

MedTech Usability PREP KIT

Avoid the Top 5 Failures That Kill FDA Submissions

Table of Contents

The Billion-Dollar Blind Spot	3
Failure #1: Speaking with the Wrong People	4-5
Failure #2: Starting After Design Freeze	6-8
Failure #3: Perfect Lab Syndrome	9-11
Failure #4: The Training Excuse	12-14
Failure #5: Single Market Tunnel Vision	15-17
Your 7-Point Assessment	18-19
About ClariMed	20-21

Disclaimer

This course and the accompanying workbook are provided for general educational purposes. The information reflects current best practices in human factors and usability engineering, but it is not intended as regulatory, compliance, or legal advice. Each organization is responsible for applying its own professional judgment and quality system to ensure conformity with applicable requirements.

The Billion-Dollar Blind Spot

A pharmaceutical giant spent billions developing a revolutionary drug, in an injection device, for the treatment of rheumatoid arthritis. It had the potential to enable patients with limited hand mobility to self-medicate at home instead of traveling to hospitals.

One problem: The patients couldn't open the package.

The pharma company had spent billions developing this life-changing drug. But, the patients could not open the packaging to get to the drug. The packaging of the drug delivery device was an afterthought.

— Annmarie Nicolson, ClariMed

• This isn't rare. It happens frequently.

The Pattern That Costs Millions. Every failed device follows the same path:

- 1. Engineers design for ideal users in ideal conditions
- 2. Late-stage studies reveal fundamental problems
- 3. Changes now cost up to 100x what they would have earlier
- 4. FDA reject submission & launch is delayed
- 5. Competitors launch first

Your Two Choices

Option A: The Expensive Path

- · Treat human factors as paperwork
- · Test with users at the end
- · Budget for rejection and redesign
- · Risk a costly product recall

Cost: up to \$2-5M redesign cost, 6-12 month delay

Option B: The Smart Path

- · Deeply understand your users early
- · Evaluate low-cost prototypes first
- · Iterate, design, iterate
- · Fix problems before they're costly
- · Pass regulatory review the first time

Investment: \$200-500K HF cost, on-time launch

Speaking with the Wrong People

The Core Challenge

Your advisory board loves the device. Your clinical experts approve. Your internal team successfully completes every task. None of that matters if real users can't operate it at 3 AM during an emergency.

If you're designing for home health, you need people who live in that context... not just trained professionals in a lab setting.

- Wendy Sledge, ClariMed

The \$2M Example

A ventilator company tested their device with respiratory therapists from a teaching hospital. The FDA rejected it—the device was actually intended for home health aides with high school education. When retested with the correct users, critical errors emerged, forcing a complete redesign.

- X Using "super users" who know your device too well
- X Evaluating with employees who want you to succeed
- X Recruiting from advisory boards who helped design it
- X Selecting participants who are too educated/experienced
- X Non-realistic training more or less than what real users would receive

WORKBOOK: Define Your Users

User Population Checklist

Primary Users				
Job title(s):				
Education level:	Years o	of experience typical:		
Certification(s) require	ed?:	Age range:		
Accurate User Group Id	dentification			
Is there variation in tasks, res	ponsibilities or workflow for your p	product?		
Are the tasks these users perfe	orm institution, state, or country pol	icy dependent?		
Use Conditions That Ma	atter			
Lighting: Brigh	t Variable Dar	k		
Noise level: Quiet	Moderate Lou	d or chaotic		
Gloves worn: Neve	r Sometimes Alw	ays		
Time pressure: Low	Moderate High	n		
Interruptions: Rare	Occasional Free	quent		
Quick Cost Calcu	ılator			
Cost to fix user issues	found (illustrative ranges):			
Concept phase:	\$10-50K	\$		
Design phase:	\$100-500K	\$		
After tooling:	\$1-3M			
After launch: \$5-20M + brand damage \$				
Your current phase: Your risk exposure: \$				

Starting After Design Freeze

1 The Core Challenge

"We'll add human factors for the FDA submission" might be the most expensive sentence in medical device development. By design freeze, you've already made every key decision. A Human Factors evaluation now only reveals problems you can't afford to fix.

With rapid iterative methodologies, you conduct quick usability evaluations on low-to-mid-fidelity prototypes. This approach integrates user feedback seamlessly into development sprints.

- Annmarie Nicolson, ClariMed

The Timeline Reality: A device with 24-month development cycle

- Months 1-6: Concept development (HF should start here)
- Months 6-12: Design development
- Months 12-18: Detailed design (Most companies start HF here)
- Months 18-24: Verification & Validation (Too late for changes)

Starting HF at month 12 means you've already locked in 50% of your risk.

- X "Our interface is intuitive" Says who?
- X "We'll fix it with training" FDA knows better: least reliable, and least consistent mitigation method
- X "It's similar to predicate" Similar isn't identical
- X "Clinical trials went well" Different from usability, clinical trials cover much of typical use, and don't evaluate all high-risk tasks
- X "We'll test at validation" Validation isn't testing, it's a confirmation of safety and efficacy

WORKBOOK: Your HF Timeline Audit

Where Are You Now?

Development Stage			
Concept (0-20% complete) — Perfect timing			
Early design (20-40%) — Good timing			
Detailed design (40-60%) — Getting ris	sky		
Design freeze (60-80%) — Expensive f	ixes only		
Preparing validation (80-100%) — High	stakes mode		
What You Can Still Change			
At your current stage, mark what's still chan	geable:		
Core functionality/workflow	Screen layouts/information architecture		
Physical control placement	Color coding/visual design		
Alarms and alerts	Labels and symbols		
Instructions/training	Nothing - all locked		
Count your checkmarks:			
0-2 checks: High risk of validation failure			
3-5 checks: Moderate flexibility remains			
6-8 checks: Well-positioned for success			

WORKBOOK: Your HF Timeline Audit

The Three-Round Formula

(Illustrative human factors investment model — actual costs vary by program scope and device type)

Round 1: Concept (Low-Fidelity, "dummy"/non-functional prototype)

Cost: \$15-25K Saves: \$2M+ in architecture changes

Round 2: Design (Working prototype)

Cost: \$35-50K Saves: \$500K in tooling changes

Round 3: Pre-validation (Final device)

Cost: \$60-85K Saves: 6-month FDA delay

Total investment: \$110-160K Potential savings: \$2.5M+ and 6 months

Perfect Lab Syndrome

The Core Challenge

Your beautiful usability lab has perfect lighting, no distractions, and unlimited time. It represents exactly nowhere your device will actually be used. Real healthcare happens in chaos. If you're not conducting studies in chaos, you're not generating realistic data.

Documentation has to stand on its own... if someone else reads it without context, they should reach the same conclusions you did.

- Kay Sim, ClariMed

The Emergency Room at 3 AM: Here's what your device might actually face

- Nurse on hour 11 of 12-hour shift
- Three alarms sounding simultaneously
- Doctor yelling orders from next bed
- · Overhead light broken two weeks ago
- · Last training was six months ago on different model of device
- Patient's family asking questions
- Two minutes to complete setup

Your usability lab setup missed all of that.

- X Perfect lighting when users work in shadows
- X Silence when real use is noisy, and there are distractions
- X Unlimited time when seconds matter
- X Expert observers coaching participants
- X One task at a time when users multitask

WORKBOOK: Reality Test Your Testing

Environmental Reality Check

Your Testing Environment

Factor	Your Test	Real World	Gap Risk
Lighting			HML
Noise			H M L
Interruptions			H M L
Time constraints			H M L
Concurrent tasks			H M L
Physical position			H M L

Any "H" = Validation failure risk

WORKBOOK: Reality Test Your Testing

The Simulation Checklist

For your next test, which can you simulate?

Dim lighting conditions

Gloved hands/additional PPE

Background noise/alarms

True, not idealized positioning

Interruption scenarios

Stressed/tired users

Time constraints

Competing priorities

Quick Reality Check

Testing in perfect conditions when your device will be used in chaos often leads to: (Illustrative examples — trends based on industry experience, not formal data)

- Unforeseen Use Problems, & major failures in Validation testing
- Far lower FDA acceptance rates
- Higher post-market failure risk
- More customer complaints and corrective actions
- Longer training requirements and onboarding times
- Loss of trust in your brand

Worth the risk to save \$50K on realistic testing?

The Training Excuse

The Core Challenge

"We'll address that with training" is the engineering equivalent of "The check is in the mail." FDA knows training degrades. Users skip it. New staff miss it. Stressed people forget it. If your device needs extensive training to be safe, it's not safe.

Final reports need to clearly address residual use-related risk... whether you've mitigated it, documented a rationale, or made further changes.

- Kay Sim, ClariMed

🛸 The Training Decay Curve: (illustrative ranges)

Day 1 after training: 100% retention

Week 1: 80% retention Month 1: 60% retention Month 6: 30% retention

Emergency situation: 10% retention

Your design must work at 10%, not just at 100%.

- X Complex workflows requiring memorization
- X Non-intuitive controls needing explanation
- X Critical steps that are easy to skip
- X Warnings buried in manuals
- X Assuming users will read instructions

WORKBOOK: Training Reality Assessment

The Honest Training Audit

Your Current Training Requirements

Task	Training Needed	Without Training	Risk Level
Initial setup	minutes	Success Fail	HML
Basic operation	minutes	Success Fail	H M L
Emergency response	minutes	Success Fail	H M L
Maintenance	minutes	Success Fail	H M L
Troubleshooting	minutes	Success Fail	H M L

Any "Fail" without training = FDA red flag

WORKBOOK: Training Reality Assessment

Design vs. Training Fixes

For each issue found in testing:

Issue	Design Fix	Labeling Fix	Training Fix	FDA Preference
	Possible	Possible	Possible	Design
	Possible	Possible	Possible	Design
	Possible	Possible	Possible	Design
	Possible	Possible	Possible	Design

FDA Rule: Design out problems > Guard against them > Warn about them > Train for them

The Training Cost Truth

Real training costs per facility: (illustrative ranges)

• Initial training session: \$5,000-10,000

• Annual refreshers: \$2,500-5,000

• New staff onboarding: \$500-1,000/person

• Documentation/certification: \$1,000-2,500

10 customers × 5 years = \$250,000-500,000

Could you invest that in better design instead?

Single Market Tunnel Vision

The Core Challenge

Design for FDA. Pass FDA. Discover your device needs major changes for Europe. Redesign. Retest. Resubmit. Watch competitors eat your lunch globally. Smart companies design for global, test strategically, and prepare to submit everywhere.

We map URRA outputs directly to risk files and design control inputs so nothing falls through the cracks.

— Jessica Parry, ClariMed

🜍 The Global Reality: Your device probably needs to work in

- **USA**: FDA's 15-person minimum
- Europe: Local language requirements
- **UK:** Separate UKCA marking post-Brexit
- Canada: Bilingual labeling
- Japan: Cultural use patterns matter

Missing any of these doubles your timeline for that market.

- X English-only testing for global device
- X US-only participants for worldwide sales
- X Ignoring cultural differences in device use
- X Sequential market approach vs. parallel
- X Assuming FDA approval works everywhere

WORKBOOK: Global Market Planning

Market Priority Matrix

Market	Revenue Potential	Regulatory Path	Ready?
USA	\$	510(k) De Novo PMA	Yes No
EU	\$	CE Mark under MDR	Yes No
UK	\$	UKCA Mark under MHRA	Yes No
Canada	\$	Health Canada	Yes No
Japan	\$	PMDA	Yes No
Other:	\$		Yes No

Total addressa	ble market: \$	
i otai aaai coo	abic illulitet. ϕ	

Markets you're ready for: _

Revenue you're leaving behind: \$_

WORKBOOK: Global Market Planning

Harmonization Quick Check

Can you answer "Yes" to these?

Design works for all target markets
Testing includes global user populations
IFU translated/validated for each market
Cultural use patterns considered
Local regulatory requirements mapped
Single protocol covers all regions

If less than 4 "Yes" = Sequential launches required

The Time & Cost Impact

Parallel Global Launch:

Additional investment: \$200-400K

• Time to global market: 12-18 months

• First-mover advantage: Priceless

Sequential Launch:

• Cost per market: \$150-250K

• Time per market: 6-12 months

• Time to global market: 3-5 years

• Revenue lost to competitors: \$10-50M

ROI on global planning: 10-25x

Your 7-Point Assessment

Take 3 Minutes. Save 3 Years.

Rate each area honestly:

Area	Strong (2pts)	Adequate (1pt)	Weak (0pts)
1. User populations defined			
2. Use environments mapped			
3. Risk analysis complete			
4. Known-Use Problems Review			
5. Formative evaluation with representative end users			
6. Global requirements addresse	d		
7. Validation protocol ready			

What Your Score Means

12-14 Ready for submission

8-11 Gaps to address

4-7 Significant risk

0-3 High rejection probability

IF YOU SCORED BELOW 10 you need expert help now.

Every month of delay costs you market share and revenue

Free ClariMed 7-Point Usability Assessment includes:

- ✓ Gap analysis against FDA requirements
- ✓ Risk prioritization matrix
- ✓ Budget and timeline estimate
- ✓ Go/No-Go recommendation
- √ 30-minute expert consultation

Schedule Your Free Assessment

clarimed.com/assessment | assessments@clarimed.com | 1-800-CLARIMED Assessment valued at \$2,500. Free for qualified medical device companies.

About ClariMed

Why Teams Trust ClariMed

We're not academics teaching theory. We're practitioners who've guided hundreds of devices through FDA, EU MDR, and global submissions.

Our Unique Approach

Early Integration: We start where others won't—at the concept stage when changes cost pennies, not millions.

Global Perspective: With teams in the US and UK, we design once for worldwide success.

Real-World Evaluation: We test in chaos because that's where devices actually get used.

A few of the Team Members Behind Your Success

Annmarie Nicolson: Pioneered rapid iterative testing methods that catch problems when they're cheap to fix.

Denise Forkey: Navigates 25+ years of FDA submission complexities, adapting strategies as reviewers shift while maintaining deep connections across CDER and CDRH communities.

Jenny Collinson: Bridges the gap between global regulatory requirements (US, EU, China, Japan) and development team realities, building HFE processes that actually work from concept to launch.

Kay Sim: Ensures that HF fits seamlessly into your DHF, through traceability to Risk Management and Design Controls and that your submissions approach is what's best for your product.

Jessica Parry (C. ErgHF): Guides EU/UK submissions from our Leeds facility, ensuring global harmonization.

Wendy Sledge: Recruits real users who break devices in ways engineers never imagine.

Kelley Kendle, CEO: Drives the vision—human factors isn't paperwork, it's your competitive advantage.

About ClariMed

The Bottom Line

Every team faces a choice:

1. Hope your device is "intuitive enough."

Typical outcome: Higher risk of FDA rejection, costly redesigns, and months of delay.

OR

2. Know your device will pass.

Typical investment: 2–4% of your development budget in early human factors work.

Typical outcome: First-time approval, faster launch, stronger market position.

Ready to choose confidence over chance?

Start with our free 7-Point Assessment

No sales pitch. No obligation. Just clarity on where you stand and what you need. clarimed.com/assessment

© 2025 ClariMed. Share this guide with anyone preparing for an FDA submission.