Peripheral Arterial Disease – The New Cardiovascular Endemic

Friday April 21st 2017 Osama A. Ibrahim, MD, FACC

Director of PAD, Limb Salvage, and Amputation Prevention Programs

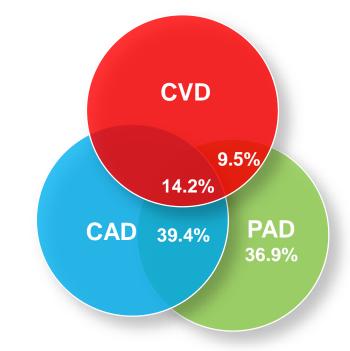
Director of Endovascular Therapies

North Memorial Heart and Vascular Institute

North Memorial Healthcare

Executive Summary

- Peripheral artery disease or PAD commonly refers to the presence of a stenosis or occlusion in the aorta or arteries of the limbs
- Individuals with PAD have an exceptionally elevated risk for cardiovascular events, and the majority will eventually die of cardiac or cerebrovascular etiology
- Prognosis is correlated with the severity of PAD as measured by the ankle brachial index (ABI)
- General practitioners (e.g., PCP, podiatrists, etc) must be engaged in the diagnosis and management of PAD—it can be life saving
- Early referral to a (cardio)vascular specialist can facilitate optimal risk factor modification and management—this saves lives
 - WHEN revascularization is necessary, endovascular therapy for PAD should be considered FIRST-LINE therapy in most cases



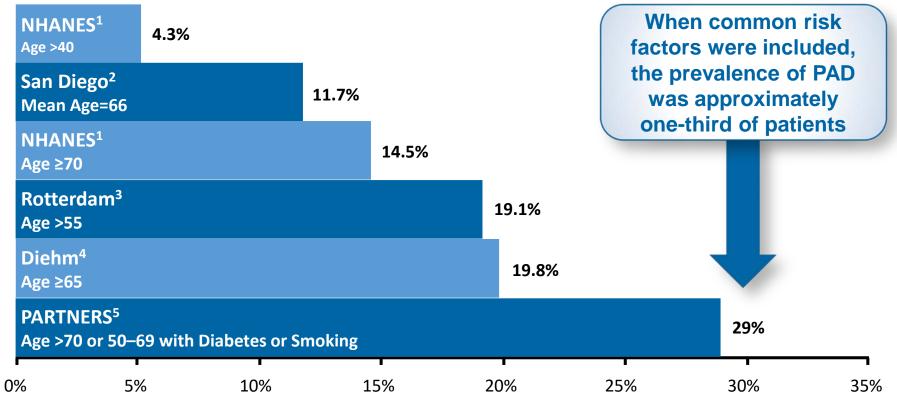
PAD Epidemiology

Definition of PAD^{1,2}

- The presence of a stenosis or occlusion in the aorta or arteries of the limbs
- One of the three cardinal manifestations of atherosclerosis in addition to CAD and CVD
- Associated with an increased risk of cardiovascular and cerebrovascular events, including death, MI and stroke

Patients with one manifestation often have coexistent disease in other vascular beds¹

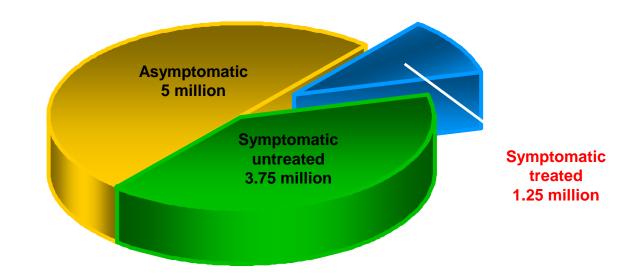
CAD=coronary artery disease; CVD=cardiovascular disease; MI=myocardial infarction.


1. Bhatt DL et al, on behalf of the REACH Registry Investigators. JAMA 2006; 295(2): 180-189

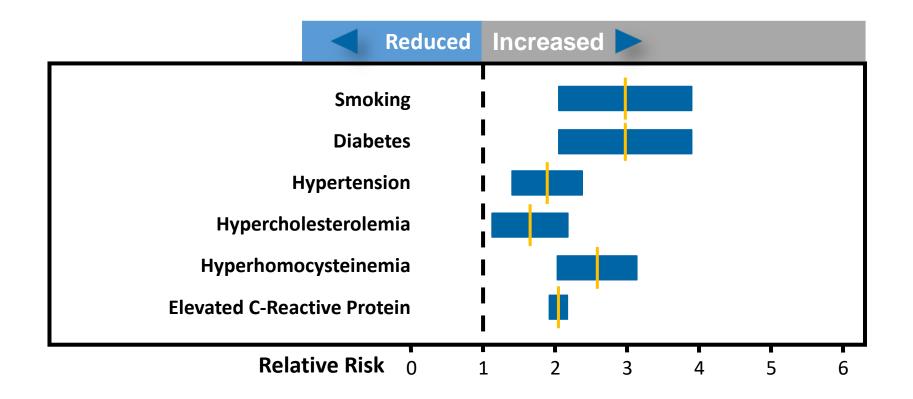
2. Rooke T et al. 2011 ACCF/AHA focused update of the guideline for the management of patients with peripheral arterial disease (updating the 2005 guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.

Circulation. 2011;124:2020–2045.

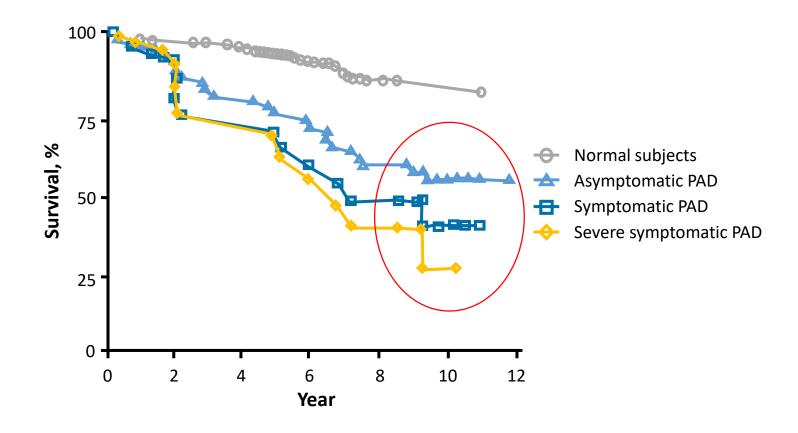
Prevalence of PAD


NHANES=National Health and Nutrition Examination Survey.

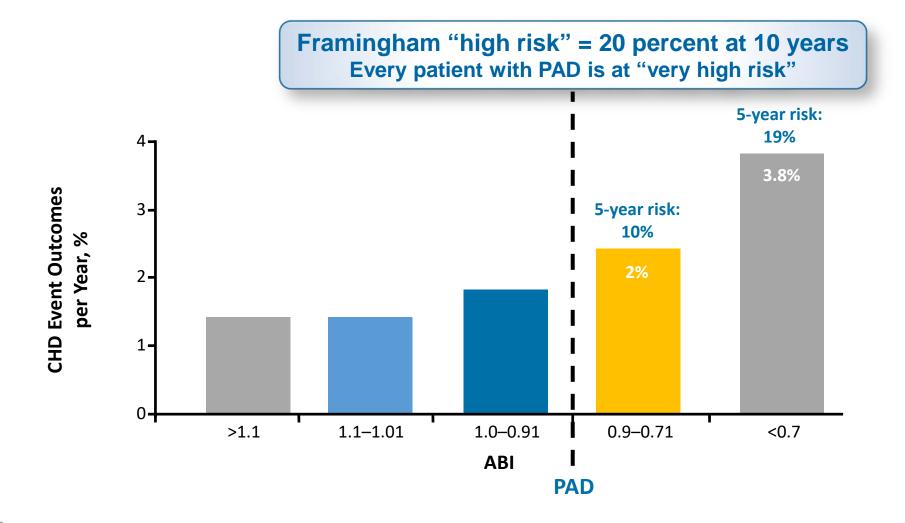
- 1. Selvin E, Erlinger T. Prevalence of and risk factors for peripheral arterial disease in the United States: results from the National Health and Nutrition Examination Survey, 1999–2000. *Circulation*. 2004;110:738–743.
 - 2. Criqui M et al. The prevalence of peripheral arterial disease in a defined population. *Circulation*. 1985;71:510–515.
- 3. Meijer W et al. Peripheral arterial disease in the elderly: the Rotterdam Study. *Arterioscler Thromb Vasc Biol.* 1998;18:185–192.
- 4. Diehm C et al. High prevalence of peripheral arterial disease and co-morbidity in 6880 primary care patients: cross-sectional study. Atherosclerosis. 2004;172:95–105.
 - 5. Hirsch A et al. Peripheral arterial disease detection, awareness, and treatment in primary care. *JAMA*. 2001;286:1317–1324.


Prevalence

Total ~ 10 million U.S. patients



Risk Factors for PAD



10-Year Survival Rates for Patients with PAD

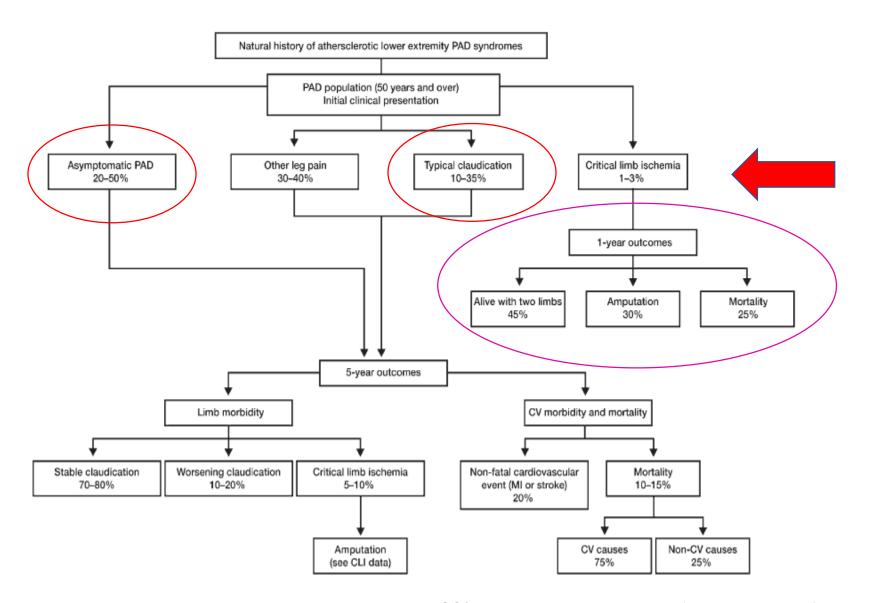
Cardiovascular Risk Increases with Decreases in ABI

Fatal or nonfatal MI.

CHD=coronary heart disease (chronic heart failure).

Clinical Presentation

•	Asymtomatic	20-50 %
	Asymiconnacic	20 30 /(


- Atypical leg pain40-50 %
- Classic claudication 10-35 %
- Critical limb ischemia 1-2 %

Clinical Manifestations of PAD

- Patients can be asymptomatic for PAD (up to 50-60% of the time)
- Or patients can experience
 - Symptoms of intermittent claudication
 - Discomfort
 - Aching
 - Leg cramps with exercise that resolve with rest
 - Functional impairment
 - Slow walking speed, gait disorder
 - Rest pain
 - Pain or paresthesia in foot or toes, worsened by leg elevation and improved by dependency
 - Ischemic ulceration and gangrene (Critical Limb Ischemia)

Hirsch, AT et al. ACC/AHA 2005 Practice guidelines for management of patients with PAD, Circ 2006

Classification of PAD

	Fontaine Stages	Rutherford Categories		
Stage	Clinical	Grade	Category	Clinical
I	Asymptomatic	0	0	Asymptomatic
IIA	Mild claudication	I	1	Mild claudication
IIB	Moderate-severe claudication	I	2	Moderate claudication
IID		I	3	Severe claudication
Ш	Ischemic rest pain	П	4	Ischemic rest pain
IV	Ulceration or gangrene	III	5	Minor tissue loss
IV		IV	6	Ulceration or gangrene

Diagnosis of PAD

Comprehensive Vascular Examination

Pulse* Examination

- Carotid
- Radial/ulnar
- Femoral
- Popliteal
- Dorsalis pedis
- Posterior tibial

Physical Examination

- Bilateral arm blood pressure
- Cardiac exam
- Palpation of abdomen for potential aneurysmal disease
- Auscultation for bruits
- Examination of legs and feet

Physical Examination Findings Suggestive of PAD

- Performed with pants and shoes off
- Limb examination (and comparison with the opposite limb) includes
 - Absent or diminished femoral or pedal pulses (especially after exercising the limb)
 - Arterial bruits
 - Hair loss
 - Poor nail growth (brittle nails)
 - Dry, scaly, atrophic skin
 - Dependent rubor
- Pallor with leg elevation after 1 minute at 60° (normal color should return in 10–15 seconds; >40 seconds indicates severe ischemia)
- Ischemic tissue ulceration (punched-out, painful, with little bleeding), gangrene

Diagnosis

- ABI with exercise
- Dupplex ultrasound
- CTA/MRA
- Conventional angiography

Noninvasive Assessments in CAD and PAD Are Similar

CAD

- Electrocardiogram
- Echocardiogram
- Stress test
- Angiography

PAD

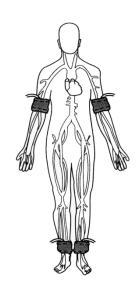
- ABI
- PVR, segmental pressures
- Treadmill test
- DUS, CTA, MRA

Hirsch A et al. ACC/AHA 2005 practice guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (writing committee to develop guidelines for the management of patients with peripheral arterial disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation. 2006;113:e463–e654.

ACCF/AHA 2011 PAD Guidelines Diagnostic Methods: ABI

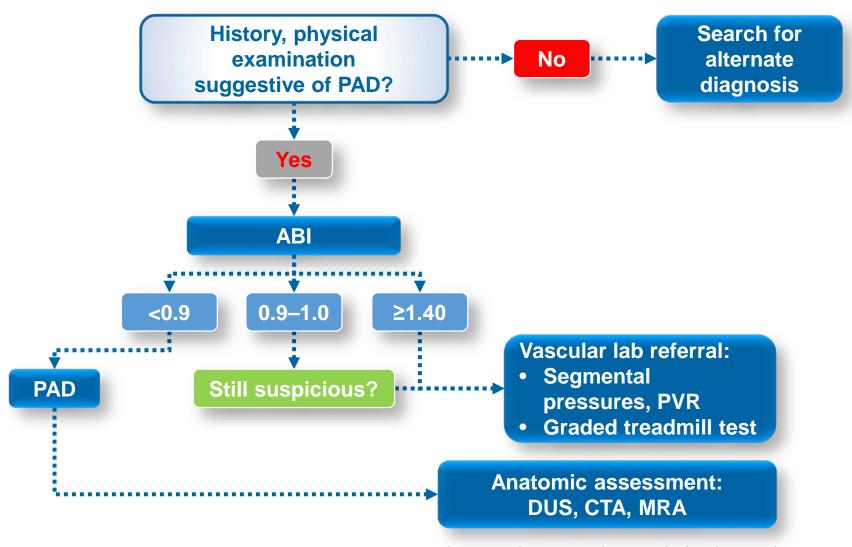
- The resting ABI should be used to establish the lower extremity PAD diagnosis in patients with suspected lower extremity PAD, defined as individuals
 - With exertional leg symptoms
 - With nonhealing wounds
 - Who are age ≥65
 - Or who are age ≥50 with a history of smoking or diabetes

Ankle Brachial Index

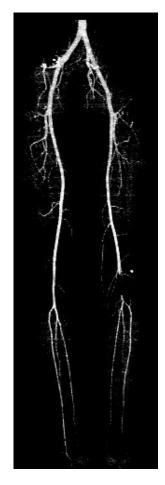

Ankle systolic pressure

ABI =

Brachial systolic pressure


- Ankle and brachial systolic pressures taken using a hand-held Doppler instrument
- The ABI is 95-percent sensitive, 99-percent specific for PAD

Normal	1.00–1.40		
Borderline	0.91–0.99		
PAD	≤0.90		
Pain/Ulceration	≤0.40		
Noncompressible	≥1.40		



Suggested Diagnostic Algorithm for PAD

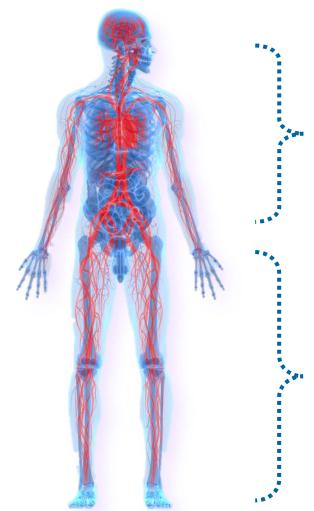
Advanced Vascular Imaging

CT Angiography

- Maximum-intensity projection (MIPs)
 - Angiographic like representation
- Volume rendering
 - Preserves depth information
- Multi-planar reformat
- Curved planar reformat (CPR)
 - Perpendicular to median arterial centerline

MR Angiography

- Traditional: Time of flights
- Contrast-enhanced MRA
 - Improves speed of exam, anatomic coverage, and small- vessel resolution
- Time-resolved gadolinium enhanced sequences
 - Time-resolved imaging of contrast kinetics (TRICKS)
 - Provides angiographic like dynamic contrast passage
- Moving-table technique or multi-array, parallelimaging
 - Optimize large field-ofview imaging



Management

Medical Therapy and Risk Factor Modification

Therapies for PAD

Preventing death, MI, stroke

- Antiplatelets (Pletal/ASA/Plavix/Zontivty)
- Cholesterol lowering statins
- Angiotensin-converting enzyme (ACE) inhibitors

Reducing symptoms

- Exercise
- Pletal (Cilostazol).
- Endovascular interventions
- Surgery

Saving limbs

- Endovascular interventions
- Surgery

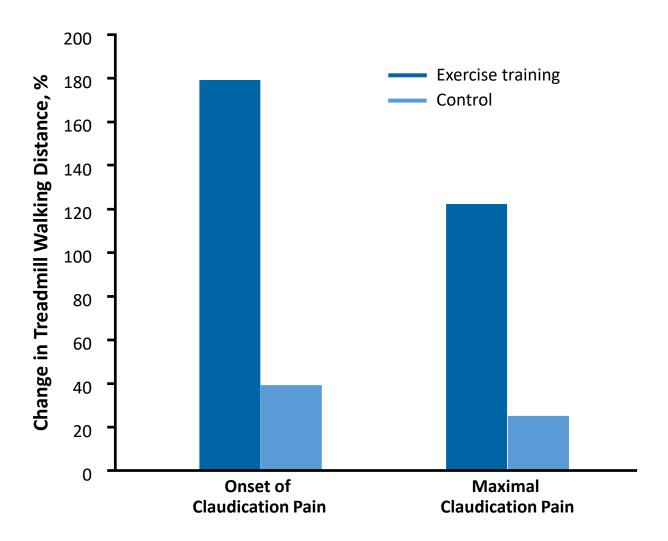
Pharmacotherapy

- Drugs with evidence of clinical utility in claudication
 - Cilostazol [Phosphodiesterase Inhibitor]
- Drugs with supporting evidence of clinical utility in claudication
 - Carnitine and Propionyl L-Carnitine [skeletal muscle oxidative metabolism]
 - Lipid lowering agents
- Drugs with insufficient evidence of clinical utility in claudication
 - Pentoxifylline
 - Antithrombotic agents [ASA/plavix]
 - Vasodilators [CCB/ α -adrenergic antagonists/β2-adrenergic agonists/Papaverine]
 - 5-hydroxytryptamine antagonist [Ketanserin/Sarpogrelate]
 - Prostaglandins [PGE1]

Recommendation 14

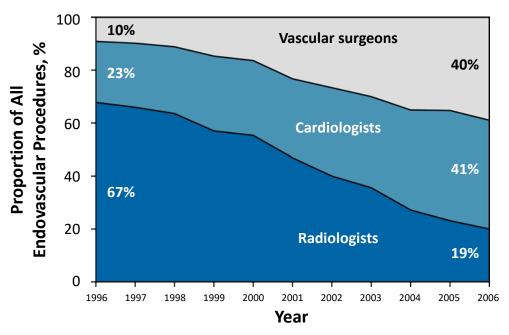
Exercise therapy in intermittent claudication

- Supervised exercise should be made available as part of the initial treatment for all patients with peripheral arterial disease [A].
- The most effective programs employ treadmill or track walking that is of sufficient intensity to bring on claudication, followed by rest, over the course of a 30-60 minute session. Exercise sessions are typically conducted three times a week for 3 months [A].


Recommendation 15

Pharmacotherapy for symptoms of intermittent claudication

- A 3- to 6-month course of cilostazol should be firstline pharmacotherapy for the relief of claudication symptoms, as evidence shows both an improvement in treadmill exercise performance and in quality of life [A].
- Naftidrofuryl can also be considered for treatment of claudication symptoms [A].


Effects of Exercise on Claudication: Meta-analysis of 21 Studies

Revascularization Options

Who Is Doing Peripheral Interventions These Days?

1.Interventional Cardiologists (41 percent)

- 2. Vascular surgeons (40 percent)
- 3.Interventional radiologists (19 percent)

PAD: Surgical Revascularization Has Risks

Complications

Mortality: 2–5 percent

• MI: 1.9–3.4 percent

Hemorrhage: 2 percent

• Graft thrombosis: 2–7 percent

Wound infection: 8–19 percent

Surgical revision: >20 percent

Aortoiliac (Suprainguinal) Revascularization

- Initial clinical success of PTA for iliac stenosis exceeds 90%.
- Approaches 100% success rate with focal iliac lesions.
- Technical success of 80-85% for recanalization of long segment iliac occlusions.
- 5 year patency 70-79%
- Factors negatively affecting long term patency
 - Quality of distal runoffs
 - Severity of ischemia
 - Length of diseased segment
 - Female gender

CFA/SFA Occlusive Disease

- Claudication of thigh, calf or both.
- Calf claudication
 - Most common complaint
 - Cramping pain consistently reproduced with exercise and relieved promptly with rest
 - Differential Diagnosis
 - Nocturnal leg cramps (elderly/nocturnal/rest)
 - Calf pressure and tightness (athletes/chronic exercise)

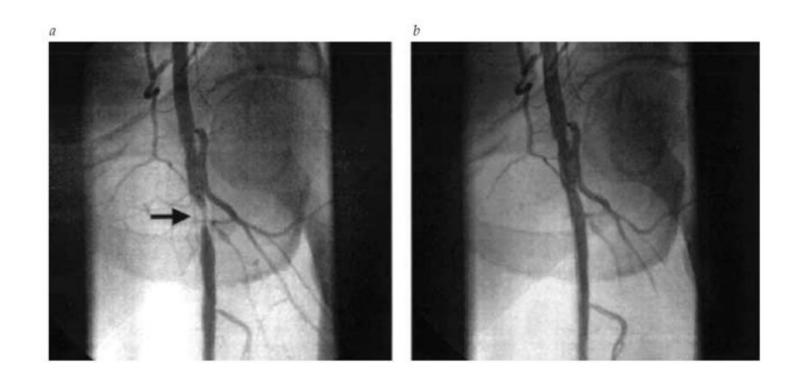


Figure – Right superficial femoral artery is shown here before (left) and after (right) percutaneous transluminal angioplasty.

Infrainguinal Revascularization

- Endovascular preferred choice of therapy.
- Clinical success rate of PTA 95%
- Predictors of restenosis
 - Length of lesion
 - Extent of outflow disease
 - Tobacco abuse

Table F6. Pooled results of femoral popliteal dilatations

	1-year % patency (range)	3-year % patency (range)	5-year % patency (range)
PTA: stenosis PTA: occlusion PTA+stent: stenosis PTA+stent: occlusion	77 (78–80) 65 (55–71) 75 (73–79) 73 (69–75)	61 (55–68) 48 (40–55) 66 (64–70) 64 (59–67)	55 (52–62) 42 (33–51)

PTA - Percutaneous Transluminal Angioplasty.

Tibial/Peroneal Occlusive Disease

Infrapopliteal Endovascular Revascularization

- Indicated for limb salvage.
- Increasing evidence to support a recommendation of PTA in patients with CLI and Infrapopliteal artery occlusion.
- Controversy remains for PTA versus PTA with stent placement.
- Atherectomy starting to play a significant role.

Thank You

Need for Clinical Integration

Why Now – Patient Population Factors

- Aging population.
- Increased prevalence of Diabetics.
- Smoking remains a true healthcare nightmare.
- High percentage of "Asymptomatic" presentation.

Why now — Economic Factors

- Cost of Amputation.
- Disability claims.
- Cost of prosthesis.
- High mortality and morbidity associated with amputation.

Why now — Technical Factors

- Tremendous advancements have been made in the medical device industry allowing for better outcomes and limb salvage.
- A few providers from various disciplines have appropriate training and passion to care for these patients.
- A better understanding of "multidisciplinary" approach to treat these patients.
- All team members are of equal significance/importance to save a limb.

Where do we start

- Identifying the patients at risk.
- Provider and community awareness to this disease.
- Enhancing risk factor modification.
- Enrolling these patients in surveillance programs.
- Enrolling these patients in PAD rehabilitation programs.

Then what

- Identifying the patients at risk.
 - DM/Age/Tobacco abuse
- Enhancing risk factor modification.
 - Consult visit with PAD specialist.
- Enrolling these patients in surveillance programs.
 - Annual Arterial ABI/Dupplex Ultrasound.

Then what – Asymptomatic Patient

- If patient asymptomatic;
 - PAD Consult.
 - Arterial venous ultrasound.
- Surveillance ultrasounds.
- Monitoring of progression of disease state.
- PAD Rehabilitation/education.
- Supervised exercise walking programs.

Then what – Symptomatic Patient

- If patient symptomatic;
 - CTA/Angiogram.
 - Interventional procedure.
 - Surgical Bypass.
- Surveillance ultrasounds.
- PAD rehabilitation enrollment.
- Supervised exercise walking programs.

