring Data Access
Setting Up Access with DSNs

xfODBC User’s Guide 10.1 (6/13) 8-9

Fetch buffer size. The number of bytes to allocate for the prefetch buffer. The fetch buffer size is
the size of a data transfer block. Valid values are 0 (which disables the prefetch buffer) and 1024
through 99999999. The default setting is 4096.

Total. The amount of disk space in pages (4,096-byte blocks) to allocate for temporary sort tables
(work files) for each open cursor. The default is 10000. Valid values are 1000 through 99999999.
On 32-bit systems, however, the limit may be 2 GB due to file system limitations.

In memory. The amount of internal memory in pages (4,096-byte blocks) to allocate for temporary
sort tables (work files) for each open cursor. Valid values are 1000 through 999999. The default is
1000. This setting affects the performance of join queries and queries with ORDER BY clauses.

Max number of rows. The maximum number of rows that can be returned when a statement is
optimized with multimerge. Multimerge optimizes SELECT statements that have one or more OR
clauses by evaluating each side of each OR clause as a separate SELECT statement and then
combining the results (in a multimerge optimization). Note that this works only when keys are
available to optimize each side of each OR clause. This setting must be a positive numeric value
from 100 to 65536.

 If the statement is not optimized with multimerge, this setting does not apply.

 To turn this setting off, use SET OPTION MERGESIZE. (See SET OPTION on page B-57.)
You cannot use this dialog box to turn multimerge off.

 If the result set of an optimized statement is larger than this setting, an error is generated.

By default, multimerge is enabled (the default setting is 10000) because some applications
automatically generate the kind of statements that a multimerge optimizes. For example, if you use
Microsoft Access to issue a query that selects all of the columns in a table, Access generates a
SELECT statement with a series of OR clauses that repeatedly specify key segments.

Note the following:

 In some cases, multimerge could impair performance.

 For each row allowed by this setting, xfODBC uses six bytes of memory, so setting this to a
large value doesn’t generally affect performance.

 You can also set this option in an SQL statement by using SET OPTION MERGESIZE.

6. Click OK.

You can now use the DSN in an ODBC-enabled application.

The setting for Total must be greater than or equal to the setting for “In memory.” The Total
and “In memory” settings are used to generate a “SET OPTION SORTPAGES totalpages
memorypages” command when the DSN is used to connect to a database. An application
uses the sum of the memory specified for all concurrently opened cursors, and on
Windows, vtxnetd uses the sum of memory allocated for all open cursors for every
connected application. See “Notes on SORTPAGES” on page B-63 for more information.

Configuring Data Access
Setting Up Access with DSNs

8-10 xfODBC User’s Guide 10.1 (6/13)

Adding a non-sharable file DSN
1. Add a user DSN by following the steps in “Adding a user or system DSN” on page 8-5.

2. Use a text editor to create a file with the following text:

[ODBC]
DSN=dsn_name

where dsn_name is the name of the user DSN.

3. Save this file to the directory where DSNs are stored for the ODBC Administrator. Give it a .dsn
extension.

You can now use the file DSN in an ODBC-enabled application.

Modifying a DSN
To modify an existing user, system, or non-sharable file DSN, do the following:

1. Open the ODBC Data Source Administrator utility. See step 1 in “Adding a user or system DSN”
on page 8-5.

2. Select the DSN on the User DSN, System DSN, or File DSN tab. Then click Configure.

When you click the Configure button, the xfODBC Setup window displays the current
configuration.

3. Make any necessary changes to the fields in the xfODBC Setup window, and then click OK. See
“Adding a user or system DSN” on page 8-5 for information on these fields.

Prompting the user for information

If you would prefer that users enter the user name, password, or connect file for the database, leave
that information blank in the xfODBC Setup window. When the user attempts to access the
Synergy data through a third-party application, the xfODBC driver checks the DSN information and
prompts the user for missing information. (Note, however, that to use the DSN with the
Synergy/DE Data Provider for .NET, the DSN must specify a connect file.) For example, if you
want users to enter their user name and password and the connect file name, leave the User ID,
Password, and Connect file fields blank in the xfODBC Setup window. The users will be prompted
for this information, as in figure 8-3.

If you’re using the ODBC Data Source Administrator, changes made to non-sharable file
DSNs are automatically applied to the corresponding user DSN. If you make a change to a
non-sharable file DSN that resides on a network machine, the change is applied to the
corresponding user DSN on the machine you use to make the change. The corresponding
user DSNs on other clients must be modified separately.

Configuring Data Access
Setting Up Access with DSNs

xfODBC User’s Guide 10.1 (6/13) 8-11

Deleting a DSN
1. On the User DSN, File DSN, or System DSN tab of the ODBC Data Source Administrator, select

the DSN you want to delete.

2. Click the Remove button.

Port settings
To make a connection with SQL OpenNet, the port setting for the client must match the port
number for the SQL OpenNet server. For example, if vtxnetd is started on port 1990, the client
must use port 1990 to connect to the SQL OpenNet server.

On Windows and UNIX servers, you can specify the port number in

 the vtxnet setting in the TCP/IP services file, which is in %windir%\system32\drivers\etc on
Windows and /etc on UNIX. This is the default port setting, but it is used only when the port is
not specified in the vtxnetd or vtxnet2 start-up command.

 the vtxnetd or vtxnet2 command line in opennet.srv (on Windows) or the vtxnetd command
line in the startnet script (on UNIX). This overrides the services file setting.

On an OpenVMS server, the default (1958) is hard-coded, but you can override the default by
setting a port number in the vtxnetd command line in NET.COM.

For more information on server-side port settings, see the “Configuring Connectivity Series”
chapter of the Installation Configuration Guide.

On clients, specify the port number in the DSN or, for a DSN-less connection, specify it with

 the vtxnet setting in the TCP/IP services file, on Windows (%windir%\system32\drivers\etc)
and UNIX (/etc). For more information, see the “Configuring Connectivity Series” chapter of
the Installation Configuration Guide.

 a port setting in net.ini. If set here, this overrides the services setting. For more information,
see “SQL OpenNet Client Options in net.ini” on page 8-26.

Figure 8-3. The xfODBC Info window.

Configuring Data Access
Setting Up Access with DSNs

8-12 xfODBC User’s Guide 10.1 (6/13)

A quick way to ensure your port settings match is to use either the synxfpng utility (with the -x
option) or the vtxping utility without specifying a port in the command line. If the connection is
successful, the port settings match. For more information, see “The vtxping Utility” in the
“Configuring Connectivity Series” chapter of the Installation Configuration Guide and “The
synxfpng Utility” in the “Configuring xfServer” chapter of Installation Configuration Guide.

Configuring Data Access
Setting Runtime Data Access Options

xfODBC User’s Guide 10.1 (6/13) 8-13

Setting Runtime Data Access Options
xfODBC has many options that enable you to control how xfODBC behaves as it accesses data. To
be effective, these options must be set before you connect to a database.

If you’re using ADO.NET, also see “Time columns and ADO.NET” on page 9-20.

Note that third-party applications used to access Synergy data usually have options, such as query
time-out, that use underlying ODBC calls. Additionally, note the following:

 For information on other options that affect how data is accessed by changing the way the
system catalog is generated, see “Setting catalog generation options” on page 3-23.

 For information on how to set environment variables, see “Setting environment variables” on
page 3-30.

 For information on SQL OpenNet options that affect xfODBC, see “SQL OpenNet Client
Options in net.ini” on page 8-26.

Formats for returned dates and times
Date/time (timestamp), date, and time columns are returned with the following formats and default
data types:

You can use the SQL command TO_CHAR to change the display format. For information, see
TO_CHAR on page B-39.

Changing the data type returned for timestamp columns
You can change the data type returned for timestamp columns by setting the
VORTEX_ODBC_DATETIME environment variable to the integer value for the ODBC data type
you want returned. The default is SQL_TIMESTAMP (which is 11). For example, the following
instructs xfODBC to return SQL_CHAR data for timestamp columns:

VORTEX_ODBC_DATETIME=1

If you set VORTEX_ODBC_DATETIME, set it in the system environment. For client/server
configurations, set it on the client.

Database column Format of returned data Returned data type

timestamp YYYY-MM-DD HH:MI:SS SQL_TTYPE_IMESTAMP

date YYYY-MM-DD SQL_TYPE_DATE

time HH:MI:SS SQL_TYPE_TIME (System.TimeSpan for ADO.NET;
see “Time columns and ADO.NET” on page 9-20)

Configuring Data Access
Setting Runtime Data Access Options

8-14 xfODBC User’s Guide 10.1 (6/13)

Changing the data type returned for time columns
You can change the data type returned for time columns by setting VORTEX_ODBC_TIME to one
of the following integer values for the ODBC data type you want returned:

10 Describe time columns as SQL_TIME.

11 Describe time columns as SQL_TIMESTAMP.

This is useful when using ADO.NET, which retrieves SQL_TIME columns as System.TimeSpan, a
.NET data type that represents a time interval, which is generally more difficult to use than a
specific time. (See “Time columns and ADO.NET” on page 9-20.) Setting
VORTEX_ODBC_TIME to 11, however, enables you to get time columns as timestamp values.
Note the following:

 If VORTEX_ODBC_TIME is not set (which is the default when the Synergy/DE Data
Provider for .NET is not in use), the xfODBC driver describes time columns as SQL_TIME.

 When you use the Synergy/DE Data Provider for .NET, VORTEX_ODBC_TIME is
automatically set to 11, and you cannot override this setting.

 SQL_TIMESTAMP values have both a date and a time, so to create a SQL_TIMESTAMP
value, xfODBC includes the date 1-1-1.

If you set VORTEX_ODBC_TIME, set it in the system environment. For client/server
configurations, set it on the client. Note that for a service, such as IIS or SQL Server, you must
reboot after setting VORTEX_ODBC_TIME, unless you set it in the DSN (see “Env. variables” on
page 8-8).

Converting dates returned without centuries
When a system catalog is generated, each date field that doesn’t include a century (in other words,
each date with a YY year, rather than YYYY) is formatted as a date with a rolling (RR) century.
(See “Date and time fields” on page 3-15.) Then, when the xfODBC driver retrieves a date with a
rolling century, it converts it to a date with a century (a YYYY date). The century part of the date is
determined by the SYNCENTURY environment variable:

 If the year for a retrieved date is between 0 and the value of SYNCENTURY, xfODBC uses the
current century (20xx).

 If the year is between SYNCENTURY (inclusive) and 99, xfODBC uses the previous century
(19xx).

The default for SYNCENTURY is 50. If SYNCENTURY is not set or is set to a negative value, 50
is the cutoff year.

Configuring Data Access
Setting Runtime Data Access Options

xfODBC User’s Guide 10.1 (6/13) 8-15

For standalone configurations, set SYNCENTURY in the connect file or in the environment. For
client/server configurations, set it in the connect file on the server.

Treating invalid dates as null data
If a database has invalid date data, SELECT statements fail. This occurs even if the columns with
invalid dates are not referenced in the SELECT statement. You can, however, instruct the xfODBC
driver to treat invalid dates as null by setting the convert_error option to yes. See “Setting the
convert_error Option” on page 5-4 for information.

Masks for dates and times in SQL statements
When you write a date/time, date, or time column to a database, xfODBC must convert the data to
the xfODBC driver’s internal date/time format. This is true if you create the SQL statement and if
an ODBC-enabled application creates the SQL statement. The xfODBC driver uses four masks to
interpret date/time, date, and time columns. By default, these are YYYY-MM-DD HH:MI:SS,
YYYY-MM-DD, HH:MI:SS, and YYYY_MM_DD HH:MI:SS.UUUUUU. xfODBC first attempts
to use the first mask (YYYY-MM-DD HH:MI:SS). If it’s unable to use this, it attempts to use the
second mask (YYYY-MM-DD), and so on. Dates and times specified in SQL statements must have
dates and times that match one of the masks. You can, however, modify the masks. If you want the
xfODBC driver to accept other date and time formats, use SET OPTION DATETIME (see SET
OPTION on page B-57).

Setting the base date for Julian day conversions
When you enter a date into a field with the JJJJJJ format, xfODBC stores the date as the difference
between the date you entered and the value of SYNBASEDATE. By default, SYNBASEDATE is
set to 1752-09-14 (14 September 1752), but you can change this value. Note the following:

 When setting SYNBASEDATE, use the YYYY-MM-DD format.

 For stand-alone configurations, set SYNBASEDATE in the connect file, or in the environment.
For client/server configurations, set it in the connect file on the server.

 SYNBASEDATE does not affect the way system catalogs are generated. (It is not used by
DBA or dbcreate.) This variable is used by the xfODBC driver when it accesses data.

If the century for dates whose years fall between SYNCENTURY and 99 is set to the
current century, most likely the SODBC_NO`ROLL environment variable was set when the
system catalog was generated. This environment variable was used for Y2K conversions
and is no longer necessary. However, if it was set when the system catalog was generated,
xfODBC ignores the SYNCENTURY setting, which results in two-digit years being stored
as YY years rather than RR (rolling) years.

Configuring Data Access
Setting Runtime Data Access Options

8-16 xfODBC User’s Guide 10.1 (6/13)

Recognizing the MCBA deleted-record characters
The SODBC_MCBA environment variable enables you to instruct xfODBC to skip records that
contain the MCBA deleted-record characters—four right brackets (]]]]) at the beginning or end of a
record. Note the following:

 By default, SODBC_MCBA is not set; xfODBC does not skip records that contain the MCBA
deleted-record characters.

 To instruct xfODBC to skip records that contain the MCBA deleted-record characters, set the
SODBC_MCBA environment variable to any value.

 For stand-alone configurations, set SODBC_MCBA in the connect file or in the environment.
For client/server configurations, set it in the connect file on the server.

 The SODBC_MCBA setting does not affect the way system catalogs are generated. This is
used by the xfODBC driver when it accesses data. It is not used by dbcreate or DBA.

Changing the way xfODBC describes strings
xfODBC passes and, by default, describes strings as SQL_VARCHAR (that is, with trailing spaces
removed). You can, however, instruct the xfODBC driver to describe strings as SQL_CHAR
(though they are always passed as SQL VARCHAR) which was the default behavior in xfODBC
versions prior to 8.3. Note the following:

 If VORTEX_ODBC_CHAR is set to 12 or is not set (the default), the xfODBC driver passes
and describes strings as SQL_VARCHAR.

 If VORTEX_ODBC_CHAR is set to 1, the xfODBC driver passes strings as SQL_VARCHAR,
but describes them as SQL_CHAR.

If you set VORTEX_ODBC_CHAR, set it in the system environment. (For a service, such as IIS or
SQL Server, you must either reboot after setting VORTEX_ODBC_CHAR or set it in the DSN. See
“Env. variables” on page 8-8.) For client/server configurations, set it on the client.

Note that VORTEX_ODBC_CHAR is used by the xfODBC driver when it sends data to the
application. It does not affect the way system catalogs are generated.

Note the following:

 If you’ve used xfODBC to modify date data in the database, do not change
SYNBASEDATE. If you do, the dates in your database will be corrupt. Changing
SYNBASEDATE changes part of the equation used to store and retrieve dates.

 If you use the Julian functions %JPERIOD or %NDATE, do not set SYNBASEDATE. It
must be set to its default value (1752-09-14). If it’s set to any other value, %JPERIOD
and %NDATE will retrieve and store dates using a different equation than xfODBC,
which will corrupt the dates in your database. (For information, see %JPERIOD and
%NDATE in the “System-Supplied Subroutines and Functions” chapter of the Synergy
DBL Language Reference Manual.)

Configuring Data Access
Setting Runtime Data Access Options

xfODBC User’s Guide 10.1 (6/13) 8-17

Creating a file for query processing options
The GENESIS_INITSQL environment variable enables you to specify a file that contains
predefined SET OPTION commands. (This includes all SET OPTION commands except
DATETIME, SORTPAGES, and TMPINDEX.) For information on SET OPTION commands, see
SET OPTION on page B-57. The SQL statements in this file are executed each time a connection is
made to the driver.

Note the following:

 Each option must be on a separate line in the file, and each line must have the following
format: set option option. For example:

set option logfile 'vtx4.log'
set option tree on
set option error on

 The GENESIS_INITSQL environment variable must be set to the path and filename of the
options file and must be set in the environment. For client/server configurations, it must be set
in the environment on the server or in the opennet.srv file (Windows only).

Configuring Data Access
System Catalog Caching

8-18 xfODBC User’s Guide 10.1 (6/13)

System Catalog Caching

You can improve performance by instructing xfODBC to cache system catalogs. When a system
catalog is cached, the xfODBC driver consults the cached catalog in memory rather than rereading
the catalog from disk for each new command.

To cache system catalogs,

1. Add a syngenload command to one of the following files (which are in the synergyde\connect
directory):

 opennet.srv on Windows

 startnet on UNIX

 STARTNET.COM on OpenVMS

As distributed, these files include a sample syngenload command that’s been commented out. To
use the command, uncomment the line and change the user name, password, and connect file. See
“Using syngenload” on page 8-19 for information on the syntax.

If necessary, you can run syngenload from the command line (see “Running syngenload from the
command line (Windows and OpenVMS)” on page 8-20) . However, we recommend specifying the
syngenload command in one of the above files, which are read each time the Synergy/DE OpenNet
Server service (SynSQL) is started.

2. On UNIX or OpenVMS, do one of the following:

 On UNIX, make sure the following line is uncommented:

rm $GENESIS_HOME/synodbccache.dat

 On OpenVMS, make sure all three of the vortexipc lines in STARTNET.COM are
uncommented:

$vortexipc:==$CONNECTDIR:vortexipc.exe
$vortexipc /d
$vortexipc /c 1000 0 0

Note the following:

 It is important that you carefully follow the instructions in this section. If you don’t,
system catalogs will not be loaded and unloaded correctly, and shared memory will not
be allocated and freed correctly.

 On UNIX, only experienced system administrators should attempt to use system
catalog caching. We’ve tested the procedures documented here on our systems, but
don’t guarantee that they’ll work on all systems. Shared memory mechanisms vary
from one operating system to another.

Configuring Data Access
System Catalog Caching

xfODBC User’s Guide 10.1 (6/13) 8-19

Note the following:

 The SynSQL service must be running before you load a system catalog. For information on
starting the SynSQL service, see the “Configuring Connectivity Series” chapter of the
Installation Configuration Guide.

 You can load more than one system catalog at a time by issuing multiple syngenload
commands.

 On Windows, when the SynSQL service is stopped, all loaded system catalogs are unloaded.

 To free shared memory on UNIX and OpenVMS, you must use the syngenload -u command to
unload cached system catalogs. On UNIX and OpenVMS, stopping the SQL OpenNet server
does not unload cached system catalogs.

 Do not delete the synodbccache.dat file unless instructed (as in “Correcting other caching
problems” on page 8-25, for example). This file is generated by xfODBC when a system
catalog is cached. Deleting this file will corrupt the cache subsystem. Use the -u option for
syngenload to unload a system catalog.

Using syngenload
To load (cache) a system catalog into memory or unload a system catalog from memory, use
syngenload with the -l or -u option. The syngenload program is in the connect directory and has
the following syntax:

syngenload option

where option is one of the following:

/? Display command line help for syngenload.

-l "user/pswd" connect_file Cache the system catalog stored in the directory specified in
the dictsource line of connect_file. User must be one of the
users defined in the system catalog, and pswd must be the
password for the user. The quotes around user/pswd are
required.

-m user/pswd connect_file base_size

Display shared memory segment addresses. See “Adjusting the
shared memory subsystem settings” on page 8-23 for more
information.

-u connect_file Unload the system catalog stored in the directory specified in
the dictsource line of connect_file.

For example, the following command loads the system catalog specified by the sodbc_sa connect
file using the default DBADMIN administrative user:

syngenload -l "DBADMIN/MANAGER" sodbc_sa

Configuring Data Access
System Catalog Caching

8-20 xfODBC User’s Guide 10.1 (6/13)

The next example unloads the system catalog specified by the sodbc_sa connect file:

syngenload -u sodbc_sa

When loading a system catalog, syngenload opens the system catalog files—just like an
ODBC-enabled application. So if an ODBC-enabled application can’t open the system catalog,
syngenload won’t be able to either.

Note the following:

 If you modify a system catalog while it’s cached, the copy on disk will be updated, but the
cached version won’t be updated until it’s reloaded.

 In general, to unload a system catalog, you must be the user that loaded it. On UNIX, however,
the root account can unload any system catalog.

 If syngenload is started by the Synergy/DE OpenNet Server service (SynSQL) on Windows,
errors are written to the Windows event log.

 If you’re running syngenload from the command line, errors are written to the screen.

 For security reasons, the system catalog files that store user and group information
(SODBC_USERS.* and SODBC_GROUPS.*) aren’t cached. xfODBC reads these from disk.

Running syngenload from the command line (Windows and OpenVMS)

Before running syngenload from the command line on Windows or OpenVMS, you must set the
VORTEX_SHM_FILE environment variable to synodbccache.dat in the connect\synodbc
directory. (On UNIX, this is set for you.) For example:

set VORTEX_SHM_FILE=%GENESIS_HOME%\synodbccache.dat

WIN
Note that on Windows, you must stop and then restart vtxshm before running syngenload:

1. If vtxshm is running (check this in Windows Task Manager), stop it by doing one of the following:

 In Windows Task Manager, select the vtxshm.exe entry, and then click End Process.

 Enter the following at the command line:

vtxshm -t

Vtxshm is a part of the xfODBC caching mechanism and is automatically started by the SynSQL
service. However, when vtxshm has been started by SynSQL, it isn’t available to syngenload if
you start syngenload from the command line.

If necessary, you can run syngenload from the command line for short-term testing
purposes. However, we recommend putting the syngenload command in one of the files
listed in step 1 on page 8-18. These are read each time the SynSQL service is started.

Configuring Data Access
System Catalog Caching

xfODBC User’s Guide 10.1 (6/13) 8-21

2. Start vtxshm from the command line:

start /B vtxshm -s

You can now run syngenload from the command line.

Using logging to determine if a system catalog is cached
To determine if a system catalog is cached or has been unloaded from shared memory, use Synergy
driver logging or Synergy DBMS logging.

Synergy driver logging

Synergy driver logging lists the path and name of the shared memory file and lists errors
encountered while attempting to use shared memory. To use Synergy driver logging, add the
following lines to your connect file:

logfile file_spec
loglevel 1

where file_spec is the path and filename of the log file you want to create. For example, here’s the
sample connect file with these lines:

dictsource "C:\Program Files\Synergex\SynergyDE\connect\synodbc\dict\"
datasource ";C:\\Program
Files\\Synergex\\SynergyDE\\connect\\synodbc\\dat;"
XFDBTUT=C:\Program Files\Synergex\SynergyDE\connect\synodbc\dat
logfile c:\temp\connect.log
loglevel 1

Note the following:

 Add the logfile and loglevel lines to the connect file only after the sodbccache.dat file has
been created. This file is created with the first syngenload -l command of the session. If you
add syngenload commands to opennet.srv, startnet, or STARTNET.COM, add the logfile
and loglevel lines to your connect file after the SQL OpenNet server has been started.

 The error “SHARED MEMORY error: Cannot attach to shared memory: Attempt to access
invalid address” indicates that you need to set the VORTEX_SHM_BASE environment
variable. Set it to address 80000000 (which on 32-bit Windows systems is 00000008, on 64-bit
Windows systems is 0000000800000000, and so forth).

 The error “SHARED MEMORY error: Cannot open c:\...\syodbc\synodbccache.dat, No such
file or directory” indicates that you need to set the VORTEX_SHM_FILE environment
variable to the synodbccache.dat file. (See “Running syngenload from the command line
(Windows and OpenVMS)” on page 8-20.)

Configuring Data Access
System Catalog Caching

8-22 xfODBC User’s Guide 10.1 (6/13)

Synergy DBMS logging

Synergy DBMS logging tells you if the system catalog files are open and logs reads to the files.
(These files, whose names begin with “GENESIS_”, are listed in “System catalog” on page 1-5.)
If the system catalog files are read as you access your database with xfODBC, the system catalog is
not cached. (If the system catalogs are cached, the files will be read to create the cache, but not to
access data.) For information on Synergy DBMS logging, see “Synergy DBMS logging” on
page 11-8.

Troubleshooting system catalog caching

Cannot allocate shared memory
On Windows, if you get a “cannot allocate shared memory” error, the Synergy/DE OpenNet Server
service (SynSQL) probably isn’t running. If you’re having trouble starting SynSQL, check the
Windows event log for information. The sqld program has an -l option that writes more detailed
information to the Windows event log. See “The sqld program” in the Windows section of the
“Configuring Connectivity Series” chapter of the Installation Configuration Guide for information.

On OpenVMS, this error may indicate that one or more of the vortexipc lines in STARTNET.COM
is commented out. See step 2 on page 8-18 for information.

Cannot attach to shared memory (Windows)
If you attempt to run syngenload from the command line, you may get the following error:
“ERROR: SHARED MEMORY error: Cannot attach to shared memory: The operation completed
successfully.” This may indicate that syngenload cannot access the vtxshm program. If you see
this, follow the instructions in “Running syngenload from the command line (Windows and
OpenVMS)” on page 8-20.

Invalid parameter or argument (UNIX)
If you encounter an “Invalid Parameter” or “Invalid Argument” error when caching a system
catalog on a UNIX system, you will need to adjust shared memory subsystem settings. The
syngenload program uses this subsystem when you instruct it to load a system catalog. There are
two shared memory subsystem settings for caching:

 To determine where to start the cache, syngenload uses the VORTEX_SHM_BASE
environment variable, if set, for the cache’s base address. If this environment variable is not set
(which is the default), the operating system determines which address the cache uses.

 To determine the amount of space for each shared memory segment used by the cache,
syngenload reads the trim.ini file. As distributed (in the $TRIM_HOME/lib directory), the
trim.ini file specifies a 500K shared memory segment size.

Configuring Data Access
System Catalog Caching

xfODBC User’s Guide 10.1 (6/13) 8-23

Before you make any adjustments, however, try caching your system catalog by using syngenload
from the command line. If you get a “Invalid Parameter” or “Invalid Argument” error, follow the
steps in “Adjusting the shared memory subsystem settings” below. If you don’t get an error, do the
following:

1. Set Synergy driver logging. (See “Synergy Driver Logging” on page 5-5.)

2. Use an ODBC-enabled application to connect to the database. Then check the file created by
Synergy driver logging to see if there is an “Invalid Parameter” or “Invalid Argument” error after
the synodbccache.dat entry. If there is, follow the steps in “Adjusting the shared memory
subsystem settings” below. If you don’t see an error after this entry, caching is working correctly.

3. Turn off Synergy driver logging.

Adjusting the shared memory subsystem settings

For most UNIX systems, you’ll need to adjust the shared memory segment size, but you may not
need to set the base address. On Linux systems, however, it’s almost certain that you’ll need to set
the base address as well. In either case, follow the instructions below.

1. Reboot your machine.

2. Make sure there is no synodbccache.dat file in the $CONNECTDIR/synodbc directory. If it’s
there, delete it.

3. Estimate the size of your cache by totaling the size (in bytes) of all the GENESIS*.is1 files in your
system catalog. Then add 100,000 to the sum. You’ll use this figure as the base size (base_size in
step 4 and step 6) for shared memory segment settings.

4. Use the tman utility, a memory analyzer, to determine if there is enough shared memory space. Use
the following syntax:

tman -n base_size base_size

If this causes an error, ask your system administrator to re-configure the shared memory subsystem
to allow a maximum size that’s at least twice as large as base_size. (This usually requires a system
reboot.)

5. Divide base_size by 1,024. Then open trim.ini in a text editor and set shmem_seg_size to the result
of the calculation. (The shmem_seg_size setting specifies a value in kilobytes.)

Note that the goal in setting shmem_seg_size is to create a shared memory segment that’s large
enough for the entire system catalog, which is very important if you also set
VORTEX_SHM_BASE. When this environment variable is set, the system catalog must be in a
single shared memory segment. (If it’s split between two or more segments, they must be
contiguous—something we can’t control.)

Configuring Data Access
System Catalog Caching

8-24 xfODBC User’s Guide 10.1 (6/13)

6. Use syngenload to cache your system catalog. If you get an “Invalid Parameter” or “Invalid
Argument” error, try increasing the shmem_seg_size setting in trim.ini by 500. Then go back to
step 4, increasing base_size by 512,000. If you still get the error, use syngenload with the
following syntax:

syngenload -m user/pwd connect_file base_size

This will display three shared memory segment addresses.

VORTEX_SHM_BASE values for size 512000
SID: 1376262, VORTEX_SHM_BASE: 00303040 Native: 40303000
SID: 1409031, VORTEX_SHM_BASE: 00003840 Native: 40380000
SID: 1441800, VORTEX_SHM_BASE: 00D03F40 Native: 403FD000

Now set the VORTEX_SHM_BASE environment variable to the first address (in the example
above, this is 00303040), and start again at step 4. (See VORTEX_SHM_BASE in the
“Environment Variables” chapter of Environment Variables & System Options for information on
setting this environment variable.)

Note that the goal in setting VORTEX_SHM_BASE is to set the base address to one that’s high
enough to make the cache available to all programs that use it. (For example, if you don’t set this
environment variable and the Synergy runtime is loaded into memory, the address may not be
available; the runtime may have allocated it for something else before the cache is attached.) If you
find in the final step that the first shared segment address listed isn’t high enough, set
VORTEX_SHM_BASE to the second address listed—then the third if the second doesn’t work.

7. Check the synodbccache.dat file to ensure that the shared memory ID is the same for all entries.
(This file is generated in the $CONNECTDIR/synodbc directory when a system catalog is cached.)
Check this by comparing values in the second column (the shared memory ID column) of the
synodbccache.dat file. All entries in the second column must have the same value. For example:

SODBC_SA_GENESIS_TABLES 1507332 00000008 65536 0 5048
SODBC_SA_GENESIS_COLUMNS 1507332 00000008 65536 5048 42108
SODBC_SA_GENESIS_INDEXES 1507332 00000008 65536 47156 7768
SODBC_SA_GENESIS_XCOLUMNS 1507332 00000008 65536 0 12004

(The third column lists base addresses. The sixth column lists the size of cached entries.)

8. If the shared memory ID is not the same for all entries, the cache has been loaded into more than
one segment, which may cause errors. In this case, add the total size of the generated cache (the
sum of the values in the sixth column of the synodbccache.dat file), unload the cache using
syngenload, and start again at step 4.

Configuring Data Access
System Catalog Caching

xfODBC User’s Guide 10.1 (6/13) 8-25

9. Once you’ve made it to this step, syngenload should be able to load the system catalog correctly.
But we need to find out if the Synergy driver can access the cache. To do this, set Synergy driver
logging, use an ODBC-enabled application to access your Synergy database, and then check the
log. If you see an “Invalid Parameter” error after the synodbccache.dat entry, you need to use a
higher address for shared memory; go back to step 6. If you don’t get this error after the
synodbccache.dat entry, caching is working correctly.

10. Turn off Synergy driver logging.

Viewing and removing shared segments

You can use the UNIX ipcs utility to view and remove shared memory segments that are in use. For
example, if you’ve deleted the synodbccache.dat file, you can use ipcs to remove shared memory
segments that are still allocated for caching. The second column lists shared memory IDs (which
correspond to the shared memory IDs listed in synodbccache.dat).

------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x00000000 196608 maryw 644 65536 0
0x00000000 229377 maryw 644 65536 0
0x00000000 491522 maryw 644 65536 0
0x00000000 524291 maryw 644 65536 0
0x00000000 1507332 root 644 10240000 0

Correcting other caching problems
If you find that system catalogs are not loading or unloading correctly,

 on Windows, do the following:

1. Stop the Synergy/DE OpenNet Server service (SynSQL). (See “Stopping and removing
SQL OpenNet” in the “Configuring Connectivity Series” chapter of the Installation
Configuration Guide.)

2. Open the Windows Task Manager and end the task named vtxshm if it exists.

3. Delete the synodbccache.dat file in your GENESIS_HOME directory.

4. Follow the caching instructions from the beginning.

 on UNIX and OpenVMS, do the following:

1. Delete the synodbccache.dat file (in your GENESIS_HOME directory).

2. Reboot the system.

3. Follow the caching instructions from the beginning.

Configuring Data Access
SQL OpenNet Client Options in net.ini

8-26 xfODBC User’s Guide 10.1 (6/13)

SQL OpenNet Client Options in net.ini
The net.ini file enables you to specify an encryption key for the SQL OpenNet client, specify
time-outs, instruct SQL OpenNet to return error codes for communication errors, and set
environment variables on the server, as well as other settings for the SQL OpenNet client. When
you install Connectivity Series, the installation creates a default net.ini file with default settings
(including a default encryption setting). To change settings in net.ini, use a text editor. Note the
following:

 We recommend that you don’t change any net.ini setting except key_connect.

 The net.ini file must be on the client in the lib subdirectory of the directory specified by the
VORTEX_HOME environment variable. The Connectivity Series installation (Windows),
setsde (UNIX), or SYS$MANAGER:CONNECT_STARTUP.COM (OpenVMS) sets this
environment variable to the connect\synodbc directory. Do not set this environment variable to
another directory, and note that if you install both 32-bit and 64-bit versions of Connectivity
Series on the same 64-bit Windows machine, the last version installed sets VORTEX_HOME.
See “VORTEX_HOME” on page A-7 for more information.

 Make sure the net.ini file has no control characters. These cause “invalid integer” errors when
connecting to the database.

 The net.ini file is not overwritten when you upgrade Connectivity Series, nor is it removed
when you uninstall. We distribute a file named net_base.ini (also located in the
connect\synodbc\lib directory), which contains default settings and can be used as a reference.

SQL OpenNet Client Options

Option Description/syntax

hostenv0 Specifies a comma-delimited list of environment variables to be passed to and set on the
server. Use the following syntax:
hostenv0 var_name=var_spec[,var_name2=var_spec2,...]

key_connect Specifies a key for the algorithm used to encrypt user names and passwords for the
database and for the host (if vtxnetd or vtxnet2 is also started with the -k option). This
encrypts user names and passwords being sent across the wire. Use the following
syntax:
key_connect n

where n is any number between 1 and 2147483647. Note that n must be set to the same
value on both the client, where it is set with this net.ini option, and the server, where it is
set with the -k option on the vtxnetd or vtxnet2 command line. See “The vtxnetd and
vtxnet2 Programs” in the “Configuring Connectivity Series” chapter of the Installation
Configuration Guide.

Configuring Data Access
SQL OpenNet Client Options in net.ini

xfODBC User’s Guide 10.1 (6/13) 8-27

The following example net.ini file sets the encryption key to 6541, sets the packet size to 1300, sets
the port to 1990, instructs SQL OpenNet to return error codes for communication errors, sets the
read time-out to 60 seconds, sets the write time-out to 60 seconds, and sets the ENV1 and ENV2
environment variables on the server.

rem SQL OpenNet init file
key_connect 6541
packetsize 1300
port 1990
return_errno yes
read_timeout 60
write_timeout 60
hostenv0 ENV1=c:\data,ENV2=c:\data2

packetsize Sets the minimum network packet size used by SQL OpenNet. The default is 8192 bytes.
This option defines a minimum size for an aggregate buffer, which is a buffer created
when data for multiple network packets needs to be sent to the client. This reduces
network traffic by combining packets and sending them as a unit with the specified
minimum size. To set this, use the following syntax, where size is the size in bytes:
packetsize size

Note that changing the default packet size may cause performance problems. If you are
using a WAN (wide area network), you may want to change this value to reduce load on
the network. The packet size used by the SQL OpenNet server is set by the packetsize
setting in the net.ini file on the client.

port Sets the communication port number. This defaults to the vtxnet setting in the services
file. For information, see “Specifying the port number” in the Windows section of the
“Configuring Connectivity Series” chapter of the Installation Configuration Guide.
port port_number

read_timeout Specifies how long (in seconds) SQL OpenNet should wait for a read operation to
complete. By default this is set to 0, which prevents a time-out.
read_timeout time

return_errno Instructs SQL OpenNet to return an operating system error code (rather than -1) if there’s
a communication error. By default return_errno is set to no.
return_errno yes|no

write_timeout Specifies how long (in seconds) SQL OpenNet should wait for a write operation to
complete. By default this is set to 0, which prevents a time-out.
write_timeout time

SQL OpenNet Client Options (Continued)

Option Description/syntax

Part 3: Accessing Data

This section contains information for developers and end-users. It explains how to access
your database with third-party, ODBC-enabled applications.

9-1

9
Accessing a Synergy Database

The Basic Steps 9-2

Lists the basic steps you’ll follow to access a Synergy database from an ODBC-enabled
application.

Third-Party Software Requirements 9-3

Lists requirements for third-party software and for client/server access.

Troubleshooting Data Access 9-4

Describes the basic techniques for troubleshooting data access.

Record Locking and Transactions with xfODBC 9-7

Discusses xfODBC’s support for database transactions.

Accessing Synergy Data with ADO 9-8

Documents what you’ll need to access Synergy data from a language that can use ADO.

Accessing Synergy Data in a .NET Environment 9-10

Describes how to use either the native .NET Framework Data Provider for ODBC or the
Synergy/DE Data Provider for .NET to access Synergy data in a .NET environment.

Examples 9-33

Provides examples you can follow to use ODBC-enabled applications to access the Synergy sample
database. The examples are for ODBC Test and the Synergy/DE Data Provider for .NET.

Accessing a Synergy Database
The Basic Steps

9-2 xfODBC User’s Guide 10.1 (6/13)

The Basic Steps
Once you’ve generated a system catalog, created a connect file, and created a DSN, you can access
your Synergy data from an ODBC-enabled application such as Microsoft Word or Crystal Reports.
(There’s more involved to accessing Synergy data in a .NET environment. See “Accessing Synergy
Data in a .NET Environment” on page 9-10 for information.)

Follow these basic steps:

1. Open the third-party, ODBC-enabled application.

2. In the third-party application, choose the DSN for the Synergy database.

The third-party application calls the ODBC Driver Manager, which in turn uses the DSN
information to call the xfODBC driver. The xfODBC driver uses the DSN to locate the connect file.
(See “How Third-Party Applications Use xfODBC” on page 1-11.)

3. If necessary, enter information in the log-in window (xfODBC Info).

Every ODBC-enabled application has its own procedure. See your application’s documentation for
details. See “Examples” on page 9-33 for step-by-step examples that use third-party applications to
access Synergy data.

See “Appendix B: SQL Support” for information on SQL commands that xfODBC supports and
xfODBC limitations when updating a database.

You can enter an entire connect string in the User ID field of the xfODBC Info window. If you
do, use the following syntax:

user_name/password/connect_file

To update data in a Synergy database, we strongly recommend using a Synergy
application that is designed to efficiently maintain database integrity. If you use an
ODBC-enabled application to write to a Synergy database, you may run into record-locking
issues. For information, see the “Statements that Modify Data” on page B-46.

Accessing a Synergy Database
Third-Party Software Requirements

xfODBC User’s Guide 10.1 (6/13) 9-3

Third-Party Software Requirements
The following are the general requirements for access with xfODBC. For information on
requirements for stand-alone and client/server configurations, see “xfODBC requirements and
installation” on page 1-8.

Software Requirements

ADO.NET with .NET
Framework Data Provider
for ODBC

.NET 4.0
Visual Studio 2010 or higher

ADO.NET with Synergy/DE
Data Provider for .NET

See “System requirements for the Synergy/DE Data Provider for .NET” on
page 9-11.

Crystal Reports Version 9 or higher (version 10 is recommended)

Lotus Approach Lotus SmartSuite Millennium 9.x

Microsoft Office Office XP or higher with all Office updates
Jet 4 with Service Pack 8 or higher

Visual Studioab Visual Studio 2010 SP1
Visual Studio 2012 Update 2

a. If you’re using ADO.NET, see the ADO.NET rows above for Visual Studio requirements.
b. We do not recommend installing xfODBC to run in a shared configuration when you are running Visual Studio on

the client machine for xfODBC development. However, if you do have this configuration, you must change your
.NET security permissions on the client machine to permit access to the assembly xfODBCSpecialization.dll,
located in the SynergyDE\connect directory on the shared machine. This assembly enables xfODBC to work with
Visual Studio wizards.

Accessing a Synergy Database
Troubleshooting Data Access

9-4 xfODBC User’s Guide 10.1 (6/13)

Troubleshooting Data Access
If you have problems accessing data from an ODBC-enabled application, follow the instructions in
this section. If you’re caching the system catalog, also see “Troubleshooting system catalog
caching” on page 8-22.

For information on troubleshooting problems generating a system catalog, see “Errors and
Troubleshooting” on page 4-14.

Review the repository definitions
If you are having problems accessing data, or if the data in the applications does not display as you
expect it to, the problem might be with the way the data was defined in your repository. For
information on setting up a repository for xfODBC, see “Setting Up a Repository” on page 3-2.

 Have you opened up the repository files in S/DE Repository to verify that the structures are
assigned to files and that the structures are set up correctly?

 Have you checked the repository definitions for all fields to verify that they are defined as
expected?

 Are you able to open the data files in a Synergy application?

Verify environment and environment variables
Because environment variables are crucial in enabling xfODBC to locate files, it’s important to
verify them.

 If you used environment variables in the repository Open filename field, have you also defined
them in the connect file, in an environment setup file, or in the environment?

 Is GENESIS_HOME set correctly? For information, see “Specifying the connect file location
(GENESIS_HOME)” on page 3-19.

 Have you set variables in an environment setup file? If so, does SODBC_INIFIL point to the
directory where the environment setup file is located? For stand-alone configurations, is
SODBC_INIFIL set in the environment or in the connect file? For client/server configurations,
is it set in the environment on the server?

 Have you set environment variables in the connect file? If so, make sure SODBC_INIFIL is
not set in the environment. xfODBC uses environment variables set in the connect file only if
SODBC_INIFIL is not set or is set in the connect file.

Accessing a Synergy Database
Troubleshooting Data Access

xfODBC User’s Guide 10.1 (6/13) 9-5

Verify file locations
 Is the connect file located in the directory that the GENESIS_HOME environment variable is

set to? If not, did you specify the filename and path for the connect file when you configured
the DSN?

 If you’re using the datasource line in the connect file to specify the location of your Synergy
data files, are all of the data files stored in the directory specified on the datasource line?

 Are the system catalog files stored in the directory specified on the dictsource line in the
connect file? See “System catalog” on page 1-5 for information on these files.

Verify the system catalog
 Have you used the fcompare utility to compare the system catalog to the data files? For

information, see “Comparing the system catalog to a database” on page 6-32.

 Have you generated the system catalog using the conversion setup file as input?

 Have you checked the conversion setup file to verify table locations, inclusion, and access?

 Have you made changes to the conversion setup file since generating the system catalog? If so,
have you regenerated the system catalog?

Use DBA to verify the system catalog
You can use the xfODBC Database Administrator (DBA) program to verify that the data definitions
were converted correctly.

 Have you used the Verify option in DBA to ensure that DBA is able to find and read all of the
tables, columns, tags, and indexes, and that DBA does not report errors reading them?

 Have you carefully compared the Repository data with each of the table attributes and column
definitions as they appear in DBA?

 Have you ensured that the table access levels are set appropriately?

 Have you verified that your users are assigned to groups with appropriate access levels?

Verify encryption
If you have verified environment variables and file locations and you are still unable to connect,
check the encryption settings on the client (in net.ini) and on the server (in the vtxnetd or vtxnet2
command line). Make sure these settings match, or for testing, remove the encryption settings in
both locations and see if you can connect. Additionally, make sure the net.ini file is in the directory
specified by VORTEX_HOME. Mismatched encryption settings, along with the inability to access
encryptions settings in net.ini, can cause a variety of errors when you try to connect, including
“invalid connect syntax,” “invalid user ID and/or password,” and “invalid DSN” errors. For more
information, see “SQL OpenNet Client Options in net.ini” on page 8-26.

Accessing a Synergy Database
Troubleshooting Data Access

9-6 xfODBC User’s Guide 10.1 (6/13)

Verify the log-in
 Using DBA, verify user names and passwords. When entering the connect string, did you type

the user name and password exactly as stored? They are case sensitive.

 To debug your initial connection, use Synergy DBMS logging. See “Error Logging” on
page 11-2 for more information.

Open your database with a third-party application
Did you generate a system catalog from the Synergy sample database, and were you able to access
this data successfully with an ODBC-enabled application?

Note that Synergex does not provide support for other ODBC-enabled applications, and resolving
problems particular to a specific third-party application is beyond the scope of this user’s guide.

If you are still encountering problems…
If you have followed all of the above troubleshooting steps and are still unable to access your
database, turn on the ODBC logging options and use the tracing feature. See “Error Logging” on
page 11-2 for instructions. You may need to call Synergy/DE Developer Support for an
interpretation of the log files you generate. For more information, see “Product support
information” on page x.

Other sources of information
 KnowledgeBase

The Synergy/DE KnowledgeBase is available on the Synergex website for customers who have
purchased a support agreement. The KnowledgeBase includes a wealth of troubleshooting
information and answers to frequently asked questions that may help you solve a problem you
have encountered. To purchase a support agreement, call your Synergy/DE account manager.

 Release notes

The REL_CONN.TXT release notes distributed with Synergy products include the latest
information about new features and restrictions in xfODBC.

TIP
On Windows you can test a network connection with vtxping (or synxfpng with the -x
option). See “xfODBC: testing the network connection for client access” in the Windows
section of the “Configuring Connectivity Series” chapter of the Installation Configuration
Guide.

Accessing a Synergy Database
Record Locking and Transactions with xfODBC

xfODBC User’s Guide 10.1 (6/13) 9-7

Record Locking and Transactions with xfODBC

xfODBC supports the record locking aspect of database transactions, but it does not treat operations
in a transaction as a single atomic event. In other words, each operation takes place as soon as its
statement is processed, and no operation can be rolled back. With xfODBC, committing or rolling
back a transaction merely releases records locked for the transaction. For example, if a transaction
includes an insert, the insert will take place as soon as the INSERT statement is processed.

If you don’t use a transaction, xfODBC locks rows only for the time it takes to process the
DELETE, INSERT, or UPDATE statement (autocommit). If you do use a transaction, xfODBC
locks all rows that are read after the ODBC application starts the transaction and holds the locks for
the duration of the transaction. Locks are released only when the transaction is committed or rolled
back or when the connection to the database is terminated.

Note that because xfODBC locks all rows read after the start of a transaction, every row in the
selected table will be locked until the transaction is committed or rolled back (or until the
connection is terminated) unless the SQL statement that locked the rows includes a restriction that
uses a unique index. For example, if you run the following query against the sample database that’s
distributed with Connectivity Series, it locks all rows in the orders table, even those whose or_price
is not greater than 1.50, because or_price is not a key.

SELECT or_customer FROM orders WHERE or_price > 1.50
FOR UPDATE OF

The next example, however, locks only rows that meet the restriction clause because the restriction
clause uses a unique key (the or_vendor field).

SELECT or_customer FROM orders WHERE or_vendor = 41
FOR UPDATE OF

For updating Synergy databases, we strongly recommend using a Synergy application
that’s designed to efficiently maintain database integrity. See “Statements that Modify Data”
on page B-46 for more information.

Note the following:

 We don’t recommend using transactions because of the high overhead they incur.
However, if you use an application that uses transactions for operations that don’t
update data (e.g., reporting), make sure the transactions are read-only.

 If a Synergy database is read-only (i.e., if groups and tables are set to allow read-only
access, which we recommend), a transaction that’s read/write will cause an error. If
this is the case, don’t solve the problem by allowing read/write access to the database.
Instead, set the application to use read-only transactions or, if that’s not possible, ask
the application vendor to update the application to not use transactions.

 xfODBC supports only the following transaction isolation levels:
SQL_TXN_READ_UNCOMMITTED and SQL_TXN_READ_COMMITTED.

Accessing a Synergy Database
Accessing Synergy Data with ADO

9-8 xfODBC User’s Guide 10.1 (6/13)

Accessing Synergy Data with ADO
If you are writing an application in a language that can use Microsoft ActiveX Data Objects
(ADO)—languages such as Visual Basic, ASP scripting languages, etc.—you can access a Synergy
database via ADO if

 your Synergy database has been prepared for ODBC access—i.e., you have generated a system
catalog, created a connect file, and so forth. Note that for client/server configurations, you’ll
need a DSN for the Synergy database, but for stand-alone configurations, the DSN is optional.

 your application has a valid connection string.

Creating connection strings that include a DSN

To access Synergy data using ADO, you need a connection string that includes all of the
information needed to make the connection. The following is the syntax for a connection string that
uses a DSN:

DSN=dsn;[UID=[user];][PWD=[pwd]][;DBQ=[connect]];]

where dsn is the DSN, user is the user name, pwd is the password for the user, and connect is the
name of the connect file for the Synergy database. Note the following:

 The user name, password, and connect file specifications are optional.

 If you are connecting to a Synergy database on a remote server, the server information must be
in the DSN.

 If you use the DBQ keyword in a connection string for Crystal Reports, you must prefix DBQ
with <CRWDC> (for example, “<CRWDC>DBQ=sodbc_sa”).

The following is an ADO example uses Visual Basic. In this example, a DSN (MyDSN) is used to
make a connection to the sample Synergy database.

<%
DIM sConnStr
sConnStr = "DSN=MyDSN;UID=DBADMIN;PWD=MANAGER;"

DIM SQLQuery
SQLQuery = "SELECT * FROM Customers"

Set OBJdbConn = Server.CreateObject("ADODB.Connection")
OBJdbConn.Open sConnStr

Set RsCustomerList = OBJdbConn.Execute(SQLQuery)
%>

Accessing a Synergy Database
Accessing Synergy Data with ADO

xfODBC User’s Guide 10.1 (6/13) 9-9

DSN-less connections

To connect to a local Synergy database without using a DSN, use the following syntax for the
connection string:

DRIVER=xfODBC;UID=[user][;PWD=[pwd]][;DBQ=[connect];]

or

DRIVER=xfODBC;UID=[user]/[pwd][/connect];

where user is the user name, pwd is the password for the user, and connect is the name of the
connect file for the database. Note the following:

 DSN-less connection strings are not supported for remote connections.

 If you don’t supply a user name, password, or connect file name, and one is needed for the
connection, the user will be prompted to supply the missing information.

 With DSN-less connections, you cannot change the settings listed in step 5 of “Adding a user
or system DSN” on page 8-5 (settings such as the maximum number of columns that can be
returned for a query). With a DSN-less connection, these settings cannot be changed from their
defaults.

The following example is a line of Visual Basic code that connects to the sample Synergy database
without using a DSN:

conn.Open "DRIVER=xfODBC;UID=DBADMIN/MANAGER/sodbc_sa;"

Accessing a Synergy Database
Accessing Synergy Data in a .NET Environment

9-10 xfODBC User’s Guide 10.1 (6/13)

Accessing Synergy Data in a .NET Environment
There are two ways to access Synergy data from non-Synergy programs in a .NET environment.
Both use ADO.NET:

 Use the .NET Framework Data Provider for ODBC.

 Use the Synergy/DE Data Provider for .NET.

If you access Synergy data with the .NET Framework Data Provider for ODBC, which is included
with .NET Framework, you will have access to all of the features of that provider, but you won’t be
able to use the ADO.NET Entity Framework. The .NET Framework Data Provider for ODBC does
not support it.

The Synergy/DE Data Provider for .NET includes all of the functionality of the .NET Framework
Data Provider for ODBC, which it wraps, plus it enables you to use the Entity Framework to access
Synergy databases (so you can use entity data models, LINQ to Entities, and so forth). It also
includes a Visual Studio plug-in that provides integration with Visual Studio (e.g., enables you to
create a data connection to a Synergy database). Once you have installed the Synergy/DE Data
Provider for .NET and prepared a Synergy database for ODBC access, you can create a Visual
Studio data connection to the database, you can generate and manipulate an entity data model
(EDM) for the database, and you can use the EDM to access the Synergy data. To query the
database via the EDM, you can use Entity SQL in any .NET language, and you can use LINQ to
Entities queries in any .NET language that supports LINQ (Visual C#, VB.NET, and so forth).

Note the following:

 We recommend using the Synergy/DE Data Provider for .NET, even if you do not plan
to use the Entity Framework. The Synergy/DE Data Provider for .NET not only wraps
the .NET Framework Data Provider for ODBC, it includes additional optimization, a
debugging tool, and other enhancements. (For information on the debugging tool, see
“Synergex.Data.SynergyDBMSClient.SdeCommand” on page 9-30.)

 We recommend using ISAM files with the Synergy/DE Data Provider for .NET and the
.NET Framework Data Provider for ODBC. ASCII data files are not supported, and
inserts, updates, and for relative files joins are limited because the only key is the
record number. With ISAM files, the xfODBC driver is able to create additional keys for
optimization.

 The Synergy/DE Data Provider for .NET does not support stored procedures, the
Verify SQL Syntax feature of Visual Studio (Query Designer > Verify SQL Syntax), or
some standard query operators and canonical functions. See “LINQ to Entities
support” on page 9-22 and “Entity SQL support” on page 9-23 for information on
standard query operators and canonical functions that are supported.

 For inserting, updating, and deleting records, use xfServerPlus methods rather than
the Synergy/DE Data Provider for .NET or the .NET Framework Data Provider for
ODBC. ADO.NET is not efficient for these operations, and ODBC access can lead to
record locking issues.

Accessing a Synergy Database
Accessing Synergy Data in a .NET Environment

xfODBC User’s Guide 10.1 (6/13) 9-11

You must do the following to use the .NET Framework Data Provider for ODBC or the Synergy/DE
Data Provider for .NET:

1. Prepare your Synergy database for ODBC access—i.e., generate a system catalog, create a connect
file, and so forth. See “The Steps to ODBC Access” on page 1-13.

2. Supply connection information in your application. See “Configuring a data connection in Visual
Studio” on page 9-12 and “Connection strings” on page 9-18.

See the rest of this section for information on using the Synergy/DE Data Provider for .NET. For
information on using the .NET Framework Data Provider for ODBC with Synergy databases, see
Microsoft’s ADO.NET and Visual Studio documentation, and see

 “Third-Party Software Requirements” on page 9-3.

 “Connection strings” on page 9-18. The information in this section about the data provider
connection string also applies to the .NET Framework Data Provider for ODBC.

 “Time columns and ADO.NET” on page 9-20. The information in this section applies to both
the Synergy/DE Data Provider for .NET and the .NET Framework Data Provider for ODBC.

 xfODBC_DataReader_v3.zip and xfODBC_v2.zip, available from Synergy CodeExchange
in the Resource Center on the Synergex web site.

System requirements for the Synergy/DE Data Provider for .NET
To use the Synergy/DE Data Provider for .NET, you must have the following:

Required Software Versions

Operating system Windows 8
Windows 7
Windows Vista with Service Pack 2 or higher
Windows XP with Service Pack 3
Windows Server 2012
Windows Server 2008 R2
Windows Server 2008 with Service Pack 2 or higher
Windows Server 2003 with Service Pack 2

.NET Framework Version 4 or 4.5

Visual Studio (required
only for development)

Visual Studio 2010 SP1 or 2012 (Express is not supported)

Entity Framework 4.0 or higher for Visual Studio 2010
5.0 or higher for Visual Studio 2012
Versions 4.1 and higher are partially distributed with Visual Studio and .NET Framework.
For the full version, which is required, see http://nuget.org/packages/entityframework.

https://resourcecenter.synergex.com/devres/code-exchange-details.aspx?id=49
https://resourcecenter.synergex.com/devres/code-exchange-details.aspx?id=50

Accessing a Synergy Database
Accessing Synergy Data in a .NET Environment

9-12 xfODBC User’s Guide 10.1 (6/13)

Using the Synergy/DE Data Provider for .NET
The following is the general procedure for using the Synergy/DE Data Provider for .NET. The last
step is for deployment machines. Prior steps are for a development machine.

1. Make sure your operating system, the .NET Framework, and Visual Studio meet the requirements
listed above. Then install the Synergy/DE Data Provider for .NET. (If you install the Synergy/DE
Data Provider for .NET on a system that does not have Visual Studio, only the deployment portion
of the data provider will be installed. See the release notes, REL_SDP.TXT, for details.)

2. Generate a system catalog for the Synergy database, create a connect file, create a DSN, and set
necessary data-access options. (See “The Steps to ODBC Access” on page 1-13 for an overview of
this process.) Note the following:

 To work with the Synergy/DE Data Provider for .NET, a DSN must specify a connect file.

 If you plan to use the Entity Framework, make sure the “Null allowed” property for all fields
used in key definitions is set to No. See “Preventing null updates and interpreting spaces, zeros,
and null values” on page 3-27.

 To use the Entity Framework, each data file must have a unique key. The Entity Framework
requires a primary key, and with xfODBC, the first unique key is considered the primary key.

3. In Visual Studio, add a data connection to the Synergy database, and then test it. See “Configuring
a data connection in Visual Studio” below. (You can also add connection strings manually to the
application. See “Connection strings” on page 9-18.)

4. Create an EDM or a DataSet and write a query for the EDM or DataSet, or use Query Designer or a
DataReader to directly query the data source. See “Querying Synergy data from a .NET
application” on page 9-14.

5. Before you deploy your application, make sure deployment machines meet requirements (see
“System requirements for the Synergy/DE Data Provider for .NET” above), install the Synergy/DE
Data Provider for .NET, and make sure they have database access, including the correct DSN.

Configuring a data connection in Visual Studio
Once you’ve installed the Synergy/DE Data Provider for .NET and prepared the Synergy data for
ODBC access, you can set up a Visual Studio data connection to the Synergy database. A data
connection enables you to access your Synergy database in various ways from Visual Studio (see
“Using the Retrieve Data function” on page 9-37 and “Using Query Designer” on page 9-38), and it
makes it easier to add connection information to your programs. When you use a data connection to
generate an EDM, a connection string is added to the App.Config file. You can also manually code
a connection string in your application. See “Connection strings” on page 9-18 for information.

Accessing a Synergy Database
Accessing Synergy Data in a .NET Environment

xfODBC User’s Guide 10.1 (6/13) 9-13

Except for the following, the procedure for configuring a data connection for a Synergy database is
the same as for any other data source, so see Microsoft’s Visual Studio documentation for
information. For an example, see “Adding a data connection for the sample database” on page 9-35.
Note the following:

 “Synergy Database” must be selected as the data source (in the Add Connection, Modify
Connection, Change Data Source, and Choose Data Source windows).

 “Synergy/DE Data Provider for .NET” must be selected as the data provider (in the Change
Data Source and Choose Data Source windows).

 The DSN you use must specify a connect file.

Also note that the Synergy/DE Data Provider for .NET includes its own versions of the Add
Connection and Modify Connection windows. See “The Add Connection and Modify Connection
windows” below.

The Add Connection and Modify Connection windows

The Add Connection and Modify Connection windows for the Synergy/DE Data Provider for .NET
have the following fields:

Data source. This read-only field displays the type of data connection that will be created. To use
the Synergy/DE Data Provider for .NET, this should be set to “Synergy Database (SDEClient).” To
change this, use the Change button.

Data source name. Select the DSN for the Synergy database you will access. This is required, and
note that the DSN you select here must include connect file information. The DSN does not need to
specify user and password information, but if it does, the user and password in the DSN will be the
default for the connection.

Click the Refresh button to update the drop-down list to reflect DSNs added or removed since the
Add Connection or Modify Connection window was opened.

User name. Enter a user name (case sensitive) for the Synergy database if necessary. When the
Add Connection window first opens, this field displays the user name specified in the DSN, if there
is one. If you enter a user name in this field, this name will override the user name information in
the DSN for the duration of the Visual Studio session.

Password. Enter the password (case sensitive) for the user name if necessary. If you enter a
password here, or clear asterisks that represent a password in the DSN, that change will override the
password information in the DSN for the duration of the Visual Studio session.

The Add Connection and Modify Connection windows also have an Advanced button, which gives
you another way to change information in these windows. And they have a Test Connection button,
which enables you to test the validity of data connection settings without leaving the Add
Connection or Modify Connection window.

Accessing a Synergy Database
Accessing Synergy Data in a .NET Environment

9-14 xfODBC User’s Guide 10.1 (6/13)

If you use the Test Connection button, note that a “Data Source name is missing” error could
indicate that the DSN does not specify a connect file. (For a DSN to work with the Synergy/DE
Data Provider for .NET, it must specify a connect file.) For other errors (e.g., “Authorization
failure”), check the information on the Add Connection or Modify Connection window. If it
appears to be correct, see “Troubleshooting Data Access” on page 9-4.

See “Adding a data connection for the sample database” on page 9-35 for an example that uses the
Add Connection window.

Querying Synergy data from a .NET application
Once you’ve set up a Visual Studio data connection to a Synergy database, you can

 use the Visual Studio Query Designer to directly query the database.

 create a DataSet object (by using the Visual Studio DataSet Designer, for example). Then
access the object model for the DataSet object and/or add LINQ to DataSet queries to your
code.

 use System.Data.Odbc.OdbcDataReader, which is the DataReader for the .NET Framework
Data Provider for ODBC. (This works with the Synergy/DE Data Provider for .NET because
that provider wraps the .NET Framework Data Provider for ODBC.)

 use the Visual Studio Entity Designer to create an EDM, and then add Entity SQL queries and
LINQ to Entities queries to your code to query the EDM and, in turn, the Synergy database.

Figure 9-1. Configuring a data connection with the Add Connection window.

Accessing a Synergy Database
Accessing Synergy Data in a .NET Environment

xfODBC User’s Guide 10.1 (6/13) 9-15

See Microsoft’s Visual Studio documentation for information on these topics, and see

 “Appendix B: SQL Support” for information on xfODBC’s support for SQL. Ultimately, all
ADO.NET access to Synergy data takes the form of SQL statements querying the database
through xfODBC. (For example, the Synergy/DE Data Provider for .NET translates Entity
SQL and LINQ to Entities queries into SQL for the xfODBC driver.) So the SQL support and
limitations for xfODBC apply to all of the methods listed above.

 “Generating an EDM for a Synergy database” on page 9-15 and Microsoft’s Visual Studio
documentation for information on creating and using an EDM. (See “Using an EDM to query
Synergy data” on page 9-43 for an example that queries the sample database using Entity SQL
and LINQ to Entities.)

 “Operators, functions, classes, and exceptions” on page 9-21 for information on operators and
functions supported by the Synergy/DE Data Provider for .NET.

Generating an EDM for a Synergy database
The Synergy/DE Data Provider for .NET enables you to generate an entity data model (EDM) from
a Synergy database, manipulate it, and use it to access Synergy data. An EDM is a conceptual
model that represents a database schema as a set of entities and relationships, which are created
from database objects selected in the EDM wizard. If you write a LINQ to Entities or Entity SQL
query, you query these entities, and this results in a standard SQL query against the Synergy
database. See Microsoft’s ADO.NET Entity Framework documentation for more information on
EDM objects, and see “Generating and manipulating an EDM” on page 9-40 for an example that
generates an EDM for the sample database. Note the following:

 Entity types are created from tables and views. However, if all columns are nullable for a table
or view that doesn’t have a primary key, no entity type will be created for the table or view.
(Errors, warnings, or messages may be displayed in the Visual Studio output window or Error
List pane, but no exceptions will be thrown.)

 Entity keys are created from primary keys. However, if a table or view does not have a primary
key, scalar properties for one or more non-nullable columns will be treated as keys. Note that
this can result in unexpected mappings in an EDM if you create an entity that inherits from a
entity with multiple keys.

TIP
The Visual Studio Entity Designer, DataSet Designer, and Query Designer display data
objects and information differently. For example,

 the Entity Designer displays associations for navigational properties as connectors
between tables. These navigational properties represent foreign keys. See figure 9-2
on page 9-17.

 the DataSet Designer displays foreign key relationships as connectors between tables.

 the Query Designer shows join operations (rather than foreign key relationships) as
connectors between tables, and connectors may look different depending on the
columns used in the join operation—e.g., a key icon is displayed if the join uses a key
column. See figure 9-8 on page 9-39.

Accessing a Synergy Database
Accessing Synergy Data in a .NET Environment

9-16 xfODBC User’s Guide 10.1 (6/13)

 Associations between entity types are created from foreign key relations. Note, however, that
relations that use at least one table column, but not all columns in a primary key will not be
mapped as associations in an EDM.

 Scalar properties and navigation properties are created from database columns. Columns that
have a role in an association appear as navigation properties. Other columns appear as scalar
properties.

Also note that the SQL data types for system catalog columns are mapped to the following data
types in the Entity Framework. For information on system catalog column types, see “Data types”
on page 3-13.

When EDM generation is complete, a visual representation of the EDM is displayed in the Entity
Model Designer (see figure 9-2), and the Synergy/DE Data Provider for .NET adds the following to
your Visual Studio project:

 An XML file (model_name.edmx) that defines the conceptual model, the data store, and
mappings between the conceptual model and data store.

 A code file containing the classes for each entity type. The filename for this is the filename
used for the .edmx file (without the .edmx extension) followed by “Designer” and the
extension for the .NET language (for example, model_name.Designer.cs for C#).

Data Type Mappings for Entity Framework

SQLDescribeCol type Entity Framework type

SQL_BIGINT Int64

SQL_BINARY Binary

SQL_BIT Boolean

SQL_DECIMAL Decimal

SQL_FLOAT Decimal

SQL_INTEGER Int64 for unsigned, Int32 for signed

SQL_SMALLINT Int32 for unsigned, Int16 for signed

SQL_TINYINT Byte for unsigned, Int16 for signed

SQL_TYPE_DATE DateTime

SQL_TYPE_TIME DateTime

SQL_TYPE_TIMESTAMP DateTime

SQL_VARCHAR String

Accessing a Synergy Database
Accessing Synergy Data in a .NET Environment

xfODBC User’s Guide 10.1 (6/13) 9-17

 The following assemblies. (You can see these under References in the Solutions Explorer.)

 System.Core

 System.Data

 System.Data.Entity

 System.Runtime.Serialization

 System.Security

 System.Xml

Figure 9-2. Visual representation of an EDM generated for the sample database.

Accessing a Synergy Database
Accessing Synergy Data in a .NET Environment

9-18 xfODBC User’s Guide 10.1 (6/13)

Connection strings
Generally, you’ll establish a connection to a Synergy database by setting up a data connection (see
“Configuring a data connection in Visual Studio” on page 9-12) and then selecting the data
connection when you generate an EDM. In the process, Visual Studio generates a connection string
and saves it to the App.Config file. However, you can manually add connection strings to your
application configuration file (App.Config), and you can add connection strings to your code by

 instantiating EntityConnection if you’re using the Entity Framework. (See Microsoft’s
ADO.NET documentation for information on EntityConnection.)

 instantiating SdeConnection if you’re using the Synergy/DE Data Provider for .NET but not
the Entity Framework. (See “Synergex.Data.SynergyDBMSClient.SdeConnection” on
page 9-31.)

If you’re using the Entity Framework, the connection string is actually made up of two connection
strings for two components of the Synergy/DE Data Provider for .NET: an outer connection string
for the Entity Framework provider and an inner connection string for the data provider. (See the
examples below.) If you’re not using the Entity Framework, the connection string consists only of
the connection string for the data provider. Note that the Entity Framework connection string must
conform to the connection string syntax for the Entity Framework, and the data provider connection
string must conform to the connection string syntax for the .NET Framework Data Provider for
ODBC (because the data provider component of Synergy/DE Data Provider for .NET wraps the
.NET Framework Data Provider for ODBC). See Microsoft’s ADO.NET documentation for
information on the syntax of these connection strings, and note the following:

 The provider= setting for the data provider connection string must be set to
Synergex.Data.SynergyDBMSClient (i.e., provider=Synergex.Data.SynergyDBMSClient).

 If you’re using the Entity Framework, the providerName= setting of the Entity Framework
provider connection string must be set to System.Data.EntityClient (i.e.,
providerName=“System.Data.EntityClient”).

Also note that you must specify either a connect file or a DSN that specifies a connect file for your
Synergy database. However, if you create a connection string that doesn’t specify a DSN (by using
DBQ= to specify a connect file and Driver= to specify “xfODBC”), you cannot change the settings
listed in step 5 of “Adding a user or system DSN” on page 8-5 (settings such as the maximum
number of columns that can be returned for a query). With a DSN-less connection, these settings
cannot be changed from their defaults.

Accessing a Synergy Database
Accessing Synergy Data in a .NET Environment

xfODBC User’s Guide 10.1 (6/13) 9-19

Example App.Config connection strings

The following example was generated by Visual Studio for a data connection and was saved to the
App.Config file for a project. The outer connection string starts with “connectionString=” and the
inner connection string starts with “provider connection string=”.

<configuration>
<connectionStrings>
<add name="Entities" connectionString="metadata=res://*/Model.csdl| res:
//*/Model.ssdl|res://*/Model.msl;provider=Synergex.Data.SynergyDBMSClient
;provider connection string="Dsn=my_DSN;uid=DBA""providerName=
"System.Data.EntityClient" />
</connectionStrings>
</configuration>

The next connection string example specifies the Synergy/DE Data Provider for .NET, but it
doesn’t include the Entity Framework connection string, so an application couldn’t use the Entity
Framework with this connection.

<configuration>
<connectionStrings>
<add name="DPConnection" connectionString="Dsn=MsConnect;
uid=DBA;pwd=MANAGER" providerName="Synergex.Data.SynergyDBMSClient" />
</connectionStrings>

</configuration>

Example connection strings in code

The following C# example uses EntityConnection and includes the Entity Framework connection
string, so the program can use the Entity Framework:

string dataProviderConnectionString = "DSN=xfODBC;UID=DBA;PWD=MANAGER";

EntityConnectionStringBuilder entityBuilder = new
EntityConnectionStringBuilder();

entityBuilder.Provider = "Synergex.Data.SynergyDBMSClient";
entityBuilder.ProviderConnectionString = dataProviderConnectionString;
entityBuilder.Metadata = @"res://*/Model.csdl|

res://*/Model.ssdl|res://*/Model.msl";

using (EntityConnection connection = new
EntityConnection(entityBuilder.ToString()))
{

connection.Open();
Console.WriteLine("Just testing the connection.");
connection.Close();

}

Accessing a Synergy Database
Accessing Synergy Data in a .NET Environment

9-20 xfODBC User’s Guide 10.1 (6/13)

The next C# example uses SdeConnection, so the program can use the data provider component of
the Synergy/DE Data Provider for .NET, but can’t use the Entity Framework.

using (SdeConnection connect = new
SdeConnection("DSN=xfODBC;UID=DBA;PWD=Manager"))

{
connect.Open();
SdeCommand command = new

SdeCommand("Select * from Customers", connect);
OdbcDataReader reader = (OdbcDataReader) command.ExecuteReader();
while (reader.Read())
{

...

Time columns and ADO.NET
ADO.NET retrieves SQL_TIME columns (SQL_TIME is the default for time columns) as
System.TimeSpan, which is a .NET data type that represents a time interval rather than a specific
time. Generally, this means that applications accessing the data need to be written to calculate the
time from TimeSpan values. However, xfODBC includes the VORTEX_ODBC_TIME
environment variable, which can make these calculations unnecessary by instructing the xfODBC
driver to describe SQL_TIME columns as SQL_TIMESTAMP. Note that the Synergy/DE Data
Provider for .NET sets this automatically; see “Formats for returned dates and times” on page 8-13
for more information.

Troubleshooting
If you are unable to create a connection to a Synergy database, make sure your system meets the
requirements listed in “System requirements for the Synergy/DE Data Provider for .NET” on
page 9-11, and make sure you have correctly set up your Synergy database for ODBC access. Start
by attempting to connect locally to the database using an application such as ODBC Test. See the
following for more information:

 “Troubleshooting Data Access” on page 9-4

 Chapter 11, “Data Access Errors and Error Logging”

For information on troubleshooting EDMs, see Microsoft’s Visual Studio documentation. Visual
Studio logs some errors in the Visual Studio Output pane and Error List pane and others as
comments in the EDMX file.

Accessing a Synergy Database
Accessing Synergy Data in a .NET Environment

xfODBC User’s Guide 10.1 (6/13) 9-21

As for queries, one of the benefits of using LINQ to Entities is that Visual Studio is able to check
the validity of a query, so you can use IntelliSense and other Visual Studio tools to troubleshoot
queries. Note, however, that valid queries may result in SQL that is inefficient and that may not be
optimizable by the Synergy database driver. (See note in “LINQ to Entities support” on page 9-22.)

 To see the SQL generated for a LINQ to Entities or Entity SQL query, use Vortex API logging,
Vortex host logging, or ODBC trace logging (see “Error Logging” on page 11-2), or use the
DisplaySqlInDebug property of the SdeConnection class to print the SQL to the Visual Studio
Output window when debugging. See “Synergex.Data.SynergyDBMSClient.SdeConnection”
on page 9-31.

 For information on what xfODBC can optimize, see chapter 10, “Optimizing Data Access.”

Also note that the Synergy/DE Data Provider for .NET is subject to .NET Framework exceptions
and the Synergy exceptions documented in “Synergy/DE Data Provider for .NET exceptions” on
page 9-32. For information on .NET Framework exceptions, see Microsoft’s .NET Framework
class library documentation.

Operators, functions, classes, and exceptions
The Synergy/DE Data Provider for .NET supports the standard query operators, canonical
functions, classes, and custom exceptions listed in this section.

 The “LINQ to Entities support” section below documents support for LINQ to Entities by
listing the standard query operators you can use with the Synergy/DE Data Provider for .NET.
These operators are methods in the Standard Query Operators API, and they enable you to
create queries that include filtering, projection, joins, grouping, aggregation, set operations,
and paging/element operations.

 “Entity SQL support” on page 9-23 lists supported canonical functions. Canonical functions
work with the entity data model (EDM), have direct SQL translations, and are common to all
providers for the .NET Framework.

 “Synergy/DE Data Provider for .NET classes” on page 9-30 documents
Synergex.Data.SynergyDBMSClient classes, which are specific to the Synergy/DE Data
Provider for .NET. (The Synergy/DE Data Provider for .NET also uses the
System.Data.ODBC and System.Data.Common classes. See Microsoft’s .NET Framework
documentation for information.)

 “Synergy/DE Data Provider for .NET exceptions” on page 9-32 documents exceptions that are
specific to the Synergy/DE Data Provider for .NET and are raised for queries that result in
unsupported SQL. (For information on .NET Framework exceptions, see Microsoft’s .NET
Framework documentation.)

Accessing a Synergy Database
Accessing Synergy Data in a .NET Environment

9-22 xfODBC User’s Guide 10.1 (6/13)

LINQ to Entities support
The following list of standard query operators documents the Synergy/DE Data Provider for .NET’s
support for LINQ to Entities. These operators are methods in the Standard Query Operators API,
and they enable you to create queries. Standard query operators are supported for both the query
expression syntax and the method-based query syntax. They operate on sequences (i.e., objects that
implement an IEnumerable<T> or IQueryable<T> interface), and results are returned in sequences.

Note that the Synergy/DE Data Provider for .NET translates LINQ to Entities queries into SQL
queries for the ODBC layer. For example, Where (a standard query operator) results in a WHERE
clause in the generated SQL, so both of the following queries result in the clause
“WHERE cust_key = 5”:

var query = Db.Customers.Where(c => c.CUST_KEY == 5);

var query = from c in Db.Customers where c.CUST_KEY == 5 select c;

The first query above is a C# method-based query that limits the elements returned in the
Db.Customers sequence to those whose CUST_KEY value is 5. The second is the equivalent in
query expression syntax.

The Synergy/DE Data Provider for .NET supports the following standard query operators. For
information on standard query operators, see Microsoft’s LINQ to Entities documentation.

Not all operators translate so neatly into SQL. Some have no direct SQL equivalent. And
the SQL generated from LINQ to Entities queries (especially for complex queries) may be
inefficient and may not be optimizable by the Synergy database driver.

Standard Query Operators

Type Operators

Sorting Data OrderBy
OrderByDescending
Then
ThenByDescending

Set Operations Distinct
Union

Filtering Data Where

Quantifier Operations All
Any
Contains

Projection Operations Select
SelectMany

Accessing a Synergy Database
Accessing Synergy Data in a .NET Environment

xfODBC User’s Guide 10.1 (6/13) 9-23

Entity SQL support
The Synergy/DE Data Provider for .NET supports the following Entity SQL canonical functions.
All other aspects of Entity SQL are supported as documented in Microsoft’s Entity SQL
documentation. In order to query a Synergy database, the Synergy/DE Data Provider for .NET
translates all Entity SQL into standard SQL for xfODBC. Canonical functions, for example, have
direct SQL translations as listed in the table below.

See “Troubleshooting” on page 9-20 for information on viewing the SQL that’s generated for a
query, see “Appendix B: SQL Support” for information on the SQL supported by xfODBC, and see
chapter 10, “Optimizing Data Access,” for information on what xfODBC can optimize.

Partitioning Data Skip
Take

Join Operations Join
GroupJoin

Grouping Data GroupBy

Element Operations First
FirstOrDefault

Concatenation Operations Concat

Aggregation Operations Average
Count
LongCount
Max
Min
Sum

Standard Query Operators (Continued)

Type Operators

Accessing a Synergy Database
Accessing Synergy Data in a .NET Environment

9-24 xfODBC User’s Guide 10.1 (6/13)

Canonical Functions

Function Description
Valid parameter
types

Return type SQL translation

Abs(value) A math function that
returns the absolute
value of value.

Int16, Int32, Int64,
Byte, Single,
Double, Decimal

Type of value ABS(num_exp)

Avg(expression) An aggregate function
that returns the average
of non-null values.

Int32, Int64,
UInt32, UInt64,
Double, Decimal
(Null if input
values are all null)

Type of
expression or null
if all input values
are null

AVG(col)

BigCount(expression) An aggregate function
that returns the size of
the aggregate, including
null and duplicate
values.

Any type Int64 COUNT(col)

BitWiseAnd(value1,
value2)

A bitwise function that
returns the results of a
bitwise AND operation
performed on value1
and value2.

Byte, Int16, Int32,
Int64

Type of value1,
value2

BITAND(num_exp,
num_exp2)

BitWiseOr(value1,
value2)

A bitwise function that
returns the result of a
bitwise OR operation
performed on value1
and value2.

Byte, Int16, Int32,
Int64

Type of value1,
value2

BITOR(num_exp,
num_exp2)

BitWiseXor(value1,
value2)

A bitwise function that
returns the result of a
bitwise exclusive OR
operation performed on
value1 and value2.

Byte, Int16, Int32,
Int64

Type of value1,
value2

BITXOR(num_exp,
num_exp2)

Ceiling(value1,
value2)

A math function that
returns the largest of two
values.

Single, Double,
DateTime, String,
Char, Decimal

Type of value1,
value2

GREATEST
(expression1,
expression2)

Accessing a Synergy Database
Accessing Synergy Data in a .NET Environment

xfODBC User’s Guide 10.1 (6/13) 9-25

Concat(string1,
string2)

A string function that
returns a string that’s a
combination of string1
and string2.
Note that an error will
occur if the length of the
return value string is
greater than the
maximum length
allowed.

String String CONCAT(str_exp1,
str_exp2)

Count(expression) An aggregate function
that returns the size of
the aggregate, including
null and duplicate
values.

Any type Int32 COUNT(col)

CurrentDateTime() A date/time function that
returns the current date.

n/a System.datetime CURDATE()

Day(datetime) A date/time function that
returns the day portion
of datetime as a value
from 1 to 31.

Datetime constant
or a datetime
column

Int32 CAST(TO_CHAR
(value, ’DD’) AS
SQL_INTEGER)

Floor(value1, value2) A math function that
returns the lesser of two
values.

Single, Double,
DateTime, String,
Char, Decimal

Type of value1,
value2

LEAST
(expression1,
expression2)

Hour(datetime) A date/time function that
returns the hour portion
of datetime as a value
from 00 to 23.

Datetime constant
or a datetime
column

Int32 CAST(TO_CHAR
(value, ’HH’) AS
SQL_INTEGER)

IndexOf(string1,
string2)

A string function that
returns the position of
string1 in string2, or
returns 0 if not found. A
return value of 1
indicates that it starts at
the beginning of string2.

String Int32 INSTR(str_exp1,
str_exp2)

Canonical Functions (Continued)

Function Description
Valid parameter
types

Return type SQL translation

Accessing a Synergy Database
Accessing Synergy Data in a .NET Environment

9-26 xfODBC User’s Guide 10.1 (6/13)

Left(string, n) A string function that
returns the first n
characters of string.
Note that n cannot be
less than zero and that
you must use the ODBC
escape sequence with
Left: {fn Left(string, n)}

String and one of
the following for n:
SByte, Int16,
Int32, Int64, Byte,
UInt16, UInt32,
UInt64

String LEFT(str_exp, n)

Length(string) A string function that
returns the length in
characters of string.

String Int32 LENGTH(str_exp)

LTrim(string) A string function that
returns string with any
leading blanks removed.

String String LTRIM(str_exp)

Max(expression) An aggregate function
that returns the
maximum non-null
value.

Byte, Int16, Int32,
Int64, UInt16,
UInt32, UInt64,
Single, Double,
Decimal,
DateTime,
DateTimeOffset,
Time, String,
Binary
(Null if input
values are all null)

Type of
expression or null
if all input values
are null

MAX(col)

Millisecond(datetime) A date/time function that
returns the millisecond
portion of datetime as a
value from 0 to 9999.

Datetime constant
or a datetime
column

Int32 CAST(TO_CHAR
(Value, ‘UUUUUU’)
AS SQL_INTEGER

Canonical Functions (Continued)

Function Description
Valid parameter
types

Return type SQL translation

Accessing a Synergy Database
Accessing Synergy Data in a .NET Environment

xfODBC User’s Guide 10.1 (6/13) 9-27

Min(expression) An aggregate function
that returns the minimum
non-null value.

Byte, Int16, Int32,
Int64, UInt16,
UInt32, UInt64,
Single, Double,
Decimal,
DateTime,
DateTimeOffset,
Time, String,
Binary
(Null if input
values are all null)

Type of
expression or null
if all input values
are null

MIN(col)

Minute(datetime) A date/time function that
returns the minute
portion of datetime as a
value from 00 to 59.

Datetime constant
or a datetime
column

Int32 CAST(TO_CHAR
(value, ’MI’) AS
SQL_INTEGER)

Month(datetime) A date/time function that
returns the month
portion of datetime as a
value from 1 to 12.

Datetime constant
or a datetime
column

Int32 CAST(TO_CHAR
(value, ’MM’) AS
SQL_INTEGER)

Replace(string1,
string2, string3)

A string function that
searches for a string
(string2) in a string
(string1) and replaces
occurrences of the found
string with another string
(string3).

String String REPLACE(str_exp,
str_exp2, str_exp3)

Reverse(string) A string function that
reverses the order of the
characters in the
returned string.

String String REVERSE(str_exp)

Canonical Functions (Continued)

Function Description
Valid parameter
types

Return type SQL translation

Accessing a Synergy Database
Accessing Synergy Data in a .NET Environment

9-28 xfODBC User’s Guide 10.1 (6/13)

Right(string, n) A string function that
returns the last n
characters from string.
Note that n cannot be
less than zero and that
you must use the ODBC
escape sequence with
Right:
{fn Right(string, n)}

String and one of
the following for n:
SByte, Int16,
Int32, Int64, Byte,
UInt16, UInt32,
UInt64

String RIGHT(str_exp, n)

Round(value) A math function that
returns the integer
portion of a value
rounded to the nearest
integer.

Single, Double,
Decimal

The type of value ROUND
(expression)

RTrim(string) A string function that
returns string with any
trailing blanks removed.

String String RTRIM(string)

Second(datetime) A date/time function that
returns the second
portion of datetime as a
value from 00 to 59.

Datetime constant
or a datetime
column

Int32 CAST(TO_CHAR
(value, ’SS’) AS
SQL_INTEGER)

Substring(string,
start, length)

A string function that
returns a substring of
string that begins at the
position start and is
length characters long. A
start of 1 indicates that
the substring starts at
the beginning of string.
Note that start cannot be
less than 1. Length
cannot be less than 0.

String and one of
the following for
start and length:
SByte, Int16,
Int32, Int64, Byte,
UInt16, UInt32, or
UInt64

String SUBSTR(str_exp,
start, length)

Canonical Functions (Continued)

Function Description
Valid parameter
types

Return type SQL translation

Accessing a Synergy Database
Accessing Synergy Data in a .NET Environment

xfODBC User’s Guide 10.1 (6/13) 9-29

Sum(expression) An aggregate function
that returns the sum of
non-null values.

Int32, Int64,
UInt32, UInt64,
Double, Decimal
(Null if input
values are all null)

Type of
expression or null
if all input values
are null

SUM(col)

ToLower(string) A string function that
converts any uppercase
characters in string to
lowercase characters,
and returns the resulting
string.

String String LCASE(str_exp)

ToUpper(string) A string function that
converts any lowercase
characters in string to
uppercase characters,
and returns the resulting
string.

String String U_CASE(str_exp)

Trim(string) A string function that
returns string with
leading and trailing
blanks removed.

String String LTRIM(RTRIM
(str_exp))

Year(datetime) A date/time function that
returns the year portion
of datetime.

Datetime constant
or a datetime
column

Int32 CAST(TO_CHAR
(value, ’YYYY’) AS
SQL_INTEGER)

Canonical Functions (Continued)

Function Description
Valid parameter
types

Return type SQL translation

Accessing a Synergy Database
Accessing Synergy Data in a .NET Environment

9-30 xfODBC User’s Guide 10.1 (6/13)

Synergy/DE Data Provider for .NET classes
The Synergy/DE Data Provider for .NET includes the System.Data.Odbc classes and the following
Synergex.Data.SynergyDBMSClient classes (which are wrapped versions of System.Data.Odbc
classes). These classes generally apply only if you are using ADO.NET without the Entity
Framework (though you may want to use the DisplayInDebug property of SdeConnection for
debugging in any case).

Because the Synergex.Data.SynergyDBMSClient classes wrap System.Data.Odbc classes, the
following summarize these classes, but don’t fully document them. For more information, see
Microsoft’s ADO.NET documentation for System.Data.Odbc classes.

Synergex.Data.SynergyDBMSClient.SdeClientFactory

This wraps the OdbcFactory class in the System.Data.Odbc namespace. It has methods for creating
objects for data source classes.

SdeCommand command = SdeClientFactory.Instance.CreateCommmand()
as SdeCommand;

Synergex.Data.SynergyDBMSClient.SdeCommand

This wraps the OdbcCommand class in the System.Data.Odbc namespace, and it cannot be
inherited. SdeCommand represents a SQL statement or command, and must be used with a data set
or the data reader for the .NET Framework Data Provider for ODBC. For example, the following
C# code uses SdeCommand to set up an SQL statement and to execute it with the data reader:

{
...
SdeCommand command = new SdeCommand("Select * from Customers", connect);
DbDataReader reader = command.ExecuteReader();
while (reader.Read())
{
...
}

}

Note the following:

 To use the Synergex.Data.SynergyDBMSClient classes, you must add a reference to
Synergex.Data.SynergyDBMSClient.dll to your Visual Studio project.

 We recommend that you use the Synergex.Data.SynergyDBMSClient classes
documented below rather than their System.Data.Odbc counterparts. This will make
your code more compatible with future versions of the Synergy/DE Data Provider for
.NET and will prevent unnecessary type conversions that happen if you use both
Synergex.Data.SynergyDBMSClient classes and their System.Data.Odbc
counterparts.

Accessing a Synergy Database
Accessing Synergy Data in a .NET Environment

xfODBC User’s Guide 10.1 (6/13) 9-31

Synergex.Data.SynergyDBMSClient.SdeConnection

This wraps the OdbcConnection class in the System.Data.Odbc namespace. It represents a
connection to a Synergy database, and it cannot be inherited. Note that SdeConnection has an
additional property that OdbcConnection doesn’t have. SdeConnection includes the static property
DisplaySqlInDebug which can be set to true or false (false is the default). When set to true, this
instructs the Synergy/DE Data Provider for .NET to print the SQL generated from an Entity SQL or
LINQ to Entities query to the Visual Studio Output window when debugging.

The following C# example uses the SdeConnection constructor and Open method to connect using
a DSN named xfODBC:

string cnString = ConfigurationManager.ConnectionStrings
["Connect1"].ConnectionString;

using (SdeConnection connect = new SdeConnection(cnString))
{

connect.Open();
SdeCommand command = new SdeCommand("Select * from Customers", connect);
DbDataReader reader = command.ExecuteReader();
while (reader.Read())
{
...
}

}

The following C# example uses the ConnectStrings method of the ConfigurationManager class
(System.Configuration) to retrieve a connection string labeled “Connect1” from App.Config. It
then uses the SdeConnection constructor to connect using the retrieved connection string:

string cnString = ConfigurationManager.ConnectionStrings
["Connect1"].ConnectionString;

SdeConnection connection = new SdeConnection(cnString);

using (SdeConnection connect =
new SdeConnection("DSN=xfODBC;UID=DBA;PWD=Manager"))

{
connect.Open();
SdeCommand command = new SdeCommand("Select * from Customers", connect);
DbDataReader reader = command.ExecuteReader();
while (reader.Read())
{
...
}

}

See “Connection strings” on page 9-18 for more information.

Accessing a Synergy Database
Accessing Synergy Data in a .NET Environment

9-32 xfODBC User’s Guide 10.1 (6/13)

Synergy/DE Data Provider for .NET exceptions
The Synergy/DE Data Provider for .NET is subject to .NET Framework exceptions and the
following Synergy exceptions. For information on .NET Framework exceptions, see Microsoft’s
.NET Framework class library documentation.

InvalidCastException

Raised if a query results in invalid casting. See “Appendix B: SQL Support” for information on
casting supported by xfODBC.

InvalidExpressionTreeException

Raised if an expression tree passed to the Synergy/DE Data Provider for .NET is not a valid query
tree. For example, this may indicate that the query contains an aggregate function or operator
without a GROUP BY clause or a GroupBy operator.

InvalidSqlException

Raised if the query is well-formed, but the SQL generated by the Synergy/DE Data Provider for
.NET is invalid or not supported by the xfODBC driver. Contact Synergy/DE Developer Support.

UnsupportedFunctionException

Raised if the query uses a canonical function that is not supported by the Synergy/DE Data Provider
for .NET. Rewrite the query to use only canonical functions listed in “Entity SQL support” on
page 9-23.

UnsupportedOperatorException

Raised if the query (LINQ to Entities or Entity SQL) uses an operator that is not supported by the
Synergy/DE Data Provider for .NET. Rewrite the query to use only operators listed in “LINQ to
Entities support” on page 9-22.

Accessing a Synergy Database
Examples

xfODBC User’s Guide 10.1 (6/13) 9-33

Examples
The following examples connect to the sample Synergy database provided with the xfODBC
installation. These examples were created using Visual Studio 2010 and 2012 and ODBC Test 2.7.
Procedures may differ for other versions.

Note that before you follow the steps in these examples, you must generate a system catalog for the
sample database, create a connect file and DSN for the sample database, and create a user that can
access the data. If you initialized users and groups, you can use the default user DBADMIN.

For more examples, see the following Synergex KnowledgeBase articles:

 100001969—an example that accesses Synergy data with Microsoft Access

 100001970—an example that uses Microsoft Word to create a form letter from Synergy data

 100001972—an example that uses Crystal Reports to create a report with Synergy data

Using ODBC Test to test a query
ODBC Test (Odbcte32.exe) is an ODBC-enabled application distributed by Microsoft. It’s useful
for testing your xfODBC setup and for testing SQL statements. If a query works with ODBC Test,
the query and the setup (DSN, connect file, system catalog, data files, environment variable
settings, etc.) are working. If you find that the same setup and SQL statement fail with another
ODBC-enabled application, chances are the problem lies with the application (for example, with
the way it generates SQL).

As with the other examples in this section, we’ll access the sample Synergy database.

1. Open ODBC Test.

2. Select Full Connect from the Conn menu.

3. In the Data Source field of the Full Connect dialog box, select the DSN you created for the sample
Synergy database, enter the user name and password for the DSN (optional), set the ODBC
Behavior field to ODBC 2.0, and then click OK. (Leave the Cursor Library field set to Default.)

Note that the user you log in as must have read privileges (but not necessarily write privileges) to
complete this example.

4. If the xfODBC Info window opens, enter the user name, password, or connect file—whatever
information is missing—and click OK. (This window opens if any one of these is not stored in the
user DSN you selected and was not entered in the Full Connect dialog box.)

If xfODBC isn’t able to connect to the sample database, you’ll get an error message (“Connection
failed...”) that should give you some idea about the problem. If you are unable to solve the problem
from the information provided by the error message, see “Troubleshooting Data Access” on
page 9-4.

Accessing a Synergy Database
Examples

9-34 xfODBC User’s Guide 10.1 (6/13)

5. If ODBC Test is able to connect to the sample database, a window with two panes will open. (The
user name and the DSN name—for example “DBADMIN@sample”—are part of the window title.)
The lower pane displays information on the connection, including any errors or warnings.

Enter the following SQL statement in the upper pane (see figure 9-3):

SELECT in_latin FROM plants
WHERE in_zone = 3

AND in_shape = 'tree'

6. Select SQLExecDirect from the Stmt menu, and then click OK in the SQLExecDirect window. The
results, which should include SQL_SUCCESS=0, are displayed in the lower pane of the window
for the connection. (If you get an error, the SQL statement entered in step 5 is probably incorrect.)

7. If step 6 resulted in SQL_SUCCESS=0, select Get Data All from the Results menu. The results are
appended to the information in the lower pane.

8. To disconnect, Select Full Disconnect from the Conn menu.

There are many other ODBC API calls you can invoke from ODBC Test. See the online help for
ODBC Test for information.

Figure 9-3. Query and the results of SQLExecDirect.

Accessing a Synergy Database
Examples

xfODBC User’s Guide 10.1 (6/13) 9-35

Adding a data connection and retrieving data in Visual Studio
The following examples, access Synergy data from Visual Studio by using the Entity Framework,
so you will need the Synergy/DE Data Provider for .NET installed on a system that meets the
requirements listed in “System requirements for the Synergy/DE Data Provider for .NET” on
page 9-11.

These examples access the sample Synergy database, so before you start, you must follow the steps
in chapter 2, “Using the Sample Database As a Tutorial,” to set up the sample database for ODBC
access. Note that the DSN you create for the sample database should specify the user name,
password, and connect file.

Adding a data connection for the sample database
We’ll start by adding a data connection, which you can use to

 retrieve data in Visual Studio. We’ll do this in “Using the Retrieve Data function” on page 9-37
and “Using Query Designer” on page 9-38.

 set up connection information in an application developed in Visual Studio. We’ll do this in
“Generating and manipulating an EDM” on page 9-40.

1. In Visual Studio, open the Server Explorer (View > Server Explorer) and select Tools > Connect to
Database (or right-click the Data Connections node and select Add Connection from the context
menu). Data connections are independent of solutions and projects, so you don’t need to open a
solution or project.

The Add Connection window or Choose Data Source window opens.

2. Do one of the following:

 If the Add Connection window opens, make sure the data source is set to “Synergy Database
(SDEClient).” If it isn’t, click the Change button and then, in the Change Data Source window,
set the data source to “Synergy Database,” which sets the data provider to “Synergy Data
Provider for .NET,” and click OK.

 If the Choose Data Source window opens, set the data source to “Synergy Database,” which
sets the data provider to “Synergy/DE Data Provider for .NET,” and click Continue.

Accessing a Synergy Database
Examples

9-36 xfODBC User’s Guide 10.1 (6/13)

3. In the Add Connection window, select the DSN you created for the sample database. As
recommended above, the DSN should specify a user name and password, so there’s no need to enter
that information here. (If you do, it will override the information in the DSN.)

4. Click the Test Connection button at the bottom of the Add Connection window to make sure the
connection information is correct. Note that a “Data Source name is missing” error could indicate
that the DSN does not specify a connect file. (For a DSN to work with the Synergy/DE Data
Provider for .NET, it must specify a connect file.) For other errors (e.g., “Authorization failure”),
check the information on the Add Connection window. If it appears to be correct, see
“Troubleshooting Data Access” on page 9-4.

5. Once you’re able to connect with the Test Connection button, click OK to close the “Test
connection succeeded” message, and then click OK in the Add Connection window. The Add
Connection window closes, and a node for the data connection is added to the Data Connections
branch of Server Explorer.

Figure 9-4. Entering data connection information in the Add Connection window.

Accessing a Synergy Database
Examples

xfODBC User’s Guide 10.1 (6/13) 9-37

Using the Retrieve Data function
Once you’ve established a data connection, you can access the Synergy data from Visual Studio in
various ways, including the Retrieve Data function, which displays the data for a table or view.

1. In Server Explorer, expand the data connection node added in step 5 of “Adding a data connection
for the sample database” (above), expand the Tables node under that, and then right-click one of the
tables (CUSTOMERS, ORDERS, PLANTS, or VENDORS).

2. From the context menu, select Retrieve Data. (See figure 9-5.)

A tab with the name of the table is added to the editor pane of Visual Studio. The tab displays all of
the columns and rows for the table. (See figure 9-6.)

Figure 9-5. Selecting Retrieve Data from the context menu for the CUSTOMERS table.

Figure 9-6. Results of Retrieve Data function for CUSTOMERS table.

Accessing a Synergy Database
Examples

9-38 xfODBC User’s Guide 10.1 (6/13)

Using Query Designer
Another Visual Studio tool you can use with a data connection is Query Designer, which enables
you to enter SQL or use graphical tools to query a relational database.

1. In Server Explorer, right-click the data connection node added in step 5 of “Adding a data
connection for the sample database” on page 9-35 and select New Query from the context menu. If
there is no New Query entry on the context menu, select Refresh from the context menu, and then
right-click again and select New Query.

2. In the Add Table window (figure 9-7), select the tables you want to query (you can use CTRL+click
to select more than one) and click Add. The selected tables are displayed in the Diagram pane, the
Criteria pane, and as part of the SQL pane.

3. Click Close to close the Add Table window.

4. Select columns for the query by selecting columns in the Diagram pane (figure 9-8). The SQL pane
displays the revised query.

5. Execute the query by selecting Query Designer > Execute SQL from the menu. The retrieved
columns and rows are displayed in the Results pane.

Figure 9-7. Selecting tables in the Add Table window.

Accessing a Synergy Database
Examples

xfODBC User’s Guide 10.1 (6/13) 9-39

Figure 9-8. Selecting columns in the Diagram pane.

Accessing a Synergy Database
Examples

9-40 xfODBC User’s Guide 10.1 (6/13)

Generating and manipulating an EDM
The Synergy/DE Data Provider for .NET enables you to generate an entity data model (EDM) for a
Synergy database, manipulate it, and use it to access Synergy data. In this example, we will
generate an EDM and change some scalar properties.

1. In Visual Studio, create a C# console application project. (Select File > New > Project, and when
the New Project window opens, select “Visual C#” > “Windows” > “Console Application.” Then
click OK.)

2. In Solution Explorer, right-click the project name, and then select Add > New Item from the
context menu. The Add New Item window opens.

3. In the Add New Item window, select Visual C# Items > Data, and then select “ADO.NET Entity
Data Model. Then enter a name for the EDM in the Name field (or leave the default name), and
click Add. The Entity Data Model Wizard opens.

Figure 9-9. Selecting Add > New Item from the context menu for the project node.

Accessing a Synergy Database
Examples

xfODBC User’s Guide 10.1 (6/13) 9-41

4. Select “Generate from database” in the first screen of the wizard, and then click Next and set up the
EDM in subsequent wizard screens by doing the following:

 In the “Choose Your Data Connection” screen, use the “Which data connection…” field to
specify the data connection you created for the sample database (in “Adding a data connection
for the sample database” on page 9-35). Specify whether you want sensitive data stored in the
connection string (for this example, select Yes). And then, in the “Save entity connection
settings…” field, enter a name for the settings saved in the App.Config file for your project.
Then click Next.

 In the “Choose Your Database Objects and Settings” screen, select all four tables: Customers,
Orders, Plants, and Vendors. Then specify a namespace for the model in the “Model
Namespace” field, clear the “Pluralize or singularize…” and “Include foreign key columns…”
options, and click Finish.

The wizard and the Add New Item window close, and the EDM is generated. The design-time
representation of the model is displayed in the Entity Model Designer as a tab in the Visual
Studio content pane, and files are added to the project. This includes the EDMX file for the
model and a file containing the classes for each entity type. See “Generating an EDM for a
Synergy database” on page 9-15 for details.

At this point, you can write queries against the model by using Entity SQL or LINQ to Entities (see
“Using an EDM to query Synergy data” on page 9-43). First, however, we’ll take advantage of one
of the primary benefits of having an EDM, which is the ability to rework the EDM into a form that’s
more suitable for the programming context. In this example, we’ll simply rename scalar properties,
but you can do many other things with an EDM, such as remove scalar properties, delete entity
types, add and remove associations, create entity types that inherit from other entity types, create
entity types that include scalar properties from more than one table (vertically partitioned entity
types), and create entity types that represent a subset of the rows included in a table (horizontally
partitioned entity types).

Accessing a Synergy Database
Examples

9-42 xfODBC User’s Guide 10.1 (6/13)

Renaming scalar properties

To simplify the queries we’ll write in “Using an EDM to query Synergy data” on page 9-43, we’ll
rename some of the scalar properties (which represent columns in the database) with more easily
recognizable names.

1. In Visual Studio, make sure the design-time representation of the model is visible in the Visual
Studio content pane. (If it isn’t, double-click the model_name.edmx node in Solution Explorer.)
Then right-click on IN_NAME in the PLANTS entity, and select Rename from the context menu.

2. Change the name to NAME.

3. Use the same process to change IN_ITEMID to ID and OR_QTY (in ORDERS) to QUANTITY.

Figure 9-10. Renaming the IN_NAME scalar property.

Accessing a Synergy Database
Examples

xfODBC User’s Guide 10.1 (6/13) 9-43

Using an EDM to query Synergy data
Now that we’ve generated an EDM and simplified some scalar property names, we can query the
EDM (and thereby query the database) by using Entity SQL or LINQ to Entities.

We’ll start by creating a small C# program with an Entity SQL query.

1. Using the project you used when you created the EDM in “Generating and manipulating an EDM”
on page 9-40, replace the code in the program.cs file with the code below, which contains an
Entity SQL query. (To open the program.cs file, double-click it in the Solution Explorer.) Note the
following:

 Make sure the namespace is set to the namespace for your program.

 Make sure that “name=” in the “using (EntityConnection...)” line is set to the name of the
connection string in the App.Config file. (In the code below, this is set to Entities because
when this example was created, the App.Config file had name=“Entities”.) And make sure the
same name is used to qualify the tables in the query (e.g. “Entities.Orders”).

Here’s the code with the Entity SQL query:

using System;
using System.Data;
using System.Data.EntityClient;

namespace MyApp
{

class Program
{

static void Main(string[] args)
{

using (EntityConnection conn = new
EntityConnection("name=Entities"))

{
//The following query should be on one line.
string sql = "SELECT P.NAME, SUM(O.QUANTITY) FROM Entities.ORDERS

AS O, Entities.PLANTS AS P WHERE O.PLANTS.ID = P.ID GROUP BY P.NAME";
conn.Open();
EntityCommand comm = new EntityCommand(sql, conn);
try
{

EntityDataReader edr =
comm.ExecuteReader(CommandBehavior.SequentialAccess);

while (edr.Read())
{

Console.WriteLine(edr.GetValue(0).ToString() +
" " + edr.GetValue(1).ToString());

}
edr.Close();
}

Accessing a Synergy Database
Examples

9-44 xfODBC User’s Guide 10.1 (6/13)

catch (Exception ex)
{

Console.WriteLine(ex.Message);
}
Console.ReadLine();

}
}

}
}

2. From the Debug menu of Visual Studio, select Start Debugging. You should get the following
output in the console:

English Daisy 70
European Hackberry 124
Fountain Butterfly Bush 130
Lemon Verbena 40
Paper Mulberry 120

If you instead see an error in the console or in Visual Studio, use the error information to determine
how to modify your code. For example, the following error most likely indicates that the name of
the connection string in App.Config is something other than Entities.

'Entities.ORDERS' could not be resolved in the current scope or context.
Make sure that all referenced variables are in scope, that required sche-
mas are loaded, and that namespaces are referenced correctly, near multi-
part identifier, line 1, column 38.

3. Close the console application window. (If the application ran correctly, you can do this by pressing
ENTER.) If you got an error in the previous step, correct the code and try step 2 again.

4. Try step 1 through step 3 with the following code, which includes LINQ to Entities queries. As it is,
it uses the expression query syntax. If you change the commenting, it uses the method-based
syntax. (You may also need to change commenting for the Entity Framework version.)

 Make sure the namespace is set to the namespace for your program.

 For Entity Framework 5.0 and higher, make sure the “using” line specifies the name of the
EDM container:

using (container context = new container())

For Entity Framework versions prior to 5.0, make sure the “using” line specifies the name of
the EDM container and the name of the connection string as follows:

using (container context = new container("name=connection_string_name"))

You can find the name of the EDM container by opening the .Designer file for the EDM (under
the .edmx node in Visual Studio Solution Explorer). The name of the first class in this file is
the name of the container. You can find the name of the connection string in the App.Config
file as noted in step 1 above.

Accessing a Synergy Database
Examples

xfODBC User’s Guide 10.1 (6/13) 9-45

Here’s the code:

using System;
using System.Linq;

namespace MyApp
{

class Program
{

static void Main(string[] args)
{

//The following works for Entity Framework 5.0 and higher:
using (Entities context = new Entities())

//The following works for Entity Framework versions prior to 5.0. To
//use it, uncomment it, and then comment the using statement above.
//using (Entities context = new Entities("name=Entities"))

{
//This query uses the expression query syntax. Comment it if
//you want to use the method-query below.
var q = from o in context.ORDERS

group o by o.PLANTS.NAME into op
select new { op.Key, Total = op.Sum(o => o.QUANTITY) };

//This query uses the method-based syntax. To use it, uncomment
//it and comment the above query.
/*var q = context.ORDERS.GroupBy(o => o.PLANTS.NAME).Select

(op => new { op.Key, Total = op.Sum(o => o.QUANTITY) });*/
try
{

foreach (var item in q)
{

Console.WriteLine(item.Key + " - " + item.Total.ToString());
}

}
catch (Exception ex)
{

Console.WriteLine(ex.Message);
}

}
Console.ReadLine();

}
}

}

10-1

10
Optimizing Data Access

Efficient queries and updates are the product of more than just well-constructed SQL statements.
They are the result of a well-planned repository, sufficient and well-managed resources, in addition
to SQL statements that take advantage of xfODBC’s ability to optimize SQL statement processing.
This chapter introduces some of the issues that affect performance—particularly those that relate to
xfODBC. You should also refer to some general SQL reference works, “Appendix B: SQL
Support”, the documentation for your ODBC-enabled application, and “System Catalog Caching”
on page 8-18.

Optimizing with Keys 10-2

Describes how xfODBC uses keys to optimize SQL statements and provides tips on defining keys.

Creating Efficient SQL Statements 10-9

Discusses some issues that affect xfODBC’s ability to optimize SQL statements.

Using an ODBC-Enabled Application 10-12

Discusses some issues you should keep in mind as you use ODBC-enabled applications to access
your Synergy data.

Tracking Performance 10-13

Discusses how to use SET OPTION PLAN to find out which keys are used to optimize queries and
how to use Synergy DBMS logging to evaluate SQL statement performance.

Optimizing Data Access
Optimizing with Keys

10-2 xfODBC User’s Guide 10.1 (6/13)

Optimizing with Keys
Optimization starts with the design of your database and repository (see “Setting Up a Repository”
on page 3-2). For xfODBC to quickly process SQL statements, the data files and the repository
should have well-chosen keys, keys that reflect the way users access data.

What are keys?
A key is a portion of a record structure that individually identifies records and enables records to be
quickly accessed and sorted. For ISAM files, a key can be a portion (segment) or a group of
separate portions of the record structure. For repositories, a key can be a single field or a group of
fields. The fields that make up a repository key are also called segments.

Keys are created at two different points in your database’s development: when you create the data
files and when you define the repository for those files. When you create an ISAM file, for instance,
you define the primary key and any secondary keys for that file. When you create a relative file, the
record number is automatically defined as the primary key (this is the only key that can be defined
for a relative file). ASCII sequential files, on the other hand, don’t have keys.

In addition to defining keys when you create data files, you also define keys when you define the
repository that describes your data files. At this point, there are two types of keys you can create:
access and foreign. Access keys correspond to the keys you created when you created the data file,
are used to locate and sort records, and can be used to define relationships between tables. Foreign
keys, however, are not keys in the data file, but can be used to create relationships between tables.
(Note that foreign keys are useful only with ODBC-enabled applications that support the ODBC
API function SQLForeignKeys.)

For information on defining keys for ISAM files and relative files, see the “Synergy DBMS”
chapter of Synergy Tools.

How xfODBC uses keys
As xfODBC processes an SQL statement, it looks to the database’s system catalog for indexes
(keys) it can use to speed the processing of the statement. To determine which key to use, xfODBC
evaluates two types of SQL clause: restriction clauses and sort clauses. Restriction clauses include
WHERE, HAVING, and JOIN clauses. Sort clauses include ORDER BY and GROUP BY clauses.

To evaluate a restriction clause, xfODBC attempts to match the columns (field names) in the
restriction clause with the key’s segments. To evaluate a sort clause, xfODBC matches the sort
clause’s order (ASC or DESC) with the key’s segment order and matches the columns in the sort
clause with the key’s segments. If no key can be used with the sort clause, xfODBC will then create
a temporary table sort, which results in many more I/O operations and poorer performance.

Optimizing Data Access
Optimizing with Keys

xfODBC User’s Guide 10.1 (6/13) 10-3

Note the following:

 xfODBC evaluates JOINs before other restriction clauses.

 xfODBC evaluates restriction clauses before ORDER BY clauses. If for the restriction clause
xfODBC uses a key that includes the field specified for the ORDER BY, and that field is the
first segment in the key, xfODBC won’t perform an additional sort because the result set will
already be in the correct order.

 If there is an ORDER BY clause but no restriction clause, xfODBC may choose a key based on
the ORDER BY to avoid a sort of the result set.

 xfODBC will optimize a sort clause only if there is no join, the clause has a constant predicate,
and the clause has one of the following operators: >, >=, <, or <=.

 For xfODBC to use a key for a restriction or sort clause, the clause doesn’t need to have a
column for every segment in the key, but it must contain columns for one or more contiguous
segments starting with the first segment. For example, to use the fourth segment of a key that
has four segments—seg1, seg2, seg3, and seg4—there must be columns for seg1, seg2, and
seg3 as well as seg4. If, for example, a clause has columns that correspond only to seg1 and
seg3, xfODBC can use the first segment, seg1, of the key, but not the third, seg3.

 If xfODBC cannot use a key with either a sort or a non-join restriction clause, xfODBC uses the
primary key as a sequential read key. This means the driver must read the entire file.

 For inner joins, xfODBC creates a temporary index for each join table whose columns are not
part of any key. Each temporary index includes all of the join columns for its table. You can
prevent xfODBC from creating this temporary index by setting TMPINDEX to OFF. (For
information, see SET OPTION on page B-57.)

If you use xfODBC with inner joins that result in temporary indexes, note that your data files
must use static RFAs if update, store, or delete operations will occur while the xfODBC driver
is using a temporary index to access a file.

 A key can have a literal segment in any position. See “Keys with literals” on page 10-6.

 If a key contains a field that overlays other fields, dbcreate creates an alternate index made up
of the individual fields that make up the overlay (if it overlays more than one field). See
“Indexes for overlay segments” below.

 Crystal Reports 9 and higher do not support foreign keys. These versions of Crystal Reports
will not automatically use foreign keys to optimize a query, so users must understand database
relationships in order to optimize joins.

Indexes for overlay segments
If a structure has a key with an overlay segment, dbcreate creates an index that includes the
non-overlay fields (i.e., the fields that the segment overlays) if the overlay field

 overlays more than one primary field.

 does not have an offset.

Optimizing Data Access
Optimizing with Keys

10-4 xfODBC User’s Guide 10.1 (6/13)

This index is named as follows in GENESIS_INDEXES: KeyName_GENIX_n (where n is an
ascending numeric value). For instance, if a key has an a22 segment that overlays four fields (as in
the following example), dbcreate creates an index consisting of the four fields (custid, date, code,
and text) in addition to an index consisting of seg1.

record
custid ,d4
date ,d6
code ,d2
text ,a10

record ,x
seg1 ,a22 ;key

This would look like the following in GENESIS_INDEXES:

KEY1
KEY1_GENIX_0

If a structure has a tag index and a key named KEY_0 that overlays two fields, dbcreate will create
the following indexes:

$_VTX_TAG_VIX_0001
KEY_0
KEY_0_GENIX_0

Note, however, that if a field is only partially included in an overlay, that field will be omitted from
any GENIX index created for that overlay.

On the other hand, if multiple fields overlay a key segment defined as a primary field (the overlaid
field)—the inverse of the first example—dbcreate will not create an index for the overlaying fields.
Instead, it will create a single index for the key segment. For example, if four overlay fields—custid
(a d4), date (a d6), code (a d2), and text (an a10)—overlay an a22 segment (as in the following
structure), dbcreate creates only one index, an index for the a22 key field.

record
key1 ,a22 ;key

record ,x
custid ,d4
date ,d6
code ,d2
text ,a10

In this case, xfODBC won’t use an index for a statement with a restriction or sort clause for the
custid, date, code, or text fields.

Optimizing Data Access
Optimizing with Keys

xfODBC User’s Guide 10.1 (6/13) 10-5

Finally, if multiple overlay fields are defined as a key (as in the following example), xfODBC won’t
be able to use the primary field (the overlaid field) for optimization. For the following example,
xfODBC won’t be able to use the key1 field for optimization.

record
key1 ,a22

record ,x
custid ,d4 ;key segment
date ,d6 ;key segment
code ,d2 ;key segment
text ,a10 ;key segment

Defining keys
Keep the following in mind when defining keys:

 Analyze your data. Remember that adding keys slows down the add/update process. Create
keys only if they’ll be used often with restriction clauses or sort clauses. Then write your SQL
statements to use these keys. Note that it’s better to define your keys to work with restriction
clauses than sort clauses. A key used with a restriction clause has precedence over a key used
with a sort clause. It’s even better to define a key that works with both the restriction and sort
clause. This improves performance by eliminating the sort phase.

 Define an access key for each key in the data files. xfODBC recognizes keys only if they’re
defined in the system catalog, which is generated from the repository, not the data files.

 Avoid creating keys that contain null values. xfODBC uses them only for join optimization.

 Avoid creating keys that are case insensitive or unsigned. xfODBC can’t use them for
optimization.

 Avoid creating keys that have a date field with a rolling century (RR). xfODBC can’t use them
for optimization.

 Not all date formats can be used as key segments. Only JJJJJJ dates and dates with formats that
begin with YYYY can be key segments. (Note, however, that the YYYYMMDDHHMISS date
format listed in “Date and time fields” on page 3-15 should not be used as a key segment
because you have to use a user type field to specify it.)

 Avoid creating access or foreign keys that contain user-defined fields. The xfODBC query
optimizer ignores them. However, there are three exceptions (i.e., cases where xfODBC can
use keys with user-defined fields):

 a key with a user-defined date field that has a ^CLASS^ format

 a foreign key with an alpha user-defined field

 an access key with an alpha user-defined field whose key type override is set as alpha. (For
information on setting the type override, see “Defining Keys” in the “Working with Files”
chapter of the Repository User’s Guide.)

Optimizing Data Access
Optimizing with Keys

10-6 xfODBC User’s Guide 10.1 (6/13)

Note the following:

 If a key contains multiple field segments, xfODBC uses only those segments that are
defined prior to a user-defined field segment.

 If a user-defined field is the first segment in a key, xfODBC won’t use the key.

 If the data file and the repository have different data types for the same segments, use the Type
option (in the Key Definition window of Repository) to override decimal segments to alpha
segments if the segments will have only positive values. This prevents fcompare (see
“Validate, verify, and compare” on page 3-7) from generating warnings when it discovers that
the key has a different type than some of its segments. If a segment can have negative values,
the segment must be decimal, so do not override the segment data type. For information on the
Type option, see “Defining Keys” in the “Working with Files” chapter of the Repository User’s
Guide.

 If a key segment is an overlay field, the overlay is not usually relevant to the query. Because of
this, dbcreate creates an alternate index that consists of all the fields that make up the overlay.
However, if a key segment is overlaid with multiple overlay fields, dbcreate will not create an
index for the primary fields (the overlaid fields). See “Indexes for overlay segments” on
page 10-3 for more information.

 If you plan to import data from your Synergy database to another database, such as Oracle or
SQL Server, make sure that no keys are null. Many databases, such as SQL Server, do not
allow null key fields.

 If a file has a tag field, we recommend including the tag as the first segment in each key for the
file. See “Tags and optimization” on page 10-8 for more information.

Keys with literals
A key can have a literal segment in any position in the key. This means that for foreign keys, a
literal can be used to correspond to a literal tag in a related table. For example, in the sample
database included with the Connectivity Series distribution (the repository is in
connect\synodbc\dict), the literal at the beginning of TAG_KEY_VEND in the ORDERS table
enables a relation to be created between TAG_KEY_VEND and TAG_KEY, as illustrated in
figure 10-1. Without this literal, we couldn’t use the tag for the VENDORS table, and the keys
wouldn’t correspond. We need an equivalent segment as the first segment in TAG_KEY_VEND.

Optimizing Data Access
Optimizing with Keys

xfODBC User’s Guide 10.1 (6/13) 10-7

If the ORDERS and VENDORS tables had the following values there would be matches for all of
the rows in the orders table except the row with the OR_VENDOR value of 42:

Likewise, all but one of the rows in the VENDOR table would have a match. The row with the
VEND_KEY value of 40 wouldn’t have a match because there is no row in the ORDERS table with
an OR_VENDOR value of 40 and because this row has a VEND_R_TYPE value of 2, while the
corresponding literal segment in TAG_KEY_VEND is always 1.

Figure 10-1. Keys with literals in the sample database.

First segment
is a literal with
a value of "0"

ORDERS table

• KEY0
• VENDOR
• ITEM
• CUSTOMER
• TAG_KEY_VEND

("1", OR_VENDOR)
• TAG_KEY_CUST

("0", OR_CUSTOMER)

VENDORS table

• KEY0
• TAG_KEY

(VEND_RTYPE, VEND_KEY)

CUSTOMERS table

• KEY0
• TAG_KEY

(CUST_RTYPE, CUST_KEY)
• ITEM

Relation 6

Relation 5

Segments are in parentheses ()

Tags (decimal
data type)

First segment
is a literal with
a value of "1"

ORDERS table

OR_VENDOR

41

42

43

44

TAG_KEY_VEND
(derived)

"1" + 41

"1" + 42

"1" + 43

"1" + 44

VENDORS table

VENDOR_R_TYPE

1

1

1

2

VEND_KEY

41

43

44

40

Optimizing Data Access
Optimizing with Keys

10-8 xfODBC User’s Guide 10.1 (6/13)

Tags and optimization
Keep the following in mind when defining tags or creating keys for a file with a tag:

 Make sure the tags won’t be modified by user-defined data routines. The xfODBC driver
evaluates tags before invoking user-defined data routines, so the values produced by
user-defined data routines won’t be evaluated as tag values.

 If a file has a tag field, we recommend including the tag as a segment (preferably the first
segment) in each key for the file. Note the following:

 xfODBC isn’t able to use a key that consists solely of a tag for automatic optimization
unless it’s the first key in the file. We don’t recommend creating such keys (though they
can be used as part of a join, restriction clause, or sort clause).

 Like any segment, a tag field can be used for optimization only if it’s the first segment in
the key or if all the segments that precede it are also part of the join, sort clause, or
restriction that uses the equal (=) operator.

 If a structure has more than one set of tag criteria joined with the OR connect option,
xfODBC won’t be able to use a tag for optimization.

If your repository has a set of keys that either do not include the tag or do not include it as the
first segment, create a new key with the tag as the first segment, and then use the Repository
option “Excluded by ODBC” to exclude similar keys that either have the tag in other positions
or that do not have the tag at all. (For information on this Repository option, see “Defining
Keys” in the “Working with Files” chapter of the Repository User’s Guide.)

Similarly, if your repository has two or more keys that are identical except for the inclusion or
placement of a tag field, and one of the keys has the tag as the first segment (as we
recommend), do one of the following to ensure that the key with the tag as the first segment is
used for optimization:

 Set the S/DE Repository option “Excluded by ODBC” for the keys that don’t have the tag
as the first field.

 Make sure the key with the tag as the first segment is lower than or equal to the others in of
key of reference (KRF) sequence. If it is equal, make sure it’s first in the repository.

 If a tag is based on the Boolean operator EQ, dbcreate automatically creates an index with
tag-related information. These are named as follows in the GENESIS_INDEXES file:
$_VTX_TAG_VIX_nnnn (where nnnn is a numeric value, starting at 0001 for the first key).

 If a tag is based on an operator other than EQ, xfODBC may not be able to use the tag to
optimize queries. If it’s based on the NE operator, xfODBC will not be able to use it. If it is
based on LE, LT, GE, or GT, xfODBC will be able to use it only if it is the last tag for the
structure and all prior tags are based on the EQ operator. If your repository has a tag that for
one of these reasons cannot be used for optimization, add a new tag that uses EQ to the file.
Then either use the new tag as the first segment for all keys used by xfODBC for the file, or
create a new set of keys that use the new tag, and use the Repository option “Excluded by
ODBC” to exclude keys that use the unoptimizable tag.

Optimizing Data Access
Creating Efficient SQL Statements

xfODBC User’s Guide 10.1 (6/13) 10-9

Creating Efficient SQL Statements
Once your data files and repository are set up correctly, the next step in optimization is to make sure
each query that accesses the database is well designed and able to take advantage of xfODBC’s
ability to optimize. Although this section doesn’t cover the entire subject of creating efficient SQL
statements, it does discuss some basic rules and strategies.

 See “Appendix B: SQL Support” for information on supported SQL commands and syntax.

 See “How xfODBC uses keys” on page 10-2 for information on how xfODBC uses indexes for
sort and restriction clauses (including joins).

 See “Determining which indexes are used” on page 10-13 for information on tracking which
indexes are used for a query.

Optimizing with restriction clauses
xfODBC uses restriction clauses in two ways: to determine which rows to read (an initial read
restriction) and to apply criteria to limit rows (a limit restriction). For optimization, initial read is
the most important, but is available only if xfODBC can use a key with the restriction clause.
Depending on the restriction criteria and the key order, initial reads may enable xfODBC to skip
records. For example, assume you have the following restriction clause:

WHERE last_name >= 'Smith'

If there’s an ascending key on last_name, the initial read starts with ‘Smith’. Only records starting
with ‘Smith’ and following will be read, which cuts down the number of reads and improves
performance. As another example, say you have a statement with the following clause:

WHERE last_name <= 'Doe'

In this case, the read starts with ‘Doe’ back through to the beginning of the file. Once again, the
number of reads is reduced, and performance is improved.

Operators and optimization
For relative files, xfODBC supports optimization only for reads that use the equal operator (=) with
the field record number. For example, xfODBC can optimize the SQL statement in “Checking the
order of the FROM clause for a SQL89 join” on page 10-10 because the last line of the WHERE
clause checks for equality:

AND part_index.record_number = part.record_number

For ISAM and ASCII sequential files, xfODBC supports optimization for reads that use any valid
operator (>, >=, =, and so forth).

Optimizing Data Access
Creating Efficient SQL Statements

10-10 xfODBC User’s Guide 10.1 (6/13)

AND and OR clauses
If keys are available to optimize both sides of an OR clause, xfODBC can optimize the clause. To
do this, xfODBC treats each side as a separate statement and then combines the results. If keys are
not available to optimize both sides of an OR clause, xfODBC cannot optimize the clause. For more
information on OR clause optimization and the SQL command that controls it, see “Max number of
rows” on page 8-9 and “Notes on MERGESIZE” on page B-61.

An optimizable OR clause is generally preferable to an AND clause, but if you can’t state a
restriction clause as an optimizable OR clause, it’s generally better, when possible, to use AND
clauses rather than an unoptimizable OR clause. Because all conditions in an AND clause must be
met, xfODBC can use the first condition as an initial read if an index can be used with the
condition. (See “Optimizing with restriction clauses” on page 10-9 for information on initial reads.)
This may limit the number of rows xfODBC is required to read and evaluate. On the other hand, if
an OR clause can’t be optimized, xfODBC can’t use the first condition of the clause as an initial
read because a row can be included based on either side of an OR clause; xfODBC must read and
evaluate every row.

ORDER BY clauses
If a user-defined field is part of an ORDER BY clause, xfODBC won’t use a pre-defined key for
optimization.

Checking the order of the FROM clause for a SQL89 join
If your SQL statement has a SQL89 join, the FROM clause is critical. The order of the tables listed
in a FROM clause determines the order the tables are evaluated, the contents of the final result set,
as well as the time required to generate the result set. The first table specified in the FROM clause is
the primary table, and unless there’s a restriction on the table, all rows in the primary table are
selected. Rows in other tables are selected only if they meet the criteria specified in the WHERE
clause. Because of this, you should order the tables in the FROM clause so that the tables are listed
in the order that the rows relate to each other. For example, for the following SQL statement,
assume that the order_detail and part tables are relative files with record_number as an index; in
addition, assume the part_index table is an ISAM file with part_number as an index. Note that
the primary table is order_detail.

SELECT
order_detail.customer_number,
order_detail.cust_name,
order_detail.record_number,
order_detail.billed_amt,
order_detail.allowed_amt,
order_detail.invoice_date,
part_index.order_number,
part.name

Optimizing Data Access
Creating Efficient SQL Statements

xfODBC User’s Guide 10.1 (6/13) 10-11

FROM
order_detail, part_index, part

WHERE
order_detail.order_number > 0
AND order_detail.record_number > 1
AND order_detail.part_number = part_index.part_number
AND part_index.record_number = part.record_number
ORDER BY

order_detail.order_number

To process the above statement, xfODBC reads order_detail (the primary table) sequentially from
the first row to the last row by record_number. Each row of order_detail is tested against the
restriction criteria. When a row meets the criteria (in this case order_number > 0 and
record_number > 1), the associated row in part_index is located directly by part_number, and
then the associated row in the part table is located directly by record_number. When the row is
found, the items specified in the SELECT statement are written to a temporary sort file. Then, after
reading the last row in the order_detail table, the temporary sort file is sorted by order_number
and returned as the resulting set of data.

Avoid mixing SQL92 and SQL89 syntax
When writing a SQL92 join, avoid using a WHERE clause that uses a SQL89 inner join—i.e.,
matches columns (table1.field1 = table1.field2). This will result in a separate SQL89 join, which
will generally reduce performance and may produce incorrect results. For example:

SELECT plants.in_itemid, orders.or_number
FROM plants

LEFT JOIN orders
ON plants.in_itemid = orders.or_item

WHERE plants.in_price = orders.or_price

This could be rewritten as the following, which can be optimized:

SELECT plants.in_itemid, orders.or_number
FROM plants

LEFT JOIN orders
ON plants.in_itemid = orders.or_item

AND plants.in_price = orders.or_price

Optimizing Data Access
Using an ODBC-Enabled Application

10-12 xfODBC User’s Guide 10.1 (6/13)

Using an ODBC-Enabled Application
When using an ODBC-enabled application to access a Synergy database, keep the following in
mind:

 Don’t rely on automatically created queries. These queries are seldom the most efficient way to
access a database for a given situation. Instead, create your own queries that adhere to the
guidelines listed in “Creating Efficient SQL Statements” on page 10-9.

 If you use an application, such as Microsoft Access, where selecting a table opens the entire
table in a grid, use pass-through queries to update. If you update a field by selecting it in the
grid, the application will update every field in the row including fields whose values haven’t
changed. xfODBC does not support updates of this kind; they may cause an error.

 When using Microsoft Access to access Synergy data, consider whether you should import the
database or link to the database. Depending on the query, the size of your database,
requirements for sharing data, and the client’s resources, one method may be better than
another. For databases that rarely change (for example, databases consisting of ZIP codes,
product codes, etc.), importing may improve performance. However, if you are modifying the
database or need to see the most current picture of the database, you must use a link.

Optimizing with pass-through queries
One way to optimize performance when using Microsoft Access is to use pass-through queries,
queries that are passed directly to the database server. If you use a pass-through query, the database
server does all of the processing and returns only the result of the query. This bypasses the
Microsoft Jet database engine. The reason this can improve performance is that Jet is key-based.
So, for example, if you have the SQL statement “SELECT * FROM part”, Jet will first read all of
the keys; then it will perform a series of sequential statements like the following:

SELECT * FROM part WHERE part.number = <key>

For simple queries, this can result in many duplicate reads, making a pass-through query the more
efficient alternative.

Optimizing Data Access
Tracking Performance

xfODBC User’s Guide 10.1 (6/13) 10-13

Tracking Performance
The first step in tracking performance is to determine which indexes (keys) are used for a query. A
query’s performance will often vary greatly depending on the keys used to optimize it. (See
“Optimizing with Keys” on page 10-2 for information on creating well-chosen keys.) If you’re still
having performance problems, the next step is to use Synergy DBMS logging to see what calls the
xfODBC driver is making to the Synergy database.

Determining which indexes are used
To find out which indexes are used for a query, use SET OPTION PLAN in conjunction with SET
OPTION LOGFILE. This generates a log file that includes a “Pushed key#” line that lists the index
used to optimize the query, and it includes a table that lists index information. You can also use
information from this log file to get key of reference (KRF) information. See “Notes on PLAN” on
page B-61.

Using Synergy DBMS logging
Synergy DBMS logging enables you to log the calls made from the xfODBC driver to an ISAM
database. By recording the number of reads to an ISAM file, this log can help you determine if an
SQL statement is processed optimally. For example, assume you have a database with the
following:

 Two tables: order with 8 rows and plants with 121 rows

 A valid plant table entry for each order

 An index defined for plants.in_itemid

To list all the order numbers and their associated plant names, you could create the following query:

SELECT orders.or_number, plants.in_name
FROM orders, plants
WHERE orders.or_item = plants.in_itemid

You could then use Synergy DBMS logging to find out how many reads result from the query. To
do this,

1. Turn on Synergy DBMS logging. (See “Synergy DBMS logging” on page 11-8 for information.)

2. Run the query.

If you have an optimization issue that you plan to log with Synergy/DE Developer Support,
use SET OPTION PLAN and SET OPTION LOGFILE.

Optimizing Data Access
Tracking Performance

10-14 xfODBC User’s Guide 10.1 (6/13)

3. Open the resulting log file, find the open() statement for the orders table, and note the file handle
identifier. In the following, for example, the file handle identifier is 218580a8:

open(21580a8, I:I, 'XFDBTUT:orders')

4. Use the file handle identifier to count the number of reads() for the table—e.g.,

reads(21580a8, '', rfa= 00, 100)

Because of the order of the tables in the FROM clause in the above query, there are nine reads() for
orders (eight successful and one unsuccessful). xfODBC reads each row in the orders table and
then attempts to read each plants.in_itemid that matches orders.or_item. With the
plants.in_itemid index, xfODBC is able to position to the first occurrence of plants.in_itemid, so
that each orders table reads() reads the plants table only once. If the plants.in_itemid index is not
unique (if duplicates are allowed), there will be two or more plants reads() entries for each orders
table reads().

11-1

11
Data Access Errors and Error Logging

Error Logging 11-2

Explains the various logging options for diagnosing data access problems and for verifying
optimization.

Editing the SQL Message File 11-10

Explains how to edit the SQL error message file, a file that contains messages that display when the
xfODBC driver, SQL OpenNet client, or SQL OpenNet server encounter errors.

Data Access Errors 11-11

Lists and explains errors that may occur when using xfODBC to access Synergy data from an
ODBC-enabled application.

Troubleshooting Socket Errors 11-32

Discusses causes of socket errors and strategies for troubleshooting them.

Data Access Errors and Error Logging
Error Logging

11-2 xfODBC User’s Guide 10.1 (6/13)

Error Logging
If you encounter errors when using an ODBC-enabled application to access a Synergy database,
start by making sure your system is set up correctly (see “Troubleshooting Data Access” on
page 9-4). You can then use xfODBC logging (see list below) to diagnose the problem. Generally,
it’s best to use logging in a stand-alone configuration first. Then test your network connection.
Finally, when you’ve got the stand-alone configuration and the network layer working correctly,
re-create your client/server configuration and, if necessary, use logging to diagnose any remaining
problems.

If you can’t solve a problem by examining the log files, save the log files, collect all pertinent
information about the problem, and contact Synergy/DE Developer Support. In addition to the log
files, Support will need a description of the problem and the version numbers of all relevant
software and hardware—especially the Synergy/DE version, operating system, and third-party
ODBC-compliant application. For client/server configurations, supply this information for both the
client and the server.

The following are the utilities and logging facilities you can use to debug problems and, in some
cases, verify optimization with xfODBC. See figure 11-1 on page 11-4 for a diagram that illustrates
where the different types of logging fit in the data access process.

dltest Lists needed Connectivity Series DLLs and states whether they can be found
by xfODBC. To use this utility, run it from the command line. The dltest
utility is in the synergyde\connect directory. It has no options.

ODBC trace
logging

Records ODBC API calls passed from the ODBC-enabled application to the
ODBC Driver Manager. See “ODBC trace logging (Windows)” on page 11-5
for information.

Vortex API
logging

Records API calls made by the xfODBC driver on a Windows client. This
enables you to see the exact SQL statement issued to the database, debug SQL
statement errors, and verify optimization. See “Vortex API logging
(Windows)” on page 11-5 for more information.

Vortex host
logging

Records API calls made from the SQL OpenNet server to the Synergy
database driver. See “Vortex host logging” on page 11-6 for information. Note
that we recommend Vortex API logging instead of Vortex host logging. Vortex
API and Vortex host logging generally record identical information, but
Vortex API logging is easier to use. Additionally, on Windows, Vortex host
logging can be used only with vtxnet2, not vtxnetd.

SET OPTION
logging

Records information about indexes used to optimize a query (as well as
internal information for use by Synergy/DE Developer Support). For
information, see SET OPTION on page B-57 and “Creating a file for query
processing options” on page 8-17.

Data Access Errors and Error Logging
Error Logging

xfODBC User’s Guide 10.1 (6/13) 11-3

Generally problems are caused by an ODBC-enabled application, such as Microsoft Query, sending
unsupported SQL statements to the xfODBC driver. (See “Appendix B: SQL Support” for
information on the SQL statements supported by xfODBC.) To test the validity of an SQL
statement, you can use Microsoft ODBC Test (Odbcte32.exe). (You can also use this utility to test
your setup. If you’re able to connect with ODBC Test, your setup is working. See “Using ODBC
Test to test a query” on page 9-33 for an example.)

In addition to the logging options listed above, we automatically set the environment variable
VORTEX_HOST_SYSLOG, which instructs the SQL OpenNet sever to generate messages for the
event log (Windows), syslog (UNIX), or the operator console (OpenVMS) when an attempt to
connect to an SQL OpenNet server causes fatal errors. We don’t recommend changing this setting.
See VORTEX_HOST_SYSLOG in the “Environment Variables” chapter of Environment Variables
& System Options for more information.

Synergy driver
logging

Enables you to determine if a system catalog is cached. “Using logging to
determine if a system catalog is cached” on page 8-21.

Synergy DBMS
logging

Records ISAM calls made from the Synergy database driver to your Synergy
database. This enables you to debug open file errors, licensing errors, and
connection failures. See “Synergy DBMS logging” on page 11-8 for
information.

vtxping and
synxfpng

Enable you to ping an SQL OpenNet server so you can verify that you can
connect in a client/server configuration. Vtxping and synxfpng (when used
with the -x option) are identical, except that synxfpng has a verbose option
(-v) that lists socket calls as they succeed or fail, which can be useful when
debugging. For more information, see “The vtxping Utility” in the
“Configuring Connectivity Series” chapter of the Installation Configuration
Guide and “The synxfpng Utility” in the “Configuring xfServer” chapter of
the Installation Configuration Guide.

vtxnetd/vtxnet2
logging

If you set the log option for either of these programs, a log file (tcm_pid.log)
records connection requests and, if the program can’t start a worker thread or
process, logs the reason for the failure. You may be able to use this
information to determine why a connection is failing in a client/server
configuration. Note that this log also records ping and kill requests. For more
information, see “The vtxnetd and vtxnet2 Programs” in the “Configuring
Connectivity Series” chapter of the Installation Configuration Guide.

Data Access Errors and Error Logging
Error Logging

11-4 xfODBC User’s Guide 10.1 (6/13)

Figure 11-1. xfODBC error logging and messages.

Environment
setup file

SQL OpenNet
server

network

ODBC-enabled
application

ODBC API calls

ODBC Driver
Manager

xfODBC driver

Vortex host
API calls

client/server

SQL OpenNet
error messages

Synergy
database

LoggingError type

xfODBC error
messages

([TOD] mnemonic)

Vortex API logging

SET OPTION logging

ODBC trace logging

xfODBC client
component

Which
configuration?

stand-alone

Synergy database driver
SQL engine

Data engine

Synergy database driver
error messages

(genesis or Synergy
DBMS mnemonic)

Synergy driver logging

Vortex host logging

Synergy DBMS logging

Vortex API calls

Connect file System catalog
 (ISAM files)

Data Access Errors and Error Logging
Error Logging

xfODBC User’s Guide 10.1 (6/13) 11-5

Using the log files

ODBC trace logging (Windows)
ODBC trace logging records ODBC API calls passed from the ODBC-enabled application to the
ODBC Driver Manager. We recommend that you use log files to debug in a stand-alone
configuration. If you need to use ODBC trace logging in a client/server configuration, do this on the
client.

1. Exit your ODBC-enabled application.

2. Open the ODBC Data Source Administrator available from Windows Control Panel.

3. Go to the Tracing tab and click the Start Tracing Now button.

4. Make a note of the log file name displayed on the Tracing tab so that you can find it later.

5. Re-run the application until you receive the error(s), and then examine the log file.

6. Once you have successfully logged the error, turn tracing off.

Vortex API logging (Windows)
Vortex API logging records statements issued to the database by the xfODBC driver. (Note that
connect strings are omitted.) We recommend that you use log files to debug in a stand-alone
configuration. If you need to use Vortex API logging in a client/server configuration, set the
environment variables on the client.

Note that Vortex API logging is not supported for multi-threaded applications.

1. Exit your ODBC-enabled application.

2. Use the VORTEX_API_LOGFILE and VORTEX_API_LOGOPTS environment variables to
specify a name for the log and turn logging on. Note the following:

 Set VORTEX_API_LOGFILE to the path and filename of the logfile you want to produce.
Don’t specify an extension for the filename (or version number on OpenVMS). xfODBC
automatically appends the process ID (filename_pid) and an extension (.log). If you specify an
extension on OpenVMS, no log file will be created.

 Set VORTEX_API_LOGOPTS to one or more of the following. You can set more than one
option by separating the options with a plus sign—for example, FULL+TIME.

APPEND Appends logging information to existing log file

ERROR Logs only statements with errors

FULL Specifies full logging

PLAY Sets an option that enables Synergy/DE Developer Support to playback an
operation

Data Access Errors and Error Logging
Error Logging

11-6 xfODBC User’s Guide 10.1 (6/13)

Note that if you set VORTEX_API_LOGFILE without setting VORTEX_API_LOGOPTS, the
log file will include a list of all operations along with a total count for each operation.

 Set these environment variables in the environment.

 For client/server configurations, set the environment variables on the client. (For services such
as web servers that use the xfODBC driver, you can use the Env. variables field in the xfODBC
Setup window to set these environment variables on the client. For information, see “Adding a
user or system DSN” on page 8-5.)

For example:

VORTEX_API_LOGFILE=c:\vortex
VORTEX_API_LOGOPTS=FULL

3. Re-run the application until you receive the error(s), and then exit the ODBC application.

4. Examine the log file.

5. Once you have successfully logged the error, turn logging off by unsetting the environment
variables (and reboot if necessary). Logging slows performance, and the log files can quickly fill
a disk.

Vortex host logging
Vortex host logging records statements (connect strings are omitted) passed to SQL OpenNet from
the xfODBC driver. Vortex host logging applies only to client/server configurations. Note that we
recommend Vortex API logging instead of Vortex host logging. Vortex API logging and Vortex host
logging generally record identical information, but Vortex API logging is easier to use. (In special
cases, however, Synergy/DE Developer Support may instruct you to use Vortex host logging.)

Vortex host logging is not supported for multi-threaded applications, so use this only with vtxnet2,
not vtxnetd.

1. Exit your ODBC-enabled application on the client.

2. Set the VORTEX_HOST_LOGFILE and VORTEX_HOST_LOGOPTS environment variables on
the server to specify a name for the log and to turn logging on. For example:

VORTEX_HOST_LOGFILE=c:\vortex
VORTEX_HOST_LOGOPTS=FULL

RECORD Logs data for Synergy/DE Developer Support

SQL Creates a file that contains diagnostic information. The filename (minus
extension) is specified with VORTEX_API_LOGFILE. The extension is
.sql. (Client only)

TIME Logs execution time for statements

Data Access Errors and Error Logging
Error Logging

xfODBC User’s Guide 10.1 (6/13) 11-7

Note the following:

 Set VORTEX_HOST_LOGFILE to the path and filename of the log file you want to produce.
Don’t specify an extension for the filename (or version number on OpenVMS). xfODBC
automatically appends the process ID (filename_pid) and an extension (.log). If you specify an
extension on OpenVMS, no log file will be created.

 Set VORTEX_HOST_LOGOPTS to one or more of the following. You can set more than one
option by separating the options with a plus sign—for example, FULL+TIME.

Note that if you set VORTEX_HOST_LOGFILE without setting
VORTEX_HOST_LOGOPTS, the log file will include a list of all operations along with a total
count for each operation.

 On Windows, set these environment variables in the opennet.srv file before starting vtxnet2.
Note that these environment variables do not work if you use vtxnetd. Use vtxnet2 to enable
logging.

 On UNIX, set these environment variables in your environment before starting vtxnetd.

 On OpenVMS, set these environment variables with system-wide logicals before starting the
server program.

3. Go to the client, re-run the application until you receive the error(s). Then exit the application.

4. Go to the server and examine the log file to determine the problem. The log file will be named
filename_pid.log, where filename is the name you specified with the VORTEX_HOST_LOGFILE
variable and pid is the process ID.

5. Once you have successfully logged the error, turn logging off by unsetting the environment
variables on the server. Logging slows performance, and the log files can quickly fill a disk.

APPEND Appends logging information to existing log file

ERROR Logs only statements with errors

FULL Specifies full logging

PLAY Sets an option that enables Synergy/DE Developer Support to playback an
operation

RECORD Logs data for Synergy/DE Developer Support

SQL Creates a file that contains diagnostic information. The filename (minus
extension) is specified with VORTEX_HOST_LOGFILE. The extension is
.sql. (Client only)

TIME Logs execution time for statements

Data Access Errors and Error Logging
Error Logging

11-8 xfODBC User’s Guide 10.1 (6/13)

Synergy DBMS logging
Synergy DBMS logging records ISAM calls made to your Synergy database from the xfODBC
driver. We recommend that you use log files to debug in a stand-alone configuration. If you need to
use Synergy DBMS logging in a client/server configuration, set the environment variables on the
server. For information on using Synergy DBMS to resolve performance issues, see “Tracking
Performance” on page 10-13.

Synergy DBMS logging on Windows and UNIX

1. Exit your ODBC-enabled application.

2. Set one or more of the following environment variables.

Note the following:

 For stand-alone configurations, set these in the environment.

 On Windows, set these as system-wide environment variables before starting the
SQL OpenNet server. This may require stopping and restarting the server. For example:

SDMS_AUDIT_SRV=c:\sdms
SDMS_AUDIT_FULL=1
SDMS2_FULL=1

Synergy DBMS logging can significantly reduce performance. Use it for diagnostic
purposes only; then turn it off.

SDMS_AUDIT Set this to the path and filename for the Synergy DBMS audit log
file for non-server operations.

Note: Use SDMS_AUDIT_SRV instead of SDMS_AUDIT on
Windows (even in non-server situations) to audit threaded programs.

SDMS_AUDIT_FULL To extend the logging output by adding the first 50 bytes of each
record to the log file, set this variable to any value.

SDMS_AUDIT_MODE To specify that I/O control modes are logged for each file operation,
set SDMS_AUDIT_MODE to any value.

SDMS_AUDIT_SRV Set this to the path and filename for Synergy DBMS audit logs for
operations on a server or threaded Windows program. See
SDMS_AUDIT_SRV in the “Environment Variables” chapter of
Environment Variables & System Options for more information, and
note that the thread ID and current time are appended to the
extension for each log filename.

SDMS2_FULL To record additional ODBC calls to the Synergy database, set
SDMS2_FULL to 1. Use this variable with SDMS_AUDIT or
SDMS_AUDIT_SRV.

Data Access Errors and Error Logging
Error Logging

xfODBC User’s Guide 10.1 (6/13) 11-9

 On UNIX, set these prior to starting the SQL OpenNet server. This may require stopping and
restarting the server. For example, you can set them in the setodbc file:

SDMS_AUDIT=/usr2/sdms.log ;export SDMS_AUDIT
SDMS_AUDIT_FULL=1 ;export SDMS_AUDIT_FULL
SDMS2_FULL=1 ;export SDMS2_FULL

3. Run the ODBC-enabled application until you receive the error(s), and then exit the application.

4. Examine the log file (on the server in a client/server configuration) to determine the problem.

5. Turn logging off by unsetting the environment variables. Logging slows performance, and the log
files can quickly fill a disk.

Synergy DBMS logging on OpenVMS

1. Set the following environment variables to specify a location for the log file and turn logging on.

These should be set with system-wide logicals. For example:

$ DEF/SYS/EXE SDMS2_LOG DEVICE:[DIRECTORY]FILE
$ DEF/SYS/EXE SDMS2_FULL 1

2. Stop and restart the SQL OpenNet server. For example:

$ SET DEF CONNECTDIR:
$ VTXKILL TIGER
$ @STARTNET

For information on stopping and starting the SQL OpenNet server, see “Starting and Stopping SQL
OpenNet for xfODBC” in the “Configuring Connectivity Series” chapter of the Installation
Configuration Guide.

3. Go to the client system and run your application until you receive the error. Then completely exit
the ODBC application on the client.

4. Go back to the server and use vtxkill to stop the OpenNet server. For example:

$ VTXKILL TIGER

5. Examine the log file. It should be in the location you specified with the SDMS2_LOG logical.

6. Turn logging off by unsetting the logicals. Logging slows performance, and the log files can
quickly fill a disk.

SDMS2_LOG Set this to the path and filename for the SDMS2 audit log file.

SDMS2_FULL To record additional ODBC calls to the Synergy database, set SDMS2_FULL
to 1.

Data Access Errors and Error Logging
Editing the SQL Message File

11-10 xfODBC User’s Guide 10.1 (6/13)

Editing the SQL Message File
The SQL error message file contains messages that display when the xfODBC driver,
SQL OpenNet client, or SQL OpenNet server encounter errors. You can use the
GENESIS_MSG_FILE environment variable to specify the location and name of the SQL message
file. By default it is named sql.msg and is located in the connect\synodbc\lib subdirectory of the
main Synergy/DE installation directory. For more information, see “Specifying the name and
location of the error message file” on page 3-20.

Note that to generate a system catalog, xfODBC must be able to locate the SQL error message file.

1. Open sql.txt in a text editor that can display hexadecimal numbers and end-of-line characters. For
example, you can open this file in Synergy/DE Workbench.

Sql.txt is installed to the connect\synodbc\lib subdirectory of the main Synergy/DE installation
directory.

2. Edit the messages. Note the following:

 A message can be only 64 characters long.

 Each message must end with a newline character (ASCII hexadecimal character number 0x0a),
and the newline character must come after the sixty-fourth character in the line. Any character
within the first 64 character positions in a line will be part of the display.

3. Save the text file.

4. Move to the connect subdirectory of the main Synergy/DE installation directory. (If you are on a
Windows system, open a Command Prompt window, and then change to the synergyde\connect
subdirectory.)

5. From the command line, enter a command with the following syntax:

 On Windows:

bldemf.exe source_file message_file

 On UNIX:

bldemf source_file message_file

 On OpenVMS:

$ BLDEMF source_file message_file

where source_file is the path and filename of the text file you saved in step 3 and message_file is the
path and filename of the SQL message file to be created.

You can now verify that the changes were made by opening the new SQL message file in a text
editor. Note that this file is formatted differently than text file you saved in step 3; there are no
newline characters. Close the SQL message file without saving it. If you have further changes to
make to the error message file, follow step 1 through step 5 again.

Data Access Errors and Error Logging
Data Access Errors

xfODBC User’s Guide 10.1 (6/13) 11-11

Data Access Errors
This section lists errors you may encounter when accessing data from an ODBC-enabled
application. For an illustration of where the different types of error occur in the data access process,
see figure 11-1 on page 11-4.

 xfODBC errors document problems on a client in a client/server configuration and problems in
a stand-alone configuration.

 SQL OpenNet error messages document problems you may encounter in a client/server
configuration.

 Synergy database driver (Synergy driver) error messages document problems you may
encounter on a client in a client/server configuration and problems in a stand-alone
configuration.

If you’re using system catalog caching, see “System Catalog Caching” on page 8-18 for additional
errors you may encounter.

For information on errors you may encounter while generating a system catalog, see “Dbcreate
error and warning messages” on page 4-15. For information on DBA errors, see “DBA error
messages” on page 6-7.

number: Unknown node (type: name)

(Synergy driver) This is an internal error. Turn on Vortex API logging (use the FULL option) and
SET OPTION logging (use the LOGFILE, PLAN, and TRACE options), repeat the steps that
caused the error, and then contact Synergy/DE Developer Support. (For information on Vortex API
logging, see “Vortex API logging (Windows)” on page 11-5. For information on SET OPTION
logging, see SET OPTION on page B-57.)

AUTHBAD: Invalid authentication syntax

(SQL OpenNet) The connect string syntax is invalid. Make sure that the user name and password
follow the host name. Note that this user ID and password are for the host machine, not the
database. See “Adding a user or system DSN” on page 8-5 for more information.

Authentication failed

(SQL OpenNet) User and password authentication failed on the server. If you’re using a Windows
server, make sure the user has “log on as a batch job” privileges on the server. In addition, make
sure the user and password are correct in the connect string and encryption is set to the same value
on both the client and the server.

AUTHFAIL: Authentication on service failed

(SQL OpenNet) You are not authorized to run the requested host service. Make sure the user name
and password follow the host name, or contact your system administrator. Note that this user ID
and password are for the host machine, not the database. See “Adding a user or system DSN” on
page 8-5 for more information.

Data Access Errors and Error Logging
Data Access Errors

11-12 xfODBC User’s Guide 10.1 (6/13)

AUTHREQ: Host ‘host_name’ requires authentication

(SQL OpenNet) The host you are connecting to requires additional authentication. If the -a option
is set for vtxnetd or vtxnet2, you must specify a username and password for an account on the
machine or an account for a domain that the machine is part of (in addition to any database log-in
information). If you’ve done this, make sure the username and password are correct. See “Adding a
user or system DSN” on page 8-5 for information.

BADCONV: Data conversion failed (hostvar:number)

(xfODBC and Vortex API) The requested data conversion failed. Check that the requested data is of
the appropriate type. For example, this error occurs if you request a character column to be fetched
into an integer and the column includes characters that aren’t numbers.

BADINI: Filename is either missing or invalid

(xfODBC and SQL OpenNet) The .ini file is missing or its contents are invalid. Make sure the file
exists and that it’s correct.

BLOBCOL: Invalid BLOB column ID

(SQL OpenNet) The specified column is not a BLOB column. Check the SQL statement.

BLOBFILE: BLOB file operation (name) failed

(SQL OpenNet) I/O error processing BLOB column. This usually occurs on an insert or update.

Buffer overflow: message

(Synergy driver) The SQL UPDATE statement caused a buffer overflow. Check message for
Synergy DBMS error information.

CANCEL: Operation cancelled

(xfODBC) The operation was cancelled by the driver manager. (This is an informational message.)

CANFREE: Cancel treated as SQLFreeStmt with SQL_CLOSE

(xfODBC) No processing was being done on the statement, so the call was treated as a call to
SQLFreeStmt with the SQL_CLOSE option. Function returns SQL_SUCCESS_WITH_INFO.
(This is an informational message.)

Cannot add temporary index

(Synergy driver) Attempt to create a temporary index to optimize a table join operation failed.
Make sure you have write permission and enough available disk space.

Cannot allocate context: message

(Synergy driver) The SQL statement could not allocate a Synergy DBMS context. Contact
Synergy/DE Developer Support.

Data Access Errors and Error Logging
Data Access Errors

xfODBC User’s Guide 10.1 (6/13) 11-13

Cannot begin transaction: message

(Synergy driver) The SQL COMMIT/ROLLBACK statement cannot be performed. Check message
for Synergy DBMS error information.

Cannot create ‘name’: message

(Synergy driver) The specified file cannot be created. Check message for Synergy DBMS error
information.

Cannot define default_index: message

(Synergy driver) The SQL statement references a table whose file creation failed. Check message
for Synergy DBMS error information.

Cannot delete from ‘name’: message

(Synergy driver) The SQL DELETE statement cannot be performed. Check message for Synergy
DBMS error information.

Cannot drop system tables

(Synergy driver) The system tables, tables that begin with GENESIS_, cannot be dropped. For a list
of the system tables, see “System catalog” on page 1-5. Make sure the table in the DROP TABLE
statement is not a system table.

Cannot end transaction: message

(Synergy driver) The SQL COMMIT statement cannot be performed. Check message for Synergy
DBMS error information.

Cannot insert into ‘name’: message

(Synergy driver) The SQL INSERT statement failed. Check message for Synergy DBMS error
information.

Cannot open ‘name’ for update: message

(Synergy driver) The specified file cannot be opened for update. Check message for Synergy
DBMS error information.

Cannot open file filename error_message

(Synergy driver) The xfODBC driver can’t open the specified file. The path may be wrong, or the
file specification may include a missing environment variable or an environment variable with an
invalid setting. Alternatively, the file may not exist, permissions may not be set correctly, or the
repository file definition may include an invalid character. Be sure to check the spelling and
location of filename.

Data Access Errors and Error Logging
Data Access Errors

11-14 xfODBC User’s Guide 10.1 (6/13)

Cannot update ‘name’: message

(Synergy driver) The SQL UPDATE statement failed. Check message for Synergy DBMS error
information.

Catalog table ‘name’ corrupted or out of date

(Synergy driver) The specified GENESIS catalog table cannot be read. It has either been modified
directly, or it was created from an unsupported version of dbcreate. Regenerate the system catalog
with the current version of dbcreate.

Character array too big (max: max size)

(Synergy driver) The SQL statement contains a character array that is too big. The maximum size is
max size. Correct the statement.

Column (#) is out of range

(Synergy driver) This may indicate that a GROUP BY clause doesn’t include all columns in the
select list. Correct the GROUP BY clause to include all columns in the select list. See GROUP BY
on page B-22 for more information.

Column ‘name’, 8 byte integer not supported on this platform

(Synergy driver) The platform does not support 8-byte integers. Remove any reference to 8-byte
integers from the system catalog.

Column name already defined

(Synergy driver) The SQL CREATE TABLE/VIEW statement has duplicate column names.
Correct the statement.

Column: ‘name’, DBL decimal overflow

(Synergy driver) The SQL statement is attempting to join a decimal column to a column whose
value is too large for the decimal column. (For example, you’ll see this error if you try to join a d1
column to a column with the value 45; this value is too large for a d1 column.) Correct the
statement.

Column: ‘name’, integer overflow

(Synergy driver) An overflow occurred while converting a number to an integer. Correct the system
catalog entry for the column.

Column ‘name’, invalid date data: data

(Synergy driver) The date is not valid. Correct this in your data file.

Column ‘name’ not deleted from catalog: message

(Synergy driver) The specified column cannot be deleted from the catalog. Check message for
Synergy DBMS error information.

Data Access Errors and Error Logging
Data Access Errors

xfODBC User’s Guide 10.1 (6/13) 11-15

Column name undefined

(Synergy driver) The SQL statement references a column that is not defined in the system catalog.
Correct the statement or define the column/table in the system catalog. Note that this can happen a
GROUP BY clause includes an alias for a column in an inline view. See GROUP BY on page B-22
for more information.

Column: ‘name’, Unsupported data type: type

(Synergy driver) The system catalog has an unsupported data type entry for column name. Check
the system catalog definition for this column.

CONFIG: Expected a CONFIG call

(SQL OpenNet) This is an internal error that typically indicates that the vtx4 process terminated
abnormally. Collect any relevant information from the event log (Windows), syslog (UNIX), or the
operator console (OpenVMS), and then contact Synergy/DE Developer Support. You may be asked
you to use Vortex host logging and/or Synergy DBMS logging to assist. (See “Vortex host logging”
on page 11-6 and “Synergy DBMS logging” on page 11-8.)

Connect: Unknown Error

(TCP/IP socket error) Although a connection was gracefully closed by the server, the client was not
prepared for the closing of the connection. This is generally caused either by a version mismatch or
by network latency issues where the final packet sent by the server is not received before the default
server socket shutdown is initiated. This might occur, for example, if the initial connect fails with
an error. See the event log (Windows), syslog (UNIX), or the operator console (OpenVMS) for
information on the problem.

CONNECT-1: Authorization failure

(Synergy driver) The connection failed because of the user’s security level, the length of the user
name, a user or group authentication failure, the length of the password, or because the password is
missing.

CONNECT-2: Dictionary access failure

(Synergy driver) The connection failed because the driver was unable to read the system catalog.
Check the GENESIS_HOME setting and the path specified in the connect file.

CONNECT-3: No license available

(Synergy driver) Connectivity Series is not licensed.

CONNECT-4: Init failure see logfile

(Synergy driver) There is an error in the connect file syntax. For information on the cause, create a
Synergy DBMS log file by setting the SDMS_AUDIT and SDMS2_FULL environment variables.
For more information, see “Synergy DBMS logging” on page 11-8.

Data Access Errors and Error Logging
Data Access Errors

11-16 xfODBC User’s Guide 10.1 (6/13)

Connect:errno:error

(TCP/IP socket error) This error indicates either that the connection to the server has been closed,
or that the xfODBC driver can’t make a connection to the SQL OpenNet server. See “Connection
reset by peer (10054 or 54)” on page 11-32 and “Connection refused (10061 or 61)” on page 11-33.

Could not open INITSQL file ‘file_name’

(xfODBC) xfODBC could not locate the file file_name, which contains SQL statements.

‘CREATE INDEX’ not valid for this table type

(Synergy driver) The SQL CREATE INDEX statement is valid only for ISAM files. Make sure the
table specified in the CREATE INDEX statement is an ISAM file.

Create view column count mismatch (create: number, select number)

(Synergy driver) The SQL CREATE VIEW statement’s column list does not match the number of
columns in the SELECT statement’s select list. Correct the statement.

CURDUP: Duplicate cursor name

(xfODBC) The cursor name is already in use. Specify a different name.

Data source name not found and no default driver specified

(xfODBC) The specified DSN doesn’t exist or there is a problem with it. Open the Microsoft
ODBC Administrator and make sure the DSN exists and is configured correctly.

Note that if you are on a 64-bit Windows machine, it could be that the DSN has not been defined by
the right version of the Microsoft ODBC Administrator. For example, if a 32-bit application is
accessing your Synergy database via xfODBC, and the system has both 32-bit and 64-bit
Synergy/DE, the DSN must be created by the 32-bit ODBC Administrator. And if Visual Studio or
an application that’s part of or based on Visual Studio (such as Business Intelligence Developer
Studio for SQL Server) is accessing your Synergy database, you’ll need identical 32-bit and 64-bit
DSNs. See “Adding a user or system DSN” on page 8-5.

Data truncation (max: max_size)

(Synergy driver) Data has been truncated. Call Synergy/DE Developer Support.

DATATRUNC: Data truncated

(xfODBC) The data has been truncated. Either the data specified is too long or supplied output
buffers are too small. Modify the size of the output buffers. (You can do this with the “Fetch buffer
size” field in the xfODBC Setup window. See “Adding a user or system DSN” on page 8-5 for
information.)

Data Access Errors and Error Logging
Data Access Errors

xfODBC User’s Guide 10.1 (6/13) 11-17

DB error: error_name

(Synergy driver) This error is reported by the database. See your database documentation for more
information.

DIALOG: Dialog box failed

(xfODBC) The connect dialog box failed. Notify your system administrator.

Divide by ZERO

(Synergy driver) An expression in the SQL statement caused division by zero.

DLLENTRY: Could not find DB driver entry point

(SQL OpenNet) The loaded DLL or shared library does not contain the expected entry point. This
typically happens when the wrong DLL or shared library has been loaded and occurs only on
machines that support DLLs or shared libraries. Call Synergy/DE Developer Support.

DLLLOAD: Could not load name

(SQL OpenNet and Vortex API) One of the Connectivity Series components can’t load a needed
DLL or shared library. The specified DLL or shared library may be missing, it may be invalid
(incorrectly named or an incorrect version), its file specification may be missing from PATH (on
Windows) or from the library path (on UNIX), it may not be able to access third-party DLLs or
shared libraries it needs, or if you’re on UNIX, the setuid (+s) bit may be set for vtxnetd or VTX4.
DLLLOAD errors occur only on machines that support either DLLs or shared libraries, and these
errors are generally caused by a problem with the way Connectivity Series is installed or, on UNIX,
by a failure to run setsde correctly.

To troubleshoot, run the dltest utility from the command line. (The dltest utility is in the connect
directory and has no options or arguments.) This utility indicates whether needed Connectivity
Series DLLs or shared libraries can be accessed, and if you’re on UNIX, it tells you the name of the
library path environment variable (for example, SHLIB_PATH on HP-UX 32-bit or LIBPATH on
IBM AIX 32-bit). In addition, note the following:

 If you are on UNIX, make sure the setuid (+s) bit is not set for vtxnetd or VTX4. The setuid
bit prevents the library path environment variable from being used. This will cause DLLLOAD
errors—though it won’t affect the ability of dltest to access needed .so files. (Note that as
distributed, the setuid bit is not set for vtxnetd and VTX4, so this won’t be a problem unless
you’ve added it.)

 Make sure all of the resources that the DLL or shared library needs are available. For example,
if you get a DLLLOAD error for GDS0.DLL, it may be that Connectivity Series can’t find one
of the DLLs required by GDS0.DLL. (These include SDMS22.DLL and VTXIPC.DLL.) On
Windows, you can use the Dependency Walker utility (depends.exe) to determine which
resources are required for a DLL. (You can download Dependency Walker from
http://www.dependencywalker.com.) On most UNIX systems, you can use the ldd command
to determine which resources are required for a shared library.

Data Access Errors and Error Logging
Data Access Errors

11-18 xfODBC User’s Guide 10.1 (6/13)

For SQL OpenNet, it may be that setsde isn’t run before vtxnetd attempts to implement the SQL
OpenNet server. Check the rc file and make sure setsde is run before startnet. For information on
which Synergy shared libraries are causing the error, run dltest from the rc file (directly before the
startnet command).

DLLLOAD: Invalid client DLL version. (expected version#, found version#)

(xfODBC, SQL OpenNet) A DLL on the client machine is out of date—for example, you could get
this error if you have an outdated version of tod32.dll.

DRVCONF: Driver not configured

(SQL OpenNet) This is an internal error that typically indicates that the vtx4 process terminated
abnormally. Collect any relevant information from the event log (Windows), syslog (UNIX), or the
operator console (OpenVMS), and then call Synergy/DE Developer Support.

Error: 8 byte integer not supported on this platform

(Synergy driver) Your platform does not support 8-byte integers. Remove the 8-byte field definition
from your repository and regenerate your system catalog.

Error: Could not connect to request pipe (Error:6)

(SQL OpenNet, Windows only) The system catalog you are attempting to load into memory has
already been cached.

EXECFAIL: Exec program_name failed on host host_name

(SQL OpenNet) The service (program) specified in the network connection string could not be
started. This occurs when the service cannot be found, does not have the correct permissions, or is
not listed as a valid service.

 Make sure the service exists, is listed as a valid service, and that you are connecting with the
correct user name and password.

 Use vtxnetd/vtxnet2 logging and check the resulting tcm_pid.log file. See “The vtxnetd and
vtxnet2 Programs” in the “Configuring Connectivity Series” chapter of the Installation
Configuration Guide for information.

 Check your operating system documentation for information on the error number (nnn).

Fetch error: message

(Synergy driver) The SQL statement caused a fetch error. Check message for Synergy DBMS error
information.

File ‘file_name’ already exists

(Synergy driver) The SQL CREATE TABLE statement references a table that is already created.
Make sure the specified table does not already exist.

Data Access Errors and Error Logging
Data Access Errors

xfODBC User’s Guide 10.1 (6/13) 11-19

File ‘file_name’ cannot be removed: message

(Synergy driver) The specified file cannot be removed. Check message for Synergy DBMS error
information.

File file_name could not be opened

(Synergy driver) The file file_name was not found. If file_name is synodbccache.dat, this error
may indicate that the account you’re using can’t be used to unload the system catalog from the
cache. A system catalog can be unloaded only by the user (account) that cached it.

File ‘file_name’ does not exist

(Synergy driver) The SQL statement references a table stored in a file that does not exist. It may
have been deleted by another user using a different system catalog. Disconnect and then reconnect.

File error TRIWRT ‘No space left on device’

(Synergy driver) The sort (order by) work file is out of disk space. Allocate more space on your
disk drive.

FLIPOVER: Flip buffer overflow

(SQL OpenNet) This error occurs if too many parameters are specified. The current limit is
approximately 250 parameters. Note that multiple dimensions are not included in this limit.

Format error in ‘datafiles’

(Synergy driver) The datasource line of the connect file is not defined correctly. See chapter 5,
“Setting Up a Connect File.”

FUNCSEQ: Function sequence error

(xfODBC) The sequence of function calls is invalid. Make sure you follow the sequence specified
in Microsoft’s ODBC Programmer’s Reference. (See the section on ODBC state transition.)

Function function_name not implemented yet

(Synergy driver) The function has not been implemented. Call Synergy/DE Developer Support.

‘GENESIS_HOME’ environment variable not found

(Synergy driver) The GENESIS_HOME environment variable is not set. For information on setting
this variable, see “Specifying the connect file location (GENESIS_HOME)” on page 3-19.

HOSTNOTFOUND: Host host_name not found

(SQL OpenNet) The host you’re trying to connect to has not been found. Make sure the spelling of
the host name is correct.

Data Access Errors and Error Logging
Data Access Errors

11-20 xfODBC User’s Guide 10.1 (6/13)

If any numeric operand is NULL then only ‘==’ and ‘!=’ are valid

(Synergy driver) The SQL statement’s WHERE clause uses and invalid operator with a null value.
When comparing a null value, only IS NULL, =NULL, IS NOT NULL, and <>NULL are valid.
(For example, SALARY > NULL is invalid.) Correct the statement.

Illegal data: data. Expected format: format

(Synergy driver) Data is not correctly formatted.

Illegal DECODE format (from,val,code,val,code...[,default])

(Synergy driver) DECODE format is incorrect. Check the DECODE syntax in your Oracle
documentation.

Illegal format specification: ‘format_qualifier’

(Synergy driver) The format qualifier format_qualifier is not correct.

Illegal number of parameters for builtin function

(Synergy driver) The SQL statement has the wrong number of parameters for the built-in function.
Correct the statement.

Illegal parameters for function function_name

(Synergy driver) Call Synergy/DE Developer Support.

Index ‘name’ not deleted from catalog: message

(Synergy driver) The specified index cannot be deleted from the system catalog. Check message for
Synergy DBMS error information.

Index column ‘column_name’ not deleted from catalog: message

(Synergy driver) The specified index column cannot be deleted from the system catalog. Check
message for Synergy DBMS error information.

INTERNAL: operation_number

(Synergy driver) Call Synergy/DE Developer Support with the operation_number.

Invalid connect syntax (uid/pwd/datasource)

(SQL OpenNet) The DSN is invalid or there’s a problem with encryption. Make sure the DSN is
configured correctly, and make sure both client and server are running versions of Connectivity
Series that support encryption (version 8.1 and later). In addition, make sure the encryption setting
in net.ini (on the client) matches the encryption setting on the server (set with the vtxnetd/vtxnet2
-k option), make sure the net.ini file is not corrupt, and make sure VORTEX_HOME is set to the
correct directory. (Note that if you install both 32-bit and 64-bit Connectivity Series on the same
64-bit Windows machine, the last version installed determines the VORTEX_HOME setting by
overwriting the previous setting.) See “SQL OpenNet Client Options in net.ini” on page 8-26.

Data Access Errors and Error Logging
Data Access Errors

xfODBC User’s Guide 10.1 (6/13) 11-21

Invalid integer

(SQL OpenNet, xfODBC) The number specified for the encryption key is invalid or the net.ini file
is corrupt. Verify that the key is set to an integer value in the correct range, and make sure the
net.ini file has no control characters.

Invalid parameter

(Synergy driver) An invalid parameter was sent for the command. Make sure the parameters you
use are valid.

Invalid password

(Synergy driver) The password is incorrect. Note that passwords are case sensitive. Make sure the
spelling and case are correct.

Invalid predicate result (NULL or invalid datatype)

(Synergy driver) The SQL statement’s WHERE clause returned a null or a result with an invalid
data type. Correct the statement.

Invalid USERID and/or PASSWORD

(xfODBC) This indicates that you’ve entered an invalid user name or password or that there may be
a problem with the users or groups in your system catalog. Start by checking the spelling and case
of the user name and password you used to access the database. (These are case sensitive.) If that
isn’t the problem, open your system catalog in DBA and check make sure the users and groups are
set up correctly (see “Viewing groups” on page 6-14 and “Viewing users in a group” on page 6-16).
If these don’t reveal the problem, check encryption settings on the server and the client and make
sure VORTEX_HOME is set to the correct directory (see “SQL OpenNet Client Options in net.ini”
on page 8-26).

INVARG: Invalid argument

(xfODBC) An argument specified for an ODBC API function is invalid. Consult your ODBC
documentation for the correct syntax.

INVAUTH: Invalid authorization

(xfODBC) The user is not authorized to connect to the specified data source. Check your user name
and password.

INVBUFLEN: Invalid string or buffer length

(xfODBC) The length specified is invalid. Negative values, such as SQL_NTS, have special
meaning, but not all negative values are valid. Check your ODBC documentation for valid length
specifiers.

INVCOLNUM: Invalid column number

(xfODBC) The specified column number is out of range. Use the correct column number.

Data Access Errors and Error Logging
Data Access Errors

11-22 xfODBC User’s Guide 10.1 (6/13)

INVCURNAM: Invalid cursor name

(xfODBC) The specified cursor name is invalid. Refer to your ODBC documentation for the
maximum allowed length.

INVCURSTA: Invalid cursor state

(xfODBC) The state of the cursor (OPENed, CLOSEd, and so forth) is not valid for the current
operation. Make sure you’ve followed the necessary steps before calling this function. See the
ODBC state transition section of Microsoft’s ODBC Programmer’s Reference for information.

INVDATA: Invalid data

(xfODBC) The data for the specified operation is invalid. Verify the data.

INVDATE: Invalid date/time

(SQL OpenNet) The format of the date and/or time data is invalid. Verify the data. See “Formats for
returned dates and times” on page 8-13 for information.

INVDRVVER: DB version mismatch (expected: driver_name, found version_number)

(SQL OpenNet) The version of the database driver is not at the same level as the SQL OpenNet
runtime library. This error is most common when SQL OpenNet client/server is being used, but can
also occur if an older driver has been linked with a newer runtime library. Make sure the client and
the server are running the same version of Connectivity Series.

INVHOSTSYN: Invalid host/service name syntax

(SQL OpenNet) The host/service syntax is incorrect. Correct the syntax.

INVNUM: Invalid (internal) number

(SQL OpenNet) The data being converted is invalid. Check the data.

INVVER: NET version mismatch (host: host_ver, client: client_ver)

(SQL OpenNet) The version of SQL OpenNet on the server is different than the version on the
client. Make sure both client and server use the same version of Connectivity Series.

KEEPALIVE: Setting SO_KEEPALIVE failed

(SQL OpenNet) This indicates that the socket option KEEPALIVE failed or was not set. Call
Synergy/DE Developer Support.

Data Access Errors and Error Logging
Data Access Errors

xfODBC User’s Guide 10.1 (6/13) 11-23

Licensing error

(xfODBC) On OpenVMS, this error may indicate that there is insufficient memory or other
resources. Open STARTNET.COM and make sure that the buffer, file_limit, page_file, queue_limit,
and subprocess options are set according to the recommendations in STARTNET.COM. Or, as an
alternative, you can check the following OpenVMS sysgen parameters and make sure their settings
are equal to or greater than the settings listed below. (Note, though, that we recommend using the
STARTNET.COM settings.)

PQL_DPGFLQUOTA 164593
PQL_DENQLM 800
PQL_DASTLM 256
PQL_DBIOLM 128
PQL_DDIOLM 128

If one of these parameter settings is missing, or if any of the settings don’t meet these minimums,
add a MIN_xxx setting or modify the setting in MODPARAMS.DAT for your system. For
example, set

MIN_PQL_DENQLM=800

Then use AUTOGEN.COM to re-configure your system and re-boot.

LINGER: Setting SO_LINGER failed

(SQL OpenNet) This indicates that the socket option LINGER failed or was not set. Call
Synergy/DE Developer Support.

MANYCONN: Too many connections

(xfODBC and SQL OpenNet) The limit for concurrent ODBC handles has been exceeded. xfODBC
supports a maximum of 1024 concurrent ODBC handles. However, system limitations may reduce
the number xfODBC can use. (Handles are typically have a one-to-one correspondence with
connections. However, and ODBC program could incorrectly close connections without
deallocating handles.)

For OpenVMS systems, STARTNET.COM is distributed with settings that allow approximately
10 concurrent handles (which are processes on OpenVMS). For information on changing these
settings, see the comments in STARTNET.COM.

MANYSTMT: Too many statements

(xfODBC) The number of allowable statements has been exceeded. Either increase the limit in the
Statements field in the xfODBC Setup dialog box or free any statements you are not using or do not
need.

Data Access Errors and Error Logging
Data Access Errors

11-24 xfODBC User’s Guide 10.1 (6/13)

MISSENV: Missing environment variable

(xfODBC) The GENESIS_HOME or VORTEX_HOME environment variable is missing. Make
sure these environment variables are set. For more information, see “Specifying the connect file
location (GENESIS_HOME)” on page 3-19 and “VORTEX_HOME” on page A-7.

Missing column separator (row: row_number, col: column_number)

(Synergy driver) A column separator is missing at row row_number, column column_number.

Missing string delimiter (row: row_number, col: column_number)

(Synergy driver) A string delimiter is missing at row row_number, column column_number.

Multi RID overflow

(xfODBC) This generally indicates that MERGESIZE is set too a value that’s too small for the
query. Increase this setting by using SET OPTION or the “Max number of rows” field in the
xfODBC Setup dialog box (the dialog box that enables you to add and configure xfODBC DSNs).
Then try the query again. See “Notes on MERGESIZE” on page B-61 for more information.

No data source

(Synergy driver) The connect string does not specify a connect file. For information on connection
strings, see “Building Connect Strings” in the “Creating SQL Connection Programs” chapter of the
SQL Connection Reference Manual.

No datasource specified

(Synergy driver) The connect file does not contain a datasource specification (which specifies the
location of the data files). For information, see chapter 5, “Setting Up a Connect File.”

No dictionary source directory defined

(Synergy driver) The connect file does not contain a dictsource definition. For information, see
chapter 5, “Setting Up a Connect File.”

No directory defined

(Synergy driver) The connect file does not contain a datasource definition. For information, see
chapter 5, “Setting Up a Connect File.”

NOCONN: Not connected

(xfODBC and SQL OpenNet) A connection must be performed before any other operation.

NOCURNAM: No cursor name available

(xfODBC) A cursor name has not been assigned. Assign a cursor name.

Data Access Errors and Error Logging
Data Access Errors

xfODBC User’s Guide 10.1 (6/13) 11-25

NODSN: No DSN specified

(xfODBC) No data source name (DSN) was specified. Make sure the connect string specifies
a DSN.

NOINTR: Host cannot be interrupted

(Synergy driver) Your ODBC-enabled application called SQLCancel, but the xfODBC driver is not
in a position to cancel its operation.

NOMEM: Out of memory

(SQL OpenNet and xfODBC) This is a fatal error. Either there is no more heap memory available
(which is rare), or the heaps have been corrupted. Notify your system administrator.

Non aggregates require a GROUP BY expression

(Synergy driver) This generally indicates that the SELECT statement contains aggregate and
non-aggregate select list items, which requires a GROUP BY expression. Use GROUP BY or
change the statement’s structure.

If the statement has a GROUP BY clause, this could indicate that a column specified in the
GROUP BY isn’t in the select list. All columns in a GROUP BY expression must be in the select
list for the statement.

If you’re using the Synergy/DE Data Provider for .NET, this could indicate that you are running a
version of Connectivity Series (or xfODBC Client if it’s a deployment machine) that doesn’t
support the Synergy/DE Data Provider for .NET. Support was added in Synergy/DE 9.1.5b, so
make sure your system has 9.1.5b or higher.

Not implemented yet

(Synergy driver) The function, statement, or subroutine has not been implemented.

NOTCAP: Driver not capable

(xfODBC) xfODBC does not support the requested capability.

NOTIMP: feature_name not implemented

(xfODBC) The feature has not been implemented yet. Use ODBC API logging to find out more
about the missing feature, and then call Synergy/DE Developer Support.

NOWHDL: No window handle available

(xfODBC) No window handle is available to open the connect dialog. Notify your system
administrator.

Data Access Errors and Error Logging
Data Access Errors

11-26 xfODBC User’s Guide 10.1 (6/13)

NULL not allowed for column

(Synergy driver) Either the SQL statement (INSERT or UPDATE) specifies a null value for a
column that cannot accept null values, or a column that cannot accept null values has been omitted
from an INSERT statement that affects that column’s table. Correct the statement. (Note that
omitting a column from an INSERT statement is equivalent to specifying a null value for the
column. See INSERT on page B-47.)

Number of columns does not match number of values

(Synergy driver) The SQL INSERT statement’s values do not match the number of columns defined
for the table or listed in the column list of the SQL statement. Correct the statement.

ODBC call failed, [TOD] [ODBC] [GENESIS] Synergy DBMS: Table
‘DBA.GENESIS_COLUMNS’ not found [#31]
or
ODBC call failed, [TOD] [ODBC] [GENESIS] Synergy DBMS: Fetch error, Insufficient
memory for attempted operation

(xfODBC) This error indicates that there is insufficient memory or other resources on OpenVMS.
For example, when trying to access data from a client machine with an ODBC application, such as
Microsoft Access, you may be able to link to the first table you select, but get this error when you
select a second table. Or you may get this error on subsequent attempts to link to the tables you’ve
selected. See “Licensing error” on page 11-23 for information on resolving this.

Only ‘=’ is allowed with ROWID

(Synergy driver) The SQL statement’s WHERE clause contains an invalid ROWID predicate.
Correct the statement.

Operands not compatible

(Synergy driver) The specified operands cannot be used together and/or cannot be used on this type
of data. Correct the statement.

Operation requires named authorization

(Synergy driver) The SQL statement requires the specified authorization. Make sure you have the
authority to issue the statement.

OPTCHG: Option value changed

(xfODBC) The value of an option has changed. This is an informational message.

Out of memory (Save all work then exit and restart)

(Synergy driver) There is insufficient system memory available for the requested operation. Save all
work; then exit and restart.

Data Access Errors and Error Logging
Data Access Errors

xfODBC User’s Guide 10.1 (6/13) 11-27

PARMCNT: Wrong number of parameters

(xfODBC) The number of parameters specified does not match the number of parameters required
by the statement. Modify your program to use the correct number of parameters for the statement.

PARMDTY: Invalid parameter data type

(xfODBC) The data type specified for the parameter is unknown. Consult the ODBC
documentation for valid data types.

PARMNUM: Invalid parameter number

(xfODBC) The parameter number specified is out of range. Verify that your program uses the
correct parameter number.

(position: position_number) - End of buffer reached

(Synergy driver) The SQL statement ended prematurely. Check the syntax for the command you are
using.

(position: position_number) - Ending quote missing

(Synergy driver) The ending quotation mark is missing at position position_number in the SQL
statement. Add the missing quotation mark.

(position: position_number) - Identifier too long

(Synergy driver) The SQL statement contains an identifier at position position_number that is too
long. Identifiers are limited to 30 characters. Rename the identifier.

(position: position_number) - Illegal character

(Synergy driver) The SQL statement contains an illegal character at the given position. Check the
statement.

(position: position_number) - String too long

(Synergy driver) The SQL statement contains a string that is too long at position position_number.
Use a bind variable.

Premature end of line (row: row_number)

(Synergy driver) There is a premature end of line at row row_number.

Read error: message

(Synergy driver) The SQL statement caused a read error. Check message for Synergy DBMS error
information. (See “Synergy DBMS Errors” in the “Error Messages” chapter of Synergy Tools.)

Data Access Errors and Error Logging
Data Access Errors

11-28 xfODBC User’s Guide 10.1 (6/13)

RECEIVE INFO ERROR: No such file or directory

(SQL OpenNet) The socket connection disappeared. The server database component crashed or has
been terminated. Call Synergy/DE Developer Support.

Recv:errno:error

(TCP/IP socket error) This error indicates either that the connection to the server has been closed,
or that the xfODBC driver can’t make a connection to the SQL OpenNet server. See “Connection
reset by peer (10054 or 54)” on page 11-32.

Recv: Unknown Error

(TCP/IP socket error) Although a connection was gracefully closed by the server, the client was not
prepared for the closing of the connection. This is generally caused either by a version mismatch or
by network latency issues where the final packet sent by the server is not received before the default
server socket shutdown is initiated. This might occur, for example, if the initial connect fails with
an error. See the event log (Windows), syslog (UNIX), or the operator console (OpenVMS) for
information on the problem.

SERVNOTFOUND: Service/Protocol name not found

(SQL OpenNet) The service or protocol cannot be found. Ensure that vtxnetd or vtxnet2 is
specified in your services file. If it isn’t, you must either add it to the services file or specify the port
number in the xfODBC Setup window. See “Adding a user or system DSN” on page 8-5 and
“Configuring SQL Connection (client)” in the “Configuring Connectivity Series” chapter of the
Installation Configuration Guide for details.

SOCKET: Socket() failed

(SQL OpenNet) xfODBC is unable to open a socket. The operating system may have run out of
descriptors. Notify your system administrator.

Sort buffer overflow

(Synergy driver) This generally indicates that the memory available for SQL sort operations
(ORDER BY or GROUP BY) is insufficient. Use SET OPTION SORTPAGES to increase the
available memory. See SET OPTION on page B-57 for information.

Sort column name out of range (1 - number)

(Synergy driver) The ORDER BY clause for the SELECT statement references a column number
that is out of range. Correct the statement.

Sub-query must return a single column

(Synergy driver) The SQL statement contains a subquery whose result set has more than one
column. Correct the statement.

Data Access Errors and Error Logging
Data Access Errors

xfODBC User’s Guide 10.1 (6/13) 11-29

Synergy DBMS: File ‘GENESIS_USERS’ does not exist

(Synergy driver) This indicates that although the system catalog describes GENESIS_USERS, no
GENESIS_USERS.ISM file exists for the catalog. To resolve this, regenerate your system catalog.
The dbcreate utility no longer describes GENESIS_USERS or creates this file, so regenerating the
system catalog prevents this situation.

Synergy DBMS: Cannot open “Filename”, No privilege to this directory

(Synergy driver) This may indicate that security levels will not allow the operation. Check access
levels for tables and the user’s group to make sure the user has read and (if necessary) write access
to the tables. See “Setting Security Levels” on page 8-2.

Synergy DBMS: LIST error. Index index_number not created

(SQL OpenNet) Syngenload did not create the system catalog cache correctly. To fix this, follow
the instructions in “Correcting other caching problems” on page 8-25.

SYNLEV: Insufficient GENESIS syntax level

(Synergy driver) There is a version mismatch between the client and the server at the Synergy
database driver (VTX4) level. Make sure that both sides of the network connection use the same
version.

Table ‘name’ not deleted from catalog

(Synergy driver) The SQL DROP TABLE statement failed due to a Synergy DBMS error. Call
Synergy/DE Developer Support.

Table ‘name’ still open by other cursors

(Synergy driver) The DROP TABLE statement references a table that is still being accessed by
other cursors. Make sure all cursors that use the table are closed before issuing the DROP TABLE
statement.

Table ‘name’ undefined

(Synergy driver) The SQL statement references a table that is not defined in the system catalog.
Correct the statement to reference a defined table or define the table in the system catalog.

Table/View ‘name’ already in catalog

(Synergy driver) The SQL CREATE TABLE/VIEW statement references a table or view that is
already defined. Check the tables/views specified in the statement.

TIDUSED: Statement already in use

(xfODBC) Another thread is currently using the statement. Make sure your program is not using a
statement that’s used by another thread.

Data Access Errors and Error Logging
Data Access Errors

11-30 xfODBC User’s Guide 10.1 (6/13)

to_char/date/number’s format mask must be a constant string

(Synergy driver) The SQL statement uses a data conversion function with a non-constant format
mask string. Correct the statement.

Too many columns number (max: max_number)

(Synergy driver) The SQL statement references a table which exceeds the maximum number of
columns. (Number is the number of columns in your system catalog, plus one for ROWID.) You
can increase the maximum number of columns that xfODBC allows by changing the Columns
setting in the xfODBC Setup dialog box. Note that changing the Columns setting does not affect the
number of columns your ODBC-enabled application can handle. For information on the Columns
setting, see “Columns” on page 8-8.

Too many columns specified

(Synergy driver) The SQL statement has too many columns defined. Correct the statement.

Too many cursors opened

(Synergy driver) Too many cursors are open at once. Close some cursors and retry.

Too many sort columns (max: number)

(Synergy driver) The SQL SELECT statement has too many columns in the ORDER BY clause.
Reduce the number of columns in the ORDER BY clause.

Too many sub-queries at level level_number (max: max_number)

(Synergy driver) The SQL statement contains too many subqueries. Correct the statement.

Too many tables in SELECT (max: max size)

(Synergy driver) The SQL SELECT statement contains too many tables. Correct the statement.

UNDESTYP: Unknown descriptor type

(xfODBC) The fDescType for SQLColAttributes() is unknown. Modify your program to use the
correct descriptor.

UNFETTYP: Unknown fetch type

(xfODBC) Currently, only SQL_FETCH_NEXT is supported. Modify your program to use only
SQL_FETCH_NEXT.

UNINTYP: Unsupported InfoType: type

(xfODBC) Type is not supported. Consult your ODBC documentation for valid values.

Unknown command

(Synergy driver) You’ve used an unrecognized command.

Data Access Errors and Error Logging
Data Access Errors

xfODBC User’s Guide 10.1 (6/13) 11-31

Unknown error code

(Synergy driver) This is an internal error. Turn on Synergy DBMS logging and Synergy driver
logging, repeat the steps that caused the error, and then call Synergy/DE Developer Support.
(For information on Synergy DBMS logging, see “Synergy DBMS logging” on page 11-8. For
information on Synergy driver logging, see “Synergy Driver Logging” on page 5-5.)

Unknown executable node (type: $1)

(Synergy driver) Unexpected virtual machine code. This is an internal error and shouldn’t occur. If
it does, turn on Synergy driver logging and SET OPTION logging, repeat the steps that caused the
error, and then call Synergy/DE Developer Support. (For information on Synergy driver logging,
see “Using logging to determine if a system catalog is cached” on page 8-21. For information on
SET OPTION logging, see SET OPTION on page B-57.)

UNOPT: Unknown option

(xfODBC) The xfODBC driver doesn’t recognize the option. Consult your ODBC documentation
for valid options.

UNUNOPT: Unknown Uniqueness option

(xfODBC) The xfODBC driver doesn’t recognize the uniqueness option. Consult your ODBC
documentation for valid values.

UNXACOPR: Unknown transaction operation

(xfODBC) The xfODBC driver doesn’t recognize the transaction operation. Consult your ODBC
documentation for valid values.

User does not have drop table permission

(Synergy driver) The SQL DROP TABLE statement cannot be performed by this user. Check the
table specified in the statement.

VM Error: Virtual memory space exceeded

(Synergy driver) This generally indicates that the amount of memory available for SQL sort
operations is insufficient. Use SET OPTION SORTPAGES to increase this amount (see SET
OPTION on page B-57 for information).

Data Access Errors and Error Logging
Troubleshooting Socket Errors

11-32 xfODBC User’s Guide 10.1 (6/13)

Troubleshooting Socket Errors

Connection reset by peer (10054 or 54)
The “Connection reset by peer” socket error, which is 10054 (WSAECONNRESET) on Windows
and generally 54 (ECONNRESET) on UNIX and OpenVMS, indicates that a connection to the
server has been closed. This could be caused by a fatal error on the server, the server stopping, a
network problem, or even a connection problem.

1. If the error has the form “connect:errno:error”, use vtxping (or synxfpng with the -x option) to test
your ability to connect to the server. Otherwise, skip to step 2. The vtxping and synxfpng utilities
print reports to the screen. This information can be used by your network administrator to resolve
TCP/IP network socket communication problems.

 If you can connect, then the network, the server, and the Synergy/DE OpenNet Server service
(SynSQL) are working. Continue with step 2.

 If you can’t connect, make sure the server is running, the SynSQL service is running on the
server, and that you either specified the correct port number in the vtxping or synxfpng
command or are using the default port.

For information on vtxping, see “The vtxping Utility” in the “Configuring Connectivity Series”
chapter of the Installation Configuration Guide. For information on synxfpng, see “The synxfpng
Utility” in the “Configuring xfServer” chapter of the Installation Configuration Guide.

2. Check and correct the following, which may solve the problem if it is caused by network timing
issues.

 (Windows) If you’re using network licensing, make sure License Manager is configured as a
network server.

 Make sure the server was rebooted after the Connectivity Series components were installed.

 (Windows) On the server, make sure the GENESIS_HOME environment variable is set in the
environment or in opennet.srv (not at the user level).

 Check the system-level PATH on the server. It should include the connect directory.

 Use vtxnetd or vtxnet2 logging and check the resulting tcm_pid.log file. Then check the event
log on Windows, syslog on UNIX, or the operator console on OpenVMS. (For information on
vtxnetd and vtxnet2 logging, see “The vtxnetd and vtxnet2 Programs” in the “Configuring
Connectivity Series” chapter of the Installation Configuration Guide.)

 On the server, make sure the file(s) for the Synergy database driver (vtx4) are in the connect
directory. On Windows, these files are vtx4.exe and vtx4.dll. On UNIX, this is vtx4.so. On
OpenVMS, this is vtx4.exe.

 Make sure there is no more than one vtxnet2 process running on the server. If there’s more
than one, use vtxkill to kill the processes; then restart the service.

Data Access Errors and Error Logging
Troubleshooting Socket Errors

xfODBC User’s Guide 10.1 (6/13) 11-33

3. If you are on Windows or UNIX, run the dltest utility to make sure Connectivity Series DLLs or
shared libraries are loading properly. This is a command line utility (in the synergyde\connect
directory) and has no options.

4. Make sure the dictsource and datasource lines in the connect file on the server have the correct
settings. Then check the settings in the DSN. For example, if the DSN specifies a port, it should be
the port that the SQL OpenNet server is running on. (If the SQL OpenNet server is running on the
port that’s the default for the client, the DSN doesn’t need to specify a port. See the “Configuring
Connectivity Series” chapter of the Installation Configuration Guide for more information.)

5. If you get this socket error again, use vtxnetd or vtxnet2 logging and check the event log on
Windows, syslog on UNIX, or the operator console on OpenVMS.

Connection refused (10061 or 61)
The “Connection refused” socket error, which is 10061 (WSAECONNREFUSED) on Windows
and is generally 61 (ECONNREFUSED) on UNIX and OpenVMS, indicates that the xfODBC
driver can’t make a connection to the SQL OpenNet server. The SQL OpenNet server may not be
running, it may not use the port that’s specified in the DSN (or the default port if you didn’t specify
a port in the DSN), or the host specified in the DSN may be incorrect.

1. Use vtxping (or synxfpng with the -x option) to test your ability to connect to the server. (For
information on vtxping, see “The vtxping Utility” in the “Configuring Connectivity Series” chapter
of the Installation Configuration Guide. For information on synxfpng, see “The synxfpng Utility”
in the “Configuring xfServer” chapter of the Installation Configuration Guide.)

The vtxping and synxfpng utilities print reports to the screen. This information can be used by
your network administrator to resolve TCP/IP network socket communication problems.

 If you can connect, then the network, the server, and the Synergy/DE OpenNet Server service
(SynSQL) are working. Continue with step 2.

 If you can’t connect, make sure the server is running, the SynSQL service is running on the
server, and that you either specified the correct port number in the vtxping or synxfpng
command or are using the default port.

2. Make sure the host name in the DSN is correct.

UNIX
If you find that the SQL OpenNet server is running and the port is correct, it may be that server is
terminating when the user that started it logs out. To run the server in the background and keep it
running after you log out, use the nohup command. For example:

nohup vtxnetd &

For more information, see “Starting and stopping SQL OpenNet for xfODBC” in the UNIX section
of the “Configuration Connectivity Series” chapter of the Installation Configuration Guide.

Appendices

Appendix A: Environment Variables

Lists environment variables used by xfODBC as it generates a system catalog or accesses a
database. Also lists other environment variables that are required and are automatically set
during installation or configuration.

Appendix B: SQL Support

Lists the SQL statements, commands, and functions supported by xfODBC driver, and
documents how they are implemented for xfODBC.

A-1

A
Environment Variables

Data Access Variables A-2

Lists environment variables that set run-time options—i.e., options that are used as the xfODBC
driver accesses access a database.

System Catalog Generation Variables A-5

Lists environment variables that enable you to change the way system catalogs are generated and
modified.

Other Environment Variables Used by xfODBC A-7

Lists environment variables that are required and are automatically set by the installation, by the
setsde script, or by the SYS$MANAGER:CONNECT_STARTUP.COM command file.

Environment Variables
Data Access Variables

A-2 xfODBC User’s Guide 10.1 (6/13)

Data Access Variables
The following environment variables set options that are used as the xfODBC driver accesses the
database. Unless otherwise noted, the xfODBC Database Administrator (DBA) and dbcreate do
not use these environment variables, and they do not affect the way the system catalog is generated.
For information on environment variables that affect the system catalog, see “System Catalog
Generation Variables” on page A-5.

Data Access Variables

This variable… Does this… For information, see…

GENESIS_HOME Specifies the location of the connect file.
(DBA and dbcreate also use this environment
variable.)

“Specifying the connect file
location
(GENESIS_HOME)” on
page 3-19

GENESIS_INITSQL Specifies a file that contains predefined SQL
statements.

“Creating a file for query
processing options” on
page 8-17

GENESIS_MSG_FILE Sets the name and location of the error
message file. (DBA and dbcreate also use this
environment variable.)

“Specifying the name and
location of the error
message file” on page 3-20

SDMS_AUDIT (UNIX only) Specifies the path and filename of
the Synergy DBMS log file in UNIX
environments. (Use SDMS_AUDIT_SRV for
Windows.)

“Synergy DBMS logging” on
page 11-8

SDMS_AUDIT_FULL Turns on Synergy DBMS logging. “Synergy DBMS logging” on
page 11-8

SDMS_AUDIT_MODE Instructs xfODBC to log I/O control modes for
each file operation.

“Synergy DBMS logging” on
page 11-8

SDMS_AUDIT_SRV (Windows and UNIX) Specifies the path and
filename for generated auditing files for file
operations on a server or a threaded Windows
program.

“Synergy DBMS logging” on
page 11-8

SDMS2_FULL Records additional ODBC calls to the Synergy
database. Unlike SDMS2_LOG, this
environment variable can be set in Windows,
UNIX, and OpenVMS environments.

“Synergy DBMS logging” on
page 11-8 and “Synergy
DBMS logging on
OpenVMS” on page 11-9

Environment Variables
Data Access Variables

xfODBC User’s Guide 10.1 (6/13) A-3

SDMS2_LOG (OpenVMS only) Specifies the path and
filename of the Synergy DBMS log file.

“Synergy DBMS logging on
OpenVMS” on page 11-9

SODBC_INIFIL Specifies the path and filename of the
environment setup file.

“Specifying the location of
an environment setup file”
on page 3-20

SODBC_MCBA Instructs xfODBC to skip records that contain
the MCBA deleted-record characters—four
right brackets (]]]]) at the beginning or end of a
record.

“Recognizing the MCBA
deleted-record characters”
on page 8-16

SYNBASEDATE Sets the base date for conversion of date fields
with the JJJJJJ format. The default date is 14
Sept. 1752.
Note that once you’ve modified data in the
database, don’t change the SYNBASEDATE
value or the database will be corrupted. Each
date is stored as the difference between the
date and the SYNBASEDATE value. Changing
this value changes the way dates are stored
and read.

“Setting the base date for
Julian day conversions” on
page 8-15

SYNCENTURY Specifies the cutoff year for a sliding window
mechanism that converts two-digit years to
four-digit years. SYNCENTURY determines
the cutoff year and affects only input dates with
two-digit year formats (YYMMDD, YYJJJ, etc.).

“Converting dates returned
without centuries” on
page 8-14

TRIM_HOME Specifies the location of the lib directory that
contains trim.ini (UNIX only) and trim.msg
files used for system catalog caching.

“Invalid parameter or
argument (UNIX)” on
page 8-22

VORTEX_API_LOGFILE Turns on logging and specifies the path and
filename of a log file used to log statements
issued to the database by the xfODBC driver.

“Vortex API logging
(Windows)” on page 11-5

VORTEX_API_LOGOPTS Specifies options for the file produced by
VORTEX_API_LOGFILE.

“Vortex API logging
(Windows)” on page 11-5

Data Access Variables (Continued)

This variable… Does this… For information, see…

Environment Variables
Data Access Variables

A-4 xfODBC User’s Guide 10.1 (6/13)

VORTEX_HOST_LOGFILE Turns on logging and specifies the path and
filename of the logfile used to log statements
passed to SQL OpenNet from the xfODBC
driver.

“Vortex host logging” on
page 11-6

VORTEX_HOST_LOGOPTS Specifies options for the file produced by
VORTEX_HOST_LOGFILE.

“Vortex host logging” on
page 11-6

VORTEX_HOST_SYSLOG Instructs the SQL OpenNet server to generate
messages for the event log (Windows), syslog
(UNIX), or the operator console (OpenVMS)
when an attempt to connect to an SQL
OpenNet server causes fatal errors.

“Error Logging” on
page 11-2

VORTEX_ODBC_CHAR Determines how xfODBC describes strings
(SQL_VARCHAR or SQL_CHAR).

“Changing the way xfODBC
describes strings” on
page 8-16

VORTEX_ODBC_DATETIME Determines how date/time columns are
retrieved.

“Formats for returned dates
and times” on page 8-13

VORTEX_ODBC_TIME Determines how time columns are described. “Formats for returned dates
and times” on page 8-13 and
“Time columns and
ADO.NET” on page 9-20

VORTEX_SHM_BASE Sets the base address for system catalog
caching.

“System Catalog Caching”
on page 8-18

VORTEX_SHM_FILE Specifies the location and name of
synodbccache.dat, a file used for system
catalog caching.

“System Catalog Caching”
on page 8-18

Data Access Variables (Continued)

This variable… Does this… For information, see…

Environment Variables
System Catalog Generation Variables

xfODBC User’s Guide 10.1 (6/13) A-5

System Catalog Generation Variables
The following environment variables enable you to change the way system catalogs are generated
and modified. Unless otherwise noted, only dbcreate and DBA use these variables. These variables
do not affect the way the xfODBC driver handles data. For information on environment variables
that affect the way data is read from and written to the database, see “Data Access Variables” on
page A-2.

System Catalog Generation Variables

This variable… Does this… For information, see…

GENESIS_HOME Specifies the location of the connect file. (The
xfODBC driver also uses this environment variable.)

“Specifying the connect file
location (GENESIS_HOME)”
on page 3-19

GENESIS_MSG_FILE Sets the name and location of the error message
file. (The xfODBC driver also uses this environment
variable.)

“Specifying the name and
location of the error message
file” on page 3-20

RPSDAT Specifies the location of the repository files. The
repository files must be named rpsmain.ism and
rpstext.ism for this environment variable to locate
them.

“Specifying repository file
locations” on page 3-22

RPSMFIL Specifies the path and filename of the repository
main file.

“Specifying repository file
locations” on page 3-22

RPSTFIL Specifies the path and filename of the repository
text file.

“Specifying repository file
locations” on page 3-22

SODBC_CNVFIL Specifies both that a conversion setup file is to be
used and the path and filename of the conversion
setup file.

“Specifying a conversion
setup file” on page 3-26

SODBC_CNVOPT Instructs dbcreate (or DBA) to convert all fields in a
structure, regardless of the report view flag setting
in the repository.

“Including and omitting fields”
on page 3-23

SODBC_COLLAPSE Specifies when array elements should be
compressed into a single column. Elements will be
compressed into a single column when the number
of elements is greater than or equal to the setting
for this variable.

“Generating one column for
an array field” on page 3-25

SODBC_DBA Specifies the location of the DBA program. “SODBC_DBA” on page A-7

Environment Variables
System Catalog Generation Variables

A-6 xfODBC User’s Guide 10.1 (6/13)

SODBC_NOGROUPNAME Instructs dbcreate (or DBA) to omit group names,
group prefixes, and struct field names from column
names in the system catalog.

“Removing group and struct
names from column names”
on page 3-25

SODBC_NONULL Deprecated.
Determines how the “Null allowed” property for a
system catalog column is set if the Repository “Null
allowed” option for the repository field is set to
Default.

SODBC_NONULL in the
“Environment Variables”
chapter of Environment
Variables & System Options

SODBC_NOUNSIGNED Instructs dbcreate (or DBA) to ignore the
Repository field “Negative allowed?” and set all
fields to signed unless they had validation ranges
that were limited to positive values.

“Instructing dbcreate to ignore
the “Negative allowed?” field
in Repository” on page 3-24

SODBC_ODBCNAME Instructs dbcreate (or DBA) to use Repository
Alternate name field attribute as the column name.

“Renaming columns for
clarity” on page 3-24

SODBC_TMPOPT Instructs dbcreate (or DBA) to convert only those
tables not attached to temporary files in the
repository.

“Excluding tables attached to
temporary files” on page 3-26

SODBC_TOKEN Specifies a character for dbcreate (or DBA) to use
to delineate position values in column names
generated for elements in arrayed fields and
groups.

“Changing the position
delimiter used for arrays” on
page 3-25

SODBC_USEFORMAT Instructs dbcreate (or DBA) to use decimal
information in the repository format string.

“Using decimal information in
the repository format string”
on page 3-27

System Catalog Generation Variables (Continued)

This variable… Does this… For information, see…

Environment Variables
Other Environment Variables Used by xfODBC

xfODBC User’s Guide 10.1 (6/13) A-7

Other Environment Variables Used by xfODBC
The following environment variables are required and are automatically set by the installation, by
the setsde script, or by the SYS$MANAGER:CONNECT_STARTUP.COM command file. See
the “Configuring Connectivity Series” chapter of the Installation Configuration Guide for more
information on the script and command files.

CONNECTDIR

The CONNECTDIR environment variable is set to the synergyde\connect directory. This
environment variable is set

 by the installation on 32-bit Windows operating systems or when you run dblvars64.bat or
dblvars32.bat to set up 64-bit or 32-bit versions of Synergy/DE on a 64-bit Windows
operating system. (The installation does not set this environment variable on 64-bit Windows.)

 when you run setsde on UNIX or SYS$MANAGER:CONNECT_STARTUP.COM on
OpenVMS.

SODBC_DBA

The SODBC_DBA environment variable is automatically set to the location of the DBA program.
(The filename for the DBA program on UNIX and Windows is xfdba.dbr. On OpenVMS, it’s
xfdba.exe.) Although it’s seldom necessary, you can change this setting. Note the following:

 SODBC_DBA is required and is automatically set when you install xfODBC (except on 64-bit
Windows systems).

 For Windows, SODBC_DBA must be set system-wide or in synergy.ini under the [synergy]
heading.

 For UNIX, SODBC_DBA must be set by running the setsde script file (located in the
synergyde directory).

 For OpenVMS, SODBC_DBA must be set by executing CONNECT_STARTUP.COM.

 For client/server configurations, SODBC_DBA must be set on the server.

VORTEX_HOME

The VORTEX_HOME environment variable specifies the location of a directory named lib that
contains the net.ini file, a file used for encryption and other SQL OpenNet settings. The
Connectivity Series installation (Windows), setsde (UNIX), or
SYS$MANAGER:CONNECT_STARTUP.COM (OpenVMS) sets VORTEX_HOME to the
connect\synodbc directory. Do not change this setting.

Note that because VORTEX_HOME is set at the system level, if you install both 64-bit and 32-bit
versions of Connectivity Series on the same 64-bit Windows machine, the last version installed
determines the VORTEX_HOME setting by overwriting the previous setting. So if you do change
net.ini, you’ll need to make sure you change the correct one.

Environment Variables
Other Environment Variables Used by xfODBC

A-8 xfODBC User’s Guide 10.1 (6/13)

VORTEX_HOST_HIDEGPF (Windows)

When set, the VORTEX_HOST_HIDEGPF environment variable prevents the SQL OpenNet
server from shutting down if a thread fails. This is set in opennet.std, and we don’t recommend
changing it. See VORTEX_HOST_HIDEGPF in the “Environment Variables” chapter of
Environment Variables & System Options for more information.

VORTEX_HOST_NOSEM

When set to 1, the VORTEX_HOST_NOSEM environment variable causes SQL OpenNet to crash
when there’s an access violation, enabling you to attach the Windows debugger. This should be
used only at the request of Synergy/DE Developer Support. See VORTEX_HOST_NOSEM in the
“Environment Variables” chapter of Environment Variables & System Options for more
information.

VTXIPC_SO (OpenVMS)

The VTXIPC_SO logical is set to the full path and filename of vtxipc_so.exe, a shared image
distributed with xfODBC. VTXIPC_SO is set by CONNECT_STARTUP.COM and should not be
changed.

The following environment variable is used by SQL OpenNet when you use xfODBC in a
client/server configuration and is automatically set by the installation.

XFODBCUSR_SO (OpenVMS)

The XFODBCUSR_SO logical is set to the full path and filename of the xfodbcusr_so.exe shared
image. For example:

DEFINE/SYS XFODBCUSR_SO CONNECTDIR:XFODBCUSR_SO.EXE

Note the following:

 XFODBCUSR_SO is automatically set. The xfODBC installation sets the XFODBCUSR_SO
logical in CONNECT_STARTUP.COM, a file that’s read when the system is started.

 The filename must be xfodbcusr_so.exe, and it must be included in the XFODBCUSR_SO
logical setting.

B-1

B
SQL Support

This appendix lists the SQL statements, commands, and functions supported by the Synergy
database driver (vtx4), and documents how they are implemented for xfODBC. Statements,
commands, and functions that are not listed are not supported. Note that this is not intended as a
general guide to SQL.

Many examples in this section are written for the sample database included in the Connectivity
Series distribution. Examples that use the Customers, Orders, Plants, and Vendors tables are written
for this database. For information on setting up this database for xfODBC access, see chapter 2,
“Using the Sample Database As a Tutorial.”

Note that we strongly recommend that you do not use ODBC to update Synergy data. See
“Statements that Modify Data” on page B-46 for notes on updating databases.

Conventions, Names, and Identifier Case B-3

Lists conventions used in this appendix, lists identifier requirements, and describes how the
Synergy database driver changes identifiers to all uppercase unless you enclose them in quotation
marks or square brackets.

Statements that Access Data B-4

Documents the Synergy database driver’s support for the SELECT statement, subqueries, and joins.

Notes on Clauses, Columns, and Aliases B-15

Documents the Synergy database driver’s support for WHERE, ORDER BY, GROUP BY,
HAVING, FROM, FOR UPDATE OF, CASE, and UNION, as well as computed columns, text
columns, table aliases, and column aliases.

Aggregate Functions B-29

Documents the Synergy database driver’s support for aggregate functions, which are functions that
take a group of columns and return a single value.

Scalar Functions B-32

Documents the Synergy database driver’s support for scalar functions, which are functions that
return a single value for each returned row.

Bitwise Functions B-45

Lists bitwise functions supported by the Synergy database driver.

SQL Support

B-2 xfODBC User’s Guide 10.1 (6/13)

Statements that Modify Data B-46

Documents the Synergy database driver’s support for DELETE, INSERT, and UPDATE, and
includes information on record locking and transactions.

Statements that Define the Schema (DDL) B-50

Documents the Synergy database driver’s support for CREATE INDEX, CREATE SYNONYM,
CREATE TABLE, CREATE VIEW, DROP SYNONYM, DROP TABLE, and DROP VIEW.

Statements that Set Options B-57

Documents the Synergy database driver’s support for SQL options that can be set with the SET
OPTION command (LOGFILE, PLAN, MERGESIZE, and so forth).

Restrictions B-64

Lists restrictions to the Synergy database driver’s support for SQL.

ODBC Reserved Words B-65

Lists words reserved for use in ODBC function calls.

SQL Support
Conventions, Names, and Identifier Case

xfODBC User’s Guide 10.1 (6/13) B-3

Conventions, Names, and Identifier Case
Along with the conventions listed in “Manual conventions” on page ix, the following are used in
this appendix:

 SQL constructs, such as commands, functions, and operators, are in uppercase—for example,
SELECT, GROUP BY, and AND.

 Table names, column names, and other non-SQL constructs are in lowercase—for example,
column_id. In your SQL statements, however, capitalization for identifiers must match the
capitalization for the entities they refer to.

Note that identifiers are converted to all uppercase characters unless they are enclosed in quotation
marks (“”) or square brackets ([]). (We recommend using quotation marks rather than brackets.) For
example, table_name is converted to TABLE_NAME in the following:

SELECT * FROM table_name

However, for the next statements, both Col_name and Table_name retain the capitalization
specified in the statement:

SELECT [Col_name] FROM [Table_name]

SELECT "Col_name" FROM "Table_name"

In all cases, however, the case of the identifier must ultimately match the database entity that it
refers to (column name, table name, and so forth). So, if you don’t use quotation marks or square
brackets, the name of the database entity must be in all capital letters, and if you do use quotation
marks or square brackets, the identifier’s capitalization must match the capitalization for the
entity’s name. The following will not work, for example, because the table alias is established as
“O”, (capital letter) while the column name specifies “o” (lowercase):

SELECT "o".or_number FROM orders [O]

xfODBC supports identifiers (column names, table names, etc.) that are up to 30 characters long.
Identifiers must start with an alphabetic character and can include numbers as well as the
underscore characters (_). They can also include some special characters, such as the minus (-) and
plus (+) signs, but if you use these, you must always put quotation marks (“”) around the identifier.

Italicized square brackets indicate that the enclosed keyword or argument is optional—not
bracketed to preserve case as described above. For example, table_alias (which is the
syntax for the table_list argument for SELECT) in the following is enclosed in italicized
square brackets because it is optional. Don’t use square brackets (or quotation marks) in a
SELECT statement’s table list unless you want to preserve case.

[owner_name.]table_name [table_alias]

SQL Support
Statements that Access Data

B-4 xfODBC User’s Guide 10.1 (6/13)

Statements that Access Data
xfODBC supports the following, which enable you to access data:

 SELECT statements (see SELECT below)

 Subqueries (see “Creating subqueries and inline views” on page B-8)

 Joins (see “Joins” on page B-10)

SELECT
The SELECT command enables you to create queries (SQL statements that retrieve data from a
database). It has the following syntax:

SELECT [SKIP n] [TOP n] [ALL|DISTINCT] column_list
FROM table_list
[WHERE search_conditions]
[GROUP BY column_id[, ...]
[HAVING search_conditions]
[ORDER BY sort_specification_1 [ASC|DESC][, sort_specification_2 [ASC|DESC], ...]]
[UNION [ALL] sel_stmt] [...]

where the arguments are as follows:

column_list

One or more column specifications. This can include column names, CASE statements,
functions or other value expressions (which can be literals or calculations—e.g., or_qty * 3).
A column name can be preceded by a table name or by an owner and table name:

[[owner_name.]table_name.]column_name [column_alias]

For information on column aliases, see “Column aliases” on page B-28.

table_list

One or more table or view names. An owner name can precede a table or view name.

[owner_name.]table_name [table_alias]

Note that you can also use inline views (see “Creating subqueries and inline views” on
page B-8). For information on table aliases, see “Table aliases” on page B-27.

search_conditions

One or more search criteria for rows.

SQL Support
Statements that Access Data

xfODBC User’s Guide 10.1 (6/13) B-5

column_id

A column name, a column name preceded by a table name, or a column name preceded by an
owner name and a table name:

[[owner_name.]table_name.]column_name

sort_specification_n

The column name or select list position number that will be used to sort the rows plus an
optional ASC for ascending order (the default) or DESC for descending order.

sel_stmt

A SELECT statement whose results will be combined with other SELECT statements
connected with the UNION operator.

When you create a SELECT statement, you specify which rows and columns you want the
statement to retrieve. You can retrieve a subset of rows from one or more tables, you can retrieve a
subset of columns from one or more tables, and you can link rows from two or more tables.
SELECT statements can contain

 the FROM, WHERE, GROUP BY, HAVING, SELECT, ORDER BY, and FOR UPDATE OF
clauses. See “Notes on Clauses, Columns, and Aliases” on page B-15 for information.

 the UNION operator. See “Notes on Clauses, Columns, and Aliases” on page B-15 for
information.

 aggregate functions, which are functions that return a single value from a group of values (for
example, SUM). See “Aggregate Functions” on page B-29 for information.

 scalar functions, which are functions that return a value for each returned row. See “Scalar
Functions” on page B-32 for information.

 bitwise functions. See “Bitwise Functions” on page B-45 for information.

 expressions, which can be used in the SELECT statement’s column list or in a WHERE clause.

 joins, including inner, outer, and full joins. See “Joins” on page B-10 for information.

 subqueries (including inline views). You can use SELECT statements within SELECT
statements. See “Creating subqueries and inline views” on page B-8 for information.

You can also use

 the asterisk (*) wildcard in place of a column list. To select all of the columns in the tables
specified in table_list, use an asterisk (*). To select all of the columns from one table in
table_list, use the following:

table_name.*

 double quotation marks around identifiers. These instruct the driver to be case-sensitive when
evaluating an identifier.

SQL Support
Statements that Access Data

B-6 xfODBC User’s Guide 10.1 (6/13)

SELECT statements can be used in definitions of views and as subqueries. You can also use them to
create derived tables (inline views) by including them in FROM clauses that are part of SQL92
outer joins. See “Creating subqueries and inline views” on page B-8 and “FROM clauses in SQL92
outer joins” on page B-14.

Note the following:

 To use a SELECT statement, you must have access privileges to all tables accessed by the
statement.

 The SELECT keyword can be preceded by spaces, tab, carriage return, and line feed, but not
by any other character unless the SELECT statement is a subquery. See “Creating subqueries
and inline views” on page B-8.

 SELECT statement clauses are evaluated in the following order: FROM, WHERE,
GROUP BY, HAVING, SELECT, ORDER BY.

 Any select list item consisting of an expression, aggregate function, or scalar function that is
not a single column in the database is assigned a column name as ‘EXPRn’, where n is the
ordinal position of the select list item. You can use an alias to override this assigned column
name.

 You must qualify a column when multiple tables are selected and the same column name is
used in more than one table. For example:

SELECT table1.col_1, table2.col_1 FROM table1, table2

 If a column name is a reserved word, you must enclose the name in double quotes. For
example:

SELECT "date", "order" FROM orders

See “ODBC Reserved Words” on page B-65 for a list of reserved words.

 If the SELECT list (column_list) includes a mix of aggregate functions and value functions or
column names, the value functions and column names must be specified in a GROUP BY
clause.

 We recommend always using an ORDER BY clause. Without it, the order of result sets may
change when you update to a new version of Connectivity Series or even apply a Connectivity
Series patch.

The following select one, several, or all columns from a table:

SELECT col_1 FROM my_table

SELECT col_1, col_2, col_3 FROM my_table

SELECT * FROM my_table

SELECT table1.* FROM table1

SELECT owner_name.table1.* FROM table1

SQL Support
Statements that Access Data

xfODBC User’s Guide 10.1 (6/13) B-7

The following are similar examples with double quotes around some identifiers:

SELECT "COL_1" FROM "MY_TABLE"

SELECT "COL_1", col_2 FROM my_table

SELECT "OWNER_NAME".table1.* FROM table1

SELECT "OWNER_NAME"."TABLE1".* FROM "TABLE1"

The following select one, several, or all columns from two tables:

SELECT col, col_1 FROM table1, table2

SELECT table1.col_1, table2.col_1 FROM table1, table2

SELECT owner_name.table1.col_1, owner_name.table2.col_1
FROM table1, table2

SELECT * FROM table1, table2

SELECT ALL

SELECT ALL returns every row that meets a query’s criteria, even if some rows are duplicates.
This is the default for SELECT statements, so you don’t need to include “ALL”. For example, the
following statements produce identical results:

SELECT ALL or_vendor, or_edate FROM orders
SELECT or_vendor, or_edate FROM orders

SELECT DISTINCT

SELECT DISTINCT returns only one copy of duplicate rows. For example, if the orders table has
two or more records whose or_vendor and or_edate columns are identical, the following returns
only one row for those records.

SELECT DISTINCT or_vendor, or_edate FROM orders

SKIP

SKIP is a sub-clause that specifies how many rows to trim from the beginning of the result set for a
query. SKIP can be used with TOP for paging, which is particularly useful for creating cached
result sets for websites that use ADO.NET.

A SKIP clause must immediately follow the SELECT keyword. The syntax is

SKIP n

where n is a numeric expression. For example, the following returns all but the four tallest plants in
the sample database:

SELECT SKIP 4 DISTINCT in_name
FROM plants
ORDER BY in_maxhigh DESC

SQL Support
Statements that Access Data

B-8 xfODBC User’s Guide 10.1 (6/13)

Note the following:

 SKIP and TOP can be used only once in a query. For example, you cannot use SKIP or TOP in
the main query and then use it again in a subquery.

 If the result set (before SKIP is applied) is equal to or less than n, no rows will be returned.

 If a query has both SKIP and TOP, SKIP is used first to trim the result set, and TOP is applied
if any rows remain.

 SKIP and TOP are evaluated after GROUP BY and ORDER BY clauses.

TOP

TOP is a sub-clause that specifies the number of rows to be returned. The syntax is

TOP n

where n is a numeric expression. For example, the following returns the names of the four tallest
plants in the sample database:

SELECT TOP 4 DISTINCT in_name
FROM plants
ORDER BY in_maxhigh DESC

If the result set (before TOP is applied) is equal to or less than n, all rows are returned. See SKIP on
page B-7 for more information.

Creating subqueries and inline views
A subquery (i.e., a nested query) is a SELECT statement embedded within a SQL statement and
enclosed in parentheses (except in INSERT statements). Like joins, subqueries enable you to query
multiple tables, though there are other uses for subqueries. There are two basic types:

 A scalar subquery returns no more than one column from one row and can be used anywhere
that a scalar value can be used in a WHERE, WHEN (for CASE), or FROM clause. For
example, the subquery in the following returns order numbers for orders where the order price
is greater than the average price for plants in the sample database:

SELECT or_number FROM orders
WHERE or_price > (SELECT AVG(in_price) FROM plants)

 A table subquery can return multiple rows and columns and can be used anywhere a table or
view can be used in a FROM clause. A table subquery in a FROM clause is known as an inline
view. A table subquery can also be used in a WHERE or WHEN clause, in certain conditions
(discussed below), and it can be used in an INSERT statement (see INSERT on page B-47) and
in a SET clause for UPDATE (see UPDATE on page B-48). For example, the following uses an
inline view to create a combined list of zip codes for customers and vendors:

SELECT cust_zip AS all_zips, cust_city AS all_city FROM (
SELECT cust_zip, cust_city FROM customers UNION ALL
SELECT vend_zip, vend_city FROM vendors)

SQL Support
Statements that Access Data

xfODBC User’s Guide 10.1 (6/13) B-9

Note the following:

 xfODBC doesn’t support SELECT ROW, so row subqueries (a type of scalar subquery that
returns only one row) are not supported.

 ORDER BY clauses and aggregates in the select list are supported for inline views, but not for
other subqueries.

 A table subquery can be used in a WHERE or WHEN clause only if it’s preceded by IN or
[NOT] EXISTS or a comparison operator used with SOME, ALL, or ANY. For example, the
following statement uses a table subquery with IN to retrieve the name of every plant currently
on order:

SELECT plants.in_name FROM plants
WHERE plants.in_itemid IN (SELECT or_item FROM orders)

For an example that includes GROUP BY clauses in inline views that are part of a UNION
clause, see GROUP BY on page B-22.

Example subqueries

The following retrieves the customers who currently have orders in the order table:

SELECT customers.cust_name FROM customers
WHERE customers.cust_key IN (SELECT or_customer FROM orders)

The next example, however, does not work because it has a subquery in the select list (which isn’t
supported):

SELECT customer_id, customer_state, (SELECT SUM(quantity) FROM orders
WHERE orders.customer_number=customers.customer_id)

AS orders FROM customers

The next query is similar to the preceding query (although it returns rows with null in the second
column), but in this case the subquery is in the FROM clause, which creates an inline view, so it is
valid.

SELECT o.cust_key, o.cust_state, s.c
FROM customers o, (SELECT or_customer, SUM(or_qty) c FROM orders

GROUP BY or_customer) s
WHERE o.cust_key = s.or_customer

The following example shows another use for subqueries. For this statement, the table subquery
isn’t used to query multiple tables, but it is necessary because aggregate functions (e.g., AVG) can’t
be used in WHEN clauses. (They can’t be used in WHERE or ORDER BY clauses either.)

SELECT in_maxhigh,
CASE

WHEN in_maxhigh > (SELECT AVG(in_maxhigh) FROM plants)
THEN 'Tall'

END
FROM plants

SQL Support
Statements that Access Data

B-10 xfODBC User’s Guide 10.1 (6/13)

Joins
Joins are a way of returning records from two or more tables—in most cases, records that in some
way match. For example, if you have a plant table and an order table, each with a field that stores
vendor IDs, you can use a join to return records that have matching vendors. There are three types
of join: inner, outer, and full.

Inner joins return only matching records. If a record in any table in the join doesn’t have a match in
the other tables, the record is ignored. See “SQL89 inner joins” and “SQL92 inner joins” on
page B-11 for examples. xfODBC supports SQL89 inner joins through the WHERE command and
SQL92 inner joins through the INNER JOIN command.

Outer joins return all records from one table but only records with matches from the other table in
the join. SQL89 syntax doesn’t support outer joins (though some databases have extensions to
SQL89 syntax that enable you to create these), but SQL92 does support these through the LEFT
[OUTER] JOIN and RIGHT [OUTER] JOIN commands.

With SQL92 syntax, you determine which table will supply a full set of records by where you
specify the table in a left outer join or a right outer join:

 Left outer joins return all of the records in the first table of the join and only matching records
from the second table. See “SQL92 left outer joins” on page B-12 for examples.

 Right outer joins return all records in the second table specified in the join and only matching
records from the first table. See “SQL92 right outer joins” on page B-13 for examples.

You can also create full outer joins, which return all records from both tables in the join. SQL89
syntax doesn’t include any special keywords for this, but you can get similar results by using the
UNION operator. SQL92 syntax, however, includes the FULL [OUTER] JOIN keyword.

FULL [OUTER] JOIN table_name ON column1 = column2

where column1 is a column in table_name and column2 is a column in another FROM clause table.
See “SQL92 full joins” on page B-13 for an example.

Note the following for joins:

 Don’t nest joins. Nesting joins may reduce performance.

 We recommend using SQL92 syntax rather than SQL89 syntax, and we don’t recommend
combining the two forms (i.e., using both FROM and WHERE clauses to define the join and
restriction criteria). This will generally reduce performance. See “Avoid mixing SQL92 and
SQL89 syntax” on page 10-11.

SQL Support
Statements that Access Data

xfODBC User’s Guide 10.1 (6/13) B-11

 The join parser doesn’t require SQL92 joins to be enclosed in the ODBC escape sequence. For
example, both of the following are acceptable:

{oj orders RIGHT JOIN vendors ON or_vendor = vend_key}

orders RIGHT OUTER JOIN vendors ON or_vendor = vend_key

 If any field specified in a join is not part of an index segment, the xfODBC driver may create a
temporary index that includes all of the segments in the join. See “How xfODBC uses keys” on
page 10-2 for more information.

For information on optimizing join performance, see “Creating Efficient SQL Statements” on
page 10-9.

SQL89 inner joins

xfODBC supports SQL89 inner joins through the WHERE command. Use a WHERE clause to
specify which columns should match. The following example is a SQL89 inner join. It selects only
those records from the m1 and m2 tables whose id and num columns match.

SELECT
m1.id,
m1.num,
m1.alpha,
m2.id,
m2.num,
m2.alpha

FROM
multiop m1,
multiop2 m2

WHERE
m1.id = 5
AND m1.num = 50
AND m1.id = m2.id
AND m1.num = m2.num

SQL92 inner joins

xfODBC supports SQL92 inner joins through INNER JOIN clauses:

INNER JOIN table_name ON column1 = column2

where column1 is a column in table_name and column2 is a column in another FROM clause table.

SQL Support
Statements that Access Data

B-12 xfODBC User’s Guide 10.1 (6/13)

INNER JOIN returns only records that match records in the other table of the join. For example, the
following query returns only those records from the m1 and m2 tables whose id and num columns
match:

SELECT
m1.id,
m1.num,
m1.alpha,
m2.id,
m2.num,
m2.alpha

FROM
multiop m1

INNER JOIN multiop2 m2
ON m1.id = m2.id
AND m1.num = m2.num

Here’s the same FROM clause using the ODBC escape sequence form:

FROM
multiop m1

{oj INNER JOIN multiop2 m2
ON m1.id = m2.id
AND m1.num = m2.num}

SQL92 left outer joins

xfODBC supports SQL92 left outer joins through LEFT OUTER JOIN clauses:

LEFT [OUTER] JOIN table_name ON column1 = column2

where column1 is a column in table_name and column2 is a column in another FROM clause table.

LEFT [OUTER] JOIN returns all of the records in the first table (the table that precedes “LEFT
OUTER JOIN”) and matching records from the table on the right (the table that follows “LEFT
OUTER JOIN”). For example, the following query returns the specified fields for all records in the
vendors table and any records from the orders table that match the ON criteria.

SELECT
orders.or_item,
orders.or_number,
vendors.vend_name

FROM
{OJ vendors

LEFT OUTER JOIN orders
ON vendors.vend_key = orders.or_vendor}

SQL Support
Statements that Access Data

xfODBC User’s Guide 10.1 (6/13) B-13

The following example returns all orders in the orders table and each corresponding plant name
from the plant table:

SELECT
orders.or_item,
orders.or_number,
plants.in_name

FROM
{OJ orders

LEFT JOIN plants
ON orders.or_item = plants.in_itemid}

SQL92 right outer joins

xfODBC supports SQL92 right outer joins through RIGHT OUTER JOIN clauses:

RIGHT [OUTER] JOIN table_name ON column1 = column2

where column1 is a column in table_name and column2 is a column in another FROM clause table.

RIGHT [OUTER] JOIN returns all of the records in the second table (the table that follows
“RIGHT OUTER JOIN”) and matching records from the first table (the table that precedes
“RIGHT OUTER JOIN”). For example, the following query returns the specified fields for all
records in the vendors table and any records in the orders table that match the ON criteria.

SELECT
orders.or_item,
orders.or_number,
vendors.vend_name

FROM
{OJ orders

RIGHT JOIN vendors
ON vendors.vend_key = orders.or_vendor}

SQL92 full joins

xfODBC supports SQL92 full joins through FULL OUTER JOIN clauses:

FULL [OUTER] JOIN table_name ON column1 = column2

where column1 is a column in table_name and column2 is a column in another FROM clause table.

FULL [OUTER] JOIN returns all records from both the left and right table, whether or not there
are matching values. For example, the following query returns the specified fields for all records in
the vendors and orders tables:

SELECT
o.or_item, o.or_number, v.vend_name

FROM
orders o

FULL JOIN vendors v
ON o.or_vendor = v.vend_key

SQL Support
Statements that Access Data

B-14 xfODBC User’s Guide 10.1 (6/13)

ON clauses in SQL92 outer joins

Each ON clause for a SQL92 outer join should be placed immediately after the table qualifier it
modifies. If this is not the case, as in the following example, you will get an error.

SELECT
o.or_terms,
o.or_odate,
o.or_qty,
p.in_name,
v.vend_name

FROM
{ oj orders o

LEFT JOIN vendors v
LEFT JOIN plants p
ON o.or_vendor = v.vend_key
ON o.or_item = p.in_itemid}

The next example is correctly constructed. Each ON clause follows its qualifier.

SELECT
o.or_terms,
o.or_odate,
o.or_qty,
p.in_name,
v.vend_name

FROM
{ oj orders o

LEFT JOIN vendors v
ON o.or_vendor = v.vend_key

LEFT JOIN plants p
ON o.or_item = p.in_itemid}

FROM clauses in SQL92 outer joins

FROM clauses in SQL92 outer joins can include SELECT statements, which can greatly optimize
performance. If you include a SELECT statement in a FROM clause, you must enclose the entire
SELECT statement in parentheses (), and you must include a table alias for the derived table. For
example:

SELECT
o.or_number,
p.in_itemid,
p.in_name

FROM
(SELECT * FROM orders WHERE orders.or_item < 7) o

INNER JOIN plants p ON o.or_item = p.in_itemid

SQL Support
Notes on Clauses, Columns, and Aliases

xfODBC User’s Guide 10.1 (6/13) B-15

Notes on Clauses, Columns, and Aliases
This section discusses the xfODBC driver’s support for the following:

 WHERE on page B-16

 ORDER BY on page B-21

 GROUP BY on page B-22

 HAVING on page B-23

 FROM on page B-23

 FOR UPDATE OF on page B-24

 CASE on page B-24

 UNION on page B-26

 Computed columns on page B-27

 Text columns on page B-27

 Table aliases on page B-27

 Column aliases on page B-28

For information on optimizing clauses, see “Creating Efficient SQL Statements” on page 10-9.

For information on SKIP and TOP sub-clauses, see SKIP on page B-7 and TOP on page B-8.

SQL Support
Notes on Clauses, Columns, and Aliases

B-16 xfODBC User’s Guide 10.1 (6/13)

WHERE
The WHERE clause enables you to specify selection criteria for an SQL command. You can use the
following operators with the WHERE clause:

For more complex selection criteria, combine multiple WHERE clauses with AND or OR
connectors. For example:

SELECT or_number, or_customer FROM orders WHERE or_customer = 8
AND or_odate = '1993-03-07'

SELECT or_number, or_customer FROM orders
WHERE (or_customer = 16 AND or_odate = '1995-03-03')
OR (or_customer = 8 AND or_odate = '1993-03-07')

WHERE Clause Operators

Name Operator Examples

Equal to = SELECT or_number FROM orders
WHERE or_customer = 8

IS NULL SELECT * FROM orders
WHERE or_sdate IS NULL

Greater than > SELECT or_number FROM orders
WHERE or_customer > 8

Greater than or equal to >= SELECT or_number FROM orders
WHERE or_customer >= 8

Less than < SELECT or_number FROM orders
WHERE or_customer < 8

Less than or equal to <= SELECT or_number FROM orders
WHERE or_customer <= 8

Not equal to <> SELECT * FROM plants
WHERE in_shape <> 'tree'

IS NOT NULL SELECT * FROM orders
WHERE or_sdate IS NOT NULL

SQL Support
Notes on Clauses, Columns, and Aliases

xfODBC User’s Guide 10.1 (6/13) B-17

Note the following:

 A single quote (apostrophe) in column data must be preceded by another single quote. For
example, the following is incorrect:

SELECT cust_gift FROM customers
WHERE cust_name = 'Troy's Trees'

The next query, however, correctly handles this by adding a second single quote:

SELECT cust_gift FROM customers
WHERE cust_name = 'Troy''s Trees'

 You can use OR to connect up to 127 conditions:

WHERE condition_1 OR condition_2 ... OR condition_127

 When comparing date and time columns, make sure you use the correct format. See “Formats
for returned dates and times” on page 8-13 and “Masks for dates and times in SQL statements”
on page 8-15.

Clauses in WHERE clauses
You can also use the following clauses, some of which use subqueries. Note that in the following
exp is short for “expression,” compare_op is short for “comparison operator,” and char_exp, is short
for “character expression.”

ALL

ALL returns true if all values returned by the subquery cause the full clause to be true. Otherwise, it
returns false. ALL has the following syntax:

exp compare_op ALL subquery

where exp is an expression, compare_op is a WHERE clause operator, and subquery is a subquery.

For example, the following returns true if every value produced by the subquery (“SELECT a
FROM b”) equals ‘able’:

...WHERE 'able' = ALL (SELECT a FROM b)

ANY

ANY returns true if any value returned by the subquery causes the full clause to be true. Otherwise,
it returns false. ANY has the following syntax:

exp compare_op ANY subquery

where exp is an expression, compare_op is a WHERE clause operator, and subquery is a subquery.

SQL Support
Notes on Clauses, Columns, and Aliases

B-18 xfODBC User’s Guide 10.1 (6/13)

For example, the following returns true if one of the values produced by the subquery (“SELECT a
FROM b”) equals ‘able’:

...WHERE 'able' = ANY (SELECT a FROM b)

ANY is identical to SOME.

BETWEEN

BETWEEN returns true if a given value is in a given range. BETWEEN has the following syntax:

value_a [NOT] BETWEEN value_b AND value_c

where value_a, value_b and value_c are value expressions.

BETWEEN returns true if value_a >= value_b and value_a <= value_c. Otherwise it returns false.

For example, the following return true:

2 BETWEEN 1 AND 10

10 BETWEEN 1 AND 10

'c' BETWEEN 'a' AND 'm'

The following return false:

11 BETWEEN 1 AND 10

2 NOT BETWEEN 1 AND 10

'c' NOT BETWEEN 'a' AND 'm'

EXISTS

EXISTS returns true if the subquery produces rows. Otherwise it returns false. EXISTS has the
following syntax:

[NOT] EXISTS subquery

For example, the following returns all rows specified by the main query (“SELECT * FROM staff”)
if there is a deptno value that equals 10. If no deptno value equals 10, nothing is returned.

SELECT * FROM staff WHERE EXISTS
(SELECT deptno FROM org WHERE deptno = 10)

SQL Support
Notes on Clauses, Columns, and Aliases

xfODBC User’s Guide 10.1 (6/13) B-19

IN

IN returns true if search_value is in value_set. Otherwise it returns false. IN has the following
syntax:

search_value [NOT] IN (value_set)

were value_set can have up to 127 values separated by commas.

For example, the following return true:

2 IN (1,2,3)

'3' IN ('1', '2', '3')

The following return false:

4 IN (1,2,3)

2 NOT IN (1,2,3)

'3' NOT IN ('1', '2', '3')

LIKE

LIKE searches for a string (search_string) in a character string expression (char_exp). It has the
following syntax:

char_exp [NOT] LIKE search_string [{ESCAPE 'c'}]

Search_string can include the following:

% A wildcard character that represents a string of zero or more
characters. Note that null values are not strings, so the
following returns rows whose item_desc is non-null:

WHERE item_desc LIKE '%'

_ (underscore) Any single character

\ The escape character for %, _, or \

{ESCAPE 'c'} A definition for an escape character, where c is the escape
character that can be used in search_string. Note that the
braces are optional. For example:

char_exp LIKE string ESCAPE '-'

SQL Support
Notes on Clauses, Columns, and Aliases

B-20 xfODBC User’s Guide 10.1 (6/13)

The following example uses a WHERE clause operator with the string wildcard (%):

SELECT cust_key, cust_name FROM customers
WHERE cust_name LIKE 'P%'

The following uses the backslash (\) escape character to prevent the percent sign (%) from being
interpreted as an escape character:

SELECT item_no FROM history
WHERE item_desc
LIKE 'LESS 15\% DISCOUNT'

The following statement defines ^ as an escape character and uses this to prevent the percent sign
(%) from being interpreted as an escape character:

SELECT item_no FROM history
WHERE item_desc
LIKE 'LESS 15^% discount'

ESCAPE '^'

SOME

Identical to ANY. See ANY on page B-17.

Note that escape characters in LIKE clauses must either be escaped by another escape
character, or they must precede an escapable character. Otherwise the escape character is
discarded in the search, causing the query results to be incorrect. (Most likely, no rows will
be returned.) Note that no error is generated in this situation.

For example, both of the following clauses are incorrect. For the first example, the driver will
discard the backslashes (\) and look for 1231995. For the second example, the driver will
discard the hyphen (-) and look for 123ABC.

...WHERE order_date LIKE '12\3\1995'

...WHERE account_no LIKE '123-ABC' {ESCAPE '-'}

The following, however, are correct in this respect:

...WHERE order_date LIKE '12\\3\\1995'

...WHERE order_date LIKE '^%9_' {ESCAPE '^'}

SQL Support
Notes on Clauses, Columns, and Aliases

xfODBC User’s Guide 10.1 (6/13) B-21

Nulls
If an expression returns a null value for a row, xfODBC will return that row. For example, the
following returns all plant information where the color is not white, including rows where in_color
is null:

SELECT * FROM plants WHERE in_color <> 'white'

Note that if >, >=, <=, or < is used to compare “null” to a literal, no rows will be returned.

For information on how xfODBC interprets null values, see “Zeros, spaces, and null values” on
page 3-17.

ORDER BY
The ORDER BY clause sorts the result set. Rows are sorted according to the columns listed in the
ORDER BY clause: the first column listed is the primary sort criterion, the second column
determines the order within duplicate values in the first, etc. You can specify ascending or
descending order by including ASC or DESC. Ascending is the default. Here are some examples:

SELECT * FROM table ORDER BY col_1

SELECT * FROM table ORDER BY col_1 ASC

SELECT * FROM table ORDER BY col_1 DESC

SELECT * FROM table ORDER BY col_1, col_2

SELECT * FROM table ORDER BY col_1 ASC, col_2 DESC, col_3

Note the following:

 You can use integer column positions in an ORDER BY clause (1 for the first item in the
column list, 2 for the second, and so forth). For example:

SELECT or_customer, SUM(or_customer) FROM orders GROUP BY or_customer
ORDER BY 1

 For compound queries (queries containing UNION or UNION ALL), ORDER BY clauses
must use positions, rather than explicit expressions, and can appear only in the last query
(though an ORDER BY will order all rows in the result set). For example:

SELECT cust_name FROM customers UNION ALL
SELECT vend_name FROM vendors ORDER BY 1

 See “Column aliases” on page B-28 for information on restrictions to aliases that can affect
ORDER BY clauses.

SQL Support
Notes on Clauses, Columns, and Aliases

B-22 xfODBC User’s Guide 10.1 (6/13)

GROUP BY
The GROUP BY clause enables you to collate rows with identical column values (which may be
aggregated values) and return them as a single row. For example, the following statement returns
five rows from the sample database even though there are eight rows of data in the table. (Four rows
have the same or_price value, so these rows are combined into one row.)

SELECT or_price, SUM(or_qty) FROM orders GROUP BY or_price
ORDER BY 2

The next example shows how inline views can include GROUP BY clauses:

SELECT t1.c1, t1.c2, t1.c3
FROM (

SELECT 1 AS c3, COUNT(cust_key) AS c1, cust_state AS c2
FROM customers il1 GROUP BY cust_state
) t1

UNION
SELECT t2.c1, t2.c2, t2.c3
FROM (

SELECT 1 AS c3, COUNT(vend_key) AS c1, vend_state AS c2
FROM vendors il2 GROUP BY vend_state) t2

The next example returns an average for in_price for each grouping created by the GROUP_BY
clause. So when this is run against the sample database for Connectivity Series, it returns two
averages, one for each in_type value (1 and 2).

SELECT in_type, AVG(in_price) FROM plants GROUP BY in_type

GROUP BY is also used to apply aggregate functions to groups of rows. For example, the result set
for the following includes a row for each customer, a column for the customer’s number, and a
column with the sum of or_qty values for the customer.

SELECT or_customer, SUM(or_qty) FROM orders GROUP BY or_customer

(If the column lists contains only aggregate functions, rows in the result set are treated as a single
group for the aggregate functions. For example, “SELECT SUM(or_qty) FROM orders” returns the
sum of all or_qty values in each row of the result set.)

Note the following:

 xfODBC supports up to eight GROUP BY columns.

 GROUP BY is not supported for UNION clauses, and it is not supported for SELECT *
statements. For example, the following will cause an error (“Non aggregates require a GROUP
BY expression”):

SELECT * FROM orders GROUP BY or_odate

Additionally, note that a subquery can’t have a GROUP BY clause if an outer query uses *.

SQL Support
Notes on Clauses, Columns, and Aliases

xfODBC User’s Guide 10.1 (6/13) B-23

 All columns in the select list must be in the GROUP BY clause if there is one. (Columns
derived from aggregate calculations are the exception. You don’t need to include these in the
GROUP BY clause. See the examples above.) Statements that don’t adhere to this will cause
“Column(#) is out of range” errors (where # is a meaningless number).

 If the column list includes an aggregate function, all non-aggregate items in the list must be
specified in a GROUP BY clause. If all items in a statement’s column list are aggregate
functions, rows in the result set are treated as a single group for the aggregate functions.

 Note that a GROUP BY clause must contain an actual column name or number, not an
expression. For example, the following will cause a syntax error:

SELECT in_name FROM plants GROUP BY LCASE(in_name)

To work around this, put the expression in a subquery that creates an alias for the expression,
and then use the alias with GROUP BY:

SELECT "Common Name"
FROM (SELECT LCASE(in_name) "Common Name" FROM plants)
GROUP BY "Common Name"

 See “Column aliases” on page B-28 for information on restrictions to aliases that can affect
GROUP BY clauses.

HAVING
The HAVING clause enables you to place limitations on groups returned by a GROUP BY clause.
(This is particularly useful for criteria that include an aggregate function because a WHERE clause
cannot contain an aggregate function.) For example:

SELECT or_customer, AVG(or_qty) FROM orders
GROUP BY or_customer HAVING AVG(or_qty) > 65

FROM
The FROM clause enables you to specify which tables a query will retrieve data from. You can
specify views, base tables, and tables that result from operations that create tables: queries,
subqueries (inline views), and so forth. For example, the following example selects all columns
from two tables:

SELECT * FROM table1, table2

Note the following:

 You can optimize performance for SQL92 outer joins (full outer, left outer, and right outer) by
using inline views, which are SELECT statements in FROM clauses.

 If you use a SELECT statement in a FROM clause (i.e., an inline view), you must enclose the
entire SELECT statement in parentheses ().

 You can use table aliases to simplify table references. See “Table aliases” on page B-27.

SQL Support
Notes on Clauses, Columns, and Aliases

B-24 xfODBC User’s Guide 10.1 (6/13)

FOR UPDATE OF
The FOR UPDATE OF clause enables you to select rows that match a statement’s selection criteria.
If the clause is part of a transaction, it locks selected rows. It has the following syntax:

sel_statement where_clause FOR UPDATE OF [column_list]

where sel_statment is a SELECT statement, where_clause is a WHERE clause, and column_list is
an optional list of columns that will be updated. (Note that column_list is vestigial for xfODBC and
has no effect on the statement.) For example, the following statement locks rows for which
in_itemid equals 20:

SELECT in_itemid, in_zone FROM plants WHERE in_itemid = 20
FOR UPDATE OF

Note that a FOR UPDATE clause can only be at the end (the last clause) of a SELECT statement.

CASE
CASE evaluates a list of conditions and returns the result for the condition that is true. If no
condition is true, the result specified in the ELSE clause is returned or, if there is no ELSE clause,
null is returned. It has the following syntax:

CASE
WHEN boolean_1 THEN result_1
[WHEN boolean_2 THEN result_2
...
WHEN boolean_n THEN result_n]
[ELSE else_result]

END

or

CASE case_exp
WHEN value_1 THEN result_1
[WHEN value_2 THEN result_2
...
WHEN value_n THEN result_n]
[ELSE else_result]

END

where arguments are as follows:

boolean_*

Boolean expressions. These can be constructed with any operator, clause, etc., that can be used
in a WHERE clause (subqueries, IN clauses, BETWEEN clauses, and so forth). See WHERE
on page B-16.

SQL Support
Notes on Clauses, Columns, and Aliases

xfODBC User’s Guide 10.1 (6/13) B-25

result_*

Expressions whose results are the possible return values for the CASE statement.

case_exp

An expression that’s compared to value_* arguments to determine which result to return.

value_*

Values that are compared for equality to case_exp to determine which result to return.

else_result

An expression that is returned if no boolean_* argument is true or if no value_* argument
matches case_exp.

Note that for the second syntax form, the comparison is always a test for equality—i.e., if
case_exp = value_2, CASE returns result_2.

The following example uses the first syntax form:

SELECT in_itemid, in_name,
CASE

WHEN in_color IS NULL THEN 'No color'
WHEN CONCAT(in_color, in_shape) = 'blue vine' THEN 'Blue vine'
WHEN in_size > 10 THEN 'Large'
WHEN in_size BETWEEN 5 AND 10 THEN 'Medium'
WHEN in_size IN (1,2,3,4,5) THEN 'Small'
ELSE '0'

END AS mycol
FROM plants

The next example uses the second syntax form:

SELECT in_itemid, in_name,
 CASE in_size
 WHEN 10 THEN 'Large'
 WHEN 5 THEN 'Medium'
 WHEN 1 THEN 'Small'
 ELSE 'Other'
 END AS mycol
 FROM plants

The next example uses a subquery. The subquery is necessary because aggregate functions (AVG in
this case) can’t be used in WHEN clauses. (They can’t be used in WHERE or ORDER BY clauses
either.)

SELECT in_maxhigh,
CASE

WHEN in_maxhigh > (SELECT AVG(in_maxhigh) FROM plants)
THEN 'Tall'

END
FROM plants

SQL Support
Notes on Clauses, Columns, and Aliases

B-26 xfODBC User’s Guide 10.1 (6/13)

Note the following:

 All results, including else_result must have the same data type.

 Conditions are evaluated in order. Boolean_1 is evaluated before boolean_2, value_1 is
evaluated before value_2, and so forth.

UNION
The UNION operator combines the results of multiple SELECT statements into one result set.
It has the following syntax:

sel_1 UNION [ALL] sel_2 [...UNION [ALL] sel_n]

where sel_1 through sel_n are SELECT statements.

If you include ALL, duplicate rows are included in the result set. If you omit ALL, duplicate rows
are omitted and results are sorted by the first column.

The following returns the cities for all customers and all vendors in alphabetical order. Note,
however, that if there’s a duplicate city, only one occurrence of the city will be returned:

SELECT cust_city FROM customers UNION
SELECT vend_city FROM vendors

If you add ALL to the same query, all customer and vendor cities will be returned, even duplicates.

SELECT cust_city FROM customers UNION ALL
SELECT vend_city FROM vendors

Note the following:

 Columns for all queries must be identical.

 There must be the same number of columns for each query.

 The data types must be compatible.

 Only one ORDER BY clause is allowed with a UNION, and this must follow the final
SELECT statement. An ORDER BY clause in a UNION applies to the entire result set.

 GROUP BY clauses are not supported for UNION clauses.

 Using UNION without ALL is more efficient than using SELECT DISTINCT with
UNION ALL.

See “Creating subqueries and inline views” on page B-8 for an example of a UNION clause in an
inline view.

SQL Support
Notes on Clauses, Columns, and Aliases

xfODBC User’s Guide 10.1 (6/13) B-27

Computed columns
An expression can be used within a SELECT statement’s column list. For example:

SELECT or_price + or_price * .1
FROM orders

SELECT or_price, '*', or_qty, '=', or_price * or_qty
FROM orders

SELECT or_price + TO_NUMBER(or_item)
FROM orders

Text columns
One or more text columns (text strings enclosed in single quotes) can be added to a SELECT
statement’s list. For example:

SELECT or_price, '*', or_qty, '=', or_price * or_qty
FROM orders

Table aliases
To make table references simpler, you can assign an alias to a table. (This is also know as a
“correlation name” or a “range variable.”) Table aliases last for the duration of a statement.

To create a table alias, add the alias after the table name in a SELECT statement:

SELECT column_list FROM table_name [AS] alias

You can enclose the alias in double quotes (“”) or square brackets ([]) if you want to protect the
alias from change—for example, if you want to preserve the case of characters in the alias. If the
alias has a space, you must use double quotes or square brackets.

In the following example, cust is the alias for the customer table, and ord is the alias for the orders
table.

SELECT cust.cust_key, ord.or_number
FROM public.customers cust, public.orders ord
WHERE cust.cust_key = ord.or_customer

This could also be written with AS:

SELECT cust.cust_key, ord.or_number
FROM public.customers AS cust, public.orders AS ord
WHERE cust.cust_key = ord.or_customer

SQL Support
Notes on Clauses, Columns, and Aliases

B-28 xfODBC User’s Guide 10.1 (6/13)

Note the following:

 Table aliases are optional for base tables and views, but are required for tables produced by
subqueries.

 Table aliases last only for the duration of the statement’s processing.

 Table aliases defined in inline views can be used only in the inline view.

Column aliases
To make column references simpler, you can assign an alias (correlation name) to a column.
Column aliases last for the duration of a statement and are used as the column headings in the
result set.

To create a column alias, add the alias after the column name. You can enclose the alias in double
quotes (“”) or square brackets ([]) if you want to protect the alias from change (for example, if you
want to preserve the case of characters in the alias). If the alias has a space, you must use double
quotes or square brackets.

For example:

SELECT customers.cust_zip zipcode, customers.cust_tcode taxcode
FROM customers

SELECT customers.cust_zip AS zipcode, customers.cust_tcode
AS taxcode

FROM customers

SELECT customers.cust_zip "zipcode", customers.cust_tcode
AS "taxcode"
FROM customers

SELECT customers.cust_zip [zipcode], customers.cust_tcode [taxcode]
FROM customers

Note the following:

 Do not enclose an alias in single quotes.

 If an alias is identical to a column name that is specified in a scalar function, including that
alias in a GROUP BY or ORDER BY clause may cause the result set to be sorted in an
unexpected way. (The alias or a literal used in the function, rather than the column, may be
used as the ORDER BY or GROUP BY criterion.)

 Column aliases from inline views can be used only in the outermost SELECT statement. (They
can’t be used in the inline view.)

SQL Support
Aggregate Functions

xfODBC User’s Guide 10.1 (6/13) B-29

Aggregate Functions
An aggregate function is a function that derives a single value from a set of values from a column.
Aggregate functions must be used with SELECT or HAVING clauses. For example:

SELECT in_color, COUNT(in_color) FROM plants GROUP BY in_color

SELECT or_customer, AVG(or_qty) FROM orders
GROUP BY or_customer HAVING AVG(or_qty) > 65

The following, however, cause errors because an aggregate function cannot be in a GROUP BY
clause (unless it’s contained in a HAVING clause), an ORDER BY clause, or a WHERE clause:

SELECT or_customer, AVG(or_qty) FROM orders
GROUP BY AVG(or_qty)

SELECT or_customer, AVG(or_qty) FROM orders
GROUP BY or_customer ORDER BY AVG(or_qty)

SELECT or_customer, AVG(or_qty) FROM orders
WHERE AVG(or_qty) > 65 GROUP BY or_customer

If a function is listed in the SELECT statement’s column list, you can reference it by its ordinal
position in the column list or in a WHERE or ORDER BY clause. (Note that the SQL syntax parser
does not currently allow aggregate functions, other than select list functions, to be referenced in
ORDER BY clauses.)

Also note that aggregate functions cannot be used with individual columns in a SELECT
statement’s column list unless accompanied by a GROUP BY command that groups by individual
column. For example:

SELECT or_customer, SUM(or_qty) FROM orders GROUP BY or_customer

SELECT or_customer, COUNT(or_customer), SUM(or_qty) FROM orders
GROUP BY or_customer

See GROUP BY on page B-22 for information about GROUP BY.

AVG

This function returns the average of the values in the specified column. It has the following syntax:

AVG(col)

For example, the following returns the average or_qty value for rows in the orders table:

SELECT AVG(or_qty) FROM orders

The next example returns the or_qty averages for each customer (or_customer):

SELECT or_customer, AVG(or_qty) FROM orders GROUP BY or_customer

SQL Support
Aggregate Functions

B-30 xfODBC User’s Guide 10.1 (6/13)

COUNT

This function returns the number of rows that don’t have null values in the specified column. It has
the following syntax:

COUNT(col)

COUNT(*) returns a count of all of the rows in a table that meet WHERE clause criteria (or a count
of all rows if there is no WHERE clause).

The following statement returns a count of rows whose in_size value is greater than 5 and whose
in_color value is not equal to null:

select count(in_color) from plants where in_size > 5

MAX

This function returns the largest number in the specified column. It has the following syntax:

MAX(col)

For example, the following returns the largest or_qty value in the orders table:

SELECT MAX(in_itemid) FROM plants

The next example returns the largest or_qty value for each group of rows grouped by the
or_customer code:

SELECT or_customer, MAX(or_qty) FROM orders GROUP BY or_customer

Note that MAX is not automatically optimized, so there is no performance advantage if col is a
primary key. For better performance when getting the maximum value of a key column, use TOP
(which is optimized) and an ORDER BY clause with DESC. For example:

SELECT TOP 1 in_itemid FROM plants ORDER BY in_itemid DESC

MIN

This function returns the smallest number in the specified column. It has the following syntax:

MIN(col)

For example, the following returns the smallest or_qty value in the orders table:

SELECT MIN(in_itemid) FROM plants

The next example returns the smallest or_qty value for each group of rows grouped by the
or_customer code:

SELECT or_customer, MIN(or_qty) FROM orders GROUP BY or_customer

SQL Support
Aggregate Functions

xfODBC User’s Guide 10.1 (6/13) B-31

Note that MIN is not automatically optimized, so there is no performance advantage if col is a
primary key. For better performance when getting the minimum value of a key column, use TOP
(which is optimized) and an ORDER BY clause. For example:

SELECT TOP 1 in_itemid FROM plants ORDER BY in_itemid

SUM

This function returns the sum of the numbers in col, a column that contains numeric values. Null
rows are ignored. It has the following syntax:

SUM(col)

For example, the following returns the sum of all or_qty values for the orders table:

SELECT SUM(or_qty) FROM orders

The next example returns the sum of or_qty values for each group of rows grouped by the
or_customer code:

SELECT or_customer, SUM(or_qty) FROM orders GROUP BY or_customer

SQL Support
Scalar Functions

B-32 xfODBC User’s Guide 10.1 (6/13)

Scalar Functions
The following scalar functions are supported by xfODBC. Note that parameters with “exp”
represent expressions or the results of expressions (e.g., str_exp represents a string expression or
the string produced by an expression). Also note that scalar functions are not designed to evaluate
null values, so it’s best to include an AND IS NOT NULL clause when using a scalar function.

ABS

This function returns the absolute value of a numeric expression, and has the following syntax:

ABS(num_exp)

For example, if num_exp produces the value -5, the ABS function will return 5.

ASCII

This function returns the ASCII code (an integer value) for the leftmost character in str_exp, and
has the following syntax:

ASCII(str_exp)

For example, if str_exp produces the string “Main Street Plants”, ASCII will return 77, the ASCII
decimal code for M.

CAST

This function converts an expression (exp) or null to the specified data type, and has the following
syntax:

CAST(exp|NULL AS datatype)

where datatype is one of the following:

CAST also supports the database data types listed in CREATE TABLE on page B-53—for
example, integer and number(n). Note, however, that no truncation occurs and that n in the
following is ignored: numeric(n), char(n), and varchar(n).

If the specified data type cannot store the entire result, the data will either be truncated or you will
get a “data truncated” warning, and the field that caused the warning will have an undetermined
value. For alphanumeric data types, the data will be truncated. For numeric data types, the data will
be truncated only if truncating removes the fractional portion of the numeric data.

SQL_BIGINT SQL_DOUBLE SQL_TIME

SQL_BIT SQL_FLOAT SQL_TIMESTAMP

SQL_CHAR SQL_INTEGER SQL_TINYINT

SQL_DATE SQL_NUMERIC SQL_VARCHAR

SQL_DECIMAL SQL_SMALLINT

SQL Support
Scalar Functions

xfODBC User’s Guide 10.1 (6/13) B-33

The following example returns term codes as SQL_NUMERIC values.

SELECT CAST(or_terms AS SQL_NUMERIC)
FROM orders WHERE or_odate < '1995-01-01'

The next example returns null values as integer values. (By default, null values are returned as char
values.) Without the CAST statement, the CASE statement wouldn’t work because all of its return
values, including the return value for ELSE, must have the same data type.

SELECT CASE in_shape
WHEN 'tree' THEN 1
ELSE CAST(NULL AS SQL_INTEGER)
END

FROM plants

CHAR_LENGTH or CHARACTER_LENGTH

This function returns the number of characters or bytes in a string and has the following syntax:

CHAR_LENGTH(exp)

or

CHARACTER_LENGTH(exp)

If the expression (exp) results in a character data type, this function returns the number of
characters in the resulting string. Otherwise, this function returns the number of bytes in the
resulting string. This number is the smallest integer that’s greater than or equal to the number of bits
divided by 8.

CHR

This function returns the ASCII character equivalent of numeric_exp. It has the following syntax:

CHR(numeric_exp)

CONCAT

This function returns a string that’s the concatenation of str_exp1 and str_exp2. It has the following
syntax:

CONCAT(str_exp1, str_exp2)

CONVERT

This function converts an expression (exp) to a specified data type (datatype) and has the following
syntax:

CONVERT(exp, datatype)

where datatype is one of the keywords listed for the CAST scalar function (see CAST on
page B-32).

SQL Support
Scalar Functions

B-34 xfODBC User’s Guide 10.1 (6/13)

Note the following:

 You may need to use the ODBC escape sequence (“{fn” and an ending brace “}”) with this
scalar function:

SELECT or_number, {fn CONVERT(or_number, SQL_BIGINT)},
{fn CONVERT(or_number, SQL_SMALLINT)}

FROM orders

 Data may be truncated if the specified data type cannot store the entire result of the expression.
For example, if you convert a bigint to a decimal, you may lose precision.

CURDATE

This function returns the current date. It has no argument:

CURDATE()

CURTIME

This function returns the current time. It has no argument:

CURTIME()

DATABASE

This function returns the name of the connected database. It has no argument:

DATABASE()

DAYNAME

This function returns the name of the day of the week for the date specified by date_exp. It has the
following syntax:

DAYNAME(date_exp)

For example, if the value of or_edate in the sample database is 2000-10-01, the following will
return “Sunday”.

SELECT DAYNAME(or_edate) FROM orders WHERE or_vendor=44

DECODE

This function returns different values depending on the value of an expression (col). It has the
following syntax:

DECODE(col, exp1, return1[, exp2, return2]...[, default])

If col matches an exp* value (exp1, exp2, etc.), DECODE returns the corresponding return* value.
If col doesn’t match an exp* value, DECODE returns the default value or NULL if default isn’t
passed.

Note that all return expressions must be the same data type.

SQL Support
Scalar Functions

xfODBC User’s Guide 10.1 (6/13) B-35

The following example returns ‘RED ZONE’ if the value for in_zone is 2. If the value for in_zone
is 4, the statement returns ‘BLUE ZONE’. If in_zone is neither 2 nor 4, the statement returns
‘BLACK ZONE’, the default.

SELECT DECODE(in_zone, 2, 'RED ZONE', 4, 'BLUE ZONE', 'BLACK ZONE')
FROM plants

GREATEST

This function returns the greatest of a specified set of values (exp, exp2, etc.). It has the following
syntax:

GREATEST(exp, [exp2, ...])

For example, when used with the sample database distributed with Connectivity Series, the
following query returns 2000-10-01, which is the value for or_odate. (For order number 7, or_odate
is 2000-10-1 and or_edate is 1993-03-07.)

SELECT GREATEST(or_odate, or_edate) FROM orders
WHERE or_number=7

HOUR

This function returns the hour portion of the return value for a time expression (time_exp). It has the
following syntax:

HOUR(time_exp)

The hour is returned as an integer in the range of 0-23.

IFNULL

Depending on whether a specified expression is null, this function either returns the expression
itself or a different value. It has the following syntax:

IFNULL(exp, return_if_null)

If exp is null, IFNULL returns return_if_null. If exp is not null, exp is returned. Return_if_null must
have a data type that’s compatible with the data type of exp. For example, the following will not
work:

SELECT IFNULL(or_sdate, '1999-04-05') FROM orders

The next example, however, is correct:

SELECT IFNULL(or_sdate, {d '1999-04-05'}) FROM orders

Note that xfODBC interprets zero-length strings as nulls, so clauses like the following are
unnecessary: IFNULL(strng, ‘’).

SQL Support
Scalar Functions

B-36 xfODBC User’s Guide 10.1 (6/13)

INSTR

This function returns the position of the first character of a string (str_exp2) within another string
(str_exp1). It has the following syntax:

INSTR(str_exp1, str_exp2[, n[, m]])

If the n argument is not specified, INSTR searches str_exp1 and returns the position of the first
character in the first occurrence of str_exp2. If the n argument is specified, INSTR begins the
search n characters into str_exp1. If the n argument is negative, the search begins n characters from
the end of str_exp1. If m is specified, the position of the mth occurrence of str_exp2 in str_exp1 is
returned. If str_exp2 does not exist in str_exp1, this function returns 0.

LCASE

This function converts any uppercase characters in a string (str_exp) to lowercase characters, and
returns the resulting string. It has the following syntax:

LCASE(str_exp)

LEAST

This function returns the least of the specified values (exp, exp2, etc.). It has the following syntax:

LEAST(exp, [exp2, ...])

For example, when used with the sample database distributed with Connectivity Series, the
following query returns 1993-03-07, which is the value for or_edate. (For order number 7, or_odate
is 2000-10-1 and or_edate is 1993-03-07.)

SELECT LEAST(or_odate, or_edate) FROM orders WHERE or_number=7

LEFT

This function returns the first n characters of a string (str_exp). It has the following syntax:

LEFT(str_exp, n)

For example, if str_exp produces the string “ablebaker” and the value of n is 4, LEFT returns
“able”.

Note that you must use the ODBC escape sequence ("{fn" and an ending brace "}") with this scalar
function. For example:

SELECT {fn LEFT(cust_name, 4)} FROM customers

LENGTH

This function returns the number of characters in a string (str_exp) minus any trailing blanks. It has
the following syntax:

LENGTH(str_exp)

SQL Support
Scalar Functions

xfODBC User’s Guide 10.1 (6/13) B-37

LOCATE

This function returns the position of the first character of a string (str_exp1) in a string (str_exp2).
It has the following syntax:

LOCATE(str_exp1, str_exp2[, n[, m]])

If the n argument is not specified, LOCATE searches str_exp2 and returns the position of the first
character in the first occurrence of str_exp1. If the n argument is specified, LOCATE begins the
search n characters into str_exp2. If the n argument is negative, the search begins n characters from
the end of str_exp2. If m is specified, the position of the mth occurrence of str_exp1 in str_exp2 is
returned. If str_exp1 does not exist in str_exp2, this function returns 0.

LTRIM

This function returns a string (str_exp) with leading blanks removed. It has the following syntax:

LTRIM(str_exp)

NOW

This function returns the current date and time. It has no argument:

NOW()

NVL

For a given expression (exp1), this function either returns the same expression (if it’s not null) or a
different expression (exp2) if it is null. (Exp2 must have the same data type as exp1.) It has the
following syntax:

NVL(exp1, exp2)

This function enables you to create queries like the following that substitute a string or value for
null.

SELECT in_name, NVL(in_color, 'n/a')
FROM plants

POSITION

This function returns the position of a character expression (char_exp1) in another character
expression (char_exp2). It has the following syntax:

POSITION(char_exp1 IN char_exp2)

If char_exp1 does not exist in char_exp2, This function returns 0.

SQL Support
Scalar Functions

B-38 xfODBC User’s Guide 10.1 (6/13)

REPLACE

This function searches for a string (str_exp2) in a string (str_exp1) and replaces occurrences of the
found string with another string (str_exp3). It has the following syntax:

REPLACE(str_exp1, str_exp2, str_exp3)

For example, the following returns “baker st.”:

REPLACE('baker street', 'street', 'st.')

REVERSE

This function reverses the order of the characters returned for a string expression. It has the
following syntax:

REVERSE(string_exp)

For example, the following returns “cba”:

REVERSE('abc')

RIGHT

This function returns a given number of characters (n) from the end of a string (str_exp). It has the
following syntax:

RIGHT(str_exp, n)

For example, if the value of str_exp is “Border Imports”, and n is set to 7, RIGHT returns
“Imports”.

Note that you must use the ODBC escape sequence (“{fn” and an ending brace “}”) with this scalar
function. For example:

SELECT {fn RIGHT(cust_name, 4)} FROM customers

ROUND

This function rounds a numeric expression (num_exp). It has the following syntax:

ROUND(num_exp[, int_exp])

If int_exp is not specified, ROUND returns num_exp rounded to a whole number. If int_exp is
passed and is positive, ROUND rounds num_exp to int_exp places to the right of the decimal point.
If int_exp is negative, num_exp is rounded to int_exp places left of the decimal point.

SQL Support
Scalar Functions

xfODBC User’s Guide 10.1 (6/13) B-39

RTRIM

This function removes trailing blanks from a string (str_exp), and returns the resulting string. It has
the following syntax:

RTRIM(str_exp)

SQRT

This function returns the square root of a numeric expression (numeric_exp). It has the following
syntax:

SQRT(numeric_exp)

This function supports only non-negative real numbers. A negative number will cause an error
during SQLFetch. To avoid such errors, we suggest you add a WHERE clause that eliminates rows
that have negative values for the column passed to SQRT.

SUBSTR or SUBSTRING

This function returns the substring of a string expression (str_exp) that begins at a given position (n)
and has a given length (m characters long). It has the following syntax:

SUBSTR(str_exp, n[, m])

or

SUBSTRING(str_exp, n[, m])

If n equals 0, the entire string is returned. If n is a negative number, this function begins n characters
(or spaces) from the end of the string and returns m characters. For example, if the database has
“Main Street Plants” as a customer name, the following statement returns “Street” for that
customer.

SELECT SUBSTR(cust_name, -13, 6) FROM customers

If you don’t specify m, SUBSTR returns all characters from the character in the n position to the
end of the string.

SYSDATE

This function returns the current system date and time for the client system. It has no argument:

SYSDATE

TO_CHAR

This function converts date or numeric column data into a character string. It has the following
syntax:

TO_CHAR(col[, format])

SQL Support
Scalar Functions

B-40 xfODBC User’s Guide 10.1 (6/13)

If col is a date column and no format argument is passed, the default format, YYYY-MM-DD, is
used. If col is a numeric column, you can use the following to specify the format:

0 To add a leading or trailing zero to the result, add a zero to the format string. For
example:

Field value Mask Return value

1.49 '$000,000.00' '$000,001.49'

other numerals To specify a placeholder for a digit in the field value, add any other number
besides 0. If there is no corresponding digit in the field, the numeral will be
replaced by a space in the result. For example:

Field value Mask Return value

1.49 '$999,999.99' ' $1.49'

symbols and
punctuation
marks

To include a symbol or punctuation mark in the result, add the symbol or
punctuation mark to the format string. Note that if any symbol other than a
dollar sign ($) or decimal point will be replaced by a blank space if it is in the
first position. (In other words, if no digits precede the symbol.) A dollar sign or
decimal point will be included in the resulting string even if it is in the first
position. For example:

Field value Mask Return value

65000 '*99999' ' 65000'

65000 '99999*' '65000*'

65000 '$99999' '$65000'

.65000 '.99999' '.65000'

.65000 '000.00%' '000.65%'

Also note that if the result contains a period with no digits preceding it, a zero
will precede the period. For example:

Field value Mask Return value

.35 '$99999.99' ' $0.35'

.35 '99999.99' ' 0.35'

B To instruct the driver to replace a zero with a blank space if the zero is a leading
zero, put a capital B in the position of the zero. If a B is in any other position, a
zero in that position will remain. For example:

Field value Mask Return value

0035 'BBB.BBB' ' 35.000'

other letters To include a letter in the result (other than capital B), add the letter to the format
string. Note if the letter is not preceded by any digits, the letter will be replaced
by a blank space.

SQL Support
Scalar Functions

xfODBC User’s Guide 10.1 (6/13) B-41

If col is a date/time column, you can use the following format masks:

Date Masks

Mask Description

AM, PM, am, pm Two-digit meridian indicator (AM, PM, am, or pm). Case of first character
determines case of indicator.

Da Single-digit day of the week (1-7). Weeks start on Sunday.

DAYa Full name of day in uppercase characters

Daya Full name of day with initial character capitalized

daya Full name of day in lowercase characters

DD, dd Two-digit day of the month (01-31)

DDD Three-digit day of the year (001-356)

DYa Uppercase three character day

Dya Three character day with initial character capitalized

dya Lowercase three character day

HH, HH12 Two-digit hour (00-11)

HH24 Two-digit hour (00-23)

J Julian day (does not support BC dates)

MI Two-digit minute (00-59)

MM, mm Two-digit month (01-12)

MON Uppercase three character month

Mon Three character month with initial character capitalized

mon Lowercase three character month

MONTHa Full name of the month in uppercase characters

Montha Full name of the month with initial character capitalized

montha Full name of the month in lowercase characters

Qa Single-digit quarter (1-4)

RR Two-digit year from another century (a sliding window format based on 20)

SQL Support
Scalar Functions

B-42 xfODBC User’s Guide 10.1 (6/13)

To add the letters (th, rd, and so forth) needed to create ordinal numbers, such as “5th” or “3rd”, add
“th” to any uppercase digit mask. For example, if or_odate is 1993-03-01, the following will return
2ND because 1993-03-01 was a Monday.

SELECT TO_CHAR(or_odate, 'Dth') FROM orders WHERE or_number = 3

Given the same date, the next example returns “060th day of 1993”:

SELECT to_char(or_odate, 'dddth "day" of YYYY') FROM orders
WHERE or_number = 3

Note that “day” is in quotation marks in the last example. If you want the resulting string to include
mask characters, enclose the character(s) in quotation marks.

The following example retrieves or_odate values and formats them in month, day, four-digit year
order (MMDDYYY):

SELECT to_char (or_odate, 'MMDDYYYY') FROM orders

TO_DATE

This function converts a string expression (str_exp) to a date or datetime data type. It has the
following syntax:

TO_DATE(str_exp[, format])

If no format is specified, the default date format is used (YYYY-MM-DD). For example:

SELECT TO_DATE(or_odate) FROM orders

SS Two-digit second (00-59)

SSSSS Number of seconds past midnight (00000-86399)

UUUUUU Microsecond

Wa Single-digit week of month (1-4)

WWa Two-digit week of year (01-52)

YY Two-digit year

YYYY Four-digit year

a. Not supported by TO_DATE.

Date Masks (Continued)

Mask Description

SQL Support
Scalar Functions

xfODBC User’s Guide 10.1 (6/13) B-43

For information on formats, see the date masks in TO_CHAR on page B-39 and note the following:

 TO_DATE supports all of the masks listed except MONTH, Month, month, D, DAY, Day, day,
DY, Dy, dy, Q, W, and WW.

 The AM, PM, am, and pm masks work only if the TO_DATE clause is cast as
SQL_TIMESTAMP or SQL_TIME. For example, the following returns “1990-06-10
22:10:02.000000”. (Note that the returned hour would be 10 if the value had no AM/PM
indicator and the mask didn’t include an AM, PM, am, or pm mask.)

SELECT CAST(TO_DATE('10-06-1990 10:10:02 PM',
'DD-MM-YYYY HH:MI:SS AM') AS SQL_TIMESTAMP)
FROM dual

TO_NUMBER

This function converts the results of a string or character expression (exp) into a numeric value.
It has the following syntax:

TO_NUMBER(exp)

Note that even though exp can be a character or a string, it must contain data. For example:

SELECT or_number, {fn TO_NUMBER(or_item)} FROM orders

TRANSLATE

This function replaces characters in a string. It has the following syntax:

TRANSLATE(str_exp, str_exp_from, str_exp_to)

TRANSLATE returns str_exp after replacing each character in str_exp_from with the character(s)
in the corresponding position in str_exp_to. For example, the following TRANSLATE clause
results in the string “1bcd23”:

TRANSLATE('AbcdEF', 'AEF', '123')

If str_exp_to is empty, all characters in str_exp_from are removed. The following, for example,
results in the string “def”:

TRANSLATE('abcdef', 'abc', '')

Note that str_exp_from cannot be larger than str_exp_to. (If it is, you will get an error: “Illegal
parameters for function TRANSLATE”.) Str_exp_from, however, can be smaller than str_exp_to, as
long as the number of characters in str_exp_from is a multiple of the number of characters in
str_exp_to. For example, the following will work (if desc is large enough to hold the result). Every
left angle bracket (<) will be replaced with <. Every right angle bracket (>) will be replaced
with >.

TRANSLATE(desc,'<>','<>')

Note that if you want to change the entire value for a column (rather than just selected characters),
use DECODE.

SQL Support
Scalar Functions

B-44 xfODBC User’s Guide 10.1 (6/13)

TRUNC

This function removes the fractional portion of a number (num_exp) or returns a date/time value
(datetime_exp) with the time portion set to zeros. It has the following syntax:

TRUNC(num_exp|datetime_exp)

For example, if the value for a numeric field in a given record is 1.05, applying the TRUNC
function to the field will return the value 1, as in the following:

SELECT TRUNC(or_price) FROM orders WHERE or_number=3

The next series of SQL statements results in “1993-03-01 00:00:00”:

CREATE TABLE date_table(datetime_field datetime)

INSERT INTO date_table (datetime_field)
VALUES ('1993-03-01 17:02:20')

SELECT TRUNC(datetime_field) FROM date_table

UCASE

This function converts lowercase characters in a string expression (str_exp) to uppercase characters
and returns the resulting string. It has the following syntax:

UCASE(str_exp)

USER

This function returns the name of the user for the data source, which may be different than the name
used to log in to the data source. It has no argument:

USER()

SQL Support
Bitwise Functions

xfODBC User’s Guide 10.1 (6/13) B-45

Bitwise Functions
The following is a list of bitwise functions supported by xfODBC. Note that “exp” represents an
expression that results in an numeric value. xfODBC converts non-integer numeric values into
integers before performing a bitwise operation.

BITAND

This function returns the result of a bitwise AND operation performed on two numeric values. It
has the following syntax:

BITAND(num_exp1, num_exp2)

For example, the following query returns 1 (0001 AND 1111 = 0001).

SELECT BITAND(1, 15) FROM dual

BITOR

This function returns the result of a bitwise OR operation performed on two numeric values. It has
the following syntax:

BITOR(num_exp1, num_exp2)

For example, the following query returns 15 (0010 OR 1101 = 1111).

SELECT BITOR(2, 13) FROM dual

BITXOR

This function returns the result of a bitwise exclusive OR operation performed on two numeric
values. It has the following syntax:

BITXOR(num_exp1, num_exp2)

For example, the following query returns 14 (0001 XOR 1111 = 1110).

SELECT BITXOR(1, 15) FROM dual

SQL Support
Statements that Modify Data

B-46 xfODBC User’s Guide 10.1 (6/13)

Statements that Modify Data
xfODBC supports the following SQL statements that modify data:

 DELETE on page B-47

 INSERT on page B-47

 UPDATE on page B-48

Note the following:

 For updating Synergy databases, we strongly recommend using a Synergy application
that’s designed to efficiently maintain database integrity. If you use an ODBC-enabled
application to update a Synergy database, you may run into record-locking issues.

 We strongly recommend that you prevent applications that use the Microsoft Jet
database engine (including Microsoft Access and Query) from updating Synergy
databases. Failure to do so may result in unsupportable situations. These applications
often have record locking issues (they may lock more than just the record that’s being
updated), and there are often no referential checks or triggers to ensure database
integrity. In addition, these applications may allow users to make bulk changes without
your control. (Different versions of Jet will give you different results, and though we
recommend at least Jet 4 service pack 8, Synergy/DE installations do not update Jet.)

SQL Support
Statements that Modify Data

xfODBC User’s Guide 10.1 (6/13) B-47

DELETE
This command deletes a row, a group of rows, or all rows in a table. It has the following syntax:

DELETE FROM table_name [table_alias] [WHERE search_condition]

where table_name is the name of a table or view, table_alias is an alias, and search_condition is the
selection criteria for the rows.

For example, the first statement below deletes all rows in mytable. The second deletes only rows
that meet the WHERE clause criteria.

DELETE FROM mytable

DELETE FROM mytable WHERE col_1 > 2 OR col_2 < 4

Note that DELETE cannot be used with a view. Use it with the base table instead.

INSERT
This command inserts one or more rows into a table. It has the following syntax;

INSERT INTO table_name [(col_1[, col_2, …])]
VALUES (value_1[, value_2...])

or

INSERT INTO table_name [(col_1[, col_2, …])]
subquery

where

table_name is the name of the table that the rows will be added to.

col_# are columns in table_name that values will be specified for.

value_# are values to be inserted.

subquery is a SELECT statement whose results will be inserted.

The first form of INSERT syntax inserts a single row into a table. The second form inserts as many
rows as are returned by the subquery.

If you don’t list columns (i.e., if you omit col_1, col_2, ...), you must supply a value for each
column in the table (table_name). Either include a value_# for each column, or make sure the select
list for subquery includes an item for each column. The order of values (value_#) or subquery select
list items must match the order of the columns in table_name. For example, the following includes
a value_# for each column in the ORDERS table for the sample database:

INSERT INTO orders
VALUES (11, 42, 1, 24, 5, 2.55, '01', 1993-04-18, null,

2000-10-01, 586455)

SQL Support
Statements that Modify Data

B-48 xfODBC User’s Guide 10.1 (6/13)

If you do list columns (col_1, col_2, ...), the specified values (value_#) or the items in the select list
for subquery must correspond to the specified columns. For example:

INSERT INTO mytable (col_1, col_2) VALUES (1, 1)

INSERT INTO orders (or_number, or _item, or_price)
SELECT 12, in_itemid, in_price FROM plants

WHERE in_name = 'Wedelia'

Note that if you list columns, columns you leave out of the list are set to null, so if a column can’t
accept null values, you must include it in the column list. Additionally, if table_name includes an
overlay column that is not read-only and is not set by the INSERT, the overlay column is set to null,
which sets all of the fields included in the overlay to null. To prevent this, set overlay columns to
read-only by setting their corresponding repository fields to read-only. Then regenerate the system
catalog.

Note the following for both syntax forms:

 You must use single quotes to specify string values.

 INSERT cannot be used with a view. Use it with the base table instead.

UPDATE
This command changes a single row, groups of rows, or all of the rows in a table. You can specify
the rows you want to change and a new value. The new value can be a constant or an expression.
UPDATE has the following syntax:

UPDATE table_name [table_alias] SET column = value|subquery [[, column = value|subquery]...]
[WHERE condition]

where

table_name is the is the name of the table or a view for the table that will be updated.
(If table_name is a view, the underlying table will be updated.)

table_alias is an alias for the table or view.

column is a column in table_name.

value is the value (or an expression that results in a value) that column will be set to.

subquery is a subquery whose results will be used to update column. Note that subqueries in
SET clauses must use SELECT DISTINCT to ensure only one value is returned for the
column.

condition is the criteria used to determine if a row will be updated.

SQL Support
Statements that Modify Data

xfODBC User’s Guide 10.1 (6/13) B-49

For example:

UPDATE mytable SET col_3 = 'Fine'

UPDATE mytable SET col_3 = 'Fine' WHERE col_1 > 2

UPDATE mytable SET col_2 = 3, col_3 = 'Fine' WHERE col_2 > 2

UPDATE orders SET
or_vendor = (SELECT DISTINCT vend_key FROM vendors

WHERE vend_name = 'Border Imports'),
(or_item, or_price) = (SELECT DISTINCT in_itemid, in_price

FROM plants
WHERE in_name = 'Wedelia')

WHERE or_number = 3

Note the following:

 UPDATE cannot be used with a view. Use it with the base table instead.

 For Synergy ISAM files, you can’t use UPDATE to change a value in a non-modifiable key
column. To change a value in a key column, you must delete the row and then insert a new row
that contains the change.

SQL Support
Statements that Define the Schema (DDL)

B-50 xfODBC User’s Guide 10.1 (6/13)

Statements that Define the Schema (DDL)
xfODBC supports the following SQL statements that define the schema:

 CREATE INDEX on page B-51

 CREATE SYNONYM on page B-52

 CREATE TABLE on page B-534

 CREATE VIEW on page B-55

 DROP SYNONYM on page B-55

 DROP TABLE on page B-56

 DROP VIEW on page B-56

SQL Support
Statements that Define the Schema (DDL)

xfODBC User’s Guide 10.1 (6/13) B-51

CREATE INDEX
The CREATE INDEX command creates an index for a specified table. It has the following syntax:

CREATE [UNIQUE] INDEX index_name ON table_name
(column_name [ASC|DESC][, column_name [ASC|DESC]]...)

where

index_name is the name of the index that will be created. UNIQUE specifies that no two rows
of the index can have the same value.

table_name is the name of the table that the index will be created for.

column_name is the name of the column to create the index on. ASC|DESC specifies the sort
direction for the column (ascending or descending).

For example:

CREATE INDEX my_key1 ON public.orders (or_vendor DESC)

CREATE INDEX my_key1 ON public.orders (or_vendor, or_item)

Note the following:

 CREATE INDEX works only with ISAM files and is supported only after the initial CREATE
TABLE and before the first INSERT.

 If you specify more than one column_name, the index key is built using the columns in the
order that they are listed in the statement.

 For existing tables, if you use CREATE INDEX with an existing table, the file for the table is
opened (if it isn’t already open) and a temporary index is created. This index will last for the
life of the connection.

 For new tables, see the notes for CREATE TABLE on page B-53 and note that you must
execute the CREATE INDEX statement before any SQL statement on the new table you create.
If you don’t, the default key on the first column is used as a primary key with duplicates
allowed. Once the file is created and you execute the CREATE INDEX statement, you must
reorganize the data file manually.

 For both new and existing tables on OpenVMS, each column must have the same sort direction
(ascending or descending).

SQL Support
Statements that Define the Schema (DDL)

B-52 xfODBC User’s Guide 10.1 (6/13)

CREATE SYNONYM
The CREATE SYNONYM command creates a synonym, which is an alternate name for a table or
view. It has the following syntax:

CREATE SYNONYM [owner_name.]synonym_name FOR
[owner_name.]object_name

where

owner_name is the name of the schema that will contain the synonym. If you don’t specify
owner_name, the synonym is created in your default schema.

synonym_name is the name of the synonym you are creating.

object_name is the name of the object (table or view) that the synonym will be created for.

Note the following:

 For every table in a system catalog, xfODBC creates a default synonym that consists only of
the table name—no owner name. (For example, for the public.orders table in the sample
database, xfODBC creates the synonym “orders”.) When you create a synonym for a table,
your synonym overwrites the default synonym, so you won’t be able to use it anymore. For
example, if you issue the following commands,

SELECT * FROM orders

CREATE SYNONYM newname FOR public.orders

this statement will result in an error:

SELECT * FROM orders

 If you drop a synonym you’ve created for a table, xfODBC re-creates the default synonym.

SQL Support
Statements that Define the Schema (DDL)

xfODBC User’s Guide 10.1 (6/13) B-53

CREATE TABLE
The CREATE TABLE command creates a table and its columns. It creates ISAM files for the table
and adds table information to the system catalog. CREATE TABLE has the following syntax:

CREATE TABLE [owner.]table_name
(column_definition [, column_definition]...)

where table_name is the name of the table to be created, and column_definition is the following:

column_name data_type [NOT NULL]

Data_type must be one of the following. Note that these SQL data types are not related to Synergy
DBL types; instead they are the SQL ODBC data types we support within ODBC only. (The only
data types that can be mapped directly in a Synergy application are char/varchar type to alpha,
smallint to i2, and int to i4. Other than these, none of the data types can be directly used in
non-SQL Connection Synergy applications.)

CREATE TABLE Data Types

Data_type Size, Described as…

char[(n)] n (default is 1, maximum is 4000) SQL_VARCHAR

date 10 (YYYY-MM-DD) SQL_TYPE_TIMESTAMP

datetime 19 (YYYY-MM-DD HH:MI:SS) SQL_TYPE_TIMESTAMP

decimal[(p[,s])] p is precision (default is 10, maximum is 28)
s is scale (default is 0, maximum is 28)

SQL_DECIMAL

double 16 (equivalent to decimal(16,6)) SQL_FLOAT

integer 10 SQL_INTEGER

number[(p[,s])] p is precision (default is 10, maximum is 28)
s is scale (default is 0, maximum is 28)

SQL_DECIMAL

numeric[(p[,s])] p is precision (default is 10, maximum is 28)
s is scale (default is 0, maximum is 28)

SQL_DECIMAL

real 8 (equivalent to decimal(8,6)) SQL_DECIMAL

smallint 5 SQL_SMALLINT

time 8 (HH:MI:SS) SQL_TYPE_TIMESTAMP

timestamp 19 (YYYY-MM-DD HH:MI:SS) SQL_TYPE_TIMESTAMP

varchar[(n)] n (default is 1, maximum is 4000) SQL_VARCHAR

SQL Support
Statements that Define the Schema (DDL)

B-54 xfODBC User’s Guide 10.1 (6/13)

NOT NULL prevents a column from being updated with null values and values that xfODBC
considers null. See “Preventing null updates and interpreting spaces, zeros, and null values” on
page 3-27.

For example:

CREATE TABLE mytable (col_1 integer NOT NULL, col_2 char(10),
col_3 decimal(4), col_4 decimal(5,2))

Note the following:

 A default key will be created on the first column. (Duplicates are allowed, but no modification
of key values are allowed.)

 Files are created with the first SELECT or INSERT to a table, not with the CREATE TABLE
statement.

 Filenames consist of the owner name, the percent sign (%), the table name, and .ISM and .IS1
extensions. For example, if you login as public and create a table named ORG, the
PUBLIC%ORG.ISM and PUBLIC%ORG.IS1 files are created in the first datasource path
directory.

 Filenames are in all uppercase characters. If you use DBLCASE with ‘l’ option, filenames are
converted to lowercase, and the Synergy driver will not open the new table files. For
information on this environment variable, see DBLCASE in the “Environment Variables”
chapter of Environment Variables &s System Options.

 If you use NOT NULL for a column, that column must be included in every INSERT statement
for the table.

 If you overwrite the system catalog (with the -c dbcreate option or the “Clear and re-create
catalog” DBA option), you won’t be able to use xfODBC to access a table created with
CREATE TABLE unless you added the table information to the repository before regenerating.
The CREATE TABLE command does not add table information to the repository.

SQL Support
Statements that Define the Schema (DDL)

xfODBC User’s Guide 10.1 (6/13) B-55

CREATE VIEW
The CREATE VIEW command creates a logical view of one or more tables or one or more views.
(You can use joins to include multiple views or tables.) Views contain data from tables, have
columns, and otherwise appear as tables, but they’re not the actual database tables. You can use
views to present table information in different ways and to enable users to view data without having
access to the actual database tables.

CREATE VIEW has the following syntax:

CREATE VIEW [user_name.]view_name (view_col [, ...])
 AS sel_stmnt

where

user_name is the table owner name.

view_name is the name of the resulting view.

view_col is the name of the column in the view. Column names are generally optional, but they
are required if more than one column in the resulting view has the same name (usually because
of a join) or if a column is derived from an arithmetic expression, function, or constant value.
Column names may also be assigned in the SELECT statement by assigning correlation names
to the columns. Note that if you do name columns, you must name them all, and they must all
have different names.

sel_stmnt is a SELECT statement.

For example:

CREATE VIEW contacts (Company, Contact, Phone)
AS SELECT cust_name, cust_contact, cust_phone
FROM customers

The following uses a join:

CREATE VIEW cust_orders AS
SELECT orders.or_item, orders.or_number, customers.cust_name
FROM {OJ public.orders LEFT OUTER JOIN public.customers
ON orders.or_customer = customers.cust_key}

Note that views cannot be used to update, insert, or delete rows.

DROP SYNONYM
The DROP SYNONYM command deletes a synonym. It has the following syntax:

DROP SYNONYM [owner_name.]synonym_name

where owner_name is the name of the schema that contains the synonym, and synonym_name is the
name of the synonym you want to delete.

SQL Support
Statements that Define the Schema (DDL)

B-56 xfODBC User’s Guide 10.1 (6/13)

DROP TABLE
The DROP TABLE command removes a table. It has the following syntax.

DROP TABLE [owner_name.]table_name

where owner_name is the name of the schema that contains the table, and table_name is the name
of the table or view you want to delete.

DROP VIEW
The DROP VIEW command deletes a view. It has the following syntax:

DROP VIEW [owner_name.]view_name

where owner_name is the name of the schema that contains the view, and view_name is the name of
the view you want to delete.

Note the DROP TABLE command can also drop views.

SQL Support
Statements that Set Options

xfODBC User’s Guide 10.1 (6/13) B-57

Statements that Set Options
The SET OPTION command enables you to set SQL options. Note that you can either set these by
including them in a SQL statement run from the third-party application that accesses Synergy data
or by including them in a query processing options file, which is a text file that the
GENESIS_INITSQL environment variable is set to. (There is an exception: xfODBC ignores
TMPINDEX settings in query processing options files.) For more information, see “Creating a file
for query processing options” on page 8-17.

SET OPTION
The SET OPTION command sets SQL options. It has the following syntax:

SET OPTION option_type param1

or

SET OPTION option_type param1 param2

where option_type, param1, and param2 are the following:

SQL Options

Option_type Param1 Param2 Description

COMPSORT ON|OFF Sets sort page compression. By default COMPSORT is ON.

DATETIME [n] format_str Enables you to modify the conversion masks used to interpret
dates and times that are part of SQL statements. See “Notes
on DATETIME” on page B-60.

ERROR ON|OFF Records internal error information for use by Synergy/DE
Developer Support. To use this, LOGFILE must also be set.
By default ERROR is OFF.

EXPR ON|OFF Records internal expression information for use by
Synergy/DE Developer Support. To use this option, LOGFILE
must also be set.
By default EXPR is OFF.

HASH ON|OFF Records internal hash information for use by Synergy/DE
Developer Support. To use this, LOGFILE must also be set.
By default HASH is OFF.

SQL Support
Statements that Set Options

B-58 xfODBC User’s Guide 10.1 (6/13)

HEAPBLOCKSIZE bytes Sets the minimum heap block size (in bytes) used to allocate
memory. (Larger blocks may be allocated.) This is set to
32768 by default.
We don’t recommend changing this, but you can set it to any
value from 0 to 1000000 (inclusive). Larger sizes require less
CPU overhead but may result in excessive memory use. If
you set this to zero, heap blocks are allocated in the exact
sizes needed.

LOGFILE ‘filename’ Sets the name and location of the debugging log file.
Generally this file is used in conjunction with PLAN to record
information on the index(es) used for a query. The other
logging options (ERROR, EXPR, HASH, TRACE, and TREE)
are for use by Synergy/DE Developer Support.

MAXOPTLOOP max_combos Limits the number of ways the query optimizer will try to
optimize a query that has a multi-table join. Setting this option
may enable you to reduce the time it takes to process the
query.
By default, max_combos is set to 100, which limits the query
optimizer to trying 100 configurations. You can, however, set
it to any positive number, or you can set it to 0, which turns off
this feature, allowing the optimizer to try any number of
combinations.

MERGESIZE max_rows (Windows only) Optimizes SELECT statements that have one
or more OR clauses and one or more AND clauses. See
“Notes on MERGESIZE” on page B-61.

OPTIMIZE ON|OFF Enables you to control whether or not optimization is used. By
default OPTIMIZE is ON.

PLAN ON|OFF Records indexes used for a query. To use this option,
LOGFILE must also be set.
By default PLAN is OFF.
See “Notes on PLAN” on page B-61.

SQL Options (Continued)

Option_type Param1 Param2 Description

SQL Support
Statements that Set Options

xfODBC User’s Guide 10.1 (6/13) B-59

PREOPT ON|OFF Optimizes SELECT statements that have an IN clause or an
OR clause that is part of an AND clause. For example:
SELECT myfield FROM mytable
WHERE id=1
AND num IN (48,49,50)

or
SELECT myfield FROM mytable
WHERE id=1
AND (num=48 OR num=49

OR num=50)
When set to ON (the default), the fields on both sides of the
AND clause (id and num in the example) are included in the
key to optimize the statement. When set to OFF, the field for
the IN or OR side of the AND clause is omitted from the key.

SORTPAGES totalpages mempages Sets the amount of disk and memory storage used for sort
operations for subsequently opened cursors. See “Notes on
SORTPAGES” on page B-63.

TMPINDEX ON|OFF Enables or disables temporary indexes for inner joins.
(Temporary indexes are used only for inner joins.) By default,
TMPINDEX is on. Note that this option will be ignored if it’s in
a query processing options file (a file specified by the
GENESIS_INITSQL environment variable).

TRACE ON|OFF Records internal trace information for use by Synergy/DE
Developer Support. To use this, LOGFILE must also be set.
By default TRACE is OFF.

TREE ON|OFF Records internal tree information for use by Synergy/DE
Developer Support. To use this, LOGFILE must also be set.
By default TREE is OFF.

SQL Options (Continued)

Option_type Param1 Param2 Description

SQL Support
Statements that Set Options

B-60 xfODBC User’s Guide 10.1 (6/13)

The following are some example settings:

SET OPTION DATETIME 0 'DD-MM-YYYY HH:MI'
SET OPTION DATETIME 1 'DD-MM-YYYY'
SET OPTION DATETIME 2 'HH:MI'
SET OPTION LOGFILE 'mylogfile'
SET OPTION MAXOPTLOOP 100
SET OPTION MERGESIZE 0
SET OPTION TRACE ON
SET OPTION PLAN ON
SET OPTION SORTPAGES 8000 2000
SET OPTION TMPINDEX ON

Note that if you use SDMS logging as you run SET OPTION commands, you’ll see begintx/endtx
pairs in the log file. This is the correct and expected behavior.

Notes on DATETIME
This option enables you to modify the conversion masks used to interpret dates and times that are
part of SQL statements. Dates and times in SQL statements are strings and must be converted to the
xfODBC driver’s internal format. This command works with SQL Connection when using the
Synergy Database driver (VTX4), and it works with xfODBC. (This option is ignored, however, if
you put it in a query processing options file specified by the GENESIS_INITSQL environment
variable.)

There are four masks. By default they are set to the following:

The xfODBC driver attempts to use the 0 mask first. If this doesn’t match the data, it tries the 1
mask. If that doesn’t match, it tries the 2 mask, and finally it tries the 3 mask.

To modify one of these masks, use the n parameter to specify which mask to set. If you don’t
specify the n parameter, the 0 mask is set by default.

For information on the characters you can include in the format_str string, see the date masks listed
in TO_CHAR on page B-39.

For information on setting the xfODBC display format for dates, see chapter 8, “Configuring Data
Access.”

0 YYYY-MM-DD HH:MI:SS

1 YYYY-MM-DD

2 HH:MI:SS

3 YYYY-MM-DD HH:MI:SS.UUUUUU

SQL Support
Statements that Set Options

xfODBC User’s Guide 10.1 (6/13) B-61

Notes on MERGESIZE
This optimizes SELECT statements that have one or more OR clauses by evaluating each side of
each OR clause as a separate SELECT statement and then combining the results (in a multimerge
operation). This works only when keys are available to optimize each side of each OR clause. And
note that in some cases, this feature could impair performance. The max_rows argument specifies
the maximum number of rows that can be returned when a statement is optimized with multimerge.

Max_rows must be either 0 (which turns this feature off) or a positive numeric value from 100 to
999999. (Anything from 1 to 99 will cause a runtime error.)

 If the result set of an optimized statement is larger than max_rows, an error is generated.

 If the statement is not optimized with multimerge, the max_rows limit doesn’t apply.

By default MERGESIZE is enabled (the default setting is 10000) because some applications
automatically generate the kind of statements that MERGSIZE optimizes. For example, if you use
Microsoft Access to issue a query that selects all of the columns in a table, Access generates a
SELECT statement with a series of OR clauses that repeatedly specify key segments.

Note the following:

 With each row allowed by the max_rows value, xfODBC uses six bytes of memory, so setting
max_rows to a large value doesn’t generally affect performance.

 You can also set this option for a DSN by setting the “Max number of rows” field in the
xfODBC Setup dialog box, the dialog box that enables you to add and configure xfODBC
DSNs. For more information, see “Adding a user or system DSN” on page 8-5.

Notes on PLAN
To find out which indexes are used for a query, use SET OPTION PLAN in conjunction with SET
OPTION LOGFILE. This generates a log file that includes a “Pushed key#” line that lists the index
used to optimize the query, and it includes a table that lists index information. For example, if you
create a query for the sample database (distributed with Connectivity Series) so that it selects rows
from the VENDORS table where VEND_RTYPE = 1 and VEND_KEY < 44, your log file will
contain something like the following:

PUBLIC.VENDORS has 4 keys, Table/Buffer: 0/0
Key NKC Unq Nul Col/Dty/Dir/Name
--- --- --- --- ---
0 1 Y N 0/2/A/VEND_KEY
1 1 Y N 0/2/A/VEND_KEY
2 2 Y N 1/2/A/VEND_RTYPE 0/2/A/VEND_KEY
3 1 Y N 11/98/D/ROWID

SQL Support
Statements that Set Options

B-62 xfODBC User’s Guide 10.1 (6/13)

Execution plan

Tables 1
Keys used 1
Columns pushed ... 2
ANDs not pushed .. 0
Plan chosen 3 of 4

Fetch node for table: 'PUBLIC.VENDORS'
Cursor# 2
Buffer# 0
Table# 0
Pushed key# 2, Col/Dty/Dir/Name: 1/2/A/VEND_RTYPE 0/2/A/VEND_KEY
KeySeg 0 oper .. =
Constant dty: 2, flg: 0, len: 2, 1

KeySeg 1 oper .. <
Constant dty: 2, flg: 0, len: 2, 44

In this case, the index used for the query (listed on the “Pushed key#” line) is 2. To find out what
this is, look for “2” in the Key column of the table. The KeySeg lines under “Pushed key#” list
segment information for the index and correspond to the segments listed on the “Pushed key#” line.
The first segment listed on this line is considered segment 0, the second is considered segment 1,
and so on. So, for the example above, KeySeg 0 refers to VEND_RTYPE, and KeySeg 1 refers to
VEND_KEY.

Note that you can also use this information to get key of reference (KRF) information. To do this,
you’ll need to run the following query:

SELECT a.i_table, a.i_name, a.i_type, a.columns, a.keynum,
b.x_name, b.x_position

FROM genesis_indexes a, genesis_xcolumns b
WHERE (a.i_name=b.x_index)

AND (a.i_table=b.x_table)
AND (a.i_owner=b.x_owner)
AND (a.i_database=b.x_database)
AND (a.i_table='table_name')

ORDER BY 5, 2, 7

where table_name is the case-sensitive name of the table used in the query. Then count down the
rows in the result set (starting with 0 for the first row) until you get to the number listed in as the
Pushed key#. Then, for the corresponding key of reference in the Synergy ISAM file, look at the
KEYNUM value for the row.

SQL Support
Statements that Set Options

xfODBC User’s Guide 10.1 (6/13) B-63

For our example query, the index number is 2, but what’s the KRF? To find out, run the query
documented above, replacing table_name with VENDORS (use all capital letters). This should
return the following:

I_TABLE I_NAME I_TYPE COLUMNS KEYNUM X_NAME X_POSITION
VENDORS KEY0 U 1 0 VEND_KEY 0
VENDORS $_VTX_TAG_VIX_0001 U 1 1 VEND_KEY 0
VENDORS TAG_KEY U 2 1 VEND_RTYPE 0
VENDORS TAG_KEY U 2 1 VEND_KEY 1

Now count down the rows, starting from 0 and ending with the number listed as Pushed key#,
which is 2. For our example, count

 the KEY0 row as 0.

 the $_VTX_TAG_VIX_0001 row as 1.

 the first TAG_KEY row as 2 (there are two returned rows for TAG_KEY, one for each
segment).

Look at the KEYNUM value for TAG_KEY (which is 1). This value is the key of reference in the
Synergy ISAM file.

Notes on SORTPAGES
SORTPAGES sets the amount of disk and memory storage used for sort operations for subsequently
opened cursors. This overrides the “Total” and “In memory” DSN settings (see “Adding a user or
system DSN” on page 8-5).

The totalpages argument sets the number of pages to use, and mempages is the number of these
pages kept in memory. (Pages are 4,096-byte blocks.) Totalpages must be greater than or equal to
mempages. The default value for totalpages is 10000, and the default value for mempages is 1000.
Note that memory for SORTPAGES is allocated for every subsequently opened cursor even if no
sort is performed for a cursor.

You can set SORTPAGES any time after connecting, but once it is set, the specified memory is
allocated until SORTPAGES is reset or a cursor is closed. An application uses the sum of the
memory specified for all concurrently open cursors.

On Windows, vtxnetd uses the sum of memory specified by SORTPAGES for every open cursor
for every connected application. Though heap memory is freed for reuse when a cursor closes, the
memory used for the vtxnetd process (reported as private bytes in Task Manger) does not decrease
while vtxnetd is running.

SQL Support
Restrictions

B-64 xfODBC User’s Guide 10.1 (6/13)

Restrictions
The following are some of the restrictions to xfODBC’s support of SQL. For more, see the
Connectivity Series release notes (REL_CONN.TXT) and the Synergy/DE restrictions file
(RESTRICT.TXT).

 The ORDER BY column must be referenced by SELECT column position when accompanied
by a GROUP BY clause. See ORDER BY on page B-21.

 GROUP BY is not supported for UNION clauses.

 Columns specified in a GROUP BY clause must be included in the select list and columns
specified in the select list must be included in the GROUP BY clause. See GROUP BY on
page B-22 for information.

 Only one ORDER BY clause is allowed with a UNION, and this must follow the final
SELECT statement. An ORDER BY clause in a UNION applies to the entire result set.

Additionally, xfODBC does not support the following:

 Field-level access controls. (Instead, xfODBC enables you to set access levels for tables and
groups, which determine the access levels for users. See “Setting Security Levels” on
page 8-2.)

 ALTER TABLE

 CREATE INDEX (supported after the initial CREATE TABLE and before the first INSERT,
but at no other time)

 DROP INDEX

 Expressions in ORDER BY column

 “FROM” in the UPDATE [FROM] command

 Multi-table updates

 ROW_NUMBER and the OVER clause

SQL Support
ODBC Reserved Words

xfODBC User’s Guide 10.1 (6/13) B-65

ODBC Reserved Words
The following words are reserved for use in ODBC function calls. To ensure compatibility with
drivers that support the core SQL grammar, you should avoid using any of these keywords in
column or table names. If you do use a reserved word, you must enclose it in double quotes.

ADD DELETE LENGTH SET
ALL DESC LIKE SKIP
ALTER DISTINCT LOCATE SMALLINT
AND DOUBLE LTRIM SQRT
ANY DROP MAX SUBSTR
AS DUMP MIN SUBSTRING
ASC ELSE NCHAR SUM
ASCII END NOT SYNONYM
AVG ESCAPE NOW SYSDATE
BETWEEN EXISTS NULL TABLE
BY FLOAT NUMBER THEN
CASE FOR NUMERIC TIME
CAST FROM NVARCHAR TIMESTAMP
CHAR FULL NVL TO
CHAR_LENGTH GRANT OF TO_CHAR
CHARACTER GREATEST OFF TO_DATE
CHARACTER_LENGTH GROUP ON TO_NUMBER
CHECK HAVING OPTION TOP
CHR HOUR OR TRANSLATE
COLUMN IDENTIFIED ORDER TRUNC
COMMIT IFNULL OUTER TRUNCATE
CONCAT IN PASSWORD UCASE
CONNECT INDEX POSITION UNION
CONVERT INITCAP PRECISION UNIQUE
COUNT INNER PRIMARY UPDATE
CREATE INSERT PRIVILEGES USER
CURDATE INSTR PROCEDURE VALUES
CURTIME INT REAL VARCHAR
DATABASE INTEGER RENAME VARYING
DATE INTO RESOURCE VIEW
DATETIME IS REVOKE WHEN
DAYNAME JOIN RIGHT WHERE
DBA KEY ROLLBACK WITH
DEC LCASE ROUND WORK
DECIMAL LEAST RTRIM
DECODE LEFT SELECT

xfODBC User’s Guide 10.1 (6/13) Glossary-1

Glossary

access key A “true” key in an ISAM data file. See foreign key.

access level A number from 0 to 255 that determines who can access a table and
how. Each table has an access level, as does each group. A user may
view only those tables whose access level is equal to or lower than
access level of the group to which the user belongs. Additionally,
access levels determine whether data can be modified.

association An object that represents a relationship between entities in an EDM.
For example, if a table has a relation, an EDM will show that relation
as an association.

attributes Characteristics of a repository structure that describe fields, keys,
relations, tags, and redisplay formats.

column Used interchangeably with field. For the purposes of xfODBC, a
system catalog column is equivalent to a repository field.

connect file A text file containing datasource (data file location) and dictsource
(system catalog path) definitions. This file is used by DBA when
opening a system catalog and xfODBC when accessing a Synergy
database.

conversion setup file A text file containing table access levels and data file location,
generated by DBA.

data provider A set of classes that provide ADO.NET access to a data source, as
well as data services. For example, the .NET Framework (except
version 1.0) includes the .NET Framework Data Provider for ODBC,
which provides ADO.NET access to ODBC data sources. See also
Synergy/DE Data Provider for .NET.

database A set of related files created and managed by a database management
system (DBMS). Database and file structures are determined by the
software application in which it is generated. Although the term
database is sometimes used to refer to the combination of a software
application and a data source, this manual considers data source and
database to be analogous.

Glossary

Glossary-2 xfODBC User’s Guide 10.1 (6/13)

Database Administrator
(DBA)

An xfODBC component that enables you to generate, maintain,
customize, and verify the system catalog; create user access; and
generate a conversion setup file.

dbcreate The xfODBC utility used to generate a system catalog and initialize
user and group access.

EDM See entity data model (EDM).

EDMX file An XML file that defines the conceptual model for an EDM, describes
the schema for the database (the storage model), and defines the
mapping between the conceptual model and the database.

entity data model (EDM) A model that represents data as a set of entities and relationships that
map to the data source (e.g., a Synergy database).

Entity Framework A set of technologies that work with .NET Framework to enable
object-to-relational mappings. The Entity Framework enables you to
generate a model (an EDM) that abstracts data and presents it as a set
of objects. You can then manipulate the model as necessary in Visual
Studio and write code to work with the objects in the model. This will,
in turn, result in queries to the data source (e.g., a Synergy database).

Entity Model Designer A Visual Studio component that consists of a set of visual tools for
creating and editing an EDM.

Entity SQL A SQL dialect for writing queries against an EDM. The Synergy/DE
Data Provider for .NET translates Entity SQL into SQL that’s used to
directly query the Synergy database.

entity type A class that represents an entity in the conceptual model for an EDM.

environment setup file A text file you write to define the data environment variables that are
used by xfODBC when locating Synergy data files. The environment
setup file is typically used for setting environment variables that are
used in the Open filename field of a repository file definition.

field A record component that contains an individual data element. Used
interchangeably with column. For the purposes of xfODBC, a
repository field is equivalent to a system catalog column.

foreign key A key used to specify relationships between files but which is not a
true key in the data file. (Foreign keys are defined in the repository.)

Glossary

xfODBC User’s Guide 10.1 (6/13) Glossary-3

group (DBA) One or more users with the same database access level defined in the
group catalog.

group (repository) A structure within a structure, as defined by the Synergy DBL
GROUP statement. Fields or other group definitions can be members
of a group.

group catalog The SODBC_GROUPS.* files that contain group ID, group name,
and user access information.

index A common method for keeping track of information in a Synergy
Database file or a database by storing key information. See key.

ISAM Indexed Sequential Access Method. A file access method that stores
data sequentially while maintaining an index of key fields.

key A value or field used to identify and locate records in a data file and to
define a sequential order in which to process that file. For practical
purposes, key and index are used interchangeably.

key of reference A key that defines which ISAM file index is used in sequential
operations.

LINQ Language Integrated Query (LINQ) is a .NET Framework component
that adds native data querying functionality that’s similar to SQL to
.NET languages that support it.

LINQ to Entities A set of operators and a syntax that enables you to query over objects
in an EDM. LINQ to Entities is a subset of LINQ to ADO.NET and
consists of extensions to .NET languages that support LINQ (Visual
C#, Visual Basic, and so forth). The Synergy/DE Data Provider for
.NET translates LINQ to Entities queries into SQL that’s used to
directly query the Synergy database.

literal A specific, constant value, as opposed to a variable. Both numbers and
text can be literal values.

.NET Framework Data
Provider for ODBC

An ADO.NET data provider included with the .NET Framework
(except version 1) that enables access from .NET applications to
ODBC data sources. The Synergy/DE Data Provider for .NET wraps
this data provider (and adds support for the Entity Framework and
Visual Studio integration).

ODBC Open Database Connectivity. A standard API for accessing databases
in a Windows environment.

Glossary

Glossary-4 xfODBC User’s Guide 10.1 (6/13)

ODBC Driver Manager A dynamic-link library (DLL) provided by Microsoft. The Driver
Manager opens and closes ODBC drivers as directed by an ODBC-
enabled application.

ODBC-enabled
application

A front-end or client application running on Windows that uses an
ODBC API to access various types of databases.

record A data area containing one or more consecutive fields on a related
subject, such as a customer record or a file layout.

relation An attribute of structures that enables you to link the keys of one
structure with the keys of other structures.

relative file A file that consists of a series of fixed-length records referenced by
relative position in the file.

repository The files generated by S/DE Repository. These files describe your
actual data files.

Repository A Synergy application used to define files, structures, tags, fields, and
keys for a database; dbcreate translates these repository definitions
into system catalogs.

runtime See Synergy Runtime.

scalar property An EDM entity property that maps to a field in the data source. For
example, if you create an EDM for the sample database, the
CUSTOMERS table will include a scalar property for each field in the
table (CUST_CITY, CUST_CONTACT, and so forth).

segment A column that is a part or section of an index or key.

sequence An ADO.NET term for an object that implements the IEnumerable or
IQueryable interface.

structure A record definition or the collection of field and key characteristics for
a particular file or files.

Synergy database A database comprising data files and repository files; the two sets of
files together constitute a Synergy database.

Synergy Runtime The Synergy component required for Synergy applications, such as
DBA, to run.

Glossary

xfODBC User’s Guide 10.1 (6/13) Glossary-5

Synergy/DE Data Provider for
.NET

An ADO.NET data provider that enables access from .NET
applications to Synergy databases. The Synergy/DE Data Provider for
.NET includes all of the functionality of the .NET Framework data
provider for ODBC (which it wraps), along with support for the Entity
Framework, enabling you to create an EDM and then modify and
query the EDM (and, by extension, the Synergy database) using LINQ
to Entities and Entity SQL. The Synergy/DE Data Provider for .NET
also includes a Visual Studio plug-in that enables you to create Visual
Studio data connections for Synergy databases.

system catalog A set of files generated by dbcreate and consisting of the individual
table, user, group, column, index, segment, tag, and relation catalogs.
The system catalog contains a “translation” of the Synergy database in
a form that ODBC-enabled applications can understand.

system wide Used to refer to the level at which some environment variables must be
set. A system-wide environment variable is available to all
applications running on the system.

table catalog The GENESIS_TABLES.* files that contain file and structure
information as well as data table access information.

tag A set of characters, usually a field or part of a field, that is used for
identifying or grouping records in a data structure.

user catalog The sodbc_users.* files that contain user name, password, and group
ID information.

USR_DD_FILNAM A routine that enables you to customize and generalize the data
filenames specified in a system catalog.

Visual Studio plug-in For xfODBC, this refers to a component of the Synergy/DE Data
Provider for .NET that enables integration with Visual Studio. For
example, it enables you to create Visual Studio data connections to
Synergy databases.

xfODBC A package of components that enables you to make your Synergy data
accessible to third-party applications. xfODBC includes the xfODBC
driver and two utilities, the xfODBC Database Administrator (DBA)
program and dbcreate, used to create system catalogs from your
Synergy repository definitions.

xfODBC User’s Guide 10.1 (6/13) Index-1

Index

Symbols
]]]] (MCBA deleted-record characters) 8-16
(pound symbol) and arrays 3-25
of columns field (Table List window) 6-20

Numerics
64-bit Windows

CONNECTDIR and A-7
dblvars64.bat A-7
DSNs and 8-7
GENESIS_HOME and 3-19
tod64.dll 1-7, 1-10
VORTEX_HOME and A-7

A
ABS scalar function B-32
Access (Microsoft) 9-33, 10-12
Access field

Group List 6-14
Table List 6-20

access keys, optimizing with 10-2, 10-5
Access level field

Group window 6-15
Table window 6-20

access levels, setting 8-2 to 8-3
group 6-13, 6-15
table 6-22, 6-29, 6-30
user 6-13, 6-18

accessing data. See data access
Add Connection window (Visual Studio) 9-13 to 9-14
administrative components 1-3 to 1-5
administrative user. See DBADMIN
ADO 9-8 to 9-9
ADO.NET 9-10 to 9-32

examples for 9-35 to 9-45
system requirements 9-3
time columns and 9-20

ADO.NET Entity Framework 9-10
Advanced tab (Windows), setting environment variables

from 3-35

aggregate functions in SQL B-29 to B-31
aliases in SQL B-27, B-28
ALL clause for WHERE clauses B-17
alpha columns, spaces and nulls 3-27 to 3-29
alpha data type 3-13
alpha_to_user (function in xfodbcusr.c) 7-4
Alternate name field (S/DE Repository) 3-24
AND clause, optimizing with 10-10
ANY clause for WHERE clauses B-17
App.Config file (Visual Studio) 9-18
Appended to connect string field (xfODBC Setup

window) 8-7
arrays 3-12

character used to mark position values 3-25
collapsing arrays 3-25
group name prefixes 3-26

ASCII scalar function B-32
ASCII text files 1-4
associations 9-16
authentication on host 8-7
AutoSeq data type 3-12, 3-13
AutoTime data type 3-12, 3-13
AVG aggregate function B-29

B
base date, setting for Julian day conversions 8-15
batch files, setting environment variables in 3-32
BETWEEN clause for WHERE clauses B-18
binary data type 3-13
bitwise SQL functions B-45
bldemf utility 11-10
Boolean data type 3-13, 3-29

C
caching system catalogs 8-18 to 8-20
canonical functions (Entity SQL) 9-23 to 9-29
capitalization of SQL identifiers B-3
CASE clauses B-24
CAST scalar function B-32
catalog. See system catalog

C

Index-2 xfODBC User’s Guide 10.1 (6/13)

centuries, retrieving dates without 8-14
CHAR_LENGTH scalar function B-33
CHARACTER_LENGTH scalar function B-33
CHR scalar function B-33
Class field (S/DE Repository) 3-15
client installation 1-9
client/server configurations 1-9

datasource line and 3-6
column aliases in SQL B-28
Column List window 6-23
Column name field

Column List 6-23
Column window 6-24

column references table (system catalog) 1-6
column table (system catalog) 1-6
Column window 6-24
columns

deleting 6-25
group names and 3-25
reducing number of 3-25
renaming 3-24
viewing 6-23 to 6-24

Columns field (xfODBC Setup window) 8-8
command line

comparing system catalog to database from 6-32
conversion setup file, generating from 6-28
DBA, running from 6-2 to 6-3
dbcreate, running from 4-3 to 4-5
environment variables, setting at 3-31
system catalog, opening from 6-11
verification log, creating from 6-31

Compare System Catalog to Files window 6-32
comparing

repository to database 3-7
system catalog to database 6-32

components (xfODBC) 1-3 to 1-8
COMPSORT SQL option B-57
computed columns in SELECT statements B-27
CONCAT scalar function B-33
configuring

access levels 8-2 to 8-3
client/server access 1-9
DSNs 8-4 to 8-11
environment for data access 8-13 to 8-17
environment for system catalog generation 3-18 to

3-35
repositories 3-2 to 3-11

connect file 1-4
client/server configurations and 1-8, 3-6
convert_error, setting in 5-4
creating 5-2 to 5-5
DSN, specifying in a 8-8
environment variables, setting in 3-33
location of, setting 3-19
Open filename field and 3-16
opening system catalog with 6-10
sample database, for 2-5
Synergy driver logging, setting in 5-5
troubleshooting and 6-11
xfODBC driver and 1-7

Connect file field
Compare System Catalog to Files window 6-32
Open System Catalog window 6-10
xfODBC Setup window 8-8

connect strings for system catalog 6-10 to 6-11, 6-14
See also connection strings

CONNECT_STARTUP.COM file
connect file, specifying location in 3-19
DBA, specifying location in A-7
logicals, setting in 3-35, A-8

CONNECTDIR environment variable A-7
connecting to a database 9-2 to 9-6
connection strings

for ADO 9-8 to 9-9
for ADO.NET 9-18
See also connect strings for system catalog

connections and ODBC handles 1-2
ConvErrs.log file 4-8, 4-12
Conversion setup field (Generate System Catalog

window) 4-7
conversion setup file 1-4

data file locations, changing with 6-23
editing manually 6-29 to 6-30
generating 6-27 to 6-28
specifying with SODBC_CNVFIL 3-26
syntax 6-29
table access levels, changing with 6-22
troubleshooting and 4-14
tutorial and 2-8
using with DBA 4-7
using with dbcreate 4-4, 4-10

CONVERT scalar function B-33
convert_error option 5-4

D

xfODBC User’s Guide 10.1 (6/13) Index-3

converting
centuries 8-14
data in user-defined fields 7-1 to 7-8
data types 3-13
invalid dates 5-4
Julian days 8-15
spaces and null values 3-29

COUNT aggregate function B-30
CREATE INDEX statements B-51
Create New Data Source window 8-6
CREATE SYNONYM statements B-52
CREATE TABLE statements B-53

NOT NULL 3-27
CREATE VIEW statements B-55
creating

connect files 5-1 to 5-5
conversion setup files 6-27 to 6-28
DSNs 8-4 to 8-11
groups (of users) 6-15 to 6-16
log files for data access 11-2 to 11-9
log files for system catalog generation 4-4, 4-8, 4-12
query processing file 8-17
repository for xfODBC 3-2 to 3-7
system catalogs 4-2 to 4-15
users 6-17 to 6-18

creation date for system catalog 6-20
Crystal Reports

foreign keys and 10-3
supported versions 9-3
tutorial 9-33

CURDATE scalar function B-34
cursors

memory for sort operations B-59, B-63
number of for a connection 8-8

CURTIME scalar function B-34

D
data access 9-2 to 9-6

ADO 9-8 to 9-9
ADO.NET 9-10 to 9-32
error messages 11-11 to 11-31
managing 8-2 to 8-11
requirements for 9-3
troubleshooting 9-4 to 9-6
tutorials 9-33 to 9-45
See also reading data from a database; writing data to

a database

data connections (Visual Studio) 9-12
example 9-35

data files 1-4
changing location of table files 6-23
client/server configurations and 1-8
location of, specifying 3-21
structure of, defining in repository 3-2
troubleshooting and 4-14, 9-5

data providers for ADO.NET
.NET Framework Data Provider for ODBC 9-10
Synergy/DE Data Provider for .NET 9-10 to 9-32

Data source name field (xfODBC Setup window) 8-6
data source names. See DSNs
data types

conversion of 3-13
Entity Framework mappings 9-16
user-defined, converting 7-1 to 7-8

Database Administrator program. See DBA program
DATABASE scalar function B-34
databases. See Synergy databases
datasource line in connect file 5-3

Open filename field and 3-6
troubleshooting and 9-5

dates
data type 3-13, 8-13
formats for returned dates 8-13
formats for SQL statements 8-15
keys and rolling centuries (RR) 10-5
option for invalid dates 5-4
Repository fields used for 3-15, 6-24
retrieving 8-13 to 8-15
submitting to a database 8-15
zeros, spaces, nulls 3-29
See also timestamp columns

DATETIME SQL option B-57, B-60
DAYNAME scalar function B-34
DB cursors field (xfODBC Setup window) 8-8
DBA program 1-5

command-line syntax and options for 6-2 to 6-3
comparing system catalog to database with 6-32
conversion setup file, generating from 6-27 to 6-28
error messages for 6-7 to 6-9
exiting 6-6
generating a system catalog from 4-6 to 4-8
groups (of users), customizing with 6-14 to 6-16
initializing users and groups with 6-13
opening a system catalog with 6-10
regenerating a system catalog with 4-12

E

Index-4 xfODBC User’s Guide 10.1 (6/13)

repository file location, precedence for 3-22
specifying location of 3-18
starting 6-2
synergy.ini and 3-34
tables, customizing with 6-19 to 6-21
troubleshooting system catalog with 9-5
user interface 6-3 to 6-6
users, customizing with 6-16 to 6-18
verification log, creating with 6-31

DBA user name, access level 6-13
DBADMIN (default administrative user)

access level 6-13
creating 6-14
opening system catalog with 6-10

dbcreate utility 1-5
generating a system catalog with 4-3 to 4-5
regenerating a system catalog with 4-9 to 4-12
repository file location, precedence for 3-22
setting location of 3-18
syntax and options for 4-3 to 4-5

dblvars*.bat files A-7
DBQ keyword 9-8
DCL command file, setting environment variables

in 3-32
DDL statements B-50 to B-56
decimal columns, zeros/spaces/nulls 3-27 to 3-29
decimal data type 3-13
DECODE scalar function B-34
definition files 3-2
DELETE statements in SQL B-47
deleting

columns 6-25
DSNs 8-11
groups 6-16
tables 6-21, B-56
users 6-18

dependencies table (system catalog) 1-6
depends.exe (Dependency Walker) 11-17
deployment 1-8 to 1-9
Description field

Group List 6-14
Group window 6-16
User window 6-18
xfODBC Setup window 8-6

dictsource line in connect file 5-3, 6-11
Dictsource path field (Generate System Catalog

window) 4-7
display format for dates 8-13

DisplaySQLInDebug property (SdeConnection) 9-31
DISTINCT for SELECT statements B-7
dltest utility, troubleshooting with 11-2, 11-17
DROP SYNONYM statements B-55
DROP TABLE statements B-56
DROP VIEW statements B-56
DSN-less connections

with ADO 9-9
with ADO.NET 9-18

DSNs 1-7
adding and modifying 8-4 to 8-11
client/server configurations and 1-8
specifying in connection strings 9-8, 9-18
xfODBC process and 1-11

dual table (system catalog) 1-6

E
editing

conversion setup files 6-29 to 6-30
SQL error message file 11-10

.edmx file 9-16
EF provider connection string 9-18
encryption for user name and password 8-7, 8-26
entity data models (EDMs) 9-15 to 9-17

example 9-40, 9-43
Entity Framework 9-10
entity keys 9-15
Entity SQL 9-10, 9-23 to 9-29
entity types 9-15
enum data type 3-13
Env. variables field (xfODBC Setup window) 8-8
environment setup files 1-7

setting environment variables in 3-34
specifying the location of 3-20

environment variables
connect file, specifying in 3-33
data access options, specifying with 8-13 to 8-17,

A-2 to A-4
file locations, specifying with 3-18 to 3-23
generation options, setting with 3-23 to 3-27, A-5 to

A-6
Open filename field and 3-6, 3-16
setting 3-30 to 3-35
troubleshooting and 4-15, 6-12, 9-4
See also specific environment variable name

Environment Variables window (Windows) 3-35
environment, configuring 3-18 to 3-35
error codes for operating system, returning 8-27

F

xfODBC User’s Guide 10.1 (6/13) Index-5

error logging. See logging
error message file (SQL) 3-20, 11-10
error messages

data access 11-11 to 11-31
DBA 6-7 to 6-9
dbcreate 4-15 to 4-22
editing 11-10
socket 11-15, 11-28, 11-32 to 11-33
system catalog caching 8-22 to 8-25
See also logging

ERROR SQL option B-57
escape characters in LIKE clauses B-19
exam_saveviews.dbl example program 4-13
examples. See sample; tutorials
Excluded by ODBC (Repository option) 3-24
Excluded by ReportWriter (Repository option) 3-23
EXISTS clause for WHERE clauses B-18
EXPR SQL option B-57
EXPRn column in result set B-6
external components 1-7

F
fcompare

comparing repository to data files 3-7
comparing system catalog to data files 6-32

FDL files 3-2
Fetch buffer size (xfODBC Setup window) 8-9
Field name field (Segment List) 6-26
Field report view field (Generate System Catalog

window) 4-7
fields

arrayed 3-12, 3-25
defining in Repository 3-3 to 3-4
including or omitting from system catalog 3-23
resetting in DBA 6-5
struct 3-12, 3-16, 3-25

file
assignment errors 3-17
locations, specifying 3-18 to 3-23

file DSNs. See DSNs
File name field (Table window) 6-20
File type field (Table window) 6-20
Find Table feature 6-6, 6-20
FOR UPDATE OF clauses B-24
foreign key table (system catalog) 1-6
foreign keys 3-16, 10-2
form letter example 9-33

format string, using decimal information in 3-27
FROM clauses B-23

optimizing with 10-10 to 10-11
SQL92 outer joins and B-14

Full name field
User List 6-17
User window 6-18

full outer joins B-13
functions in SQL

aggregate B-29 to B-31
scalar B-32 to B-44

G
Generate System Catalog window 4-6 to 4-8
generating a conversion setup file 6-27 to 6-28
generating a system catalog 4-2 to 4-8

conversion issues 3-12 to 3-17
from the command line 2-5, 4-3 to 4-5
options for 3-23 to 3-27
prerequisites for 3-18, 4-2
troubleshooting 4-14 to 4-15

GENESIS_COLUMNS file 1-6
GENESIS_DEPENDS file 1-6
GENESIS_DUAL file 1-6
GENESIS_FORKEYS file 1-6
GENESIS_HOME environment variable

connect file location, specifying with 3-19
troubleshooting and 6-12, 9-4

GENESIS_INDEXES file 1-6, 10-4
GENESIS_INITSQL environment variable 8-17
GENESIS_MSG_FILE environment variable 3-20
GENESIS_TABLES file 1-6
GENESIS_VIEWS file 1-6
GENESIS_XCOLUMNS file 1-6
GID field

Group List 6-14
User List 6-17

GREATEST scalar function B-35
GROUP BY clauses B-22
Group ID field

Group window 6-15
User window 6-18

group ID. See GID field; Group ID field
Group List window 6-14
Group name field (Group window) 6-15
Group window 6-15

H

Index-6 xfODBC User’s Guide 10.1 (6/13)

groups (of users) 6-14
access levels, setting 6-15, 8-2 to 8-3
creating new 4-4, 6-15 to 6-16
customizing 6-13 to 6-18
deleting 6-16
initializing 6-13
maximum number of 6-15
modifying 2-7, 6-16
restoring default set of 4-10, 6-2
viewing users for 6-16

groups (Repository) 3-12, 3-16, 3-25

H
handles (ODBC), maximum concurrent 1-2
HASH SQL option B-57
HAVING clauses B-23
HEAPBLOCKSIZE SQL option B-58
help for dbcreate options 4-3
Host field (xfODBC Setup window) 8-7
host. See server
hostenv0 setting (net.ini) 8-26
HOUR scalar function B-35

I
identifiers in SQL B-3
IFNULL scalar function B-35
IN clause for WHERE clauses B-19
In memory field (xfODBC Setup window) 8-9
IN|OUT argument (conversion setup file) 6-29

settings for tables 6-21
troubleshooting 4-14

include files 3-2
Index field (Index List) 6-25
Index List window 6-25
index table (system catalog) 1-6
indexes

creating with SQL B-51
optimization and 10-4, 10-6, 10-8
temporary 10-3, 11-12
viewing 6-25 to 6-26

initial reads, optimizing with 10-9, 10-10
Initialize users and groups field (Generate System

Catalog window) 4-8
initializing users and groups 4-10, 6-2
inline views B-8 to B-9
inner joins B-10 to B-14

INSERT statements in SQL B-47
installing xfODBC 1-8
INSTR scalar function B-36
integer data type 3-13
Internal format field (Column window) 6-24
introduction to xfODBC 1-2
invalid dates, treating as null 5-4
InvalidCastException 9-32
InvalidExpressionTreeException 9-32
InvalidSqlException 9-32
ipar utility 3-2
IS [NOT] NULL operator for WHERE clause B-16
ISAM files 1-4, 1-5

J
Jet database engine 9-3, 10-12, B-46
joins B-10 to B-14

optimization and 10-3, 10-10 to 10-11
Julian days 3-15, 8-15

K
key segments 10-2

optimization and 10-3
report view flag and 3-23

key_connect option (net.ini) 8-26
keys

access 10-2
creating 3-5, 10-5
foreign 3-16, 10-2
literals in 10-6
omitting 3-24
optimization and 10-2 to 10-7
used for query, tracking 10-13

KnowledgeBase 9-6

L
LCASE scalar function B-36
LEAST scalar function B-36
left outer joins B-12
LEFT scalar function B-36
Length field (Column window) 6-24
LENGTH scalar function B-36
LIKE clause for WHERE clauses B-19
LINQ to Entities 9-10, 9-22 to 9-23
lists 6-6
literals in keys 10-6
LOCATE scalar function B-37

M

xfODBC User’s Guide 10.1 (6/13) Index-7

Log file field (Compare System Catalog to Files
window) 6-32

LOGFILE SQL option B-58
logging

catalog caching, for 8-21
data access 11-2 to 11-9
DBA 6-3, 6-32
dbcreate 4-4
ODBC trace 11-5
SET OPTION 10-13, 11-2
Synergy DBMS 10-14, 11-8
Synergy driver 5-5, 8-21
verifying system catalogs with 6-31
Vortex API 11-5
Vortex host 11-6 to 11-7
vtxnetd/vtxnet2 11-3

logicals. See environment variables
log-in files, setting environment variables in 3-35
Lotus Approach, supported versions 9-3
LTRIM scalar function B-37

M
mail merge example 9-33
Main repository field (Generate System Catalog

window) 4-7
makeusr.bat file 7-7
managing access to databases 8-2 to 8-11
mapped drives and SQL OpenNet 5-3
MAX aggregate function B-30
Max number of rows (field in xfODBC Setup

window) 8-9
MAXOPTLOOP SQL option B-58
MCBA deleted-record characters 8-16
menu (DBA) 6-3 to 6-4
MERGESIZE SQL option 8-9, B-58, B-61
message file (SQL) 3-20, 11-10
Microsoft Access 9-33, 10-12
Microsoft Office, supported versions 9-3
Microsoft Query 1-7

DSN limitations and 8-4
Microsoft Word, accessing a database with 9-33
MIN aggregate function B-30
Modify Connection window (Visual Studio) 9-13 to

9-14

modifying
connect files 5-2 to 5-5
conversion setup files 6-27 to 6-30
DSNs 8-10
groups (of users) 6-16
system catalogs 6-10 to 6-30
table access levels 6-22
users 6-18

N
Name field

Group List 6-14
User List 6-17

names in SQL B-3
navigation properties 9-16
Negative allowed (Repository field), ignoring 3-24
.NET Framework 9-3, 9-10
.NET Framework Data Provider for ODBC 9-10
net_base.ini file 8-26
net.ini file 8-26 to 8-27, A-7
network packet size, setting minimum 8-27
non-sharable file DSN syntax 8-10
NOW scalar function B-37
null

conversion 3-29
preventing updates with 3-27 to 3-28
treating invalid dates as 5-4

Null allowed (repository field) 3-28
Null allowed (system catalog property) 3-27 to 3-28,

6-24
Num of users field (Group window) 6-16
number_to_user (function in xfodbcusr.c) 7-4
NVL scalar function B-37

O
ODBC API 1-2

reserved words for B-65
ODBC Data Source Administrator 8-4 to 8-11
ODBC Driver Manager 1-7
ODBC handles, maximum concurrent 1-2
ODBC table name (Repository option) 3-17
ODBC Test 9-33
ODBC trace logging 11-5
ODBC-enabled applications, optimizing with 10-12
odbcte32.exe 9-33
offset, sorting by 6-23

P

Index-8 xfODBC User’s Guide 10.1 (6/13)

ON clauses B-14
Open Database Connectivity (ODBC) 1-2
Open filename field (S/DE Repository)

data location, specifying in 3-6, 3-16, 3-21
environment variables used in 1-7, 3-6

Open filename field (Table List) 6-19
Open System Catalog window 6-10
opening a system catalog 6-10 to 6-11
opennet.srv file 3-35, 8-18
operators (in SQL statements) 10-9
optimization 10-1 to 10-14

See also caching system catalogs
OPTIMIZE SQL option B-58
Option field (Compare System Catalog to Files

window) 6-32
options for query processing 8-17
OR clauses B-16

MERGESIZE and 8-9
optimization of 10-10

Oracle, null keys and importing data 10-6
ORDER BY clauses B-21

optimization and 10-3, 10-10
Order field (Segment List) 6-26
Ordinal position field (Column window) 6-24
outer joins B-10 to B-14
overlay fields

keys and 10-3 to 10-5
omitting 3-4

Overwrite existing field (Generate System Catalog
window) 4-8

overwriting tables 4-3, 6-29
Owner field (Table List) 6-19

P
packet size, setting minimum 8-27
packetsize option (net.ini) 8-27
parameter files 3-2
pass-through queries, optimizing with 10-12
Password field

Open System Catalog window 6-10
User List 6-17
User window 6-17
xfODBC Setup window 8-8

passwords
defining 6-17
encrypting 8-8, 8-26
unsupported characters 6-17
user DSN, specifying in 8-8

path argument (conversion setup file) 6-30
paths and SQL OpenNet 5-3
performance, optimizing 10-1 to 10-14

See also caching system catalogs
period date formats 3-15
PLAN SQL option B-58, B-61
Port field (xfODBC Setup window) 8-7
port number, setting 8-11 to 8-12

in DSN 8-7
in net.ini 8-27

Position field
Column List 6-23
Column window 6-24

POSITION scalar function B-37
Precision field

Column List 6-23
Column window 6-24

prefetch buffer size 8-9
PREOPT SQL option B-59
prompting for connect information 8-10
protecting tables from overwriting 6-29
PUBLIC user name, access level 6-13

Q
queries

LINQ to Entities and Entity SQL 9-14
optimizing 10-1 to 10-14
timing out 8-13

Query (Microsoft). See Microsoft Query
Query Designer example 9-38
query processing option, setting 8-17
quick-select characters (DBA) 6-4

R
read operations, setting time-outs for 8-27
read_timeout option (net.ini) 8-27
reading data from a database

arrays 3-12
data type conversions 3-13
dates and times 8-13 to 8-15
interpreting invalid dates 5-4
MCBA deleted-record characters 8-16
overlay fields 3-16
using user-defined routines 7-2 to 7-8

Read-only option (S/DE Repository) 3-4
record locking 1-2, 9-7
Record size field (Table window) 6-20
regenerating the system catalog 4-9 to 4-12

S

xfODBC User’s Guide 10.1 (6/13) Index-9

relations
defining in Repository 3-6
repository conversions and 3-16

relative files 1-4, 10-9
remote data, accessing 1-9
REPLACE scalar function B-38
report viewing flag

ignoring settings 4-7
overriding 3-23

repository 1-4
command line, specifying at 4-3
comparing to data files 3-7
date formats for user fields 6-24
environment variables for location 3-21
generating a system catalog from 4-2 to 4-8
groups 3-12, 3-16, 3-25
location of 3-21, 3-22
Null allowed (field) 3-28
preparing for xfODBC 3-2 to 3-7
regenerating from 4-9 to 4-12
setting up 3-2 to 3-7
struct fields 3-12, 3-16, 3-25
troubleshooting and 4-14, 9-4
validating 3-7
verifying 3-7

requirements
installation and network 1-8 to 1-9
Synergy/DE Data Provider for .NET 9-11
system-catalog generation 4-2
third-party software 9-3

reserved words for ODBC B-65
resetting fields in DBA 6-5
restriction clauses, optimizing with 10-2, 10-3, 10-9
Retrieve Data function example 9-37
return_errno option (net.ini) 8-27
REVERSE scalar function B-38
right outer joins B-13
RIGHT scalar function B-38
ROUND scalar function B-38
routines for user-defined fields 7-1 to 7-8
RPSDAT environment variable 3-22, 4-7
rpsmain files 1-4, 1-5
RPSMFIL environment variable 3-22, 4-14
rpstext files 1-4, 1-5
RPSTFIL environment variable 3-22, 3-23, 4-14
RTRIM scalar function B-39
runtime components 1-5 to 1-7

S
sample

database, tutorial for 2-1 to 2-10
DSN 8-4
script 3-32

scalar functions B-32 to B-44
scalar properties 9-16
scalar subqueries B-8
scripts, setting environment variables in 3-32
S/DE Repository. See repository
SdeClientFactory class 9-30
SdeCommand class 9-30
SdeConnection class 9-31
SDMS_AUDIT environment variable 11-8
SDMS_AUDIT_FULL environment variable 11-8
SDMS_AUDIT_MODE environment variable 11-8
SDMS_AUDIT_SRV environment variable 11-8
SDMS2_FULL environment variable 11-8, 11-9
SDMS2_LOG environment variable 11-9
security, setting for users and tables 8-2 to 8-3
Segment List window 6-26
Segment# field (Segment List) 6-26
segments 10-2

optimization and 10-3
report view flag and 3-23

Segments field (Index List) 6-25
SELECT statements B-4 to B-9
server

authentication on 8-7
components on 1-8
environment variables, setting on 3-33, 8-7
name, specifying 8-7
port number for, specifying 8-7, 8-27
requirements 1-9
See also SQL OpenNet

SET OPTION command B-57 to B-63
logging, using for 11-2
MERGESIZE and xfODBC Setup dialog 8-9
PLAN and optimization 10-13
setting in file 8-17

setodbc 3-32
setsde file 3-32
shell scripts, setting environment variables in 3-32
shortcut keys (DBA) 6-4
signed and unsigned fields 3-24
Signed field (Column window) 6-24

S

Index-10 xfODBC User’s Guide 10.1 (6/13)

Size field
Column List 6-23
Column window 6-24

SKIP clause for SELECT statements B-7
socket errors 11-15, 11-28, 11-32 to 11-33
SODBC_CNVFIL environment variable

automatically updating 3-27
DBA and 4-7
setting location of conversion setup file 3-26
troubleshooting 4-14

SODBC_CNVOPT environment variable 3-23
SODBC_COLLAPSE environment variable 3-25
SODBC_DBA environment variable 6-12, A-7
SODBC_GROUPS file 1-6
SODBC_INIFIL environment variable 3-20, 3-34, 9-4
SODBC_MCBA environment variable 8-16
SODBC_NOGROUPNAME environment variable 3-25
SODBC_NONULL environment variable 3-28
SODBC_NOROLL environment variable 8-15
SODBC_NOUNSIGNED environment variable 3-24
SODBC_ODBCNAME environment variable 3-24
SODBC_TMPOPT environment variable 3-26
SODBC_TOKEN environment variable 3-25
SODBC_USEFORMAT environment variable 3-27
SODBC_USERS file 1-6
SOME clause for WHERE clauses B-20
sort clauses, optimizing with 10-2
sort operations, memory for B-59, B-63
SORTPAGES SQL option B-59, B-63
spaces 3-27 to 3-29
SQL B-1 to B-65

data types, converting 6-24
restrictions B-64
statements, optimizing 10-9 to 10-10
translation for LINQ to Entities or Entity SQL 9-31

SQL error message file 3-20, 11-10
SQL OpenNet 1-8, 1-10, 3-35

client options 8-26 to 8-27
troubleshooting 11-3

SQL Server
null keys and importing data 10-6
VORTEX_ODBC_CHAR and 8-16
VORTEX_TIME and 8-14

SQL type field (Column window) 6-24
SQL_CHAR, strings described as 8-16
SQL_VARCHAR, passing strings as 8-16
SQL89 inner joins B-11

optimizing 10-10 to 10-11

SQL92 1-2
inner joins B-11
outer joins B-12, B-13, B-14

sql.msg file 3-20, 11-10
sql.txt file 11-10
SQRT scalar function B-39
standard query operators (LINQ to Entities) 9-22 to 9-23
startnet script file (UNIX) 3-32, 8-18
STARTNET.COM file (OpenVMS) 3-32, 8-18
Statements field (xfODBC Setup window) 8-8
strings, zero length 3-29
struct fields 3-12, 3-16, 3-25
structures assigned to multiple file definitions 3-17
subqueries B-8 to B-9
SUBSTR scalar function B-39
SUBSTRING scalar function B-39
SUM aggregate function B-31
SYNBASEDATE environment variable 8-15
Synergex.Data.SynergyDBMSClient classes 9-30
Synergex.Data.SynergyDBMSClient.dll 9-30
Synergy data types, translated to SQL data types 6-24
Synergy database driver 1-7
Synergy databases 1-4, 1-5, 1-11

ADO, accessing with 9-8 to 9-9
ADO.NET, accessing with 9-10 to 9-32
Crystal Reports, opening with 9-33
data connections to (Visual Studio) 9-12
data types, converting 6-24
DSNs, accessing with 8-4 to 8-11
locating 3-21
managing access to 8-2 to 8-3
Microsoft Access, accessing with 9-33
Microsoft Word, accessing with 9-33
ODBC Test, accessing with 9-33
remote access 1-9
troubleshooting with DBA 9-5
updating 1-2

Synergy DBMS logging 11-8
optimization and 10-13

Synergy driver logging 5-5
Synergy/DE Data Provider for .NET 9-10 to 9-32

examples for 9-35 to 9-45
Synergy/DE OpenNet Server service. See SynSQL

service
Synergy/DE Repository. See repository
synergy.ini, setting environment variables in 3-34
syngenload program 8-18 to 8-20

T

xfODBC User’s Guide 10.1 (6/13) Index-11

synonyms
creating B-52
dropping B-55

SynSQL service 3-35
catalog caching and 8-18 to 8-22, 8-25
socket errors and 11-32, 11-33
See also Installation Configuration Guide

syntax
ADO connection string 9-8 to 9-9
bldemf utility 11-10
connect file 5-3 to 5-5
conversion setup file 6-29
DBA 6-2
dbcreate 4-3 to 4-5
dltest utility 11-2
non-sharable file DSN 8-10
options in net.ini 8-26 to 8-27
query processing option file 8-17
SQL92, support for 1-2
syngenload 8-19

synxfpng, troubleshooting with 11-3
SYSDATE scalar function B-39
system catalog 1-5 to 1-6

caching 8-18 to 8-20
clearing 4-3
client/server configurations and 1-8
comparing to data files 6-32
connect file and 1-4
creation date 6-20
generating 4-2 to 4-8

for sample database 2-3
from the command line 2-5

generation options 3-23 to 3-27
opening 2-6, 6-10 to 6-11
regenerating 4-9 to 4-12
troubleshooting 4-14 to 4-15, 6-11 to 6-12
USR_DD_FILNAM routine, customizing with 3-10

to 3-11
verifying 6-31 to 6-32

system DSNs. See DSNs
system requirements. See requirements
System.* assemblies 9-17
System.Data.Common classes 9-30
System.Data.ODBC classes 9-30

T
table aliases in SQL B-27
Table List window 6-19
Table name field

Compare System Catalog to Files window 6-32
Table List 6-19
Table window 6-20

table of tables (system catalog) 1-6
Table owner field (Table window) 6-20
table subqueries B-8
Table type field (Table window) 6-20
Table window 6-20
tables

access levels 6-22, 8-2 to 8-3
attached to temporary files 3-26
changing location of data files for 6-23
creating with SQL B-53
customizing 6-19 to 6-26
deleting 6-21
dropping with SQL B-56
locating in long lists 6-20
names 3-17
ordering in FROM clause 10-10 to 10-11
preventing overwrites 6-29
re-adding deleted tables 6-22
references, supported number of 1-2
viewing 6-19

tagged files 1-4
tags

creating 3-5
optimization and 10-8
report view flag setting and 3-23

TCP/IP socket errors 11-15, 11-28, 11-32 to 11-33
temporary files 3-17, 3-26
Temporary flag (S/DE Repository) 3-17, 3-26
temporary indexes 10-3, 11-12
temporary sort tables (work files) 8-9, 10-2
text columns in SELECT statements B-27
Text repository field (Generate System Catalog

window) 4-7
third-party applications

accessing data with 9-2 to 9-6
requirements 9-3
troubleshooting connections to 9-6

U

Index-12 xfODBC User’s Guide 10.1 (6/13)

time columns
data type 3-13, 8-14, 9-20
formats for returned times 8-13
Repository fields used for 3-15
zeros, spaces, nulls 3-27 to 3-29

time-outs, setting 8-13, 8-27
timestamp columns

data type 3-14, 8-13
formats for returned timestamps 8-13
Repository fields used for 3-15, 6-24

TMPINDEX SQL option 10-3, B-59
TO_CHAR scalar function B-39
TO_DATE scalar function B-42
TO_NUMBER scalar function B-43
tod*.dll files 1-7, 1-10
Toggle View (DBA) 6-6
TOP clause for SELECT statements B-8
Total field (xfODBC Setup window) 8-9
trace logging (ODBC Driver Manager) 11-5
TRACE SQL option B-59
tracking performance 10-13
transactions 9-7
TRANSLATE scalar function B-43
TREE SQL option B-59
TRIM_HOME environment variable 8-22
troubleshooting

ADO.NET 9-20
connect file 6-11
data access 9-4 to 9-6
data connections (Visual Studio) 9-14
network connections 8-12
system catalog generation 4-14 to 4-15
system catalogs 6-11 to 6-12

TRUNC scalar function B-44
tutorials

data access 9-33 to 9-45
sample database 2-1 to 2-10
user-defined data routine 7-6

Type field
Column List 6-23
Index List 6-25
internal data type in Column window 6-24
S/DE Repository 3-15
Synergy type in Column window 6-24
Table List 6-19

U
UCASE scalar function B-44
UNC paths and SQL OpenNet 5-3
UNION operator B-26
UNIX scripts, setting environment variables in 3-32
unsigned and signed fields 3-24
UnsupportedFunctionException 9-32
UnsupportedOperatorException 9-32
Update option field (Generate System Catalog

window) 4-7
UPDATE statements in SQL B-48
updates (database) 1-2
updating system catalog with dbcreate 4-3
User data field

Column window 6-24
S/DE Repository 3-15, 6-24

user data type 3-14, 7-2
user DSNs. See DSNs
user IDs. See user name
User List window 6-17
user name

encrypting 8-8, 8-26
entering in user DSN 8-8

User name field
Open System Catalog window 6-10
User window 6-17
xfODBC Setup window 8-8

USER scalar function B-44
User window 6-17
user_to_alpha (function in xfodbcusr.c) 7-3
user_to_number (function in xfodbcusr.c) 7-4
user-created data location variables 3-21
user-defined fields

creating data routines for 7-2
data routines for 7-1 to 7-8
optimization and 10-5

users
access levels 6-13, 8-2 to 8-3
creating new 4-4, 6-17 to 6-18
customizing 6-13 to 6-18
deleting 6-18
initializing 6-13
maximum number per group 6-15
modifying 2-7, 6-18
restoring default set of 4-10, 6-2
viewing a list of 6-17

Users field (Group List) 6-14
USR_DD_FILNAM routine 3-10 to 3-11

V

xfODBC User’s Guide 10.1 (6/13) Index-13

V
validating a repository 3-7
variables. See environment variables
Verbose logging field (Compare System Catalog to Files

window) 6-32
Verify data field (Compare System Catalog to Files

window) 6-32
verifying a repository 3-7
verifying a system catalog 6-31 to 6-32, 9-5

creating a verification log 6-3
viewing groups (of users) 6-14
views

creating B-55
dropping B-56
preserving 4-13

views table (system catalog) 1-6
Visual Studio

Add | Modify Connection windows 9-13 to 9-14
data connections, configuring 9-12
plug-in 9-10
supported version 9-3

Vortex API logging 11-5
Vortex driver field (xfODBC Setup window) 8-7
Vortex host logging 11-6 to 11-7
VORTEX_API_LOGFILE environment variable 11-5 to

11-6
VORTEX_API_LOGOPTS environment variable 11-5

to 11-6
VORTEX_HOME environment variable 8-26, 11-24,

A-7
VORTEX_HOST_HIDEGPF environment variable A-8
VORTEX_HOST_LOGFILE environment variable 11-7
VORTEX_HOST_LOGOPTS environment

variable 11-7
VORTEX_HOST_NOSEM environment variable A-8
VORTEX_HOST_SYSLOG environment variable 11-3
VORTEX_ODBC_CHAR environment variable 8-16
VORTEX_ODBC_DATETIME environment

variable 8-13
VORTEX_ODBC_TIME environment variable 8-14,

9-20
VORTEX_SHM_BASE environment variable 8-22
VORTEX_SHM_FILE environment variable 8-20
vtx3 1-10
vtx4 1-7, 1-10
VTXIPC_SO environment variable A-8
vtxipc_so.exe shared image A-8

vtxnet2 and vtxnetd 1-10
authentication option for 8-7
encryption setting for 8-26
log option for 11-3
memory used for sort operations (vtxnetd) B-63
See also Installation Configuration Guide

vtxping, troubleshooting with 11-3

W
WHERE clauses B-16 to B-21
Windows, 64-bit. See 64-bit Windows
Word (Microsoft), accessing a database with 9-33
work files (temporary sort tables) 8-9, 10-2
write operations, setting time-outs for 8-27
write_timeout option (net.ini) 8-27
writing data to a database

arrays 3-12
data type conversions 3-13
dates and times 8-15
overlay fields 3-16
using user-defined routines 7-2 to 7-8

X
XDL files 3-2
xfdbabld utility 3-11
xfdba.dbr 4-6
xfdba.exe 4-6
XFDBTUT environment variable 3-33
xfdbusr.dbl file 3-11
xfODBC Client installation 1-9
xfODBC Database Administrator Program. See DBA

program
xfODBC driver 1-7
xfODBC Setup dialog box 8-6

setting environment variables in 3-34
XFODBCUSR_SO environment variable 7-7, A-8
xfodbcusr_so.exe shared image 7-7, A-8
xfodbcusr.c file 7-3 to 7-8
xfodbcusr.dll file 7-2
XFODBCUSR.so file 7-2

Z
zero length strings, interpretation of 3-29
zeros, interpretation of 3-27 to 3-29

	xfODBC User’s Guide
	Contents
	Preface
	Part 1: Introduction to xfODBC
	1 Welcome to xfODBC
	What Is xfODBC?
	xfODBC components
	xfODBC requirements and installation

	How Third-Party Applications Use xfODBC
	The Steps to ODBC Access

	2 Using the Sample Database As a Tutorial

	Part 2: Preparing for ODBC Access
	3 Preliminary Steps
	Setting Up a Repository
	Handling a repository shared by multiple databases

	System Catalog Generation Issues
	Setting Options and File Locations
	Specifying file locations
	Setting catalog generation options
	Setting environment variables

	4 Creating a System Catalog
	Generating the System Catalog
	Generating a system catalog from the command line
	Using DBA to generate a system catalog

	Regenerating the System Catalog
	Regenerating the system catalog with dbcreate
	Regenerating the system catalog with DBA
	Preserving views

	Errors and Troubleshooting
	Troubleshooting
	Dbcreate error and warning messages

	5 Setting Up a Connect File
	Creating the Connect File
	The dictsource and datasource Lines
	Setting the convert_error Option
	Synergy Driver Logging

	6 Viewing and Customizing the System Catalog
	Understanding DBA, the Customization Program
	Starting DBA
	DBA menus and windows
	Using lists
	Exiting
	DBA error messages

	Opening the System Catalog in DBA
	Opening a system catalog from DBA
	Opening a system catalog from the command line
	If the system catalog won’t open...

	Customizing Users and Groups
	Initializing users and groups
	Viewing groups
	Creating a group
	Modifying a group
	Deleting a group
	Viewing users in a group
	Viewing all users
	Adding a user
	Modifying a user
	Deleting a user

	Customizing Tables and Table Elements
	Viewing and customizing tables
	Viewing and deleting columns
	Viewing indexes in a table

	Generating and Editing a Conversion Setup File
	Generating the conversion setup file from DBA
	Generating the conversion setup file from the command line
	Editing the conversion setup file

	Verifying the System Catalog
	Comparing the system catalog to repository definitions
	Comparing the system catalog to a database

	7 Creating Routines for User-Defined Data Types
	Introduction
	Using xfodbcusr.c As a Template
	Functions in xfodbcusr.c

	Using xfodbcusr.c As an Example

	8 Configuring Data Access
	Setting Security Levels
	Understanding access levels for tables and groups

	Setting Up Access with DSNs
	Setting Runtime Data Access Options
	Formats for returned dates and times
	Converting dates returned without centuries
	Treating invalid dates as null data
	Masks for dates and times in SQL statements
	Setting the base date for Julian day conversions
	Recognizing the MCBA deleted-record characters
	Changing the way xfODBC describes strings
	Creating a file for query processing options

	System Catalog Caching
	Using syngenload
	Using logging to determine if a system catalog is cached
	Troubleshooting system catalog caching

	SQL OpenNet Client Options in net.ini

	Part 3: Accessing Data
	9 Accessing a Synergy Database
	The Basic Steps
	Third-Party Software Requirements
	Troubleshooting Data Access
	Record Locking and Transactions with xfODBC
	Accessing Synergy Data with ADO
	Accessing Synergy Data in a .NET Environment
	System requirements for the Synergy/DE Data Provider for .NET
	Using the Synergy/DE Data Provider for .NET
	Operators, functions, classes, and exceptions

	Examples
	Using ODBC Test to test a query
	Adding a data connection and retrieving data in Visual Studio

	10 Optimizing Data Access
	Optimizing with Keys
	What are keys?
	How xfODBC uses keys
	Defining keys
	Keys with literals
	Tags and optimization

	Creating Efficient SQL Statements
	Optimizing with restriction clauses
	Operators and optimization
	AND and OR clauses
	ORDER BY clauses
	Checking the order of the FROM clause for a SQL89 join
	Avoid mixing SQL92 and SQL89 syntax

	Using an ODBC-Enabled Application
	Optimizing with pass-through queries

	Tracking Performance
	Determining which indexes are used
	Using Synergy DBMS logging

	11 Data Access Errors and Error Logging
	Error Logging
	Using the log files

	Editing the SQL Message File
	Data Access Errors
	Troubleshooting Socket Errors
	Connection reset by peer (10054 or 54)
	Connection refused (10061 or 61)

	Appendices
	A: Environment Variables
	Data Access Variables
	System Catalog Generation Variables
	Other Environment Variables Used by xfODBC

	B: SQL Support
	Conventions, Names, and Identifier Case
	Statements that Access Data
	SELECT
	Creating subqueries and inline views
	Joins

	Notes on Clauses, Columns, and Aliases
	WHERE
	ORDER BY
	GROUP BY
	HAVING
	FROM
	FOR UPDATE OF
	CASE
	UNION
	Computed columns
	Text columns
	Table aliases
	Column aliases

	Aggregate Functions
	Scalar Functions
	Bitwise Functions
	Statements that Modify Data
	DELETE
	INSERT
	UPDATE

	Statements that Define the Schema (DDL)
	CREATE INDEX
	CREATE SYNONYM
	CREATE TABLE
	CREATE VIEW
	DROP SYNONYM
	DROP TABLE
	DROP VIEW

	Statements that Set Options
	SET OPTION

	Restrictions
	ODBC Reserved Words

	Glossary
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Send us your comments

