Thalassemia

Diagnosis, Management and Nursing Implications

Susan M. Carson RN, MSN, CPNP
Nurse Practitioner III
Thalassemia and Chronic Transfusion Program
Children’s Center for Cancer and Blood Diseases
Children’s Hospital Los Angeles
Objectives

• Understand hemoglobin and the fetal switch
• Be able to differentiate the different types of thalassemia
• Understand how thalassemia is diagnosed
• Understand and goals of transfusion therapy
• Identify the pathophysiology, sequelae and treatment of iron overload
• State the challenges and side effects of chelation therapy – and strategies that can help patients.
• Identify nursing interventions to help patients and families across the lifespan
• Identify factors that can influence compliance
Disclosures

• Member of the Novartis Speaker Panel for Exjade and Jadenu

• Advisory Board member and speaker for Apo-pharma for Ferriprox

• Information will cover all current chelation therapies and will be fair and unbiased.

• Content will include off label use of pharmaceuticals
Hemoglobin

- To understand Thalassemia—must understand Hemoglobin
- Hemoglobin is a tetramer, composed of 2 pairs of globin chains, held together by the heme group—containing Fe.
- **Main function**: reversible transport of oxygen.
- As children and adults—Red Blood Cells containing hemoglobin are produced in the bone marrow—process called Erythropoiesis.
Hemoglobin

• 3 Major types of Hemoglobin
 – Hb A $\alpha\alpha/\beta\beta$
 – Hb A2 $\alpha\alpha/\delta\delta$
 – Hb F $\alpha\alpha/\gamma\gamma$

• all can carry O2

• have different life spans- present in blood in varying concentrations at different ages, and with different conditions.
 - Hemoglobin Electrophoresis with Quantitative A2 and F(HEP) – blood test to measure the amounts of each type of hemoglobin
Normal Red Blood Cells
The Fetal Switch

<table>
<thead>
<tr>
<th>Types of cells</th>
<th>Megaloblast</th>
<th>Macrocyte</th>
<th>Normocyte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organs</td>
<td>Yolk sac</td>
<td>Liver</td>
<td>Spleen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part in the total synthesis of globin, %</th>
<th>Pre-and birth</th>
<th>Birth</th>
<th>Postnatal age (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-similar globin chains</td>
<td>α</td>
<td>α</td>
<td>β</td>
</tr>
<tr>
<td>β-similar globin chains</td>
<td>ε</td>
<td>β</td>
<td>γ</td>
</tr>
</tbody>
</table>
Thalassemia: Characteristics

- a QUANTITATIVE anemia

- Autosomal recessive genetic mutation.

- The mutation causes a transcription error- the body can’t read the blue print to make globin chains.

- Type and severity depend on the defect, and the inheritance pattern.
Beta Thalassemia inheritance

- **When one parent is a patient and another a carrier**
 - Risk for child to:
 - Have Thalassemia: 50%
 - Become a carrier: 50%

- **When both parents are patients**
 - Risk for child to:
 - Have Thalassemia: 100%
 - Become a carrier: 0%

- **When one parent is a carrier**
 - Risk for child to:
 - Have Thalassemia: 0%
 - Become a carrier: 50%

- **When both parents are a carrier**
 - Risk for child to:
 - Have Thalassemia: 25%
 - Become a carrier: 50%
Thalassemia: Genetics

- Over 250-300 known mutations that cause thalassemia-type can determine severity.
- Patients can be homozygous for one mutation, or a compound heterozygote, resulting in disease.
- Beta globin chains: instructions on Chromosome 11 - β/β
- Alpha globin chains: Chromosome 16 $\alpha\alpha/\alpha\alpha$
Thalassemia Types

• **Thalassemia “Trait” aka “Minor”**
 - heterozygous for deletion
 - mild anemia, no disease

• **Thalassemia “Major” or “Disease”**
 - homozygous for deletion, or compound heterozygote.
 - usually require chronic transfusions for life

• **Non Transfusion Dependant Thalassemia (NTDT) or Thalassemia “Intermedia”**
 - these are patients who have thalassemia “disease” but due to lesser clinical severity, are not always dependant on chronic transfusions.
Beta Thalassemia

- mutation effects the production of beta chains
- Hb A αα/ββ
- 2 alpha chains
- 2 beta chains
- β+ Thal- makes Hb A
- β Zero Thal- does not make Hb A
- anemia after fetal switch
The Fetal Switch

<table>
<thead>
<tr>
<th>Types of cells</th>
<th>Meabolast</th>
<th>Macrocyte</th>
<th>Normocyte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organs</td>
<td>Yolk sac</td>
<td>Liver</td>
<td>Spleen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prenatal age (weeks)</th>
<th>Birth</th>
<th>Postnatal age (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>42</td>
</tr>
</tbody>
</table>

- **α-similar globin chains**
- **β-similar globin chains**
β Thalassemia

- Persons of Mediterranean, SEA, Indian, Pakistani, African, Middle Eastern descent
- Ineffective erythropoiesis
- β chains not produced
- Microcytic, Hypochromic anemia
- Relatively increased red cell count
- Trait:
 - Increased Hb-F (> 2.0%)
 - Increased Hb-A2 (>2.5-3.5%)
Thalassemia Trait Smear
Alpha Thalassemia

- Hb A, A2 and F are all made w/ alpha chains
- 4 sets of instructions to make 2 globin chains
- $\alpha\alpha/\alpha\alpha$
- Alpha Thalassemia major - anemia in utero - death in utero
 - Patients can survive if they receive intrauterine transfusions or are born prematurely.
α Thalassemia

- **Asian / African-American** descent/some Mediterranean
- **Hematologic findings depend upon how many of the four α globin genes are deleted**

<table>
<thead>
<tr>
<th>α₁</th>
<th>α₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>α₁</td>
<td>α₂</td>
</tr>
</tbody>
</table>

- **normal**

<table>
<thead>
<tr>
<th>α₁</th>
<th>α₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>α₁</td>
<td>α₂</td>
</tr>
</tbody>
</table>

- **Silent carrier**
 - Normal hemogram

<table>
<thead>
<tr>
<th>α₁</th>
<th>α₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>x₁</td>
<td>α₂</td>
</tr>
</tbody>
</table>

- **CIS-Trait**
 - Microcytic-Hypochromic
 - Very Mild Anemia
 - Trans-Trait

<table>
<thead>
<tr>
<th>α₁</th>
<th>α₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>α₁</td>
<td>x₂</td>
</tr>
</tbody>
</table>

- **Hemoglobin H disease**
 - Microcytic-Hypochromic
 - Moderate-severe Anemia

<table>
<thead>
<tr>
<th>α₁</th>
<th>α₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>α₁</td>
<td>x₂</td>
</tr>
</tbody>
</table>

- **Hydrops Fetalis**
 - Death *in utero*
The Fetal Switch

Types of cells

<table>
<thead>
<tr>
<th>Types of cells</th>
<th>Megaloblast</th>
<th>MacrocYTE</th>
<th>Normocyte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organs</td>
<td>Yolk sac</td>
<td>Liver</td>
<td>Spleen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bone marrow</td>
</tr>
</tbody>
</table>

Graph

- **Axes**:
 - Y-axis: Part in the total synthesis of globin, %
 - X-axis: Prenatal age (weeks) and Postnatal age (weeks)

- **Lines**:
 - Blue line: α-similar globin chains
 - Red line: β-similar globin chains

- **Key Events**:
 - Birth (36 weeks)
 - Changes in globin synthesis from prenatal to postnatal phase.
Three gene deletion Hemoglobin H disease is a Thalassemia Intermedia syndrome.

- May have a fast migrating hemoglobin (HB H) on electrophoresis.
- Hb A2 and F are normal.
- Two gene deletion (trait) has a normal electrophoresis.
- Gene mapping is important in Asians for genetic counseling of parents.
How Thalassemia is Diagnosed

Beta Thalassemia
- DNA- gene mapping
 - Gold standard
 - *Useful* for genetic counseling
- HEP- can diagnose Beta thalassemia trait and major

Alpha Thalassemia
- DNA- Gene mapping
 - Gold standard
 - *Essential* for genetic counseling
- HEP- not effective
- will give false “normal” for alpha thalassemia trait
Thalassemia Trait: Treatment

• **NONE!!!!!**

• Iron will not correct the mild anemia.
• Patient requires genetic counseling at child bearing age.
• Advise parents to be worked up for Thalassemia trait… especially if they want to have more children
Thalassemia Major - Not Transfused

- Thalassemia Major Blood Smear
- Normal Blood Smear
Thal Major: Untransfused

- Anemia usually after 6 months
- Chronic low Hb in untransfused thalassemia patients lead to bone marrow hyperplasia
- Classic “Thal Facies” - maxillary and frontal bossing

- Very anemic (hb low as 3-4 g/dl) hepatosplenomegaly, poor growth, skeletal deformities, thal facies, cardiac failure.
- 80% of TM patients will die before age 5 if not treated
Beta Thalassemia Major -

Beta Thalassemia Major – bone changes
Beta Thalassemia Major

The face of thalassaemia

Facial deformities
Minimally treated patients aged 8 and 20 (Cyprus, 1940s)

Photos with permission (Modell and Berdoukas, 1984)
Treatment Options for Thalassemia Major (TM)

- **Three Major Treatment Options:**
 - **Medical Therapy - Transfusion and chelation**
 - Bone Marrow Transplant - matched sibling donor 90%
 - New Therapies: gene therapy, drugs to block ineffective erythropoiesis

- **NURSING INTERVENTION:** support the decisions of the team, provide education and support for the family, ensure the family understands their options
Thalassemia Major: Treatment

- Patients whose baseline Hb is < 7.5-8.5 gm/dl often require chronic transfusions.
- Patients are started on chronic transfusions based on different criteria:
 - S&S of clinical anemia
 - falling off the growth curve
 - excessive hyperplasia w/ extensive osteoporosis/osteopenia, bony changes
Goal of Transfusions

- Correction of anemia
- Suppression of erythropoiesis
- Transfused every 2-4 weeks with 10-20 cc/kg
- Goal baseline hemoglobin
 - Commonly accepted is 9-10 g/dl
 - Our practice >10.5 g/dl
- IDEAL: patients have RBC phenotyping done prior to transfusions
 - Screen for lesser antigens that can cause major antibodies in multiply transfused patients
 - Can be done using PCR technology on previously transfused patients
- Transfused with new, extended matched, leukofiltered PRBC
- Actual practice dependent on available resources.
Iron Overload

- Each 500 ml of blood deposits 200 mg of iron in the body—cannot be excreted.
- Iron deposits in the liver, heart, pancreas, thyroid, parathyroid, pituitary gland.
- Monitor endocrine, cardiac, hepatic function
- **Leading cause of death in patients with Thalassemia!!!**
Iron Toxicity ≈ Tissue Iron X Environmental Factors X Genetics X Time

Nursing Tip:
Iron is a silent killer. Educational needs are lifelong.
Measuring Iron

- **Direct measurements**
 - liver biopsy
 - MRI

- **Indirect measurements**
 - Serum ferritin

- **Invalid tools**
 - CT scan
 - Ultrasound.
Measuring Iron: Cardiac / Liver iron by MRI (T2*)

- The Gold Standard
- Excellent correlation with liver and cardiac iron
- The only reasonable way currently to measure heart iron.
- Cardiac iron is not related to liver iron
- Requires special software

Courtesy of Dr. John Wood
NTBI- The Real Culprit

NTBI

is a shorter form of
Non-transferrin-bound iron

by allacronyms.com
Liver iron does not directly correlate with cardiac iron

Black means high iron. In the MRI between A and B, the cardiac iron was high and the patient became adherent to chelation. Panel B shows the liver clears before the heart. (image courtesy of Dr J Wood)

Coates, TD, Free Radic Biol Med 2014
Cardiac T2* < 20 ms associated with low LVEF

LV = left ventricle; RV = right ventricle.

Relation of Cardiac T2* to Heart Failure

Pancreatic Fe precedes cardiac Fe

Measuring iron: Ferritin as a Monitor of Chelation

• Advantages
 - Can be measured with every clinic visit
 - Widely available
 - Can examine trends over time

• Disadvantages
 - Loose correlation with liver (body) iron
 - Wrong almost 30% of the time!
 - Increased with inflammation
 - Decreased if scurvy
 - Effect of chelation not linear
 - Different chelators may affect ferritin differently

DFO = deferoxamine.
When to start chelation

 Liver iron > 2-3 mgFe/gm dry weight as determined by MRI.
 Transfusions > 1 year or PRBC’s > 120cc/kg.
 Ferritin > 1000ng/ml
 Some now starting asap after initiation of chronic transfusions
Education: When to Start

• Diagnosis

• Chronic Transfusion Therapy:
 - Education at initiation of therapy and ongoing

• Intermittent transfusions:
 - Iron overload rarely discussed
 - Signs of iron overload after 10-20 units
 - Iron overload is not part of consenting process for blood transfusions
Overview of iron chelators

<table>
<thead>
<tr>
<th>Property</th>
<th>Deferoxamine (DFO)</th>
<th>Deferiprone (DFP)</th>
<th>Deferasirox</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usual dose</td>
<td>25–60 mg/kg/day</td>
<td>75-100 mg/kg/day</td>
<td>Exjade 20–40 mg/kg/day</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Jadenu 14-28 mg/kg/day</td>
</tr>
<tr>
<td>Route</td>
<td>s.c., i.v.</td>
<td>p.o.</td>
<td>p.o.</td>
</tr>
<tr>
<td></td>
<td>8–12 h, 5 days/week</td>
<td>Liquid or tablet</td>
<td>Dispersion or tablet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 times daily</td>
<td>once daily</td>
</tr>
<tr>
<td>Half-life</td>
<td>20–30 min</td>
<td>3–4 h</td>
<td>8–16 h</td>
</tr>
<tr>
<td>Excretion</td>
<td>Urinary, faecal</td>
<td>Urinary</td>
<td>Faecal</td>
</tr>
<tr>
<td>Approved indications</td>
<td>Treatment of chronic iron overload due to transfusion-dependent anaemias</td>
<td>Thalassaemia syndromes >18 years 2nd line therapy in US,</td>
<td>Treatment of chronic iron overload due to frequent blood transfusions</td>
</tr>
</tbody>
</table>

s.c.= subcutaneous, i.v.= intravenous, p.o.= by mouth

Goals of treatment:
- Bind LPI / LCI
- Normalize Total body Fe
- Clear abnormal tissue Fe
- Restore organ function

All have the same fatal defect:
None of these are effective if the patient does not take them
Chelation Side Effects – Nursing Management

• **DFO**- site reactions, allergy, rash, lesions
 – Site rotation, hydrocortisone, warm packs, increased dilution

• **DFX**- nausea, vomiting, diarrhea, rash, elevation in AST/ALT, renal toxicities- inc Fanconi Syndrome, pancytopenia, allergy
 – Start lower dose and titrate up slowly
 – Dose reduction- or hold medication, take with food, mix with food, divide dose BID, take with lactaid or switch to Jadenu (if available)
 – Must have monthly CBC, Chem 14, urine p/c ratio done- and results followed closely. Hold dose for abnormal levels x2
Chelation Side Effects – Nursing Management

- **DFP** - nausea, vomiting, fatigue, arthralgia, neutropenia and agranulocytosis, elevations in ALT
 - Advise to start at 50% of dose and increase slowly over a few weeks
 - Hold if arthralgia, restart at lower dose and increase
 - Patients must have weekly CBCs to screen for neutropenia
 - If patient has a fever - they MUST
 - Hold the drug
 - Go to the ED - tell them they are on a medication that can cause neutropenia
Combination Chelation

• **Combination Chelation offers options for patients to:**
 – Maximize 24/7 coverage
 – Intensify chelation for severely overloaded patients
 – Minimize side effects
 – Enhance compliance

• **Sample “cocktails”**
 – **DFP/DFO** - most studied
 • DFP daily, with DFO 3-7 nights/week
 – **DFX/DFO** - some studies
 • DFX- daily- even low dose, with DFO 3-7 nights/week
 – **DFX/DFP** - some studies
 • DFP/DFX- both at full dose, or reduced depending on severity and tolerability

Nursing Tip: work with the patient and MD to find a combo that meets the needs of the patient and the highest likelihood of compliance.
LIC target: How low should you go?

- Normal LIC by MRI is about 1.2 mg / G dry weight liver.
- In thalassemia intermedia, morbidities are significantly greater if the LIC is > 7 mg / gm dw
- Cardiac morbidity is clearly related to T2* < 10 ms
- The overall mortality from cardiac deaths has dropped by 71% due in part to better chelation and the ability to monitor iron by MRI

In 2016, what should the LIC target of chelation therapy be?

In our opinion:
If resources are available to closely monitor chelation therapy, we should try to normalize LIC and eliminate iron overload from the heart and endocrine organs, especially in children.
Chelation- Overchelation

- **DFO**: truncal shortening, bone disease, auditory and ocular toxicities
- **DFX**: constipation, nausea, vomiting, renal tubular defects, alterations in electrolytes, elevations in AST/ALT

Nursing Intervention: Educate patients about dangers of overchelation: why monthly labs are so important, symptoms to look out for and who to call for concerns
Compliance

• Issue of compliance regardless of disease or medical regimen
Survival Benefit of Deferoxamine Is Highly Dependent on Compliance

Negative Factors and Compliance

• Lack of perceived importance**
• Side effects**
• No scheduled follow up**
 - Decayed adherence
 - Often ignored
 - Area for major improvement
• Contrasting health beliefs between patient and provider**
• Concerns about medication safety**

Nurse/Patient Communications

- Encourage honesty from your patient
 - Want to know if they aren’t taking it- so you can help them take it, and so you can keep a closer eye on them.

- Motivational Interviewing

- “Normalize” non-adherence

- There is no good method to measure compliance besides the MRI/biopsy
Positive Factors for Improved Compliance

• Sharing of responsibility between parent and patient = ↑ compliance*
• Perceptions of positive home environment*
• Perceived importance of medication**
• Scheduled follow ups**

*Treadwall et al, Ped Blood Ca, 2005
Thalassemia Major: Summary of Current Treatment

• Prior to blood transfusions, patients died before age 5
• Blood transfusions extended life through young adulthood
• Chelation therapy now provides for lifespan in 60s - depending on compliance with chelation
• Currently have 3 FDA approved chelators.
• Only cure for Thalassemia - Bone Marrow Transplant. - 10/10 matched sibling - 85% disease free survival.
• Gene Therapy - still “10 years” down the road - but trials are starting
• Nursing plays integral role in every aspect of care for thalassemia patients
Contact Information

Susan M. Carson
4650 Sunset Blvd
Los Angeles, CA
90027
323-361-4132
Scarson@chla.usc.edu