POST-QUANTUM CRYPTOGRAPHY

Lily Chen
Computer Security Division
Information Technology Lab, NIST
NIST

NIST Mission:
To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

Information Technology Laboratory Mission:
Cultivating trust in IT and metrology.

Computer Security Division Mission:
Conduct research, development and outreach necessary to provide standards and guidelines, mechanisms, tools, metrics and practices to protect information and information systems.

Crypto Technology Group Mission:
Research, develop, engineer, and standardize cryptographic algorithms, methods, and protocols.
Quantum Impact and NIST Standards

NIST Crypto standards

Public key based
- Signature (FIPS 186)
- Key establishment (800-56A/B/C)

Symmetric key based
- AES (FIPS 197)
- TDEA (800-67)
- Modes of operations (800-38A-38G)
- SHA-1/2 (FIPS 180) and SHA-3 (FIPS 202)

Tools
- RNG (800-90A/B/C)
- KDF (800-108, 800-135)

Guidelines
- Hash usage/security (800-107)
- Transition (800-131A)
- Key generation (800-133)
- Key management (800-57)

Randomized hash (800-106)
- HMAC (FIPS 198)
- SHA3 derived functions (parallel hashing, KMAC, etc. (800-185)

Post-Quantum Cryptography
Timeline – Why Now?

- It has been a long debate among researchers and practitioners on whether it is too early to look into PQC standardization.
- “A one-in-seven chance that some fundamental public-key crypto will be broken by quantum by 2026, and a one-in-two chance of the same by 2031” – Michele Mosca, U. of Waterloo.
- The experience tells that we need at least several years to developing and deploying PQC standards.
- If we require 5-year backward secrecy, we certainly need to start standardization now.

<table>
<thead>
<tr>
<th>y</th>
<th>x</th>
<th>z</th>
</tr>
</thead>
</table>

If \(x+y > z \), we should worry!

- **y** is the time taken for developing and deploying PQC standards.
- **x** is the time for “backward secrecy” (maintain secrecy for the information encrypted \(x \) years ago).
- **z** is the time before quantum computers are available.
NIST Milestones

• 2012 – NIST begins PQC project
 • Research and build NIST team
• April 2015 – 1st NIST PQC workshop
• Feb 2016 – NIST Report on PQC (NISTIR 8105)
• Feb 2016 – NIST preliminary announcement of standardization plan
• Aug 2016 – Draft submission requirements and evaluation criteria released for public comments
• Sep 2016 – Comment period ends
• Dec 2016 – Announcement of finalized requirements and criteria (Federal Register Notice)
• Nov. 30, 2017 - Submission deadline
NIST Plan in Developing PQC Standards

- NIST will post “complete and proper” submissions
- NIST PQC Standardization Conference (with PQCrypto, Apr. 2018)
- Initial phase of evaluation (12-18 months)
 - Internal and public review
 - No modifications allowed
- Narrowed pool will undergo a second round (12-18 months)
 - Second conference to be held
 - Minor changes allowed
- Possible third round of evaluation, if needed
- NIST will release reports on progress and selection rationale

Timeline:

- Submission due: Nov. 30, 2017
- Publish submissions: Dec. 2017
- 1st conference: April, 2018
- Analysis and evaluation: Aug.(?) 2019
- 2nd Conference: 2022-2023
Cryptography is the cornerstone of cybersecurity. Transition from current deployed cryptosystems to quantum resistant systems is challenging. Security analysis and performance assessment are extremely critical. National quantum initiative should provide strong support for research in quantum resistant cryptography, a.k.a. post-quantum cryptography.