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Background: Tubulointerstitial fibrosis (TIF) is one of the main Az, L Bz, > = E N
pathological features of various progressive renal damages and ’ » e

chronic kidney diseases. Mesenchymal stromal cells (MSCs) have been
verified with significant improvement in the therapy of fibrosis diseases,
but the mechanism is still unclear. We attempted to explore the new
mechanism and therapeutic target of MSCs against renal fibrosis
based on renal proteomics. Methods: TIF model was induced by
adenine gavage. Bone marrow-derived MSCs was injected by tail vein |
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after modeling. Renal function and fibrosis related parameters were g3 S it g 1l ks of i B 5 ey s i G G 000G
assessed by Masson, Sirius red, immunohistochemistry, and western blot. Serum urea ritrogen level C Serum creatinine level. D 24-h urinary protein, E Holistic view of rat kidney. N = § (per group), data are presented 2

. . . mean £ SD, and analyzed by one-way ANOVA followed by Bonferroni post hoc testing. *P < 0.05, vs. control group, “P < 0.05, vs. adenine group
Renal proteomics was analyzed using iTRAQ-based mass spectrometry.

Further possible mechanism was explored by transfected galectin-3
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2 cells with lentiviral vector. Results: MSCs treatment clearly HER :%—"2
decreased the expression of a-SMA, collagen type |, II, I, TGF-f1, 3
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Kim-1, p-Smad2/3, IL-6, IL-1B, and TNFa compared with model rats,

while p38 MAPK increased. Proteomics showed that only 40 proteins Siurs Red 3

exhibited significant differences (30 upregulated, 10 downregulated) 2 5300 #ﬂj

compared MSCs group with the model group. Galectin-3 was %:é,m

downregulated significantly in renal tissues and TGF-f1-induced rat Masson §§,w 3

tubular epithelial cells and interstitial fibroblasts, consistent with the H

iTRAQ results. Gal-3 KD notably inhibited the expression of p-Akt, Fo N Control  Adenine Adenine+MSCs
B 1

p-GSK3f and snail in TGF-f31-induced HK-2 cells fibrosis. On the § 300 i

contrary, Gal-3 OE obviously increased the expression of p-Akt, p- 2 2m0

GSK3f and snail. Conclusion: The mechanism of MSCs anti-renal % o 3

fibrosis was probably mediated by galectin-3/Akt/GSK3f/Snail § T
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signaling pathway. Galectin-3 may be a valuable target for treating Fig. & MSC treatment reduced kdney injury scores and colagen st in the tubulointerstitum by hi

. . analysis of renal tissues from adenine-induced rats. A Hematoxylin-ecsin (H&E) staining. B Masson staining. C Sirius Red staining. Representative
renal fIbI’OSIS. histochemical staining images of Sirius Red staining and Masson trichrome staining images were taken in kidney sections at 5 days post-MSCs

treatment (scale bar, 100 um). The statistical graph shows the areag. of the positive area (n = 6-8 in each group) by the Image Pro Plus 60
. oy . . software. N=5 ), dat ted SD, and analyzed ANOVA followed by Bonferroni hoc ing.
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Flg. 1 Diagram of ITRAQ proteomics experimental design. Male Sprague Dawley rats were Induced by adenine gavage for 20 days and MSCs

treatment for 5 days. Kidney tissues were collected, protein cmra:lcd pooled before TRAQ labeling, and o subjacsnc 15 mam spaciomic Col-lll
analysis. Fight TRAQ labels were used: 113 and 114 for Al and AZ; 115,116, andl 117 for B1, 82, and B3; and 118, 119, and 121 for €1, C2, and C3,
respeciivaly: Bloknformatics syl (GO, KEGG Patinway) wat wied 10 cxamine dfferential expression proteins. Mass soocirameiry. resulls were 20000
Farther confirmed by assessing galectin-3 protein with westam blot and G-PCA In Kidney. thsues ond | NRK-52E and MAK49F Induced by hurman [ Fo |
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Fig. 5 MSCs treatment alleviated the hemistry of collagen type | (A), collagen
type I (B), collagen Il type (), and a-SMA (D) in the interstit i lical staining images of collagen type |-,
Il-, &, and a-SMA positive areas in kidney sections at 5 days post-MSC treatment (scale bar, 100 im). The statistical graph shows the integrated
optical density (10D) of collagen type F, Il- ll, and o-SMA positive areas (n = 68 in each group) by the Image Pro Plus 60 software. N = 5 (per
aroup), data are presented as mean + SD, analyzed by one-way ANOVA followed by Bonferroni post hoc testing. *P < 0.05, vs. control group,
*P <005 vs. adenine group
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Fig. 6 MSC trestment ameliorated TGF-31/Smad signaling pathway in adenine-induced rats by westem blot analysis of o-SMA, p-Smad2/3,
Smad2/3, and TGF-E1 in Kidney tissues (A). The statistical graph shows the densitometric analysis of TGF-B1 (B), a-5MA (C), and p-Smad2/3 vs.
Smad2/3 (D) expression normalized to P-actin expression. All experiments were repeated at least 3 times, and similar resuits were obtained each
time. N = 3 (per group), data are presented as mean = SO, analyzed by one-way ANOVA followed by Banferoni post hoc testing. P < 0.05, va.
control group. *P < 0.05 vs. adenine group
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Fig. 7 MSCs activated p3B MAPK signaling and reduced inflasrmation and kidrey injury in ac induced rats. A i istry and
weestem bot of p38 MAPK and Kime1 in kidney Tissues B Westem blot analysis of IL-6, IL-1{, and THFa in kidney rissue, Repreentative
imrwnahisachenical staning images in kdhey Sections (scake bar, 100 pim) and represenitalive westem Blat images of p38 MAPK protein a1 5
days post-MSCs weatrment. The statistical graph shows the densitemetic analysis of p38 MAPK expression normalized 1o GAPDH expression, and
o Kime1, IL-6, -1, and THFo expeession nommakized 1o B-actin eqression. All experiments wene repeated ar beast 3 times, and similar reguls
were abtained each time. N = 3 (per group), data ase presented as mean = SO, analyzed by one-way ANOVA followed by Benfiemoni post hoc
testing, *P< 005, va. control group. P < 005 vi. adening group. € Microaray anabsic of cytokine antibodss revealed that  1atal of 17 oytakines
increased in the serum, such as TINC-], CINC-2, CINC-3, GM-CSF, ICAMH], PNy, IL-1a, IL-2, IL-4, IL-10, L-Selectin, MCP-1, PDGF-A#, Praladiin B, RAGE,
TCK-, TIMP-1, and VEGF, and a 1otal of 8 eytokines decreasexd, induding b-NGF, ONTF, Fractaliine, IL-18, IL-4, IL-13, LIX, and TNFa in the adenine
group. Amang then, there were Sgnificantly statistical differences in both increases in ICAM-1, IL-10, and L-Selectin and reduction in IL-15. While
MECs teatment redusced the serum levels of 18 upregulated eytokines and increased the sersm |evels of B downsegulsted cftokines. N =5 in
each groupl, the mean value of four replicates was first caleulated as the signal value of each factor, then the signal value was nermalized 10
psitive control 1o dlow comparison between subarrays, and finally, the concentration was selatively quantified by using the normalized data. The
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Fig. 8 Global protein expression patiems in adenine-induced rat kidneys. A Volcano plots showing the distibution of significance and fold
change of identified proteins in the Al proteins were plotted with Iog:; (fold change) on the x-
ansmalog..(p«alue)mmermwnmdmecune‘mmawcwd: |mandrmmummcawdhnemansp 005.B K-
means clustering representation of 1otal 40 different expression peoteins (DEPS). The ftuce of the a color scale
{top right) going from low (red) to high (blue). € GO annctation and functional classification of DEPs: Gene mmanqy terms for subcebular
location distribution, molecular functions, and biological process

intergroup ratio of 17 famors was calulaed, and the P values between groups were analyzed by 1 TEST (double-ailed)
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Table 3 List of main KEGG pathways between the adenine group and the Ade+MSCs group

MapName Murnber Upregulated proteins secession [gene narme) P value
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Fig. 11 In vitra, confirmation of diffesentially expressed peotein [galectin-3) expression in MSC-conditioned medium treatment for NRE-45F (A, B)
ancd NRK-SIE (€, D} incuced by hurnan recombinant TGF-B1 (0 nghmiL} with or without galectin-3 inhiitor, TO139 (15 nnollL) gretrestrient by
I vive, of ially expressed pronein (galectin:3) by westem biot (E, F) and QCR (G) in adenine-
induced kidney tissues pest-MSC treatment. Q-PCR ratics, WE ranns. and TRAQ mitios (adeninefadenine +MSCs) wese shown an (heH.The GAPD
H protein was used as a control erENA, and densi ic analysis of galectin3 in
bidniey tissues and cells. Results wese rormalized relative 1o the expression of GAPDH. N =3 (per groupl. Data are presented 2 mean 2 5O, and
analyzed by one-way ANDVA followed by Banferroni past hot testing. *F < 005, vi. contsol group, *P < D5, vs. adenine group in kidney tisues
=7 < 006, vi TGF-{i1 group, “F < 005, v& TGFR1+TD139 group in NRE-45F cels; ™ *F < 005, va TGF1 group, ‘P < 0.05, vs. TGFR1+MSC
aroup in NRK-S2E cells. Westen blot anshvais showed decreased bevels of galectin-3 posi-NGCs treatment in the adenine-induced rats and cells;

TD139 pretreatment further rexuced galectin-3 expression
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Fig. 12 Fluorescence microscopy and westen blot for Gal-3 expression in HK-2 cells. The expression of Gal-3 in thiee kinds of Gal-3 KD cells was
significantly lower than that in the control group, and the expression of Gak-3 in Gak-3 OF cells was obviously higher than in contrel group. Bar
=200pm
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Fig. 13 The possible mechanism of MSCs agairst TGF-A1-induced fitvasis in Gak-3 KD HE-2 cells. In contral groups, TGF-A1 induced the obvious
increages in Gal-3 (A), &-SMA (B), KIM-1 (C), Snail (D), p-Akt (Serd73) (E), p-GEX3R (Serd) (F), the ratio of TIME1/MMPS (G), and FN (H) compared
weih the: nanmal group. MSCs-CM treatrment natably decreated the expresgions of above indexes after TEF-A1 treatment o anly MSCs-CM
without TGFB1 teatrment. DMEM/F12 medium treatment with no serum significanty upregulsted these indexes compared with the TGF-
B1+MSCs-CM group, especially the expression of KIM-1 and the mitie of p-GSKERAGEKEE mere than TGF-R1 group. In Gal-3 KD geoups, the tends.
of each group were similsr 1o thase of the control groups, but lewer than the same subgroup in control cells DMEMF 12 treatment also resulted
in abvieus increases of aforementioned indexes compared with the TGF-S1+MECs-OM group, But the expression of KIM-1 lower than the TGF-21
greup, and the ratio of p-GSKIRGSIEE close 1o the TEFH1 group, Resuls were nanralized relative 10 the expression of Bradin. N = 3 (per
group). Data are presented 2 mean + 50, and analyzed by two-way ANOVA followed by Tukey post hoc teding. *P < .05, vs. contrel group, P
< 005, vi TGF-1+MSCs-CM group, *F < 005, vs. TGF-f1 +DMEM/F12 group, P < 005, va. MSCs-OM grougs compared ernply Tansfection HE-2
cells with Gal-3 KD HE-2 cell, *P < 0.05, vs. normal group, 5P < 005, ve TGF-B1 group, P < 005, ve. TGF-1+MSCs -CM group, P < 006, va. TGF-
B1+MSCs-CM group, P < 005, vi. MSCS-OM group
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Fig. 15 Immunocytochemical staining of E-Cadherin and a-SMA in Gal-3 KD and GJ-]OE HK-2 cells. Gai-3 KD reduced 0-SMA and increased E-
Cadherin expression in HK-2 cells and that Gal-3 OE showed an opposite trend. TGF-31 obviously increased ¢-SMA and decreased E-Cadherin in

Gak-3 OE cells which was mose than in Gal-3 KD cells. MSCs-CM treatment reduced o-SMA and raised the expression of E-Cadherin in both Gal-3
KD cels and Gal-3 OE cells, but more significant in Gal-3 KD cells than in Gal-3 OE cells. DMEM/F 12 also downregulated the expression of a-SMA,
worse than the MSCs-CM group. Bar = 100 um
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Fig. 14 The possible mechanisn of MSCs against TGF-B] induced fhunys in E.al-}DE HE-2 gells. In esnpty tansfection giougs, the variation
trenids [A-H) of each group were similar 1o Fig. 13, In Gal3 0 groups, the variation trends of each group wese smilar 1o these of the conal
greups and Gal3 KD greus, but higher than the same subgreup in Gal3 KD cells In TGF-81+DMEM/12 group, the expression of KIN-1 was ska
benwot thian TGF-A1 gious, but the ratiod of p-GSKBRGEIGH and TIMIPIMMPY were higher than TEF-A1 groun, Resultls were noralized reative
1o the expresgion af f-actin N = 3 {per group). Data are presented a8 mean + 50, and analyged by titrady ANDVA followed by Tukey past hoc
testing. *P < 005, vs. contred groun, *F < 005, vs. TGF-A1+MECs-CM group, P « 005, vs. TGF-21 +DMEM/F12 greup, *P < 006, vs. MSCs-CM
group; compred emply ranshection Hi-2 cells with Gab3 KD He=2 cells, % < 005, va. normal group, °F < 005, va TGFf1 gioup , P < 005, va.
TGF-f1+MSC8 -CM growp, P < 005, vi. TGFA1+MSCe-00 group, P < 005, v MSC-CM grons
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Fig. 16 The schematic diagram of MSCs against TGF-31 induced fibrosis in HK-2 cells. On the one hand, MSCs maybe secrete ary unknown
cytokines which enter the eyteplasm through receptors, sormehow bind 1o galectin-3, and inhibit phosphandation of Akt (Serd73) and GSK33
{5erd), next indibiting dewnstream key EMT-nducing tansesiption factor, Snal. On the other hand, MSCs probably balance the ratio of TIMP1/
MMP which regulates ECM generation and degradation. Ultimately, M5Cs allesiate TGF-f1-inducing fiteosis in HiCZ cells. Funther research is
needed 1o explore which doncrete cytoking secreted by MSCS interacts with galedin-3 and how to regulate the balance of TIMP1LMMPS
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