ORGANIC ACIDS & AMINO ACIDS COURSE OVERVIEW

COURSE CREATOR: Dr. Gail Clayton, DCN, CNS, MS, RPh, LDN

These course(s) teach advanced biochemical assessment using critical analysis of client history with clinical testing from a functional medicine perspective. Functional lab testing will be evaluated in detail with case studies. Topics will be relevant to preventative as well as therapeutic nutrition care.

Course(s) Outcomes

- Evaluate specific nutrient deficiency states through organic acids
- Plan and monitor nutrient interventions to correct abnormalities found by the tests

ORGANIC ACIDS COURSE SYLLABUS:

VIDEO 1: INTRODUCTION TO ORGANIC ACIDS - 39 minutes (0.75 CE credits)

After completing the review of course materials, students will be able to:

- Determine populations that would benefit from organic acid testing
- Determine conditions that may benefit from organic acid testing
- Overview of main points of what organic acids test for
- Clarify to individuals on how to prepare for the test and procedure for specimen collection
- Determine particular confounders that may impact test results

VIDEO 2: VITAMIN MARKERS – 36 minutes (0.5 CE credits)

After completing the review of course materials, students will be able to:

- Recognize B complex vitamin deficiencies and enzyme polymorphism from the alpha-keto acids
- Recognize hypometabolic states from alpha-keto acid patterns
- Recognize confounders that may affect vitamin marker test results
- Recognize vitamin patterns that indicate possible cell membrane fluidity impairment
- Identify folate and B12 metabolism markers
- Develop treatment regimens for vitamin deficiencies
- Identify patterns of the specific nutrient deficiency impairing methylation

VIDEO 3: BETA-OXIDATION OF FATTY ACIDS – 38 minutes (0.75 CE credits)

After completing the review of course materials, students will be able to:

- Summarize the biochemical steps of beta oxidation of fatty acids
- Identify nutrient deficiencies indicated with elevations of adipate, suberate, and ethylmalonate
- Identify nutrients needed for carnitine synthesis
- Identify confounders of elevated adipate, suberate, and ethylmalonate
- Identify origins of very low adipate and suberate
- Recognize patterns indicating polymorphisms in the beta-oxidation of fatty acid metabolism
- Recognize patterns that indicate hypometabolic states

VIDEO 4: NEUROTRANSMITTERS (HVA & VMA) PATTERNS ACIDS – 26 minutes (0.5 CE credits)

After completing the review of course materials, students will be able to:

- Summarize the catecholamine biochemical pathway
- Identify and evaluate neurotransmitter organic acid patterns
- Evaluate neurotransmitter ratios
- Identify symptoms of low catecholamines
- Develop a treatment plan for neurotransmitter imbalances based on organic acid evaluation
- Evaluate and identify common polymorphisms involved in the catecholamine biochemical pathway

VIDEO 5: KYNURENINE PATHWAY PATTERNS ACIDS - 33 minutes (0.5 CE credits)

After completing the review of course materials, students will be able to:

- Recognize organic acid patterns in the Kynurenine pathway
- Identify and evaluate confounders of elevated 5-HIAA marker
- Summarize the Kynurenine biochemical pathway
- Evaluate the impact of diet to Kynurenine pathway patterns
- Summarize the biochemical pathways of tryptophan metabolism
- Connect tryptophan metabolism to brain immune health
- Recognize patterns that may indicate dysbiosis
- Recognize patterns that may indicate hypometabolic states
- Evaluate ratios of Kynurenine markers
- Quantify B6 deficiency
- Recognize patterns that indicate neuroinflammation

VIDEO 6: LACTATE/PYRUVATE/OXALATE PATTERNS ACIDS – 28 minutes (0,5 CE credits)

After completing the review of course materials, students will be able to:

- Evaluate lactate and pyruvate patterns
- Summarize the main energetic flux of glycolysis
- Summarize the Pyruvate Dehydrogenase Complex
- Develop treatment options for pyruvate and lactate imbalances
- Identify and evaluate conditions involved in lactate elevations
- Identify and evaluate conditions involved in Beta-Hydroxybuterate elevations
- Evaluate and connect diet impact on lactate/pyruvate and oxalate patterns
- Recognize and evaluate endogenous oxalate production
- Develop a plan for oxalate reduction

VIDEO 7: CITRIC ACID CYCLE - ENERGY REGULATION - 25 min (0.5 CE credits)

After completing the review of course materials, students will be able to:

- Identify hypometabolic states in the organic acids
- Recognize and evaluate cell regulator markers
- Determine the energetic flux of the TCA
- Recognize mitochondria oxidative stress patterns
- Summarize the Cell Danger Response Cycle
- Connect energy production to immune activation
- Recognize anapleresis patterns
- Recognize and evaluate patterns that indicate hypoxia
- Evaluate and develop a treatment plan for 3-Hydroxy-3-Methylglutarate (HMG) patterns
- Summarize conditions that restrict the electron transport chain flux

VIDEO 8: MITOCHONDRIA - TRICARBOXYLIC ACIDS PATTERNS ACIDS - 25 min (0.5 CE credits)

After completing the review of course materials, students will be able to:

- Recognize markers for chronic pH renal balancing
- Identify and evaluate patterns of the Tricarboxylic acids
- Connect citric acid markers to immune function
- Explain the negative feedback pathways of elevated citric acid
- Recognize problems with Complex II as related to TCA
- Explain how to use alpha-ketoglutarate as a surrogate marker for systemic pH
- Recognize anaplerotic filling of the Citric Acid Cycle
- Recognize a pattern of functional CoQ10 deficiency

VIDEO 9: OXIDATIVE STRESS & DETOXIFICATION - 33 min (0.5 CE credits)

After completing the review of course materials, students will be able to:

- Be able to define free radicals
- Identify and evaluate oxidative damage and detoxification markers
- Recognize mitochondria antioxidants
- Understand the antioxidant recycling pathway
- Predict glutathione status
- Develop an appropriate antioxidant treatment plan

VIDEO 10: DYSBIOSIS PATTERNS - 24 MINUTES (0.5 CE credits)

After completing the review of course materials, students will be able to:

- Identify organic acid dysbiosis markers
- Recognize excessive bacteria action on tryptophan
- Evaluate functional B5 sufficiency through benzoate and Hippurate patterns
- Recognize patterns of phase 2 detoxification overload
- Differentiate elevated yeast and specific Candida markers
- Evaluate Clostridium markers for sufficient hydrogengenotropic action
- Relate Tricarballyate to bile

BONUS LECTURES:

- Using organic acids in histamine intolerance
- Deep dive into glutathione and free radicals using organic acids
- Using organic acids in detox & dysbiosis with a focus on phenyl acids

Amino Acid Course Syllabus:

MODULE 1: Introduction to Amino Acids

Amino Acid introduction

- Learning objectives: Upon completion of this module, students should be able to:
- Explain how to properly collect a specimen to send in for amino acids to the lab
- Explain to their patients the confounders that may skew test results
- Understand the structure & function relationship of amino acids
- Understand how proteins & peptide bonds are formed
- Understand the concept of enzyme affinity and how enzymes get amino acids to their final destination
- Understand the factors that regulate enzyme activity
- Understand factors that inhibit enzyme activity
- Basic Principles of Amino Acids

- Learning Objectives: After completing the review of this module, students will be able to:
- Determine a patient's protein requirements
- Recite protein functions in the body
- Describe the basic structure of amino acids
- o Differentiate the essential vs. non-essential protein amino acids
- Classify amino acids
- Describe amino acid isomers and zwitter ions
- Understand the metabolism process of amino acids
- Understand the process of urea process
- Describe amino acids role in nitrogen balance

• Protein Structure

- Learning Objectives: Upon completion of this lecture, students should be able to:
- Understand protein functions in the body
- Understand how the hierarchy of protein structures are determined
- Describe the process of the formation of peptide bonds
- Understand the characteristics of the peptide bond

Enzymes

- Learning Objectives: After completing the review of this module, students will be able to:
- Understand the power of enzymes as catalysts
- Describe how the enzyme complex is formed
- Understand the concept of co-factors needed for reactions to happen
- Describe the two models of forming enzyme complexes
- Understand the concept of the enzyme constant
- Understand things that inhibit enzyme activity
- Know the difference between reversible and irreversible enzyme inhibitors
- Differentiate between co-enzymes and co-factors

MODULE 2: Conditionally Essential Amino Acids

Introduction to Conditionally Essential Amino Acids

- Learning Objectives: After completing the review of this module, students will be able to:
- Identify conditions where Glutamine, Taurine, Glycine and Arginine may become depleted and require supplementation
- Connect symptoms to amino acid deficiencies
- o Investigate patterns of the conditionally essential amino acids
- Develop a plan of amino acid and nutrient repletion, and/or diet changes based on test findings.

Glutamine

- Learning Objectives: After completing the review of this module, students will be able to:
- o Recognize conditions in which glutamine becomes essential
- Understand the buffering system of Glutamine/Glutamate
- Understand clinical indications of the GLN/GLU ratio
- Understand clinical indications of high/low Glutamine/Glutamate patterns in amino acid testing
- Understand the neurotoxicity implications of glutamate
- o Develop an appropriate dosing plan for glutamine supplementation

Taurine

- Learning Objectives: After completing the review of this module, students will be able to:
- Assess the teeter-totter of methylation and transulfuration and functional patterns of taurine and sulfur amino acids and binding affinities to SAMe
- Recognize conditions associated with Taurine deficiency:
- Retinal degeneration
- Coronary heart disease
- Hypertension & congestive heart failure/cardiomyopathy
- Diabetes
- Diabetic neuropathy
- Renal dysfunction
- Impaired skeletal muscle function
- Oxidative stress

Glycine

- Learning Objectives: After completing the review of this module, students will be able to:
- Identify competing pathways for Glycine.
- Understand the regulation of glycine
- Evaluate high/low patterns of glycine
- Identify metabolic blocks in the glycine/serine pathway that affect Phospholipid production
- Identify nutrients needed for Carnitine synthesis
- Assessment of glutathione
- Identify essential nutrients in Collagen production

Arginine

- Learning Objectives: After completing the review of this module, students will be able to:
- o Identify conditions where arginine becomes essential
- Describe the functions of arginine in the body
- Identify the urea cycle intermediates and co-factors

- Describe the pathway to nitric oxide formation
- o Identify nutrients that enhance and inhibit nitric oxide formation
- Modulate nitric oxide formation through diet and targeted nutrients
- Recognize urea cycle patterns indicating a polymorphism

MODULE 3: SPECIAL PATTERNS

• Limiting Amino Acids

- Learning Objectives: Upon completion of this lecture, students should be able to:
- Identify which amino acids are limited in the diet
- Detail the lysine metabolic pathways
- Describe the benefits and cautions with Lysine supplementation
- List the pathways involving carnitine
- Detail methionine and competing pathways
- Explain the sulfur amino acids role and interpret patterns in methylation and detoxification
- Understand the consequences of low limiting amino acids
- Understand the benefits and contraindications and cautions in supplementing the limiting amino acids
- List the foods higher in limiting amino acids

BCAAs

- Learning Objectives: Upon completion of this lecture, students should be able to:
- Understand BCAAs role in energy metabolism
- Understand the transamination & metabolism pathways of BCAAs
- Determine the causes and develop a treatment plan for high or low BCAA levels on testing
- Identify metabolic pathways affected by BCAA supplementation
- List foods high in BCAAs

0

Special Patterns

- Learning Objectives: After completing the review of this lecture materials, students will be able to:
- Understand the causes of low or high amino acid patterns and be able to develop a personalized treatment plan for corrective action
- Relate amino acid levels to energy production and the ability to conduct protein synthesis and repair in the body
- Identify amino acids that are related to cholesterol production
- Relate amino acid patterns to hypometabolic states

- Recognize abnormal amino acid ratios and pinpoint a focal point of how to correct them
- Beta Amino acids Plus Histamine
 - Learning Objectives: After completing the review of this lecture materials, students will be able to:
 - o Interpret abnormal Beta-amino acids and identify the possible causes
 - o Determine dietary influences on Anserine and Carnosine markers
 - Detail the histamine degradation pathways
 - Understand the co-factors involved in histadine/histamine metabolism and develop a treatment plan for excess histamine in the body