
Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

User Manual

v5.3.2

1

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

1 Introduction

logFaces is a centralized logging system for applications. It aggregates, analyzes, stores and

dispatches log data and events related to the log data.

There are three players in logFaces architecture:

1. your system producing log data

2. logFaces server consuming log data from large amount of apps and hosts

3. logFaces client presenting log data in real-time, historical or analytical form.

logFaces is designed to work with the following sources and network protocols:

● Apache log4xxx API appenders over TCP or UDP

● Syslog RFC5424 and RFC3164 over TCP or UDP

● Graylog GELF over TCP or UDP

● Plain HTTP/s POST requests with JSON or XML payload

● Raw text log files (for offline processing only)

2

http://logging.apache.org/
https://docs.graylog.org/en/3.3/pages/gelf.html
http://www.ietf.org/rfc/rfc3164.txt
http://tools.ietf.org/html/rfc5424

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2 Getting started with logFaces Server

This section will guide you through the quick process of installation and configuration. logFaces

Server will start after the installation with default settings and trial license for 10 days evaluation.

2.1 Installing and Uninstalling

On Windows, download and run the installer which will walk you through the process. During

installation you will be asked to register and/or run logFaces as Windows service. Linux and Solaris

distributions come as tar.gz archives, just unzip the archive and you're ready to go. Uninstalling

logFaces server is as simple as running the uninstall file located in installation directory. Archived

distributions don't require anything, just remove the entire directory.

2.2 Using silent installer options

Running installer exe with -h flag will display list of options you can use. Amongst them is -q option

for running in unattended mode. It is also possible to use a response file from previous installation

and re-use it, response files located in .install4j directory and named response.varfile.

For example, to run installation silently you can do “lfs.windows.win32.x86.exe -q -varfile

response.varfile”. This will silently install the server using all options specified in response file.

2.3 Running logFaces Server on Windows

If you selected to run logFaces as Windows service, the service named LFS will be registered on

your computer automatically and will run every time you start your computer. Use conventional

service commands to start/stop the service by doing so in command prompt - net start lfs or

net stop lfs.

You can also run the server as a console application by using /bin/lfs.bat.

2.4 Running logFaces Server on Linux/Solaris

● In order to start the server in the terminal do ./bin/lfs console

● In order to start the server as daemon do ./bin/lfs start

● In order to stop the server process do ./bin/lfs stop

● In order to check the server process status do ./bin/lfs status

3

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.5 Server directory tree

Once installed and ran for the first time, the server will explode its default configuration and you will

find several new folders under installation directory. The table below is a brief summary of folders

and their purpose. Normally you won't need all the technical details, but it's a good idea to familiarize

yourself with some internals, some of the files and directories are referred to throughout this manual.

Path Updated with version increments Description

/.install4j yes Visible only on Windows, created by installers.

/bin binaries only
Binaries for bootstrapping the server, content is OS
dependent

/admin yes Admin web application and resources

/conf no Server configuration files

/db no
Relevant only for embedded database, contains actual
embedded database storage files

/doc yes Holds release notes and other documents

/legal no Holds end user license agreements

/lib yes Binary distribution libraries and dependencies

/log no Holds server internal logs

/overflow no Contains overflow files when server overloads

/dropzone no Location for manual log data imports

/temp no Temporally files, cleared on each server restart

Note that folders which are created and updated by the server (those which are not part of version

updates), can be located elsewhere and not necessarily under installation directory. We call these

folders artifacts and sometimes it's a good idea to keep them separately, for example for the backup

purposes or switching from one setup to another. By default all artifacts reside under installation

directory, this is the argument for running the server, and you can change it in /bin/lfs.conf like this:

wrapper.app.parameter.1=HOME

HOME can be an empty folder; when you run the server for the first time, it will create all default

artifacts automatically. Alternatively, you can move other artifacts into HOME or point the above

parameter to another location with different artifacts in there - this is what we often do during tests.

Once again, all this is not required, in most cases the default directory structure is good for nearly all

circumstances.

4

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.6 Integrating log4j-like applications

To work with logFaces, your application needs to be configured by adding several elements to its

logging configuration file. Provided that your system is based on log4xxx API, you should be having

log4xxx configuration file/s, which usually come as property or XML files.

To allow communication with logFaces Server we add an appender to your logging setup. Sections

below will show how to setup such appenders in various situations and using different logging

frameworks.

As of this writing we provide our own appenders for log4j and logback frameworks while .Net, PHP

and C++ can be freely obtained from Apache downloads and don't require any change to work with

logFaces.

Log4j (version 2) as well as logback Java appenders can be obtained from our downloads, place

lfappenders-xxx.jar under your application classpath. Source code is included in the jar, it's

free for everyone to use.

Note that we no longer support log4j v1 because it reached End Of Life and is no longer updated.

Starting from logFaces version 5.3 we only offer appenders based on log4j2.

Alternatively, in case your project is using Maven, you may want to use the following dependency in

your pom.xml. Just make sure to use the most latest version available in the repository.

5

<dependency>
 <groupId>com.logfaces</groupId>
 <artifactId>lfsappenders</artifactId>
 <version>5.3.0</version>
</dependency>

http://www.moonlit-software.com/logfaces/web/download/index.php
http://logging.apache.org/

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.6.1 log4j v2.x appenders

We offer a standard log4j2 appender with asynchronous TCP socket connections and fail over

mechanism. When application emits log statements, they will be queued and sent to logFaces server

by the background thread. In addition to queuing, the appender also knows how to fail over to

another host or save logs to a local file. You can specify how often to retry connections, how many

times to retry and to what host to switch to when all retries are exhausted. This is an example of

log4j2 configuration:

<Configuration packages="com.moonlit.logfaces.appenders.log4j2">
 <Appenders>
 <logFaces name="LFST" application="app1" protocol="tcp" remoteHost="10.0.0.110"
 format="json" backup="STDOUT"/>

<logFaces name="LFSU" application="app1" protocol="udp” remoteHost="10.0.0.111"
 format="xml"/>

<Console name="STDOUT" target="SYSTEM_OUT">
 PatternLayout pattern="%m%n"/>
</Console>

 </Appenders>
 <Loggers>
 <Root level="trace">
 <AppenderRef ref="LFST"/>
 <!--
 <AppenderRef ref="LFSU"/>
 –-/>
 </Root>
 </Loggers>
</Configuration>

The appender works over TCP or UDP, see the protocol attribute. Both can use either JSON

(recommended) or XML format serializers. This format should be matched by the receiver format

on server side.

Configuration above demonstrates both appenders while TCP appender has a backup reference to

CONSOLE appender which gets called when server is down. In fact you can use any appenders for

the backup by referencing its name with backup attribute.

Table below summarizes all configuration properties supported.

6

http://logging.apache.org/log4j/2.x/manual/configuration.html

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

Property Description Default Mandatory

application Identifies application under this name. All logs coming through this
appender will be stamped with this name, which can later be used on
client.

- no

remoteHost Comma separated list of logFaces servers. If more than one host
specified, the appender will automatically fail over to the next host
when current host becomes unavailable. Switching hosts is done in
the loop. If only one host specified, the retries will be done indefinitely
with this host.

- yes

port Port where logFaces server will accept the connection from this
appender.

55200 no

format Defines data serialization format to use with this server, available
options are 'xml' and 'json'. When xml option is specifies, the
appender will produce events in log4j 1.x dtd compliant xml format.
When json options is specified, the appender will produce events in
logFaces proprietary JSON format

xml no

protocol Defines which protocol to use with server. Allowed values are 'tcp' or
'udp'.

tcp no

locationInfo Specifies whether to include location data, such as class name,
method name and line numbers.

false no

reconnectionDelay Rate of reconnection retries in milliseconds. 5000 no

nofRetries How many times to retry before dropping current host and switching
to the next one. If only one host specified in remoteHost attribute, the
retries will go indefinitely to the same host.

3 no

queueSize Size of the event queue. The larger the size, the less likely the data
will get lost when connection is lost, because events will be re-
transmitted to the server when connection recovers. However, queue
size affects JVM heap memory, so be considerate.

500 no

offerTimeout How long to wait (in ms) while offering event to the appender queue.
When server is slower than application and queue gets full, the caller
has an option to wait before giving up. Queue can typically get full
when server is down or when server can't consume log data in the
rate of this appender. WARNING: Use with care as it will slow
down the calling thread when queue fills up.

0 no

backup Reference to an appender to use when logFaces server is not
reachable on any host. This is a backup delegate appender. When
specified and server is unreachable with full queue, every log event
will be delegated to the referenced appender. When not specified, the
events will be discarded. Used only with XML based configuration.

- no

trustStore Location of the trust store holding SSL certificates for connecting to
the remote server, required if server uses SSL receivers

- no

trustStorePassword Password of the trust store file - no

Table 2.1: log4j2 appender configuration properties

7

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

The appenders are capable to delegate markers as MDC variables named marker. For example:

Marker ADMIN = MarkerManager.getMarker("SYS-ADMIN");

logger.trace(ADMIN, "this event is for the attention of sysadmin");

You then will be able to fetch events marked with 'SYS-ADMIN' property. Make sure to specify MDC

mapping on server side so that it contains marker property, this is done in server administration

Context page.

8

https://logging.apache.org/log4j/2.x/manual/markers.html

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.6.1.1 SSL setup

It is also possible to configure TCP appender over SSL transport by adding trust store options as

shown below:

<Configuration packages="com.moonlit.logfaces.appenders.log4j2">
 <Appenders>
 <logFaces name="LFSSL" application="app1" protocol="tcp" remoteHost="10.0.0.1"
 format="json" backup="STDOUT"/>

 <SSL>
 <TrustStore location="file://C:/my-store" password="mypass"/>
 </SSL>

 </logFaces>
 </Appenders>
 <Loggers>
 <Root level="trace">
 <AppenderRef ref="LFSSL"/>
 </Root>
 </Loggers>
</Configuration>

9

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.6.2 logback appender

If you are using logback framework in your applications, you can easily integrate with logFaces.

Below is an example logback configuration :

<configuration>
 <contextName>MYAPPLICATION</contextName>
 <appender name="CONSOLE" class="ch.qos.logback.core.ConsoleAppender">
 <layout class="ch.qos.logback.classic.PatternLayout">

 <Pattern>%d{HH:mm:ss.SSS} [%-5level] %logger{36} | %msg%n</Pattern>
</layout>

 </appender>
<appender name="LFS" class="com.moonlit.logfaces.appenders.logback.LogfacesAppender">

<remoteHost>host1,host2</remoteHost>
<port>55200</port>
<locationInfo>true</locationInfo>
<application>${CONTEXT_NAME}</application>
<reconnectionDelay>1000</reconnectionDelay>
<offerTimeout>0</offerTimeout>
<queueSize>200</queueSize>
<appender-ref ref="CONSOLE" />
<delegateMarker>true</delegateMarker>
<format>json</format>

</appender>
<root level="trace">

<appender-ref ref="CONSOLE" />
<appender-ref ref="LFS" />

</root>
</configuration>

Note how contextName can be referenced to specify the application name. When LFS appender will

unable to work with server, it will fall back to CONSOLE appender referenced by appender-ref –

normally you would want to use some rolling file appender instead of just console.

Meaning of the attributes are identical to our log4j appender described above except

"delegateMarker" option which is specific to logback. If set to true, the appender will automatically

copy logback MARKER into event context which will then appear on server as special MDC property

named "marker". This will allow you to filter and query logs by the markers set in your application.

For example, if you do this in your code :

Marker ADMIN = MarkerFactory.getMarker("SYS-ADMIN");

logger.trace(ADMIN, "this event is for the attention of sysadmin");

Then you will be able easily to fish our all events marked with 'SYS-ADMIN' token. Make sure to

specify MDC mapping on server so that it contains "marker" property, see Context section under

Administration [49] for more details.

10

http://logback.qos.ch/

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

Make sure to place lfsappenders.jar into the class path of your application, it can be found either

in /lib directory of server installation or from our download page. Logback dependency jars must be in

the class path as well, make sure you grab them from the authors web site.

2.6.2.1 SSL Setup

It is also possible to use SSL transport by adding trust store options as shown below:

...
<trustStore>c:/my-store-file</trustStore>
<trustStorePassword>my-password</trustStorePassword>

...

11

http://www.moonlit-software.com/logfaces/web/download/index.php

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.6.3 log4php appender

log4php comes out of the box with its own socket appender and can be directed to logFaces server,

using conventional configuration file. Below is an example of such configuration for both TCP and

UDP transports. You will normally need to use one of them:

<configuration xmlns="http://logging.apache.org/log4php/">
 <appender name="lfs-tcp" class="LoggerAppenderSocket">
 <param name="remoteHost" value="localhost" />
 <param name="port" value="55200" />

 <param name="timeout" value="2" />
 <layout class="LoggerLayoutXml">
 <param name="locationInfo" value="true" />
 <param name="log4jNamespace" value="true" />
 </layout>
 </appender>
 <appender name="lfs-udp" class="LoggerAppenderSocket">
 <param name="remoteHost" value="udp://localhost" />
 <param name="port" value="55201" />
 <layout class="LoggerLayoutXml">
 <param name="locationInfo" value="true" />
 <param name="log4jNamespace" value="true" />
 </layout>
 </appender>
 <root>
 <level value="TRACE" />

 <appender_ref ref="lfs-tcp" />
 <appender_ref ref="lfs-udp" />

 </root>
</configuration>

Note the timeout parameter in lfs-tcp appender, if you choose to use TCP version beware that every

log statement will cause new socket connection to open against logFaces server. Being very reliable,

the TCP appender may cause delays when your server is down or its network is slow. Having very

long timeouts will cause your page visitors to wait if log server is unavailable. UDP appender comes

to the rescue, but UDP is inherently unreliable protocol so there is always a chance that some of the

datagrams will get lost. The conclusion – choose wisely upon your needs and circumstances.

12

http://logging.apache.org/log4php/docs/appenders/socket.html
http://logging.apache.org/log4php/

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

Below is an example of what normally happens in PHP code. Note how we use MDC 'application'

property to let logFaces server know which application the logs are coming from:

<?php
 // 1. use the path where you unpacked log4php
 include('/development/testphp/php/Logger.php');

 // 2. point to configuration file which must include logFaces appenders
 Logger::configure('/development/testphp/log4php.xml');

 // 3. fetch a logger, any name is OK, best to use names which will
 // be easy to use in logFaces hierarchy like this
 // logFaces will split it into package-like notation for easier traceability
 $log = Logger::getLogger('com.mycompany.myproject.mypage');

 // 4. specify application (domain) name, this is optional.
 // it will allow logFaces server to associate logs with 'application' token
 // if not specified, the logFaces will use the host name of the originating logs
 LoggerMDC::put("application", "my-product");

 // 5. typical logging stuff...
 $log->trace("this is a trace message");
 $log->debug("this is an info message");
 $log->info("this is an info message");
 $log->warn("this is a warning message");
 $log->error("this is an error message");
 $log->fatal("this is a fatal message");
?>

13

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.6.4 log4js-node appenders

The log4js-node project is an awesome Java Script implementation of log4j which can be used in

server applications (node.js) as well as client side (browsers). We have contributed UDP and HTTP

appenders to this project. There you will find the up to date usage instructions and code samples.

This is how you will want to consume either of the appenders in your work:

npm install log4js @log4js-node/logfaces-http
npm install log4js @log4js-node/logfaces-udp

Server side application based on node.js can use either HTTP or UDP appenders. Client side

application, obviously, can only use HTTP appenders, there is no way to send UDP datagrams from

the browser as of this writing.

Logs generated by these appenders will have to find a receiver at logFaces server side, so when you

configure the appenders make sure there is a receiver configured on the other end to process the

incoming data. Note that both receivers must use the JSON format because both appenders

generate data in this format.

If you are going to use UDP appender, there should be a log4j UDP receiver on the server side.

Make sure that the host and port appender parameters correspond the receiver configuration.

If you are going to use HTTP appender, there should be a web receiver on the server side. Make

sure that the appender url configuration matches the one mapped by the receiver.

Note the application parameter in both appenders - use it to identify the application (or as we

call it - 'domain') on the server side. All the logs generated by appender will automatically show up as

part of configured application to use later in queries, filters, etc.

14

https://github.com/log4js-node/logFaces-HTTP
https://github.com/log4js-node/logFaces-UDP
https://www.npmjs.com/package/log4js

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.6.5 log4net appender

If your system is .Net based and using Apache log4net API for logging, you can use its out of the box

UdpAppender :

<log4net>
 <appender name="logFaces" type="log4net.Appender.UdpAppender">
 <param name="RemoteAddress" value="10.0.0.110" />
 <param name="RemotePort" value="55201" />
 <param name="Encoding" value="UTF-8" />
 <layout type="log4net.Layout.XmlLayoutSchemaLog4j, log4net">
 <locationInfo value="true" />

 </layout>
 </appender>

 <root>
<level value="ALL" />
<appender-ref ref="logFaces" />

 </root>
</log4net>

As mentioned earlier, logFaces can listen for TCP and/or UDP. In this example, we use UDP
appender - make sure that RemotePort attribute in this example corresponds to the one configured in
logFaces.

2.6.6 NLog appender

If your system is .Net based and using NLog logging platform, you can use either TCP or UDP or

even both of them depending on your needs. Here is the configuration sample :

<?xml version="1.0" encoding="utf-8" ?>
<nlog xmlns="http://www.nlog-project.org/schemas/NLog.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <targets>
 <target name="console" xsi:type="Console" />
 <target name="logfile" xsi:type="File" fileName="file.txt" />
 <target name="lfs-tcp" xsi:type="Network" address="tcp://localhost:55200" />
 layout="${log4jxmlevent:includeMdc=true:appInfo=MYAPP}"
 <target name="lfs-udp" xsi:type="Network" address="udp://localhost:55201" />
 layout="${log4jxmlevent:includeMdc=true:appInfo=MYAPP}"
 </targets>

 <rules>
 <logger name="com.package1.*" minlevel="Error" writeTo="lfs-tcp" />
 <logger name="com.package2.*" minlevel="Trace" writeTo="lfs-udp" />
 </rules>
</nlog>

Note how we use 'appInfo' attribute to identify your application name, and 'includeMDC' to make
sure mapped diagnostic context is transmitted to the server (optional).

15

http://nlog-project.org/
http://logging.apache.org/log4net/release/sdk/log4net.Appender.UdpAppender.html
http://logging.apache.org/log4net/index.html

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.6.7 log4cxx appender

If your system is based on C++ and using Apache Log4cxx API for logging, you should configure it by

adding XMLSocketAppender included in log4cxx API itself. Here is a snippet of configuration

example:

The meaning of the attributes is identical to the previous Java example. However, note that

XMLSocketAppender doesn't (yet?) provide "Application" and "LocationInfo" attributes. This is not a

problem for logFaces – those loggers which don't correspond to any logging domain will be

automatically grouped in logFaces under name "Default Domain". Unfortunately, until those

attributes are supported by the underlying API's, we will have to add some code when initializing the

logger in the application. The code snippet is shown below, what we do is simply getting into a root

logger, digging out the LFS appender from there and manually set the missing attributes of the layout

like this:

In any case, those missing attributes are not a show stoppers, your application can still work with

logFaces out of the box with those limitations.

IMPORTANT:

The MDC (message diagnostic context) works only in the context of
the current thread. In case you have several threads in your
application you should add MDC::put("application", "xxx") call in
the beginning of every thread. Otherwise, the log statements coming
from those threads will be orphaned and server will automatically put
them under "Default Domain" which might be a bit confusing.Future
versions of logFaces will include proper appender to avoid those
workarounds.

16

http://logging.apache.org/log4cxx/index.html

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.7 Understanding data model

Log data is represented in logFaces with two entities – repository and log event. You will also find

corresponding tables in RDBMS schema or as MongoDB collections, depending which database you

are using.

Repository holds a description of entire log storage, meta-data would be a good term to describe it.

These are names of hosts, applications, loggers and exceptions ever recorded by the log server.

Repository becomes more or less static once the system fills up with data and it's used mostly as a

helper for getting lists of things. For example, when you need to fill in a query involving a host name,

the repository will provide a list of all known host names.

Log events are represented in logFaces as a flat collection of fixed attributes. The attribute names

are summarized in the table below:

Attribute name Short name Type Description

loggerTimeStamp t Long Time stamp as specified by the source or server

sequenceNumber q Long
Sequence number, each event produced by logFaces
has running sequence number

loggerLevel p Integer Severity of event expressed in term of log4j levels

domainName a String Name of the domain (or application) originating the event

hostName h String Name of the host originating the event

loggerName g String
Name of the logger (class, module, etc) originating the
event

threadName r String Name of the thread originating the event

message m String Message content

ndc n String Network diagnostic context

thrown w Boolean Indication whether the event is a thrown exception

throwableInfo i String Stack trace of thrown exceptions

locFileName f String
File name (of the source code location originating the
event)

locClassName c String
Class name (of the source code location originating the
event)

locMethodName e String
Method name (of the source code location originating the
event)

locLineNumber l String
Line number (of the source code location originating the
event)

properties p_XXX String

MDC (Mapped Diagnostic Context) properties where
XXX is a property name. There could be an arbitrary
number of named properties which get specified
manually when setting up the server. See 'Context'
section in administration for more details.

17

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/MDC.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/NDC.html

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

This data model is further realized in RDBMS schema for each database type supported as well as

main data collection in MongoDB. In case of MongoDB the attribute names are reduced to a

minimum to save the storage space as shown in “Short name” column. These short names are also

used by TCP appenders when using JSON format as well as web receivers.

18

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.8 Working with regular expressions

Regular expressions are used quite extensively in logFaces. You will meet them to process things

like unstructured syslog content or parse log files in arbitrary text format.

Using regular expressions effectively requires some practice and could be frustrating in the

beginning. Working with complex expressions to crunch large amounts of unstructured text may

easily become a daunting task if not applied systematically. So here we come with a solution to make

your life easier even if you are a beginner with regular expressions.

The idea was originally borrowed from logstash project (all the credits go to this community!) and

adopted for our needs with some insignificant polish.

logFaces server is shipped with regular expression patterns library – a text file you will find under

/conf directory on your server. This library initially contains some commonly used expressions and

you can extend and modify them as you go.

Patterns library can be shared amongst clients – they have a built-in capability for parsing log files,

see 'Viewing raw log files' section for more details.

Consider some simple pattern examples:

WORD \b\w+\b
HOUR (?:2[0123]|[01]?[0-9])
MINUTE (?:[0-5][0-9])
SECOND (?:(?:[0-5][0-9]|60)(?:[:.,][0-9]+)?)
TIME (?!<[0-9])%{HOUR}:%{MINUTE}(?::%{SECOND})(?![0-9])

Each line in the library contains exactly one pattern which has a name (left part) and the expression

(right part). Name and expression must be separated by space character.

Note how any expression can reference other patterns by name using %{xxx} notation. Before the

expression is used, server will unfold all the references to produce plain standard regular expression.

In practice this could be very large piece of text, quite often non-readable by humans.

Using this technique makes it very easy to prepare fairly complex expressions to parse unstructured

log data in almost any format.

19

http://logstash.net/

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

And now is the key part – using named groups to extract text phrases. All modern regular

expression engines support capturing groups, which are numbered from left to right. This feature is

hidden in the format we use. Consider an expression like this.

%(WORD:hostName) %(WORD:loggerName)

Note how WORD pattern is used along with hostName and loggerName which are fixed attributes

in logFaces, or so called named groups in regex language. The example above will take a two word

sentence and extract first word into hostName variable, and the second word into loggerName

variable.

Here is a real world example, the expression below will parse Apache access log and extract the

data into logFaces attributes (it should be one line!):

APACHELOG %{IPORHOST:peer} %{USER} %{USER} \[%{HTTPDATE:loggerTimeStamp}\] "(?:%

{WORD:verb} %{NOTSPACE:request}(?: HTTP/%{NUMBER:httpversion})?|%{DATA:rawrequest})" %

{NUMBER:response} (?:%{NUMBER:bytes}|-) %{QS:referrer} %{QS:agent}

Note that attributes named 'peer', 'verb', 'request', 'httpversion', 'rawrequest', 'response', 'bytes',

'referrer', 'agent' are not part of the logFaces schema but they still can be extracted and used. This is

when MDC (mapped diagnostic context) comes into play.

MDC allows you to extend the fixed attributes with more attributes and be able to index them. So, if

you map the above attributes as MDC in your server context, you will be able to use those attributes

in tracing, lockups and other logFaces features. MDC management is described in server

administration Context section.

20

http://www.regular-expressions.info/brackets.html

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9 Server administration

logFaces server is administered through a web interface which you will find for the first time at:

http://your-host:8050

It would also be a good idea to bookmark this URL in your browser – you will visit these pages quite

often during initial setup and acquaintance with the product.

Normally logFaces servers are shared amongst many users within organization, this is why the

access to its administration is restricted to someone with special credentials. The user name and

password will be required to get in:

By default, the user name and password are stored on server disk in obfuscated form. Default user

name and password are both 'admin' after installation. Do make sure to change them eventually.

Instead of local authentication it is also possible to delegate user name and passwords to your own

LDAP directory and let it verify the credentials on behalf of logFaces.

By default the server gets accessed over plain HTTP. But it is possible to switch server entirely to be

used over SSL.

21

http://localhost:8050/

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.1 Front end connectivity

Address

If server is installed on a computer with several network cards, you can bind server sockets to a
particular address or a host name. This is a good idea if you need physical separation of the
transport. When 'any-address' is specified, the server will pick the default binding, this will allow
access to server by any address it supports. Otherwise, the access will be strictly by the address
you select.

Port Listening port number (default is 8050)

Secure
Access to this server can be secured over SSL. This option is available only after setting up a
key store in the Security/Network section.

Admin user User name for accessing administration

Admin password
Password for administrator access. Stored in obfuscated form on local disk unless used with
LDAP.

Admin
authentication

mode

In local mode, the authentication of admin users will be performed against locally stored
credentials. This is the default authentication mode.

In ldap mode, the authentication of admin user will be delegated to your LDAP server. Make
sure to specify the admin user name, this is what will be sent to your LDAP. The password is not
required.

22

Figure 2.9.1: Front end connectivity

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.2 Receivers

Receivers are receiving log data from outside world into logFaces server. There are four types of

receivers currently available:

1. Log4j receivers - XML or JSON over TCP, SSL or UDP. These types of receivers will work

with anything based on Apache Logging Framework – log4j, log4net, log4php, logback.

2. Syslog RFC5424 and RFC3164 over TCP, SSL or UDP

3. Web receivers over HTTP

4. Drop zones – offline processing of raw text

It is possible to have as many instances of the same receiver type provided that there is no clash of

resources. Using the links on the right it is possible to pause, resume, modify, remove and test each

individual receiver. Testing is very convenient because it verifies how the receiver will work in real life

under conditions you specify. Icons on the left indicate the state of the receiver – active or not active.

23

Figure 2.9.2: Receivers

http://logging.apache.org/

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.2.1 Socket receivers

Socket receivers can process log data in various formats generated by remote applications and

delivered over simple raw sockets. There is a whole array of frameworks offering ready to use

appenders with log4j XML formats, there are variants available for Java, Python, Perl, PHP, .Net.

If your application is Java based and you are using log4j or log4j2, it is highly recommend to use our

asynchronous socket appenders with JSON format, it has very compact footprint which is great for

systems with high volumes of log data.

It is also possible to use socket receivers with GELF format which is popular amongst tools such as

Graylog, Logstash, Fluentd, etc. The Graylog Extended Log Format is a log format that avoids the

shortcomings and limitations of classic plain syslog.

Typical form for adding new or modifying existing log4j receiver is shown below:

24

Figure 2.9.3: Socket receiver definitions

https://docs.graylog.org/en/3.3/pages/gelf.html

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

Enabled
Makes receiver active or non-active. Not active receivers will stay in the list but will not work.

Description Friendly description or title of receiver, for management purposes only

Protocol Type of protocol to use – TCP, SSL, UDP

Format

Serialization format understood by this receiver. Must correspond to the transmitted data format.
Available options are xml, json, gelf. When xml option is specifies, the appender will produce
events in log4j 1.x dtd compliant xml format. When json options is specified, the appender will
produce events in logFaces proprietary JSON format. When gelf option is specified the data source
is expected to produce events according to Graylog specification.

Address

If server is installed on a computer with several network cards, you can bind server sockets to a
particular address or a host name. This is a good idea if you need physical separation of the
transport. When 'any-address' is specified, the server will pick the default binding, this will allow
access to server by any address it supports. Otherwise, the access will be strictly by the address
you select.

Port Listening port, make sure it's available before enabling the receiver

Time

Which time stamp to use for received log events – the one originating from the source, or the
server local time. Use this option when there are many sources and there is no time server to unify
the times across the applications.

25

https://docs.graylog.org/en/3.3/pages/gelf.html

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.2.2 Syslog receivers

logFaces server has its own embedded syslog server which can be used to consume syslog

messages from any source using TCP, SSL or UDP connections compliant with RFC5424 or

RFC3164. Current implementation of syslog server is designed to works as a collector, or final

destination of syslog events, meaning that it's not designed to relay (or forward) received events to

other syslog servers.

Consuming syslog data is no different from consuming log data from other socket appenders. All you

need to do is to define syslog receivers and setup their parameters properly. Because syslog is a

very loose specification and incredibly fragmented amongst magnitude of devices using it, there are

many ways of how to extract the important information and map it to real data which is later used by

logFaces.

Using regular expressions you will be able to do most of the mappings. Everything about working

with syslog revolves around settings up and testing syslog receivers:

26

Figure 2.9.4: Adding syslog receivers

http://datatracker.ietf.org/doc/rfc3164/
http://tools.ietf.org/html/rfc5424

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

Enabled Makes receiver active or non-active. Not active receivers will stay in the list but will not work.

Description Friendly description or title of receiver, for management purposes only

Protocol Type of protocol to use – TCP, SSL, UDP

Address

If server is installed on a computer with several network cards, you can bind server sockets to a
particular address or a host name. This is a good idea if you need physical separation of the
transport. When 'any-address' is specified, the server will pick the default binding, this will allow
access to server by any address it supports. Otherwise, the access will be strictly by the address
you select.

Port Listening port, make sure it's available before enabling the receiver

Pattern

Provide your own interpretation of syslog message structure by setting a regular expression
pattern. Use patterns library to build and test patterns. If pattern is not specified, logFaces will try its
best to structure the incoming data. This is not always possible and very much depends on the log
data source. See examples below.

Time
Which time stamp to use for received log events – the one originating from the source, or the
server local time. Use this option when there are many sources and there is no time server to unify
the times across the applications.

Application

Leave blank if name of the application is properly transmitted by syslog source. Otherwise this
name will be used as default substitute. If none specified and can't be resolved from the message,
logFaces will use 'appliances' as a default. It is a good practice to always have some meaningful
application name – it will help clients to display structure of logs and do queries.

Debug

Enable this option if you want to see what exactly your sources transmit over the wire. logFaces
server will log incoming traffic in its internal log file. This option should help you to pick a best
pattern and structure the data for indexing. When something gets recorded into internal log, simply
pick up the raw text and use pattern debugger for creating matching patterns. Or use 'test' link to
inject the message directly into receiver. Make sure to enable verbose logging to see the traces. Do
not leave verbose logging for production use for better performance.

To understand the usage of regular expression patterns, lets demonstrate a real world example.

Below is a syslog message transmitted from one of the popular bridges sending a syslog message

from Windows Event Log subsystem:

<29>Aug 24 10:57:06 SERVER-1 Security-Auditing: 4624: An account logged on

If no pattern is used, the receiver will produce a log event with severity INFO, time Aug 24 10:57:06,

host SERVER-1 and message text “Security-Auditing: 4624: An account logged on”. The rest of

the attributes will be ignored.

In some situation this is good enough.

But things can be improved greatly if you tell the parser how to extract the number 4624 which is ID

of windows event in this example and can be indexed.

You may also want to have a “Security-Auditing” token to be used as name of the logger or an

application name, or any other mapped property. So, consider a pattern like this instead:

%{HOSTNAME:hostName} %{NOTSPACE:loggerName}\: %{NOTSPACE:eventID}\: %{GREEDYDATA:message}

27

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

Note how this regular expression is based on predefined patterns wrapped into %{xxx} tokens and

doesn't seem to resemble what we used to call regular expression. In fact it is a valid regular

expression, it's just that it's written in a very concise and structured form. Make sure to familiarize

yourself with regular expression patterns before trying to understand this format. It's very simple and

powerful way for dealing with really massive and complex regular expressions which may span

pages of text.

Applying this pattern will produce an event object with two additional pieces of information we

couldn't get before. It's the loggerName matching to “Security-Auditing” substring in this example.

Logger name is a logFaces attribute, so it can be indexed, used in queries, displayed in separate

columns, filtered by, etc.

Also there is an eventID which is not part of logFaces attributes but is MDC (mapped diagnostic

context) which you can freely use for extending the fixed set of attributes used by logFaces. In this

example, the parser will extract “4624” and set a property named eventID before sending the event

through the process chain. When you map this property name as an MDC context, you will be able to

index those properties, query their values, and so on.

The message body in this example is also altered to “An account logged on” since we extracted the

other pieces from it.

Finally, make sure to test your receivers by clicking on icon on the receivers list. Paste some

actual syslog formatted message and send it to server, the response will be a JSON-like structure

representing the logFaces event. Keep tuning receiver options until test result is just right.

28

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.2.3 Web receivers

Web receivers process HTTP POST requests bound to a specified URL. Server implementation is

targeted for cross domain requests meaning that sender can be located anywhere. Each request

is expected to carry one or several log events in a compact JSON format described here. All web

receivers are mapped to logFaces server base URL which looks like this:

http://your-host:port/receivers

Each individual web receiver URL is appended to the one above, this is how web receiver is

configured in admin:

The receiver above will be mapped to

http://your-host:port/receivers/myapps

It will attempt to process any incoming requests, convert them into log events and pass through the

regular chain of handlers like database persistence, real-time monitoring, triggers, etc.

29

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.2.4 Drop zones

logFaces server is capable of importing raw text files, converting them into data, storing them into

database and let you query them. There are no special requirements for the format of the raw files

except that they should be parse-able by means of regular expressions. If you can write a regular

expression to parse your logs, logFaces will parse and index them for you.

Importing is done by copying files into a special folder which logFaces monitors – drop zone. Arrived

files are then processed one by one by applying parsing rules defined for this drop zone.

Drop zones prevent duplications - when identical content is dropped for processing twice, it will be

ignored for the second time. Drop zones will detect that new data was appended to a file previously

processed – this is done by tracking the check sums of the top and bottom parts of each processed

file. Dropped files are deleted from the drop zone folder once processed successfully or failed. Logs

which failed are stored in separate folder for your inspection, you may want to adjust some regular

expressions and re-drop the content again until it gets through.

Drop zones are defined and set up in the same way as other receivers:

30

Figure 2.9.5: Adding drop zones

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

Enabled Makes receiver active or non-active. Not active receivers will stay in the list but will not work.

Description Friendly description or title of drop zone, for management purposes only

Directory

Drop zone is a monitored location where you can drop raw text files for import. Those locations are
relative to your server installation /dropzone directory. Files can be in any format provided that
they can be parsed by means of regular expressions. Files will be permanently deleted from this
location as soon as server attempts to process them. When a file gets processed partially, the
server will create a special file containing lines which failed parsing. It will be located under
/unprocessed directory in this drop zone location. You will then be able to examine unprocessed
entries, adjust the patterns and re-drop.

CRC size

Server will look at the head and tail of each dropped file (first and last bytes), calculate their CRC
check sums and keeps the track of every record. This parameter defines the length of the head
and tail in bytes to be used for calculating the CRC. Must be positive non-zero value.

CRC is used for dealing with duplicated and appended content. Looking into a head/tail CRC
server will decide whether the content is new, partially processed or already processed in the past.
For example, if several lines were added to the file since its last import, server will detect and
import only those lines which were added

Server keeps small local database where all CRC's are recorded. Every processed file CRC's gets
registered in this database. If you want to clean up this database, remove directory named
/dzcache under your server installation. By default the size of this database is 10000 and specified
in /conf/environment.properties file. When this size is reached the database will start rotating by
removing older records while inserting new.

Pattern
This is a regular expression pattern to match the text in dropped files and extract log data. It may
be a conventional regular expression for matching event attributes, or a combination of pre built
patterns. Use patterns library to build and test complex regular expressions. See examples below.

X Pattern

If you are expecting to process exception stack traces which are normally multi-line fragments of
formatted text, consider specifying this pattern to extract the structure. Typical Java-like stack
traces can be matched with pre-built pattern %{JEX}. If your stack traces look different, consider
adding it to pattern library and re-use. See example below.

Time format

Here you specify the expected date time format of the logs to process in this drop zone. Look here
for supported formats. logFaces will use this format to covert parsed text into numeric epoch time
(number of milliseconds past since 1970). If no time format specified, the server will import all the
logs with current server time, incrementing each event by one millisecond – this is generally not
advisable option.

Application
Application name to be used if not present in the original logs. If not specified logFaces will use
'default' word as a substitute.

Host
Host name to be used if not present in the original logs. If not specified logFaces will use 'default'
word as a substitute. In this context, under the host name we normally expect the host that
originally produced the log event.

Logger
Logger name to be used if not present in the original logs. If not specified logFaces will use
'default' word as a substitute. In this context under the logger name we normally expect a class,
module or component produced the log event.

31

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

Make sure to test drop zones by sending some fragments of the raw files you are expecting to use

directly from administration page. For example, pasting the following lines:

Server will reply with parsed structured data or an error. This way you can tune all parameters until

everything works as expected and before placing the drop zone into a real work stream,

32

Figure 2.9.6: Testing drop zones

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.3 Black list

Often it is desirable to completely block some of the log traffic. This is exactly what black list does in

logFaces. When specified, the black list criteria will discard matching log events before they get any

attention by the server components.

For example, the criteria below will discard events with severity level below INFO or when host name

is an IP address.

33

Figure 2.9.7: Black list example

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.4 Flood management

Sometimes applications would send bursts of repetitive logs or get into long lasting loops sending

redundant useless logs, most of which can be safely ignored most of the time. Typically those are

bugs on the application side or poorly implemented logging strategy. To reduce amount of this kind of

traffic, logFaces offers flood detectors. They will keep your server healthier by reducing amount of

useless inflow and make it easier finding useful data when there is less junk around.

When flood detectors specified, the incoming logs will be probed by each detector in turn and

discarded when necessary. When at least one flood detector believes that log event looks like flood,

this event won't enter the server processing and will be discarded early. So what is flood?

Flood is what we say it is by setting up detector rules - the minimum number (threshold) of events

matching certain criteria detected within specified time window. By changing threshold and time

window we can control the incoming traffic while matching criteria is used to focus on the content.

In the example below, the detector named “TRACE reduction” ensures that there are no more than

10 trace level events within 10 seconds window at all times. Whenever this rule is broken, the

detector discards the incoming logs.

34

Figure 2.9.8: Flood detectors

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.5 Pairing

Pairing is a mechanism for providing single access point to the data when several logFaces nodes

are deployed as a single system. Multiple nodes are used for two purposes: a) for splitting the inflow

when working with large amount of applications and b) for providing fail over. In either case, you

deploy several nodes which do actual data processing against the apps (back end) and another

node for user access only (front end). This way, the users don't have to know which node to connect

to in order to receive the logs, they always connect to a single front end node which is paired with

back end nodes by specifying their connection end points – host, port and SSL option. It is possible

to automatically deploy front end configuration to the back end nodes.

The example below illustrates how this node (front end) is paired with 2 back end nodes at

10.0.0.110 and 192.168.24.130. Since all three nodes are expected to use the same database, all

queries and reports will be served from the front end node. Real time notifications like triggers and

client perspectives are consolidated by all participating nodes. Note that back end administration is

very limited because most of the tasks are done by the front node.

35

Figure 2.9.9: Pairing example

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.6 Using SSL

It is possible to secure socket layers at all fronts - with clients, browsers, applications, databases and

even LDAP access.

logFaces server acts as server and client in the context of SSL simultaneously. It acts as a server

when it accepts connections from clients and applications, and it also acts as a client to other

services it uses like your database, LDAP service, etc. To secure these network layers, logFaces

must be able to verify (and present) certificates to its peers. This is done by introducing SSL

certificates into logFaces server JVM. Note that you can apply full or partial network security. For

example, you may secure the front end or the application layers, but leave connection to database

non-secure, it all depends on the setup you are trying to achieve.

Configuration is done by setting up a Key store for serving an incoming connections and Trust store

for serving an outgoing connections. These stores are files located in /conf directory on your server

and referenced by environment configuration which also keeps their passwords (in obfuscated form).

36

Figure 2.9.10: SSL setup

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

It is possible to use self signed certificates and if you choose doing so, the server can also

automatically generate them for you. Beware of the limitations of self signed certificates, especially

when it comes to the usage with browsers. For the production environments, the better choice is to

use certificates issued by the well known certificate authorities (CA).

In order to import certificates into either of the stores, you will need to provide the certificate along

with the its private key. The certificate must be in the X.509 DER encoded file, the private key must

be PKCS#8 DER encoded file.

If your certificate comes as a chain of certificates and you must use them together, then follow the

instructions below on how to create custom key store manually because it isn't possible (as of this

writing) to use chain certificates in DER format.

37

Figure 2.9.11: Importing SSL certificate into logFaces store

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.6.1 Key store setup

Key stores are used for holding key pairs - certificates and private keys for securing incoming

connections. The easiest way to generate a key store file is shown in previous section using admin

interface. However, if this isn't possible the key store can be created manually or even re-used from

an existing existing key store file.

If you have one already, the /conf/environment.properties file references them by means

of these properties - location and password:

com.moonlit.logfaces.security.keyStore = ./conf/keystore-file
com.moonlit.logfaces.security.keyPass = my-password

Follow these instructions to manually create a key store file and populate it with your certificates and

private key:

1. get hold of this tool named Key Store Explorer (or work from the JDK command line tools to

achieve the same results outlined below)

2. place all certificate files into one file so that it includes the entire chain (just paste one into the

other if there are several public keys), this is your PEM file for the import

3. make sure you have the private key file

4. in Key Store Explorer create new key store of type JKS

5. click on “Import Key Pair” and select PKCS #8 format (if private key is encrypted make sure to

obtain the password for the import)

6. select your certificate and private key files

7. when prompted for the alias - make sure to specify lfs (this is important as logFaces will look

for this alias and if not found it will ignore the rest)

8. when prompted for the password - remember it for logFaces configuration

9. save the generated store and place it in the directory used in logFaces configuration as shown

above

38

http://keystore-explorer.org/

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.6.2 Trust store setup

Trust stores are used for holding certificates which can be used for the outgoing connections the

logFaces server may do during its operation. By default, the trust store used is the one which comes

with the JRE hosting the server instance. It will be found in /jre/lib/security/cacerts file

of your JRE installation. In case of logFaces default JRE it will be just under the logFaces home

directory.

In case default trust store doesn't contain the certificates needed for your setup, it is also possible to

import your own certificates into another trust store located by default in /conf/lfs-

trust.store file. We refer to this store as local or a custom trust store. This store can be created

using the same technique described for the key stores above, but the easiest way to do this is to use

the admin interface as shown below:

Local trust store is configured in /conf/environment.properties file like this:

com.moonlit.logfaces.security.trustStore = ./conf/keystore-file
com.moonlit.logfaces.security.trustPass = my-password

39

Figure 2.9.12: Adding certificates to custom trust store

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.7 Authentication

logFaces server can authenticate client connections. There are two authentication methods currently

available - SIMPLE and LDAP.

Using SIMPLE authentication type requires a single user name and password which can be shared

by team members which require access to the logFaces instance. This very basic authentication

method is dedicated for preventing anonymous access to your server log data.

If you would like each team member to have an individual access to the logFaces server, consider

using the LDAP authentication method as described below.

40

Figure 2.9.13: Simple authentication method

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

LDAP authentication method is a more sophisticated way to manage users access to your logFaces

instances. It maps your logFaces instance to a name server in your organization holding the users

and credentials. When enabled, any client trying to connect to logFaces server will be prompted to

log-in. Collected credentials will then be delegated to the LDAP server which will do the actual

authentication on logFaces instance's behalf.

LDAP server - host and port should be pointing to your LDAP server, make sure that it can be

accessed from the network where logFaces server is installed.

Use SSL – use when LDAP server works over SSL. If LDAP server is using well known root CA, the

communication should work straight away. Otherwise you will want to import your own certificates as

described in Trust store setup section so that logFaces will be able to present them to its peers.

41

Figure 2.9.14: LDAP binding for authentication

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

Bind DN - distinguished name for binding to the LDAP server, logFaces will use this DN in order to

gain an access to user base. Usually those credentials are obtained from LDAP server administrator

and must have permissions for walking user base tree.

Bind DN Password - corresponding password for the binding user.

User base DN - distinguished name corresponding to the location of users to be authenticated.

User filter - LDAP filter for matching users in user base DN. This parameter gives a very

sophisticated way to match users in the user base. The default value attr={0} will match any user

whose user ID is mapped to the attribute named 'attr'. This attribute name varies in different LDAP

implementations, for example in Apache DS this is normally 'uid' while in MS Active Directory it show

as sAMAccountName. Note the {0} parameter – it must be present all the time to match the actual

user ID supplied by the user. When you want to do more complex matching of users, you can specify

fairly complex LDAP filters in this field – please refer to LDAP documentation for the syntax details.

Here is an example, the filter below will only match users from SALES organization unit

(&(ou=SALES)(uid={0}))

So, even when user is part of user base (uid={0}), it will only be attempted for authentication when

she belongs to SALES unit. This way, having fairly large user base DN you filter out only relevant

users for accessing logFaces.

Group base DN - location of user groups sub-tree. Groups will be used for authorization, if you don't

need authorization - leave this field with default value.

Group filter - LDAP filter for matching user membership in groups, which is equivalent to granting

authorities to users. When user logs in, its membership in user groups will be looked upon in “Group

Base DN” and when found, this user will be granted authorities (as per group). And using this group

filter you define how this matching should work, it is very similar to user filter except that it acts on

user groups. The default value is again attr{0} which will match group members mapped to the

attribute named attr. Usually this attribute is named 'member' in most LDAP implementations.

Below is an example of filter which will gran authorities matching the group description (USA) and

user ID matching the one provided by actual user during login.

(&(description=USA)(member={0}))

If you don't need this flexibility, just leave group filter to its default member={0}.

42

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.8 Authorization

After settings up and enabling LDAP for authentication, you can also enable authorization to control

how users get exposed to log data. Authorization is optional.

The process is based on user group memberships.

Each user is normally a member of one a several user groups. You assign access criteria to groups

of interest. When user logs in, logFaces will discover which groups this user is a member of and

construct access criteria based on this information.

User groups are imported from your directory name service by clicking on “Import All Groups” or

“Import With Filters”.

Importing all groups will instruct logFaces server to walk your directory tree under Group Base DN

and list all user groups found there.

Note that some directory servers may have constraints preventing enumeration of a very large lists.

In such case try listing the groups with custom LDAP filter to narrow the search. For example, a filter

like cn=D* will fetch only names starting with D.

Once group names are fetched, you will be able to select only particular groups of interest to use with

logFaces authorization as shown on the illustration below.

43

Figure 2.9.15: Importing user groups

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

Once groups are imported, you can assign an individual access criteria. When a group doesn't have

any criteria assigned, the users of this group will have no access to any logs. Criteria may contain

any complex combination of rules, for example:

44

Figure 2.9.16: Authorization mapping

Figure 2.9.17: Access criteria example

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.9 Database

logFaces can work with different types of data storage which specified in the environment. Currently

we support SQL, MongoDB and BigQuery storage types. This section describes settings relevant to

all types of storage in general, but you will find the specifics in corresponding sections if needed.

2.9.9.1 General options

These are common options applicable to all types of databases used:

Retention is specified in days of log. If you specify "1 week" for example, then latest week of data

will always be available. As time goes, older records are automatically removed while new ones are

appended. You should carefully specify this value according to your needs; it affects overall

performance as well as disk space usage.

Manage schema option specifies whether server should enforce database schema or it should be

managed externally. Default option is 'Auto' – server will create schema based on the templates

provided in its configuration.

45

Figure 2.9.18: Database settings

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

Batch commit size is the size of the buffer used to insert log statements into database as a batch.

The smaller the buffer the more frequently commits will be performed. Depending on the data inflow

intensity, the buffer should be adjusted in such way that it does less frequent commits. On the other

hand, large commit buffer size could be stressful for the database. Optimal sizes are usually in range

of 50 - 500. You should use higher number if your system has frequent spikes of log data, this will

greatly improve the performance of server overall. Half full commit buffers will be committed with a

timer job running every minute.

Number of commit failures specifies how many commits can fail in a row to trigger recovery

mechanism. This mechanism is designed specifically for situations when database goes down for

maintenance or temporally unavailable for some other reasons.

Recovery attempts rate specifies how frequently server should try reconnection with the database if

there are connection problems.

Number of reconnection attempts specifies how many times to try before giving up on database

and switching to a router mode. In the screen shot above, the recovery will run for 30 minutes trying

to reconnect every minute. If during this time database comes back, everything will continue as

normal. Note that during recovery process, incoming log statements are persisted on local disk and

flushed into database when it comes back. When database is unavailable for a long time while

application log keeps coming, there could be quite large amount of those backed up records.

Maintenance schedule is a cron expression which will trigger database maintenance job. This

parameter is optional and applicable only for SQL databases. By default, maintenance of embedded

database will compact local disk storage and optimize indexes. However, it is also possible to write

your own set of SQL statements for the server to execute when the maintenance is due. Server will

look for a file /conf/maintenance.sql file and execute each line in this file as an SQL

statement(s), each line will be wrapped in its own transaction scope, one after the other. One line

can include more than one SQL statement. If statement must be non-transactional, make sure to do

COMMIT statement at the beginning of the line in order to end the transaction server starts

automatically for the line. Make sure to properly test those statements before using them in the

maintenance job. Also make sure to schedule the job to run off peak hours.

Here are some practical examples how to use the maintenance script:

46

http://www.quartz-scheduler.org/docs/tutorials/crontrigger.html

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

The following lines used with Oracle database will reclaim unused space, optimize for better

performance and rebuild all indexes.

COMMIT;VACUUM FULL;
COMMIT;ANALYZE;
COMMIT;REINDEX DATABASE lfs;

Note the COMMIT statement we used in each line; as mentioned above this is done in order to avoid

the execution of the line statements inside a transaction which is started by default for each line.

Basically you instruct the server to commit started transaction without doing anything and then

execute the statements in that line. This should always be done when non-transactional statements

are at hand.

Here is another example - this will perform a retention task by means of the maintenance job instead

of the default built in retention mechanism. In some cases it will perform better especially with larger

databases. The syntax used is of MySQL:

DELETE FROM lfs_log WHERE loggerTimeStamp < (UNIX_TIMESTAMP() - 7 *
24 * 60 * 60) * 1000;

When executed it will remove all records from the table storing all the logs which are older than one

week.

Note how you can create very flexible retention rules by using this simple tool. You could choose to

get rid of a less important logs to conserve space while keeping more important records forever, etc.

Maximum message length (MongoDB and BigQuery) caps log event message body to prevent

flooding the storage with unusually sized log statements. Server will trim messages longer than this

value. Trimming is done only on the 'message' part of log events. Value must be specified in

kilobytes.

47

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.9.2 Commit criteria

In most cases you will want to specify which log events should persisted into the database and which

events to should be discarded. This is done by what we call commit criteria. It's a collection of

Boolean rules which you can manipulate to achieve a fine tuned filtering. The example below

illustrates how to insure that everything except LFS application gets persisted, however if LFS

application emits some warnings or more severe events, they will be persisted as well.

48

Figure 2.9.19: Commit criteria

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.10 Mapped Diagnostic Context

One of the advanced features in many logging systems is diagnostic context attached by the

application to logging events. In log4j and its other flavors there is MDC – Mapped Diagnostic

Context. You can read more about it here.

To provide convenient integration with MDC, logFaces lets you map your application context

variables in such way so that they could later be used in queries and other displays.

With RDBMS you can specify up to 10 different context variables. Those variables are part of

database schema thus the limitation. With MongoDB there is no such limitation, you can add as

many as you need.

You can modify those names any time during run time, but it's best to setup the mapping as early as

possible.

49

Figure 2.9.20: MDC settings

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/MDC.html

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.11 Repository

Repository holds a description of entire log storage, meta-data would be a good term to describe it.

These are names of hosts, applications, loggers and exceptions ever recorded by the log server.

Repository becomes more or less static once the system fills up with data and it's used mostly as a

helper for getting lists of things. For example, when you need to fill in a query involving a host name,

the repository will provide a list of all known host names. Repositories function automatically with any

type of database used and there are several parameter to customize its behavior:

Repository hosts option allows enabling or disabling the recording of host names where logs are

originating from. You can disable this option if host names are not applicable to your setup, or when

your entire system gets redeployed frequently.

Repository limit caps maximum size of repository collection. When repository grows larger than

specified, the server will issue a warning messages to do the cleanup. Server don't have control over

the size of repository size and it may grow very large depending on the usage. It is up to the user to

keep this collection at a reasonable size and periodically remove stale and unused items. This can

be done from client "Domains" view, or by using your database directly.

50

Figure 2.9.21: Repository params

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.12 Custom severity levels

Often there is a need to use custom severity levels in addition (or even instead of) default levels

provided by log4j. If this is your case, there is a way to specify custom levels in logFaces server :

Note how STATS and ATTN levels are defined – these are custom levels in addition to defaults.

Once you add custom levels, they become available throughout the system – in filters, reports,

triggers, etc. Those levels will also appear on client side so that users can utilize them in queries and

displays.

51

Figure 2.9.22: Custom severity levels

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.13 Hosts mapping

All log events are stamped with the origin host name (or IP address). Usually it's done by appenders

but it really depends on the setup and usage pattern. For example, if you are using TCP java

appenders, you application will try to obtain the host name from the computer it runs on, which may

result in something you may or may not like to see. Sometimes it is just convenient to replace certain

host names or addresses with something more meaningful in your environment.

Using hosts mapping you will be able to achieve just that – specify the original names and their

substitutes. When log events received, the server will try to replace their origin accordingly. The

content of hosts mapping follows the format of standard properties file.

52

Figure 2.9.23: Host names mapping

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.14 Plugin management

Plugins are modules written by users who want to extend logFaces functionality. The process of

creating plugins is outlined in this dedicated section and once you have working and tested plugin

module, you can upload it to your server instance and let your team members use it in their client

application or utilize it in Pivot Chain locally.

This page allows basic management of plugin modules hosted by your server instance. It involves

adding new plugins, removing, updating existing plugins and testing them.

53

Figure 2.9.24: Plugins management

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.15 Pivot chain

When log events arrive into logFaces server, they pass through a sequence of modules before they

get dispatched to the database, triggers or clients. This sequence, or a pivot chain, is designed to

allow pre-processing of events before they arrive at their destinations. You can design your own

modules (in the form of plugins) and use them in the pivot.

A pivot plugin typically morphs an incoming event by adding some properties, modifying content, or

discarding the event. Along with the data mutation, the plugin can also act on log events by invoking

custom functionality. Keep in mind that this may directly affect the server throughput because the

processing in the pivot chain is sequential, the events visit every module in the pivot chain one after

the other unless discarded on the way.

The server comes with two built-in pivot modules, the black list and the flood management. You

can enable, disable and customize them to suit your needs, these are the native server modules.

Note that the black list module is always first in the pivot chain followed by the flood management.

We may add more pivot modules in the future.

Custom plugins will be called after built-in plugins have had their say. In the example below there are

two custom plugins, the problem classifier determines the type of error (if the event is an error) and

the slack relay to send the event to Slack channel, if it matches the criteria. Note that you can also re-

order the custom modules in the pivot chain and modify plugin arguments.

54

https://slack.com/

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.16 SMTP settings

Email settings will allow logFaces server to send e-mails when required by reports and triggers.

Here you define outgoing SMTP properties and also can verify that these settings are correct by

sending test email to some recipient.

Click on "Test outgoing email" link to verify that logFaces can send e-mails successfully. Should

anything go wrong, you will be shown an error describing the cause. If everything was correct, you

will receive an acknowledging email.

55

Figure 2.9.25: SMTP settings

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.17 Reports

Reports are custom log files that server periodically generates according to the schedule and criteria

query. Reports are then emailed to the recipients of your choice. Reports are organized in a list

where you can see the overall information. Reports can be enabled or disabled – the rightmost icon

indicates that second report is disabled in the example below. Disabled report stays in the system but

doesn't actually do anything until you enable it.

The list also shows the cron expression which drives the report schedule, its closest fire time and

links to manage each report individually.

Note that reports can also be individually tested (click on icon), - this is quite useful because it lets

you receive real data instantly without waiting for the complex cron expression to trigger the report.

Each report comes with a bunch of parameters explained below as well as its criteria query. The

query will be executed when report trigger fires. The results of the query will be then packaged into a

log file, zipped if necessary and sent over to your recipients.

56

Figure 2.9.26: List of reports

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

The example below illustrates a typical report – it will fire every midnight and if there is anything in

the query, it will send an email to our support. It covers past 24 hours and flags high email priority.

Look at the query it does – we want WARN+ events coming from com.moonlit.logfaces package.

57

Figure 2.9.27: Report delivery options

Figure 2.9.28: Report query

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

Enabled - when unchecked, the report will stay in the system but will never fire. You can enable it

any time and it will fire at the next schedule slot.

Report name – this field is used only for the management purposes, give it a friendly name so that

you could easily find the report in the list.

Cron expression – is an expression which specifies when and how to fire the report. Cron

expressions are very flexible and used to make fairly complex scheduling rules. You can get more

information about cron expressions here.

Time range to cover – this specifies the time range which report query will cover, the count begins

from the actual trigger time backwards. For example, if you want to cover single day and your report

is fired daily, specify 24 hours.

E-mail to - list of recipients to receive the e-mail (use semi column as separator)

E-mail subject – this text will be used in email subject when report is dispatched. Note that you can

use ${variable} notation here where variable could be domainName, hostName, loggerName,

message and any of the mapped MDC names. When report is built, this variable will be substituted

with the corresponding value taken from the first log statement in the report.

Mail priority - e-mails can be flagged with standard e-mail priorities (highest, high, normal, low,

lowest).

Zip attachments - specify a maximum size of log file in KB; if attachment file will be larger than

specified, it will be automatically zipped.

Layout – specifies how to layout the text in the log files. LogFaces is using log4j formatting rules;

you can find more details here

58

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
http://quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.18 Triggers

Triggers are similar to reports except that they are not scheduled but fired immediately when certain

conditions are met. Conditions are based on the log data going through the server. By specifying

criteria you will be able to detect particular log statements from particular sources. In addition to this,

you can also specify how many of such events to capture and within what time span they should be

captured in order to fire the trigger.

Like reports, triggers are listed to give you an overall view of what triggers are there, what is enabled

and when and how they get fired. Trigger may raise an Alert when fired if this option is specified in

the delivery settings of the trigger, see below. Alerts are persistent states which are used to visually

indicate that trigger was fired in the past and may require user attention. When trigger raises an

Alert, its firing time label will be emphasized with a brighter color. Alerts can be acknowledged

(cleared) by users.

59

Figure 2.9.29: List of triggers

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.18.1 Delivery options

Enabled – the trigger will not fire if disabled, but will stay listed.

DND period - “do not disturb” period is when trigger should not send any emails while staying active.

This period is specified as cron expression. For example, * 0-59 14-18 ? * MON will silence the

emails during hours 14:00 - 19.00 each Monday.

Name – for the management purposes

RegEx Pattern – Regular expression pattern with named groups for matching variables in log

messages captured by the trigger. These variables can then be referenced in notification subject or

message body to make a notification more descriptive with specific context. In the example above,

the variables 'ip' and 'user' will be extracted from the captured messages and used in subject and

message fields using ${variable} notation. This feature is optional. Leave blank if not used.

60

Figure 2.9.30: Trigger delivery options page

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

Subject – will be used with notification when trigger is fired. Note that you can use ${variable}

notation here where variable could be domainName, hostName, loggerName, message and any

of the mapped MDC names or a split expression (see below). Those variables will be taken from a

first log event caused the trigger.

Message – will be used with notification when trigger is fired. If not specified, the server will generate

default message. Like with the subject, it is possible to use ${variable} notations.

Trigger notifications can be further processed with one or more extensions:

● Alerts - will raise a server Alert which is a server persistent state reflecting the trigger

activation. Alerts are displayed in client UI to raise awareness of past trigger events. Users

can then query the Alert related logs and acknowledge them if needed.

● Emails - standard SMTP delivery with attachments to one or several recipients. It's possible to

customize the priority and layout format of attached log file.

● Slack - push notification to Slack channel of your choice. Slack integration involves obtaining

the web hook URL from your Slack account. logFaces will post customized messages to this

URL. More details can be found here.

● Web hooks - logFaces will POST JSON content to any HTTP/s URL of your choice. The

content has the following format {subject: 'string', message : 'string'}

where message and subject are taken from the delivery options.

● Invoke plugin - logFaces will call specified plugin when trigger is fired.

61

https://api.slack.com/incoming-webhooks

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.18.2 Capture criteria

Capturing criteria specifies which events should be going through the trigger. Only those events

which match specified criteria will participate, others will automatically discarded. It is generally a

good idea to have capturing criteria as narrow as possible.

Example below will capture NullPointerException from a particular host and application, and only

those events may eventually fire the trigger.

62

Figure 2.9.31: Trigger capturing criteria

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.18.3 Rules

Once log event is captured by trigger criteria, the trigger will apply the following rules and then send

email notification according to the Delivery Options specified above.

Trigger type - depending on the trigger type, the notification behavior will vary. Simple triggers count

captured events and fire when certain amount is captured within specified time window. Split triggers

are doing the same by using configurable context. Silence detectors do the opposite - they fire when

nothing is captured during specified period of time.

Counter - the trigger will fire only when at least this many events are trapped by the criteria.

Time window - the trigger will fire only when events are captured within this time frame (in minutes).

To ignore time window and react instantly, set this value to zero.

Frequency limit - the trigger will not fire more often than specified by this value in minutes. This is

used to prevent flood of email notifications in case something goes wrong.

63

Figure 2.9.32: Trigger rules

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.18.4 Split triggers

Split triggers deserve special explanation and real life example. Split triggers not simply counting the

occurrence of event but do so in a context you specify. Consider an example when we need to fire a

trigger when certain user tries to log-in very often and we want to detect who is the user. Assume the

following log event: “User XXX logged in”, where XXX will change depending on a user name.

So, if we want to get notified when particular user comes along and not just any user, we want to

tell the trigger to look in “message” attribute (split by) and extract a word from the message using the

regular expression with group capturing: “User %{WORD:userName} logged in“.

Named group 'userName' in this case is called triggering value because trigger will fire only when

certain amount of userName of the same value are detected. The same trigger may fire several

notifications - each for different userName. Hence the name - split triggers.

To use this variable in email body or subject, simply use '${userName}' - it will be replaced with

actual value when trigger fires. This way you can use very specific email notifications and see right

away what happened. For example, email subject “James Bond is being abusive” is more helpful

than “There are too many log-in attempts in the past 15 minutes”.

If you need to capture stuff like that – split triggers are good, make sure to familiarize yourself with

regular expressions and usage of named groups.

64

Figure 2.9.33: Split trigger example

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.18.5 Silence detectors

Not very hard to guess what this kind of triggers do. Silence detectors go off when nothing is coming

along during specified time window. By nothing we mean that nothing is captured by the capture

criteria specified with this trigger. Use them when you need to detect unusual lack of activity.

65

Figure 2.9.34: Silence detector example

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.19 License

License tab displays currently installed license information as well as allows you to install new license

file. When you install logFaces server for a first time, it automatically activates one time trial

evaluation period for 10 days. If you decide to purchase a license, the license file should be

submitted through this form:

What happens when evaluation license expires? logFaces server will shutdown its engine and only

allow Administration Console access; applications will not be able to use the server and clients won't

be able to connect to it.

What happens when maintenance plan expires? logFaces server will continue to function normally.

Software updates will not be available until license is extended.

When you install new license, the engine should be started manually. This can be done by simply

restarting the service from command prompt or control panel, or from the Status panel link – see the

next section.

66

Figure 2.9.35: Licensing

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.20 Status

Status tab contains useful health monitoring information of the server and allows basic

instrumentation tasks such as restarting, upgrading, etc.

Check for updates will try to detect updates we regularly post on our web site. If update is available,

the new version number and package size will be displayed. Note that this operation requires live

internet connection. Updates can also be automatically downloaded and installed – when new

version is detected, you will get a link to activate the installer. The process is fully automated but will

take your server offline for a few moments.

Download server dump will create a zip file containing your configuration and internal log files,

sending this package to our support may often speed up the support process.

67

Figure 2.9.36: Server status tab

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

Engine start/stop/restart; sometimes it's required to put the server down without actually shutting

the process down. One of the typical uses of this option is when trial license expires. In such case,

the logFaces Server will start so that you would be able install proper license, but its engine will be

down and no logging will be taken from applications.

Run garbage collection; explicitly force garbage collection in server JVM

Fetch stack traces will download full dump of all threads currently running on server.

Last errors is a list of latest errors encountered by server, you can browse through them to see if

anything went wrong lately, or simply reset them.

Internal log can be tuned to verbose or silent mode. You can also download an internal log file for

inspection. This file can be sent to our support team.

Inflow rate represents the throughput of the server on the network side, it indicates the amount of

logs flowing into logFaces from all appenders per second.

Database throughput indicates how much data your database can commit per second. You should

keep an eye on this metric to be below Inflow rate most of the time. When database throughput is

significantly lower than inflow rate for a long time, the data will be stored in local disk storage called

overflow buffer. Normally this is an expensive operation and may result in higher than usual CPU

ans IO use. Overload is the percentage ratio of total number of events went through an overflow

buffer on local disk to a total committed. This ratio is very important for detecting the database bottle

neck. When overload gets too high, it will be emphasized in red color. The default threshold is set to

10% but you can adjust it in environment properties (see paragraph on advanced configuration). You

will also see a flag icon indicating that currently server handles its internal overflow cache trying to

push it into the database.

Overflow buffer shows how many events are currently pending to be committed due to overload and

how large is currently allocated space for overflow mechanism. Overflow is a mechanism designed to

guard against inflow spikes and prevent data loss when logs can't be committed to your database.

This mechanism gets engaged when database is unavailable, or database is slower than the inflow.

Your database may be super capable but when massive spike of inflow takes place, we will buffer the

impact to prevent major disruption. When this happens, the overflow mechanism will delegate

incoming data to a temporal local storage and then try flushing it whenever database permits. Note

that overflow buffer is limited by number of log events it can hold. You specify this in environment

configuration file, default is 500K. When this number crossed, logFaces will start loosing data as

68

http://www.moonlit-software.com/logfaces/helpdesk/

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

unsustainable. Whenever new space disk space is required, the overflow directory gets allocated by

32MB or bigger chunks. Note that total allocated disk space is not returned back to operating system

unless explicitly requested to do so. You can manually do it here by clicking on a Purge link, make

sure that actual cache is empty when you release the disk space.

Number of connection shows how many clients are using the server now and how many TCP

appenders are currently working.

Re-create database allows to remove all database records; be careful with this operation, it is not

recoverable and can't be undone. Some SQL databases may require special statements for dropping

tables, for example Oracle may use recycle bins which prevent releasing the storage space. To

customize the dropping sequence we have /conf/lfs-drop.sql file where you can specify

SQL statements applicable to your database. It must contain one statement per line.

Update records counter will re-count total number of log records stored in your database. Because

counting with some databases is very expensive operation, this action is set for explicit user request.

Database maintenance – will manually start database maintenance job whether it is currently

scheduled or not.

69

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.9.21 Getting server info remotely

It is possible to obtain basic server information by doing HTTP call to the following URL:

http://your-server-host:8050/rest?method=version

Server will respond with its version information in a form of JSON like this:

{

"serverVersion":"4.2.0.3075",

"osVersion":"Windows Server 2012 R2 (6.3), amd64",

"javaVersion":"1.7.0_72",

"dbProduct":"MongoDB(/192.168.0.2:27017)",

"dbDriverVersion":"2.11.2",

"dbDriverName":"Java driver",

"dbVersion":"2.6.7"

}

70

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.10 Advanced settings

There are some settings which can not be configured through the administration web interface but

can be configured manually in several configuration files. These settings should only be modified

when server is down. Please review the settings carefully before doing any manual change. It's a

good idea to keep a backup of the files you are intending to modify.

2.10.1 Server bootstrapping

logFaces server runs in conventional JVM on any operating system with JRE 1.6+ installed. This

JVM is wrapped up and monitored by special third party component called Java Service Wrapper.

You would never run logFaces in raw JVM, the installation comes with OS specific dependencies

which are responsible to run, host and monitor the JVM which runs actual logFaces server software.

The most important task of the Wrapper is to provide robust error recovery in case of JVM or hosted

software failures. In such cases Wrapper will automatically restart hosted JVM.

Wrapper also provides simple yet powerful bootstrapping configuration for the JVM it hosts. In most

cases user doesn't need to know these details, but when it comes to more complicated settings, it is

good idea to familiarize yourself with how Wrapper works. Wrapper files are located in /bin

directory under server installation, this includes OS specific binaries, licenses and configuration files.

The JVM bootstrapping parameters can be found in /bin/lfs.conf file, it specifies which JVM to

run, how to setup its classpath, what arguments to pass to JVM and how wrapper should manage

this JVM when it runs. Refer to wrapper documentation for more details, but from the logFaces point

of view, there are only a handful parameters which can be modified:

Wrapper property Description

wrapper.java.command Full path to JRE java executable, this is the
command wrapper will run to start the JVM instance.

wrapper.java.initmemory Corresponds to JVM -Xms argument - minimum or
initial memory allowed to be allocated by JVM in MB.

wrapper.java.maxmemory
Corresponds to JVM -Xmx argument - maximum memory
allowed to be allocated by JVM in MB. Raise this
value if your logFaces instance needs more RAM.

wrapper.java.additional.x Can be used to pass additional JVM arguments as -D

wrapper.app.parameter.1
An argument passed to logFaces server from command
line. This argument must point to logFaces home
directory.

71

http://wrapper.tanukisoftware.com/

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.10.2 Server home

When logFaces server gets bootstrapped, it expects a single argument of its home - the directory

where it expects to find its configuration files, licenses and output its runtime artifacts. By default the

home directory matches the installation directory, but sometimes it is useful to separate the

installation and home directories for deployment management purposes. For example, if you are

running several instances of logFaces server and want to manage their settings in one place. Or if

you want to swap one set of configurations to the other without too much hassle with admin interface.

Or when you run logFaces in virtualized environment.

To setup a non-default home directory look into a bootstrapping wrapper configuration file named

/bin/lfs.conf . A parameter named wrapper.app.parameter.1 specifies the argument

fed into logFaces JVM during start up. This argument is the home directory where logFaces engine

will look for its configuration, license and any other setting. It will also produce all files such as logs

relative to the home directory. When home directory is separated from the installation tree, it makes it

easier for backups, upgrades, or fast swapping homes during tests.

Note that if home directory is empty during server start up, it will get populated with default set of

configuration files which you can further modify.

It is possible to pass environment variables into wrapper configuration file, for example:

wrapper.app.parameter.1 = %LFS_HOME%

will try to resolve LFS_HOME environment variable and pass it to the server. If server will not be able

to resolve this argument into workable home directory, it will fall back to its default home - the

installation directory.

72

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.10.3 Server environment

During server start up the properties from conf/environment.properties file are fed into

server JVM. The table below gives a detailed description of all those properties. Append

com.moonlit.logfaces prefix to all names below. Note that changes to this properties will take

affect only when server gets restarted. make sure that you modify them when server is not running.

Property Mandatory Description

.config.server yes Reference to the main configuration
file

config.ro no
When set to true, server instance
will run in immutable mode where
configuration can not be altered

.config.storage no
Type of data storage to use. Values
allowed: sql, mongodb and bigquery
Default is sql

.config.mongoprops no
Reference to internal mongodb
configuration file, default is
${lfs.home}/conf/mongodb.properties

.config.hibernate no(*)
Reference to hibernate
configuration file. (*) Mandatory
when using SQL database.

.config.schema no(*)

Reference to schema file which will
be created in database.
(*)Mandatory when using SQL
database.

.config.jobs yes Reference to jobs configuration
file.

.resources.eventMapping no
Custom mapping of hibernate event
data. Applicable when using SQL
databases.

.resources.repoMapping no
Custom mapping of hibernate
repository data. Applicable when
using SQL databases.

.resources.mongoIdGenerator no
Custom implementation of MongoDB ID
generator. Applicable when using
MongoDB only.

.url.revision no URL for checking software updates

.url.downloads no URL for update downloads

.url.updates no URL to version update descriptor

.url.notes no URL to version release notes

.url.support no URL to support site

.monitoring.highThreadCount no Maximum number of threads the
server should be able to sustain,

73

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

higher number will issue an
internal warning.

.monitoring.lowMemoryThreshold no

Minimum of free heap memory
specified as a percentage of
maximum heap memory. When free
memory will go below this value,
the server will issue a warning
which will appear in Admin.
console. Default is 2.

.monitoring.overloadThreshold no
Threshold for detecting database
overload – ratio between overflown
and total commits. Default is 10%.

.monitoring.overflowSize no

Size of the local overflow queue.
When reached, the overflow queue
will refuse to queue more events
and will raise system error.
Default is 500000 events.

.monitoring.overflowDisk no

Maximum disk space in MB allowed
for the overflow mechanism. Default
is 10240 (e.g. 10GB). Server will
not allocate more space for the
overflow mechanism than specified
by this parameter until purged by
user or automatically after the
idle timeout specified below.

.monitoring.overflowIdleTimeout no

The idle timeout in minutes for
purging overflow disk space
allocation. The space will be
returned to OS if overflow is idle
for the specified time. Default is
15 minutes.

.dzone.crcCacheSize no Maximum size of CRC cache storage
used by drop zones

.security.keyStore no File name of the key store

.security.trustStore no File name of the trust store

.security.keyPass no Password for key store (plain or
obfuscated)

.security.trustPass no Password for trust store (plain or
obfuscated)

74

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

.security.sni Enable or disable SNI (Server Name
Identification for https calls)

so.rcvbuf no

Sockets receive buffer size in
bytes, equivalent to SO_RCVBUF
option for server sockets. Default
65535.

so.maxSize no
Maximum size in bytes of a single
log event expected by socket
receivers. Default 262144 (256KB).

http.host no

When specified, the server will use
this name to respond to HTTP
requests which don't carry Host
header. If not specified, the
'localhost' will be used. This
option is mostly to prevent
vulnerabilities in HTTP v1.0 which
may leak internal IP when server is
hosted behind NAT.

75

https://en.wikipedia.org/wiki/Server_Name_Indication

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.10.4 How do I work with external SQL databases?

You have to obtain relevant database driver from your database vendor and place the jars in

/lib/dbdrivers directory on server. Our installation only include drivers which permitted by

publisher's license. We do our tests for Oracle, MySQL, SQL Server, DB2 and PostgreSQL, but

theoretically there shouldn't be a problem to work with other relational databases as well. It's only a

matter of configuration and database driver you wish to use.

Look in /conf/environment.properties file – you should see these two properties

referencing hibernate configuration file and database schema :

..config.hibernate=${lfs.home}/conf/hibernate.properties

..config.schema=${lfs.home}/conf/lfs.sql

You can modify these references by pointing to different files, but make sure the files are correct. Our

distribution contains both hibernate templates and schema for all databases we support at this

moment. The example above will use embedded database driver settings and Derby schema. If, for

example, you would like to use MySQL, do the following:

..config.hibernate=${lfs.home}/conf/hibernate-mysql.properties

..config.schema=${lfs.home}/conf/lfs-mysql.sql

Then modify hibernate properties file to point to your database. logFaces server uses Hibernate ORM

framework; it is recommended to have some knowledge of this framework before you decide to make

re-configuration.

Once configuration is ready, restart logFaces server. New schema will be published automatically.

After the start up, open Administration Console and navigate to the Status tab. If everything went

well, you should see that engine is started, database connection is OK and there are versions of

database and driver used. If something goes wrong, you will see red marks and error indications. To

see what happened, click on "show last errors" or "download log file" link; the problem is usually

related to a configuration error, typo or perhaps your database is not responding as logFaces

expects. If you're unable to figure out the problem yourself, submit this log file or an error code to our

support site and we will try to help. Another, perhaps easier, option is to run the server in console

mode and see that there are no exception thrown during start up. On Windows you can run server in

console mode from /bin/run.bat on. On Linux do ./lfs console while in /bin directory.

76

http://www.hibernate.org/

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.10.5 Can I modify SQL database schema?

Yes, you can do that to a certain extent. Database schema file is referenced in

/conf/environment.properties with com.moonlit.logfaces.config.schema.

You can not modify the structure of the tables or column names because they're mapped through

hibernate mapping in the code. But you can adjust column size constraints, modify indexes or add

some additional statements as long as they don't break the mapping.

After you changed the schema file you need to re-create the database. This can be done either from

administration console status tab, or by using some other external tool. Note that when using

embedded database, there is no other choice but using the admin. console.

IMPORTANT: If you care for the existing data in the database, make sure to back it up before doing

any changes to the schema. One of the options is to use our backup utility described next.

2.10.6 Can I use my own PK generators with SQL databases?

Yes. By default PKs are generated with simple native generator defined in hibernate mapping files

which are not exposed for general usage. If you want to generate your own PKs, the mappings need

to be altered and server needs to know which mapping to use. The procedure to follow:

1. extract Event.hbm.xml and Repository.hbm.xml from /lib/lfs.jar

2. modify the 'id' column generator section as you need, this is standard hibernate format

3. create separate jar file and place modified mappings along with your own classes

4. place this jar under /lib directory on server

5. enforce those classpath resources by changing /conf/environment.properties:
com.moonlit.logfaces.resources.eventMapping = classpath:/your/Event.hbm.xml

com.moonlit.logfaces.resources.repoMapping = classpath:/your/Repository.hbm.xml

6. run server in console mode (/bin/lfs.bat) and watch the log output. If there is something wrong

in the mapping or something is missing, the database layer will not start and there will be

many errors.

77

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.10.7 How do I work with MongoDB?

logFaces can work with traditional RDBMS as well as with NoSQL databases. Our choice for NoSQL

database fell on MongoDB and in this section you will learn how to set it up. First - specify the

storage type in /conf/environment.properties file like this:

com.moonlit.logfaces.config.storage = mongodb

Next step – get your MongoDB running, start logFaces server and go to its admin/status page. Most

likely that logFaces won't find your database right away, so you will see that database is down. This

is OK. Go to admin database tab and adjust MongoDB parameters, most importantly the connection

end points – host, port and security options if relevant for you database. At this point you should see

something like this:

It means that logFaces is now connected to MongoDB daemon on local machine, created its

database named lfs and ready to work. To verify – open MongoDB console and make sure that

requested database is indeed created and it has two collections there - log and repo. You can

always get back to this page later and adjust the settings. In most cases the changes applied

instantly.

Note that parameters on this page come from and saved to /conf/mongodb.properties file

on your server. You will hardly ever need to edit them manually, but it is a good idea to understand

78

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

them. Table below is a compete list of properties we use to integrate with MongoDB, it will help you

to understand how to use connections, replica sets, indexes and other important features.

Property name Description Default

.connection Comma separated list of host:port
pairs for specifying replica sets.

localhost:27017,
localhost:27018,
localhost:27019

.ssl When database requires SSL
connection this property must be set
to true. If your database uses well
known root CA, it may work right
away, otherwise your certificate and
key must be imported into the local
trust store as described here.

false

.invalidHostAllowed What to do when host name of the
certificate doesn't match server
host name

false

.user User name for authentication. Leave
blank if your database doesn't
require security.

.password Password for authentication. Leave
blank if your database doesn't
require security.

.userdb When database is secured, this
parameter specifies the name of the
database where users for
authentication are defined.

.writeConcern Controls the acknowledgment of write
operations with various options. See
MongoDB documentation for more
details.

NORMAL

.readConcern Applicable since MongoDB 3.2, allows
clients to choose a level of
isolation for their reads. See
MongoDB documentation for more
details.

LOCAL

.readPref Read preference describes how
MongoDB clients route read
operations to members of a replica
set. See MongoDB documentation for
more details.

primary

.dbname Name of the database logFaces will
create

logfaces

79

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

.capped When set to 'true' logFaces will
force the capped 'log' collection
and will try to convert it to capped
when it's not, and will fail if it
can't be converted.

false

.cappedSize Size of capped collection in MB.
Affective when 'capped' is set to
true

100 MB

.ttl When set to true logFaces will try
to convert the collection to TTL
unless it's already TTL.

false

.ttlDays Number of days for TTL collection.
Affective only when TTL collection
is enabled

7

.partitioned When 'true' logFaces will convert
its storage into set of partitioned
databases.

false

.pdays When partitioned this parameter
specifies the size of each partition
in days

1

Note that it is possible to parametrize property values like this:

com.moonlit.logfaces.config.mongodb.connection = ${my.host}

Server will then looks for JVM system property named my.host to resolve the value. Such

properties must be injected into server JVM during the bootstrap and should be available during

server initialization. Parametrized properties will not be persisted when modified from admin web

interface.

80

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.10.8 MongoDB schema and indexes

When started, the server will automatically create two collections named log and repo. Log

collection stores log events in such way that each event corresponds to exactly one MongoDB

document. This collection grows rapidly as data gets committed. Repo collection is a helping

repository to keep names of applications, hosts and loggers – this information is used mostly by

clients to assist with selection of items for queries and hardly ever grows once the system stabilizes.

Documents stored in log collection have attributes corresponding to the fields of actual logging event.

In order to save storage space those names are shrank to a minimum, so when you look into

collection, you will see extremely short names. Below is the mapping of these names:

{
 "_id" : ObjectId("51abeff2e0fd7bab0f2cf20c"), // object ID (generated by mongodb)
 "t" : ISODate("2013-06-03T01:22:12.794Z"), // loggerTimeStamp (creation time)
 "q" : NumberLong(3256236), // sequenceNumber (generated by lfs)
 "p" : 5000, // loggerLevel (severity level)
 "r" : "355941742@qtp-2017211435-7749", // threadName (originating thread name)
 "m" : "This is the message", // message (message body)
 "h" : "my host", // hostName (originating host name)
 "a" : "my app", // domainName (originating app name)
 "w" : false, // thrown (exception true/false)
 "g" : "com.myapp.logger", // loggerName (originating logger name)
 "f" : "Myclass.java", // locFileName (location file name)
 "e" : "MyMethod", // locMethodName (location method name)
 "l" : "489", // locLineNumber (location line)
 "c" : "com.myapp.logger", // locClassName (location class)
 "p_targetID" : "1360911352", // custom MDC mapped to targetID
 "p_sessionID" : "sid4454.col080" // custom MDC mapped to sessionID
}

Because logFaces allows usage of any of the above attributes in queries, you will need to carefully

select compound indexes. One important thing to keep in mind when dealing with compound indexes

is that the order of the attributes in index is crucial to index performance. For example indexes (t,p)

and (p,t) may have completely different performance depending on the data store. First one will seek

records in specified time range (t), and then reduce to severity level (p). Second one works in reverse

– first seeking level (p) and then reduce by time (t). It is often desirable to have several compound

indexes so that you cover as many frequently used queries as possible. Keep in mind that the aim of

selecting right indexes is to compromise between storage size (indexes are greedy) and the end

user satisfaction with the speed of queries. Use MongoDB console tools to examine performance

details.

Nearly all queries generated by clients contain loggerTimeStamp (t) attribute. It means that in

most cases you will want to include this attribute and position it correctly within the index.

81

http://emptysqua.re/blog/optimizing-mongodb-compound-indexes/
http://docs.mongodb.org/manual/core/indexes/#index-type-compound

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.10.9 MongoDB capped collections

From MongoDB site:

“Capped collections are fixed sized collections that have a very high performance auto-FIFO age-out
feature (age out is based on insertion order). They are a bit like the "RRD" (Round Robin Database)
concept if you are familiar with that. In addition, capped collections automatically, with high
performance, maintain insertion order for the objects in the collection; this is very powerful for certain
use cases such as logging.”

RRD doesn't ensure data storage by time (for example 3 days of data), it ensures that storage will not

grow bigger in size than specified. However, having such tremendous performance advantage,

capped collections could be a preference for some. If you are one of those, this is how you should

setup logFaces to utilize this feature – go to admin/database/MongoDB tab, check Capped Collection

option and specify size in MB. The server will automatically do the relevant conversion of 'log'

collection into capped. It is also possible to convert to a capped collection directly from MongoDB

shell. If you do this, make sure to modify mongodb.properties file accordingly before restarting

the server!

When capped collections used, the database day capacity automatically becomes unlimited and

logFaces will not manage the data store size. Maintenance of such database is also irrelevant since

MongoDB storage size will not grow from the specified. Thus you will not see capacity and

maintenance cron options in admin database page.

Note that switching from capped collections back to regular collections is not possible without

manually backing up your data and re-inserting it back into a newly created regular collection. It is

also not possible (as of this writing) to extend the size of capped collections without doing manual re-

inserts. Again, make sure to modify mongodb.properties file before restarting the server,

otherwise it will convert everything back to capped. In other words, mongodb.properties must

always be adjusted manually if you manually administer your database otherwise it may override

your changes.

82

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.10.10 MongoDB TTL collections

TTL stands for “Time To Live”. From MongoDB documentation:

“Implemented as a special index type, TTL collections make it possible to store data in MongoDB

and have the mongod automatically remove data after a specified period of time. This is ideal for

some types of information like machine generated event data, logs, and session information that only

need to persist in a database for a limited period of time ”

To enable this feature with logFaces server, open administration page and modify “storage type”

option to “TTL collection” as shown below. You will also need to specify the “number of days” for

this collection to operate with.

Note that when TTL collection is used, the server will automatically set Retention to unlimited and

will not remove older records from database on its own – this duty will solely be in hands of

MongoDB.

83

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.10.11 MongoDB partitioned storage

There is a common problem with data storage of any kind – it's much easier to store things than to

retrieve them, yet more difficult to delete them. The problem intensifies as storage gets bigger.

To address this problem we have an alternative way for storing very large amounts of log data.

Instead of using single collection which is a default setup, you can choose to partition your entire data

set by days, or as we call them - partitions.

Using partitions is radically different from other types of collections because instead of one database

with two collections, your MongoDB instance will have many databases - one per each partition. In

other words, we partition the data by database, not by collection. And each database will contain

exactly one partition. This decision is motivated by performance – it is much easier to drop an entire

database than to drop a collection. It gets very noticeable when we deal with terabytes of data and

billions of log records.

It is important to decide what would be the size of partitions in days. This greatly depends on your

usage patterns. But the tradeoff is based on a very simple rule – the smaller the database the better

it will perform in terms of queries. So, how much data you expect daily and how you intend to query

this data should be taken into account.

84

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

When doing queries from partitioned store, logFaces server may hit more than one partition,

depending on the time range user asks for. For example if query spans 3 days and your partitions

are sized by 1 day, there will be 3 database hits on the server side. It may sound that things will go

three times slower but this is not true. When dealing with billions of log events, it's much faster to hit

few smaller collections few times than to hit one big collection once. But you still should consider the

partition size, if going after several days of data is something you will be doing very often – consider

to span partitions for several days. Keep in mind that once the store is partitioned, it can not be

modified.

Once you switch to partitioned storage type, next thing you want to do is to adjust the retention –

number of days to keep your logs for:

One last thing is indexes. They need need special mentioning. Each partition contains one collection

named 'log' where actual data is stored for the given time range. When server allocates new

partitions, it will automatically build indexes for the new partition but it takes indexes

information from its previous partition. So, make sure to select and define your indexes for the

current day as soon as you create partitioned store as it will start rolling day after day and doesn't

require your attention.

Note that names of databases in MongoDB instance (logFaces partitions) follow strict format, avoid

changing them or dropping them manually, this may confuse the server. If you list databases in

MongoDB node you will find logFaces partitions named like lfsp-020414-030414 where numbers

denote the start and the end of the partition date, in this case the partition spans from Apr 2 until the

end of Apr 3 of year 2014.

85

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.10.12 MongoDB custom _id creation

By default, logFaces uses the _id generated by MongoDB driver, which is a standard ObjectId. To

override this behavior and create your own _id object follow the procedure below:

1. Implement com.moonlit.logfaces.server.core.OIDGenerator interface. The

interface definition and other dependencies can be found in /lib/lfs-core.jar. Implemented class

will be instantiated by reflection, so the default constructor must be present.

2. Place your implementation on server under /lib directory.

3. Tell the server to use your implementation instead of the defaults by changing this property

in /conf/environment.properties:

com.moonlit.logfaces.resources.mongoIdGenerator = yourGenerator

4. Run the server, feed some data and see that your implementation works as expected. If server

fails to find or instantiate your implementation, it will fall back to the defaults silently.

86

http://docs.mongodb.org/manual/reference/object-id/

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.10.13 MongoDB authentication

If your database instance requires authentication for its clients then logFaces server, being the client

in this case, must be configured to meet this requirement. This is done by specifying user name,

password and the name of the database where this user is defined in MongoDB instance.

Starting from MongoDB v3.0 this principal must have the following permission for logFaces server to

be able to work with this instance of MongoDB:

• readWriteAnyDatabase

• userAdminAnyDatabase

• dbAdminAnyDatabase

• clusterAdmin

Note that AnyDatabase permissions are only required when logFaces is configured to use partitioned

87

Figure 2.10.1: Setting MongoDB authentication

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

storage. This is because each partition corresponds to a separate database and its name is always

changing depending on the time range it covers. As of this writing MongoDB roles can be assigned

either fixed database names or use AnyDatabase sets of permissions. When partitioned store is not

used, it is possible to use corresponding permissions for a particular databases name (in the

example above this would be lfs2).

88

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.10.14 How do I work with Google BigQuery?

logFaces can use Google BigQuery cloud storage for the back end. This section describes how this

can done presuming that you already have Google Cloud account and BigQuery service enabled and

ready to use.

Firstly, we specify that the data storage we want to use with the logFaces instance is the BigQuery.

Open /conf/environment.properties file and modify the the following property:

com.moonlit.logfaces.config.storage = bigquery

From now on, the logFaces server acts as a BiqQuery client but it still needs to know where the

storage is, which account to use, which project to use and how to authenticate itself with the cloud.

We use standard the Google API to integrate with the service, logFaces installation comes with all

the dependencies needed for the task. The setup is finalized in admin/database section where

we integrate logFaces with your BigQuery account:

89

Figure 2.10.2: BigQuery integration settings

https://cloud.google.com/bigquery/what-is-bigquery

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

Here is a check list of the items needed for the BigQuery integration, all are obtained from your

BigQuery project:

1. The project ID is obtained from your account when you start the project with Google Cloud. It

can be a real or sandbox project. You will find its ID in your project settings.

2. The dataset ID, you create dataset in your project. Here is some information about the

datasets. logFaces creates its schema tables in the dataset you specify here.

3. Credentials are used by logFaces to securely communicate with your storage. The

credentials are obtained from your Google service account and come in the form of a key file

which you request in JSON format. This file is stored in your logFaces /conf directory file

named bq.credentials.json. Make sure you keep it safe.

Alternatively, if you setup the hosting computer with Google Cloud tools, you can use

Application Default Credentials (ADC) - a strategy used by the Google authentication libraries

to automatically find credentials based on the application environment. logFaces server will fall

back to this strategy automatically if it won't be able to fine the credentials key file.

4. Note that your Google service account must have certain permissions. As of this writing the

following roles are the bare minimum required for the logFaces to function properly -

bigquery.dataOwner and bigquery.jobUser

Once these parameters are submitted, the logFaces server establishes a connection to the specified

project and creates logFaces schema in specified dataset. When the server is connected to your

cloud project a green indicator displays connection state. Otherwise, depending on the error, some

adjustments will have to be made. Typically the errors are very descriptive, if not, refer to the server

internal logs, or contact our support.

The data schema used with BigQuery is very similar to the other storage types we use. Names of the

columns are chosen to be as short as possible to reduce the costs.

90

https://cloud.google.com/docs/authentication/provide-credentials-adc
https://cloud.google.com/docs/authentication/getting-started
https://cloud.google.com/bigquery/docs/datasets-intro

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.10.15 How do I tune the server for the best performance?

First of all, to determine whether the server under-performs, you need some metrics. You will find

them in admin status page, below is an example of the most interesting parameters:

The most common performance factor is the memory factor. Note that free heap memory should

never get close to about 2-5% of the maximum allocated for the server JVM; when this happens the

memory monitor will issue a warning in “last errors”. Once JVM memory gets drained, its behavior

gets unpredictable and eventually may result in a complete fault. For the details read section named

“How to increase server JVM memory”.

Another common performance factor is the balance between inflow rate and database throughput

rate. The inflow rate is the number of log events arriving to the server per second from appenders.

Database throughput is the number of events your database commits per second. You will see these

numbers changing quite a lot and depend on many factors. To name just a few - network speed,

database performance, log statement sizes, etc. When inflow rate is higher than database

throughput, the server will activate an overflow mechanism which delegates residuals to a local disk

storage while database is busy committing. Residuals are then flushed into database whenever

database permits. In general, this mechanism is designed to prevent intermittent load spikes and

can't be effective when the inflow is permanently higher than the database throughput. When local

storage grows large, the CPU and IO usage may get much higher than normal. The larger the local

storage grows, the harder it becomes to get the data from there. To prevent this from happening on

regular basis you should watch the amount of “overload” - the percentage of total inflow which went

through the local storage before it reached your database.

Try to adjust commit buffer size in admin database page. Note that larger commit buffer sizes not

necessarily improve the database throughput, it very much depends on the database setup. Usually,

most databases start getting sluggish when they significantly grow in size – try to control this by

reducing day capacity or persisting less information.

91

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

Database indexes play very significant role in insert rates, try to tune your indexes to fit best your

queries. Removing unnecessary indexes can significantly improve the overall performance – you can

modify indexes in schema templates for the database you use, or alternatively – manage them with

external database tools.

Of course the amount of server connections and threads play their role too. Each remote client or

appender will result in an additional thread. Depending on the hardware and OS, these numbers

should be taken into account.

When you see that server obviously under-performs, consider to either reduce the amount of load, or

add another logFaces node to split the load.

92

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.10.16 How do I migrate my SQL database storage to MongoDB?

If your data storage is one of the SQL types and you wish to switch to MongoDB while retaining all

the existing data, we have a migration tool built for this specific task. It operates on current logFaces

instance using its current configuration which is expected to be for the SQL based storage. Your

production instance can be active, but the process may take longer if SQL database is busy. So you

may consider taking your server down for the migration purpose, or use off peak hours if you intend

to run on live production system.

You need to manually prepare /conf/mongodb.properties file with all the settings we need to

create the MongoDB storage and then copy the data. There is a template of this file available with the

installation, you will want to fill in the details matching your MongoDB profile. More details on each

parameter are available here. The MongoDB instance should be running and matching the settings in

this configuration file before you proceed, e.g. host name, port, etc.

Run /bin/mongo-migrate.bat on Windows or /bin/mongo-migrate.sh on Linuxes. You

will be asked to confirm your intentions and the process will being. Depending on the amount of data,

the process may take some time to complete. Warning: logFaces collections (if exist) will be dropped

in MongoDB before the migration.

If there are errors during the process, they will be printed in the terminal window and logged into the

internal log file at /log/lfs_server.log.

Once migration processes completes successfully, you can switch your data storage in

/conf/environment.properties file to work with MongoDB instance by modifying the

corresponding parameter:

 com.moonlit.logfaces.config.storage = mongodb

Restart your server instance for the changes to take effect.

93

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.10.17 How can I automate monitoring of logFaces server logs?

logFaces server itself has its own internal log which you can monitor by means of triggers or reports.

The application name used by logFaces server is “LFS” and root package of server classes is named

“com.moonlit.logfaces”. When specifying criteria you can use either of those parameters to detect

problems in real-time by means of triggers, or obtain scheduled summaries by means of reports.

Generally it's a good idea to have this set up before you contact our support, we normally will ask for

the internal logs before getting into the details.

2.10.18 How do I increase server JVM memory?

Open \bin\ lfs.conf file, this is a bootstrap configuration file, read more about bootstrapping

here. JVM memory allocation is configured with those attributes:

wrapper.java.initmemory=256

wrapper.java.maxmemory=512

Those values are default, increase maxmemory when required, values are in MB.

94

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.10.19 How to pass additional arguments to server JVM

Additional arguments (-D like properties) can be passed to server JVM in the following way. Open

\bin\lfs.conf file (this is a bootstrap configuration file) and look for a properties named like this:

wrapper.java.additional.xxx = yyy

Note how additional properties are numbered. When adding your own, make sure to increment the

number. For example:

wrapper.java.additional.1=-Dfile.encoding=utf-8

wrapper.java.additional.2=-Dmy.prop.value=true

95

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.10.20 How do I use NTLM authentication with MS SQL Server on Windows?

1. Download latest jTDS driver from here http://jtds.sourceforge.net/

2. Place jtds-xxx.jar and relevant ntlmauth.dll under /lib/dbdrivers in your

server installation

3. Modify /bin/lfs.conf so that JVM loads ntlmauth.dll by adding the library path

property: wrapper.java.library.path.2=..\lib\dbdrivers

4. Comment out user name and password in hibernate properties file – this will ensure that

NTLM authentication is used. Make sure that connection URL specifies correct domain.

5. If logFaces server runs as windows service, you will have to make sure that LFS service starts

with proper user account and not default system account - modify these in service properties.

Otherwise the driver will use currently logged in user credentials to connect to database.

96

http://jtds.sourceforge.net/

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.10.21 How do I make logFaces Windows service depend on other services?

In Windows it's often required to have logFaces service dependent on other services during start up.

For example, if you run database server on the same machine as logFaces server, you may want to

make sure that it starts only after database successfully starts. To achieve that, you must specify

service dependencies.

Open /bin/lfs.conf file and modify wrapper.ntservice.dependency.xxx properties

accordingly. For example:

wrapper.ntservice.dependency.1 = SomeService1

wrapper.ntservice.dependency.2 = SomeService2

Make sure to preserve proper numbering order and specify correct names of dependent services.

Then you will need to re-register LFS service. Make sure the service is not running; execute

/bin/uninstallservices.bat and then /bin/installservices.bat – this will re-

register service configuration in Windows registry. To verify that everything went OK, check out

service properties in your Windows administration tools. For example, in case of Oracle, the

dependencies should look similar to what is shown below. If everything looks OK, go ahead and

restart your computer to verify that dependencies actually work.

97

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.10.22 How to obfuscate passwords

Some passwords may be kept in configuration files; in order to prevent storing open text passwords,

it is possible to obfuscate them and keep them in an encrypted form. To obfuscate your passwords,

you can use existing Jetty server utilities located under /lib/jetty under your server installation.

From the command prompt do the following:

java -cp jetty.jar;jetty-util.jar org.mortbay.jetty.security.Password text

This command will output an encrypted string which can then be placed in configuration files. On

Linux the command should look like this (note the column separator):

java -cp jetty.jar:jetty-util.jar org.mortbay.jetty.security.Password text

98

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

2.10.23 Running in Docker containers

logFaces server can be deployed and run in DockerTM containers. Starting from version 4.2.2 we

maintain our own image in a repository named moonlits/logfaces in Docker Hub.

Here is the Dockerfile used to create this public image:

FROM centos

ADD lfs.docker.tar.gz /root

ENV LFS_HOME=/root/lfs/home LFS_XMS=512 LFS_XMX=1024

EXPOSE 8050 55200 55201 55202 55203 1468 1469 514 515

CMD /root/lfs/bin/lfs console

This image is based on official version of latest centos, it requires /root/lfs/home volume

mapped to an existing directory on hosting computer. It exposes port 8050 for clients and

administration and other ports for appenders.

Note LFS_XMS and LFS_XMX variables, they specify defaults for initial and maximum memory for

logFaces server JVM. These parameters are subject to override during run time in case your

deployment has different RAM requirements.

This setup would probably cover most of the situations, but if not - feel free to make your own image

from this template. For that you will need logFaces distribution for DockerTM containers -

lfs.docker.tar.gz which can be found in our downloads. This distribution contains and uses

its own headless JRE 11 from OpenJDK distributions, no need to install any other JRE. It also

contains preset bootstrapping parameters for the server to know that it runs in DockerTM, this is quite

important because there are several catches.

As mentioned previously, logFaces server requires external volume mounted for its home location

where it expects to find its license, configuration and other artifacts produced at run time. Those are

logs, overflow files, configuration files, temp files, etc. This mounted volume will be passed to the

DockerTM run command as an argument, so make sure to create its directory on hosting computer

beforehand.

99

http://www.moonlit-software.com/logfaces/web/download/index.php
https://hub.docker.com/
https://www.docker.com/

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

The following command will start logFaces server using home at local c:\lfs-home directory (on

Windows), external port 8050 and single appender port 55200:

docker run -it -p 8050:8050 -p 55200:55200 -v //c/lfs-home:/root/lfs/home

 moonlits/logfaces

When started for the first time, logFaces server will deploy its default configuration into specified

home directory on the host computer. This is where the license file should be placed (including the

trial or evaluation licenses). If migrating, the existing /conf directory from you current setup can be

copied to the new home while server is stopped, - when started it will pick it up and continue.

100

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3 Getting started with logFaces client

logFaces client application is available for Windows, Linux and Mac OSX for 32 and 64 bit

architectures. Think of logFaces client as a pair of glasses you wear when looking into the log stream

pouring through the log server. The client will assist you to make sense out of this stream and

convert large amount of log data into a meaningful piece of work.

3.1 Installing and uninstalling

On Windows, download and run the installer which will walk you through the process. Linux

distributions come as tar.gz archives, just unzip the archive and run logfaces executable file. Mac

OS X distributions come in a form of Mac OS X folder, open it and deploy to a location of your choice.

To uninstall the client on Windows run the uninstall.exe in installation directory, on other OS's simply

remove the client folder.

3.2 Modes of operation

logFaces client can work in two modes - Client Mode or Server Mode. You select the mode during

application start-up. In Client Mode the application connects to and works with one logFaces server

instance. In Server Mode the application acts as actual log server but without database.

In Client Mode we specify logFaces server host name, port number and security option. These

options will be remembered for the next time you run the client, but you can also indicate to use

those settings automatically in the next time and not asking again. It is possible to modify these

settings in the File/Preferences menu later. The communication between logFaces Client and Server

is one way (from client to server) and is HTTP(s) based, so normally there shouldn't be a problem

with firewalls. Of course, the access through the given port should be allowed by your network

101

Figure 3.2.1: Client Mode Figure 3.2.2: Server Mode

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

administrator. If your server is configured to work with SSL, you can import server certificates in case

the are not available in the local JRE trust store.

In Server Mode the application runs with embedded compact version of logFaces Server. This is a

limited version of server and client combined into single application which provides only real time

viewing of log data. You can use it when you don't need database and other features available in

standalone logFaces Server. In order to run in Server Mode we need to specify at least one of the

ports which will be used by the application to receive log data from appenders. You can specify either

TCP, or UDP or both, just make sure those ports are available and your application appenders are

configured accordingly.

Both modes look very much alike from user experience point of view, except that in Server Mode

there are no database and querying features.

Note that in order to run in Server Mode you need to install the license on the computer where you

run it. Note also that this is not the same license type as installed on the logFaces Server. This

license needs to be purchased and installed separately unless you hold OEM or Site license.

102

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3.3 Workspace

When using several server nodes, you often need to switch quickly from one system to the other.

This is done by means of Workspace which stores connection parameters, real-time perspectives,

queries, counters, and all other settings. Workspace can be exported to and imported from text files.

Additionally, Workspace can be stored on server and shared amongst team members, this way you

do the setup only once and let others to import your Workspace with all the settings. File menu

contains all workspace related actions :

103

Figure 3.3.1: Workspace

actions

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3.4 User interface concept

logFaces is designed with two major goals in mind – real-time monitoring and drilling into the log

history. The user interface you see above is built for achieving those tasks. The client is an Eclipse

RCP application and retains most of the Eclipse paradigms – there is a working area in a middle and

it's surrounded by auxiliary views which drive the work flow.

Real time data and query results are displayed in a middle part within data tables and each piece of

information has its own tab. You can move those tabs around to have several views displayed

together.

Along with the data, there are structural pieces of information like names of loggers, applications,

hosts, exceptions, event details – they occupy axillary views around the main area. Axillary views

also can be hidden, shown or re-arranged as you see fit.

The following sections explain how to do the monitoring and drilling as well as the usage of auxiliary

views.

104

Figure 3.4.1: logFaces client user interface

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3.5 Data tables

Log data is displayed in tables - flexible to manipulate and easy to navigate with. Once you have data

(real time or historical) you will want to customize the way it looks or navigate from it somewhere

else. Table headers are special – they allow additional filters on existing table content. For example,

if you want to focus on particular Thread, click on the corresponding header and select that thread.

Several column filters can be combined. Tables can also be displayed with specified columns so that

you only see relevant details. The content can be searched and annotated.

Note the colored bars on the sides – problematic events are color-mapped on right side bar while

tagged events are color-mapped on the left side bar. Hovering the mouse over those bars gives a

quick jump to a particular event without too much scrolling around.

The content of data tables can be instantly converted into textual log files – click on “To log file”

button or even open the text in an editor by clicking on “Text editor”. The text layout can be specified

in preferences.

105

Figure 3.5.1: Data tables

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3.6 Monitoring tasks

Real time monitoring is a unique feature in logFaces as it was designed for incredible volumes of

data going through the server. To serve many users, logFaces server pushes logs to each client

separately and according to its very own criteria filter. Those filters you will find throughout the

system - including queries, administration tasks like reports, trigger and database. This is how real

time perspective is defined:

Along with criteria filters there are other options – alarm and wake up sounds, balloon pop-ups and

time zone presentation. Note that perspectives are named and can be stored for later use in “My

perspectives” axillary view. Perspectives can be created from several contexts:

• From “My perspectives” view where you will specify the criteria yourself

• From most other axillary views where perspectives can be launched instantly using the

selected context. For example, right clicking on a host name within “Hosts” view you can

create a perspective which will listen for selected host logs.

• From data tables (query results, or other perspectives) where you can “Follow” some

interesting item by right clicking in the table rows.

Perspectives tool bar gives you full control of each perspective separately where you can pause,

resume, setup columns, lock, clear or do text searching.

106

Figure 3.6.1: Perspective settings

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3.7 Data mining tasks

Real-time monitoring alone is not good enough unless accompanied with data mining. You will find

numerous ways of getting the historical data – there is an instant fetch, context drilling, range look

ups to peer into all sorts of time spans – all made simple and easy to use. Database queries are

based on the same idea of criteria filters:

Along with criteria you specify a time range to cover, result set limitation, order display and time zone

for presentation. Note that queries can be named – you may want to keep some of the queries you

use often in “My Queries” view and spin them out any time. Since queries are based on predefined

time ranges, they will always work no matter when you run them. For example query with “1 day”

time range will give you data spanning from this moment and back 24 hours.

Queries can be launched from various contexts in data tables and most axillary views. Those queries

which you decide to keep in “My Queries” can be instantly launched from main tool bar drop down

menu.

107

Figure 3.7.1: Database query

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3.8 Criteria with parameters

It is often useful to run the same query or real-time perspective with slightly different inputs. This can

be achieved by setting up ${param-name} variables in criteria fields. Those variables are then

substituted at run time before criteria is applied.

For example, the query below will require user input for a “serial-number” and whenever query is

executed the user will be prompted to input that value.

108

Figure 3.8.1: Query with parameters

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3.9 Analytical tasks

Few clicks away you will find convenient tools for visualizing and analyzing log data. There are

Dashboards, Distributions, Slices and Counters. Combined use of those tools will get you better

understanding of the underlying logs. This is particularly true when dealing with large volumes of log

data.

3.9.1 Dashboards

Dashboards are containers for widgets each of which displays certain aspect of the log data. Once

you design your dashboards, they will instantly visualize the story going on behind the logs.

For example, the dashboard below illustrates some “user activities”. It shows the recent 5 minutes of

the story which can be stretched and shrank as you need it. As you can see, there is a list of

currently active users, counters of page hits and sessions, some activities sliced and grouped into

pie charts, and spread in stacked time bars.

109

Figure 3.9.1: Dashboard example

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

You can re-arrange widgets on the dashboard to your liking. The dashboard state is persisted so that

next time you open the dashboard, it will show up in exactly the same state as you left it. All your

dashboards are stacked under the main toolbar menu so that you can instantly bring any (or all of

them) to the front view. When displayed, the dashboard will automatically refresh its content every

once in a while. There are predefined time ranges for fast time traveling.

As you have seen there are several types of widgets supported and each type renders itself

differently on the dashboard. Widget window has a button bar on its top right corner to allow the

access to actual log data, settings, manual refresh and maximizing. Widget window can be re-sized

and dragged around the dashboard.

The content of the widget window is very active, clicking on its part will perform drill down and extract

actual log statements. For example, clicking on the slice will deliver the log data for that particular

slice. Clicking on the bar will bring logs from that particular bar and time. And so forth..

110

Figure 3.9.2: Slice widget

Figure 3.9.4: Time line widget

Figure 3.9.3: Counter widget

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

The widget itself is a query with some additional parameters needed for its display. The example

below illustrates a widget named “Most active users” - this name will be shown on the widget title bar.

This widget is of a type “Pie chart” where we aggregate all data and slice it by category “user” which

actually is an MDC name in our system.

Now, the data we will be dealing with is a query result based on logger level, domain name and host

name. Everything this query produces will be sliced by “user” and rendered as a pie chart we have

seen in the previous example.

111

Figure 3.9.5: Widget setup dialog

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3.9.2 Distributions

Distributions is an axillary view for visually spreading log data in time by categories. Distributions

work in the context of some data display like real-time perspective or query results. The example

below illustrates how query results are visualized by distributions.

Distributions chart aggregates logs on time axis using some category for stacking the data. This way

you see the activity in the context of the time which is covered by actual result set.

There are built-in categories to choose from - severity levels, host and application names,

exceptions, tags, MDC names, etc. But there are also ways to define your own categories. See

“Named regular expression” section for more details.

While distribution chart is displayed, you can modify its category and time rate on the top right tool

bar of the view. Left clicking on the bar will and get you the underlying log data of given time. Right

clicking on the bar will fetch events of clicked category from entire time range.

112

Figure 3.9.6: Distributions example

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3.9.3 Slices

Unlike distributions which show time line of logs, Slices view displays categorized quantities and

their correlations. Slices view is also linked to currently displayed data table and will automatically

update when data table gets changed or switched. Below are several examples:

113

Figure 3.9.8: Sliced by severity levels Figure 3.9.7: Sliced by tags

Figure 3.9.9: Sliced by components

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3.9.4 Named regular expressions

As you may have noticed from previous sections, the analytical views are based on categories which

derived directly from logging event structure - names of applications, host, loggers, exception, etc. To

extend this list it is also possible to extract data from messages and use those data as category for

further analysis. If you have log messages of repetitive structure but variable in terms of content,

some of this content may be used to create custom categories. For example, consider the following

log messages:

program started, env: Windows 7 (6.1), x86, JRE 1.6.0_54
program started, env: Windows 7 (6.1), x86, JRE 1.7.0_64
program started, env: Windows 7 (6.1), x86, JRE 1.7.0_71

To capture and plot the information about JRE version we use regular expressions which we also

name so that we can easily find them later. Once defined, named regular expressions will show up in

a list of categories in Distributions and Slices views. To define and test those expressions, open file

File/Preferences and select Named regex section, it looks like this:

114

Figure 3.9.10: Named regular expressions

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

To be used along with other categories, regular expressions are named, hence the term.

The regular expression pattern must include at least one named group which will be used for

capturing data from text. If you specify more than one group, you should also select which of the

groups to use for data extraction. It is possible to use expressions from your patterns library, the

notation of %{pattern-name} still applies.

When named regular expression is applied to a collection of logs, it will scan each event message

body to match the regular expression at hand. When match, the group data will be extracted from the

text and used as a series for display in analysis charts. For example, a slice with applied above

example may look like this:

As you can see, the most used JRE version in this example is 1.6.0_32. But you can also see that

there are 14 different versions used altogether. That may be a valuable information.

If you click on either of the slices, logFaces will drill down and extract from its database the log

events contributed to the picture we see.

115

Figure 3.9.11: Named regular expression applied

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

Another interesting feature of named expressions can be seen with Distributions where aspect of

time comes into play. If your logs contain numeric information, we can extract it and instead of

counting the amount of log events matching, we can display extracted numbers.

Consider the following example, these logs reveal some data being collected:

collected 132 records from
collected 596 records from
collected 28 records from
collected 24 records from
collected 30 records from
collected 16 records from
collected 42 records from
collected 45 records from
collected 2 records from

Named regular expression for this type of data should indicate that we want numbers extracted if

possible. Select “Capture numeric value only” check box in expression editor panel.

A pattern like “collected %{NUMBER:num} records .*” will extract and accumulate the numbers

along the time line and using specified rate.

Finally, when applied to real log data our named expressions will produce this:

Note how Y axis for numeric expressions shows the sum of extracted numbers for a given period of

time. In this example, it's the number of “collected records”. And again, clicking on an individual bar

will display the contributing log events which produced this picture.

116

Figure 3.9.12: Numeric distributions

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3.9.5 Counters

Counters is another form of looking at logs – by counting certain events in correlation to each other.

Counting is done in real time and can be setup separately per client and reset at any time. From

server point of view Counters are yet another log perspectives but they displayed differently:

Each counter has its own criteria filter and name. Whenever criteria is met the counter gets

incremented and its bar grows horizontally. Clicking on the bars will fetch the contributing log

statements into ordinary data table where you can further work with the logs.

117

Figure 3.9.13: Counters view

Figure 3.9.14: Counter setup

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3.10 Repositories

Domains, hosts and components are jump starts into real-time monitoring and data mining tasks.

Those views provide structural information about your log data and underlying system. These are

actual names of applications, hosts, packages and classes. This information is accumulated by

server continuously and never gets removed. Use refresh button to update the content of the views,

they aren't updated automatically.

Use right click context menu to spin off real time perspectives or queries. Selected items will be used

to construct criteria filter automatically.

One note about Components. This view is special because components are artifacts, server doesn't

have a knowledge of them. Component is a collection of packages grouped together to allow you

additional abstraction level of the underlying system. For example, you can make a “Presentation

layer” component holding dozens of packages and since components are named, you will be able to

use those names in filtering and queries.

118

Figure 3.10.1: Repositories

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3.11 Messages, exceptions and details

Whenever something is selected in data tables, the additional details are also shown in separate

views for convenience. Every log event has a message text; when it's too large or spans several lines

the “Message” view will show it nicely so that you could select and copy text into a clipboard.

When event carries an exception, the “Exception” view will be displayed with full stack trace where

you further jump into sources.

“Event Details” view has a summary of all information known about the log statement. Everything is

colored by event severity so that you will easily know what it's all about. For example, below we have

an error selected in data table, so the “Message”, “Exception” and “Details” views are painted with

the red background.

You can also spin queries from selections and even real-time perspectives to follow particular

patterns – use the mouse right click wherever possible.

119

Figure 3.11.1: Using auxiliary views

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3.12 Source code mapping

Having appenders to transmit location information allows instant access to the origin of the log

statements. Most appenders have a property named “locationInfo”; when emabled, the appender

transmits files name, class name, method name and the line number of the originating log statement.

120

Figure 3.12.1: Accessing the source code

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

In order to be able to use this information we need to map the locations of source files – this can be

done in File/Preferences/Source mapping. Whenever the source file is requested, the mapped

locations are scanned to find the corresponding source file. If source file is found, it will be displayed

in a separate window pointing to exact location in the code where the log statement originated.

Note that remote source repositories are specified as HTTP URL's. Depending on your repository

you may want to include authentication parameters in URL itself. If required, client may prompt you to

enter user name and password for accessing the remote storage. Credentials are cached and stored

as part of the current workspace. Normally you will be prompted only for the first time when remote

location is accessed.

121

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3.13 Viewing raw log files

It is possible to parse log files and use client analytical features to inspect the content. This is done

by means of parsers which you can define in your workspace and use them whenever log file needs

to be opened. Parsers are defined in preferences:

Each parser defines main regular expression pattern, exception pattern and date time format specific

to the log files you will be using this parser with. Each parser is also named so that you can easily

recognize it. Each parser can also be tested by challenging it with real log data.

Once you are done defining your parsers, they will be listed under “File / Open log file..” menu.

Processed file will be displayed in a conventional data table where you will further apply filtering, do

the search, spread and slice by categories and use the rest of the analytical tools available in client

interface.

To learn how to use regular expressions to parse raw text please refer to “Working with regular

expressions” section. Note that clients can share pattern libraries through the server and use the

same set of regular expression patterns.

122

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3.14 Managing patterns library

Each client maintains its own copy of regular expressions patterns library and using it for parsing log

files when needed. To see the library content go to Tools menu and select “Open Patterns Library”,

the local copy of patterns library will be displayed.

Patterns can be modified locally, imported from the server, tested and exported to server for sharing

with other users. To learn about patterns library please refer to “Working with regular expressions”

section.

123

Figure 3.14.1: Patterns library

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3.15 Importing and export logs

Log data can be exported from one server database and imported into the other, we use binary data

image for those operations. You can export query results directly into binary file and import it later on

somewhere else.

To export all data from the database, go to Tools menu and select "Export data from database".

You will be prompted for the file name. This operation is identical to what is done by Backup utility.

To import data into database, go to Tools menu and select "Import data into database". You will be

prompted to select a file exported previously from logFaces. Before the import actually starts, you will

be asked to specify a Domain name to which imported data should be associated:

If you leave this field blank, the data will be imported without any modifications. Otherwise, the

Domain name of all events will be replaced to the value provided. This is very convenient when you

exchange data between different logFaces servers.

Please take into account, that depending on the data set size and the speed of the database, those

operations may take up to several minutes while taking considerable amount of CPU and database

I/O.

124

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3.16 JIRA integration

Integration with bug tracking systems can save plenty of time when you spot and report issues

directly from the data you see in logFaces. JIRA is one of the popular issue tracking platforms and

logFaces can directly create issues using its REST API. To enable JIRA integration, go to

File/Preferences and specify the URL, user name and API token:

As of this writing the issue creating end point is currently available at the following URL:

/rest/api/3/issue

Note that JIRA expects user names in the form of actual email addresses.

The API token can be obtained for individual user from JIRA administration site, note that the token

must match the user name used above.

125

https://developer.atlassian.com/cloud/jira/platform/rest/v3/?utm_source=/cloud/jira/platform/rest/&utm_medium=302#api-rest-api-3-issue-post

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

Once JIRA integration is enabled, you can start creating issues directly from logFaces data tables,

either queries or real-time. When you see something of importance, just select the events and using

the right click choose “Send to JIRA” action.

You can select single log statement or multiple. Whatever is selected gets converted into a log file

and attached to the JIRA issue. The format of the log files can be configured in preferences File

section. Same format is used with ${logs} variable in the template explained below.

JIRA issue creation is a complex API, but we simplify it greatly by requesting issue Summary and

Description only. The rest is defined in re-usable issue template(s):

126

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

The issue template is a JSON body sent to JIRA servers with the issue creation request. You will

create template(s) in accordance with JIRA settings of the project where issues directed at. For that

you will need to use JIRA documentation and have knowledge of your project structure.

Below is an example of an issue template. You can have few templates if there is a need to create

issues in different projects.

{
 "update": {},
 "fields": {
 "summary": "${summary}",
 "issuetype": {
 "id": "10010"
 },
 "project": {
 "id": "10012"
 },
 "description": {
 "type": "doc",
 "version": 1,
 "content": [
 {
 "type": "paragraph",
 "content": [
 {
 "text": "${description}",
 "type": "text"
 }
]
 },
 {
 "type": "paragraph",
 "content": [
 {
 "text": "${logs}",
 "type": "text"
 }
]
 }
]
 },
 "priority": {
 "id": "3"
 }
 }
}

The template file must be a valid JSON structure defined by JIRA API and contain references to real

JIRA identifiers of projects, types, priorities, etc. Note how we use ${variable} placeholders -

these are getting evaluated by logFaces before the JIRA call. The ${summary} and

${description} get populated from the prompt dialog above. Optionally the ${logs} variable

can be used to append first few lines of the selected log statements into the body of the issue,

sometimes it's a convenient option for laying out the issue view.

127

https://developer.atlassian.com/cloud/jira/platform/rest/v3/?utm_source=/cloud/jira/platform/rest/&utm_medium=302#api-rest-api-3-issue-post

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3.17 Command Line Arguments

3.17.1 logfaces.ini file

Client applications use a set of arguments to bootstrap their JVM. Those arguments are located in a

file named logfaces.ini. Its location is platform dependent. On Windows and Linuxes it will be found

under client installation directory. On Mac OS it will be located inside the application archive:

/Logfaces/Contents/eclipse/logfaces.ini.

Do not remove any of the default settings because it may break the bootstrap sequence. Below are

commonly used arguments which can may be modified or appended.

Using non-default JVM is possible by specifying -vm argument (note that argument name and value
are passed in separate lines!)

-vm
path-to-javaw.exe

The following parameters specify JVM heap memory sizes. Increase the Xmx parameter for more

memory intense scenarios.

-vmargs
-Xms64m
-Xmx256m
-XX:MaxPermSize=128m

In case your desktop computer is using proxy to connect to the outside world, add the following two

lines with your own settings for proxy host and port.

-Dhttp.proxyHost=host
-Dhttp.proxyPort=90

If you use SSL to connect to logFaces server and your CA is not in the default trust store of client

JVM, you can instruct client JVM to use another trust store containing your certificates by specifying

its path and password using these properties:

-Djavax.net.ssl.trustStore=path-to-trust-store-file
-Djavax.net.ssl.trustStorePassword=your-password

128

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3.17.2 Branding

It is possible to customize the splash screen so that it shows your own background image. Make the

following lines to be the first the logfaces.ini file:

-showsplash
c:/full-path-to-image/splash.bmp

Make sure that image file is of BMP format and is exactly 455 x 295 pixels. The login screen controls

will overlay the background image, so you want to design your background image to coexist with the

dialog controls placed on top of it. Here is the current built-in splash screen for the reference:

It is also possible to customize title and image in about dialog. Append the following properties to the

logfaces.ini file:

-Dcom.moonlit.logfaces.title = "My custom title"
-Dcom.moonlit.logfaces.image = /full-path-to-image/my-image.png

129

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3.17.3 Launching workspace on start-up

It is possible to launch the client so that it automatically loads the workspace by name or by the file

name. To do this, use -workspace argument which is followed by workspace name or the file name.

If name has spaces, make sure to decorate it with quotes. For example:

logfaces.exe -workspace “My workspace”

logfaces.exe -workspace “c:\logfaces\My workspace.lfs”

3.17.4 Launching queries on start-up

It is possible to launch the client so that it automatically runs a query before showing up. To do this,

use -query argument which is followed by semi-column separated query parameters. None of the

parameters is mandatory (see defaults below). For example, the following command line will display

first 100 exceptions with ERROR and above severity level :

logfaces.exe -query name=Problems;thrown=true;loggerLevel=error

Here is the full list of parameters which can be used:

Parameter Description Default

name Query name, will be displayed on the editor tab My query

fromTime Include data from this time (UTC numeric long in msec) 0

toTime Include data until this time (UTC numeric long in msec) MAX_LONG

domains Comma separated list of application names to match -

hosts Comma separated list of host names to match -

loggers Comma separated list of logger names to match -

exception Text to match in stack traces -

matchMessage Text to match in event message -

onlyThrown True for including only thrown exceptions false

level Log4j level, numeric or strings (INFO, ERROR, etc) TRACE

limit Maximum numbers of events to fetch 100

timeZone Which time zone to use for display JVM time zone

Table 3.1: Command line parameters

130

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3.18 Preferences

Global application preferences are accessible through the File menu and allow the following settings.

In Appearance section you can customize fonts and colors of main application views and editors.

131

Figure 3.18.1: Appearance

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

In Application section you can specify whether the client main window should be minimized to tray

or stay minimized in the task bar so that you see the title. When application is minimized to tray,

double clicking on its icon will restore its main window.

132

Figure 3.18.2: Application preferences

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

In Connectivity section you can specify the server connection endpoints which apply to a currently

used workspace.

Support site URL is used for submitting bugs, feature requests or questions – you will be taken to this

URL automatically when selecting Help/Report bug or request feature menu.

133

Figure 3.18.3: Connectivity preferences

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

In Files section you specify the layout format of log files and external editor to be used throughout

the application. The layout format will be applied to all file related operations when saving data to a

file or copying logs into clipboard. The format is specified in Apache Log4j documentation, you might

want to read about it here.

Note that external text editor can also be used for displaying the source files. By default sources are

displayed in internal source viewer, but you can change this and have your own editor opened

whenever sources are displayed. You can also use ${file} and ${line} variables to construct a

command line for your editor.

134

Figure 3.18.4: File preferences

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

JIRA Integration allows creation of issues in JIRA projects directly from logFaces context with actual

log statements attached. Integration is based on JIRA REST API which will be called on your behalf

as developer. For this to work we need the URL for creating issues, the user name (usually an email)

and the API token which obtained from your JIRA administration site. Once enabled, you should be

able to report issues directly from real time perspectives and queries with a simple right click of a

mouse.

135

Figure 3.18.5: JIRA integration

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

In Levels section you can customize the way log statements look – background or foreground colors

and image icons. Note that some axillary views are using the colors you define here.

136

Figure 3.18.6: Severity level styles

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

In MDC names section you will find current MDC names mapped from applications to the logFaces

server. MDC mapping is modified on server side, so in case you need to change the mapping, you

will have to use server administration.

When MDC mapping has some names, you will be able to use those names in queries and filters.

For example, when SESSION_ID name is defined, it will appear in data tables column and you will

be able to search events based on this name as well as trace real time data and filter data tables

containing particular value of this attribute.

137

Figure 3.18.7: MDC mapping

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

Named regular expressions are used with log analysis, they define custom categories which then

used to slice and spread the log data. For more details see “Named regular expressions” section.

138

Figure 3.18.8

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

In Parsers section you will be able to define parsers for processing log files offline (without server).

This feature is designed to exploit client analytical capabilities to display and search directly by

opening any text file provided that its format can be parsed with regular expressions. More details

can be found in “Viewing raw log files” section .

139

Figure 3.18.9: Parsers

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

In Perspectives section there are ways to customize real-time perspective views. When real-time

view is opened, there is an option to grab historical data from database before the view gets live –

this will give you the context for current log events coming into the view.

You can limit the size of the view to a certain amount of events, when view gets full it starts rotating

by removing older events. You may want to clear up the view entirely when it fills up. Some

messages may have End Of Line separators – this can be optionally removed to fit the message

nicely into the table.

140

Figure 3.18.10: Perspective preferences

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

In Plugins section you can manage the plugins - adding, importing, removing and synchronizing with

server. Plugins listed here will be available in the context menus of data views.

141

Figure 3.18.11: Plugins management

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

In Queries section you can specify the way queries are executed against the server. These are

global settings and applied to all queries throughout the client.

If you ever used logFaces over the public internet or VPN, you might have noticed that large result

sets are slow to get to the client even with a well tuned database. It may get particularly painful with

huge queries containing exception dumps, which is often what people do. This issue is addressed by

two options you can try here - “Stream Query Results” and “Use Compression”.

The slower the client-server connection, the more vivid will be this improvement. Now, instead of

paging the result sets and hitting the server on every page, we do streaming which takes a single

server hit and delivers everything to the client in one shot. The stream may get compressed. Plus it

will bypass many conversions while streaming simple JSON text.

142

Figure 3.18.12: Query preferences

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

In Source Mapping section you can specify where to look for actual source files. References to

source files (if enabled in your appenders) will be available for every log event as well as exception

stack traces. So, in order to jump into a source code directly from logFaces client, this mapping is

essential.

When source file is being resolved, client first tries to locate the file in directories in the order you

specify. If not found, the client will try to locate the file in one of the URL's. The URL must be HTTP

based and contain the base for file locations, client will append relative file path to the URL during

look up.

143

Figure 3.18.13: Sources mapping

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

Tags add domain specific indications to a dull technical log stream. You create a tag by giving it a

short friendly name, color and matching criteria. Logs matching the tag criteria get tagged before they

get displayed. The criteria is the same bunch of rules we use in queries and filters, nothing new here.

Tags are a very powerful tool - they participate in view filters, queries and analytical charts.

144

Figure 3.18.14: Tags preferences

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

3.19 Status bar

Status bar displays the following information:

• current connection state

• current connection end point

• current version of logFaces server

• current license

• number of database records (click on the icon to refresh the counter)

• current RAM used on client versus maximum RAM allocated plus manual garbage collector.

Figure 3-3.19.1 Status Bar

145

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

4 REST API

logFaces server comes with an industry standard REST API to allow direct access to the most

common tasks such as queries, real-time monitoring, access to repository data, etc. The API consists

of several HTTP calls with JSON payloads and parameters.

4.1 Access control

Access control is enforced when authentication is enabled in server administration. Otherwise,

anyone can do server calls without restrictions.

When authentication is enabled, the caller is expected to login prior doing any other server calls.

REST API access control is based on access tokens which are issued on each /login call and

then expected to be returned to server with subsequent calls in Authorization header.

Along with authentication, tokens may carry authorization information. This gets into effect when

logFaces server runs with authorization enabled. If authorization is not enabled, then every

authenticated user is treated equally as 'anonymous' role bearer.

Access tokens are durable for 24 hours and should be re-acquired when expired. It is not required to

perform /logout all the time, but if done so - the token is revoked instantly and can't be used any

longer. Server will respond with HTTP code 403 if it fails to validate the token. Here is the format of

the calls:

Request POST /api/login?user=name&password=pass

Response headers Content-Type : application/json

Response code

200 - logged in ok
403 - access is denied
500 - server error

Payload

{
 token : 'askdfhlkajhsdlkfjhalskdfj.....'
}

Request POST /api/logout

Request header Authorization : 'askdfhlkajhsdlkfjhalskdfj.....'

Response code

200 - logged in ok
403 - access is denied
500 - server error

146

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

4.2 Server info

Do this call to obtain general information about the server such as server version, OS type, license,

database type, driver, etc:

Request GET /api/server/about

Request headers Authorization : 'askdfhlkajhsdlkfjhalskdfj.....'

Response code

200 - logged in ok
403 - access is denied
500 - server error

Response headers Content-Type : application/json

Response body

{
 "licenseType": "site",
 "licenseHolder": "CN=xxx,O=yyy",
 "licenseID": "9827347238",
 "licenseIssueDate": "26-Feb-2014",
 "licenseMaintPlanCoverage": "26-Feb-2015",
 "serverVersion": "4.3.3.234",
 "osVersion": "Windows 8.1 (6.3), amd64",
 "javaVersion": "1.8.0_25",
 "dbProduct": "Apache Derby",
 "dbDriverVersion": "10.7.1.1 - (1040133)",
 "dbDriverName": "Apache Derby Embedded JDBC Driver",
 "dbVersion": "10.7.1.1 - (1040133)"
}

4.3 Server health

Use this call for obtaining authentication free health state of the server instance. Can be easily

integrated with external third party health monitors.

Request
GET /api/server/health

Response code

200 - instance is healthy and operational
503 - instance is up but not operational
*** - instance health is not known

Response body If instance is reachable the body will contain the current engine
state: idle, starting, running, stopping. The instance is
considered healthy and operational only when in 'running' state

147

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

4.4 Server state

This call is provided for server state monitoring. The information provided by this call is identical to

the one described in the admin status page:

Request GET /api/server/state

Request header
Authorization : 'askdfhlkajhsdlkfjhalskdfj.....'

Response

200 - logged in ok
403 - access is denied
500 - server error

Payload

{
 "uptime": 1220164,
 "status": "running",
 "nofLastErrors": 0,
 "maxMemory": 1908932608,
 "totalMemory": 319291392,
 "freeMemory": 227224672,
 "nofThreads": "27",
 "nofClients": 0,
 "nofAppenders": 0,
 "verbose": false,
 "totalRx": "0",
 "loadAct": "0",
 "loadAvg": "0",
 "loadMax": "0",
 "dbTotalCommit": "0",
 "dbThroughputAvg": "0",
 "dbThroughputAct": "0",
 "overload": "0.00",
 "overloadAlarm": false,
 "overflowHit": 0,
 "overflowCache": 0,
 "overflowDisk": 24,
 "dbSize": "5.9 MB",
 "dbCount": 1097,
 "dbProduct": "Apache Derby",
 "dbDriverVersion": "10.7.1.1 - (1040133)",
 "dbDriverName": "Apache Derby Embedded JDBC Driver",
 "dbVersion": "10.7.1.1 - (1040133)",
 "dbMaintRelevant": true,
 "dbMaint": "not scheduled",
 "databaseOK": true
}

148

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

4.5 Queries

To fetch historical data from logFaces database the caller initiates new query and then makes

subsequent calls to draw the results page by page. Size of the page is specified as one of the query

parameters submitted with this POST request:

Request POST /api/query

Request header
Authorization : 'askdfhlkajhsdlkfjhalskdfj.....'
Content-Type : application/json

Request body
see query format

Response

200 - logged in ok
403 - access is denied
500 - server error

Response body
see results format

To page through the results of started query, a series of paging request should follow until no more

results indicated. Note that ${qid} parameter must be taken from the previous call to identify the

query being paged through.

Request GET /api/query/${qid}

Request header
Authorization : 'askdfhlkajhsdlkfjhalskdfj.....'

Request body
see query format

Response

200 - logged in ok
403 - access is denied
500 - server error

Response body
see results format

149

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

4.5.1 Query format

The following parameter can be submitted with query request, it must be valid JSON structure as

shown in the example below:

Name Description Default

limit maximum number of events to fetch, -1 for no limitation -1

pageSize size of the page for drawing the result set 100

fromTime cover events from this time (UTC epoch time in ms)
current server
time - 1 hour

toTime cover events until this time (UTC epoch time in ms)
current server

time

order sorting of results: ascending,descending,natural ascending

criteria see criteria format for more details

150

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

4.5.2 Query results

Query results come in JSON format containing query id, indication that there are more results

available to draw, and the array of results in the format described in data model.

The qid should be used to draw the next page of results if needed. When there are no more results

available, the query can be considered as complete, calling with the same qid will never produce any

more results.

Below is a query response example:

151

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

4.5.3 Criteria format

Criteria describes how to match the log data with a set of rules and conditions making complex

boolean statement either true or false. Criteria expressions are used throughout logFaces for queries,

real time monitoring, triggers, reports, and other tools. This is how it works:

Each Criteria is a collection (array) of Rules. Each Rule is a collection (array) of Conditions. Each

Condition is a single boolean expression. When ALL Conditions in Rule are true, the Rule is true.

When ANY of the rules is true, the Criteria is true. Conditions can match any of the attributes

described in data model using any of the matcher operations listed below:

Operation Description

is equals, good for any type of attribute

isnot not equals, good for any type of attribute

contains for matching sub-strings in string attributes

notcontains negative matching of sub-strings in string attributes

regex matching attributes by regular expression

noregex negative matching attributes by regular expression

more higher than, used for numeric attributes

less lower than, used for numeric attributes

emore higher or equals than, used for numeric attributes

eless lower or equals than, used for numeric attributes

This example illustrates Criteria with two rules, it

will match either thrown events OR anything from

application named 'app1' or host named 'host1'.

152

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

4.6 Monitoring

It is also possible to instantiate real-time perspectives on server and continuously draw the data

matched by the their criteria. Similar to how data queries implemented, the monitoring calls come in

two parts. First we want to create new perspective with parameters, and then we want to call for

more data.

4.6.1 Start perspective

Request POST /api/perspectives

Request headers Authorization : 'askdfhlkajhsdlkfjhalskdfj.....'
Content-Type : application/json

Request body

{
 criteria : [...]
}

format of criteria is identical to queries

Response

200 - logged in ok
403 - access is denied
500 - server error

Response body

{
 "pid": "…."
}

this is a perspective id for the next calls

153

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

4.6.2 Pull perspective data

Once perspective is started, the caller can draw the data by periodically doing the second call below.

Note that ${pid} parameter must be taken from the previous call to identify the query being paged

through. The ${timeout} parameter (in seconds) makes this call blocked by server when no data

is available. When new data arrives, the call will return immediately with all the data. However, when

no data is available, the serve will hold the call for at least number of seconds specified. This is done

to reduce the unnecessary trips to and from the server by the caller.

Request GET /api/perspectives/${pid}/listen?timeout=${timeout}

Request headers Authorization : 'askdfhlkajhsdlkfjhalskdfj.....'

Response

200 - logged in ok
403 - access is denied
500 - server error

Response body

[
 {
 a: 'application-name',
 h: 'host-name',
 g: 'logger name or exception class',
 ….

 },...

]

see data model for mode details

4.6.3 Remove perspectives

Real time perspectives are server resources and should be disposed of not used any longer. Do the

following call to remove active perspective.

Request POST /api/perspectives/${pid}/remove

Request headers Authorization : 'askdfhlkajhsdlkfjhalskdfj.....'

Response

200 - logged in ok
403 - access is denied
500 - server error

154

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

4.7 Repository

Repository in logFaces is a meta-data describing entire collection of logs held in database. From

repository, the caller can get a names of hosts, applications, loggers and exceptions known to the

system.

Request GET /api/repo

Request headers Authorization : 'askdfhlkajhsdlkfjhalskdfj.....'

Response

200 - logged in ok
403 - access is denied
500 - server error

Response body

[
 {
 a: 'application-name',
 h: 'host-name',
 g: 'logger name or exception class'
 },...

]

155

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

5 Plugins

logFaces has many features, however there is no rule that fits all, we all have different goals. Plugins

extend existing functionality. This is done by running software written by you, using your own domain

knowledge and trying to achieve your very own specific goals. This can be done directly from the

logFaces user interface when you see the interesting log data.

Plugins are modules written in Groovy language following the guidelines outlined in this section.

Once deployed on your server, plugins show up in your clients and can be used by all team

members. For example, if you want to open a ticket in your customer support system when you see

certain logs on your screen, you would call the function implemented in a particular plugin. The plugin

may prompt user for arguments (if required) and then execute its code.

When client connects to a logFaces server it downloads all the plugins available in that server

instance and makes them available for usage. The right-click context menus in all data views have a

Plugins sub-menu with the list of all available plugins currently available. For example:

156

http://groovy-lang.org/

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

The execution of plugin function is performed inside client JVM using an isolated class loader with all

the dependencies you supply with that specific plugin. Dependencies may include any jars or

resources your plugin needs to serve the user call.

So, what is the work-flow for extending logFaces functionality with plugins?

1. Create a class implementing the LogFacesPlugin interface in your own IDE using whatever

tools you normally use. We have created a starter project in GitHub in order to demonstrate

how plugins usually look. Feel free to re-use and extend.

2. Test the plugin before deploying it. This is also up to you how testing is done. Just make sure

that it does what you expect it to do and doesn't kill the hosting JVM (which are your clients).

3. Deploy to you server.

157

https://github.com/sparklton/LogFacesPluginsDemo

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

5.1 Implementation

Creation of logFaces plugins is based on the implementation of a single interface called

LogFacesPlugin. The plugin development requires lfs-core.jar in your class path. It can be found

in popular Maven repositories using the following coordinates:

Here is the LogFacesPlugin interface definition:

Implementation of this interface must be in Groovy language. Lets have a closer look and see how it

should be implemented:

Plugins are named and their names show up in server administration page as well as inside client

menus. The getName() method serves this purpose.

Sometimes plugins need to be invoked with arguments. If this is the case, the getArgs() method is

used to prompt the user for the input. What expected from this call is a list of argument names, which

is later used for calling the handleEvents(..) method which is the core of your plugin

implementation. The user will not be prompted if no arguments are required.

The List<LogEvent> comes from the context where the user actually invokes the plugin and the

arguments are the parameters the user wants the call to be executed with. Note that the LogEvent

interface describes the actual log events from the logFaces data model and your plugin has a chance

158

<dependency>
 <groupId>com.logfaces</groupId>
 <artifactId>lfs-core</artifactId>
 <version>5.2.4</version>
</dependency>

http://groovy-lang.org/

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

to peek inside them (if needed) and do whatever is required with this information.

For example, if you want to send an email with selected log statements, your plugin may want to

format the log lines and attach them to an email payload. The details of the LogEvent interface can

be found in the JavaDoc, which can also be found in central Maven repository.

In some cases, it will make sense to validate the plugin before it gets deployed into foreign JVM. Use

the validate() call for doing anything which will be required to verify the plugin well being. Plugins

which throw any kind of exception are rejected during the deployment process. Users receive a text

message with whatever this call returns.

In its minimal form a plugin can be comprised of a single Groovy class implementing the

LogFacesPlugin but this is oversimplification. Any non-trivial coding requires some dependencies

on other libraries and resources. There are no restriction on what or how your plugin uses as long as

it compiles into a valid Java byte code. Note that plugins are loaded by the host JVM using a

separate class loader. So, if you are referencing third-party classes (or resources) make sure that all

these dependencies are available at the run time.

Some plugins may require a life cycle management for graceful initialization or termination invoked

explicitly when instantiated or removed by the logFaces server. Such plugins should implement an

interface named Initializable from the dependency jar. The server will then attempt to call

initialize() and terminate() methods on such plugins whenever they get started or stopped.

5.2 Testing recommendations

Testing before deploying your plugin is essential. Basically, you want to test how the

handleEvents(..) method behaves and whether it does what you expect it to do. One of the

ways to test is to create JUnit test case and challenge your plugin from different directions. Note that

you will have to offer some mockup implementation of the LogEvent interface which represents the

actual log event from our data model.

5.3 Deployment and administration

Once your plugin is ready and tested, the final step is to share it with your users. Plugins are

managed in logFaces server and delivered to all clients when they connect to this server. Go to

admin/context/plugins page and upload your plugin files. Make sure you include all the

dependencies your plugin requires. The server will attempt to load and validate the plugin and if

159

Copyright ©2009-2025 Moonlit Software Ltd, All rights reserved.

everything is OK, it will be listed and become ready for consumption. Plugins are stored on the server

local directory named /plugins .

160

	1 Introduction
	2 Getting started with logFaces Server
	2.1 Installing and Uninstalling
	2.2 Using silent installer options
	2.3 Running logFaces Server on Windows
	2.4 Running logFaces Server on Linux/Solaris
	2.5 Server directory tree
	2.6 Integrating log4j-like applications
	2.6.1 log4j v2.x appenders
	2.6.1.1 SSL setup

	2.6.2 logback appender
	2.6.2.1 SSL Setup

	2.6.3 log4php appender
	2.6.4 log4js-node appenders
	2.6.5 log4net appender
	2.6.6 NLog appender
	2.6.7 log4cxx appender

	2.7 Understanding data model
	2.8 Working with regular expressions
	2.9 Server administration
	2.9.1 Front end connectivity
	2.9.2 Receivers
	2.9.2.1 Socket receivers
	2.9.2.2 Syslog receivers
	2.9.2.3 Web receivers
	2.9.2.4 Drop zones

	2.9.3 Black list
	2.9.4 Flood management
	2.9.5 Pairing
	2.9.6 Using SSL
	2.9.6.1 Key store setup
	2.9.6.2 Trust store setup

	2.9.7 Authentication
	2.9.8 Authorization
	2.9.9 Database
	2.9.9.1 General options
	2.9.9.2 Commit criteria

	2.9.10 Mapped Diagnostic Context
	2.9.11 Repository
	2.9.12 Custom severity levels
	2.9.13 Hosts mapping
	2.9.14 Plugin management
	2.9.15 Pivot chain
	2.9.16 SMTP settings
	2.9.17 Reports
	2.9.18 Triggers
	2.9.18.1 Delivery options
	2.9.18.2 Capture criteria
	2.9.18.3 Rules
	2.9.18.4 Split triggers
	2.9.18.5 Silence detectors

	2.9.19 License
	2.9.20 Status
	2.9.21 Getting server info remotely

	2.10 Advanced settings
	2.10.1 Server bootstrapping
	2.10.2 Server home
	2.10.3 Server environment
	2.10.4 How do I work with external SQL databases?
	2.10.5 Can I modify SQL database schema?
	2.10.6 Can I use my own PK generators with SQL databases?
	2.10.7 How do I work with MongoDB?
	2.10.8 MongoDB schema and indexes
	2.10.9 MongoDB capped collections
	2.10.10 MongoDB TTL collections
	2.10.11 MongoDB partitioned storage
	2.10.12 MongoDB custom _id creation
	2.10.13 MongoDB authentication
	2.10.14 How do I work with Google BigQuery?
	2.10.15 How do I tune the server for the best performance?
	2.10.16 How do I migrate my SQL database storage to MongoDB?
	2.10.17 How can I automate monitoring of logFaces server logs?
	2.10.18 How do I increase server JVM memory?
	2.10.19 How to pass additional arguments to server JVM
	2.10.20 How do I use NTLM authentication with MS SQL Server on Windows?
	2.10.21 How do I make logFaces Windows service depend on other services?
	2.10.22 How to obfuscate passwords
	2.10.23 Running in Docker containers

	3 Getting started with logFaces client
	3.1 Installing and uninstalling
	3.2 Modes of operation
	3.3 Workspace
	3.4 User interface concept
	3.5 Data tables
	3.6 Monitoring tasks
	3.7 Data mining tasks
	3.8 Criteria with parameters
	3.9 Analytical tasks
	3.9.1 Dashboards
	3.9.2 Distributions
	3.9.3 Slices
	3.9.4 Named regular expressions
	3.9.5 Counters

	3.10 Repositories
	3.11 Messages, exceptions and details
	3.12 Source code mapping
	3.13 Viewing raw log files
	3.14 Managing patterns library
	3.15 Importing and export logs
	3.16 JIRA integration
	3.17 Command Line Arguments
	3.17.1 logfaces.ini file
	3.17.2 Branding
	3.17.3 Launching workspace on start-up
	3.17.4 Launching queries on start-up

	3.18 Preferences
	3.19 Status bar

	4 REST API
	4.1 Access control
	4.2 Server info
	4.3 Server health
	4.4 Server state
	4.5 Queries
	4.5.1 Query format
	4.5.2 Query results
	4.5.3 Criteria format

	4.6 Monitoring
	4.6.1 Start perspective
	4.6.2 Pull perspective data
	4.6.3 Remove perspectives

	4.7 Repository

	5 Plugins
	5.1 Implementation
	5.2 Testing recommendations
	5.3 Deployment and administration

