

To: All Plan Holders and Prospective Bidders

Re: State Center Fire Department
Renovation & Addition – Redesign
109 E Main Street
State Center, Iowa 50247

ADDENDUM #01

January 06, 2026

This addendum incorporates the following changes to the bid documents dated 18 December 2025. To be considered, bidders shall indicate on the Bid Form that this communication was received and that all changes were included in their bid total. It is the responsibility of the contractor to contact the owner's representative prior to bid date to verify the issuing of any and all clarifying addenda.

These items shall supersede all statements to the contrary in the drawings and project manual (specifications) and shall take precedence over those documents. These items are not listed in any particular order and are intended to add, omit, revise and/or clarify the original scope of work.

Addendum #1: **68 Pages Total**

Please feel free to contact me via phone at 515-460-5431 or email at chris@studiomelie.com if you have any questions or comments concerning this addendum or if you require additional information/clarification.

Respectfully submitted,

Christopher P. Wernimont, AIA

Architectural Addendum:Item #A1: **PRE-BID MEETING AGENDA & SIGN-IN SHEET**

1. **For Reference:** Pre-bid agenda and sign-in provided.

Item #A2: **000210 – FORM OF PROPOSAL UPDATED**

1. **Revise** Form of Proposal to include correct Allowances, Unit Prices, and Alternates. Updated Form of Proposal attached.

Item #A3: **084113 – ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS – SUNSHADE CLARIFICATION**

1. **Omit** parentheses note following Aluminum-Sun Shades in paragraph 1.2.A.2 referencing "Intent is for future installation...".
2. **Note of Clarity:** Intent is for storefront provider/installer to provide aluminum sunshades as part of the window system covered by the base bid.

Item #A4: **095123 – ACOUSTICAL TILE CEILINGS – ACT1 CLARIFICATION**

1. **Revise** Product series number, NRC, Edge/Joint Detail, and Thickness as follows:
 - a. Product #: 3251 (not 3254)
 - b. NRC: 0.95
 - c. Edge/Joint Detail: Square Tegular 15/16".
 - d. Thickness: 1"
2. **Note of Clarity:** Intent would be to use the 15/16" Prelude grid with this tile.

Item #A5: **095123 – ACOUSTICAL TILE CEILINGS – ACT1 & ACT2 APPROVED SUBSTITUTIONS**1. **ACT1:**

- a. USG, Mars 90 (High NRC Tile)
Product #: 88138 (or 89138)
NRC: 0.90
CAC: 30
Edge/Joint: SLT
Thickness: 1"
Color: Flat White (050)
Grid: USG DX/DXL, 15/16"

2. **ACT2:**

- a. USG, Radar Ceramic
Product #: 56644
NRC: 0.50
CAC: 40
Edge/Joint: SQ
Thickness: 5/8"
Color: Flat White (050)
Grid: USG ZXLA, 15/16"

Item #A6: **133400 – ENGINEERED LADDER FRAMED STRUCTURES – APPROVED SUBSTITUTION**

1. **Approved Manufacturer:** Pro-Line Building Group of Iowa.
2. **Note:** See approval note on substitution request form (attached).

Item #A7: **EXISTING PRE-ENGINEERED METAL BUILDING (PEMB) DRAWINGS**

1. **For Reference:** Original Fire Station PEMB drawings are attached.
2. **Note:** it is recommended that all interested bidders visit the project site prior to bid since existing drawings may not convey the existing built conditions fully.

Item #A8: **GEOTECHNICAL REPORT – PROVIDED FOR REFERENCE**

1. **For Reference:** Geotechnical Evaluation Report conducted by Team Services on 19 February 2025.

Item #A9: **SHEET A9.1 FINISH PLANS & SCHEDULE – VINYL ACCESSORIES CLARIFICATION**

1. **Omit** VN-TR (transition strip) from Finish Legend- product not used.
2. **Revise** manufacturer name for VN-RD (reducer strip) and VN-WB (wall base) from Mannington Commercial to Johnsonite in Finish Legend.

Item #A10: **BIDDER QUESTIONS & DESIGN TEAM RESPONSES**

1. Q: Does this project require a construction warranty other than what's required specifically by manufacturers?
A: Yes, a **(1) year construction warranty is required** by all entities, unless specifically extended by individual specification section.
2. Q: Can alternate building manufacturers be used for the new engineered wood structure?
A: Yes, alternate building manufacturers will be considered. If a pre-approved manufacturer is not listed in section 133400, please submit a substitution request for consideration. Note: only approved manufacturers prior to bid are permitted.

End of Architectural Addendum

Civil Addendum:

Item #C1: **SHEET C.110 – EXISTING CONDITIONS & DEMOLITION PLAN – MODIFIED SCOPE**

1. **Revise** drawing C.110 as noted below and attached:
 - a. **Remove** additional street paving & curbs for removal of sanitary & water services (existing opera house utilities).
 - b. **Remove** additional sidewalk paving for demolition of sanitary & water services (existing opera house utilities).
 - c. **Remove** water service (existing opera house utility) and cap at main. Remove and salvage existing curb stop- turn over to City.
 - d. **Remove** sanitary service (existing opera house utility) and cap at main.

End of Civil Addendum

State Center Fire Department – Renovation & Addition – Redesign

Pre-bid Agenda

109 E. Main Street, State Center, IA 50247

City of State Center Contacts:

Brad Pantz, Fire Chief – brad@6fonts.net – 641.485.8911 (cell)

Lori Bearden, sccityclerk@partnercom.net – 641.483.2559 (city hall)

Studio MELEE – Architect Contacts:

Chris Wernimont, AIA – chris@studiomelee.com – 515.460.5431 (cell)

Nate Nall, Assoc. AIA – nall@studiomelee.com – 319.470.8924 (cell)

Agenda

1. For plans, contact Iowa Reprographics - 515.244.5705 – <https://iowarepro.com/plan-distributions>
 - a. Documents are also available for viewing through Master Builders of Iowa and other plan rooms.
2. Bid Submission and Opening:
Bid Date: Thursday, 15 January 2026.
Bid Time: 2:00 PM, Local Time.
Location: 118 Main Street East, State Center, IA 50247, City Hall.
Attention: Lori Bearden, State Center City Clerk
3. Site walk through: Today, 30 December 2025 @ 10:00 AM, otherwise additional walk-throughs will need to be scheduled with the City and Fire Department.
4. Any inconsistencies, ambiguities, questions, etc. should be brought to the Architect's attention in writing at least 72 hours (3 business days) prior to receipt of bids.
5. No oral interpretations of any part of the documents will be made. All questions shall be in writing, and all interpretations and/or clarifications will be issued by addendum.
6. Requests for substitutions need to be made far enough in advance for Architect and Owner's representative to make a determination at least (7) days prior to bid date. A substitution request form is included in the specification manual – no other substitution forms will be accepted.
7. Proposal forms and other forms are included in documents.
8. Note that all proposals received shall be accompanied by a bid bond.
9. Bid bonds are in the amount of (5) % of the bid total. See specification manual for forms of bid security that are acceptable.
10. Bids shall be signed by an officer of the company and notarized.
11. Each bid shall include the non-collusion Affidavit and Certificate of Insurance.
12. See instructions to bidders for how to include bid forms in an outer and inner envelope.
13. Bids may be withdrawn up to the established time of bid opening (noted above) by person signing bid and by written request.
14. Bids may not be withdrawn for a period of (45) days following bid opening.
15. No modifications of bids will be accepted, once submitted.
16. The Owner reserves the right to accept the bid which, in their judgement, appears to be the most responsive / responsible.
17. Complete all blanks on the bid form. Bid Alternates, Allowances, and Unit Pricing applies to this project.
18. Documents required (24) hours after receipt of bids from the apparent low bidder:
 - a. List of subcontractors & suppliers.
 - b. Background information.
 - c. Preliminary Schedule.
 - d. Schedule of Values.
19. All building and trade permits and other fees shall be paid for by the awarded Contractor.

20. Sales and use taxes shall be **EXCLUDED** in the bid amount. Contractor shall request appropriate certifications from the City.
21. Bidders shall familiarize themselves with all state and local laws, ordinances and regulations which may apply.
22. Contractor to provide all insurance as stipulated in Article 11 of the A232 General Conditions which is included for Contractors review in the Project Manual.
23. The documents state the time of substantial & final completion of the project. See Section 000310-1.1.B.2.
24. Each contractor is responsible to maintain work areas. Installation and removal of all temporary fences, interior dust partitions, etc. will be by Contractor. Contractor shall repair all damages to existing surfaces identified to remain.
25. See Section 015000 for temporary facilities and controls.
26. After award, contractor shall furnish performance and payment bonds in an amount of (100) % of the contract. All costs for bonds shall be included in the bid amount.
27. Schedule will be worked as laid out in the specifications.
28. Contractor shall have a competent superintendent on site at all times. See documents for requirements.
29. Changes in the work:
 - a. Three methods –
 - i. Owner Requested Changes.
 - ii. Unknown Conditions.
 - iii. Correction of Documents.
30. Schedule of values shall be submitted prior to first application of payment.
31. Electronic (pdf) pay applications shall be used.
32. Construction Schedule:
 - a. Preliminary, within (10) days of notice of award.
 - b. Detailed schedule, prior to the first application of payment.
 - i. Detailed schedule shall be updated frequently (every 2 weeks) throughout the duration of the project.
33. Substantial completion as scheduled – warranty begins – (1) year period for all entities unless specifically extended by specification section.
34. Issuance of Keys – to prime contractors only. Keys will be issued by the City.
35. Discussion of project work and work restrictions.
 - a. The Fire Department will vacate the building prior to commencement of construction.
 - b. The City will have concurrent work during the project- see specification.
 - c. Notify the City of all public utility work and closures of streets and/or ROWs no less than 48 hours before commencement of work.
 - d. The Union-Pacific Railroad owns and maintains the tracks and easements just north of the fire station. It is recommended that work does not interfere with this property unless necessary. If deemed necessary, it will be the Contractor's responsibility to notify and obtain permission in writing from the railroad to access and/or gain use of the property.
36. **Open to Architect:**
 - a. Existing Building:
 - i. Stran PEMB structure c. 1977, ~60'x60'. Existing drawings available for review at City Hall or at Studio MELEE's office. Electronic copies of drawings available upon request.
 - ii. Floor slab demolition- coordinate work with existing hairpin reinforcing- see structural.
 - b. Existing Site:
 - i. Existing opera house has been razed. Existing utilities, foundations and additional on-site paving has been removed prior to bid.
 - ii. Geotechnical Report. Pockets of expansive soils and a layer of soft soil were found during the geotechnical study. Overexcavation is planned below footprint of new structure. Reference geotechnical report and structural.
 - iii. Allowance & Unit Pricing is included for soil remediation. Test pits are identified in work to help identify extents of soft soil layer requiring remediation- reference geo. Report, structural & spec.
37. **Open to Bidders:** questions.
38. Tour of building and grounds.

State Center Fire Department – Renovation & Addition – Redesign
Pre-Bid Meeting

109 E. Main Street, State Center, IA 50247

SIGN-IN SHEET

DATE: 30 December 2025 @ 10:00 AM

<input checked="" type="checkbox"/>	NAME:	COMPANY:	CONTACT:
	Chris Wernimont, AIA	STUDIO MELEE	PHONE: 515.460.5431 EMAIL: CHRIS@STUDIOMELEE.COM
	Nate Nall, Assoc. AIA	STUDIO MELEE	PHONE: 319.470.8924 EMAIL: NALL@STUDIOMELEE.COM
	CHRIS WULKOW	TJADEN ELEC	PHONE: 515-782-2762 EMAIL: CWULKOW@TJADENELECTRICCO.COM
	Kyle Millner	Breiholz Construction	PHONE: 515-782-0979 EMAIL: kyle.m@breiholz.com
	Kjirsten Van Pelt	ATG Construction	PHONE: 515-478-0132 EMAIL: Kvanpelt@atgcompanies.com
	Justin Sheridan	Reliable 1	PHONE: 641-648-2321 EMAIL: Justin@reliable1iowa.com
	Colin Pratt	Ni3 Koch Gen. Contr.	PHONE: 515-352-5356 EMAIL: colin@kochcontractors.com
	Ryan Huizer	Dean Snyder Const	PHONE: 515-240-3526 EMAIL: rhuizer@deansnyder.com
	Taylor Myer	Dean Snyder Const	PHONE: 515-408-5115 EMAIL: tmyer@deansnyder.com
	Cody Kynan	Keystone Construction	PHONE: 515-720-7768 EMAIL: Cody.Kynan@Keystone-CS.com
	Mark McCullins	GRAPHITE CONST	PHONE: 515-480-2597 EMAIL: MCCULLINS@GRAPHITE-GRP.COM
	ERIC HARRNER	R.H. GRABAU	PHONE: 515-432-40935 EMAIL: eric.harrner@4094hgs.com
	Jacob Triplett	Eick & Day	PHONE: 515-402-7000 EMAIL: estimating@eick-day.com
	Lucie Danielson	David Jones	PHONE: 515-361-1399 EMAIL: LDANIELSON@DavidJones.IA.US
	Dave DeWitt	Pro-hire Blg.	PHONE: 641-637-4035 EMAIL: ddewitte@pbco.com
	Michael Beest	Iowa Demolition	PHONE: 515-250-4191 EMAIL: MIKE.BEEST@IOWADEMOLITION.COM
	SAM SODDERS	BALI TEAM	PHONE: EMAIL: PHONE: EMAIL: PHONE: EMAIL:

DOCUMENT 000210 – FORM OF PROPOSAL

PROJECT NAME: State Center Fire Department – Renovation & Addition – Redesign
115 Main Street East
State Center, Iowa 50247

TO: City of State Center
118 Main Street East
State Center, Iowa 50247

SUBMITTED BY: _____
Name of Bidder

City of State Center:

The undersigned has carefully examined the site, the proposed Contract Documents prepared by Studio MELEE, StructureFy Engineering, Inc., Modus Engineering, Clapsaddle-Garber Associates, Inc. pertinent to the construction of the above referenced Project. Further, being familiar with all other conditions affecting the Work, the undersigned hereby proposes and agrees to furnish and provide all labor, materials, supervision, transportation, tools, equipment, services and other facilities necessary and required for the expeditious completion of the Work indicated above in strict conformity with said conditions and documents.

The undersigned has reviewed the work outlined in the documents and fully understands the scope of work required in this Proposal. The undersigned acknowledges that the Proposal includes the work of all trades required for the work. The undersigned understands that each bidder who is awarded a Contract shall be in fact a Prime Contractor, not a Subcontractor to the City of State Center.

The undersigned agrees to complete the work required within the time indicated in the documents.

Enclosed **in a separate envelope** is a Non-Collusion Affidavit, verification that the contractor can provide the necessary insurance, and a Bid Security for five percent (5%) of the amount of the Base Bid, made payable to the order of the City of State Center. It is to be left in escrow with the Owner as a guarantee that the undersigned will enter into a Contract and will furnish the specified insurance and bonds. The undersigned has notified the Owner Representative of any discrepancies or omissions, or of any doubt about the meaning of any of the Contract Documents and has contacted the Owner Representative before bid date to verify the issuing of any clarifying Addenda.

The undersigned further acknowledges receipt of the following Addenda:

NO. _____ DATE _____

NO. _____ DATE _____

NO. _____ DATE _____

(Bidder must acknowledge All Addenda issued)

Contractor Name

PROPOSAL FORM TO BE SUBMITTED IN INNER ENVELOPE

BASE BID – General Construction

BASE BID: _____ Dollars (\$ _____)

The undersigned proposes to provide and construct the Work required, in accordance with said Contract Documents for the lump sum price indicated above and agrees to complete the work in accordance with the schedule requirement to achieve Substantial Completion no later than the date indicated in the Project Manual Section 000310. (Amount shall be shown in both words and figures. In case of discrepancy, the amount shown in words shall govern).

SCHEDULE OF ALLOWANCES

ALLOWANCE NO 1: Soil Improvement Contingency Allowance (See also 012110 Allowances)

- A. Contingency Allowance: General Contractor shall include a lump-sum allowance for removal & disposal of unsatisfactory soil and replacement with imported fill. Test pits as specified in structural drawings and geotechnical review shall be used to determine extents of soil removal.
- B. Allowance Total: Thirty-Thousand Dollars (\$30,000.00), EXCLUDING ALL SALES TAXES.

SCHEDULE OF UNIT PRICES

UNIT PRICE NO 1: Removal of Unsatisfactory Soils; \$/CY (See also 012200 Unit Prices)

- A. Removal & disposal of unsatisfactory soil and replacement with imported fill (\$ _____) per cubic yard, EXCLUDING ALL SALES TAXES.

SCHEDULE OF BID ALTERNATES

ALTERNATE NO 1: Remove & Replace Mid-Section of PCC Pavement in Main Street per Civil Drawings (See also 012300 Alternates)

- A. The undersigned proposes to provide work under this alternate as described for the lump sum price of:

(ADD) _____ Dollars

(\$ _____), EXCLUDING SALES TAXES.

Contractor Name

PROPOSAL FORM TO BE SUBMITTED IN INNER ENVELOPE

LIST OF SUBCONTRACTORS AND SUPPLIERS OF LABOR AND MATERIAL

The lowest bidder for each contract shall, within twenty-four (24) hours following the bid opening, provide the Owner with the List of Subcontractors and Suppliers of Labor and Material. Subcontractor is any entity performing 1-1/2% or more of the contract value. The List shall detail the quotations used in the preparation of the bid and whose services are proposed to be used in construction of the project. The List must be complete showing all sections in the Construction Documents. Failure to submit the List may preclude the bid from further consideration by the Owner. The Owner reserves the right to either disclose or not disclose the List of the successful Bidder.

Each Bidder shall identify and fully disclose on the List all those subcontractors and suppliers proposed for the work with which the Bidder is connected either directly or indirectly as part owner, participant in profits and losses or in any other manner financially or economically.

The forms for the List of Subcontractors and Suppliers of Labor and Materials are included in the Instructions to Bidders, Section 000200.

AGREEMENT

It is understood and agreed that if written notice of the Owner's acceptance of this proposal is mailed, telegraphed, or delivered to the undersigned after the opening of the bid, and within forty-five (45) days, or at any time thereafter before this bid is withdrawn, the undersigned will execute and deliver to the Owner an Agreement in accordance with the bid as accepted. The undersigned will also furnish and deliver to the Owner the Payment Bond, Performance Bond and Certificate of Insurance as specified in the Contract Documents, all within ten (10) working days after receipt of Notice of Contract Award. The work under the Contract shall be commenced by the undersigned bidder, if awarded the Contract, on the date to be stated in a Notice to Proceed, issued to the Contractor and shall be completed by the Contractor in the time specified in the Contract Documents. In the event the bidder to whom an award is made fails or refuses to execute the Contract within the specified time frame; the Owner may declare the bidder's bid security forfeited as damages caused by the failure of the bidder to enter into the Contract.

If this proposal is determined to be (preliminarily) the lowest responsible bid, the undersigned shall submit a listing of subcontractors and major materials suppliers in accordance with the Instructions to Bidders. Section 000200 within 24 hours of being notified of such finding by the Owner Representative.

The undersigned acknowledges the fact that the Owner reserves the right to accept or reject any and all proposals, to waive any informality in receipt of this proposal, with or without cause or reason, and award the Contract on the basis stated in the Instructions to Bidders.

The bidder is () or is not () an Iowa resident bidder as defined in Section 73A.21 of the Iowa code. If not a resident bidder, the bidder states that it is a non-resident bidder from the state of _____ . This state does () or does not () provide for a bidder preference for resident bidders. This state does () or does not () provide a labor preference for resident labor. If the state in which your company is a resident allows for either a bidder preference or a labor preference, please provide the citation to the code section, and the details of each preference allowed in your resident state.

NOTE: If bidder is a corporation, the legal name of the corporation shall be set forth below, together with the signatures of authorized officers or agents. If bidder is a partnership, the true name of the firm shall be set forth below together with the signature of the partner or partners authorized to sign contracts on behalf of the partnership. If bidder is an individual, his signature shall be placed below.

Contractor Name

PROPOSAL FORM TO BE SUBMITTED IN INNER ENVELOPE

**STATE CENTER FIRE DEPARTMENT
RENOVATION & ADDITION – REDESIGN**

**FORM OF PROPOSAL
Section 000210 - Page 4**

PROPOSAL SUBMITTED BY: _____
(Name of Bidder)

Address: _____

Phone #: _____ Email: _____

Contractors, License No.: _____
Signature

License Expiration Date: _____
Position

If Corporation: State of Incorporation: _____

AFFIX CORPORATE SEAL HERE
(IF APPLICABLE)

THIS STATEMENT MUST BE NOTARIZED.

STATE OF IOWA, _____ COUNTY, ss:

Subscribed and sworn to before me by the said _____ on this
_____ day of _____, 20____.

Notary Public in and for the State of Iowa

Contractor Name

END OF DOCUMENT 000210

PROPOSAL FORM TO BE SUBMITTED IN INNER ENVELOPE

SUBSTITUTION REQUEST FORM

We hereby submit for your review & consideration the following product in lieu of the specified item for the following project:

PROJECT TITLE: State Center Fire Department – Renovation & Addition – Redesign

<u>SPECIFICATION</u>	<u>SECTION</u>	<u>TITLE</u>	<u>PARAGRAPH</u>	<u>ITEM</u>
	095123	Acoustical Tile Ceilings	2.3	Armstrong Optima – ⁹⁵ ₉₀ NRC

<u>DRAWING</u>	<u>NUMBER</u>	<u>TITLE</u>	<u>ITEM</u>

Proposed Substitution: USG Mars High-NRC – 90 NRC

Complete the attached information on changes to the Specifications and/or Drawings for the proposed substitution. Provide additional information for any changes required for proper installation of the proposed substitution.

Submit, as requested, all necessary samples and backup information to prove equal quality and performance to that which is specified. Clearly mark manufacturer's literature to indicate equality in performance. Failure to do so will result in a returned, non-reviewed substitution request form.

Substitutions of the materials and equipment described in the Bid Documents will be considered during the bidding period only. Substitution requests shall be reviewed and approved by the Design Professional prior to the date set for receipt of bids as described in the front end of the specification.

CERTIFICATION OF EQUAL PERFORMANCE AND ASSUMPTION OF LIABILITY FOR EQUAL PERFORMANCE

The undersigned states that the function, appearance, and quality are equivalent or superior to the specified item.

Submitted by: Tara Garbe

Signature: Tara Garbe Title: Sales Administrator

Organization: Golden Valley Supply

Address: 1000 Zane Ave N, Minneapolis, MN 55422

Telephone: 763-544-8907 Email: TaraGarbe@goldenvallupply.com Date: 12/23/25

Signature shall be by person having authority to legally bind his firm to the above terms. Failure to provide legally binding signature will result in retraction of approval.

For Use by Design Professional:

Approved X Approved as Noted
Not Approved Received Too Late

Note: substitution is approved as submitted.
Contractor and/or ACT supplier/installer shall provide all necessary grids, trims, and accessories for a complete installation complying with design intent.

Signed by: [Signature] Date: 28 December 2025

SUBSTITUTION REQUEST FORM

We hereby submit for your review & consideration the following product in lieu of the specified item for the following project:

PROJECT TITLE: State Center Fire Department – Renovation & Addition – Redesign

<u>SPECIFICATION</u>	<u>SECTION</u>	<u>TITLE</u>	<u>PARAGRAPH</u>	<u>ITEM</u>
	095123	Acoustical Tile Ceilings	2.4	Armstrong Ceramaguard – 2x2, unperforated
<u>DRAWING</u>	<u>NUMBER</u>	<u>TITLE</u>	<u>ITEM</u>	
		USG Radar Ceramic #56644 (perforated)		

Proposed Substitution: _____

Complete the attached information on changes to the Specifications and/or Drawings for the proposed substitution. Provide additional information for any changes required for proper installation of the proposed substitution.

Submit, as requested, all necessary samples and backup information to prove equal quality and performance to that which is specified. Clearly mark manufacturer's literature to indicate equality in performance. Failure to do so will result in a returned, non-reviewed substitution request form.

Substitutions of the materials and equipment described in the Bid Documents will be considered during the bidding period only. Substitution requests shall be reviewed and approved by the Design Professional prior to the date set for receipt of bids as described in the front end of the specification.

CERTIFICATION OF EQUAL PERFORMANCE AND ASSUMPTION OF LIABILITY FOR EQUAL PERFORMANCE

The undersigned states that the function, appearance, and quality are equivalent or superior to the specified item.

Submitted by: _____
Tara Garbe

Signature: Tara Garbe _____ Title: _____ Sales Administrator
Golden Valley Supply

Organization: _____

Address: 1000 Zane Ave N, Minneapolis, MN 55422

Telephone: 763-544-8907 Email: TaraGarbe@goldenvalleysupply.com Date: 12/23/25

Signature shall be by person having authority to legally bind his firm to the above terms. Failure to provide legally binding signature will result in retraction of approval.

For Use by Design Professional:

_____ Approved X Approved as Noted
_____ Not Approved _____ Received Too Late

Note: substitution is approved as submitted.
Contractor and/or ACT supplier/installer shall provide all necessary grids, trims, and accessories for a complete installation complying with design intent.

Signed by: Date: 28 December 2025

SUBSTITUTION REQUEST FORM

We hereby submit for your review & consideration the following product in lieu of the specified item for the following project:

PROJECT TITLE: State Center Fire Department – Renovation & Addition – Redesign

SPECIFICATION	SECTION	TITLE	PARAGRAPH	ITEM
	NUMBER	TITLE	ITEM	
	133400	Manufacturer 2.1 A		Approved Bidder

DRAWING

Proposed Substitution: The Pro-Line Building Company of Texas.

Complete the attached information on changes to the Specifications and/or Drawings for the proposed substitution. Provide additional information for any changes required for proper installation of the proposed substitution.

Submit, as requested, all necessary samples and backup information to prove equal quality and performance to that which is specified. Clearly mark manufacturer's literature to indicate equality in performance. Failure to do so will result in a returned, non-reviewed substitution request form.

Substitutions of the materials and equipment described in the Bid Documents will be considered during the bidding period only. Substitution requests shall be reviewed and approved by the Design Professional prior to the date set for receipt of bids as described in the front end of the specification.

CERTIFICATION OF EQUAL PERFORMANCE AND ASSUMPTION OF LIABILITY FOR EQUAL PERFORMANCE

The undersigned states that the function, appearance, and quality are equivalent or superior to the specified item.

Submitted by: Jason Larue.

Signature: Jason Larue Title: President.

Organization: The Pro-Line Company.

Address: 1385 Hwy 63 New Sharon Tn 37020.

Telephone: 641-637-4075 Email: jlarue@plbc.com Date: 1/5/26.

Signature shall be by person having authority to legally bind his firm to the above terms. Failure to provide legally binding signature will result in retraction of approval.

For Use by Design Professional:

Approved X Approved as Noted
 Not Approved Received Too Late

Signed by: Jeff Smith Date: 06 Jan. 2026.

Project
A
FIRE STATION
FOR THE CITY OF
STATE CENTRE,
IOWA
SITUATE ON
LOTS 3 & 4, BLOCK 14
O.P. STATE CENTRE,
MARSHALL COUNTY, IA.

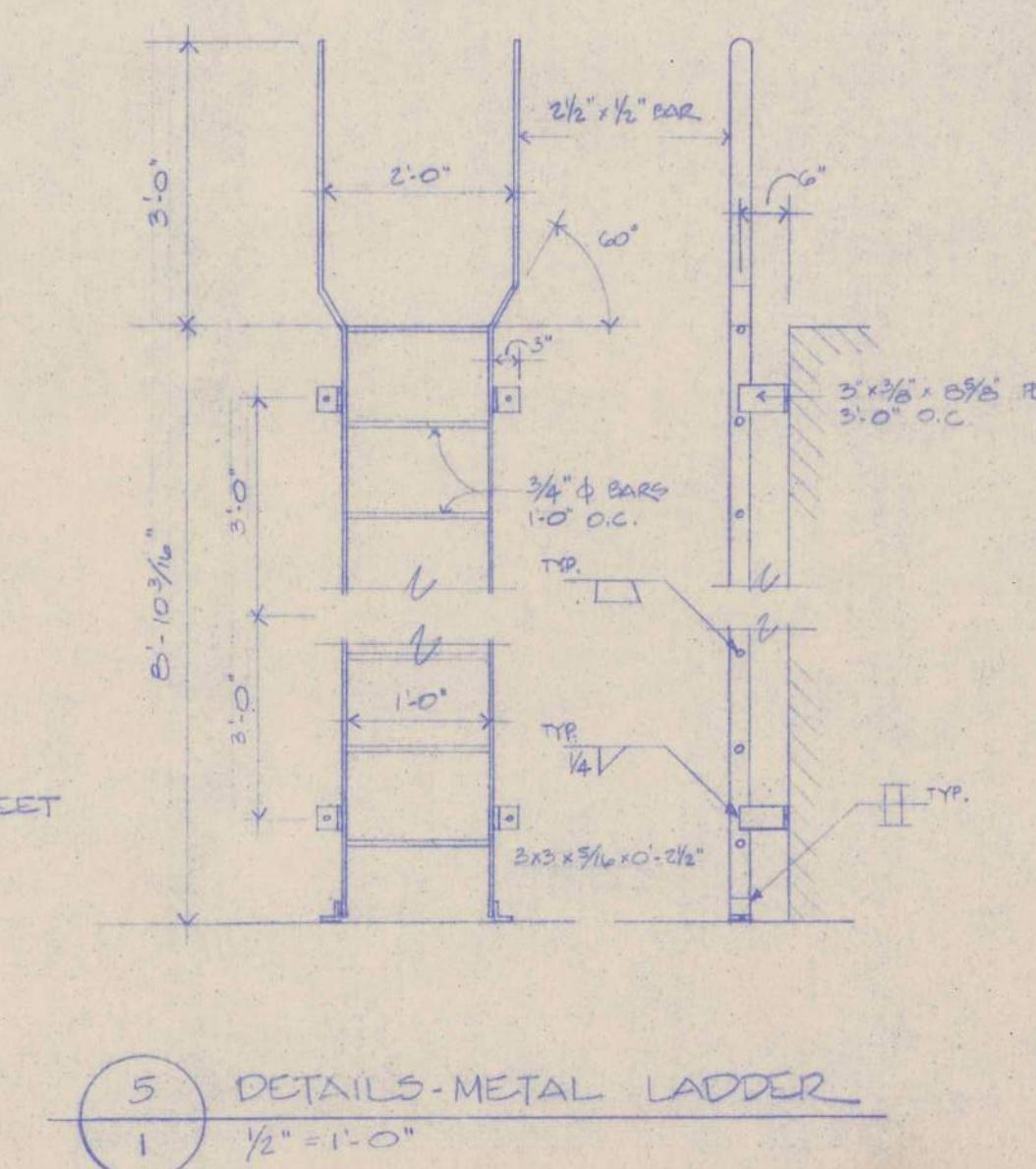
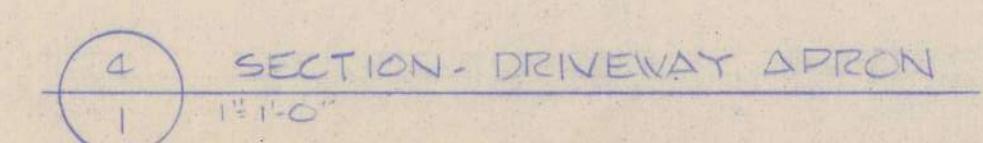
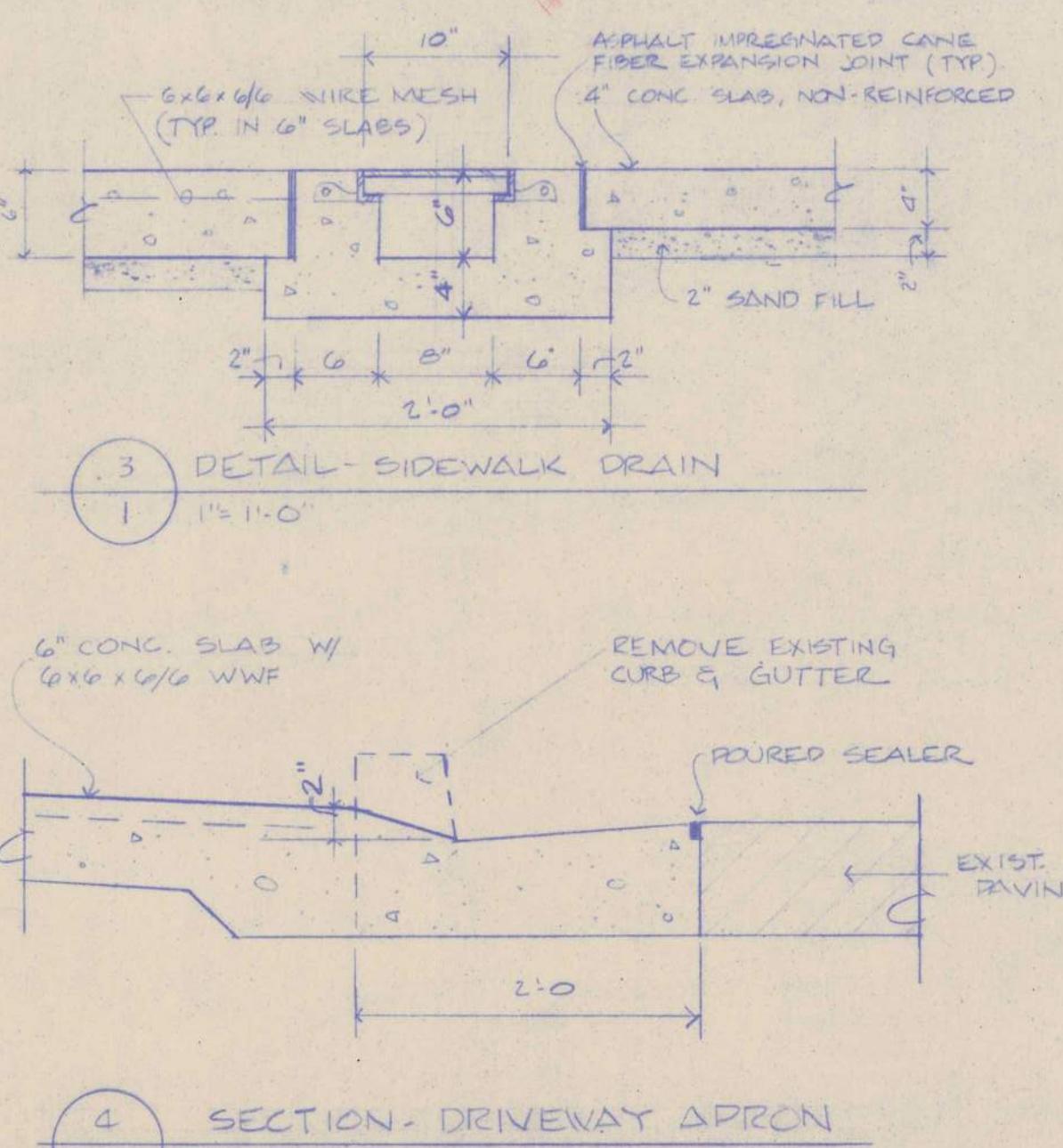
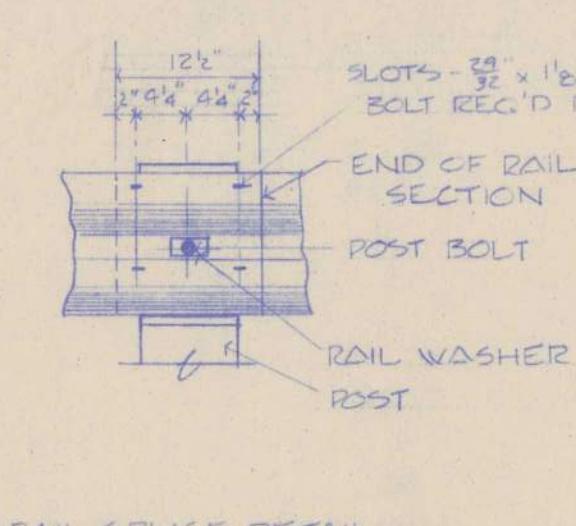
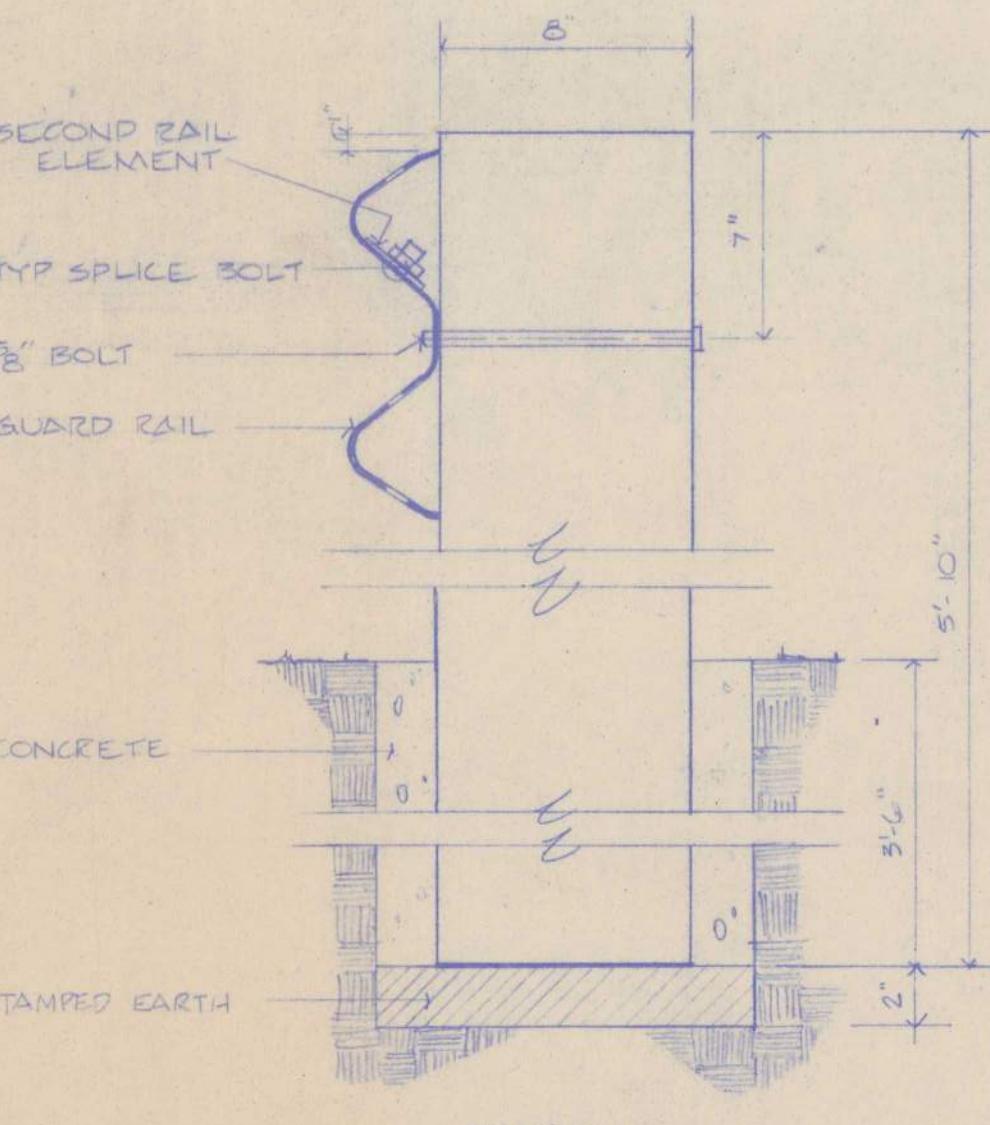
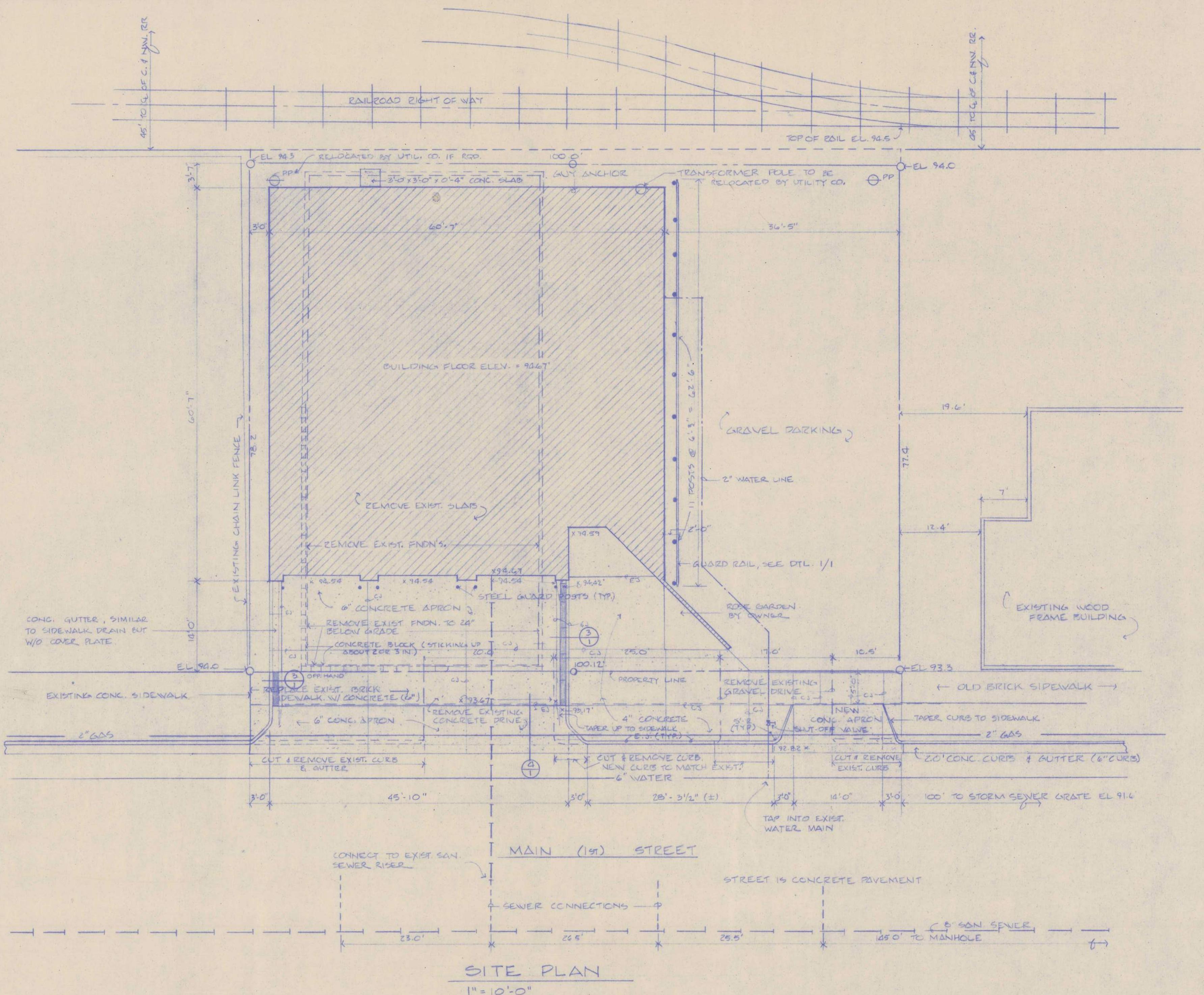
Owner
THE CITY OF
STATE CENTRE,
IOWA

The Voorhees-Shelton Architects P.C.

West Towers Suite 409
1200 35th Street
West Des Moines, Iowa 50265
515-225-3469

THE CONTRACTOR SHALL
VERIFY ALL DIMENSIONS
& CONDITIONS PERTAINING
TO THIS DRAWING AT THE
SITE, AND SHALL REPORT
ANY DISCREPANCIES TO
THE ARCHITECT AT ONCE.

No. Revision Date







Description SITE PLAN

Date 30 DEC. 77 File No. 7704

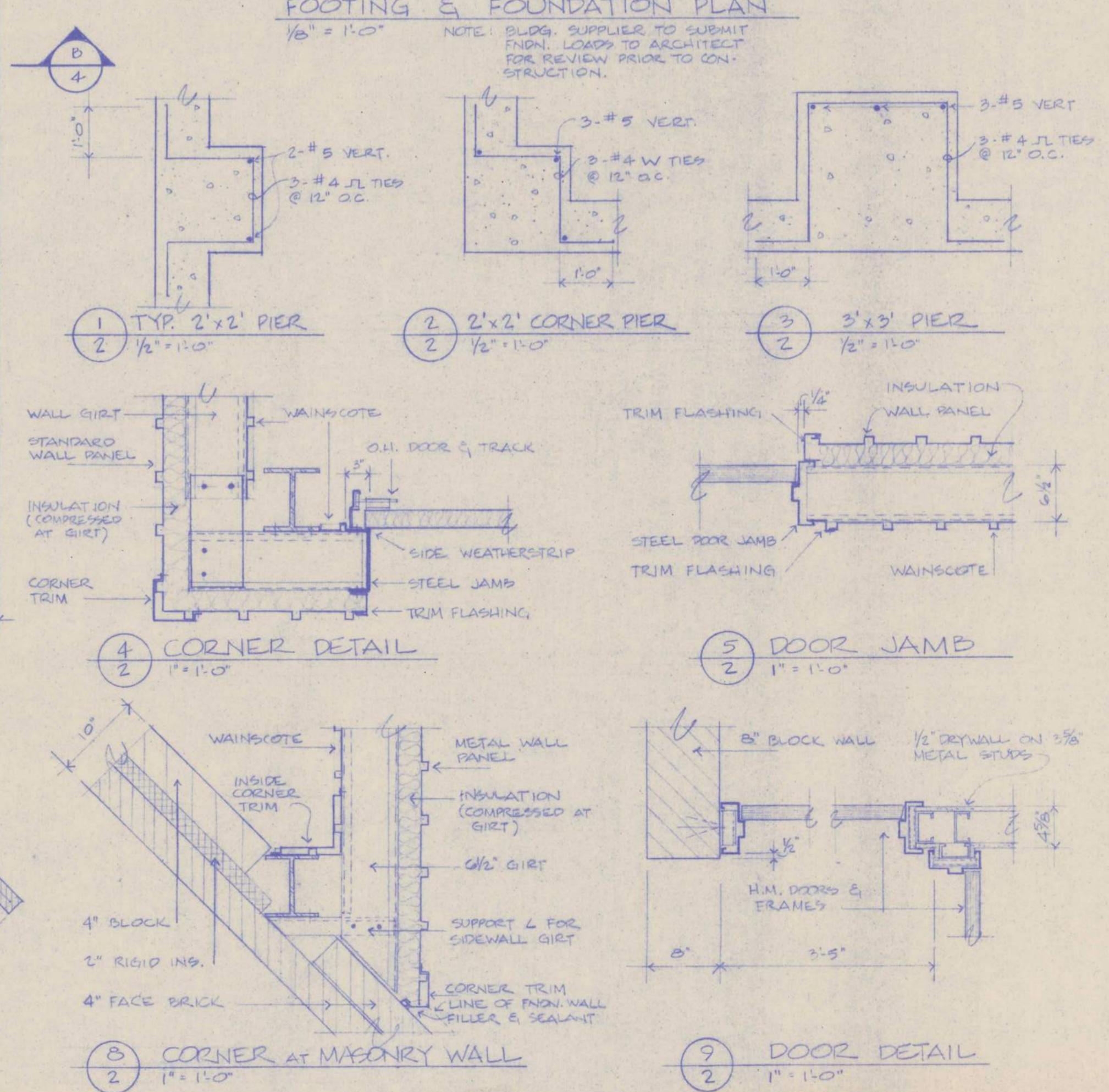
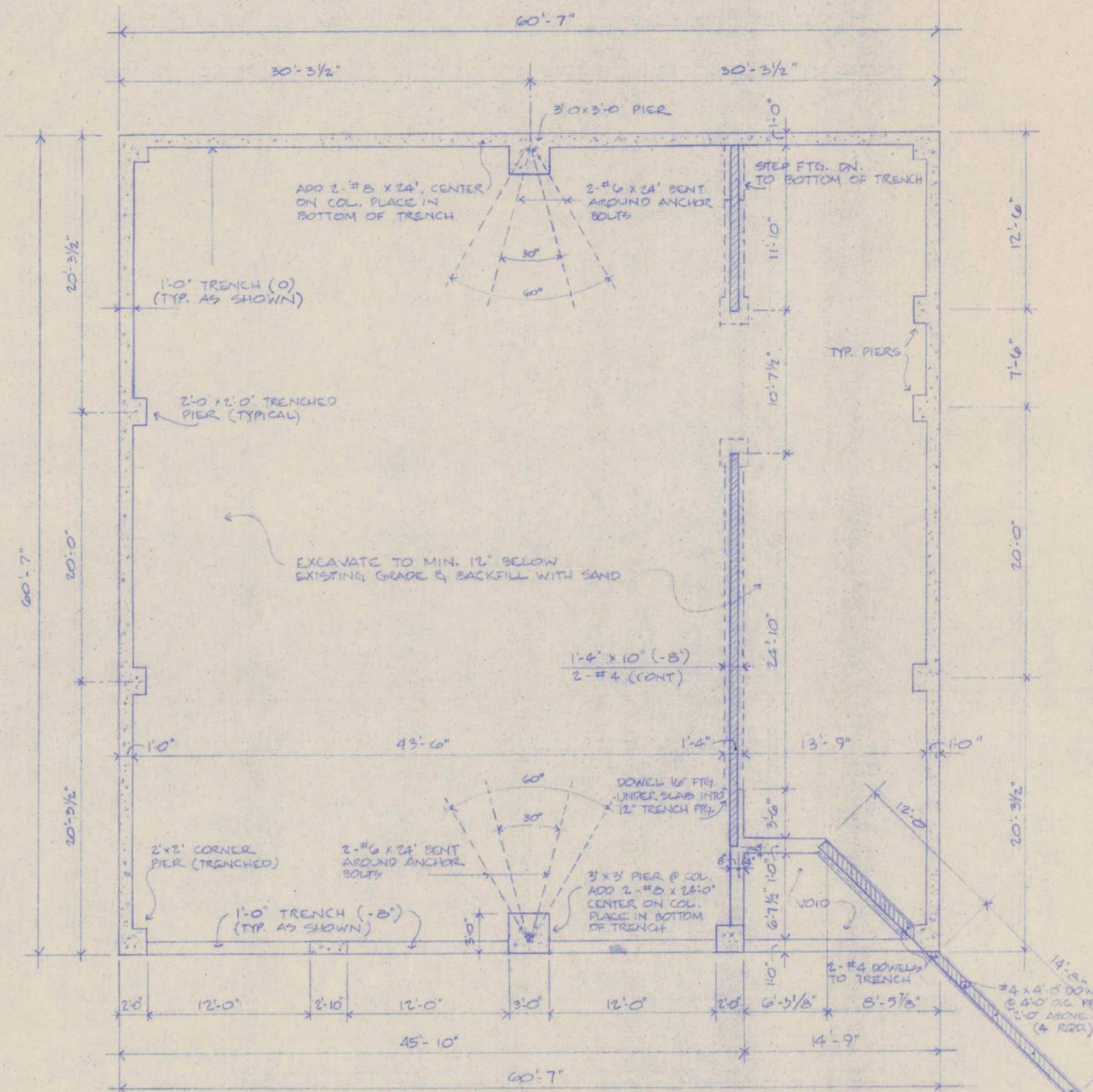
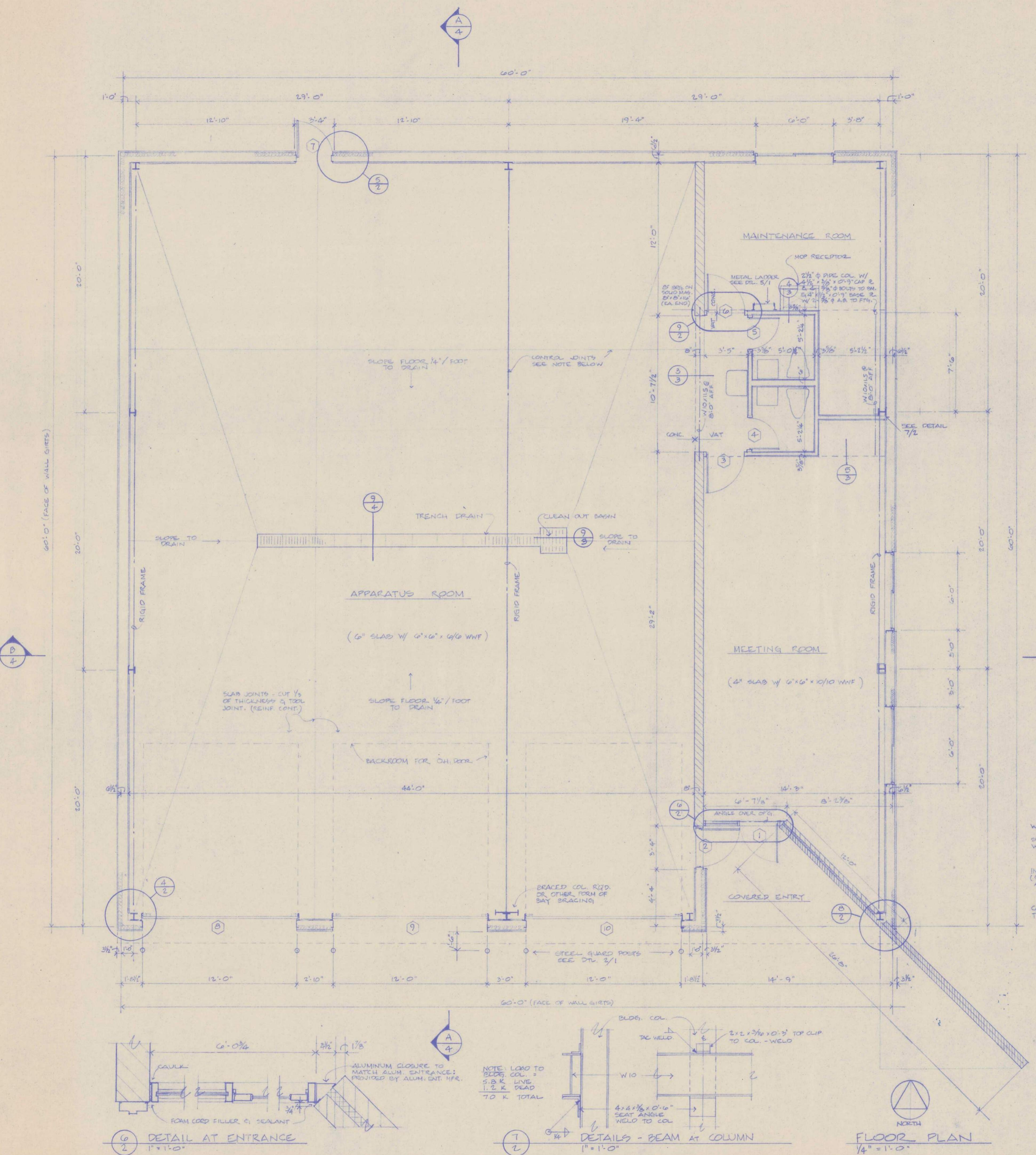
Scale AS NOTED Drawing No.

Preliminary Construction As Built

of Sheets

Owner
THE CITY OF
STATE CENTRE,
IOWA

VS
The Voorhees-Shelton Architects P.C.




West Towers Suite 409
1200 35th Street
West Des Moines, Iowa 50265
515-225-3469

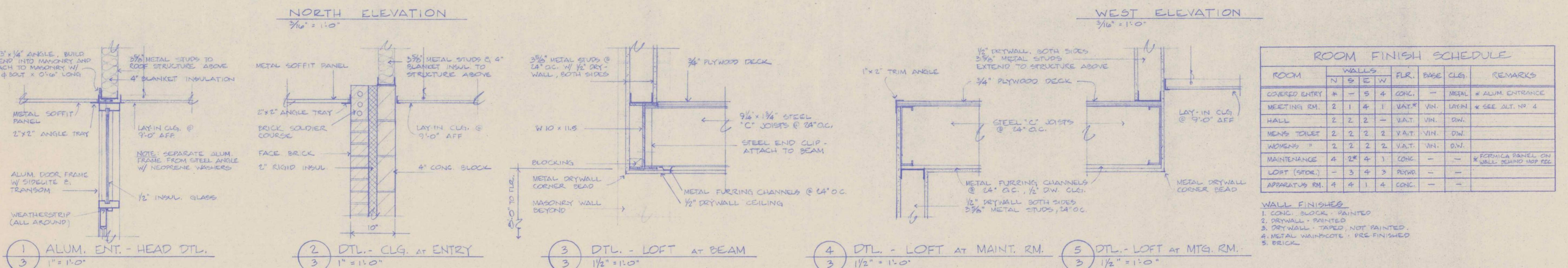
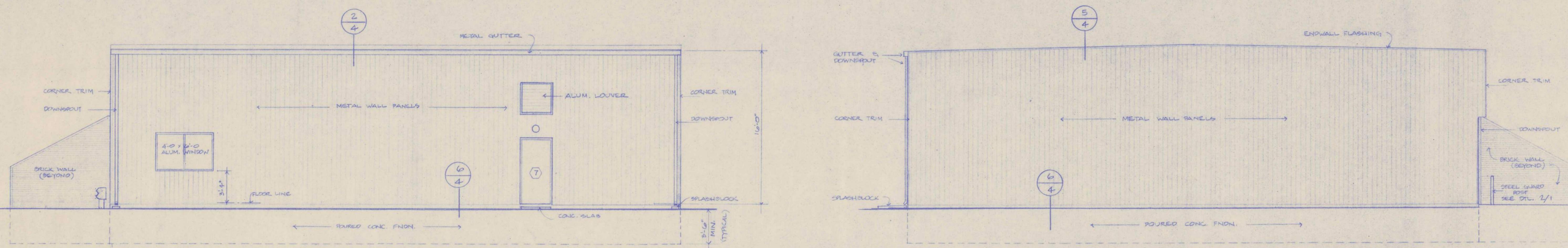
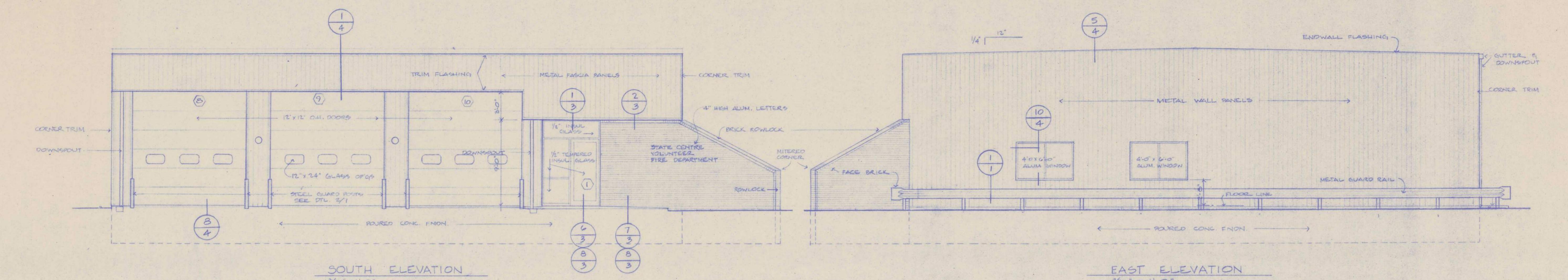
STRUCTURAL NOTES
1. STRUCT STEEL ASTM A36
2. DESIGN LIVE LOADS:
SNOW - 30 PSF
WIND - 25 PSF
LOFT - 100 PSF
3. METAL STRUCTURE DESIGNED
IN ACCORDANCE WITH IOWA
STATE BUILDING CODE.
SUBMIT DETAIL DRAWINGS
TO ARCHITECT.
4. CONCRETE: FINISH - 3000 PSI
(AT 28 DAYS)
5. REINFORCING STEEL:
ASTM A415 GR 40 - NEW BILLET
LAP CONT. BARS 30 DIA. OR 16
MIN. @ CORNERS, SPACERS, STEPS.
6. FOOTING TO BEAR IN FIRM, DRY,
UNDISTURBED NATURAL SOIL.
MAX. DESIGN SOIL PRESSURE:
2000 PSI
7. TRENCHES TO BE KEPT FREE
OF LOOSE OR FROZEN EARTH
OR DEBRIS.

THE CONTRACTOR SHALL
VERIFY ALL DIMENSIONS
& CONDITIONS PERTAINING
TO THIS DRAWING AT THE
SITE, AND SHALL REPORT
ANY DISCREPANCIES TO
THE ARCHITECT AT ONCE.

No. Revision Date

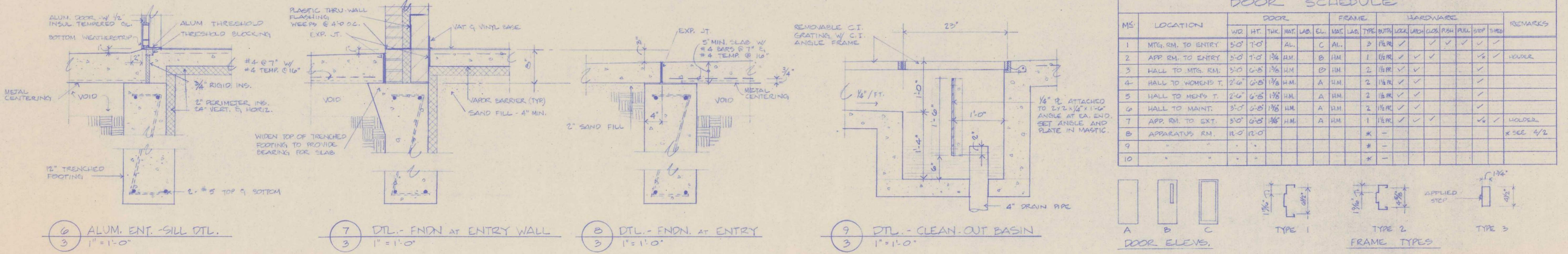
Description		
PLANS & DETAILS		
Date	30 DEC. 1977	File No.
Scale	AS NOTED	Drawing No.
Preliminary	<input type="checkbox"/>	2
Construction	<input checked="" type="checkbox"/>	
As Built	<input type="checkbox"/>	
		of Sheets

Project
A
FIRE STATION
FOR THE CITY OF
STATE CENTRE,
IOWA
SITUATE ON
LOTS 3 & 4, BLOCK 14
S.P. STATE CENTRE,
MARSHALL COUNTY, IA.
Owner
THE CITY OF
STATE CENTRE,
IOWA

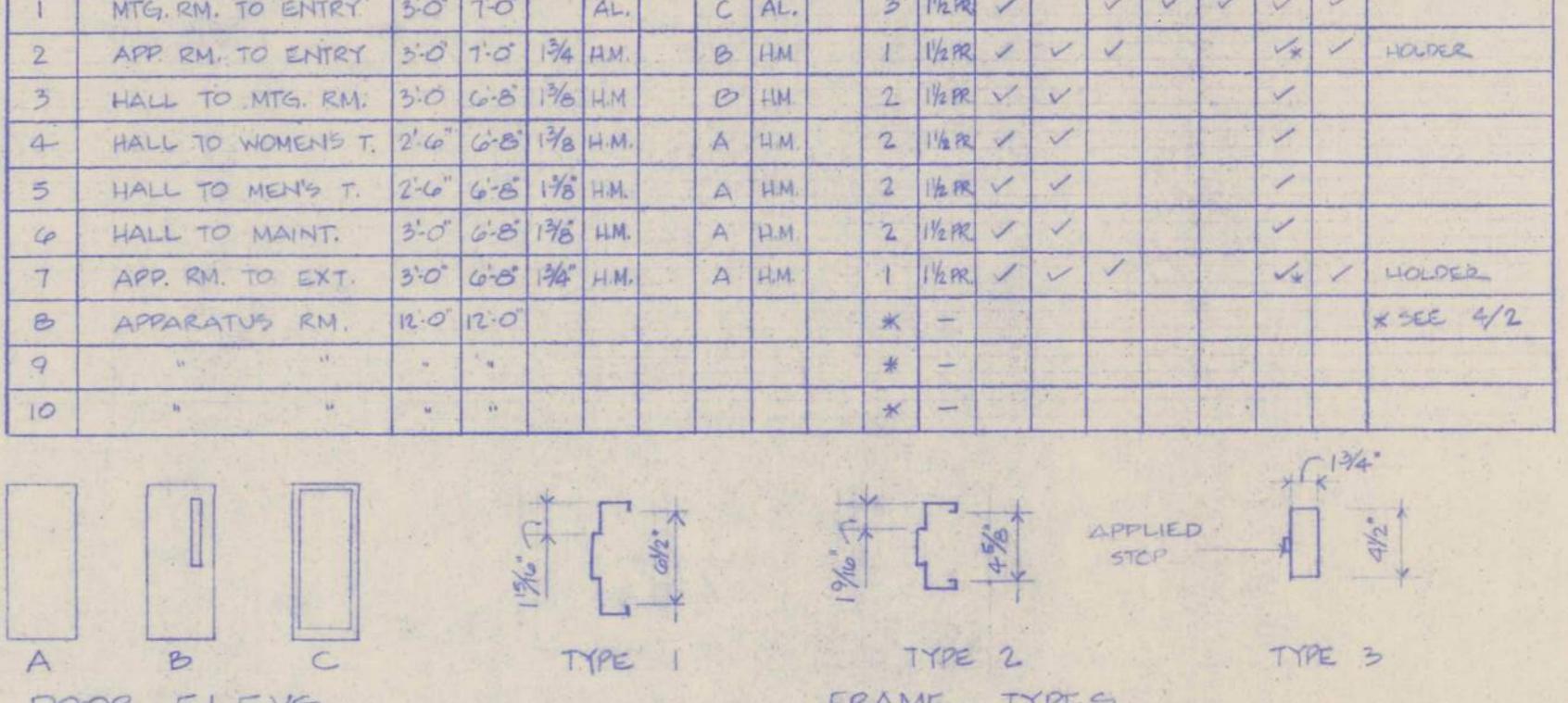




The Voorhees-Shelton Architects P.C.

West Towers Suite 409
1200 35th Street
West Des Moines, Iowa 50265
515-225-3469


THE CONTRACTOR SHALL
VERIFY ALL DIMENSIONS E,
CONDITIONS PERTAINING TO
THIS DRAWING AT THE SITE,
AND SHALL REPORT ANY
DISCREPANCIES TO THE
ARCHITECT AT ONCE.

No. Revision Date



ROOM	WALLS					REMARKS
	N	S	E	W	FUR.	
COVERED ENTRY	-	5	4	CONC.	-	MEET. * ALUM. ENTRANCE
MEETING RM.	2	1	4	1	VAT.	VIN. LAYIN. * SEE ALT. NO. 4
HALL	2	2	2	-	VAT.	VIN. DW.
MENS TOILET	2	2	2	2	VAT.	VIN. DW.
WOMENS "	2	2	2	2	VAT.	VIN. DW.
MAINTENANCE	4	2*	4	1	CONC.	-
LOFT (STORE)	-	3	4	3	PLYW.	-
APPARATUS RM.	4	4	1	4	CONC.	-

WALL FINISHED
1. CONC. BLOCK - PAINTED
2. DRYWALL - PAINTED
3. DRYWALL - TAPED, NOT PAINTED.
4. METAL WAINSCOTE - PRE-FINISHED
5. BRICK

MS	LOCATION	DOOR		FRAME		HARDWARE		REMARKS
		WG	HT	WAT.	LAB.	EL.	MAT.	
1	MTG. RM. TO ENTRY	5'-0"	7'-0"	AL.	C AL.	3 1/2 PR	✓ ✓ ✓ ✓ ✓ ✓	
2	APP. RM. TO ENTRY	3'-0"	7'-0"	3/4" HM.	B HM.	1 1/2 PR	✓ ✓ ✓	✓ ✓
3	HALL TO MTG. RM.	3'-0"	6'-0"	3/4" HM.	B HM.	2 1/2 PR	✓ ✓	
4	HALL TO WOMEN'S T.	2'-0"	6'-0"	3/4" HM.	A HM.	2 1/2 PR	✓ ✓	
5	HALL TO MEN'S T.	2'-0"	6'-0"	3/4" HM.	A HM.	2 1/2 PR	✓ ✓	
6	HALL TO MAINT.	3'-0"	6'-0"	3/4" HM.	A HM.	2 1/2 PR	✓ ✓	
7	APP. RM. TO EXT.	3'-0"	6'-0"	3/4" HM.	A HM.	1 1/2 PR	✓ ✓ ✓	✓ ✓ / HOLDER
8	APPARATUS RM.	10'-0"	12'-0"					* SEE 4/2
9	"	"	"					
10	"	"	"					

Date	30 DEC. 1977	File No.	7704
Scale	AS NOTED		
Preliminary	<input type="checkbox"/>		
Construction	<input checked="" type="checkbox"/>		
As Built	<input type="checkbox"/>		
of Sheets	3		

ELEVATIONS,
DETAILS & SCHEDULES

Project
A
FIRE STATION
FOR THE CITY OF
STATE CENTRE,
IOWA
SITUATE ON
LOTS 3 & 4, BLOCK 14
C.P. STATE CENTRE
MARSHALL COUNTY, IA
Owner
THE CITY OF
STATE CENTRE,
IOWA

The Voorhees-Shelton Architects, P.C.

West Towers Suite 409
1200 35th Street
West Des Moines, Iowa 50265
515-225-3469

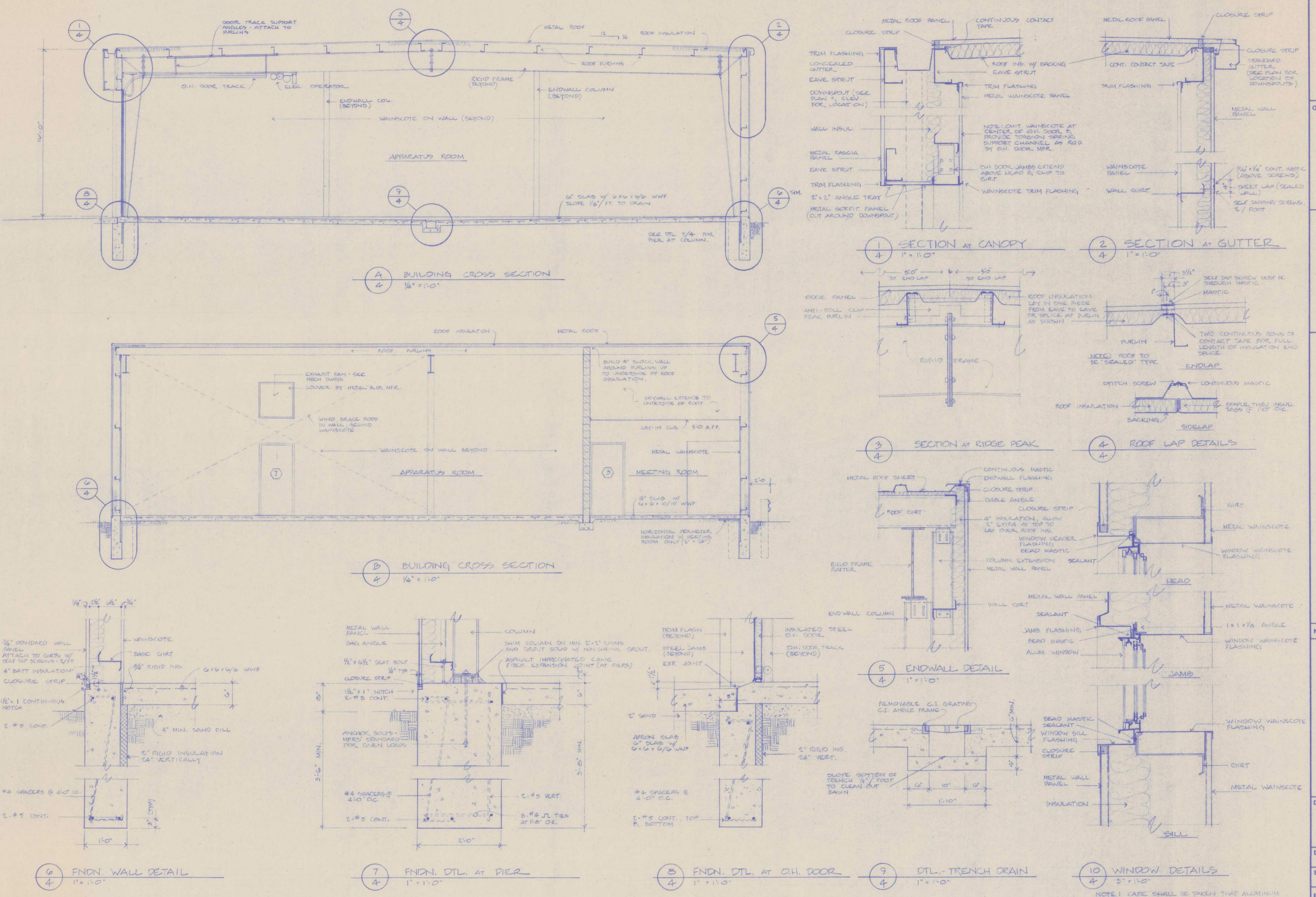
THE CONTRACTOR SHALL
VERIFY ALL DIMENSIONS &
CONDITIONS PERTAINING TO
THIS DRAWING AT THE SITE
AND SHALL REPORT ANY
DISCREPANCIES TO THE
ARCHITECT AT ONCE.

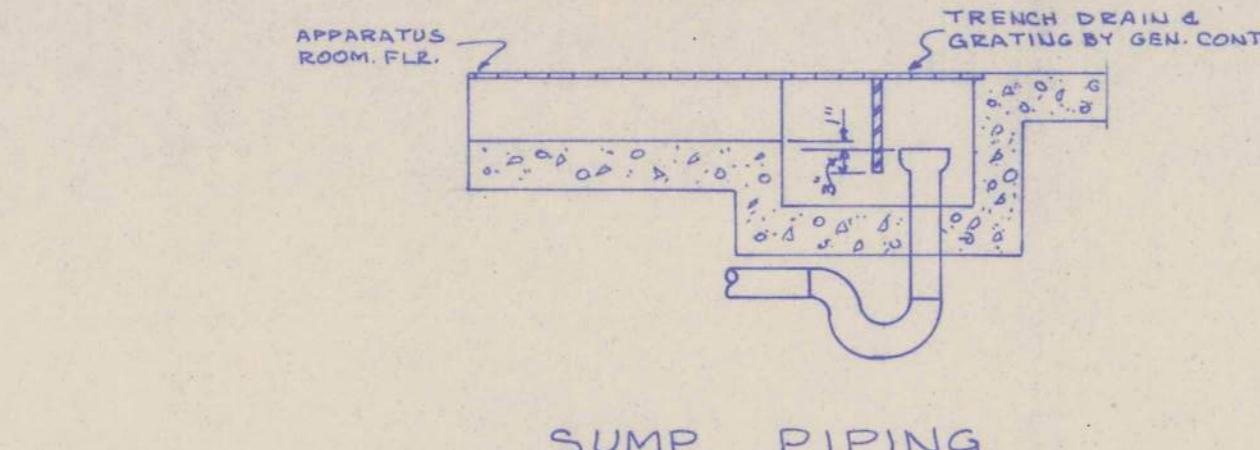
No. Revision Date

Description

SECTIONS & DETAILS

Date 20 DEC. 1977 File No. 7704

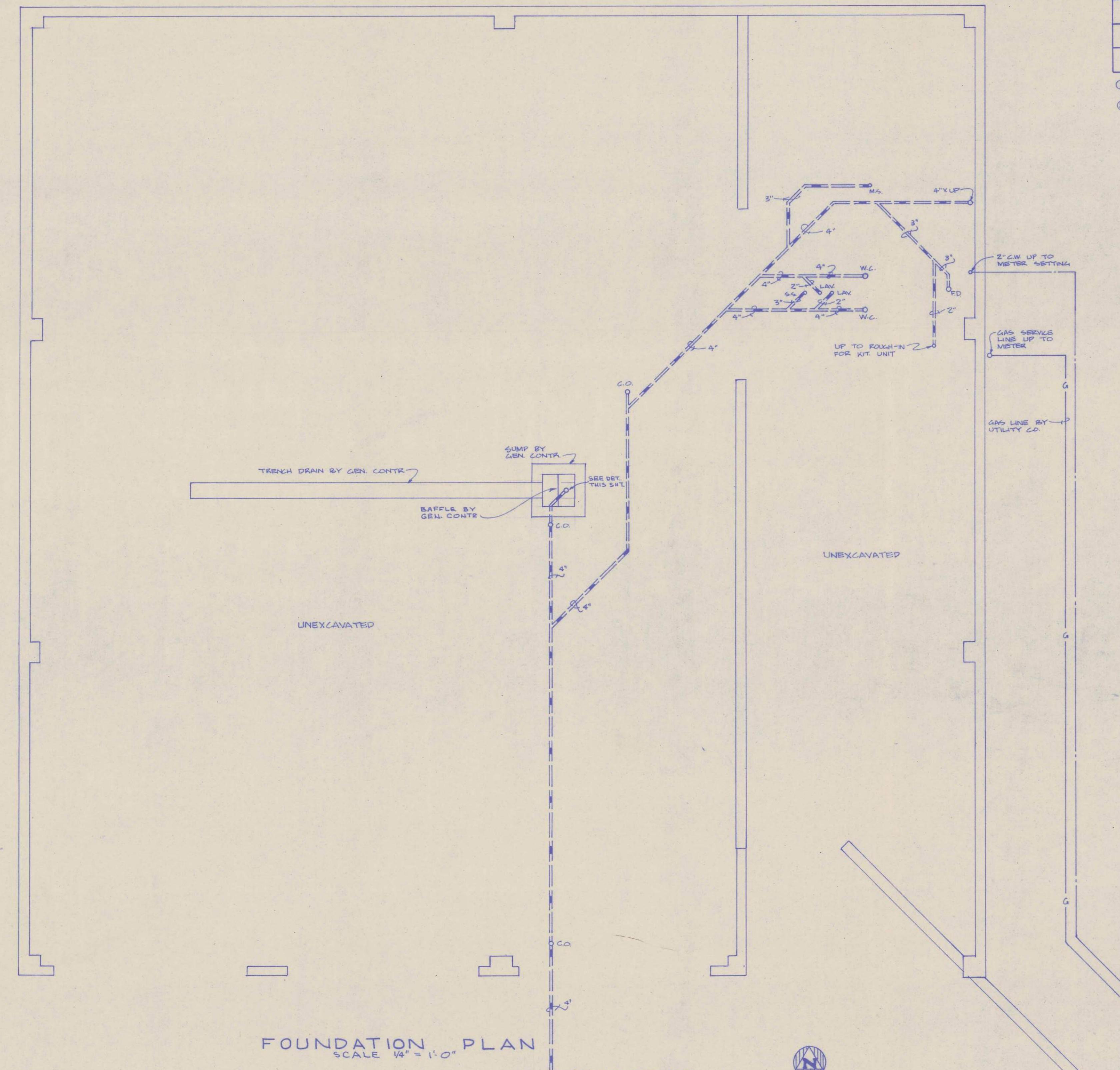

Scale AS NOTED


Preliminary

Construction

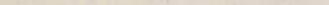
As Built

of Sheets 4



SUMP PIPING
SCALE $\frac{1}{2}$ " = 1'-0"

PLUMBING & PIPING


- .. ALL WORK TO CONFORM TO IOWA STATE PLUMBING CODE AND STATE CENTRE PLUMBING CODE.
- .. ALL MATERIAL TO BE NEW
- .. SOIL, WASTE, VENT BELOW GRADE OR UNDER SLAB: CAST IRON STD. WEIGHT QR AS NOTED ON DRAWINGS.
- .. SOIL, WASTE, VENT ABOVE GRADE: CAST IRON, COPPER OR SCHEDULE 40 PVC AS APPROVED.
- .. DOMESTIC WATER SERVICE: CAST IRON WATER MAIN WITH APPROVED MECHANICAL JOINTS OR TYPE K COPPER.
- .. DOMESTIC COLD AND HOT WATER LINES: TYPE L. COPPER
- .. NATURAL GAS LINES: SCHEDULE 40 BLACK IRON
- .. BALL VALVES: FULL LINE SIZE PORT AND BE COMPATABLE WITH PIPE MATERIAL AND FOR SERVICE DESIGNATED.

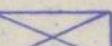
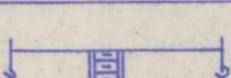
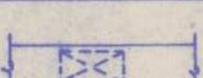
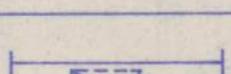
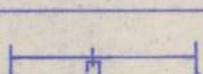
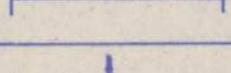
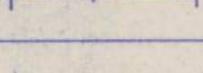
FOUNDATION PLAN

SCALE '94

BY CERTIFY THAT THIS PLAN, SPECIFICATION OR REPORT WAS
PREPARED BY ME OR UNDER MY DIRECT PERSONAL SUPERVISION
THAT I AM A DULY REGISTERED PROFESSIONAL ENGINEER UNDER
LAWS OF THE STATE OF IOWA.

SIGNED DATE
JAN. 17 1978
RALPH R. SCHILLING, P.E. IOWA REG. NO. 2898

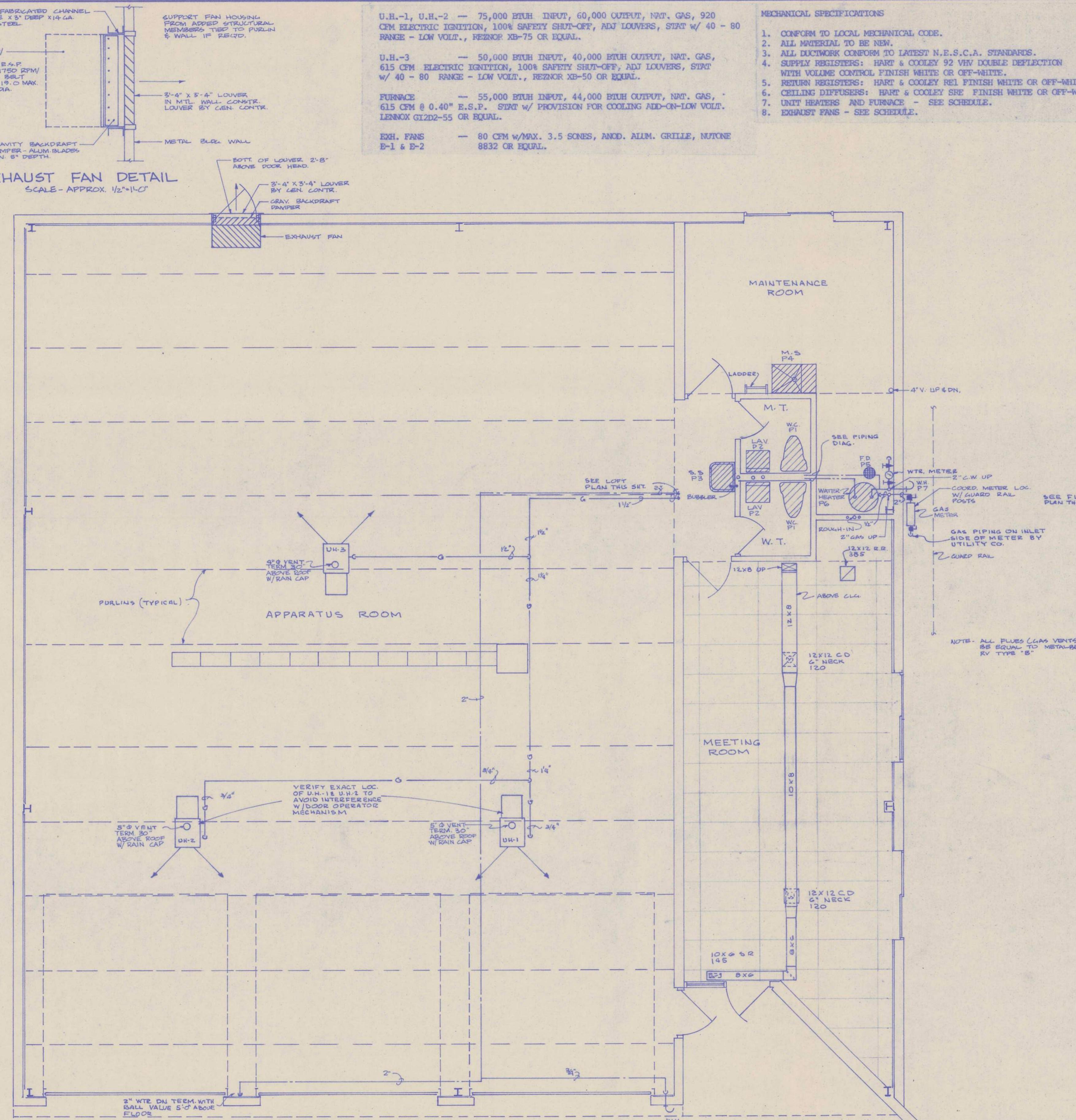
PLUMBING FIXTURE SCHEDULE








① PROVIDE T&S BRASS NO B-955 SPRAY UNIT W/ 5 FT. HOSE & 3/4" I.P.S. FEMALE
& NO B-104-P WALL HOOK

② WALL MTD BUBBLER ON R.H. SIDE OF S.S. @ +42". VERIFY EXACT LOC. W/ARCHITECT.
HALSEY TAYLOR 3744-A.

PLUMBING SYMBOLS

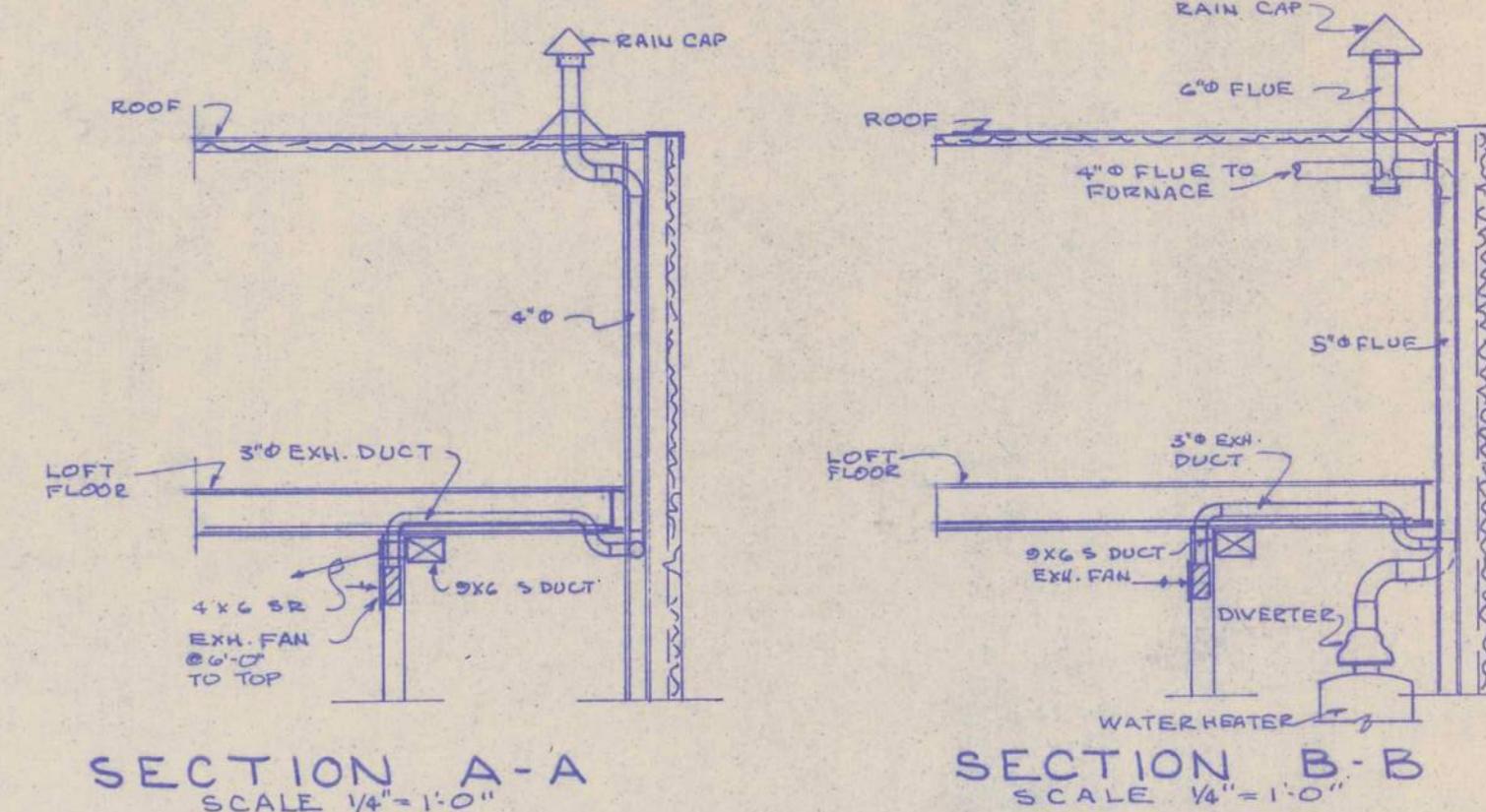
=====	SOIL OR WASTE LINE
====	SOIL OR WASTE LINE BELOW GRADE
==V==	PLUMBING VENT
==V==	PLUMBING VENT BELOW GRADE
-----	DOMESTIC COLD WATER LINE
-----	DOMESTIC HOT WATER LINE
---G---	GAS LINE
---D---	DRAIN LINE
----↓----	GATE VALVE
----●----	BALL VALVE
----□----	COCK OR BALANCING VALVE
●●●	FLOOR DRAIN (F.D.)
↑	WALL HYDRANT
①	THERMOSTAT
C.O.	CLEAN OUT
V.T.R.	VENT THRU ROOF
LAV.	LAVATORY
W.C.	WATER CLOSET
S.S.	SERVICE SINK
M.S.	MOP SINK


DUCTWORK SYMBOLS

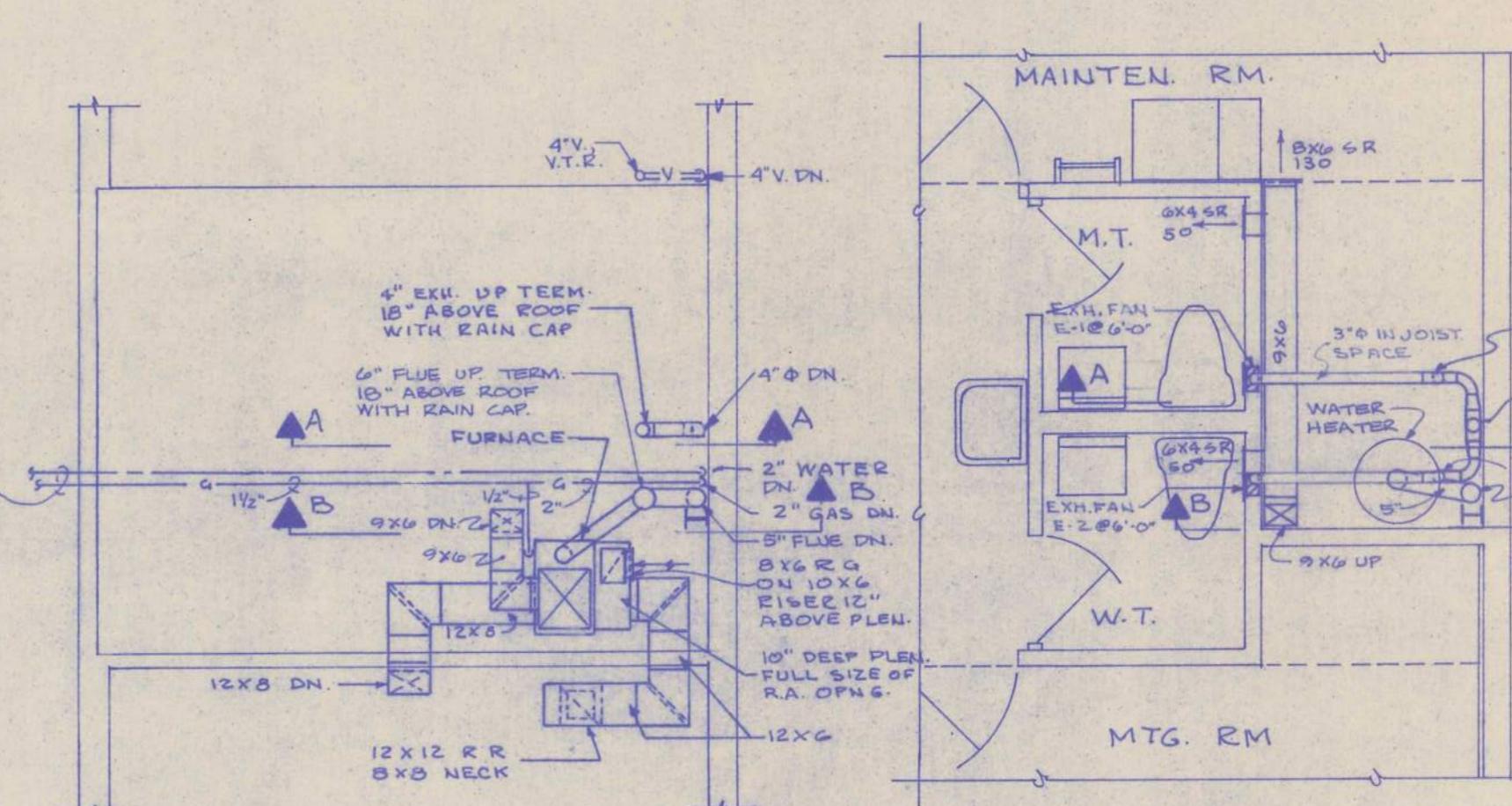
	SUPPLY DUCT IN SECTION		RETURN OR EXHAUST DUCT IN SECTION
	FLEXIBLE CONNECTION		SUPPLY DUCT TAP FROM BOTTOM OF DUCT
	RETURN OR EXH. DUCT TAP FROM BOTTOM OF DUCT		DAMPER IN DUCT AS NOTED
	SQUARE CEILING DIFF. SIZE AS NOTED		VANED ELBOW

→	SUPPLY AIR FLOW
→	RETURN OR EXHAUST AIR FLOW
(T)	THERMOSTAT
M.D.	MANUAL DAMPER
F.D.	FIRE DAMPER
S.A.	SUPPLY AIR
R.A.	RETURN AIR
S.R.	SUPPLY REGISTER
R.R.	RETURN REGISTER
S.D.	CEILING DIFFUSER

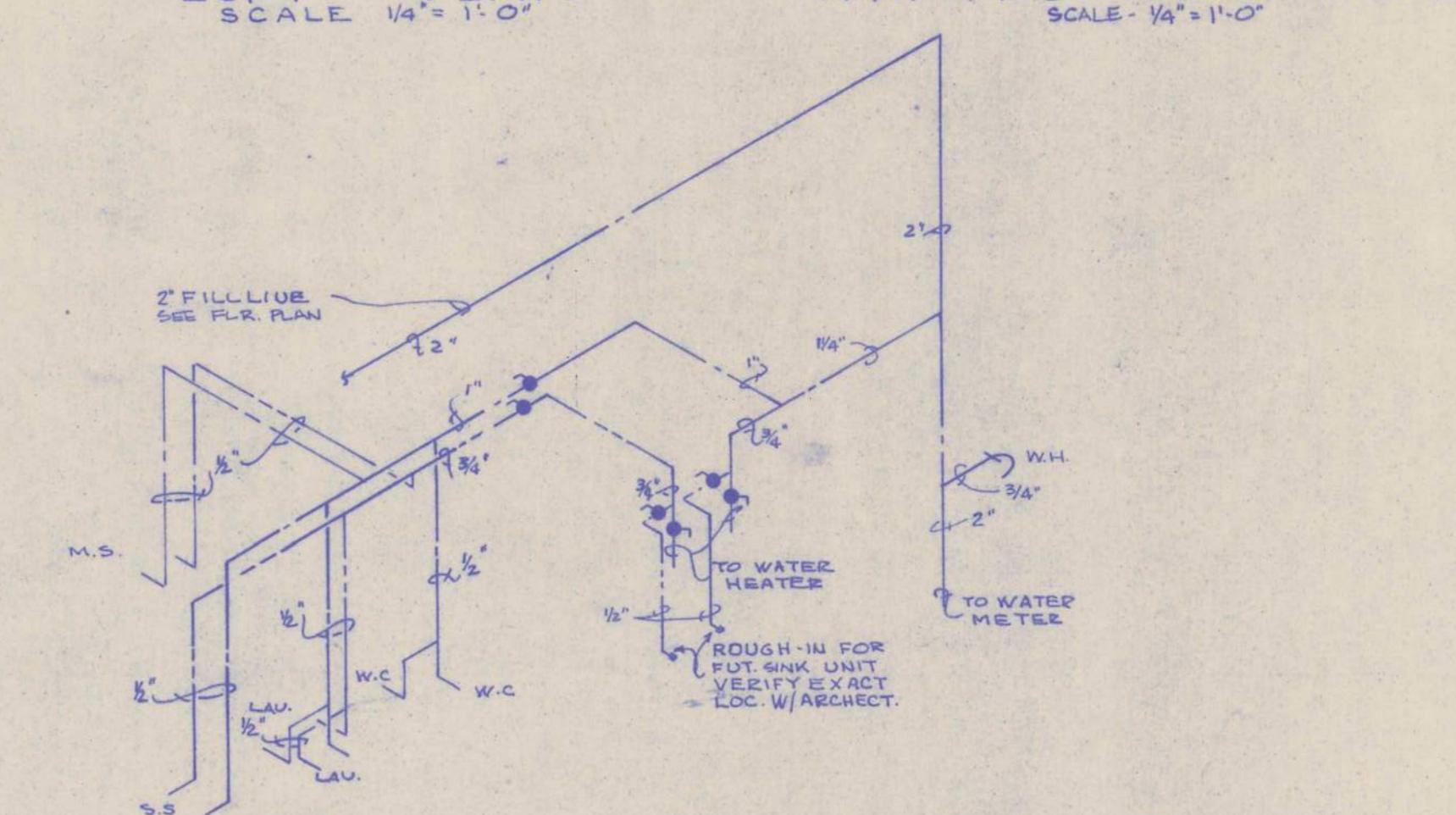
Description FOUNDATION PLAN-
MECHANICAL


Date 30 DEC, 1977	File No. 7704
Scale AS NOTED	Drawing No.
Preliminary <input type="checkbox"/>	
Construction <input checked="" type="checkbox"/>	
As Built <input type="checkbox"/>	
	5
	of 7 Sheets

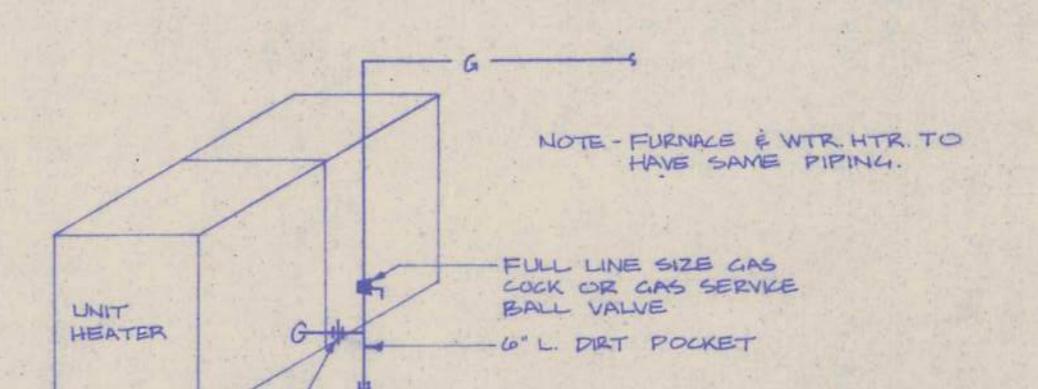
MECHANICAL SPECIFICATIONS


80

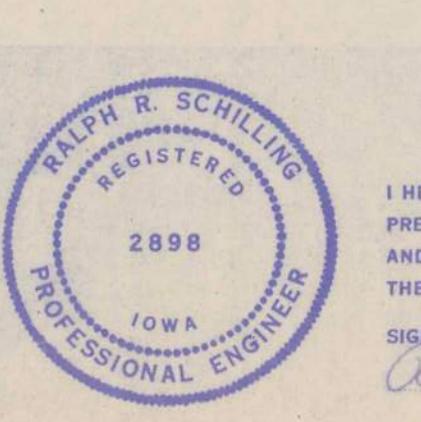
1. CONFORM TO LOCAL MECHANICAL CODE.
2. ALL MATERIAL TO BE NEW.
3. ALL DUCTWORK CONFORM TO LATEST N.E.S.C.A. STANDARDS.
4. SUPPLY REGISTERS: HART & COOLEY 92 VHV DOUBLE DEFLECTION WITH VOLUME CONTROL FINISH WHITE OR OFF-WHITE.
5. RETURN REGISTERS: HART & COOLEY REL FINISH WHITE OR OFF-WHITE.
6. CEILING DIFFUSERS: HART & COOLEY SRE FINISH WHITE OR OFF-WHITE.
7. UNIT HEATERS AND FURNACE - SEE SCHEDULE.
8. EXHAUST FANS - SEE SCHEDULE.

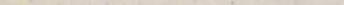

SECTION A-A
SCALE 1/4" = 1'-0"

SECTION B-B
SCALE $\frac{1}{4}'' = 1'-0''$



LOFT PLAN


PART FIRST FLOOR PLAN


WATER PIPING DIAGRAM

UNIT HEATER GAS PIPING
NOT TO SCALE

I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION OR REPORT WAS
PREPARED BY ME OR UNDER MY DIRECT PERSONAL SUPERVISION
AND THAT I AM A DULY REGISTERED PROFESSIONAL ENGINEER UNDER
THE LAW OF THE STATE OF IOWA.

SIGNED DATE JAN 17 1978
RALPH R. SCHILLING, P.E., IOWA REG. NO. 2808

project

A
FIRE STATION
FOR THE CITY OF
STATE CENTRE
IOWA
SITUATE ON
LOTS 3 & 4, BLOCK 14
OP STATE CENTRE
MARSHALL COUNTY, IA

THE CITY OF
STATE CENTRE
IOWA

VS
The Voorhees-Shelton Architects P.C.

West Towers Suite 409
1200 35th Street
West Des Moines, Iowa 50265
515-225-3469

STEVENSON & SCHILLING
CONSULTING ENGINEERS
633 INS. EXCH. BLDG.
DES MOINES, IOWA

Page No. _____ Revision _____ Date _____

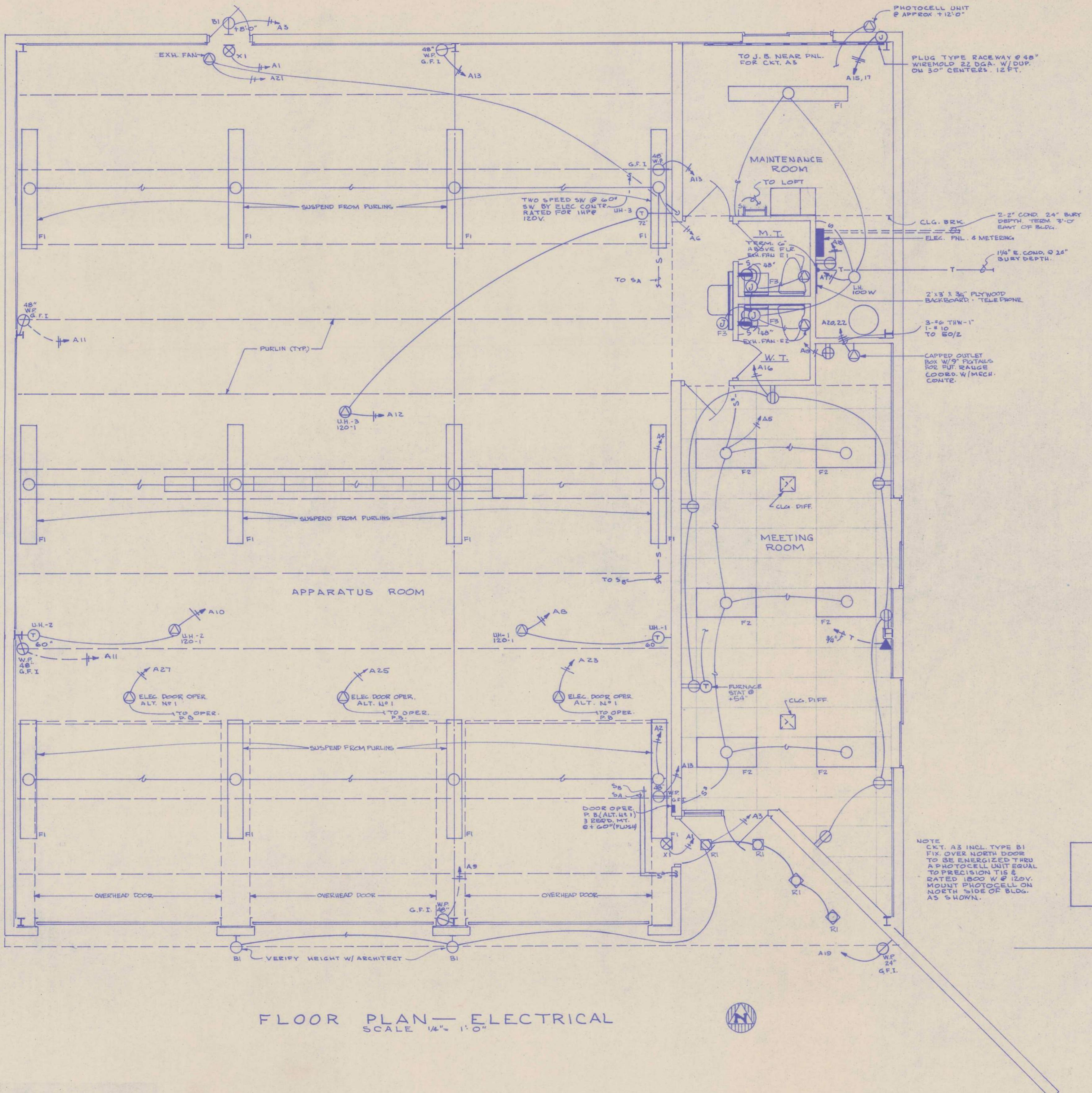
Description

Date 30 DEC., 1977	File No. 7704
Scale AS NOTED	Drawing No.
Preliminary <input type="checkbox"/>	6

Project
A FIRE STATION
FOR THE CITY OF
STATE CENTRE,
IOWA
SITUATE ON
LOTS 3 & 4, BLOCK 14
OP STATE CENTRE,
MARSHALL COUNTY, IA

Owner
THE CITY OF
STATE CENTRE
IOWA

The Voorhees-Shelton Architects P.C.


West Towers
1200 35th Street
West Des Moines, Iowa
50265
515-225-3469

STEVENSON & SCHILLING
CONSULTING ENGINEERS
633 INS. DES MOINES, EXCH. BLDG. IOWA

No. Revision Date

Description
FLOOR PLAN - ELECTRICAL

Date 30 DEC, 1977 File No. 7704
Scale AS NOTED Drawing No. 7
Preliminary Constr. 7
7 Sheets

I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION OR REPORT WAS
PREPARED BY ME OR UNDER MY DIRECT PERSONAL SUPERVISION
AND THAT I AM A DULY REGISTERED PROFESSIONAL ENGINEER UNDER
THE LAWS OF THE STATE OF IOWA.

SIGNED
Ralph R. Schilling JAN. 17 1978
RALPH R. SCHILLING, P.E. IOWA REG. NO. 2898

Geotechnical Evaluation Report

Subsurface Exploration
Fire Station Addition
State Center, IA

February 19, 2025

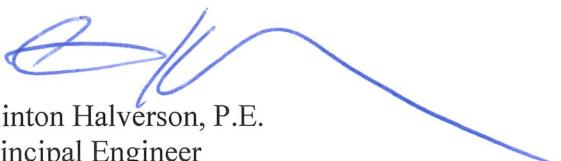
Prepared for:
City of State Center

Prepared by:
TEAM Services, Inc.
Des Moines, Iowa

February 19, 2025

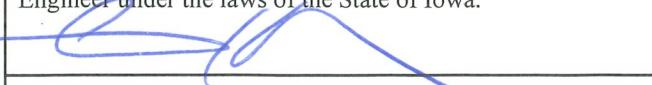
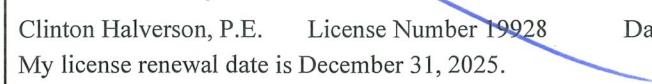
City of State Center
118 E Main Street, P.O. Box 668
State Center, IA 50247

Attn: Craig Pfantz, Fire Chief


Re: Subsurface Exploration
Fire Station Addition
State Center, IA
TEAM Project No. 1-5630

Dear Mr. Pfantz:

We have completed the subsurface exploration for the proposed new structure and pavements. The accompanying geotechnical report presents the findings of the subsurface exploration, our recommendations concerning design and construction of the new addition, and subgrade preparation recommendations for new parking.



We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service to you in any way, please do not hesitate to contact us.

Sincerely yours,
TEAM Services

A blue ink signature of Clinton Halverson, P.E.

Clinton Halverson, P.E.
Principal Engineer

Cc: Chris Wernimont, AIA, Studio Melee

A circular seal for a Professional Engineer. The outer ring contains the text "LICENSED PROFESSIONAL ENGINEER" at the top and "IOWA" at the bottom, separated by stars. The center of the seal contains the name "Clinton Halverson" and the year "19928".	<p>I hereby certify that this engineering document was prepared by me or under my direct personal supervision and that I am a duly licensed Professional Engineer under the laws of the State of Iowa.</p> A blue ink signature of Clinton Halverson, P.E. over the text.
	<p>Clinton Halverson, P.E. License Number 19928 My license renewal date is December 31, 2025. Pages covered by this seal: <u>All Pages</u>.</p> A blue ink signature of Clinton Halverson, P.E. over the renewal information.

TABLE OF CONTENTS

PROJECT INFORMATION	1
SITE CONDITIONS	1
FIELD EXPLORATION.....	1
LABORATORY TESTING	2
Natural Moisture Content.....	3
Unit Weight.....	3
Unconfined Compressive Strength.....	3
Plasticity (Atterberg Limits) Tests	3
Torvane Shear Tests	3
SUBSURFACE CONDITIONS.....	4
GROUNDWATER CONDITIONS	4
CONCLUSIONS AND RECOMMENDATIONS	5
Geotechnical Concerns Overview	5
Existing Fill Considerations	6
Site Preparation	7
Fill Placement.....	8
Shallow Foundation Design	10
Overexcavation Undermining Considerations	11
Shallow Foundation Construction.....	12
Floor Slabs.....	13
Parking and Drives Subgrade Preparation	14
Temporary Excavation Support	16
Construction Dewatering.....	16
Site Drainage.....	17
QUALIFICATION OF REPORT	17

APPENDICES

BORING PLAN
LOGS OF BORINGS 1-3
UNIFIED SOIL CLASSIFICATION SYSTEM
GENERAL NOTES

PROJECT INFORMATION

Project information has been provided by Studio Melee through email. The project will consist of building a single-story, slab-on-grade, pre-engineered metal building addition onto the existing fire station at 113 W Main Street, State Center, Iowa. Documents provided by email include a preliminary street view of the addition and a floor plan. An existing slab-on-grade opera house resides in a portion of the addition area. New parking is planned directly east of the addition.

Grading and structural loads have not been provided. For the purposes of this report, it is assumed that the finished floor elevations will be similar to that of the existing fire station and that wall and column loads will be on the orders of 5 klf and 50 kips, respectively, or less.

SITE CONDITIONS

The site is mostly gravel-surfaced or taken up by the existing opera house, although a strip of grass is present alongside the opera house. There was about 1 foot of elevation difference between our boring locations. The grades were able to support our truck-mounted drilling rig without difficulty.

FIELD EXPLORATION

A total of 3 borings were conducted at this site to depths of about 7 to 20 feet below existing grades on February 3, 2025. The locations of borings were determined using visual offsets from existing site features. The boring elevations were shot using a surveying rod and scope and those elevations were correlated to the finished floor elevation of the existing fire station. An arbitrary reference elevation of 100.0 feet was assigned to the existing fire station finished floor elevation. The approximate boring locations are indicated on the Boring Plan enclosed in the Appendix. Boring elevations are noted on their respective Boring Logs. The locations and elevations of the borings should be considered accurate only to the degree implied by the means and methods used to define them.

Our drilling equipment consisted of a truck-mounted auger drilling rig. The borings were made by mechanically twisting a continuous flight hollow stem steel auger into the soil. At assigned intervals, the center drive bit of the auger was removed and soil samples were obtained.

Representative samples were obtained using thin-walled tube and split-barrel sampling procedures in general accordance with ASTM Specifications D 1587 and D 1586, respectively. In the thin-walled tube sampling procedure, a thin-walled, seamless steel tube with a sharp cutting edge is pushed hydraulically into the ground to obtain relatively undisturbed samples of cohesive or moderately cohesive soils. In the split-barrel sampling procedure, a standard 2-inch O.D. split-barrel sampling spoon is driven into the ground with a 140-pound hammer falling a distance of 30 inches. The number of blows required to advance the sampling spoon the last 12 inches of a normal 18-inch penetration is recorded as the standard penetration resistance value. These values are indicated on the Boring Logs at the depths of occurrence. Soil cuttings from the upper approximate foot of soils were often retained in jars. The samples were tagged for identification, sealed and returned to the laboratory for testing and classification.

An automatic hammer was used to perform the Standard Penetration Tests in the borings. In the automatic hammer system, the cathead and rope used traditionally in the manual test procedure is replaced with an automatic lifting mechanism for the 140-pound driving weight. The reduction in system friction with the automatic hammer system results in a significant increase in the driving energies. This results in significantly greater driving efficiencies and a corresponding decrease in the number of blows in the Standard Penetration Test results. We have taken the driving efficiency of the automatic hammer system into account when analyzing this data.

Field logs of the borings were prepared by the drill crew. These logs included visual classifications of the materials encountered during drilling, as well as the driller's interpretation of the subsurface conditions between samples. Final Boring Logs included with this report represent an interpretation of the field logs and include modifications based on laboratory observation and tests of the samples.

LABORATORY TESTING

Based on the driller's field records and examination of the samples in the laboratory, a soil testing program was developed to collect more information about the soil conditions at the site. The following is a brief description of the specific tasks completed for this project.

Natural Moisture Content -- The natural moisture content of selected samples was determined in general accordance with ASTM D 2216. The moisture content of the soil is the ratio, expressed as a percentage, of the weight of water in a given mass of soil to the weight of the soil particles. The results are presented on the Boring Logs at the depths from which the samples were obtained.

Unit Weight -- In the laboratory, selected undisturbed samples of the site soils were measured and weighed to determine gross weight and volume of the samples. Where possible, the samples are placed in a template and trimmed at each end to fit the template. The moisture content of each specimen was then determined, and the dry unit weight was calculated. The results of these tests are also presented on the Boring Logs at the appropriate sample depths.

Unconfined Compressive Strength -- A calibrated hand penetrometer was used to estimate the approximate unconfined compressive strength of the Shelby tube samples and select split spoon samples. The calibrated hand penetrometer has been correlated with unconfined compression tests and provides a better estimate of soil consistency than visual examination alone.

Plasticity (Atterberg Limits) Tests -- Selected soil samples were tested for Plastic Index. A soil's Plastic Index (PI) is bracketed by the Liquid Limit (LL) and the Plastic Limit (PL). The LL is the moisture content at which the soil will flow as a heavy viscous fluid. The PL is the moisture content at which the soil begins to crumble when rolled into a small thread. These tests are conducted in general accordance with ASTM D 4318. The results are indicated on the Boring Logs at the depths where the samples were obtained.

Torvane Shear Tests -- The Torvane test was performed on a precut flat soil sample surface with a calibrated, hand-held spring-loaded dial device with thin flanges in a radial array which can be pressed into the soil sample. The vanes are pressed into the soil sample, and the dial face is twisted slowly until the vanes begin to shear the soil. This test gives a direct dial reading of soil shear strength when the sample fails. The test is especially useful for estimating the shear strength of soft cohesive soils. Torvane shear test results are noted on the Boring Logs at the depths of the samples tested.

As part of the testing program, the samples were classified in the laboratory based on visual observation, texture and plasticity. The descriptions of the soils indicated on the Boring Logs are in accordance with the enclosed *General Notes* and the *Unified Soil Classification System*. Estimated

group symbols according to the *Unified Soil Classification System* are given on the Boring Logs. A brief description of this classification system is attached to this report.

SUBSURFACE CONDITIONS

Subsurface conditions encountered during this exploration are indicated on the individual Boring Logs. Based on the results of the borings, subsurface conditions on the project site can be generalized as follows.

Boring locations 1 and 2 were surfaced with silty gravel or silty sand.

Fill soils were encountered below the surfacing at Boring 1 and at the ground surface of Boring 3. The fill soils were variable and included sandy lean clay, lean to fat clay, sandy lean to fat clay, and fat clay soil types. The existing fill extended to depths ranging from 2 to 6 feet below existing grades.

Topsoil was buried beneath the surfacing at Boring 2 and below the fill soils in Boring 3. The topsoil was stiff lean to fat clay which extended to depths of about 3 to 5 feet below existing grades.

Loess soils were encountered below the fill and topsoil in all borings. These wind-deposited soils were soft to stiff lean clay. All borings terminated in the loess soils.

The above descriptions provide a general summary of the subsurface conditions encountered. The attached Boring Logs contain detailed information recorded at each boring location. These Boring Logs represent our interpretation of the field logs based on engineering examination of the field samples. The lines designating the interfaces between various strata represent approximate boundaries, and the transition between strata may be gradual. It should be noted that the soil conditions will vary between the boring locations.

GROUNDWATER CONDITIONS

The borings were monitored while drilling and shortly after completion for the presence and level of groundwater. Groundwater indications were only observed in Boring 2, the deepest boring. At

Boring 2, water seepage was noted at a depth of about 18 feet. After stabilizing for about half an hour, the water level was measured at a depth of about 17 feet.

It should be recognized that longer-term observations may be necessary for a groundwater level to develop and stabilize in the borehole, especially when clay soils are present. Longer-term monitoring in cased holes or piezometers would be required for a more accurate evaluation of the groundwater conditions at this site.

Fluctuation of groundwater levels can occur due to seasonal variations in the amount of rainfall, runoff, surface drainage, subsurface drainage, site topography, irrigation practices, ground cover (pavement or vegetation), and other factors not evident at the time the borings were conducted. Normally, the highest groundwater levels occur in late winter and spring time while the lowest levels occur in late summer and fall time. The fluctuation of the groundwater levels should be considered when developing the design and construction plans for this project.

CONCLUSIONS AND RECOMMENDATIONS

Geotechnical Concerns Overview

In general, the site appears suitable for the proposed project with some concerns and recommended mitigation.

Most slab areas and some foundations will bear above elevations where existing fill is present. Most layers of fill appeared to be satisfactorily compacted, but there was a layer of poorly compacted fill identified in Boring 1 that warrants delineation and removal beneath the building area as further discussed in the **Existing Fill Considerations** report section.

Moderately expansive soils were encountered in the topsoil and some of the fill strata sampled by borings. However, the soils had high enough moisture contents (pre-swelled) and low enough plasticity (relatively low expansive potential) that no mitigations of existing soils for expansive reduction purposes are recommended in this report. This assumed expansive soil movements of up to $\frac{3}{4}$ inch are acceptable for this project.

Considering the variability of existing fill soils, compressibility of topsoil layers, and relatively low strength of loess soils at this site; the maximum allowable bearing pressure recommended at this site is limited to 1,500 psf. Even with this relatively low bearing pressure, soft loess may require some removal and replacement beneath footings if encountered very near a foundation's bearing elevation.

This report section is an overview. Reading this report in its entirety is necessary to understand recommendations and risks involved with this project.

Existing Fill Considerations

Fill soils were encountered below the surfacing at Boring 1 and at the ground surface of Boring 3. The fill soils were variable and included sandy lean clay, lean to fat clay, sandy lean to fat clay, and fat clay soil types. The existing fill extended to depths ranging from 2 to 6 feet below existing grades with the deep fill located near the existing fire station at Boring 1. Most layers of fill appeared to be satisfactorily compaction, but the one exception was a layer of poorly compacted fill identified in Boring 1 between depths of about 2 and 3 feet. This layer of poorly compacted fill warrants delineation and removal beneath the building area.

TEAM Services recommends that shallow (about 3 feet deep) test pits should be dug near Boring 1 and radiating out as the poorly compacted layer dictates. Test pits could be dug either before or during construction to identify the layer of poorly compacted soil and then remove the layer beneath the building area. The extents of this layer are currently unknown and therefore the owner should be made aware of the cost variables. It should also be noted that although the unsuitable fill identified in Boring only extended to a depth of about 3 feet, unsuitable materials may be deeper at other locations.

Other than the single layer of soils which appeared to be poorly compacted, the fill soils at the site appeared to be satisfactorily compacted based on resistance to penetration and manual assessment. Satisfactory compaction would result in suitable stiffness to adequately support foundations without a bearing capacity failure and with reasonably low settlement.

Man-made fills have an inherently high risk of variability and careful construction inspection will be necessary to assure adequate support performance. In areas where fill is encountered, we recommend that additional testing be conducted by TEAM Services at the time of construction to further explore the suitability of the existing fill. In our opinion, foundations and slabs may be placed

above existing fill where testing confirms suitability. If unsuitable soils are encountered, these soils should be removed and replaced with engineered compacted and tested fill or concrete.

It should be noted that the most conservative approach in dealing with unknowns within the existing fill would be to completely remove the fill and replace it with new fill which is placed with compaction testing controls to check that the soil is compacted at an appropriate moisture content and that the soils reach specified compaction densities. In our opinion, arbitrary removal of all fill is unnecessary at this site considering the suitability of soils encountered in the subsurface exploration, but some risk will need to be assumed by the owner in order to allow construction above existing fill soils.

Site Preparation

Subgrade preparation should begin with the removal of any organic-laden soils, vegetation, and any loose, soft, or otherwise unsuitable materials present at the site. As discussed in the previous report section, a layer of poorly compacted fill identified in Boring 1 should be removed from beneath the building area.

For planning purposes, we recommend a minimum stripping depth of 6 inches for grass areas to remove the soils with the densest root growth. The actual depth of stripping should be determined in the field in consultation with TEAM Services personnel. Any near surface soils with organics could be used for landscaping purposes in non-critical areas where support for foundations, slabs, or parking is not required.

Any abandoned utility lines or other buried elements from the previous site use should be completely removed along with their associated backfill material and replaced with engineered compacted fill. Consideration should be given to rerouting any existing utilities which will remain in service to locations outside the planned building area so that they will be easily accessible for maintenance.

After stripping and removal, the exposed grades in both cut and fill areas should be proofrolled or inspected by TEAM Services personnel. Proofrolling should be performed at the lowest cut grade, prior to any fill placement. Proofrolling should be conducted with a fully loaded tandem axle dump truck having a minimum gross weight of 25 tons. Where proofrolling is not possible due to poor access or excessive disturbance to the existing soils, these soils should be probed and visually inspected by TEAM Services to determine the suitability of the subgrade. Any unsuitable soils

identified during this process should be removed and replaced with suitable engineered compacted and tested fill which meets or exceeds the Class 1 Construction Application requirements in Table A in the following **Fill Placement** report section.

It should be noted that initial subgrade preparation for some soil types may not be suitable under repeated heavy construction vehicle loads and may require stabilization to greater depths or placement of crushed rock with or without geogrid. Stabilization of subgrade soils with fly ash, cement or lime could also be considered. Contract allowances should be made for some remedial work at the site related to subgrade preparation. The amount of such work cannot be defined at this time. Therefore, the owner should be informed of these cost variables.

Fill Placement

Fill and backfill placed for support of the proposed structure and parking should consist of approved materials which are free of organic matter and debris. Brick, concrete, rocks or other solid pieces with a maximum dimension of 3 inches or larger should not be placed in the newly placed fill sections. We recommend that low-plasticity cohesive soil or granular material be used for general fill placement. For this site, low-plasticity cohesive soil for this site should have a liquid limit of less than 45 and a plasticity index of less than 25. In our opinion, the near-surface cohesive soils at this site often do not meet these criteria and robust testing and delineation would be necessary to use a portion of the soils as low plasticity fill. More suitable lean clay loess soils are present with depth but would require significant excavations to access and also can be expected to require drying to reach an acceptable moisture content for compaction. Therefore, off-site borrow materials would likely be the most plausible option to source suitable fill for grading. Any off-site potential borrow materials should be evaluated by TEAM Services prior to their use as engineered compacted and tested fill.

The following Table A lists recommended minimum compaction requirements for cohesive and cohesionless fill materials for specific applications. For cohesive soils, moisture contents within a range of 0 to +4 percent of the material's optimum moisture content (as determined by Standard Proctor ASTM D 698) are necessary to achieve the desired fill qualities for general grading and utility backfill. Sometimes, cohesive subgrade soils have difficulty passing proofroll or supporting construction traffic if significantly wet of optimum. For the upper foot of subgrade soils, it can be permissible to place low-plasticity cohesive soils up to 2 percent dry of optimum moisture content. Granular materials with sufficient fines content to be moisture-sensitive should be placed within 3

percent of the material's optimum moisture content. Clean granular materials are not moisture sensitive.

The on-site soils can be excavated utilizing conventional excavation equipment. Granular soils can generally be suitably compacted with vibratory compaction equipment. Proper compaction of cohesive soils can be achieved with sheepsfoot or pneumatic type compactors within the above moisture content ranges. The soils should be placed in a maximum loose thickness of 12 inches and at a thickness compatible with the equipment being utilized. Where manually operated compaction equipment is used, a maximum lift thickness of 4 inches is typical. Sufficient density tests should be performed on each lift of engineered compacted fill placed to verify that adequate compaction is achieved.

TABLE A
RECOMMENDED DEGREE OF COMPACTION GUIDELINES

Construction Application		Standard Proctor (ASTM D698) Cohesive Soil	Standard Proctor (ASTM D698) Cohesionless Soil ²	Relative Density (ASTM D4253 & D4254) Cohesionless Soil ^{1,2}
Class 1	Subgrade preparation for foundations, slabs, pavement, and other critical backfill areas	95%	98%	70%
Class 2	Backfill adjacent to structures not supporting other structures or pavements. Minor subsidence possible.	90%	93%	45%
Class 3	Backfill in non-critical areas. Moderate subsidence possible.	85%	88%	20%

1. Use Relative Density technique (ASTM D4253 & D4254) where Standard Proctor technique (ASTM D698) does not result in a definable maximum dry density and optimum moisture content.
2. Clean gravel should be inspected visually during compaction by a qualified engineering technician to confirm adequate compactive effort and appropriate lift thicknesses in lieu of density testing.

Upon completion of the filling operation, care should be taken to maintain the subgrade moisture content prior to construction of foundations, slabs, or pavement. If the subgrade should become desiccated, frozen or otherwise disturbed, the affected material should be removed or these materials should be scarified, moistened, recompacted and retested. As a general guideline, fills which dry to a moisture content less than 2/3 of their optimum moisture content as determined by the Standard Proctor Test (ASTM D 698) in their upper 2 inches are candidates for reconditioning as described above.

If water seepage, water accumulation, or easily disturbable soil is observed at the bottoms of excavations, it will likely be beneficial to place a lift of at least 6 inches of clean, crushed concrete or limestone gravel to provide a firm working surface for constructing foundations or placing additional lifts of backfill. The clean gravel can be well compacted in the presence of water, will drive through and reinforced shallow (1 or 2 inches) cohesive soils which have become softened by water exposure or disturbance, and can accumulate water seepage to flow to a peripheral sump pit to be pumped out of the excavation area. If the granular working surface becomes completely embedded in the existing soils, a geotextile may need to be employed as separation. Further recommendations regarding water seepage can be found in the **Construction Dewatering** section of this report.

Shallow Foundation Design

The foundations for the new structure may bear in the existing fill, loess, or newly placed fill. In our opinion, these soils which do not appear to be unsuitably soft, poorly compacted (see note below), or otherwise unsuitable as determined during construction inspection by TEAM Services should provide adequate support for shallow foundations. Foundations may be designed for a maximum net allowable soil bearing pressure of 1,500 pounds per square foot.

It should be noted that a layer of poorly compacted fill soil was encountered in Boring 1 which requires removal beneath structures as discussed in the **Existing Fill Considerations** section of this report. Also, soft loess soils were encountered at the site which could require some mitigation if located in close proximity to a foundation's bearing elevation. However, no soft loess soils were encountered near anticipated foundation bearing elevations in any of the borings. The need for overexcavation and replacement would be determined during construction-stage inspections, although some delineation and removal could be performed early with exploratory test pits.

The net bearing pressure is the pressure in excess of the minimum adjacent overburden pressure at the foundation level. These bearing capacities may be increased by 33% for the total foundation load, which considers transient forces such as wind. We estimate maximum settlements, due to the assumed structural loads, will be less than 1 inch and differential settlement may be on the order of 2/3 of the total settlement when bearing on suitable, approved soils.

Continuous foundations should be adequately reinforced to limit deflections caused by non-uniform soil support characteristics. All perimeter foundations and foundations in unheated areas should

extend at least 42 inches below the lowest adjacent finished grade for frost protection and reduce movements associated with changes in soil moisture content. Interior footings located in permanently frost-free environments should have at least 18 inches of protective embedment below lowest adjacent finished grade. We recommend that isolated spread footings should have a minimum width of 24 inches, continuous formed footings a minimum width of 16 inches and trench footings a minimum width of 12 inches. It should be noted that trenches may not be stable if extended through sand or gravel.

Where addition foundations are constructed adjacent to the existing structure's foundations, the proposed foundation bearing elevation should be the same as the existing structure's foundation bearing elevation. If unsuitable soils are present at this depth, then TEAM Services should be retained to develop recommendations to provide adequate foundation support without undermining the existing foundations. More discussion on safe excavation geometry is presented in the following report section. Architectural and structural connections should be designed to accommodate the potential differential settlement that may occur between the addition and the existing structure. Where new foundations are placed next to existing foundations, the differential settlement between the two would approach the total settlement expected for the new foundations.

Overexcavation Undermining Considerations

The sides of excavations can gradually or suddenly slough depending on the sidewall slope, soil type, groundwater influence, consistency of the soils, loads supported near the sides of the excavation, and other factors. To avoid undermining the soils supporting nearby structures, all excavations should ideally remain in the safe zone for excavation, illustrated in Figure 1. If excavations outside of the safe zone are desired and the owner does not wish to relocate the structure requiring overexcavation then there are options available to allow the excavation to continue. Underpinning the existing at-risk structure's foundations and slabs with helical piers or micropiles could be considered to completely support the structural elements in case of a sidewall failure. Another option would be to shore the sides of the excavation to allow a vertical cut, such as with a soldier or sheet pile style wall (which has been properly designed by a licensed structural engineer in consultation with TEAM Services). Generally, excavations extending beneath an existing structure are not feasible.

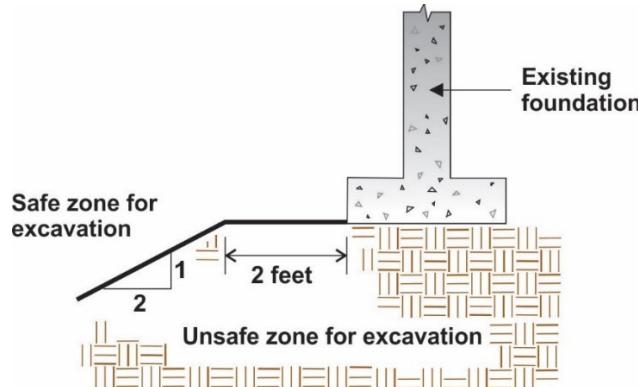
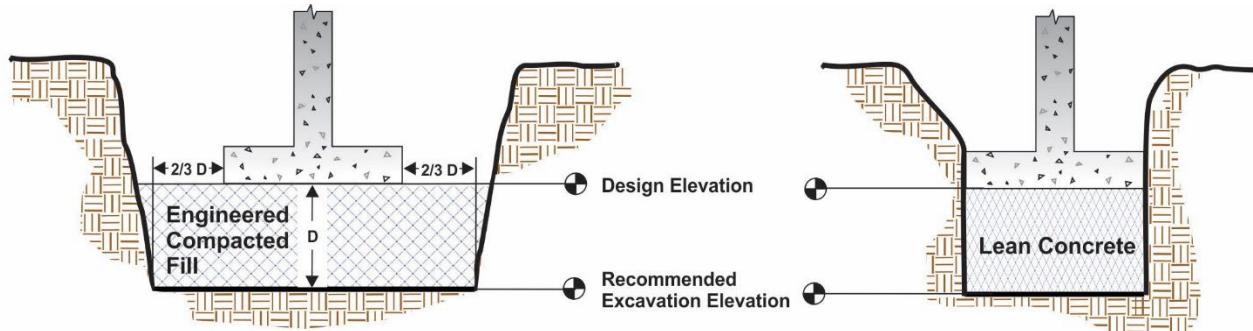



Figure 1.

Shallow Foundation Construction

We recommend that the bases of all foundation excavations be observed and tested by the geotechnical engineer prior to placement of concrete. During this process, if soft, organic, or otherwise unsuitable materials are encountered at foundation elevations, we recommend that the foundations extend through the unsuitable soils and bear on undisturbed, suitable soils below or an overexcavation and replacement procedure be performed. The overexcavation and backfill procedure would include removal of these unsuitable materials and replacement with suitable engineered compacted fill soils prepared in accordance with the recommendations in the **Fill Placement** section of this report. The following Figure 2 shows a typical cross-sectional view of this overexcavation and backfill procedure.

In general, the overexcavation is widened $2/3$ of a foot laterally on each side of the foundation per each foot of excavation that is below the foundation bearing elevation. The depth of overexcavation (shown as "D" in Figure 2) should be determined in consultation with the geotechnical engineer. Backfill materials should be suitable cohesive or granular soil, prepared and compacted in accordance with the recommendations in the **Fill Placement** section of this report. Another option would be to remove the unsuitable soils down to suitable soils and replace the excavated area with lean concrete (minimum 50 psi compressive strength), in which case widening of the excavation is typically not required. An exception would be where overexcavation depths reach soils which are not suitable for direct support in which case widening of the overexcavation may still be necessary for concrete or lean concrete backfill in order to distribute the foundation load over a broader area. The geotechnical engineer can provide further guidance concerning suitable overexcavation geometry during construction inspections.

Overexcavation / Backfill

NOTE: Excavations should be sloped as necessary for safety.

Figure 2.

Footing excavations should be kept free of water accumulation to prevent softening of subgrade soils and conducted in a manner which avoids disturbance of soils beneath existing foundations. Concrete should be placed as soon as possible after excavating to minimize bearing soil disturbance. Should the soils at bearing level become excessively dry, saturated, or otherwise disturbed; the affected soil should be removed prior to placing concrete.

Floor Slabs

Interior floor slabs can be adequately supported on a subgrade prepared in accordance with the **Existing Fill Considerations**, **Site Preparation**, and **Fill Placement** sections of this report. As previously discussed in this report, a layer of poorly compacted fill soil was encountered in Boring 1 which requires removal beneath structures (including below slabs) as discussed in the **Existing Fill Considerations** section of this report

During construction, slab subgrade areas may have been disturbed by construction equipment, etc. Therefore, it is recommended that the subgrade areas be proofrolled or probed and tested where proofrolling cannot be conducted to delineate zones of soft soils present near the surface which may require additional removal or compaction prior to construction of the slab. If the exposed subgrade has been disturbed since the original subgrade preparation, the subgrade should be scarified to the maximum depth of unsuitable materials, moisture conditioned (if needed), and recompacted to meet or exceed the Class 1 Construction Application requirement given in Table A in the **Fill Placement** section. If the depth of unsuitable materials exceeds 9 inches, then the upper soils should be removed to allow treatment of soils in appropriate lift thicknesses.

To avoid localized slab failures, it is important that interior backfill around foundations and in plumbing trenches be properly compacted. Therefore, all fill materials placed beneath the proposed slabs are to meet or exceed the Class 1 Construction Application requirement given in Table A.

In order to allow successful use of a variety of interior floor systems, measures to control vapor transmission through the interior floor slab are recommended where moisture sensitive floor coverings are a possibility. This would include use of a vapor barrier/retarder with a minimum thickness of 10 mils placed between the slab and an underlying capillary break material. The vapor barrier/retarder should be strong enough to resist puncturing by the capillary break materials.

We recommend that the capillary break consist of clean manufactured sand or crushed limestone (drainable material) beneath interior floor slabs. The capillary break should be at least 4 inches thick and contain less than 6 percent material finer than the U.S. No. 200 sieve.

Slabs in areas not subject to frost action placed above subgrade soils which pass inspections as recommended in this report may be designed with a modulus of subgrade reaction, k , of 150 pci when subgrade soils, backfill lifts and capillary breaks are constructed in accordance with the recommendations of this report. Where additional granular materials are placed, an improved modulus of subgrade reaction would result. TEAM Services can be retained to specify a design modulus of subgrade reaction for a specific application if desired.

We recommend that continuous wire mesh reinforcement or a regular rebar schedule be provided for the interior floor slab and that crack control joints be sawn with a regular spacing not greater than about 10 feet. Isolation joints should be provided between the floor slabs and perimeter or interior foundations so that they can move independently without damage. These measures are taken with the intent of allowing the floor slab to deflect somewhat without experiencing large differential movements across slab joints and to channel the cracking of the floor slabs to the crack control joints so that they are not perceived as building distress. Otherwise, if the slab is tied to the foundations, then the structural engineer should provide adequate reinforcement so that there isn't slab or foundation distress resulting from the restrained slab.

Parking and Drives Subgrade Preparation

After stripping the upper soils, we expect the subgrade soils which will be encountered to support the parking and drive sections will consist of existing fill or topsoil. In order to provide satisfactory

pavement or granular surfacing performance, it is important that the subgrade support be relatively uniform with no abrupt changes in the subgrade support. Therefore, we recommend that the prepared subgrade depth be at least 9 inches deep after surface stripping and fine grading or trimming and extend 2 feet beyond the edges of the parking and drives.

In cut areas, it is recommended that the subgrade area be cut to design subgrade level or stripping depth (whichever is deeper) and that the exposed subgrade be scarified to a minimum depth of 9 inches, moisture conditioned (if needed), and compacted. In fill areas, the subgrade after stripping should be proofrolled to delineate zones of soft or loose soils present near the surface which may require additional removal or compaction, prior to fill placement. We recommend that reworked existing soils and newly placed engineered compacted cohesive soils be placed and compacted in accordance with the **Fill Placement** section of this report. The finished subgrade elevation should be made to pass a proofroll inspection. Suitable engineered compacted cohesive subgrade would provide a design support capability equivalent to a CBR value of 2 or a modulus of subgrade reaction value of 60 pounds per cubic inch.

It should be noted that initial subgrade preparation for some soil types may not be suitable under repeated heavy construction vehicle loads and may require stabilization to greater depths or stabilization with crushed rock with or without geogrid. The use of fly ash, cement or lime treatment could also be considered as well. The subgrade preparation should be completed shortly before paving operations commence and is to be maintained in suitable condition until paved. Damage caused by construction traffic or deterioration due to adverse weather are to be repaired prior to paving or surfacing placement. Subgrade compaction, moisture content and depth should be verified by a TEAM Services representative.

Where construction traffic is required on the proposed subgrade, the subgrade should be proofrolled immediately prior to pavement or surfacing placement with a fully loaded, tandem axle dump truck. Areas that yield should be removed and replaced with engineered compacted and tested fill.

Surface drainage is important to long-term subgrade performance. Curbs should be backfilled as soon as possible, once adequate pavement strength is achieved. The adjacent backfill should be compacted and sloped to prevent water from ponding and infiltrating into the subgrade. Water allowed to pond adjacent to the pavement or gravel surfacing could saturate the subgrade and contribute to premature deterioration.

Temporary Excavation Support

All excavations should comply with the requirements of OSHA 29 CFR, Part 1926, Subpart P, "Excavations and Trenches" and other applicable codes. This document states that excavation safety is the responsibility of the contractor. Reference to this OSHA requirement should be included in the job specifications.

Construction Dewatering

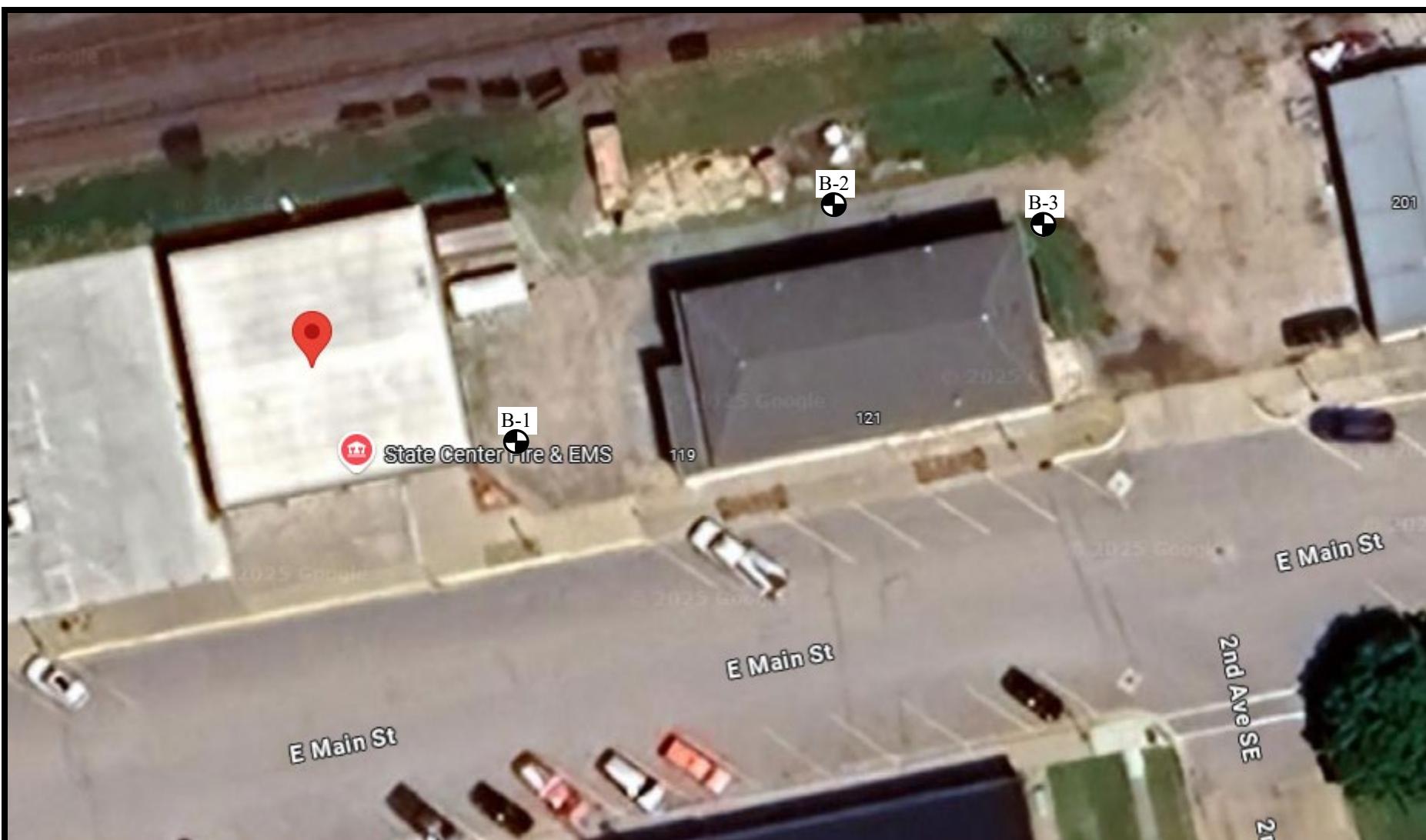
During construction activities, care should be taken to maintain positive drainage at the site to ensure that drainage is directed away from excavations. Based on the groundwater readings from the site, groundwater seepage seems unlikely to be encountered during construction. Seepage would be more likely if there has been recent precipitation. If seepage is encountered then we recommend that construction groundwater control be established prior to excavating the final foot of soils. Groundwater seepage in cohesive soils can be provided by digging a system of trenches leading to a gravity outfall or temporary construction sumps to be pumped outside the perimeters of the excavations. Water bearing sand with ongoing seepage may be dewatered using a system of well points. Any ponded water should be removed as soon as possible.

Where seepage is observed, a granular working surface of at least 6 inches of clean, crushed concrete or limestone gravel may be useful to provide a firm working surface for constructing foundations or placing additional lifts of backfill, as previously mentioned in the **Fill Placement** section of this report. The clean gravel can be well compacted in the presence of water, will drive through and reinforce shallow (1 or 2 inches) cohesive soils which have become softened by water exposure or disturbance, and can accumulate water seepage to flow to a peripheral sump pit to be pumped out of the excavation area. If the granular working surface becomes completely embedded in the cohesive soils, a geotextile may need to be employed as separation.

If groundwater control is required but is lost during construction, disturbance of the upper few inches to few feet below grade is possible in the soils at the site. In these circumstances, it will be necessary to reestablish groundwater control and remove the disturbed soils. TEAM Services should be consulted regarding the extent of remedial action which is necessary.

Site Drainage

Positive site drainage should be maintained to direct runoff away from the perimeters of the structures, slabs, drives, and parking. Down spouts, gutters, and roof drains should discharge away from building perimeters. Site grading should direct surface water away from excavations, completed foundations, and critical subgrade soils during construction and after site development is completed.


QUALIFICATION OF REPORT

Our evaluation of support conditions has been based on our understanding of the site and project information and the data obtained in our exploration. The general subsurface conditions utilized in our evaluation have been based on interpolation of subsurface data between the borings. In evaluating the boring data, we have examined previous correlations between soil properties and pressures observed in soil conditions similar to those at your site. The discovery of any site or subsurface conditions during construction which deviate from the data outlined in this exploration should be reported to us for our evaluation. The assessment of site environmental conditions or the presence of pollutants in the soil, rock, and groundwater of the site was beyond the scope of this exploration.

Support on existing fill is discussed in this report. Existing fills are potentially much more inconsistent than natural soil deposits. Support upon existing fills carries with it a degree of risk that unsuitable materials may be buried within the fill and not be detected in the inspection and testing program recommended herein. Unsuitable materials in the fill may experience settlement and cause distress to elements supported on the fill. Elimination of this risk would require removal of the fill. This is costly, and we believe the risks at this site are low enough that the owner could reasonably accept this risk and keep the resultant savings of not removing all existing fill soils where thorough construction-stage testing by TEAM Services indicates suitability.

It is recommended that the geotechnical engineer be retained to review the plans and specifications so that comments can be provided regarding the interpretation and implementation of the geotechnical recommendations in the design and specifications. It is further recommended that the geotechnical engineer be retained for testing and observation during the foundation construction phase to help determine that the design requirements are fulfilled.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No other warranty is provided. In the event that any changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and the conclusions of this report modified or verified in writing by the geotechnical engineer.

TEAM Services, Inc.

717 SE 6th Street
Des Moines, IA 50309

Fire Station Addition

State Center, Iowa

BORING PLAN

Project No. 1-5630

February 19, 2025

BORING LOG No. 1

Page 1 of 1

PROJECT				SITE											
Fire Station Addition				State Center, IA											
GRAPHIC LOG	Approx. Surface Elevation (ft): 99.3 Site Datum: FFE Existing Fire Station (100.0') Drilling Method: HS			USCS SYMBOL	DEPTH (ft.)	SAMPLES				TESTS					
	DESCRIPTION					NUMBER	TYPE	RECOVERY	SPT - N (BLOWS / FT.)	MOISTURE, %	DRY DENSITY (PCF)				
X	1.0	Fill - Silty GRAVEL, with sand, gray	98.3	GM	0	1	AS			7.9					
	2.0	Fill - Sandy lean CLAY, with gravel, very dark gray	97.3	CL											
	3.0	Fill - Lean to fat CLAY, with varying sand contents, very dark gray	96.3	CL-CH		2A	SS	10	Frozen	8.2	1500*				
		Fill - Fat CLAY, very dark gray, gray, yellowish brown, and dark grayish brown		CH		2B	SS			32.4					
	6.0	Loess - Lean CLAY, gray and yellowish brown, medium stiff	93.3	CL		3	SS	5	10	26.8	6000*				
		-- becomes soft after 8.5'				4	SS	13		21.8					
		-- becomes medium stiff after 12'				5	ST	21		30.5	1500*				
	15.0	Bottom of Boring	84.3			6	SS	18	4	27	1000*				
											1500*				
Notes:								* Calibrated hand penetrometer Hammer Type: Automatic							
Water Level:				Boring Started: 2/3/2025 Boring Completed: 2/3/2025 Rig: Truck Foreman: JH Approved: CH Job #: 1-5630											
<input checked="" type="checkbox"/> None <input type="checkbox"/> Ft. While Drilling <input checked="" type="checkbox"/> None <input type="checkbox"/> Ft. After Drilling <input checked="" type="checkbox"/> Ft.				 Geotechnical and Construction Material Consultants											

BORING LOG No. 2

Page 1 of 1

PROJECT				SITE												
Fire Station Addition				State Center, IA												
GRAPHIC LOG	Approx. Surface Elevation (ft): 98.3 Site Datum: FFE Existing Fire Station (100.0') Drilling Method: HS			USCS SYMBOL	DEPTH (ft.)	SAMPLES				TESTS						
	DESCRIPTION					NUMBER	TYPE	RECOVERY	SPT - N (BLOWS / FT.)	MOISTURE, %	DRY DENSITY (PCF)	UNCONFINED STRENGTH (PSF)	OTHER			
	1.0	Fill - Silty SAND, with gravel, very dark gray	97.3	SM	0	1	AS			25						
		Buried Topsoil - Lean to fat CLAY, dark gray, stiff		CL-CH	3	2	SS	11	Frozen	27.7		3500*				
	5.0		93.3	CL	6	3	SS	4	7			2500*				
		Loess - Lean CLAY, gray and yellowish brown, medium stiff			9	4	ST	17		26.8	97	1000*				
					12	5	SS	14	5	31.1			2500*			
					15	6	SS	16	4	30.5			1500*			
		-- color change to gray after 17'			18	7	SS	18	7	27.4			1500*			
	20.0	Bottom of Boring	78.3													
Notes:								* Calibrated hand penetrometer Hammer Type: Automatic								
Water Level:				 Geotechnical and Construction Material Consultants				Boring Started: 2/3/2025								
								Boring Completed: 2/3/2025								
								Rig: Truck		Foreman: JH						
								Approved: CH		Job #: 1-5630						

BORING LOG No. 3

Page 1 of 1

PROJECT				SITE									
GRAPHIC LOG	Fire Station Addition			State Center, IA									
	Approx. Surface Elevation (ft): 98.1 Site Datum: FFE Existing Fire Station (100.0') Drilling Method: HS			USCS SYMBOL	DEPTH (ft.)	SAMPLES				TESTS			
DESCRIPTION	DESCRIPTION					NUMBER	TYPE	RECOVERY	SPT - N (BLOWS / FT.)	MOISTURE, %	DRY DENSITY (PCF)	UNCONFINED STRENGTH (PSF)	OTHER
	0.5	Fill - Sandy lean CLAY, with gravel, trace brick and glass, very dark gray/	97.6	CL	0	1	AS			24.1			
		Fill - Sandy lean CLAY, very dark gray and dark yellowish brown		CL									
	2.0		96.1										
	3.0	Buried Topsoil - Lean to fat CLAY, very dark gray, stiff	95.1	CL-CH									
		Loess - Lean CLAY, grayish brown, stiff		CL	3	2	SS	10	Frozen	32.5		2500*	
	5.5		92.6										
	7.0	Loess - Lean CLAY, gray and yellowish brown, soft	91.1	CL	6	3	ST	10		25		2500*	
		Bottom of Boring											

Notes:

* Calibrated hand penetrometer

Hammer Type: Automatic

Water Level:	None	Ft. While Drilling	None	Ft. After Drilling	Ft.	TEAM Services	Geotechnical and Construction Material Consultants	Boring Started: 2/3/2025
								Boring Completed: 2/3/2025
								Rig: Truck Foreman: JH
								Approved: CH Job #: 1-5630

UNIFIED SOIL CLASSIFICATION SYSTEM

Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests ^A				Soil Classification		
				Group Symbol	Group Name ^B	
Coarse-Grained Soils More than 50% retained on No. 200 sieve	Gravels More than 50% of coarse fraction retained on No. 4 sieve	Clean Gravels Less than 5% fines ^C	$Cu \geq 4$ and $1 \leq Cc \leq 3^E$		GW Well-graded gravel ^F	
			$Cu < 4$ and/or $1 > Cc > 3^E$		GP Poorly graded gravel ^F	
		Gravels with Fines More than 12% fines ^C	Fines classify as ML or MH		GM Silty gravel ^{F, G, H}	
			Fines classify as CL or MH		GC Clayey gravel ^{F, G, H}	
	Sands 50% or more of coarse fraction passes No. 4 sieve	Clean Sands Less than 5% fines ^E	$Cu \leq 6$ and $1 \leq Cc \leq 3^E$		SW Well-graded sand ^I	
			$Cu < 6$ and/or $1 > Cc > 3^E$		SP Poorly graded sand ^I	
		Sands with Fines More than 12% fines ^D	Fines classify as ML or MH		SM Silty sand ^{G, H, I}	
			Fines classify as CL or CH		SC Clayey sand ^{G, H, I}	
Fine-Grained Soils 50% or more passes the No. 200 sieve	Silts and Clays Liquid limit less than 50	Inorganic:	PI > 7 and plots on or above "A" line ^J		CL Lean clay ^{K, L, M}	
			PI < 4 or plots below "A" line ^J		ML Silt ^{K, L, M}	
		Organic:	Liquid limit – oven dried	< 0.75	Organic clay ^{K, L, M, N}	
			Liquid limit – not dried		Organic silt ^{K, L, M, O}	
	Silts and Clays Liquid limit 50 or more	Inorganic:	PI plots on or above "A" line		CH Fat clay ^{K, L, M}	
			PI plots below "A" line		MH Elastic silt ^{K, L, M}	
		Organic:	Liquid limit – oven dried	< 0.75	Organic clay ^{K, L, M, P}	
			Liquid limit – not dried		Organic silt ^{K, L, M, Q}	
Highly Organic Soils	Primarily organic matter, dark in color, and organic odor				PT Peat	

^A Based on the material passing the 3-in. (75-mm) sieve.

^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.

^C Gravels with 5 to 12% fines require dual symbols:

GW-GM well-graded gravel with silt
GW-GC well-graded gravel with clay
GP-GM poorly graded gravel with silt
GP-GC poorly graded gravel with clay

^D Sands with 5 to 12% fines require dual symbols:

SW-SM well-graded sand with silt
SW-SC well-graded sand with clay
SP-SM poorly graded sand with silt
SP-SC poorly graded sand with clay

$$E \quad Cu = D_{60}/D_{10} \quad Cc = \frac{(D_{30})^2}{D_{10} \times D_{60}}$$

^F If soil contains $\geq 15\%$ sand, add "with sand" to group name.

^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

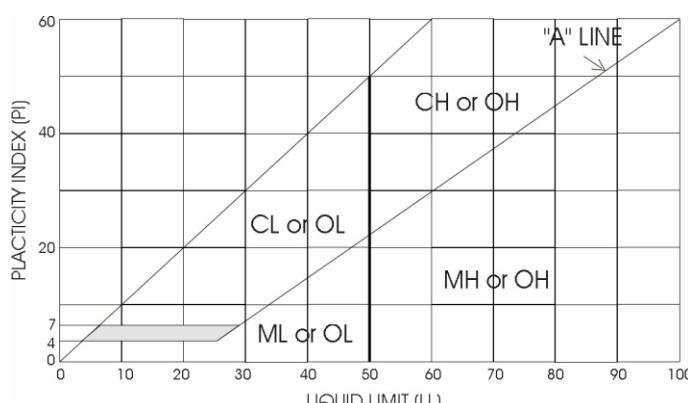
^H If fines are organic, add "with organic fines" to group name.

^I If soil contains $> 15\%$ gravel, add "with gravel" to group name.

^J If Atterberg limits plots in shaded area, soil is a CL-ML, silty clay.

^K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel", whichever is predominant.

^L If soil contains $\geq 30\%$ plus No. 200 predominantly sand, add "sandy" to group name.


^M If soil contains $\geq 30\%$ plus No. 200, predominantly gravel, add "gravelly" to group name.

^N PI ≥ 4 and plots on or above "A" line.

^O PI < 4 or plots below "A" line.

^P PI plots on or above "A" line.

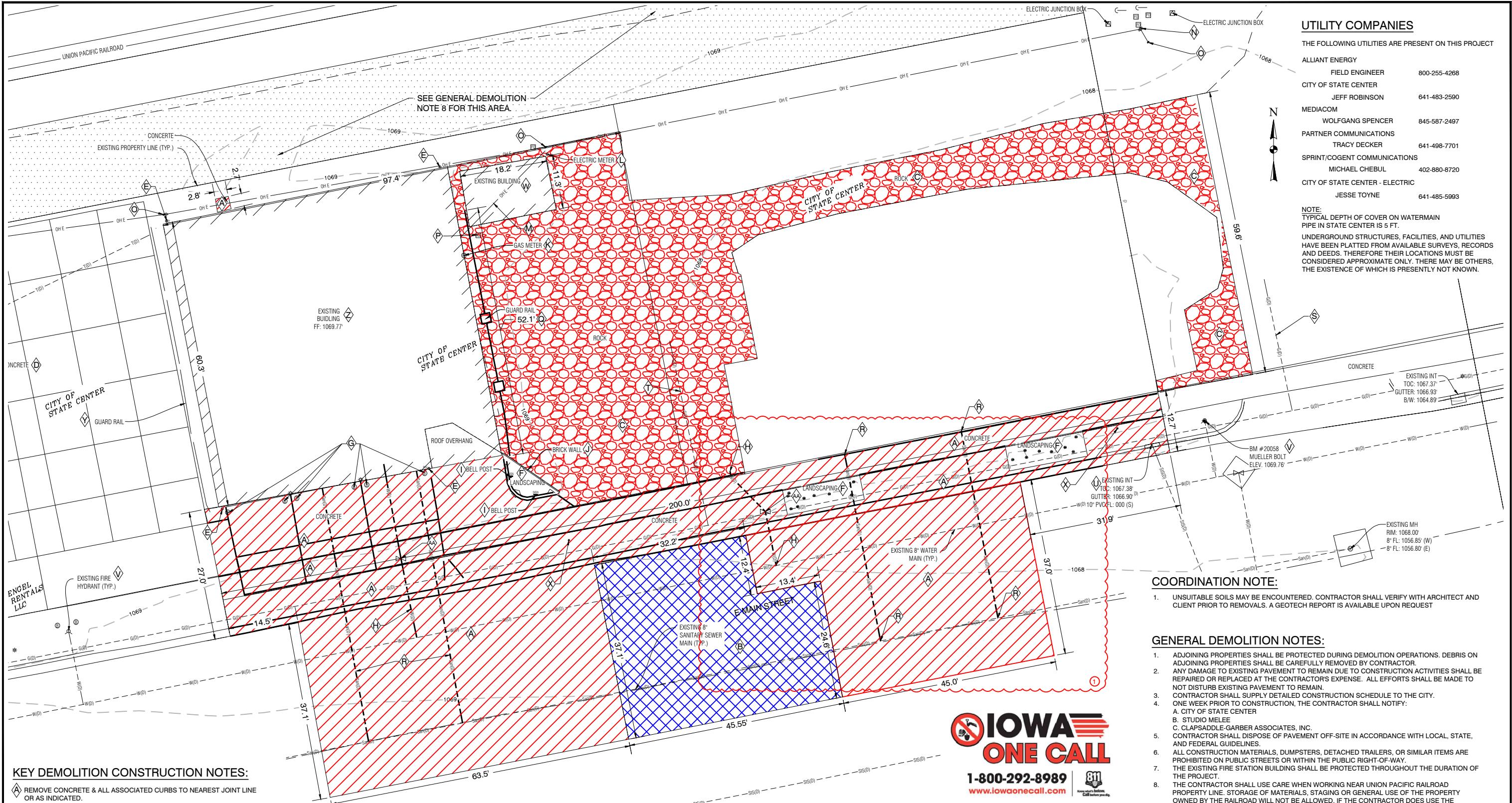
^Q PI plots below "A" line.

For classification of fine-grained soils and fine grained fraction of coarse-grained soils.

Equation of "A" Line:

Horizontal at PI = 4 to LL + 25.5.
then PI = 0.73 (LL-20)

GENERAL NOTES


SOIL and ROCK TYPES				DRILLING & SAMPLING SYMBOLS	
SAND	FAT CLAY	GRAVEL	LIMESTONE	SS	Split Spoon - 1 1/2" I.D., 2" O.D., unless otherwise noted
SILT	FILL			ST	Thin-Walled Tube - 3" O.D., unless otherwise noted
LEAN CLAY	TOPSOIL			PA	Power Auger
			SHALE	HA	Hand Auger
				DB	Diamond Bit - 4", N, B
				AS	Auger Sample
				HS	Hollow Stem Auger
				WS	Wash Sample
				RB	Rock Bit
				BS	Bulk Sample
				DC	Dutch Cone
				WB	Wash Bore
				AR	Air Rotary

STRENGTH TERMS				
CONSISTENCY OF FINE-GRAINED SOILS (50% or more passing No. 200 sieve)			RELATIVE DENSITY OF COARSE-GRAINED SOILS (50% or more retained No. 200 sieve)	
Consistency	Unconfined Compressive Strength, Qu, psf	N-Blows/ft* (Approx. Correlation)	Relative Density	N-Blows/ft. *
Very Soft	< 500	0 - 2	Very Loose	0 - 4
Soft	500 - 1,000	3 - 4	Loose	5 - 10
Medium	1,001 - 2,000	5 - 8	Medium Dense	10 - 29
Stiff	2,001 - 4,000	9 - 15	Dense	30 - 49
Very Stiff	4,001 - 8,000	16 - 30	Very Dense	50 - 80
Hard	8,001 - 16,000	31 - 50	Extremely Dense	80 +
Very Hard	> -16,000	50 +		

* Standard "N" Penetration Blows per foot of a 140 pound hammer falling 30 inches on a 2-inch OD split spoon, except where noted.

RELATIVE PROPORTIONS OF SAND AND GRAVEL		RELATIVE PROPORTIONS OF FINES		GRAIN SIZE TERMINOLOGY	
Descriptive Term(s) (of components also present in sample)	Percent of Dry Weight	Descriptive Term(s) (of components also present in sample)	Percent of Dry Weight	Major Component of Sample	Size Range
Trace With Modifier	< 15 15 - 29 > 30	Trace With Modifier	< 5 5 - 12 > 12	Boulders Cobbles	Over 12 in. (300 mm) 12 in. to 3 in. (300 mm to 4.75 mm)
				Gravel	3 in. to #4 sieve (75 mm to 4.75 mm)
	Depth groundwater first encountered during drilling			Sand	#4 to #200 sieve (4.75 mm to 0.075 mm)
	Groundwater level after 24 hours (unless otherwise noted, i.e. "AD" -- after drilling)			Silt or Clay	Passing #200 sieve (0.075 mm)

TERMS DESCRIBING SOIL STRUCTURE				
Parting:	paper thin in size	Fissured:	containing shrinkage cracks, frequently filled with fine sand or silt, usually more or less vertical.	
Seam:	1/8" to 3" in thickness			
Layer:	greater than 3" in thickness	Interbedded:	composed of alternate layers of different soil types.	
Ferrous:	containing appreciable quantities of iron	Laminated:	composed of thin layers of varying color and texture.	
Well-Graded:	having wide range in grain size and substantial amounts of all intermediate sizes.	Slickensided:	having inclined planes of weakness that are slick and glossy in appearance.	
Poorly-Graded:	predominately one grain size or having a range of sizes with some intermediate sizes missing.	NOTE:	Clays possessing slickensided or fissured structure may exhibit lower unconfined strength than indicated above. Consistency of such soil is interpreted using the unconfined strength along with pocket penetrometer results.	

**IOWA
ONE CALL**
1-800-292-8989
www.iowronecall.com

811
Know what's below. Call before you dig.

UTILITY COMPANIES

THE FOLLOWING UTILITIES ARE PRESENT ON THIS PROJECT

ALLIANT ENERGY	FIELD ENGINEER	800-255-4268
CITY OF STATE CENTER	JEFF ROBINSON	641-483-2590
MEDIACOM	WOLFGANG SPENCER	845-587-2497
PARTNER COMMUNICATIONS	TRACY DECKER	641-498-7701
SPRINT/COGENT COMMUNICATIONS	MICHAEL CHEBUL	402-880-8720
CITY OF STATE CENTER - ELECTRIC	JESSE TOYNE	641-485-5993

NOTE:
TYPICAL DEPTH OF COVER ON WATERMAIN PIPE IN STATE CENTER IS 5 FT.

UNDERGROUND STRUCTURES, FACILITIES, AND UTILITIES HAVE BEEN PLATTED FROM AVAILABLE SURVEYS, RECORDS AND DEEDS. THEREFORE THEIR LOCATIONS MUST BE CONSIDERED APPROXIMATE ONLY. THERE MAY BE OTHERS, THE EXISTENCE OF WHICH IS PRESENTLY NOT KNOWN.

COORDINATION NOTE:

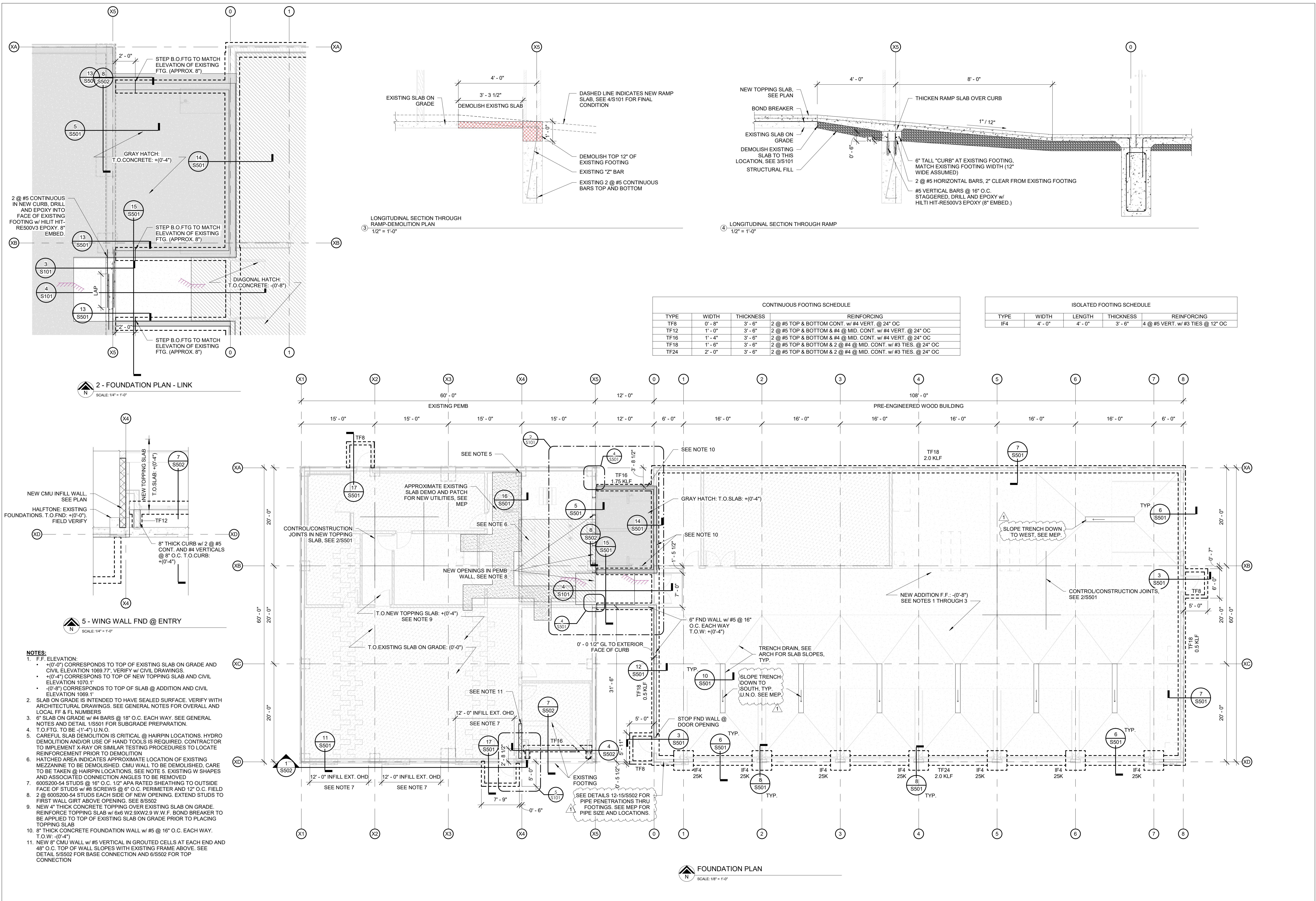
- UNSUITABLE SOILS MAY BE ENCOUNTERED. CONTRACTOR SHALL VERIFY WITH ARCHITECT AND CLIENT PRIOR TO REMOVALS. A GEOTECH REPORT IS AVAILABLE UPON REQUEST

GENERAL DEMOLITION NOTES:

- ADJOINING PROPERTIES SHALL BE PROTECTED DURING DEMOLITION OPERATIONS. DEBRIS ON ADJOINING PROPERTIES SHALL BE CAREFULLY REMOVED BY CONTRACTOR.
- ANY DAMAGE TO EXISTING PAVEMENT TO REMAIN DUE TO CONSTRUCTION ACTIVITIES SHALL BE REPAIRED OR REPLACED AT THE CONTRACTOR'S EXPENSE. ALL EFFORTS SHALL BE MADE TO NOT DISTURB EXISTING PAVEMENT TO REMAIN.
- CONTRACTOR SHALL SUPPLY DETAILED CONSTRUCTION SCHEDULE TO THE CITY.
- ONE WEEK PRIOR TO CONSTRUCTION, THE CONTRACTOR SHALL NOTIFY:
 - CITY OF STATE CENTER
 - STUDIO MELEE
 - CLAPSADDLE-GARBER ASSOCIATES, INC.
- CONTRACTOR SHALL DISPOSE OF PAVEMENT OFF-SITE IN ACCORDANCE WITH LOCAL, STATE, AND FEDERAL GUIDELINES.
- ALL CONSTRUCTION MATERIALS, DUMPSTERS, DETACHED TRAILERS, OR SIMILAR ITEMS ARE PROHIBITED ON PUBLIC STREETS OR WITHIN THE PUBLIC RIGHT-OF-WAY.
- THE EXISTING FIRE STATION BUILDING SHALL BE PROTECTED THROUGHOUT THE DURATION OF THE PROJECT.
- THE CONTRACTOR SHALL USE CARE WHEN WORKING NEAR UNION PACIFIC RAILROAD PROPERTY LINE. STORAGE OF MATERIALS, STAGING OR GENERAL USE OF THE PROPERTY OWNED BY THE RAILROAD WILL NOT BE ALLOWED. IF THE CONTRACTOR DOES USE THE RAILROAD'S PROPERTY, ALL INCURRED EXPENSES SHALL BE PAID FOR BY THE CONTRACTOR.

EXISTING SERVICE NOTE:

- CONTRACTOR SHALL BE RESPONSIBLE FOR REMOVING SANITARY AND WATER SERVICE THAT ONCE SERVED THE OPERA HOUSE. DEMOLITION OF THE OPERA HOUSE IS TO BE COMPLETED (BY OTHERS). THE EXACT LOCATION OF THE END OF THE SERVICE SHALL BE FIELD VERIFIED PRIOR TO BEGINNING DEMOLITION.


STATE CENTER FIRE STATION IMPROVEMENTS
109 E MAIN ST, STATE CENTER, IOWA

EXISTING CONDITIONS &
DEMOLITION PLAN

SCFD – Addendum #1 Changes

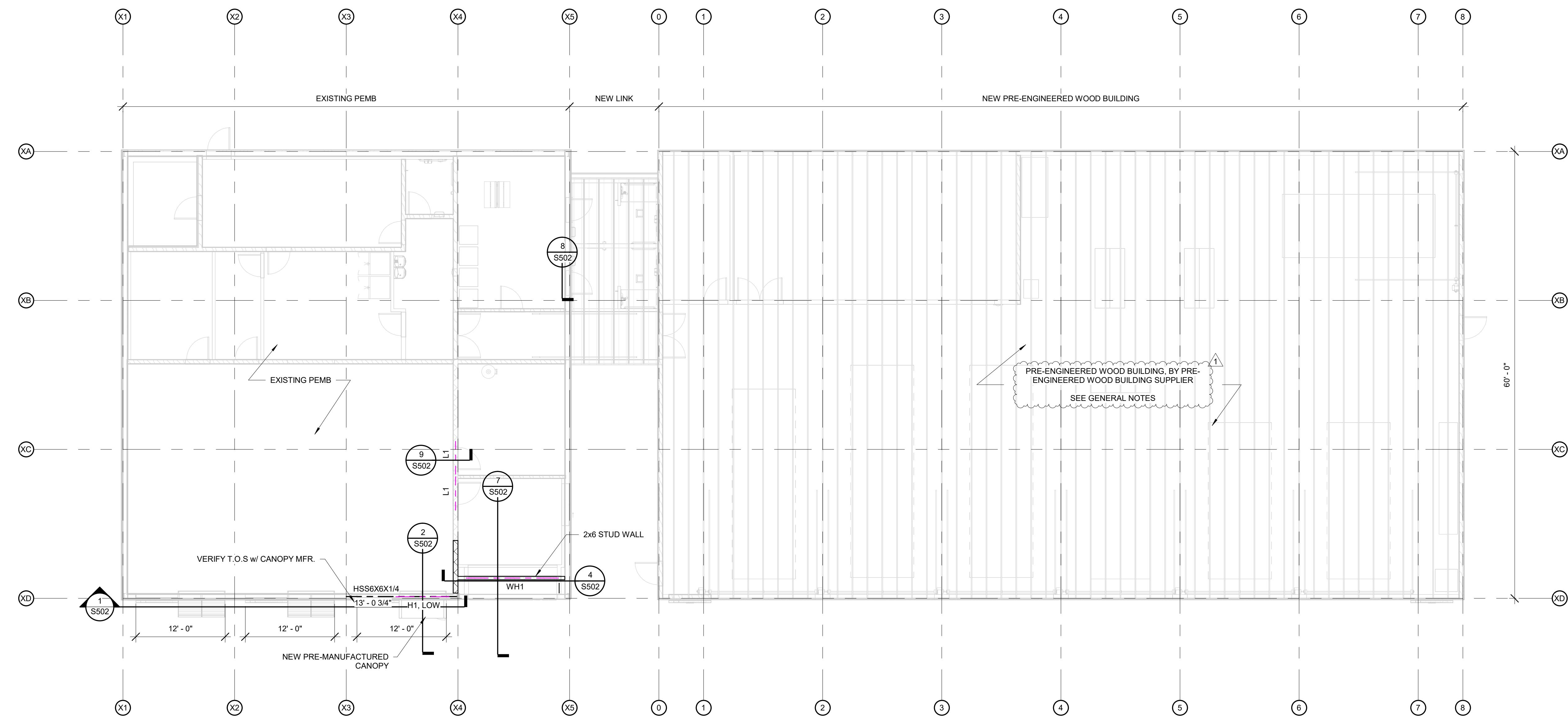
- Sheet S001
 - No changes
- Sheet S101
 - Added notes to Foundation Plan to clarify trench drain slopes.
 - Added note to Foundation Plan to indicate footing penetrations
- Sheet S102
 - Revised note on Plan View to clarify pre-engineered wood building as a part of project
- Sheet S501
 - Revised notes in Details 7, 8, 9, 12, 14, and 15 to clarify pre-engineered wood building as a part of project
 - Revised Detail 10 to clarify trench drain slopes and reinforcement clear cover dimensions
 - Added Note to Detail 18 to give contractor option to use leveling sand between existing slab and new topping slab
- Sheet S502
 - Added Details 12 – 15 for footing penetrations

CFMF BOX HEADER SCHEDULE			
MARK	VERTICAL MEMBERS	HORIZONTAL MEMBERS	JAMB
H1	2 @ 800S162-54	2 @ 600T200-54	2 @ 600S162-54 (KING STUDS)

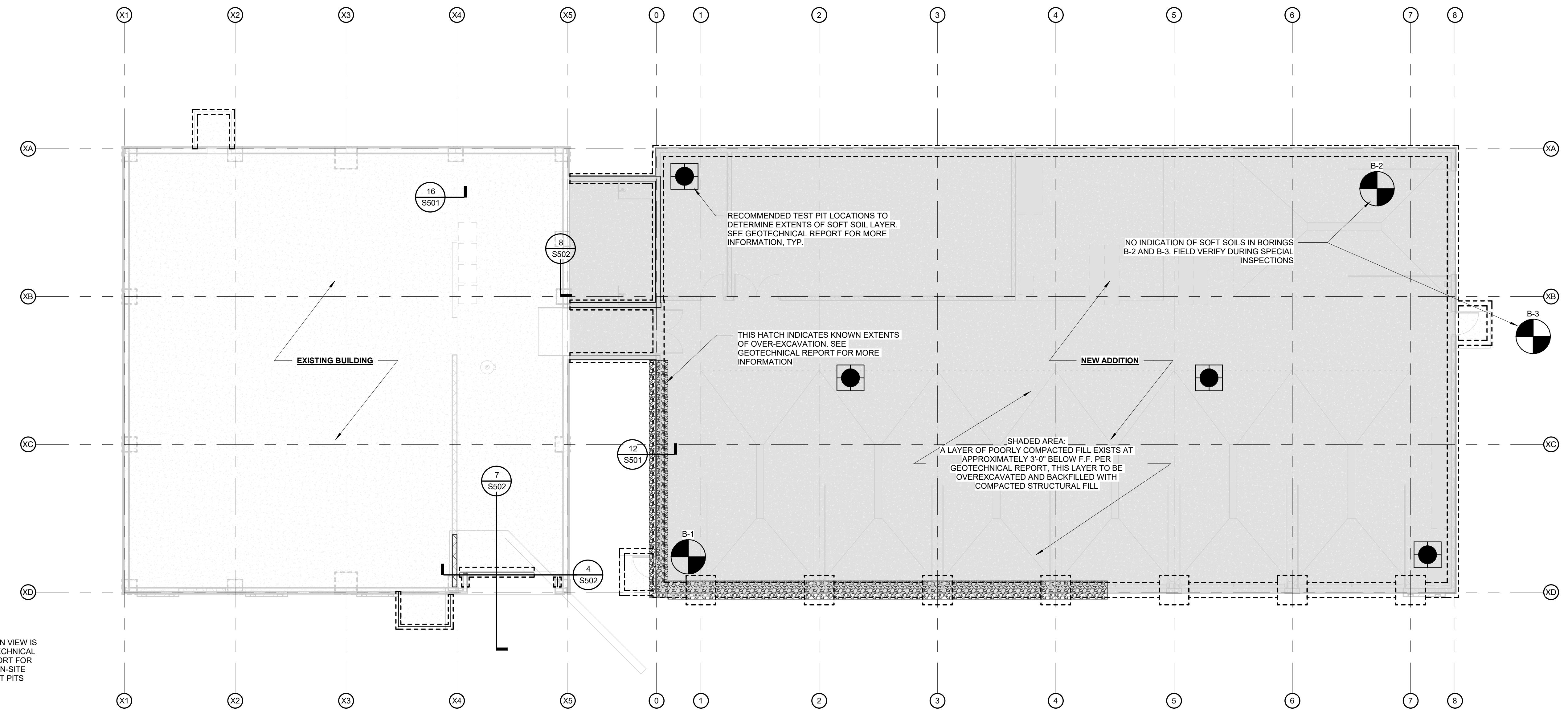
LINTEL SCHEDULE	
MARK	SIZE
L1	2 @ L3 1/2x3 1/2x5/16

WOOD HEADER SCHEDULE	
MARK	SIZE
WH1	3 @ 11 7/8" LVL

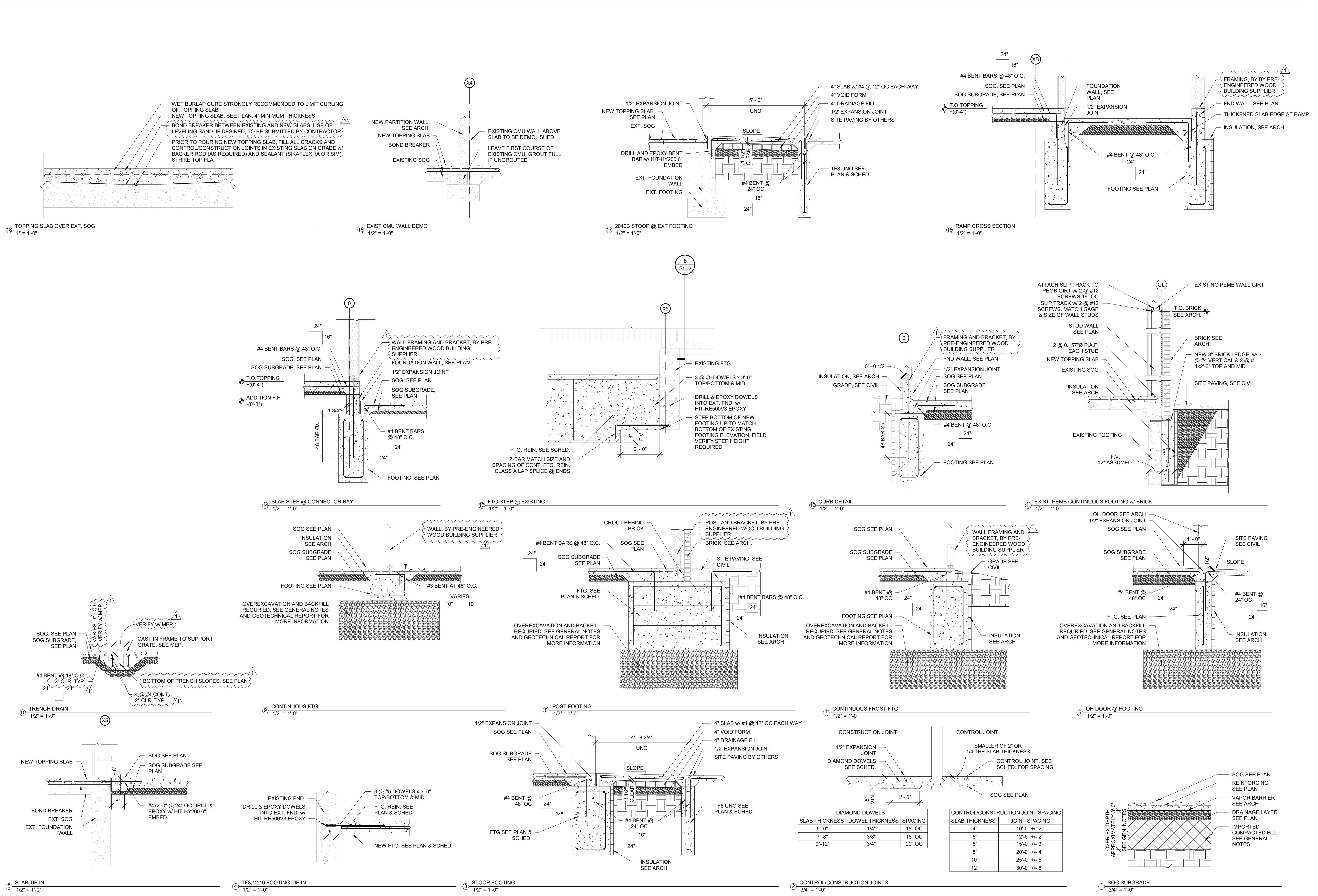
CFMF BOX HEADER NOTES

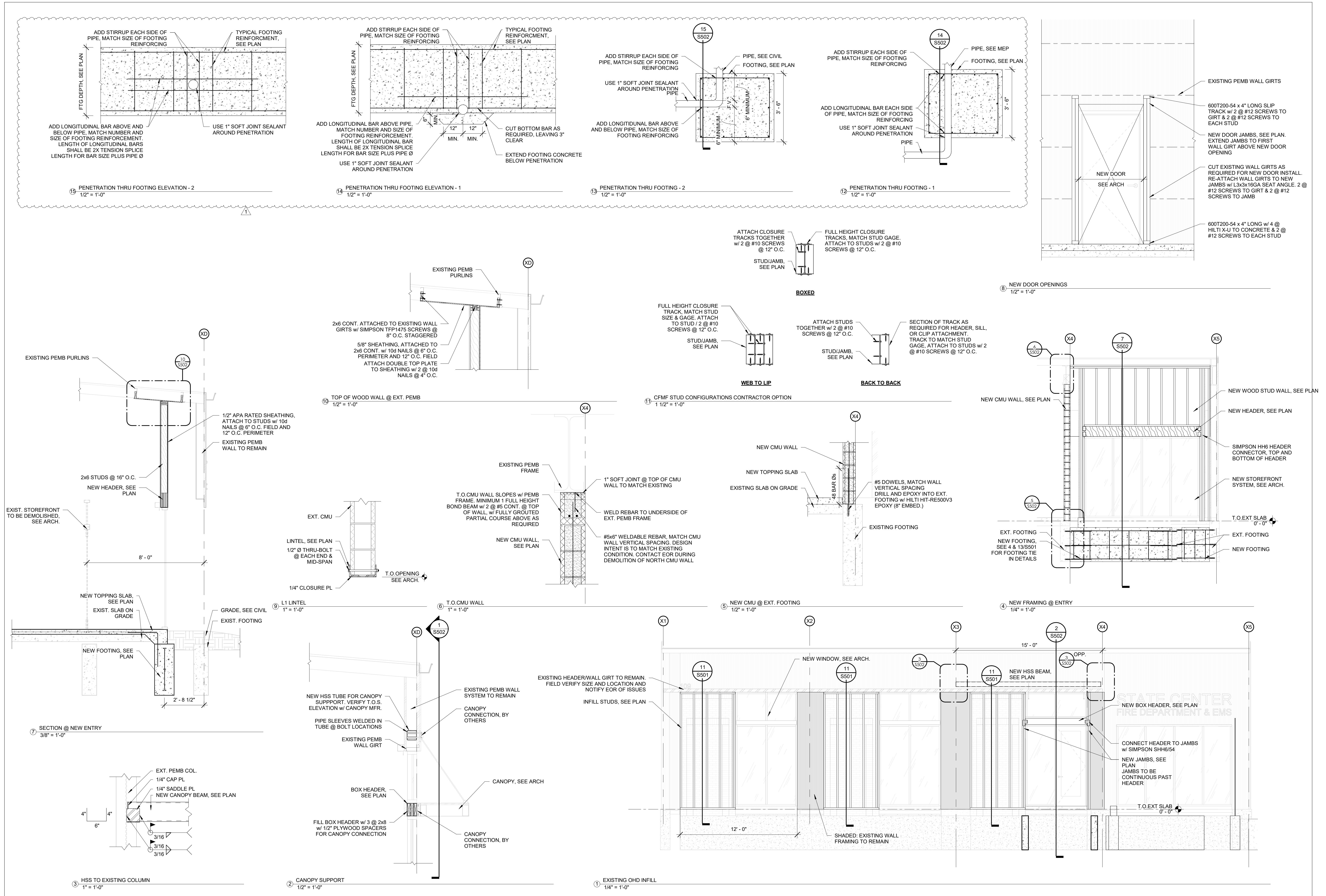

1. HEADERS ARE FOR THE WALL FRAMING BELOW THE LEVEL SHOWN
2. EACH MEMBER OF MULTI MEMBER HEADERS/JAMBS TO BE FASTENED TOGETHER WITH 2 @ #12 SCREWS @ 12" O.C. U.N.O.

LINTEL NOTES


1. LINTELS ARE FOR THE WALL FRAMING BELOW THE LEVEL SHOWN
2. LINTELS TO BEAR A MINIMUM OF 1" PER FOOT OF OPENING LENGTH OR 6", EACH END
3. SEE GENERAL NOTES FOR LINTEL NOT CALLED OUT ON PLAN

WOOD HEADER NOTES


1. HEADERS ARE FOR WALL FRAMING BELOW THE LEVEL SHOWN
2. ALL HEADERS TO BE SUPPORTED BY A MINIMUM OF (3) STUDS U.N.O. (1 KING, 2 JACK)
3. ALL MULTI-PLY FLUSH (F) HEADERS TO BE FASTENED TOGETHER w/ 3 ROWS OF SIMPSON SDW2250 SCREWS @ 12" O.C. U.N.O.



NOTES:
1. INFORMATION SHOWN ON THIS PLAN VIEW IS TO BE USED IN ADDITION TO GEOTECHNICAL REPORT. SEE GEOTECHNICAL REPORT FOR MORE INFORMATION REGARDING ON-SITE SOILS, OVEREXCAVATION, AND TEST PITS

OVEREXCAVATION PLAN
N
SCALE: 1/8" = 1'-0"

Project: State Center Fire Station

Project Number: 23-006

Date: January 6, 2026

Note *This addendum has been issued to modify and/or interpret the bidding documents, including the drawings and specifications. Unless otherwise instructed, the information contained on the addendum shall take precedence over anything contrary on the original bidding documents and shall be hereinafter considered as a party of the bidding documents.*

Specifications

Section 22 1119 – Domestic Plumbing Specialties

1. **DELETE** Part 1.01.M. Catch Basin.
2. **REVISE** Part 2.03 to read, "Trench Drain – Frame and Grate"
3. **REVISE** Part 2.03.A.1 to read, "Zurn Z712"
4. **REVISE** Part 2.03.B to read, "Zurn Z712, 12" wide reveal frame and grate system with powder coated heavy-duty carbon steel frame. Channels are 120" long with 12" wide reveal and have a 8-1/2" clear opening. Provide Ductile Iron Slotted Grate Class E per the DIN EN1433 top load classifications that locks down to frame for a secure fit."
5. **ADD** Part 2.03.C to read, "Total trench length shall be as indicated on drawings."
6. **DELETE** Part 2.04 CATCH BASIN (CB-1)

Section 23 3417 – High Volume, Low Speed Fans

1. **ADD** section in its entirety.

Section 23 3418 – Destratification Fans

1. **DELETE** section in its entirety.

Plans

Sheet ME1.1 –Roof Plan

1. New Addition
 - A. **REVISE** 4" vents from Sand Oil Interceptor location to be at least 10 ft from combustion air duct and in line with radiant heater combustion air duct and flue.

Sheet P1.0 – Piping Underfloor Plan

1. Plumbing Underfloor Plan:
 - A. **REVISE** location of gas piping layout from site main to new gas meter so not to run under door stoop.
 - B. **REVISE** Note on 6" CW site main to read, "Maintain proper clearances between water and sanitary piping mains; Coordinate with Iowa DNR requirements and local plumbing inspector."
 - C. **REVISE** 2" and 4" vents from Sand Oil Interceptor to route up in south wall of Apparatus Bay.
2. Referenced Notes:
 - A. **REVISE** Reference Note 1 to read, "Provide new trench drain. Refer to architectural documents for more information on proposed sloped floor slab extents and proposed trench drain rim elevations."

Sheet P1.1 – Piping Plan

1. Apparatus Bay 112
 - A. **ADD** Referenced Note 2 at GUH-2.
 - B. **REVISE** 2" and 4" vents from Sand Oil Interceptor to route up in south wall. Combine as 4" routed up in attic space to north peak in line with other roof penetrations. Maintain 10 ft from combustion air.

Sheet M1.1 – Mechanical Plan

1. Referenced Notes
 - A. **REVISE** Note 24 to read, "Provide a Network Honeywell 301-C-DLC Gas Detection Control Panel, wiring and accessories required to monitor and control the associated gas sensors, intake louver damper, and purge exhaust fan EF-4."

Sheet E2.1 – Electrical Lighting Plan

1. Lighting Plan
 - A. **ADD** "3" tag to line voltage dimmer in EMT DAYROOM (FUTURE) 107, indicating 3-way switching of dimming switch.
 - B. **ADD** "G" (typical) lighting sequence of operations tags to exterior wallpack lights.

Sheet E6.1 – Electrical Schedules

1. Lighting Fixture Schedule
 - A. **ADD** the following equal manufacturers:
 - a. Type EC – Sure-Lites
 - b. Type PA – Metalux
 - c. Type ZA – Modern Forms
 - d. Type ZB – Modern Forms
 - e. Type ZC – Modern Forms

Vendor Approvals

Section 22 1119 – Domestic Plumbing Specialties

1. Trench Drains
 - A. MiFab
 - B. ABT, Inc.

Section 23 3423 – HVAC Power Ventilators

1. Exhaust Fans
 - A. CaptiveAire

Section 23 5533 – Low Intensity Radiant Unit Heaters

1. Radiant Heaters
 - A. Superior Radiant Products (SRP)

Attachments

Specification Section – 23 3417 High Volume, Low Speed Fans... (4 pages)

Sheet ME1.1 – Roof Plan... (24 x 36)

Sheet P1.0 – Piping Underfloor Plan... (24 x 36)

Sheet P1.1 – Piping Plan... (24 x 36)

Sheet M1.1 – Mechanical Plan... (24 x 36)

Sheet E2.1 – Electrical Lighting Plan... (24 x 36)

Sheet E6.1 – Electrical Schedules... (24 x 36)

**SECTION 23 3417
HIGH VOLUME, LOW SPEED FANS (ADDENDUM #1)**

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. Destratification fans

1.02 RELATED SECTIONS

- A. Specification Section 21 1300 Fire Suppression Sprinkler Systems
- B. Specification Section 23 0000 Heating, Ventilating, and Air Conditioning (HVAC)
- C. Specification Section 26 0000 Electrical

1.03 REFERENCES

- A. National Fire Protection Agency (NFPA)
- B. Underwriters Laboratory (UL)
- C. Restriction of Hazardous Substances (ROHS)
- D. International Organization for Standardization (ISO)
- E. National Electrical Manufacturers Association (NEMA).
- F. AMCA 301 - Methods for Calculating Fan Sound Ratings from Laboratory Test Data.
- G. NEMA MG1 - Motors and Generators.
- H. NFPA 70 - National Electrical Code.
- I. SMACNA - HVAC Duct Construction Standards - Metal and Flexible.

1.04 SUBMITTALS

- A. All submitted documents shall be:
 1. Digital (scanned documents are not acceptable)
 2. Current, within last 5 years
 3. Complete and in sufficient detail to allow ready determination of compliance with contract documents
 4. Have options clearly indicated as applicable to each submittal
- B. Construction submittal
 1. Provide (1) submittal including all products listed in this specification section. Provide the following for each product.
 - a. Product Data indicating fan power, fan RPM, sound power levels, electrical characteristics, connection requirements, mounting recommendations and controller information.
 - b. Shop Drawings indicating product dimensions, weight, and attachment methods.
- C. Closeout submittal
 1. After project substantial completion, provide (1) submittal including all products listed in this specification section. Provide the following for each product.
 - a. Warranty documentation, fully filled out and including start-up and start date information.
 - b. Operation and Maintenance Information

1.05 QUALITY ASSURANCE

- A. Certifications
 1. The fan assembly, as a system, shall be ETL-certified and built pursuant to the guidelines set forth by UL standard 507 and CSA standard 22.2 No. 113-08.

2. The fan shall be compliant with NFPA 13-Standard for the Installation of Sprinkler Systems, NFPA 72-National Fire Alarm and Signaling Code, and NFPA 70-2011-National Electric Code (NEC).
3. Controllers shall comply with National Electrical Code (NEC) and Underwriters Laboratory (UL) standards and shall be labeled where required by code.

1.06 DELIVERY, STORAGE, AND HANDLING

- A. Deliver product in original, undamaged packaging with identification labels intact. The fan shall be new, free from defects, and factory tested.
- B. The fan and its components must be stored in a safe, dry location until installation.

1.07 WARRANTY

- A. Airfoils Lifetime (Parts)
- B. Hub Fan Hub 7 years (Parts)
- C. Motor 7 years (Parts)
- D. Gearbox 7 years (Parts)
- E. Controller 7 years (Parts)
- F. All other fan components 7 years (Parts)
- G. Electrical 3 years (Parts)
- H. Labor 1 year

PART 2 PRODUCTS

2.01 MANUFACTURERS

- A. Big Ass Fans
- B. Hunter
- C. ThermoTek
- D. VividAir
- E. CaptiveAire
- F. MacroAir
- G. Skyblade
- H. Engineer approved equal.

2.02 HIGH VOLUME, LOW SPEED FANS

- A. Complete Unit
 1. Regulatory Requirements: The entire fan assembly shall be ETL-certified and built pursuant to the construction guidelines set forth by UL standard 507 and CSA standard 22.2.
 2. The fan components shall be designed specifically for high volume, low speed fans to ensure lower operational noise. Sound levels from the fan operating at maximum speed measured in a laboratory setting shall not exceed 55 dBA. Actual results of sound measurements in the field may vary due to sound reflective surfaces and environmental conditions.
- B. Onboard Fan Control
 1. The onboard fan controller shall be constructed using a variable frequency drive (VFD) that is pre-wired to the motor and factory-programmed to minimize the starting and braking torques for smooth and efficient operation.
- C. Airfoil System
 1. The fan shall be equipped with airfoils of extruded aluminum alloy.
- D. Motor

1. The fan motor shall be an AC induction type inverter rated. Mounting Post
2. The fan shall be equipped with a mounting post that provides a structural connection between the fan assembly and extension tube.

E. Mounting System

1. The fan mounting system shall be designed for quick and secure installation on a variety of structural supports. The mounting yoke shall be of welded construction and made from low carbon steel no less than 3/16" thick, per ASTM A36, and be powder coated for appearance and resistance to corrosion.
2. All mounting bolts shall be SAE Grade 8 or equivalent.

F. Hub

1. The fan hub shall be made of cut aluminum for high strength and light weight.

G. Safety Cable

1. The fan shall be equipped with a safety cable that provides an additional means of securing the fan assembly to the building structure. The safety cable shall be Ø3/8" diameter and fabricated out of 7 x 19 zinc galvanized steel cable.
2. Field construction of safety cables is not permitted.

H. Control

1. The fan is equipped with a wall control providing 100% control of all fan functions. The wall control shall be a digital keypad device mounted. The cover shall be capable of mounting to a standard switch box.
2. Equipped with touchpad controls and an LED display for controlling the fan's direction, operation, speed, and programming.
3. Equipped with a simple diagnostic program to identify faults in the system. Provisions shall be made for retrieving fan operation and diagnostic data (fault messages) through the remote wall control.
4. Fans shall have automatic control with temperature sensor at ceiling level and occupied space level to automatically adjust fan speed in both summer and winter mode.

I. Fire Control Panel Integration

1. Includes a 10-30 VDC pilot relay for seamless fire control panel integration. The pilot relay can be wired Normally Open or Normally Closed in the field.

J. Guy Wires

1. Included for installations with extension tubes 4 ft or longer to limit the potential for lateral movement.

PART 3 EXECUTION

3.01 PREPARATION

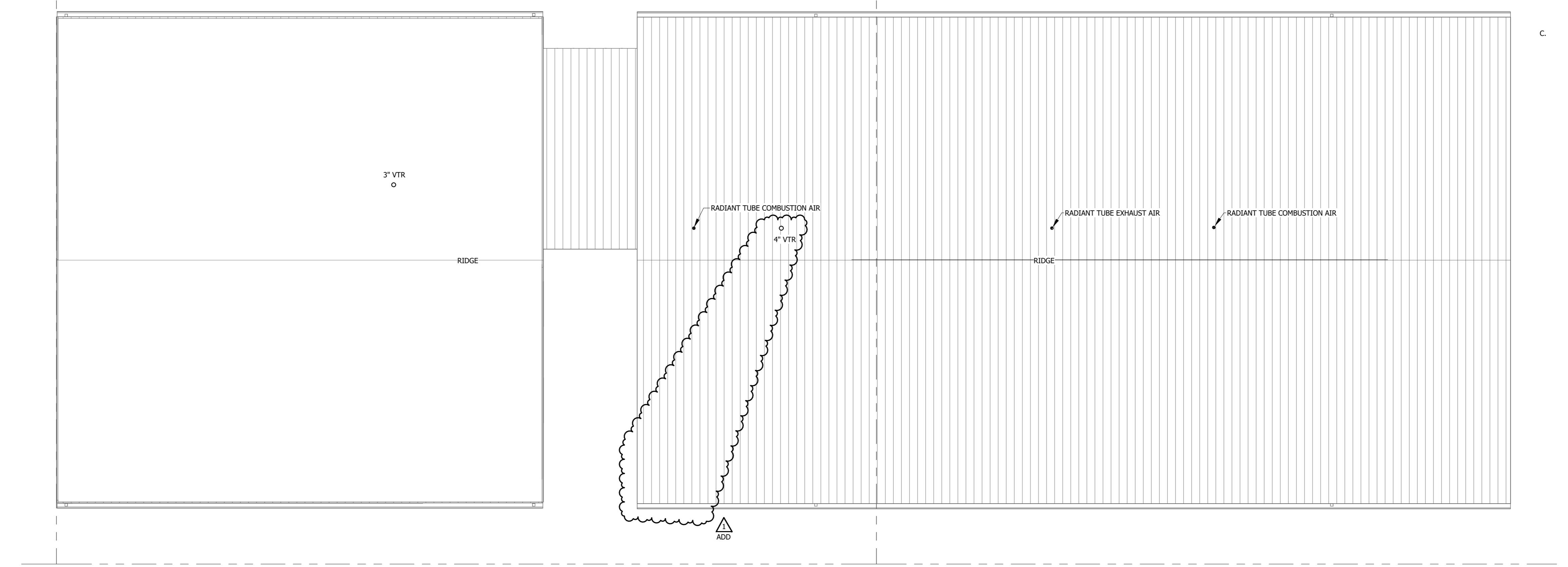
- A. Fan location must have a bar joist or I-beam structure from which to mount the fan. Additional mounting options may be available.
- B. Mounting structure must be able to support weight and operational torque of fan.
- C. Fan location must be free from obstacles such as lights, cables, or other building components.
- D. Check fan location for proper electrical requirements. Consult installation guide for appropriate circuit requirements.
- E. Each fan requires dedicated branch circuit protection.

3.02 INSTALLATION

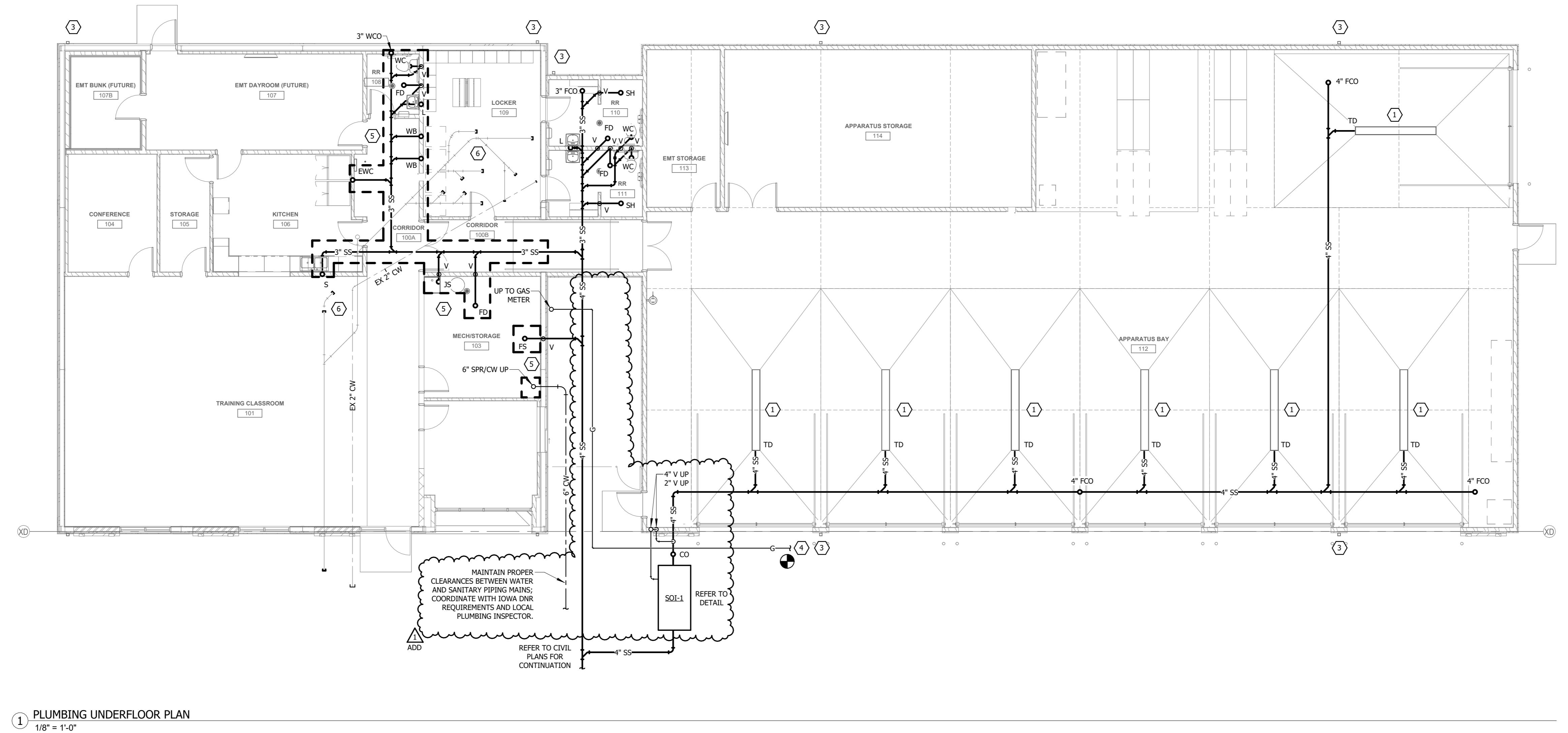
- A. Install the fan according to the manufacturer's Installation Guide, which includes acceptable structural dimensions and proper sizing and placement of angle iron for bar joist applications.
- B. Minimum Distances

**STATE CENTER FIRE DEPARTMENT
RENOVATION & ADDITION**

HIGH VOLUME, LOW SPEED FANS (ADDENDUM #1)


23 3417 - 4

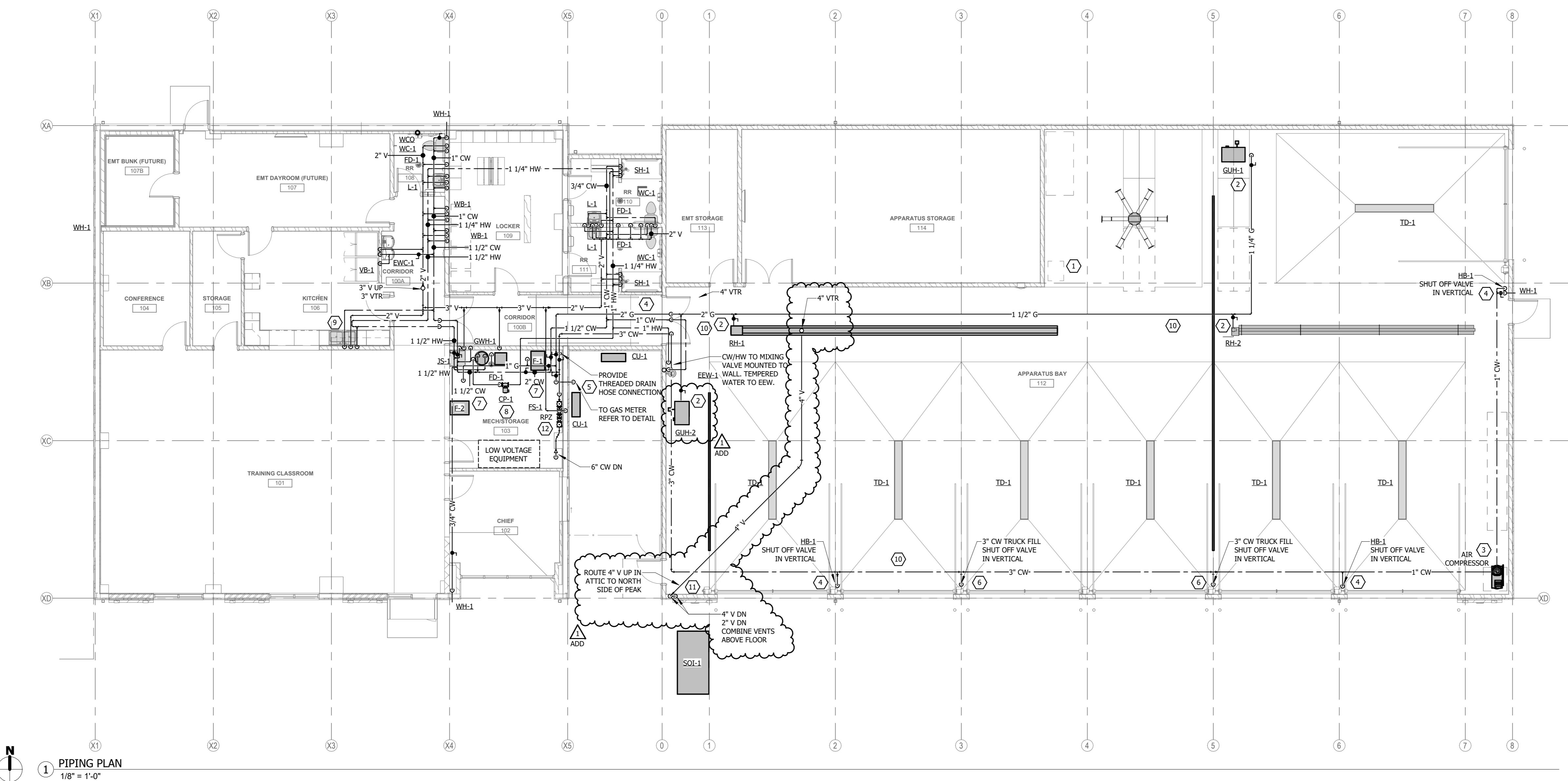
1. Airfoils must be at least 10 ft above the floor.
2. Installation area must be free of obstructions such as lights, cables, sprinklers or other building structures with the airfoils at least 2 ft clear of all obstructions.
3. The structure the fan is attached to shall be capable of supporting a torque load of up to 300 ft-lb of torque.
- C. The fan shall not be located where it will be continuously subjected to wind gusts or near the outputs of HVAC systems or radiant heaters.
- D. In buildings equipped with sprinklers, including ESFR sprinklers, fan installation shall comply with all the following:
 1. The maximum fan diameter shall be 24 ft.
 2. The HVLS fan shall be centered approximately between four adjacent sprinklers.
 3. The vertical clearance from the HVLS fan to the sprinkler deflector shall be a minimum of 3 ft.
 4. All HVLS fans shall be interlocked to shut down immediately upon receiving a waterflow signal from the alarm system in accordance with the requirements of NFPA 72 - National Fire Alarm and Signaling Code.


END OF SECTION

GENERAL NOTES:

- A. LAYOUT AND ROUTING SHOWN IS DIAGRAMMATIC AND SCHEMATIC IN NATURE. NOT ALL OFFSETS MAY BE SHOWN. CONTRACTOR SHALL VERIFY EXACT ROUTING REQUIRED AND NUMBER OF OFFSETS AND TRANSITIONS.
- B. ALL ROOFTOP PENETRATIONS SHALL OCCUR NORTH OF ROOF RIDGE LINE. PROVIDE & INSTALL BOOT FLASHING AND OTHER ASSOCIATED ACCESSORIES AS REQUIRED FOR PROPER OPERATION AND INSTALLATION. **PAINT ALL PIPE PENETRATIONS TO MATCH FINISH OF METAL ROOF PANELS.**
- C. DESIGN INTENT SHALL BE ALL MECHANICAL, ELECTRICAL, & PLUMBING RUNS WITHIN NEW ADMIN AREA, LOCKER ROOM & RESTROOMS SHALL BE RUN WITHIN CONCRETE, ASBESTOS, AND OTHER NON-FLAMMABLE MEMBRANES OR TIGHT TO UNDERLAY OF STEEL SHEET UNLESS NOTED OTHERWISE. COORDINATE ANY EXPOSED ROUTING WITHIN THESE SPACES WITH ARCHITECT & ENGINEER PRIOR TO FABRICATION & INSTALLATION.

N
① ROOF PLAN
1/8" = 1'-0"



PLUMBING FIXTURE CONNECTION SCHEDULE				
ITEM	WASTE SIZE	VENT SIZE	WATER SIZE	
			HOT	COLD
WATER CLOSET (TANK)	3"	2"	-	3/4"
LAVATORY	1-1/2"	1-1/2"	1/2"	3/4"
SINK	1-1/2"	1-1/2"	1/2"	1/2"
JANITOR SINK	3"	1-1/2"	3/4"	3/4"
DRINKING FOUNTAIN	1-1/2"	1-1/2"	-	1/2"
SHOWER	2"	1-1/2"	3/4"	3/4"
WASHER BOX	2"	1-1/2"	1/2"	1/2"
TYPICAL WASTE STACK	4"	-	-	-
TYPICAL VENT STACK	-	3"	-	-

NOTES:
1. ALL SANITARY SEWER BELOW GRADE SHALL BE A MINIMUM OF 3" UNLESS OTHERWISE NOTED.
2. ALL VENT BELOW GRADE SHALL BE A MINIMUM OF 2" UNLESS OTHERWISE NOTED.

PROJECT: STATE CENTER FIRE STATION
ADDRESS: 109 E MAIN STREET; STATE CENTER, IA 50247
CURE: STATE CENTER FIRE DEPARTMENT

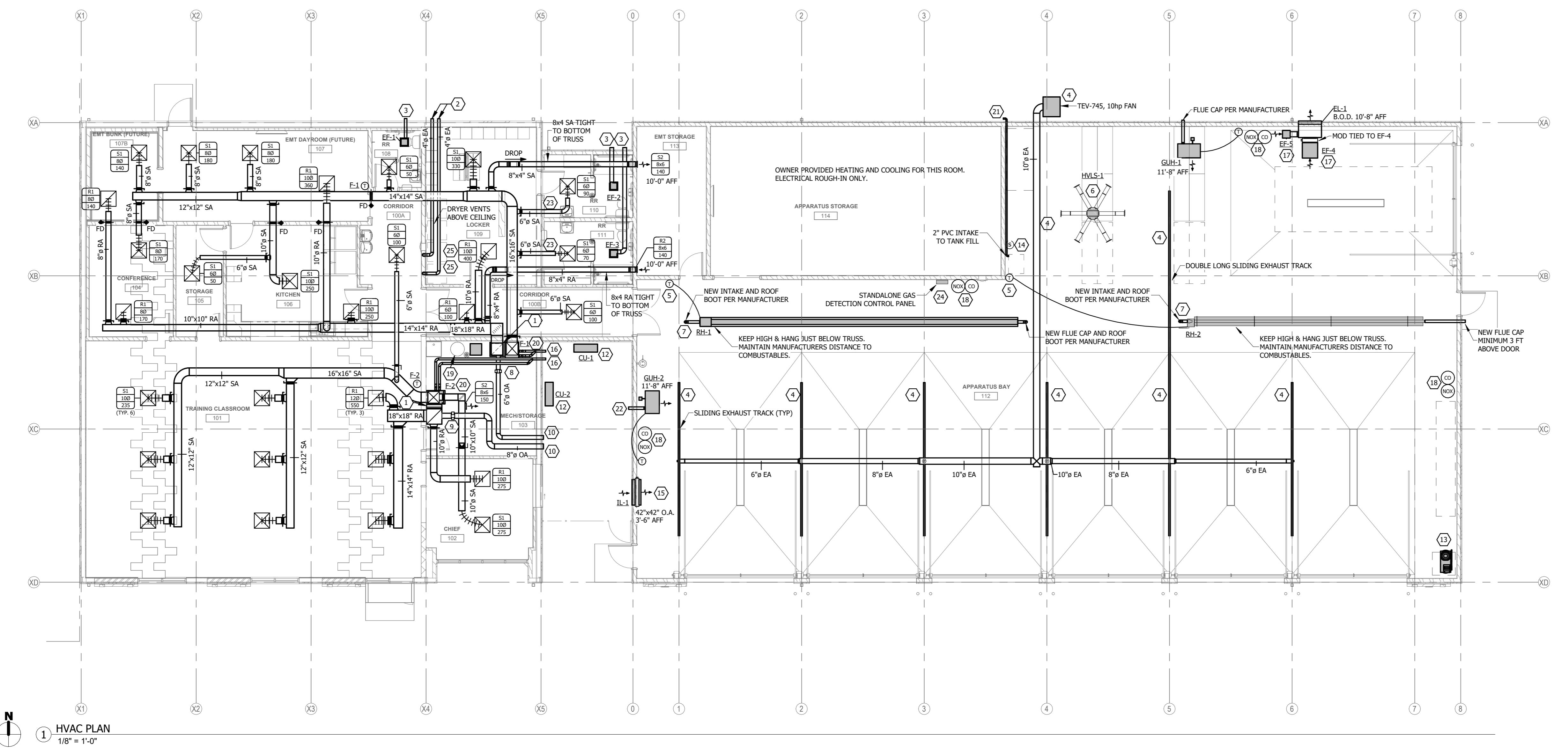
PRINT DATE: 12.8.2025
PHASE: CD
SHEET NAME: PIPING UNDERFLOOR PLAN

GENERAL NOTES:

- A. INSTALLATION PLANS ARE SCHEMATIC IN NATURE. CONTRACTOR TO VERIFY PLACEMENT OF NEW EQUIPMENT/FIXTURES PRIOR TO INSTALLATION.
- B. MAINTAIN SERVICE CLEARANCE AROUND ALL MECHANICAL EQUIPMENT AND ABOVE ELECTRICAL EQUIPMENT. DO NOT ROUTE PIPING IN CLEARANCE SPACE.
- C. COORDINATE PIPING LAYOUT AND ELEVATIONS WITH FOOTINGS, FLOW LINES, LOCAL PLUMBING CODE AND THE SPECIFICATIONS.
- D. VERIFY ALL SITE CONDITIONS PRIOR TO START OF WORK.
- E. COORDINATE ALL PLUMBING AND PIPING ROUTING WITH BUILDING STRUCTURE AND OTHER TRADES PRIOR TO INSTALLATION TO ALLOW FOR PROPER CLEARANCES AND FLOW REQUIREMENTS.
- F. ALL CONDENSATE DRAIN PIPING SHALL BE 3/4" COPPER WITH INSULATION UNLESS NOTED OTHERWISE. WHITE IN APPARATUS BAY AND BLACK IN ADMIN ADDITION.
- G. COORDINATE ALL VENTS THROUGH ROOF WITH STRUCTURAL DRAWINGS AND MAINTAIN LOFT REQUIRED DISTANCE FROM MECHANICAL EQUIPMENT INTAKES. OFFSET PIPING AS NECESSARY.
- H. COORDINATE ALL EXPOSED PIPE ROUTING WITH DESIGN TEAM PRIOR TO ROUGH-IN. SPECIFIC RACKING REQUIREMENTS MAY BE REQUIRED.
- I. COORDINATE ALL FLOOR DRAIN LOCATIONS WITH MECHANICAL EQUIPMENT AND RESPECTIVE TRADES PRIOR TO ROUGH-IN.
- J. COORDINATE STORM AND SANITARY SEWER CONNECTIONS WITH STRUCTURAL & CIVIL DRAWINGS TO MAINTAIN REQUIRED SLOPING AND PROPER ELEVATIONS.
- K. SEE PLUMBING FIXTURE CONNECTION SCHEDULE FOR FIXTURE CONNECTION SIZES.
- L. FIELD VERIFY ALL NEW AND EXISTING PIPE ROUTING WITH EXISTING CONDITIONS PRIOR TO ROUGH-IN. MAKE NECESSARY OFFSETS AS REQUIRED.
- M. COORDINATE ALL WALL CLEANOUT LOCATIONS WITH DESIGN TEAM PRIOR TO ROUGH-IN. COORDINATE ALL FLOOR CLEANOUT LOCATIONS BEING INSTALLED IN CARPET OR OTHER SPECIALTY FLOOR AREAS WITH DESIGN TEAM PRIOR TO ROUGH-IN.
- N. PROVIDE ISOLATION BALL VALVES ON BRANCH PIPING TAPS FROM MAIN TO ALL COLD AND HOT WATER PIPES. ENSURE VALVES ARE INSTALLED IN ACCESSIBLE LOCATIONS.
- O. PROVIDE INSULATED PLUMBING VENT BOOT FLASHING IN LOCATIONS THRU THERMAL ENVELOPE.
- P. ALL ROOF PENETRATIONS TO OCCUR NORTH OF ROOF RIDGE OR THRU EXTERIOR WALLS. ANY PENETRATIONS NOT SHOWN ON ARCHITECTURAL ELEVATIONS SHALL BE COORDINATED WITH ARCHITECT & ENGINEER PRIOR TO INSTALLATION.

THE DOCUMENTS ARE THE PROPERTY OF THE CITY OF DES MOINES, IOWA. THEY ARE PROVIDED FOR THE PROJECT AND SHALL NOT BE COPIED OR USED FOR OTHER PURPOSES. THE INFORMATION CONTAINED HEREIN IS CONFIDENTIAL AND IS THE PROPERTY OF THE CITY OF DES MOINES, IOWA. IT IS PROHIBITED TO REPRODUCE, DISTRIBUTE, OR PUBLISH ANY PORTION OF THIS DOCUMENT.

STUDIO 4TH STREET
DES MOINES, IOWA 50265


PROJECT: STATE CENTER FIRE STATION
ADDRESS: 109 E MAIN STREET; STATE CENTER, IA 50247
CURE: STATE CENTER FIRE DEPARTMENT

REFERENCED NOTES:

1. COORDINATE OWNER PROVIDED FILL TANK WITH OWNER PRIOR TO ROUGH-IN OF 2" PVC INTAKE TO EXTERIOR WITH 90° TERMINATION ELBOW.
2. PROVIDE SHUT OFF VALVE AND GAS PRESSURE REGULATOR (WHERE REQUIRED) TO HEATER. COORDINATE ACTUAL EQUIPMENT AND GAS CONNECTION LOCATION.
3. OWNER FURNISHED. OWNER INSTALLED AIR COMPRESSOR AND ASSOCIATED PIPING AND HOSE REEL.
4. PROVIDE ISOLATION VALVE IN VERTICAL PIPING FOR ACCESSIBILITY.
5. COORDINATE UNDERGROUND GAS PIPING AND GAS METER WITH ELECTRICAL UTILITIES. SEE CIVIL DRAWINGS FOR SITE GAS ROUTING.
6. PROVIDE 3" TRUCK FILL WITH AN ISOLATION VALVE IN VERTICAL. TERMINATE WITH A 2.5" NH/INST CONNECTION. OWNER SHALL FURNISH CONTRACTOR SHALL INSTALL A SLOW CLOSE VALVE SIMILAR TO 2.5" NH SWIVEL ROCKER INLET, 2.5" NH/RIGID OUTLET.
7. ROUTE CONDENSATE PIPING FROM FURNACE TO NEAREST FLOOR DRAIN.
8. REFER TO P5.2 PIPING DETAILS FOR SYSTEM PIPING SCHEMATICS.
9. ROUGH-IN SS, V, CW, HW PIPING TO FUTURE SINK. COORDINATE EXACT LOCATION WITH OWNER PRIOR TO ROUGH-IN.
10. ALL DOMESTIC COLD WATER AND GAS PIPING IN THE NEW ADDITION SHALL NOT BE LOCATED IN ATTIC AND SHALL BE EXPOSED BELOW METAL CEILING. REFER TO ARCHITECTURAL DOCUMENTS FOR PAINTING REQUIREMENTS.
11. PROVIDE CAST IRON VENT PIPING ABOVE FLOOR IN THIS AREA FOR DURABILITY.
12. PLUMBING CONTRACTOR SHALL COORDINATE STACKED DOMESTIC AND SPRINKLER ENTRANCE ON THIS WALL WITH SPRINKLER CONTRACTOR PRIOR TO ROUGH-IN OF PIPING.

ITEM	WASTE SIZE	VENT SIZE	WATER SIZE	
			HOT	COLD
WATER CLOSET (TANK)	3"	2"	-	3/4"
LAVATORY	1-1/2"	1-1/2"	1/2"	1/2"
SINK	1-1/2"	1-1/2"	1/2"	1/2"
JANITOR SINK	3"	1-1/2"	3/4"	3/4"
DRINKING FOUNTAIN	1-1/2"	1-1/2"	1/2"	1/2"
SHOWER	2"	1-1/2"	3/4"	3/4"
WASHER BOX	2"	1-1/2"	1/2"	1/2"
TYPICAL WASTE STACK	4"	-	-	-
TYPICAL VENT STACK	-	3"	-	-

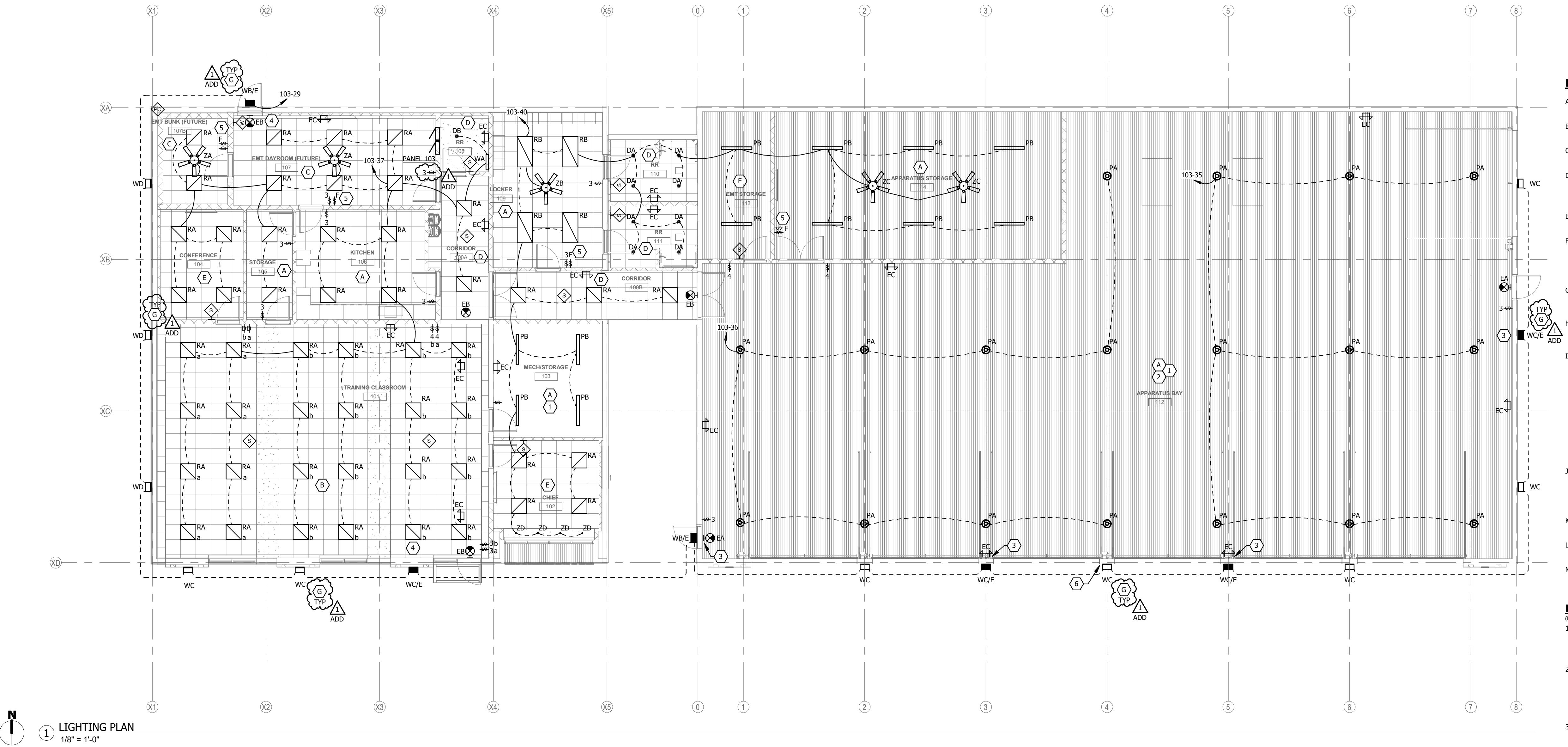
NOTES:
1. ALL SANITARY SEWER BELOW GRADE SHALL BE A MINIMUM OF 3" UNLESS OTHERWISE NOTED.
2. ALL VENT BELOW GRADE SHALL BE A MINIMUM OF 2" UNLESS OTHERWISE NOTED.

GENERAL NOTES:

- A. LAYOUT AND ROUTING SHOWN IS DIAGRAMMATIC AND SCHEMATIC IN NATURE, NOT ALL OFFSETS MAY BE SHOWN. CONTRACTOR SHALL VERIFY EXACT ROUTING REQUIRED AND NUMBER OF OFFSETS AND TRANSITIONS.
- B. MAINTAIN SERVICE CLEARANCE IN FRONT OF AND ABOVE ELECTRICAL EQUIPMENT AND ACCESS. DO NOT INSTALL EQUIPMENT OR ROUTE DUCTS IN CLEARANCE SPACE. REFER TO EQUIPMENT INSTALLATION AND INSTRUCTIONS.
- C. COORDINATE THERMOSTAT LOCATIONS WITH CASEWORK, WALL TYPES, AND FURNISHINGS PRIOR TO ROUGH-IN. COORDINATE FINAL LOCATIONS WITH OWNER.
- D. PROVIDE VOLUME CONTROL BALANCING DAMPERS ON ALL SUPPLY, RETURN, EXHAUST AIR TAPS IN ACCESSIBLE LOCATIONS FOR AIR BALANCING. INSTALL CABLE OPERATED DAMPER OR ACCESS PANEL IF DAMPER IS LOCATED ABOVE GYP CEILINGS.
- E. COORDINATE DUCT ROUTING WITH STRUCTURAL AND ALL TRADES.
- F. COORDINATE ALL EXPOSED DUCTWORK ROUTING WITH DESIGN TEAM PRIOR TO ROUGH-IN.
- G. COORDINATE SUPPLY, RETURN, AND EXHAUST GRILLE/DIFFUSER LOCATIONS WITH ARCHITECTURAL REFLECTED CEILING PLAN AND ALL TRADES.
- H. ALL ROOFTOP PENETRATIONS SHALL OCCUR NORTH OF ROOF RIDGE LINE. PROVIDE & INSTALL BOOT FLASHING AND OTHER ASSOCIATED ACCESSORIES AS REQUIRED FOR PROPER OPERATION AND INSTALLATION. **PAINT ALL PIPE PENETRATIONS TO MATCH FINISH OF METAL ROOF PANELS.**
- I. COORDINATE DUCT ROUTING IN LOCATIONS WITH EXISTING CONDITIONS. FIELD VERIFY EXISTING CONDITIONS PRIOR TO ROUGH-IN.
- J. DESIGN INTENT SHALL BE ALL MECHANICAL, ELECTRICAL, & PLUMBING RUNS WITHIN NEW ADDITION & LOCKER ROOM TO REACH ROOF LINE. RUN WITHIN ROOF ASSEMBLY. COORDINATE CEILING ASSEMBLIES OR TIGHT TO UNDERSIDE OF STRUCTURE UNLESS NOTED OTHERWISE. COORDINATE ANY EXPOSED ROUTING WITHIN THESE SPACES WITH ARCHITECT & ENGINEER PRIOR TO FABRICATION & INSTALLATION.

THE DOCUMENTS ARE THE PROPERTY OF THE STATE CENTER FIRE STATION AND SHALL NOT BE COPIED OR REPRODUCED EXCEPT AS AUTHORIZED IN THE CONTRACT DOCUMENTS. THE PROJECT AND SHALL NOT BE USED FOR OTHER PURPOSES. THE CONTRACT DOCUMENTS ARE THE PROPERTY OF THE STATE CENTER FIRE STATION AND SHALL NOT BE COPIED OR REPRODUCED EXCEPT AS AUTHORIZED IN THE CONTRACT DOCUMENTS.

STUDIO MELEE
139 4th STREET
DES MOINES, IOWA 50265


PROJECT:
STATE CENTER FIRE STATION
ADDRESS:
109 E MAIN STREET; STATE CENTER, IA 50247
CITY:
STATE CENTER FIRE DEPARTMENT

PRINT DATE:
12.8.2025
SHEET NAME:
MECHANICAL PLAN

M1.1

REFERENCED NOTES:

1. PROVIDE AND INSTALL MERV 11 25"x20"x2" SIDE RETURN FILTER RACK.
2. 4" ALUMINUM DRYER VENT WALL CAP WITH PRE-FINISHED METAL BACKPLATE TO MATCH METAL SIDING AS REQUIRED FOR PROPER SEAL TO BUILDING ENVELOPE.
3. 6" ALUMINUM BATH FAN WALL CAP WITH PRE-FINISHED METAL BACKPLATE TO MATCH METAL SIDING AS REQUIRED FOR PROPER SEAL TO BUILDING ENVELOPE.
4. PLYMOVEMENT SYSTEM (TRACKS, FAN, DUCTING & CONTROLS) BY OWNER. SHOW FOR COORDINATION.
5. PROVIDE NEW HEATING ONLY DIGITAL THERMOSTAT, WIRING & CONDUIT FOR NEW RADIANT TUBE HEATER. EACH HEATER CONTROLLED BY ITS OWN STAT.
6. MOUNT HVLS-1 HIGH. COORDINATE FINAL LOCATION TO NOT INTERFERE WITH PLYMOVEMENT AND LIGHTING.
7. DUCT NEW RADIANT TUBE HEATERS COMBUSTION AIR UP AND OUT NORTH SIDE OF ROOF RIDGE.
8. FIELD CONTROLS 100fm 6" FAVC DAMPER, SENSORS AND CONTROLLER SET TO ECONOMY MODE FOR NORTHERN CLIMATE.
9. FIELD CONTROLS 200fm 8" FAVC DAMPER, SENSORS AND CONTROLLER SET TO ECONOMY MODE FOR NORTHERN CLIMATE.
10. BROAN 6" ROUND INTAKE AIR HOOD MODEL 641FA. KEEP A MINIMUM 10' FROM EXHAUST OUTLETS AND MAINTAIN REQUIRED CLEARANCE FROM GAS METER PRESSURE REGULATOR.
11. BROAN 8" ROUND INTAKE AIR HOOD MODEL 643FA. KEEP A MINIMUM 10' FROM EXHAUST.
12. G.C. TO INSTALL 4" HOUSEKEEPING PAD FOR CONDENSING UNITS. COORDINATE SIZE WITH FINAL EQUIPMENT.
13. RELOCATED EXISTING AIR COMPRESSOR AND HOSE REEL. COORDINATE FINAL MOUNTING LOCATION OF RELOCATED HOSE REEL WITH OWNER.
14. FIXED WALL MOUNT SPEED CONTROLLER FOR HVLS-1 FAN.
15. NEW WALL SLEEVE, INTAKE LOUVER & MOTOR OPERATED DAMPER TIED INTO PURGE CONTROL AND EF-4.
16. PROVIDE AND INSTALL MANUFACTURERS CONCENTRIC WALL VENT.
17. SEE DETAIL 6 ON SHEET MS-1. KEEP FAN HIGH AS POSSIBLE & INSTALL WITH INLET GUARD SCREEN.
18. CO SENSOR MOUNTED APPROXIMATELY 4' ABOVE FINISHED FLOOR. NOX SENSOR MOUNTED APPROXIMATELY 2' FROM CEILING. TIED INTO EF-4 AND IL-1 MOD.
19. PVC WATER HEATER VENT AND COMBUSTION INTAKE SIZED PER WATER HEATER MANUFACTURER, UP AND OUT NORTH SIDE OF ROOF RIDGE. FLASH AND SEAL WATER TIGHT.
20. ROUTE F-2 CONDENSATE TO MOP SINK. ROUTE F-1 CONDENSATE TO FLOOR DRAIN NEAR WATER HEATER.
21. 2" PVC INTAKE FILL FOR OXYGEN TANK FILL. VERIFY SIZE WITH UNIT MANUFACTURER. KEEP 10' FROM ALL EXHAUST SOURCES.
22. NEW GUH FLUE AND CAP OUT WALL PER MANUFACTURER. MAINTAIN MINIMUM OF 10' FROM ALL FRESH AIR INTAKES.
23. ROUTE 6'0" SA IN WOOD JOIST WEBBING. FIELD COORDINATE EXACT LOCATION.
24. PROVIDE A STANDALONE HONEYWELL 301C GAS DETECTION CONTROL PANEL, RELAYS, AND ACCESSORIES REQUIRED TO MONITOR AND CONTROL THE ASSOCIATED GAS SENSORS, INTAKE LOUVER DAMPER, AND PURGE EXHAUST FAN EF-4.
25. PROVIDE RECESSED DRYER BOX IN WALL.

LIGHTING GENERAL NOTES:

- A. SURFACE RACEWAY SHALL NOT BE USED IN ANY FINISHED AREAS WITHOUT PRIOR APPROVAL FROM THE ENGINEER.
- B. INSTALL DEVICES SUCH THAT NO TWO DEVICES ON OPPOSITE SIDES OF SAME WALL ARE WITHIN 6" OF EACH OTHER.
- C. COORDINATE ALL DEVICES WITH ARCHITECTURAL PLANS AND CASEWORK SUBMITTALS.
- D. ALL LIGHTING FIXTURES SHALL BE INSTALLED IN SUCH WAY THAT DRIVERS ARE ACCESSIBLE WITHOUT CUTTING OF CEILING. THE ENGINEER SHALL BE NOTIFIED IMMEDIATELY OF AREAS WHERE THIS IS NOT POSSIBLE.
- E. ALL WALL-MOUNTED FIXTURES SHALL HAVE EXACT ROUGH-IN LOCATION DETERMINED BY DESIGN TEAM PRIOR TO ROUGH-IN.
- F. THE ELECTRICAL CONTRACTOR SHALL EXTEND AN "UNSWITCHED" HOT CONDUCTOR FROM THE NEAREST NORMAL LIGHTING CIRCUIT TO EVERY UL924 LISTED EMERGENCY LIGHT AND EXIT SIGN REQUIRED FOR EMERGENCY EGRESS OPERATION. THE "UNSWITCHED" HOT CONDUCTOR SHALL BE USED FOR SENSING PURPOSES ONLY.
- G. UNLESS NOTED OTHERWISE BY DESIGNATED "LIGHTING CONTROL ZONES", SWITCHLEG WIRING, AND LOWERCASE LETTER SWITCHLEG TAGS, SWITCHES SHOWN WILL CONTROL ALL FIXTURES IN THE ROOM SHOWN.
- H. ALL LIGHTING CONTROL SHALL OPERATE "MANUAL ON/AUTO OFF" PER CODE (IECC OR ASHRAE 90.1) UNLESS OTHERWISE NOTED IN THE SEQUENCE OF OPERATIONS OR THESE REFERENCE NOTES.
- I. REFER TO ARCHITECTURAL ELEVATIONS AND REFLECTED CEILING PLANS FOR SPECIFIC DEVICE ROUGH-IN AND PLACEMENT. ANY DEVIATIONS FROM THE ARCHITECTURAL ELEVATIONS AND RCP'S SHALL BE REVIEWED AND APPROVED BY THE ARCHITECT PRIOR TO ROUGH-IN. IF A DEVICE IS REQUIRED PER SPECIFICATION, REQUIRED FOR OPERATION, OR IS DIFFERENT IN CONFIGURATION THAN SHOWN ON ELEVATIONS AND RCP'S, CLARIFICATION AND DIRECTION MUST BE GIVEN BY THE ARCHITECT BEFORE ROUGH-IN. DEVIATIONS OR ADDITIONAL DEVICES NOT APPROVED PRIOR TO INSTALLATION SHALL BE CORRECTED AT CONTRACTORS EXPENSE. THIS INCLUDES BUT IS NOT LIMITED TO THERMOSTATS, CONTROL SYSTEM SENSORS, ELECTRICAL DEVICES, SWITCHES, DIMMERS, TECHNOLOGY DEVICES, A/V DEVICES, SPEAKERS, FIRE ALARM DEVICES, ETC.
- J. CEILING CONTRACTOR SHALL PROVIDE AND INSTALL CEILING ACCESS PANELS FOR ACCESSIBILITY TO ELECTRICAL JUNCTION BOXES, PLUMBING VALVES, BALANCING DAMPERS, CIRCUIT SETTERS, ETC. WHERE ABSOLUTELY NECESSARY. LOCATIONS WILL NEED TO BE APPROVED AND COORDINATED WITH THE DESIGN TEAM PRIOR TO INSTALLATION.
- K. REFER TO ARCHITECTURAL EXTERIOR ELEVATIONS FOR WALLPACK LIGHTING HEIGHTS AFG.
- L. SENSORS SHALL BE INSTALLED CENTERED IN CEILING TILES WHERE APPLICABLE.
- M. EXISTING SITE LIGHTING TO BE REMOVED AS WORK BY THE CITY. ELECTRICAL CONTRACTOR SHALL COORDINATE WITH THE CITY TO AVOID INTERRUPTING THIS WORK.

FOR THIS PROJECT AND SHALL NOT BE
USED ON ANY OTHER PROJECTS OR IN
ANY OTHER LOCATIONS WITHOUT
OBTAINING PRIOR WRITTEN CONSENT
OF MELEE, LL. UNAUTHORIZED
REPRODUCTION IS PROHIBITED.

1394th STREET
DES MOINES, IOWA 50265

LIGHTING REFERENCED NOTES:

NOT ALL NOTES MAY BE APPLICABLE TO THIS SHEET)

COORDINATE LIGHTING MOUNTED IN THIS AREA WITH

COORDINATE LIGHTING MOUNTED IN THIS AREA WITH MECHANICAL EQUIPMENT. LIGHTING SHALL BE MOUNTED BELOW EQUIPMENT AT ALL TIMES. OFFSET AS REQUIRED. REFER TO ARCHITECTURAL ELEVATIONS FOR INSTALLATION HEIGHTS.

2. COORDINATE FINAL LIGHT LOCATIONS WITH DESIGN TEAM PRIOR TO FINAL INSTALLATION. OFFSET AS NEEDED FOR MECHANICAL EQUIPMENT AND PLYMOVENT SYSTEM. LIGHTS SHALL BE INSTALLED WITH SURFACE BRACKET TO BOTTOM OF METAL LID, UNLESS DIRECTED OTHERWISE BY DESIGN TEAM. THERE SHALL BE A PRE-INSTALLATION MEETING FOR CEILING SYSTEMS IN THE APPARATUS BAY.

3. REMOTE BACKUP BATTERY SERVING EXTERIOR EMERGENCY LUMINAIRE SHALL BE INSTALLED ON INTERIOR WALL AT AN ACCESSIBLE LOCATION BEHIND LUMINAIRE. COORDINATE WITH OTHER EQUIPMENT OR WALL DEVICES.

4. REMOTE BACKUP BATTERY SERVING EXTERIOR EMERGENCY LUMINAIRE SHALL BE INSTALLED ABOVE CEILING AT AN ACCESSIBLE LOCATION BEHIND LUMINAIRE.

5. FAN CONTROL DEVICE. DEVICE SHALL BE GANGED WITH LIGHTING CONTROL SWITCH. SEE LIGHTING FIXTURE SCHEDULE FOR MORE INFORMATION.

6. PROVIDE ROUGH-IN FOR FUTURE WARNING LIGHT. COORDINATE LOCATION WITH DESIGN TEAM PRIOR TO ROUGH-IN FOR FINAL COORDINATION WITH EMERGENCY LIGHT FIXTURE.

LIGHTING CONTROL - SEQUENCE OF OPERATION

LIGHTING CONTROL - SEQUENCE OF OPERATION			
TAG	ACTIVATION	DESCRIPTION	SCHEDULE
A	MANUAL ON / OFF	MANUAL LINE VOLTAGE TOGGLE SWITCH(ES). PROVIDE 3- OR 4-WAY SWITCHING AS SHOWN ON PLANS. TOGGLE SWITCH GANGED WITH CEILING FAN CONTROL WHERE APPLICABLE.	N/A
B	MANUAL ON / AUTO OFF w/ DIMMING	MANUAL ON / AUTO OFF w/ DIMMING VIA LINE VOLTAGE WALL CONTROL STATION WITH 0-10V CAPABILITY, LINE VOLTAGE TOGGLE SWITCHES, AND LINE VOLTAGE CEILING CENSOR(S). SEE LOWERCASE LETTER SWITCHTAGS WHERE APPLICABLE.	30 MINUTE TIMEOUT
C	MANUAL ON / OFF w/ DIMMING	MANUAL ON / MANUAL OFF w/ DIMMING VIA LINE VOLTAGE WALL CONTROL STATION WITH 0-10V CAPABILITY. WALL CONTROL STATION GANGED WITH CEILING FAN CONTROL WHERE APPLICABLE.	N/A
D	AUTO ON / AUTO OFF	AUTO ON / AUTO OFF VIA LINE VOLTAGE WALL OR CEILING MOUNTED SENSOR(S), AS APPROPRIATE.	30 MINUTE TIMEOUT
E	MANUAL ON / AUTO OFF w/ DIMMING	MANUAL ON / AUTO OFF w/ DIMMING VIA LINE VOLTAGE WALL SENSOR / SWITCH COMBINATION DEVICE WITH 0-10V DIMMING CAPABILITY.	30 MINUTE TIMEOUT
F	MANUAL ON / AUTO OFF	MANUAL ON / AUTO OFF VIA LINE VOLTAGE WALL SENSOR / SWITCH COMBINATION DEVICE.	30 MINUTE TIMEOUT
G	AUTO ON / AUTO OFF	AUTO ON / AUTO OFF VIA LINE VOLTAGE PHOTOCELL.	DUSK TO DAWN

BRANCH MDP											
Location: EMT DAYROOM (FUTURE)...			Volts: 120/208 Wye		S.C.C.R. Rating: 22,000 AIC						
Supply From:			Phases: 3		Mains Type: MCB						
Mounting: Surface			Wires: 4		Mains Rating: 400 A						
Enclosure: Type 1			MCB Rating: 400 A		SPD: NONE						
Notes: PANEL SHALL BE RATED FOR SERVICE ENTRANCE											
CKT	Circuit Description	Type	Trip	Poles	A	B	C	Poles	Trip	Type	
MDP-1	PANEL 103	N	100 A	3	7020	3358		3	40 A	N	
MDP-3	--	--	--		7306	3358		--	--	--	
MDP-5	--	--	--			6344	3358	--	--	--	
MDP-7	RANGE	N	50 A	2	4725	3536		2	50 A	N	
MDP-9	--	--	--		4725	3536		--	--	--	
MDP-11	CU-1	N	35 A	2		3012	3012	2	40 A	N	
MDP-13	--	--	--		3012	3012		--	--	--	
MDP-15	DRYER	G	30 A	2		2496	2496	2	30 A	G	
MDP-17	--	--	--			2496	2496	--	--	--	
MDP-19	EF-4	N	25 A	2	1298	0		2	20 A	N	
MDP-21	--	--	--			1298	0	--	--	--	
MDP-23	WELDING RECEPTACLE	N	50 A	2		4160	4160	2	50 A	N	
MDP-25	--	--	--		4160	4160		--	--	--	
MDP-27	WELDING RECEPTACLE	N	50 A	2		4160	800	1	20 A	N	
MDP-29	--	--	--			4160	800	1	20 A	N	
MDP-31	F-1	N	20 A	1	1094	1382		1	25 A	N	
MDP-33	GUH-1	N	15 A	1		1440	1440	1	15 A	N	
MDP-35	RH-1	N	20 A	1			576	576	1	20 A	N
MDP-37	WASHER	G	20 A	1	1920	1920		1	20 A	G	
MDP-39	AIR COMPRESSOR	N	20 A	1		1900	1900	1	20 A	N	
MDP-41	CP-1	N	20 A	1			700	180	1	20 A	N
MDP-43	KITCHEN RECEPTS	N	20 A	1	360	180		1	20 A	N	
MDP-45	OVERHEAD DOOR	N	20 A	1		1130	1130	1	20 A	N	
MDP-47	OVERHEAD DOOR	N	20 A	1			1130	1130	1	20 A	N
MDP-49	OVERHEAD DOOR	N	20 A	1	1130	1130		1	20 A	N	
MDP-51	OVERHEAD DOOR	N	20 A	1		1130	36	1	15 A	N	
MDP-53	EF-1	N	20 A	1			20	20	1	20 A	N
MDP-55	EF-2	N	20 A	1	20	70		1	20 A	N	
MDP-57	EF-4 DAMPER	N	20 A	1		18	0	1	20 A	N	
MDP-59	SPARE	N	20 A	1			0	0	1	20 A	N
MDP-61	SPARE	N	20 A	1	0	0		1	20 A	N	
MDP-63	SPACE	--	1		--	--	1	--	--	SPACE	
MDP-65	SPACE	--	1		--	--	1	--	--	SPACE	
MDP-67	SPACE	--	1	--	--	1	--	--	--	SPACE	
MDP-69	SPACE	--	1	--	--	1	--	--	--	MDP-70	
MDP-71	SPACE	--	1		--	--	1	--	--	SPACE	
Total Load:			43487 VA	40300 VA	38330 VA						
Total Amps:			365 A	338 A	319 A						
Type Legend: N=NORMAL G=GFI M=MOTORIZED E=EXISTING ST=SHUNT TRIP A=ARC FAULT H=HANDLE LOCK											
Load Classification											
Connected Load		Demand Factor		Estimated Demand		Panel Totals					
HVAC	27991 VA	100.00%	27991 VA								
Motor	12410 VA	103.83%	12885 VA		Total Conn. Load:	122.1 kVA					
Other	720 VA	100.00%	720 VA		Total Est. Demand:	117.7 kVA					
Power	3805 VA	100.00%	3805 VA		Total Conn. Current:	339 A					
Heating	3456 VA	100.00%	3456 VA		Total Est. Demand Current:	327 A					
Receptacles	20232 VA	74.71%	15116 VA								
Water Heater	180 VA	125.00%	225 VA								
Electric Clothes Dryer	21632 VA	100.00%	21632 VA								
Lighting - Exterior	240 VA	125.00%	300 VA								
Equipment	15392 VA	100.00%	15392 VA								
Kitchen Equipment	11050 VA	90.00%	9945 VA								
Lighting	5009 VA	125.00%	6261 VA								
Notes: PANEL SHALL BE RATED FOR SERVICE ENTRANCE											

FLOOR BOX SCHEDULE					
TYPE	MANUFACTURER	MODEL	DIMENSION	DEVICES	DESCRIPTION
FB-1	LEGRAND HUBBELL STEEL CITY	980CS2 SERIES B4233 SERIES 642 SERIES	8.5" L x 5.5" W x 4" D	2-GANG: (1) POWER, (1) DATA/AV	STANDARD FULLY ADJUSTABLE FLUSH TYPE FLOOR BOX FOR INSTALLATION IN CONCRETE SLAB OR FOR SLAB-ON-GRADE APPLICATIONS. CAST IRON, DIE CAST BRUSHED ALUMINUM COVER ASSEMBLY. VERIFY FLANGE TYPE WITH ARCHITECT DURING SHOP DRAWING REVIEW. REFER TO DRAWINGS FOR TELECOM TERMINATION REQUIREMENTS AND TYPES.

LIGHTING FIXTURE SCHEDULE													
TYPE	BOD MANUFACTURER	MODEL NUMBER	DESCRIPTION					LAMP/CCT/CRI	CONTROL	DELIVERED LUMENS	WATTS	VOLTS	EQUALS
DA	GOTHAM	EVO4SH-35-10-DFR-SOL-MVOLT-EZ1	4-INCH APERTURE RECESSED LED SHOWER DOWNLIGHT. BATWING DISTRIBUTION, TEXTURED LENS.					LED/3500K/85	NON-DIM	843	8.8	UNV	PRESCOLITE, LIGHTOLIER, PORTFOLIO
DB	GOTHAM	IV04-D-10LM-35K-80CRI-WD-MIN10-MVOLT-ZT-NCH-P-AR-LSS-F	4-INCH APERTURE OPEN RECESSED LED DOWNLIGHT, 75-DEGREE DISTRIBUTION, CLEAR PARABOLIC REFLECTOR WITH SEMI-SPECULAR FINISH.					LED/3500K/80	NON-DIM	991	9.8	UNV	PRESCOLITE, LIGHTOLIER, PORTFOLIO
EA	DUAL-LITE	EVE-U-X-X-E	THERMOPLASTIC LED EXIT SIGN, UNIVERSAL MOUNTING, BACKUP BATTERY FOR 90-MINUTE EMERGENCY RUNTIME. FINISH AND LETTER COLOR SELECTED BY ARCHITECT DURING SUBMITTALS.					LED/COLOR	N/A	N/A	N/A	UNV	LITHONIA, EVNLITE, MULE, SURE-LITES
EB	COMPASS	CELR1XNE	ARCHITECTURAL EDGE-LIT LED EXIT SIGN, RECESSED MOUNTING FOR CEILING OR WALL. BACKUP BATTERY FOR 90-MINUTE EMERGENCY RUNTIME. BRUSHED ALUMINUM FINISH. LETTER COLOR SELECTED BY ARCHITECT DURING SUBMITTALS.					LED/COLOR	N/A	N/A	N/A	UNV	LITHONIA, EVNLITE, MULE, SURE-LITES
EC	DUAL-LITE	EV-2	LED BATTERY LIGHT FOR EMERGENCY LIGHTING. 90-MINUTE RUNTIME. WALL OR CEILING MOUNT. WHITE STANDARD, OPTIONAL BLACK FINISH TO BE SELECTED BY ARCHITECT DURING SUBMITTALS.					LED	N/A	N/A	N/A	UNV	LITHONIA, EVNLITE, MULE, SURE-LITES
PA	LITHONIA	REBL-AL013-WD-UVOLT-SWW9-80CRI-L/DIM-X-REBLSMB1-X-M10	ROUND LED HIGH BAY LIGHT. SELECTABLE LUMENS AND CCT. SET SELECTABLE LUMENS TO 15,000. SET SELECTABLE CCT TO 5000K. SURFACE MOUNT BRACKET. FINISH TO BE SELECTED BY ARCHITECT DURING SUBMITTALS.					LED/SELECTABLE/80	NON-DIM	12,693 - 18,852	80 - 117	UNV	METALUX
PB	LITHONIA	CSS-L48-AL03-MVOLT-SWW3-80CRI-HC36 M12	4-FT CHAIN-HUNG LED STRIP LIGHT. SELECTABLE LUMENS AND CCT. SET SELECTABLE LUMENS AND CCT TO OWNER'S PREFERENCES.					LED/SELECTABLE/80	NON-DIM	3,851 - 5,884	27 - 43	UNV	COLUMBIA, DAY-BRITE CFI, METALUX
RA	COLUM												