2016 On Site Review Report

by Bekim Ramku

Issam Fares Institute

Beirut, Lebanon

Architect
Zaha Hadid Architects

Client
American University of Beirut

Design
2007-2009

Completed
2014
Issam Fares Institute
Beirut, Lebanon

I. Introduction

The American University of Beirut (AUB) is one of the most important educational institutions in the Arab world, one that has played a significant regional and international role during its lifetime. So it is more than deserving that its location is truly spectacular.

The 250’000-square-metre campus is located on a hill overlooking the Mediterranean Sea and, due to its geography, is spatially separated into three linear campuses, with the upper one also known as the historic campus. The Issam Fares Institute for Public Policy and International Affairs (IFI), which is an independent, research-based, policy-oriented institute of the American University of Beirut, is situated on the upper campus.

Together with four surrounding historic buildings, the Issam Fares Institute crowns the equally historic Green Oval, which is one of the most important open green areas on the AUB campus.

The IFI has a combined floor area of 3’000 square metres, a maximum height of 22 metres and is divided into six floors with a spatial programme consisting of: research and administration offices; seminar and workshop rooms; conference room/auditorium, reading room; recreational lounge; and roof terrace. Due to the fact that the architect has given great importance to the immediate and surrounding landscape and the correlation of the Green Oval and the Mediterranean Sea, the building has a surprisingly small footprint.

The development of the Institute was made possible through the support of the former member of the Lebanese Parliament and Deputy Prime Minister of Lebanon, Issam Fares.

II. Contextual Information

A. Brief historical background

Beirut, the capital city of Lebanon, is located in the central part of the country facing the Mediterranean Sea. The AUB campus, situated in the Ras Beirut area, borders the Mediterranean and the Corniche on the northern side and the Bliss Street and Hamra neighbourhood on its southern side.

The American University of Beirut was founded in 1866 by Dr. Daniel Bliss, who was appointed by the American Board of Commissioners for Foreign Missions to found a college of higher learning that would include medical training. Though the college started its work with only 16 students on 3 December 1866, today AUB has almost 8,000 students of diverse backgrounds.

The first building to be built on the Ras Beirut campus was the College Hall, the construction of which commenced on 7 December 1871. Today the campus is comprised of 64 buildings made up of dormitories, faculty buildings, libraries, museums and sports facilities.
B. Local architectural character

The architecture found in Lebanon dates back to Phoenician times. Houses and temples were built with stone, and even roofs were made of large rock segments. Even some of the stone quarries, used later during Roman times around 3000 B.C. to build their temples, are still preserved, for example those near the famous Baalbek temples in the Bekaa Valley. Until the 19th century, traditional Lebanese houses were still built with stone. The humbler houses had timber and compacted mud roofs, whereas the bigger houses had usually two or three floors and had vaulted ceilings for the ground floor and steep red-tiled pitched roofs on top of the upper floors, supported by a timber structure. Sometimes the stone walls were covered with mud/plaster and painted on the exterior or decorated with ornamental plaster on the interior.

With the introduction of concrete in the 1920s (which was first imported, then locally produced after 1930), architectural building techniques in Lebanon were revolutionised. After Independence, the golden age of modern architecture started in 1950s, continued in the 1960s, only to lose its momentum in the late 1970s with the start of the civil war. During the golden age of modern architecture in Lebanon, architects and engineers adopted almost exclusively the use of reinforced concrete for the structure of the buildings, and introduced fair-faced concrete elements for the buildings’ envelopes, the interior and exterior walls, and their finishes.

During post-modernism in the 1980s and to date, the structure of buildings is still mostly of reinforced concrete. Walls are commonly made of concrete masonry units with painted cement plaster and cladding. The cladding of building facades has been mainly of stone, but today it may also be metal, wood or glass-reinforced concrete (GRC) with mechanical fixations.

Contemporary projects are adopting, more and more, glass curtain envelopes following design trends around the world, but are still loyal to the concrete structure and core elements in all types of constructions.

The AUB campus itself is rich in buildings representing different architectural influences and developments covering three centuries from the end of the 19th century up to the present, thus creating a layer of architectural history that best tells the story of the development of architecture not only for the campus but for the city as well.

C. Climatic conditions

Beirut has a typical coastal Mediterranean climate, characterised by hot summers, with August being the average hottest month with an average high temperature of 32°C. Its autumn and spring are warm, with an average high of 20-28°C, while January and February are the coldest months, with an average low temperature of 11°C.

The average annual rainfall is 893 millimetres, with most falling in the winter, autumn and spring seasons. The summers are typically very dry and receive very little rainfall.

D. Site and surroundings

The AUB campus is located in the Ras Beirut area and neighbours the famous commercial district of Hamra. The campus overlooks the Mediterranean, with the Corniche on its northern side and Bliss Street on its upper southern side. The Hamra district is characterised by a mix of commercial and residential mid- and high-rise buildings, with the economic element concentrated on the ground and the lower floors and the residential
on the upper ones. The Issam Fares building itself is located in the upper (historic) part of the campus overlooking the Mediterranean Sea on one side and the historic Green Oval on the other.

E. Topography

The AUB campus is located on a hill overlooking the Mediterranean Sea. Because of its topography the campus is subdivided into three parallel areas: the lower campus, the middle campus and the upper (historic) campus. The middle area contains a collection of local and foreign plants and trees planted over the past 150 years.

III. Programme

A. History of the inception of the project

Following the 2002 master plan for the AUB campus by Sasaki Associates and Partners, the AUB wanted to establish a centre for public policy and international affairs and for that centre to have a building with an architecture that would best represent the mission and value of the new institute.

The Issam Fares Institute for Public Policy and International Affairs was established in 2004 as an independent, research-based, policy-oriented institute, with the aims to harness, develop and initiate policy-relevant research in the Arab region. The Institute is committed to expanding and deepening knowledge production in and about the Arab region, and creating a space for the interdisciplinary exchange of ideas among researchers, civil-society actors and policy-makers.

B. How were the architects and specialists chosen?

The AUB Facilities Planning and Design Unit prepared a competition brief and a Jury was named for the competition composed of Lebanese and international experts. The Jury consisted of the following:

- Dr. John Waterbury: President of AUB and Chairman of the Jury
- Roueida Ayache: Architect (France)
- Donald Bates: Architect (Australia)
- Stephen A. Campbell: Architect (USA)
- Nabil Gholam: Architect (Lebanon)
- Barbara Hoidn: Architect (Germany)
- Jala Makhzoumi: Architect & Faculty Member (Iraq)
- Robert Saliba: Architect & Faculty Member (Lebanon)
- George Arbid: Architect & Faculty Member (Lebanon)

AUB held a one stage competition inviting five internationally renowned studios to hand in the full concept project and fee proposals. The five teams invited were:

- Childs Bertman Tseckares Architects, Boston, USA, in association with the Erga Group of Lebanon.
- Hashim Sarkis, in collaboration with Anmahian Winton Architects, Lebanon.
- Office dA, Boston, USA, in partnership with Rafik El-Khoury & Partners, Lebanon.
• Vincent James Associates Architects, Minneapolis, USA, in partnership with Samir Khairallah & Partners, Lebanon.
• Zaha Hadid Architects, London, UK.

The competition was launched on November 2005 with a submission deadline of February 2006. The presentations and Jury deliberations were held on 16-17 February 2006.

C. General programme objectives

AUB set a clear objective for the architecture of the new building. It had to represent the AUB’s ambitions in the 21st century, and had to be able to accommodate the specific functions and needs of the modern-day think-tank, one where scholars, journalists, diplomats and policy makers who are at the centre of the work of the Institute will be able to teach, research, convene and collaborate. It had to reflect such a collaborative approach by offering the space and facilities necessary for intense dialogue, as well as a structure which is in harmony with the rest of the university.

As AUB also gives great importance to its landscape, with some of the trees on the site being more than 150 years old, they asked the architects to preserve as much of the green surroundings as possible. Another important issue to AUB was safeguarding of the view to the Sea from the Green Oval and the surrounding buildings.

Corresponding to the general objectives of the Institute, the architecture programme is composed of: research and administration offices; seminar and workshops rooms; conference room/auditorium; reading room; recreational lounge; and roof terrace.

IV. Description

A. Building data

- Total site area: 7'000 m²
- Total floor area: 3'000 m²
- Auditorium capacity: 100 seats
- Floors: 6
- Maximum height: 22 m
- Length of cantilever: 21 m
- Total surface of fair-faced concrete: 6'000 m²
- Total surface area of glazing: 800 m²

B. Evolution of design concepts

Response to physical constraints

The architect responded very intelligently to the physical constraints of the site. As mentioned, the trees that were present on the site (some older than 150 years) hold historic importance to AUB, so the architect made sure that all of them were preserved. Apart from that, the architect was tasked to keep the vista facing the Mediterranean open to views from the opposite building and the Green Oval. The architect responded to the restraints by producing a design that significantly reduces the building’s footprint by “floating” much of IFI’s
facilities above the entrance courtyard so the existing landscape is preserved and leaves half of the 70-metre-long, Mediterranean-facing surface open to the Green Oval and Fisk Hall.

Response to user requirements

After the competition winner was announced and the Jury’s recommendations and AUB’s Facility Planning and Design Unit’s Technical Review comments were made, the architect fulfilled the spatial and technical recommendations. The building itself has four entries: one on the east facing Nicely Hall, where one enters the ground-floor auditorium that has another entry on its southern side. A ramp leads to a third entry on the western side, overlooking the Green Oval, and the auditorium itself has its own direct entry from the western part facing the middle and lower campus. The individual entry for the auditorium was proposed so that the Institute can host large conferences and presentations without disrupting students, fellows and researchers working throughout the building. The administration of AUB, the Institute, the FPD Unit and users are all extremely satisfied with the response of the architect to the programme and to the needs and nature of the Issam Fares Institute.

The technical rooms such as the server room, the mechanical room, the electric room, the water tank and other maintenance areas such as the storage and janitor rooms are all located on the auditorium floor. The auditorium itself also has very functional supporting spaces such as a lounge, a breakout room, translators room, projection room, control room and toilets.

The first floor is composed of two research offices, one seminar room and other communication and supporting spaces: lobby, stairs, lift, toilets and electric room. On the western side, overlooking the preserved trees and landscape, the building has a so-called “hardspace”, a courtyard with concrete flooring and benches, very favoured and utilised in particular by AUB students. The upper floors of the building also cover the courtyard, thus protecting it from rain. The second floor is composed of the director’s office, the assistant director’s office, one researchers office, the researchers lounge, and the communication and supporting spaces: lobby, stairs, lift, toilets, utilities room and electric room.

The third floor has two research offices, two seminar rooms, a kitchenette, and communication and supporting spaces: lobby, stairs, lift, toilets and electric room. The fourth floor has five research offices, a workshop lounge, a researchers’ assistants office, a workshop conference room, a breakout room, translation room, a smart zone, a kitchen, and communication and supporting spaces: lobby, stairs, lift, toilets, server room and electric room. The top floor, the fifth, has a large reading room, an interns’ office, and communication and supporting spaces: lobby, stairs, lift, a storage room with an access to the roof, toilets, electric room, and the roof terrace overlooking the Mediterranean and the landscape to the north and west.

Purely formal aspects

The building represents itself in a very dynamic way, cantilevering a big part of the structure over the courtyard and overlooking the old Cypress and Ficus trees. The glass wall on the western side of the building, on the third and fourth floor, gives the reading and conference/workshop rooms an impressive view onto the immediate landscape and the old trees. Equally impressive views can be found on the roof terrace that overlooks the landscape and the Mediterranean Sea to the north. Another impressive aspect to the building’s design is that the architect kept the height of the building in line with the adjacent trees, and that is immediately apparent when one looks at the building’s southern facade.
The architect’s intention in the interior was to create a transparent space subdivided by glass walls that, following later stages of consultation with the Facilities Planning and Design Unit of the AUB, were pigmented so that the rooms have more privacy than initially intended.

The two-storey-high atrium (smart zone), covered in skylight glass, offers an attractive leisure and collaborative space for the users of the Institute, in particular when the terrace cannot be used because of the weather.

Landscaping

A key aspect of the architect’s concept was the integration of the landscape with the building’s design. Preserving the old Ficus and Cypress trees was essential to the design of the building. By cantilevering the upper floors of the building (the furthest point is 21 metres) the architect creates a very pleasant courtyard overlooking the immediate landscape on the western side and that on the middle campus. Even the ramp connecting the southern entry to the second floor slithers very smoothly between the trees and thus integrates the landscape with the building. Furthermore, the project introduced a system of ramps within its site, enabling a connection with the upper and middle campus for pedestrians and wheelchair users.

C. Structure, materials, technology

The IFI building is built uses high-quality in-situ reinforced concrete. The total surface of the fair-faced concrete in the building is 6,000 m², the amount of the concrete cast in-situ was 4,200 m³, and 800 kg of steel were used for the structure. Although the construction technology of producing in-situ fair-faced concrete is not new in Lebanon, credit should be given to the local builders and technicians for the high-quality finishing.

The building’s distribution of services and utilities space is planned in such a way that they are very easily accessible and convenient to maintain.

D. Origin of

Materials

The material used for the construction of the building is local, while the largest part of the material used in the interior of the building, such as the glass partition profiles, doors and furniture, were imported.

Labour force

The labour force used throughout the project was local and Syrian. Data provided by the architect indicate that 90 builders and technicians were employed 1,100 days totalling 500,000 hours of individual work in constructing the IFI building.

Professionals

Primary client: American University of Beirut (AUB)
University President: Dr. Peter Dorman
Facilities planning and design unit Director: Bassem Baroumi
IFI Project manager: Alain Eid
Client: Issam Fares Institute for Public Policy and International Affairs

Director: Dr Rami Khouri

Architects: Zaha Hadid Architects

Design: Zaha Hadid and Patrik Schumacher

ZHA Project architect: Saleem A. Jalil

ZHA Project team: Christos Passas, Saleem A. Jalil, Graham Modlen, Human Talebi, Brandon Buck, Miya Ushida

ZHA Competition team: Saleem A. Jalil, Rokhsana Rakhshani, Teakjin Kim, Ben Holland, Charbel Chagoury, Anas Younes, Fulvio Wirtz, Mariagrazia Lanza, Reneta Dantas

Contractors: Kettaneh Construction s.a.r.l

Project Director: Bahzad Choubassi

Site Manager: Elie Awaad

Project coordinator: Sabine Choubassi, Assem Soubra

Mechanical coordinator: Georges Saade

Structural engineers (post-tension): Darwesh Haddad

Consultants:
Local architect: Rafik El Khoury & Partners (Hazar Mansour, Roger Skaff)

Structural engineering: Rafik El-Khoury & Partners (Rafik El Khoury, Georges Sfeir, Maya Charry, Guy Ghosn, Roger Skaff)

Mechanical engineering: ZEF London (DD stage) / Rabih. Rafik El Khoury & Partners (Issam Mourrad)

Electrical engineering: Rafik El Khoury & Partners (Karim Nammar)

Acoustics: Rafik El Khoury & Partners (Wassim Sader)

Contract administrator: Rafik El Khoury & Partners (Roger Skaff, Zeina Bou Mikhael)

Subcontractors:
Skylight: Alumco

Metal stairs and railing: Mechrek Group

Mechanical room aluminium louvers: SKAB

Lifts: Mitsulift Elevating Standards

Formwork and concrete shear walls: Kettaneh Construction

Concrete floor: De-Concrete

Gypsum boards and paint: Pillar Plan s.a.r.l.

Blinds: Libel s.a.r.l.

Mechanics, electrics and plumbing: CLIMTECH

Climate Technology Electro-Mechanical Contracting
Internal glass partition profiles: Gemino (local supplier: Debbas and Mirodec s.a.r.l.)
Tables and kitchens: DuPont (local supplier: H.E.C. s.a.r.l.)
Carpet floor finish: Pictura s.a.r.l.
Internal wooden doors and kitchens: Awale Awale
Internal steel coors: Fitzpatrick Sal

V. Construction Schedule and Costs

A. History of project design and implementation

<table>
<thead>
<tr>
<th>Date</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 2005</td>
<td>Competition launched</td>
</tr>
<tr>
<td>February 2006</td>
<td>Submission deadline</td>
</tr>
<tr>
<td>16-17 February 2006</td>
<td>Presentations and Jury Deliberations</td>
</tr>
</tbody>
</table>

Zaha Hadid Architects were announced as the winning entry from five shortlisted architecture offices. A total of 11 international firms requested to participate in the competition.

<table>
<thead>
<tr>
<th>Date</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 2006</td>
<td>Jury Recommendations and FPDU Technical Review comments issued to ZHA.</td>
</tr>
<tr>
<td>May 2006</td>
<td>Negotiations with ZHA on lump-sum fee proposal, and budget for construction</td>
</tr>
<tr>
<td>May 2007</td>
<td>Letter of intent to ZHA/AUB appoints Zaha Hadid Architects as the main consultant on the IFI project</td>
</tr>
<tr>
<td>July 2007</td>
<td>Design kick-off</td>
</tr>
<tr>
<td>December 2008</td>
<td>Submission of the detailed design stage deliverables</td>
</tr>
<tr>
<td>March-July 2009</td>
<td>Three revised detailed design submissions, and review workshops with FPDU</td>
</tr>
<tr>
<td>August-December 2009</td>
<td>Clearance to proceed with the construction documentation stage/Submission of the construction documentation package and two revisions</td>
</tr>
<tr>
<td>December 2009</td>
<td>Demolition of pre-existing structure, site preparation and excavation</td>
</tr>
<tr>
<td>January 2010</td>
<td>Submission of the final construction documentation package</td>
</tr>
<tr>
<td>March 2010</td>
<td>Submission of the final tender documentation</td>
</tr>
<tr>
<td>April 2010</td>
<td>Launch of the construction bidding process</td>
</tr>
<tr>
<td>June 2010</td>
<td>Submission of tenders</td>
</tr>
<tr>
<td>October 2010</td>
<td>Award of the contract for construction to Kettaneh Construction</td>
</tr>
<tr>
<td>January 2011</td>
<td>Commencement of the construction works</td>
</tr>
<tr>
<td>2012</td>
<td>Concrete structure frame completed and cantilever propping released</td>
</tr>
<tr>
<td>2013</td>
<td>External systems rerouting, landscaping and interior finishes</td>
</tr>
<tr>
<td>April 2014</td>
<td>Certificate of construction completion issued to the contractor</td>
</tr>
<tr>
<td>May 2014</td>
<td>Inauguration of the building</td>
</tr>
</tbody>
</table>

B. Total costs and main sources of financing

The total cost of the project was: 8,800,000 USD of which the total cost of the construction was: 6’220’000 USD.
The project was fully funded by Mr. Issam Fares.

Total built-up space is 2’577 m².

C. Qualitative analysis of costs

The cost per built square metre was: 2’413 USD, and the average cost of building in Lebanon is from 900 USD/m² to 1’500 USD/m².

D. Maintenance costs

Due to the highest standard of thermal insulation of the building, thick concrete walls with internal insulation covered by gypsum panels, the maintenance costs for heating and cooling are low in comparison to other buildings similar in size and use in the country. And due to the mild weather in Beirut, the need for heating and cooling is very low throughout the year. The building also has two chillers: one for the auditorium and one for the rest of the building.

E. Ongoing costs and “life performance” of building

Although recently constructed and inaugurated, due to the high standard of the construction works throughout the building and the material used in it, the building will have a long lifespan. And because of the materials used in the exterior and interior of the building, the need for maintenance is very low and will be in the future as well.

VI. Technical Assessment

A. Functional assessment

What is evident when one visits the building is that the space layout in the building is very functional and well-utilised. All of the research and administration offices, reading rooms, the workshop room, the lounge space and the very popular terrace were used throughout working hours. In particular, the lounge space, the lobby and the terrace promote an even greater interaction between the users, something very evident during the morning hours of meetings and during lunch hours. During the interviews conducted with the users, students, researchers, interns, and the maintenance and cleaning staff, it was apparent that all enjoy working at the Institute and that it is very easy to maintain.

One of the main aims of the architect with the division of space by glass walls was to create this transparency of space throughout the interiors. Initially it was planned for the glass to be fully transparent but in later stages of consultations with the AUB’s FPDU, the glass was partially pigmented; nevertheless, the original idea has been retained.

B. Climatic performance

The mild weather in Beirut allows for the building to be naturally ventilated for the greater part of the year. It was also evident during the visit to the building that natural ventilation is secured by partially opening the windows in the offices or the lounge space. The windows throughout the building and in the office spaces provide sufficient light during the whole day, while the west-facing glazed walls of the conference and
the reading rooms on the fourth and fifth floor provide just the perfect light for users. Although blinds are installed in the latter spaces, they are only used during presentations, as the shape of the inclined walls and the adjacent trees provide perfect shading during hot summer days by allowing light, but not direct sunlight, in the space. The double-high atrium over the lounge area, which has a skylight glass cover, and an opening (void) on the fifth floor lobby, provides sufficient light for the communal area on the fourth floor where the majority of researchers’ and administration offices are located.

C. **Response to treatment of water and rainfall**

The water collected from the roof and terrace is used to water the surrounding landscape.

D. **Environmental response**

As mentioned in previous sections of the review, the architect made a great effort and succeeded in preserving the historic Cypress and Ficus trees, and, furthermore, made them an integral part of the design. Great importance was also given to the layout of the courtyard and the view towards the adjacent trees and the landscape of the middle campus.

E. **Choice of materials, level of technology**

The fair-faced concrete used in the building is constructed to the highest standards and is a well-suited material for this building and the local climate. The thick concrete walls, with internal thermal insulation covered by gypsum boards, provide great insulation for the building throughout the year, thus allowing it to perform much more economically in electricity consumption than most other buildings.

F. **Response to, and planning for, emergency situations**

The building complies with the local applicable codes for earthquake protection. It also complies with the local and international fire protection codes such as the US NFPA (National Fire Protection Association) codes, and with local and international EMP codes such as the US NEC (National Electrical Code).

The building has a fire-protection system distributed throughout the building, with water sprinklers covering all the interior spaces, and wide stairs separated from the lobby by fire-protective doors.

In case of fire or other emergencies, the building can be approached very easily; there is a vehicle road on the northern side separating the building plot from the middle campus.

G. **Ageing and maintenance problems**

The building was constructed recently and there is no notable problem. The finishing material in the interior (the concrete walls) makes it very easy to maintain the space, as does the material used for the exterior. The same goes for the flooring, as most of it is of a hard material and needs only minimal maintenance. The only surfaces that need to be maintained are the painted walls and the few spaces that have carpets on the floor.

H. **Impact of the project on the site**

The building’s impact on the site is very visible, be it in regard to its physical or functional presence. The massing and volume distribution fits very well in the topography in which it is situated and one can see that
the nearby Ficus and Cypress trees are perfectly integrated to the project. Although not small, the building feels very subtle in its location due to its form and appearance. The same can be said when we speak of the building’s integration with the Green Oval square and the historic buildings surrounding the Oval.

Vehicular circulation wasn’t influenced by the project, but pedestrian traffic has experienced a great improvement. The project created a network of convenient ramps, accessible also to wheelchairs, allowing a great increase of pedestrian circulation around and through the site itself and creating new connections between the upper and middle campuses.

I. Durability and long-time viability of the project

In a very short period of time, the Issam Fares Institute has established itself as one of the most important think tanks of public policy and international affairs not only in Lebanon, but in the whole region. It was evident that the Institute was very active in organising seminars, debates and other events throughout the year, and that it was very popular with the local and international scholars and researchers, witnessed by the great demand to join the Institute as researcher or intern.

J. Interior design and furnishing

Some of the larger items of furniture, such as the big table in the conference room, were designed by the architect but, because of their size, built on site. Most of the furniture, made by international brands, was sourced locally, and almost all was chosen by the Institute in consultation with the Facility Planning and Design Unit of the AUB.

VII. Users

A. Description of those who use or benefit from the project

The Institute is used by researchers, scholars and students of public policy and international affairs, who are of diverse income and social backgrounds.

B. Response to project by clients, users, community, etc.

The architectural professional community is divided, mainly when it comes to the Institute’s aesthetic integration with the site and surrounding historic buildings. But the majority of the professional community thinks of the project as a great asset to the campus, AUB and Beirut. They describe the design as very contemporary, representative of its time, and one that pushes the physical abilities of the materials used to the limit, while the art community views the building as a piece of art.

The users of the building also praise the design of the building and enjoy working in it. The interviewed administrative staff, researchers and interns were, in the majority of cases, very proud that the Institute is located in such a building. The only downside of working in it, according to them, is the high number of visitors, usually students and young architects. The clients, AUB and the Issam Fares Institute management also praise the design and functionality of the interior space. While the students who were found using the Green Oval space had positive comments, some of them, although not familiar with the history of the site and the building that was situated there before the current one, thought that the design of the building was out of context and that it blocked the view to the Mediterranean Sea from the Green Oval. The same opinion was
shared by the users of Fisk Hall. They are only partly correct as the building itself takes up less than half of the view towards the Mediterranean and it is not physically possible to view the Sea from the Oval.

Overall the popular opinion within the campus is that the building is very provocative, contemporary and bold, and that it is an asset to their university.

VIII. Persons Involved

Please refer to the IV.D.4 section above for all project personnel and their roles.

Bekim Ramku
April 2016
First floor

Cross section
Situated on the upper campus, the Issam Fares Institute crowns the historic Green Oval, one of the most important open green areas on the AUB.

The project introduces a system of ramps within its site, enabling a connection with the upper and middle campus for pedestrians and wheelchair users.
The ramp connecting the southern entry to the second floor slithers very smoothly between the trees and thus integrates the landscape with the building.

The massing and volume distribution fits well in its topography and the building feels very subtle in its location due to its form and appearance.
Some of the larger items of furniture such as the big table in the conference room, were designed by the architect and, due of their size, built on site.

The windows throughout the building and in the office spaces provide sufficient light during the whole day, while the west-facing glazed walls of the conference and the reading rooms on the fourth and fifth floor provide a perfect light for users.
One of the main aims of the architect with the division of space by glass walls was to create this transparency of space throughout the interiors. Initially, the glass was supposed to be fully transparent but in later stages of consultations with the AUB, the glass was partially pigmented.

The lounge space, the lobby and the terrace promote an even greater interaction between the users, especially during the morning hours of meetings and during lunch hours.