Package evaluation of ClusteredLowRankSolver on Julia 1.13.0-DEV.140 (fac1ce7906*) started at 2025-03-02T11:21:19.033 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 7.37s ################################################################################ # Installation # Installing ClusteredLowRankSolver... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [cadeb640] + ClusteredLowRankSolver v1.0.15 Updating `~/.julia/environments/v1.13/Manifest.toml` [c3fe647b] + AbstractAlgebra v0.44.8 [fb37089c] + Arblib v1.2.1 [0a1fb500] + BlockDiagonals v0.1.42 [d360d2e6] + ChainRulesCore v1.25.1 [cadeb640] + ClusteredLowRankSolver v1.0.15 [861a8166] + Combinatorics v1.0.2 [34da2185] + Compat v4.16.0 [ffbed154] + DocStringExtensions v0.9.3 [1a297f60] + FillArrays v1.13.0 [26cc04aa] + FiniteDifferences v0.12.32 [14197337] + GenericLinearAlgebra v0.3.15 [92d709cd] + IrrationalConstants v0.2.4 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.0 [0b1a1467] + KrylovKit v0.9.5 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.15 ⌅ [2edaba10] + Nemo v0.48.4 [65ce6f38] + PackageExtensionCompat v1.0.2 [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [fb686558] + RandomExtensions v0.4.4 [708f8203] + Richardson v1.4.2 [af85af4c] + RowEchelon v0.2.1 [276daf66] + SpecialFunctions v2.5.0 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [409d34a3] + VectorInterface v0.5.0 [e134572f] + FLINT_jll v300.100.301+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.12.0 [ca575930] + NetworkOptions v1.3.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [2f01184e] + SparseArrays v1.12.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [e37daf67] + LibGit2_jll v1.9.0+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [3a97d323] + MPFR_jll v4.2.1+2 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.5+0 [458c3c95] + OpenSSL_jll v3.0.16+0 [bea87d4a] + SuiteSparse_jll v7.8.3+2 [8e850b90] + libblastrampoline_jll v5.12.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 2.14s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 89.92s ################################################################################ # Testing # Testing ClusteredLowRankSolver Status `/tmp/jl_OwMqCx/Project.toml` [c3fe647b] AbstractAlgebra v0.44.8 [cadeb640] ClusteredLowRankSolver v1.0.15 ⌅ [2edaba10] Nemo v0.48.4 [1fd47b50] QuadGK v2.11.2 [276daf66] SpecialFunctions v2.5.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_OwMqCx/Manifest.toml` [c3fe647b] AbstractAlgebra v0.44.8 [fb37089c] Arblib v1.2.1 [0a1fb500] BlockDiagonals v0.1.42 [d360d2e6] ChainRulesCore v1.25.1 [cadeb640] ClusteredLowRankSolver v1.0.15 [861a8166] Combinatorics v1.0.2 [34da2185] Compat v4.16.0 [864edb3b] DataStructures v0.18.20 [ffbed154] DocStringExtensions v0.9.3 [1a297f60] FillArrays v1.13.0 [26cc04aa] FiniteDifferences v0.12.32 [14197337] GenericLinearAlgebra v0.3.15 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.0 [0b1a1467] KrylovKit v0.9.5 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.15 ⌅ [2edaba10] Nemo v0.48.4 [bac558e1] OrderedCollections v1.8.0 [65ce6f38] PackageExtensionCompat v1.0.2 [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [1fd47b50] QuadGK v2.11.2 [fb686558] RandomExtensions v0.4.4 [708f8203] Richardson v1.4.2 [af85af4c] RowEchelon v0.2.1 [276daf66] SpecialFunctions v2.5.0 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [409d34a3] VectorInterface v0.5.0 [e134572f] FLINT_jll v300.100.301+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [2f01184e] SparseArrays v1.12.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [e37daf67] LibGit2_jll v1.9.0+0 [29816b5a] LibSSH2_jll v1.11.3+1 [3a97d323] MPFR_jll v4.2.1+2 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.5+0 [458c3c95] OpenSSL_jll v3.0.16+0 [bea87d4a] SuiteSparse_jll v7.8.3+2 [8e850b90] libblastrampoline_jll v5.12.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 26.8 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 1.95e+10 7.42e-01 7.10e-01 3.00e-01 2 30.1 3.995e+19 1.999e+11 -2.907e+09 1.03e+00 2.58e+09 2.58e-01 5.65e+09 7.46e-01 7.17e-01 3.00e-01 3 30.1 1.576e+19 3.079e+11 -4.779e+09 1.03e+00 6.53e+08 6.53e-02 1.60e+09 7.32e-01 7.31e-01 3.00e-01 4 30.1 6.100e+18 4.277e+11 -6.725e+09 1.03e+00 1.75e+08 1.75e-02 4.31e+08 7.20e-01 7.22e-01 3.00e-01 5 30.1 2.433e+18 5.963e+11 -9.362e+09 1.03e+00 4.92e+07 4.92e-03 1.20e+08 7.11e-01 7.14e-01 3.00e-01 6 30.1 9.953e+17 8.401e+11 -1.309e+10 1.03e+00 1.42e+07 1.42e-03 3.42e+07 7.07e-01 7.10e-01 3.00e-01 7 30.2 4.128e+17 1.191e+12 -1.842e+10 1.03e+00 4.16e+06 4.16e-04 9.93e+06 7.05e-01 7.07e-01 3.00e-01 8 30.2 1.725e+17 1.693e+12 -2.598e+10 1.03e+00 1.23e+06 1.23e-04 2.91e+06 7.04e-01 7.06e-01 3.00e-01 9 30.2 7.238e+16 2.410e+12 -3.671e+10 1.03e+00 3.64e+05 3.64e-05 8.56e+05 7.03e-01 7.05e-01 3.00e-01 10 30.2 3.044e+16 3.431e+12 -5.194e+10 1.03e+00 1.08e+05 1.08e-05 2.53e+05 7.03e-01 7.04e-01 3.00e-01 11 30.2 1.281e+16 4.886e+12 -7.353e+10 1.03e+00 3.20e+04 3.20e-06 7.48e+04 7.03e-01 7.04e-01 3.00e-01 12 30.2 5.398e+15 6.956e+12 -1.042e+11 1.03e+00 9.51e+03 9.51e-07 2.21e+04 7.03e-01 7.04e-01 3.00e-01 13 30.2 2.275e+15 9.899e+12 -1.476e+11 1.03e+00 2.82e+03 2.82e-07 6.55e+03 7.03e-01 7.04e-01 3.00e-01 14 30.3 9.587e+14 1.407e+13 -2.094e+11 1.03e+00 8.38e+02 8.38e-08 1.94e+03 7.04e-01 7.05e-01 3.00e-01 15 30.3 4.036e+14 1.993e+13 -2.971e+11 1.03e+00 2.48e+02 2.48e-08 5.71e+02 7.06e-01 7.09e-01 3.00e-01 16 30.3 1.692e+14 2.789e+13 -4.222e+11 1.03e+00 7.31e+01 7.31e-09 1.66e+02 7.12e-01 7.22e-01 3.00e-01 17 30.3 7.003e+13 3.756e+13 -6.021e+11 1.03e+00 2.10e+01 2.10e-09 4.62e+01 7.31e-01 7.65e-01 3.00e-01 18 30.3 2.773e+13 4.485e+13 -8.676e+11 1.04e+00 5.66e+00 5.66e-10 1.08e+01 7.79e-01 9.17e-01 3.00e-01 19 30.3 9.540e+12 3.941e+13 -1.292e+12 1.07e+00 1.25e+00 1.25e-10 8.99e-01 9.22e-01 1.00e+00 3.00e-01 20 30.3 2.995e+12 1.720e+13 -1.811e+12 1.24e+00 9.79e-02 9.79e-12 3.32e-52 1.00e+00 1.00e+00 3.00e-01 21 30.4 8.988e+11 4.388e+12 -1.903e+12 2.53e+00 5.70e-65 0.00e+00 1.10e-51 1.00e+00 1.00e+00 3.00e-01 22 30.4 2.696e+11 1.339e+12 -5.487e+11 2.39e+00 2.01e-65 0.00e+00 2.96e-52 8.90e-01 8.90e-01 1.00e-01 23 30.4 5.361e+10 2.688e+11 -1.065e+11 2.31e+00 8.21e-66 1.48e-66 6.84e-53 8.70e-01 8.70e-01 1.00e-01 24 30.4 1.161e+10 5.819e+10 -2.310e+10 2.32e+00 1.38e-66 2.97e-67 8.08e-54 8.52e-01 8.52e-01 1.00e-01 25 30.4 2.713e+09 1.355e+10 -5.443e+09 2.34e+00 1.85e-67 1.85e-68 1.13e-54 8.36e-01 8.36e-01 1.00e-01 26 30.5 6.711e+08 3.370e+09 -1.328e+09 2.30e+00 8.91e-68 9.27e-69 1.94e-55 8.30e-01 8.30e-01 1.00e-01 27 30.5 1.696e+08 8.422e+08 -3.452e+08 2.39e+00 2.24e-68 2.32e-69 3.29e-56 8.10e-01 8.10e-01 1.00e-01 28 30.5 4.599e+07 2.340e+08 -8.791e+07 2.20e+00 3.90e-69 2.61e-69 6.20e-57 8.18e-01 8.18e-01 1.00e-01 29 30.5 1.213e+07 5.873e+07 -2.619e+07 2.61e+00 9.07e-70 2.90e-70 1.13e-57 7.63e-01 7.63e-01 1.00e-01 30 30.5 3.798e+06 2.001e+07 -6.576e+06 1.98e+00 1.29e-70 0.00e+00 2.67e-58 8.24e-01 8.24e-01 1.00e-01 31 30.5 9.800e+05 4.616e+06 -2.245e+06 2.89e+00 9.06e-71 3.62e-71 4.69e-59 7.75e-01 7.75e-01 1.00e-01 32 30.5 2.963e+05 1.559e+06 -5.151e+05 1.99e+00 2.72e-71 6.79e-72 1.05e-59 8.39e-01 8.39e-01 1.00e-01 33 30.6 7.263e+04 3.436e+05 -1.649e+05 2.85e+00 6.79e-72 2.83e-73 1.70e-60 7.97e-01 7.97e-01 1.00e-01 34 30.6 2.051e+04 1.063e+05 -3.733e+04 2.08e+00 2.55e-72 1.41e-73 3.44e-61 8.41e-01 8.41e-01 1.00e-01 35 30.6 4.988e+03 2.366e+04 -1.125e+04 2.81e+00 3.54e-73 1.06e-73 5.48e-62 8.01e-01 8.01e-01 1.00e-01 36 30.6 1.393e+03 7.141e+03 -2.612e+03 2.15e+00 7.07e-74 4.42e-74 1.09e-62 8.38e-01 8.38e-01 1.00e-01 37 30.6 3.422e+02 1.603e+03 -7.929e+02 2.96e+00 3.54e-74 2.21e-75 1.77e-63 7.97e-01 7.97e-01 1.00e-01 38 30.6 9.665e+01 4.860e+02 -1.905e+02 2.29e+00 5.73e-75 2.21e-75 3.58e-64 8.39e-01 8.39e-01 1.00e-01 39 30.6 2.366e+01 1.051e+02 -6.048e+01 3.71e+00 7.95e-76 6.91e-77 5.76e-65 8.03e-01 8.03e-01 1.00e-01 40 30.6 6.562e+00 2.998e+01 -1.595e+01 3.28e+00 2.76e-76 5.18e-77 1.13e-65 8.57e-01 8.57e-01 1.00e-01 41 30.7 1.499e+00 4.629e+00 -5.866e+00 8.49e+00 1.38e-76 1.04e-76 1.62e-66 8.75e-01 8.75e-01 1.00e-01 42 30.7 3.183e-01 -4.666e-01 -2.695e+00 7.05e-01 4.32e-77 5.18e-77 2.02e-67 9.64e-01 9.64e-01 1.00e-01 43 30.7 4.224e-02 -1.900e+00 -2.195e+00 7.22e-02 2.59e-77 3.45e-77 7.35e-69 9.83e-01 9.83e-01 1.00e-01 44 30.7 4.861e-03 -2.089e+00 -2.123e+00 8.08e-03 8.64e-78 8.64e-78 1.23e-70 9.97e-01 9.97e-01 1.00e-01 45 30.7 5.004e-04 -2.110e+00 -2.114e+00 8.29e-04 8.64e-78 8.64e-78 4.03e-73 9.99e-01 9.99e-01 1.00e-01 46 30.7 5.050e-05 -2.113e+00 -2.113e+00 8.37e-05 8.64e-78 0.00e+00 2.63e-75 1.00e+00 1.00e+00 1.00e-01 47 30.7 5.060e-06 -2.113e+00 -2.113e+00 8.38e-06 8.64e-78 4.32e-77 3.25e-75 1.00e+00 1.00e+00 1.00e-01 48 30.7 5.062e-07 -2.113e+00 -2.113e+00 8.39e-07 8.64e-78 2.59e-77 8.43e-75 1.00e+00 1.00e+00 1.00e-01 49 30.8 5.063e-08 -2.113e+00 -2.113e+00 8.39e-08 8.64e-78 1.73e-77 4.28e-75 1.00e+00 1.00e+00 1.00e-01 50 30.8 5.064e-09 -2.113e+00 -2.113e+00 8.39e-09 8.64e-78 1.73e-77 1.81e-74 1.00e+00 1.00e+00 1.00e-01 51 30.8 5.064e-10 -2.113e+00 -2.113e+00 8.39e-10 8.64e-78 2.59e-77 8.84e-74 1.00e+00 1.00e+00 1.00e-01 52 30.8 5.065e-11 -2.113e+00 -2.113e+00 8.39e-11 2.16e-78 8.64e-78 8.40e-74 1.00e+00 1.00e+00 1.00e-01 53 30.8 5.065e-12 -2.113e+00 -2.113e+00 8.39e-12 8.64e-78 3.45e-77 1.59e-73 1.00e+00 1.00e+00 1.00e-01 54 30.8 5.066e-13 -2.113e+00 -2.113e+00 8.39e-13 1.73e-77 1.73e-77 2.64e-73 1.00e+00 1.00e+00 1.00e-01 55 30.8 5.066e-14 -2.113e+00 -2.113e+00 8.39e-14 8.64e-78 1.73e-77 5.18e-73 1.00e+00 1.00e+00 1.00e-01 56 30.9 5.067e-15 -2.113e+00 -2.113e+00 8.39e-15 1.73e-77 2.59e-77 6.35e-73 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 30.887670 seconds (1.79 M allocations: 98.767 MiB, 2.14% gc time, 95.75% compilation time: <1% of which was recompilation) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:-2.112913881423601867282094606777964686268909119619105474481908463536306498066455 Dual objective:-2.112913881423605414367269314469187763674785592088492167251570245777090739251596 Duality gap:8.39382334957683113638792766124390347291639236490860425554213873968606701932393e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.4 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 2.10e+11 7.15e-01 8.46e-01 3.00e-01 2 0.6 4.213e+19 -7.841e+09 2.996e+11 1.05e+00 2.85e+09 2.85e-01 3.23e+10 7.79e-01 1.00e+00 3.00e-01 3 0.8 1.478e+19 1.359e+09 5.379e+11 9.95e-01 6.29e+08 6.29e-02 3.22e-65 8.20e-01 1.00e+00 3.00e-01 4 1.0 4.264e+18 4.397e+08 8.578e+11 9.99e-01 1.13e+08 1.13e-02 1.27e-64 8.92e-01 1.00e+00 3.00e-01 5 1.1 7.344e+17 4.931e+07 1.370e+12 1.00e+00 1.22e+07 1.22e-03 3.85e-64 8.98e-01 1.00e+00 3.00e-01 6 1.3 1.198e+17 4.867e+06 2.189e+12 1.00e+00 1.24e+06 1.24e-04 6.49e-64 8.95e-01 1.00e+00 3.00e-01 7 1.5 2.010e+16 5.242e+05 3.499e+12 1.00e+00 1.30e+05 1.30e-05 8.06e-64 8.99e-01 1.00e+00 3.00e-01 8 1.7 3.262e+15 5.203e+04 5.596e+12 1.00e+00 1.32e+04 1.32e-06 2.00e-63 8.97e-01 1.00e+00 3.00e-01 9 1.8 5.394e+14 5.483e+03 8.950e+12 1.00e+00 1.37e+03 1.37e-07 2.56e-63 8.99e-01 1.00e+00 3.00e-01 10 2.0 8.742e+13 5.525e+02 1.430e+13 1.00e+00 1.38e+02 1.38e-08 3.64e-63 8.99e-01 1.00e+00 3.00e-01 11 2.2 1.453e+13 6.378e+01 2.266e+13 1.00e+00 1.40e+01 1.40e-09 5.90e-63 8.96e-01 1.00e+00 3.00e-01 12 2.3 2.995e+12 1.385e+01 3.308e+13 1.00e+00 1.45e+00 1.45e-10 1.04e-62 8.80e-01 1.00e+00 3.00e-01 13 2.5 1.001e+12 9.125e+00 2.897e+13 1.00e+00 1.74e-01 1.74e-11 1.48e-62 8.85e-01 1.00e+00 3.00e-01 14 2.7 3.229e+11 8.728e+00 1.226e+13 1.00e+00 2.01e-02 2.01e-12 8.84e-63 8.77e-01 1.00e+00 3.00e-01 15 2.8 9.802e+10 8.791e+00 3.989e+12 1.00e+00 2.47e-03 2.47e-13 3.67e-63 1.00e+00 1.00e+00 3.00e-01 16 3.0 2.964e+10 8.979e+00 1.245e+12 1.00e+00 6.91e-77 2.59e-77 3.99e-64 1.00e+00 1.00e+00 3.00e-01 17 3.2 8.892e+09 9.036e+00 3.735e+11 1.00e+00 5.18e-77 2.59e-77 1.90e-65 9.97e-01 9.97e-01 1.00e-01 18 3.3 9.112e+08 9.041e+00 3.827e+10 1.00e+00 5.18e-77 2.59e-77 9.50e-66 1.00e+00 1.00e+00 1.00e-01 19 3.5 9.117e+07 9.046e+00 3.829e+09 1.00e+00 3.67e-77 1.73e-77 4.82e-67 1.00e+00 1.00e+00 1.00e-01 20 3.7 9.118e+06 9.050e+00 3.830e+08 1.00e+00 6.05e-77 1.73e-77 1.39e-68 1.00e+00 1.00e+00 1.00e-01 21 3.9 9.119e+05 9.054e+00 3.830e+07 1.00e+00 5.18e-77 3.45e-77 1.04e-68 1.00e+00 1.00e+00 1.00e-01 22 4.1 9.120e+04 9.058e+00 3.830e+06 1.00e+00 3.45e-77 3.45e-77 2.54e-70 1.00e+00 1.00e+00 1.00e-01 23 4.2 9.121e+03 9.061e+00 3.831e+05 1.00e+00 3.45e-77 2.59e-77 3.01e-71 1.00e+00 1.00e+00 1.00e-01 24 4.4 9.123e+02 9.064e+00 3.832e+04 1.00e+00 3.45e-77 2.59e-77 1.13e-71 1.00e+00 1.00e+00 1.00e-01 25 4.6 9.153e+01 9.069e+00 3.854e+03 9.95e-01 3.45e-77 1.73e-77 3.01e-73 9.96e-01 9.96e-01 1.00e-01 26 4.7 9.453e+00 9.090e+00 4.061e+02 9.56e-01 5.18e-77 1.73e-77 3.54e-74 9.67e-01 9.67e-01 1.00e-01 27 4.9 1.226e+00 9.266e+00 6.078e+01 7.35e-01 3.45e-77 1.73e-77 2.80e-75 8.41e-01 8.41e-01 1.00e-01 28 5.1 2.985e-01 1.028e+01 2.281e+01 3.79e-01 5.18e-77 1.73e-77 1.89e-75 7.57e-01 7.57e-01 1.00e-01 29 5.3 9.522e-02 1.184e+01 1.584e+01 1.45e-01 4.32e-77 2.59e-77 5.09e-75 5.18e-01 5.18e-01 1.00e-01 30 5.5 5.085e-02 1.263e+01 1.477e+01 7.79e-02 6.91e-77 2.59e-77 6.69e-75 6.13e-01 6.13e-01 1.00e-01 31 5.6 2.282e-02 1.280e+01 1.376e+01 3.61e-02 3.45e-77 1.73e-77 8.13e-75 8.46e-01 8.46e-01 1.00e-01 32 5.8 5.436e-03 1.307e+01 1.330e+01 8.66e-03 4.32e-77 3.45e-77 1.54e-74 8.46e-01 8.46e-01 1.00e-01 33 6.0 1.296e-03 1.314e+01 1.319e+01 2.07e-03 6.91e-77 2.59e-77 6.93e-74 8.17e-01 8.17e-01 1.00e-01 34 6.2 3.428e-04 1.315e+01 1.317e+01 5.47e-04 5.18e-77 2.59e-77 1.91e-73 8.07e-01 8.07e-01 1.00e-01 35 6.3 9.373e-05 1.316e+01 1.316e+01 1.50e-04 6.91e-77 2.59e-77 9.45e-73 7.58e-01 7.58e-01 1.00e-01 36 6.5 2.978e-05 1.316e+01 1.316e+01 4.75e-05 7.25e-77 1.73e-77 1.33e-72 8.83e-01 8.83e-01 1.00e-01 37 6.7 6.117e-06 1.316e+01 1.316e+01 9.76e-06 3.45e-77 3.45e-77 1.25e-72 8.72e-01 8.72e-01 1.00e-01 38 6.9 1.315e-06 1.316e+01 1.316e+01 2.10e-06 6.38e-77 2.59e-77 8.97e-73 9.01e-01 9.01e-01 1.00e-01 39 7.0 2.487e-07 1.316e+01 1.316e+01 3.97e-07 9.23e-77 8.64e-78 1.18e-71 9.70e-01 9.70e-01 1.00e-01 40 7.2 3.167e-08 1.316e+01 1.316e+01 5.05e-08 6.91e-77 2.59e-77 2.57e-71 9.98e-01 9.98e-01 1.00e-01 41 7.4 3.234e-09 1.316e+01 1.316e+01 5.16e-09 9.51e-77 1.73e-77 2.39e-71 9.98e-01 9.98e-01 1.00e-01 42 7.6 3.294e-10 1.316e+01 1.316e+01 5.26e-10 9.03e-77 1.73e-77 2.00e-71 1.00e+00 1.00e+00 1.00e-01 43 7.7 3.303e-11 1.316e+01 1.316e+01 5.27e-11 6.91e-77 3.45e-77 2.49e-71 1.00e+00 1.00e+00 1.00e-01 44 7.9 3.304e-12 1.316e+01 1.316e+01 5.27e-12 6.91e-77 1.73e-77 2.12e-71 1.00e+00 1.00e+00 1.00e-01 45 8.1 3.304e-13 1.316e+01 1.316e+01 5.27e-13 8.98e-77 1.73e-77 2.52e-71 1.00e+00 1.00e+00 1.00e-01 46 8.3 3.305e-14 1.316e+01 1.316e+01 5.27e-14 6.14e-77 1.73e-77 2.05e-71 1.00e+00 1.00e+00 1.00e-01 47 8.4 3.305e-15 1.316e+01 1.316e+01 5.27e-15 5.72e-77 3.45e-77 2.64e-71 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 8.440776 seconds (6.13 M allocations: 387.958 MiB, 5.47% gc time, 2.65% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:13.15831434739029877809185622722861315173164771174370254222089401232583747003003 Dual objective:13.15831434739031266024760882946896193698232506752926519785363589461842030791677 Duality gap:5.275050962494863338770843090309117305936348690413157500976579138338084213079178e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 1.585e-02 1.585e-02 0.00e+00 1.00e+10 3.02e+20 8.43e+10 7.03e-01 7.57e-01 3.00e-01 2 0.3 4.190e+19 -2.320e+10 -2.620e+08 9.78e-01 2.97e+09 8.99e+19 2.04e+10 7.89e-01 7.78e-01 3.00e-01 3 0.4 1.306e+19 -4.643e+10 -1.742e+09 9.28e-01 6.28e+08 1.90e+19 4.53e+09 8.17e-01 7.43e-01 3.00e-01 4 0.5 3.686e+18 -7.438e+10 -1.494e+09 9.61e-01 1.15e+08 3.48e+18 1.17e+09 8.25e-01 8.15e-01 3.00e-01 5 0.6 9.725e+17 -1.038e+11 1.515e+08 1.00e+00 2.01e+07 6.09e+17 2.16e+08 7.94e-01 7.63e-01 3.00e-01 6 0.7 3.020e+17 -1.438e+11 3.329e+09 1.05e+00 4.16e+06 1.26e+17 5.11e+07 7.09e-01 7.99e-01 3.00e-01 7 0.8 1.203e+17 -1.906e+11 1.626e+10 1.19e+00 1.21e+06 3.65e+16 1.03e+07 7.49e-01 8.14e-01 3.00e-01 8 0.9 4.286e+16 -2.882e+11 3.009e+10 1.23e+00 3.03e+05 9.15e+15 1.92e+06 7.63e-01 8.17e-01 3.00e-01 9 1.0 1.468e+16 -4.788e+11 5.004e+10 1.23e+00 7.18e+04 2.17e+15 3.51e+05 7.82e-01 6.89e-01 3.00e-01 10 1.1 4.729e+15 -8.435e+11 8.455e+10 1.22e+00 1.57e+04 4.74e+14 1.09e+05 6.46e-01 6.36e-01 3.00e-01 11 1.2 2.321e+15 -1.155e+12 1.377e+11 1.27e+00 5.54e+03 1.67e+14 3.98e+04 6.72e-01 6.11e-01 3.00e-01 12 1.3 1.063e+15 -1.592e+12 1.951e+11 1.28e+00 1.81e+03 5.49e+13 1.55e+04 5.62e-01 9.01e-01 3.00e-01 13 1.4 6.779e+14 -2.021e+12 2.787e+11 1.32e+00 7.94e+02 2.40e+13 1.53e+03 8.24e-01 9.11e-01 3.00e-01 14 1.5 1.835e+14 -5.984e+12 4.300e+11 1.15e+00 1.40e+02 4.23e+12 1.36e+02 8.55e-01 1.00e+00 3.00e-01 15 1.6 4.247e+13 -1.546e+13 6.864e+11 1.09e+00 2.03e+01 6.13e+11 1.07e-48 8.97e-01 1.00e+00 3.00e-01 16 1.8 7.181e+12 -1.302e+13 1.093e+12 1.18e+00 2.08e+00 6.30e+10 1.23e-47 8.89e-01 1.00e+00 3.00e-01 17 1.9 1.329e+12 -3.359e+12 1.724e+12 3.11e+00 2.31e-01 6.99e+09 1.68e-48 8.33e-01 1.00e+00 3.00e-01 18 2.0 3.857e+11 -8.933e+11 2.306e+12 2.26e+00 3.86e-02 1.17e+09 3.21e-48 7.07e-01 1.00e+00 3.00e-01 19 2.1 1.766e+11 -3.434e+11 1.375e+12 1.67e+00 1.13e-02 3.42e+08 1.59e-48 8.44e-01 8.41e-01 3.00e-01 20 2.2 4.903e+10 -9.837e+10 7.115e+11 1.32e+00 1.77e-03 5.34e+07 2.13e-48 8.56e-01 1.00e+00 3.00e-01 21 2.3 1.622e+10 -2.672e+10 4.770e+11 1.12e+00 2.54e-04 7.67e+06 2.31e-47 7.71e-01 1.00e+00 3.00e-01 22 2.4 5.589e+09 -9.867e+09 1.839e+11 1.11e+00 5.81e-05 1.76e+06 2.23e-48 8.65e-01 8.10e-01 3.00e-01 23 2.5 2.102e+09 -2.786e+09 8.647e+10 1.07e+00 7.86e-06 2.38e+05 8.46e-48 7.54e-01 1.00e+00 3.00e-01 24 2.6 6.491e+08 -1.160e+09 2.539e+10 1.10e+00 1.93e-06 5.84e+04 6.43e-49 9.04e-01 9.19e-01 3.00e-01 25 2.8 2.210e+08 -2.876e+08 9.863e+09 1.06e+00 1.86e-07 5.62e+03 8.23e-49 9.41e-01 1.00e+00 3.00e-01 26 2.9 6.517e+07 -7.947e+07 3.067e+09 1.05e+00 1.11e-08 3.34e+02 7.45e-48 1.00e+00 1.00e+00 3.00e-01 27 3.0 1.954e+07 -1.955e+07 9.380e+08 1.04e+00 1.46e-63 2.00e-43 1.84e-47 1.00e+00 1.00e+00 3.00e-01 28 3.1 5.862e+06 -5.862e+06 2.814e+08 1.04e+00 2.19e-63 6.90e-43 1.26e-47 1.00e+00 1.00e+00 1.00e-01 29 3.2 5.873e+05 -5.873e+05 2.819e+07 1.04e+00 1.94e-63 2.33e-43 3.31e-49 1.00e+00 1.00e+00 1.00e-01 30 3.3 5.874e+04 -5.874e+04 2.819e+06 1.04e+00 1.16e-63 4.42e-43 1.18e-50 1.00e+00 1.00e+00 1.00e-01 31 3.4 5.874e+03 -5.874e+03 2.820e+05 1.04e+00 1.13e-63 2.24e-43 1.26e-51 1.00e+00 1.00e+00 1.00e-01 32 3.5 5.875e+02 -5.874e+02 2.820e+04 1.04e+00 1.42e-63 1.00e-43 1.52e-52 1.00e+00 1.00e+00 1.00e-01 33 3.6 5.876e+01 -5.866e+01 2.821e+03 1.04e+00 1.40e-63 8.36e-44 6.57e-54 1.00e+00 1.00e+00 1.00e-01 34 3.7 5.883e+00 -5.788e+00 2.825e+02 1.04e+00 1.28e-63 4.64e-43 1.40e-55 9.99e-01 9.99e-01 1.00e-01 35 3.8 5.954e-01 -4.995e-01 2.867e+01 1.04e+00 1.20e-63 4.58e-43 5.31e-55 9.88e-01 9.88e-01 1.00e-01 36 3.9 6.616e-02 3.259e-02 3.274e+00 9.80e-01 1.16e-63 6.93e-44 1.10e-55 9.22e-01 9.22e-01 1.00e-01 37 4.0 1.126e-02 1.068e-01 6.584e-01 5.52e-01 1.91e-63 2.19e-43 1.81e-56 8.48e-01 8.48e-01 1.00e-01 38 4.1 2.667e-03 1.882e-01 3.188e-01 1.31e-01 1.78e-63 6.10e-43 9.77e-56 8.38e-01 8.38e-01 1.00e-01 39 4.2 6.553e-04 2.394e-01 2.715e-01 3.21e-02 2.28e-63 2.04e-42 1.18e-56 8.06e-01 8.06e-01 1.00e-01 40 4.3 1.798e-04 2.495e-01 2.583e-01 8.81e-03 6.96e-64 2.22e-42 2.83e-56 8.23e-01 8.23e-01 1.00e-01 41 4.4 4.661e-05 2.526e-01 2.549e-01 2.28e-03 4.59e-63 1.75e-42 5.07e-56 7.89e-01 7.89e-01 1.00e-01 42 4.6 1.350e-05 2.534e-01 2.540e-01 6.61e-04 2.84e-63 3.21e-43 8.86e-55 7.75e-01 7.75e-01 1.00e-01 43 4.7 4.080e-06 2.536e-01 2.538e-01 2.00e-04 1.24e-63 8.06e-43 1.52e-55 7.61e-01 7.61e-01 1.00e-01 44 4.8 1.286e-06 2.537e-01 2.538e-01 6.30e-05 3.95e-63 5.17e-43 1.82e-54 9.61e-01 9.61e-01 1.00e-01 45 4.9 1.738e-07 2.537e-01 2.537e-01 8.52e-06 3.92e-63 6.03e-43 8.69e-55 9.60e-01 9.60e-01 1.00e-01 46 5.0 2.368e-08 2.537e-01 2.537e-01 1.16e-06 1.46e-63 4.57e-43 7.18e-55 9.77e-01 9.77e-01 1.00e-01 47 5.1 2.854e-09 2.537e-01 2.537e-01 1.40e-07 1.47e-63 6.60e-43 6.91e-55 9.93e-01 9.93e-01 1.00e-01 48 5.2 3.031e-10 2.537e-01 2.537e-01 1.49e-08 1.69e-63 3.38e-43 4.02e-55 9.99e-01 9.99e-01 1.00e-01 49 5.3 3.050e-11 2.537e-01 2.537e-01 1.49e-09 1.68e-63 9.41e-43 4.12e-55 1.00e+00 1.00e+00 1.00e-01 50 5.4 3.050e-12 2.537e-01 2.537e-01 1.49e-10 1.79e-63 9.51e-44 5.79e-55 1.00e+00 1.00e+00 1.00e-01 51 5.5 3.051e-13 2.537e-01 2.537e-01 1.49e-11 1.69e-63 1.18e-42 2.44e-54 1.00e+00 1.00e+00 1.00e-01 52 5.7 3.051e-14 2.537e-01 2.537e-01 1.49e-12 1.97e-63 1.24e-43 3.85e-55 1.00e+00 1.00e+00 1.00e-01 53 5.8 3.051e-15 2.537e-01 2.537e-01 1.50e-13 1.78e-63 2.06e-42 1.06e-54 1.00e+00 1.00e+00 1.00e-01 54 5.9 3.052e-16 2.537e-01 2.537e-01 1.50e-14 2.30e-63 1.11e-42 1.56e-55 1.00e+00 1.00e+00 1.00e-01 55 6.0 3.052e-17 2.537e-01 2.537e-01 1.50e-15 1.92e-63 9.45e-43 1.25e-54 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 5.978949 seconds (9.09 M allocations: 503.635 MiB, 6.38% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:0.2537404272210647350188572678181488232370134042442041328843482827111256848766828 Dual objective:0.2537404272210648845774825416847785780316857575409935823421337196074202820953347 Duality gap:1.49558625273866629754794672353296789449457785436896294597218651951547648656639e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.7 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 8.43e+10 6.32e-01 5.24e-01 3.00e-01 2 1.4 5.118e+19 7.190e+07 1.164e+10 9.88e-01 3.68e+09 3.68e-01 4.01e+10 6.36e-01 6.99e-01 3.00e-01 3 2.1 2.570e+19 6.028e+07 2.506e+10 9.95e-01 1.34e+09 1.34e-01 1.21e+10 7.82e-01 7.56e-01 3.00e-01 4 2.8 8.263e+18 1.502e+07 4.098e+10 9.99e-01 2.93e+08 2.93e-02 2.94e+09 8.07e-01 8.00e-01 3.00e-01 5 3.4 2.367e+18 3.547e+06 6.396e+10 1.00e+00 5.64e+07 5.64e-03 5.87e+08 8.04e-01 7.46e-01 3.00e-01 6 4.2 7.008e+17 8.038e+05 9.568e+10 1.00e+00 1.11e+07 1.11e-03 1.49e+08 8.14e-01 7.81e-01 3.00e-01 7 4.8 1.972e+17 1.837e+05 1.446e+11 1.00e+00 2.06e+06 2.06e-04 3.27e+07 7.79e-01 7.96e-01 3.00e-01 8 5.5 6.361e+16 4.687e+04 2.206e+11 1.00e+00 4.56e+05 4.56e-05 6.67e+06 7.28e-01 7.70e-01 3.00e-01 9 6.2 2.470e+16 1.204e+04 3.288e+11 1.00e+00 1.24e+05 1.24e-05 1.54e+06 7.29e-01 7.91e-01 3.00e-01 10 6.8 9.586e+15 3.109e+03 5.041e+11 1.00e+00 3.37e+04 3.37e-06 3.21e+05 7.58e-01 7.85e-01 3.00e-01 11 7.5 3.375e+15 7.627e+02 8.164e+11 1.00e+00 8.17e+03 8.17e-07 6.90e+04 6.24e-01 7.24e-01 3.00e-01 12 8.1 1.763e+15 3.251e+02 1.508e+12 1.00e+00 3.07e+03 3.07e-07 1.91e+04 5.66e-01 4.74e-01 3.00e-01 13 8.8 1.006e+15 3.029e+02 2.709e+12 1.00e+00 1.33e+03 1.33e-07 1.00e+04 6.70e-01 6.86e-01 3.00e-01 14 9.5 4.647e+14 3.925e+02 4.272e+12 1.00e+00 4.40e+02 4.40e-08 3.14e+03 5.67e-01 6.23e-01 3.00e-01 15 10.2 2.709e+14 6.587e+02 6.050e+12 1.00e+00 1.91e+02 1.91e-08 1.18e+03 4.25e-01 9.14e-01 3.00e-01 16 10.9 2.367e+14 6.300e+01 9.859e+12 1.00e+00 1.10e+02 1.10e-08 1.01e+02 7.83e-01 1.00e+00 3.00e-01 17 11.5 8.205e+13 7.894e+01 1.584e+13 1.00e+00 2.37e+01 2.37e-09 4.81e-58 8.13e-01 1.00e+00 3.00e-01 18 12.2 2.463e+13 1.886e+01 2.504e+13 1.00e+00 4.43e+00 4.43e-10 1.80e-57 8.84e-01 1.00e+00 3.00e-01 19 13.0 4.808e+12 2.447e+00 3.732e+13 1.00e+00 5.16e-01 5.16e-11 3.08e-57 8.88e-01 1.00e+00 3.00e-01 20 13.7 1.084e+12 3.495e-01 3.941e+13 1.00e+00 5.77e-02 5.77e-12 4.52e-57 8.56e-01 1.00e+00 3.00e-01 21 14.4 3.431e+11 1.295e-01 2.400e+13 1.00e+00 8.33e-03 8.33e-13 2.87e-57 8.25e-01 1.00e+00 3.00e-01 22 15.1 1.158e+11 9.545e-02 1.061e+13 1.00e+00 1.46e-03 1.46e-13 2.86e-58 8.40e-01 8.07e-01 3.00e-01 23 15.8 4.557e+10 8.306e-02 4.818e+12 1.00e+00 2.34e-04 2.34e-14 7.49e-59 7.20e-01 1.00e+00 3.00e-01 24 16.5 1.417e+10 8.217e-02 1.436e+12 1.00e+00 6.54e-05 6.54e-15 2.67e-60 8.96e-01 8.18e-01 3.00e-01 25 17.2 5.688e+09 7.650e-02 6.445e+11 1.00e+00 6.79e-06 6.79e-16 2.45e-59 9.34e-01 1.00e+00 3.00e-01 26 17.9 1.690e+09 7.658e-02 1.988e+11 1.00e+00 4.49e-07 4.49e-17 3.26e-59 1.00e+00 1.00e+00 3.00e-01 27 18.6 5.061e+08 7.648e-02 6.022e+10 1.00e+00 3.76e-74 5.26e-51 1.59e-58 1.00e+00 1.00e+00 3.00e-01 28 19.3 1.518e+08 7.648e-02 1.807e+10 1.00e+00 2.90e-74 4.90e-51 8.18e-59 1.00e+00 1.00e+00 1.00e-01 29 20.1 1.524e+07 7.648e-02 1.814e+09 1.00e+00 2.45e-74 4.50e-51 1.28e-59 1.00e+00 1.00e+00 1.00e-01 30 20.8 1.525e+06 7.649e-02 1.814e+08 1.00e+00 2.71e-74 4.18e-51 2.78e-61 1.00e+00 1.00e+00 1.00e-01 31 21.4 1.525e+05 7.649e-02 1.814e+07 1.00e+00 3.93e-74 3.73e-51 5.43e-62 1.00e+00 1.00e+00 1.00e-01 32 22.0 1.525e+04 7.649e-02 1.815e+06 1.00e+00 2.43e-74 5.57e-51 2.64e-63 1.00e+00 1.00e+00 1.00e-01 33 22.7 1.525e+03 7.649e-02 1.815e+05 1.00e+00 2.14e-74 4.90e-51 1.51e-64 1.00e+00 1.00e+00 1.00e-01 34 23.4 1.525e+02 7.649e-02 1.815e+04 1.00e+00 3.50e-74 2.05e-51 2.24e-65 1.00e+00 1.00e+00 1.00e-01 35 24.1 1.529e+01 7.653e-02 1.820e+03 1.00e+00 2.09e-74 5.89e-51 3.38e-66 9.97e-01 9.97e-01 1.00e-01 36 24.8 1.564e+00 7.692e-02 1.862e+02 9.99e-01 2.64e-74 3.25e-51 2.55e-67 9.76e-01 9.76e-01 1.00e-01 37 25.5 1.897e-01 8.062e-02 2.266e+01 9.93e-01 2.47e-74 5.57e-51 8.97e-69 8.77e-01 8.77e-01 1.00e-01 38 26.2 3.990e-02 1.073e-01 4.856e+00 9.57e-01 2.37e-74 3.11e-51 6.74e-69 9.21e-01 9.21e-01 1.00e-01 39 26.9 6.811e-03 1.612e-01 9.718e-01 7.15e-01 3.65e-74 2.81e-51 8.51e-69 8.71e-01 8.71e-01 1.00e-01 40 27.6 1.473e-03 2.059e-01 3.812e-01 1.75e-01 3.39e-74 2.42e-51 2.63e-69 8.63e-01 8.63e-01 1.00e-01 41 28.3 3.291e-04 2.437e-01 2.829e-01 3.92e-02 3.95e-74 2.74e-51 4.00e-69 8.93e-01 8.93e-01 1.00e-01 42 28.9 6.458e-05 2.517e-01 2.594e-01 7.69e-03 4.24e-74 3.97e-51 3.41e-69 8.48e-01 8.48e-01 1.00e-01 43 29.6 1.529e-05 2.532e-01 2.550e-01 1.82e-03 4.37e-74 7.77e-51 1.91e-68 8.38e-01 8.38e-01 1.00e-01 44 30.3 3.758e-06 2.536e-01 2.540e-01 4.47e-04 3.50e-74 6.73e-51 8.78e-67 8.60e-01 8.60e-01 1.00e-01 45 31.0 8.506e-07 2.537e-01 2.538e-01 1.01e-04 6.39e-74 1.02e-50 1.07e-66 9.32e-01 9.32e-01 1.00e-01 46 31.7 1.372e-07 2.537e-01 2.538e-01 1.63e-05 4.35e-74 8.92e-51 2.28e-66 9.60e-01 9.60e-01 1.00e-01 47 32.4 1.861e-08 2.537e-01 2.537e-01 2.21e-06 4.25e-74 6.58e-51 3.49e-66 9.53e-01 9.53e-01 1.00e-01 48 33.1 2.646e-09 2.537e-01 2.537e-01 3.15e-07 4.09e-74 5.98e-51 9.77e-67 9.65e-01 9.65e-01 1.00e-01 49 33.9 3.469e-10 2.537e-01 2.537e-01 4.13e-08 3.26e-74 3.62e-51 6.97e-66 9.73e-01 9.73e-01 1.00e-01 50 34.5 4.314e-11 2.537e-01 2.537e-01 5.13e-09 3.68e-74 1.37e-50 1.32e-65 9.75e-01 9.75e-01 1.00e-01 51 35.2 5.269e-12 2.537e-01 2.537e-01 6.27e-10 6.27e-74 9.12e-51 4.88e-65 9.79e-01 9.79e-01 1.00e-01 52 35.9 6.243e-13 2.537e-01 2.537e-01 7.43e-11 4.02e-74 9.31e-51 1.02e-63 9.96e-01 9.96e-01 1.00e-01 53 36.6 6.487e-14 2.537e-01 2.537e-01 7.72e-12 7.29e-74 1.12e-50 4.90e-63 1.00e+00 1.00e+00 1.00e-01 54 37.4 6.499e-15 2.537e-01 2.537e-01 7.73e-13 3.75e-74 5.64e-51 3.17e-63 1.00e+00 1.00e+00 1.00e-01 55 38.2 6.500e-16 2.537e-01 2.537e-01 7.73e-14 5.66e-74 1.57e-50 1.23e-61 1.00e+00 1.00e+00 1.00e-01 56 38.9 6.501e-17 2.537e-01 2.537e-01 7.74e-15 3.99e-74 1.18e-50 3.25e-60 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 38.888951 seconds (56.75 M allocations: 3.483 GiB, 4.62% gc time, 0.80% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:0.25374042722106456996849175210581432694094014475504885603929694419470101626723100068171760554 Dual objective:0.25374042722106534366552153349800920081578256777744468059282851836826618666172863734348953973 Duality gap:7.7369702978139219487387484242302239582455353157417356517039449763666177193419071618707501266e-16 [ Info: Creating the univariate constraint [ Info: Constructing trivariate constraint iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.4 1.000e+06 1.000e+00 5.001e+03 1.00e+00 1.00e+03 0.00e+00 3.99e+06 6.53e-01 5.28e-01 3.00e-01 2 0.7 5.015e+05 5.164e+02 3.088e+03 7.13e-01 3.47e+02 0.00e+00 1.88e+06 4.22e-01 6.07e-01 3.00e-01 3 1.1 3.499e+05 6.688e+02 8.065e+03 8.47e-01 2.00e+02 0.00e+00 7.40e+05 5.84e-01 4.21e-01 3.00e-01 4 1.4 2.030e+05 5.414e+02 1.758e+04 9.40e-01 8.32e+01 0.00e+00 4.29e+05 4.22e-01 9.53e-01 3.00e-01 5 1.7 1.588e+05 3.876e+02 6.630e+04 9.88e-01 4.81e+01 0.00e+00 2.00e+04 7.78e-01 1.00e+00 3.00e-01 6 2.0 5.705e+04 1.104e+02 1.123e+05 9.98e-01 1.07e+01 0.00e+00 6.75e-67 8.24e-01 1.00e+00 3.00e-01 7 2.3 1.728e+04 2.822e+01 1.690e+05 1.00e+00 1.88e+00 0.00e+00 1.29e-66 8.75e-01 1.00e+00 3.00e-01 8 2.7 4.993e+03 1.126e+01 1.883e+05 1.00e+00 2.35e-01 0.00e+00 1.72e-66 8.48e-01 9.86e-01 3.00e-01 9 3.0 1.681e+03 9.036e+00 9.790e+04 1.00e+00 3.57e-02 0.00e+00 3.43e-66 8.19e-01 1.00e+00 3.00e-01 10 3.3 5.450e+02 8.700e+00 3.672e+04 1.00e+00 6.44e-03 0.00e+00 1.55e-66 8.33e-01 1.00e+00 3.00e-01 11 3.6 1.723e+02 8.588e+00 1.271e+04 9.99e-01 1.08e-03 0.00e+00 4.56e-67 1.00e+00 1.00e+00 3.00e-01 12 3.9 5.146e+01 8.519e+00 4.074e+03 9.96e-01 1.71e-73 0.00e+00 2.09e-67 1.00e+00 1.00e+00 3.00e-01 13 4.3 1.544e+01 8.502e+00 1.228e+03 9.86e-01 1.43e-73 0.00e+00 1.44e-68 9.92e-01 9.92e-01 1.00e-01 14 4.6 1.654e+00 8.507e+00 1.392e+02 8.85e-01 2.65e-73 0.00e+00 1.42e-69 9.78e-01 9.78e-01 1.00e-01 15 4.9 1.981e-01 8.562e+00 2.421e+01 4.77e-01 7.90e-74 0.00e+00 1.85e-69 8.60e-01 8.60e-01 1.00e-01 16 5.2 4.484e-02 8.877e+00 1.242e+01 1.66e-01 7.19e-74 0.00e+00 2.15e-69 8.02e-01 8.02e-01 1.00e-01 17 5.6 1.245e-02 9.486e+00 1.047e+01 4.93e-02 4.08e-73 0.00e+00 6.52e-70 7.62e-01 7.62e-01 1.00e-01 18 5.9 3.917e-03 9.841e+00 1.015e+01 1.55e-02 1.93e-73 0.00e+00 1.50e-69 7.52e-01 7.52e-01 1.00e-01 19 6.2 1.267e-03 9.941e+00 1.004e+01 5.01e-03 8.24e-74 0.00e+00 4.68e-70 8.14e-01 8.14e-01 1.00e-01 20 6.6 3.392e-04 9.983e+00 1.001e+01 1.34e-03 2.06e-73 0.00e+00 8.10e-71 7.89e-01 7.89e-01 1.00e-01 21 6.9 9.835e-05 9.995e+00 1.000e+01 3.89e-04 4.20e-73 0.00e+00 5.61e-71 9.42e-01 9.42e-01 1.00e-01 22 7.2 1.496e-05 9.999e+00 1.000e+01 5.91e-05 5.11e-73 0.00e+00 1.08e-70 9.79e-01 9.79e-01 1.00e-01 23 7.5 1.780e-06 1.000e+01 1.000e+01 7.03e-06 2.42e-73 0.00e+00 1.15e-70 9.89e-01 9.89e-01 1.00e-01 24 7.8 1.951e-07 1.000e+01 1.000e+01 7.71e-07 3.02e-73 0.00e+00 1.68e-70 9.97e-01 9.97e-01 1.00e-01 25 8.1 2.009e-08 1.000e+01 1.000e+01 7.94e-08 2.82e-73 0.00e+00 5.25e-71 1.00e+00 1.00e+00 1.00e-01 26 8.3 2.016e-09 1.000e+01 1.000e+01 7.96e-09 1.59e-73 0.00e+00 1.93e-70 1.00e+00 1.00e+00 1.00e-01 27 8.5 2.017e-10 1.000e+01 1.000e+01 7.97e-10 2.72e-73 0.00e+00 6.67e-71 1.00e+00 1.00e+00 1.00e-01 28 8.8 2.017e-11 1.000e+01 1.000e+01 7.97e-11 3.25e-73 0.00e+00 4.22e-70 1.00e+00 1.00e+00 1.00e-01 29 9.0 2.018e-12 1.000e+01 1.000e+01 7.97e-12 2.54e-73 0.00e+00 2.19e-70 1.00e+00 1.00e+00 1.00e-01 30 9.2 2.018e-13 1.000e+01 1.000e+01 7.97e-13 3.65e-73 0.00e+00 1.26e-70 1.00e+00 1.00e+00 1.00e-01 31 9.5 2.018e-14 1.000e+01 1.000e+01 7.97e-14 4.05e-73 0.00e+00 7.69e-71 1.00e+00 1.00e+00 1.00e-01 32 9.7 2.018e-15 1.000e+01 1.000e+01 7.97e-15 2.70e-73 0.00e+00 2.07e-70 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 9.712065 seconds (13.94 M allocations: 859.089 MiB, 6.37% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:9.999999999999988697243853736595218298957810700120443173272589547678780659998527 Dual objective:10.00000000000000464220341723846752519823175399718663830422595325079076754311137 Duality gap:7.972479781750938808505735343516115726859340342859922828705798746438422613701998e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 2.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.1 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 0.00e+00 2.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.1 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 2.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.1 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 2.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.1 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 0.00e+00 2.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.1 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 2.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.1 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 2.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.1 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 2.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.1 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 0.00e+00 1.99e+02 1.00e+00 9.05e-01 3.00e-01 10 0.1 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 1.90e+01 1.00e+00 9.47e-01 3.00e-01 11 0.1 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e+00 3.00e-01 12 0.2 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 3.00e-01 13 0.2 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 14 0.2 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 15 0.2 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 16 0.2 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 17 0.2 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 18 0.2 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 19 0.2 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 20 0.2 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.2 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 22 0.2 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 4.91e-91 9.98e-01 9.98e-01 1.00e-01 23 0.2 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 0.00e+00 0.00e+00 9.78e-01 9.78e-01 1.00e-01 24 0.2 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 0.00e+00 1.47e-90 8.86e-01 8.86e-01 1.00e-01 25 0.3 2.642e-01 1.213e+00 6.845e-01 2.78e-01 0.00e+00 0.00e+00 4.91e-91 9.25e-01 9.25e-01 1.00e-01 26 0.3 4.423e-02 1.057e+00 9.685e-01 4.37e-02 9.82e-91 0.00e+00 9.82e-91 9.82e-01 9.82e-01 1.00e-01 27 0.3 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 0.00e+00 9.82e-91 9.90e-01 9.90e-01 1.00e-01 28 0.3 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 0.00e+00 1.47e-90 9.98e-01 9.98e-01 1.00e-01 29 0.3 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 30 0.3 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.3 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.3 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 33 0.3 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 34 0.3 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.3 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 36 0.3 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 37 0.4 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 38 0.4 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 0.00e+00 2.45e-90 1.00e+00 1.00e+00 1.00e-01 39 0.4 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.366137 seconds (45.94 k allocations: 3.871 MiB, 39.04% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279668 Dual objective:0.9999999999999994308276721633712720975914346046825898890655777243547660499609509826264801335 Duality gap:5.691723278366352070451840708486824389848583387797514538933756972301949865323277923806982379e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.0 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 1.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.0 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 8.43e-81 1.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.0 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 1.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.1 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 1.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.1 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 3.37e-80 1.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.1 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 1.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.1 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 1.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.1 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 1.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.1 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 2.70e-79 9.95e+01 1.00e+00 9.05e-01 3.00e-01 10 0.1 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 9.50e+00 1.00e+00 9.47e-01 3.00e-01 11 0.1 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 5.00e-01 1.00e+00 1.00e+00 3.00e-01 12 0.1 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 5.40e-79 0.00e+00 1.00e+00 1.00e+00 3.00e-01 13 0.1 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 14 0.1 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 1.35e-79 2.45e-91 1.00e+00 1.00e+00 1.00e-01 15 0.1 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 1.69e-80 1.23e-90 1.00e+00 1.00e+00 1.00e-01 16 0.1 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 17 0.2 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 2.64e-82 1.23e-90 1.00e+00 1.00e+00 1.00e-01 18 0.2 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 1.65e-83 9.82e-91 1.00e+00 1.00e+00 1.00e-01 19 0.2 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 1.03e-84 7.36e-91 1.00e+00 1.00e+00 1.00e-01 20 0.2 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.2 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 1.61e-86 4.91e-91 1.00e+00 1.00e+00 1.00e-01 22 0.2 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 7.36e-91 9.98e-01 9.98e-01 1.00e-01 23 0.2 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 1.10e-88 9.82e-91 9.78e-01 9.78e-01 1.00e-01 24 0.2 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 1.77e-89 4.91e-91 8.86e-01 8.86e-01 1.00e-01 25 0.2 2.642e-01 1.213e+00 6.845e-01 2.78e-01 9.82e-91 9.82e-91 1.47e-90 9.25e-01 9.25e-01 1.00e-01 26 0.2 4.423e-02 1.057e+00 9.685e-01 4.37e-02 4.91e-91 9.82e-91 1.47e-90 9.82e-01 9.82e-01 1.00e-01 27 0.2 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 9.82e-91 4.91e-91 9.90e-01 9.90e-01 1.00e-01 28 0.2 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 9.82e-91 2.45e-90 9.98e-01 9.98e-01 1.00e-01 29 0.2 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 1.96e-90 4.91e-91 1.00e+00 1.00e+00 1.00e-01 30 0.3 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.3 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 9.82e-91 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.3 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 33 0.3 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 34 0.3 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 9.82e-91 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.3 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 36 0.3 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 9.82e-91 4.91e-91 1.00e+00 1.00e+00 1.00e-01 37 0.3 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 38 0.3 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 1.96e-90 1.96e-90 1.00e+00 1.00e+00 1.00e-01 39 0.3 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 9.82e-91 1.58e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.327581 seconds (50.76 k allocations: 4.081 MiB, 32.71% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279658 Dual objective:0.99999999999999943082767216337127209759143460468258988906557772435476604996095098262648013301 Duality gap:5.6917232783663520704518407084868243898485833877975145389337569723019498653208233770743335244e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.2 1.000e+20 1.000e+00 7.000e+10 1.00e+00 1.00e+10 0.00e+00 7.05e+10 6.66e-01 6.95e-01 3.00e-01 2 0.2 4.559e+19 1.338e+10 7.193e+10 6.86e-01 3.34e+09 0.00e+00 2.15e+10 7.05e-01 7.53e-01 3.00e-01 3 0.3 1.822e+19 2.640e+10 9.901e+10 5.79e-01 9.85e+08 0.00e+00 5.31e+09 6.16e-01 7.88e-01 3.00e-01 4 0.3 8.970e+18 3.260e+10 1.789e+11 6.92e-01 3.78e+08 0.00e+00 1.12e+09 7.73e-01 1.00e+00 3.00e-01 5 0.3 3.189e+18 1.238e+10 3.561e+11 9.33e-01 8.58e+07 0.00e+00 1.70e-142 8.40e-01 1.00e+00 3.00e-01 6 0.4 8.172e+17 2.052e+09 5.731e+11 9.93e-01 1.37e+07 0.00e+00 1.22e-141 8.95e-01 1.00e+00 3.00e-01 7 0.4 1.367e+17 2.121e+08 9.202e+11 1.00e+00 1.44e+06 0.00e+00 4.68e-141 8.90e-01 1.00e+00 3.00e-01 8 0.4 2.412e+16 2.361e+07 1.476e+12 1.00e+00 1.58e+05 0.00e+00 4.50e-141 8.97e-01 1.00e+00 3.00e-01 9 0.5 3.957e+15 2.403e+06 2.364e+12 1.00e+00 1.62e+04 0.00e+00 7.59e-142 8.94e-01 1.00e+00 3.00e-01 10 0.5 6.738e+14 2.573e+05 3.785e+12 1.00e+00 1.73e+03 0.00e+00 2.72e-141 8.99e-01 1.00e+00 3.00e-01 11 0.5 1.095e+14 2.604e+04 6.056e+12 1.00e+00 1.75e+02 0.00e+00 1.89e-140 8.99e-01 1.00e+00 3.00e-01 12 0.6 1.816e+13 2.738e+03 9.636e+12 1.00e+00 1.76e+01 0.00e+00 7.91e-141 9.13e-01 1.00e+00 3.00e-01 13 0.6 3.342e+12 3.449e+02 1.456e+13 1.00e+00 1.53e+00 0.00e+00 5.86e-141 1.00e+00 1.00e+00 3.00e-01 14 0.6 1.007e+12 1.188e+02 1.410e+13 1.00e+00 9.55e-153 0.00e+00 3.69e-140 1.00e+00 1.00e+00 3.00e-01 15 0.6 3.022e+11 1.198e+02 4.231e+12 1.00e+00 4.77e-153 0.00e+00 3.49e-142 9.99e-01 9.99e-01 1.00e-01 16 0.7 3.062e+10 1.199e+02 4.287e+11 1.00e+00 9.55e-153 0.00e+00 3.74e-142 1.00e+00 1.00e+00 1.00e-01 17 0.7 3.063e+09 1.200e+02 4.288e+10 1.00e+00 9.55e-153 0.00e+00 7.69e-144 1.00e+00 1.00e+00 1.00e-01 18 0.7 3.063e+08 1.201e+02 4.288e+09 1.00e+00 9.55e-153 0.00e+00 1.06e-144 1.00e+00 1.00e+00 1.00e-01 19 0.8 3.063e+07 1.202e+02 4.289e+08 1.00e+00 9.55e-153 0.00e+00 3.69e-145 1.00e+00 1.00e+00 1.00e-01 20 0.8 3.064e+06 1.202e+02 4.289e+07 1.00e+00 9.55e-153 0.00e+00 4.90e-146 1.00e+00 1.00e+00 1.00e-01 21 0.8 3.064e+05 1.203e+02 4.290e+06 1.00e+00 9.55e-153 0.00e+00 2.56e-147 1.00e+00 1.00e+00 1.00e-01 22 0.9 3.065e+04 1.203e+02 4.292e+05 9.99e-01 1.91e-152 0.00e+00 1.76e-148 1.00e+00 1.00e+00 1.00e-01 23 0.9 3.075e+03 1.204e+02 4.317e+04 9.94e-01 9.55e-153 0.00e+00 5.06e-149 9.97e-01 9.97e-01 1.00e-01 24 0.9 3.167e+02 1.211e+02 4.554e+03 9.48e-01 9.55e-153 0.00e+00 2.81e-150 9.70e-01 9.70e-01 1.00e-01 25 1.0 4.021e+01 1.274e+02 6.904e+02 6.88e-01 9.55e-153 0.00e+00 7.52e-151 8.70e-01 8.70e-01 1.00e-01 26 1.0 8.743e+00 1.689e+02 2.913e+02 2.66e-01 9.55e-153 0.00e+00 2.84e-150 9.15e-01 9.15e-01 1.00e-01 27 1.0 1.547e+00 2.316e+02 2.532e+02 4.47e-02 1.91e-152 0.00e+00 8.83e-151 9.82e-01 9.82e-01 1.00e-01 28 1.1 1.800e-01 2.389e+02 2.414e+02 5.25e-03 1.91e-152 0.00e+00 2.21e-150 9.89e-01 9.89e-01 1.00e-01 29 1.1 1.986e-02 2.399e+02 2.401e+02 5.79e-04 1.91e-152 0.00e+00 1.63e-151 9.97e-01 9.97e-01 1.00e-01 30 1.1 2.030e-03 2.400e+02 2.400e+02 5.92e-05 1.91e-152 0.00e+00 1.10e-150 1.00e+00 1.00e+00 1.00e-01 31 1.1 2.034e-04 2.400e+02 2.400e+02 5.93e-06 1.91e-152 0.00e+00 1.36e-150 1.00e+00 1.00e+00 1.00e-01 32 1.2 2.035e-05 2.400e+02 2.400e+02 5.93e-07 1.91e-152 0.00e+00 5.69e-151 1.00e+00 1.00e+00 1.00e-01 33 1.2 2.035e-06 2.400e+02 2.400e+02 5.94e-08 1.91e-152 0.00e+00 2.37e-151 1.00e+00 1.00e+00 1.00e-01 34 1.3 2.035e-07 2.400e+02 2.400e+02 5.94e-09 1.91e-152 0.00e+00 1.38e-150 1.00e+00 1.00e+00 1.00e-01 35 1.3 2.035e-08 2.400e+02 2.400e+02 5.94e-10 1.91e-152 0.00e+00 1.30e-150 1.00e+00 1.00e+00 1.00e-01 36 1.3 2.036e-09 2.400e+02 2.400e+02 5.94e-11 1.91e-152 0.00e+00 1.13e-150 1.00e+00 1.00e+00 1.00e-01 37 1.3 2.036e-10 2.400e+02 2.400e+02 5.94e-12 1.91e-152 0.00e+00 1.14e-150 1.00e+00 1.00e+00 1.00e-01 38 1.4 2.036e-11 2.400e+02 2.400e+02 5.94e-13 1.91e-152 0.00e+00 1.90e-150 1.00e+00 1.00e+00 1.00e-01 39 1.4 2.036e-12 2.400e+02 2.400e+02 5.94e-14 1.91e-152 0.00e+00 9.38e-151 1.00e+00 1.00e+00 1.00e-01 40 1.4 2.036e-13 2.400e+02 2.400e+02 5.94e-15 1.91e-152 0.00e+00 7.32e-151 1.00e+00 1.00e+00 1.00e-01 41 1.5 2.037e-14 2.400e+02 2.400e+02 5.94e-16 1.91e-152 0.00e+00 3.44e-151 1.00e+00 1.00e+00 1.00e-01 42 1.5 2.037e-15 2.400e+02 2.400e+02 5.94e-17 3.82e-152 0.00e+00 1.43e-150 1.00e+00 1.00e+00 1.00e-01 43 1.5 2.037e-16 2.400e+02 2.400e+02 5.94e-18 3.82e-152 0.00e+00 2.13e-149 1.00e+00 1.00e+00 1.00e-01 44 1.6 2.037e-17 2.400e+02 2.400e+02 5.94e-19 1.91e-152 0.00e+00 9.41e-150 1.00e+00 1.00e+00 1.00e-01 45 1.6 2.037e-18 2.400e+02 2.400e+02 5.94e-20 1.91e-152 0.00e+00 4.71e-149 1.00e+00 1.00e+00 1.00e-01 46 1.6 2.038e-19 2.400e+02 2.400e+02 5.94e-21 1.91e-152 0.00e+00 1.42e-149 1.00e+00 1.00e+00 1.00e-01 47 1.7 2.038e-20 2.400e+02 2.400e+02 5.94e-22 1.91e-152 0.00e+00 2.29e-148 1.00e+00 1.00e+00 1.00e-01 48 1.7 2.038e-21 2.400e+02 2.400e+02 5.94e-23 1.91e-152 0.00e+00 1.73e-149 1.00e+00 1.00e+00 1.00e-01 49 1.7 2.038e-22 2.400e+02 2.400e+02 5.94e-24 1.91e-152 0.00e+00 2.65e-147 1.00e+00 1.00e+00 1.00e-01 50 1.8 2.038e-23 2.400e+02 2.400e+02 5.95e-25 1.91e-152 0.00e+00 2.08e-148 1.00e+00 1.00e+00 1.00e-01 51 1.8 2.039e-24 2.400e+02 2.400e+02 5.95e-26 1.91e-152 0.00e+00 1.13e-147 1.00e+00 1.00e+00 1.00e-01 52 1.8 2.039e-25 2.400e+02 2.400e+02 5.95e-27 1.91e-152 0.00e+00 7.37e-147 1.00e+00 1.00e+00 1.00e-01 53 1.9 2.039e-26 2.400e+02 2.400e+02 5.95e-28 1.91e-152 0.00e+00 1.03e-146 1.00e+00 1.00e+00 1.00e-01 54 1.9 2.039e-27 2.400e+02 2.400e+02 5.95e-29 1.91e-152 0.00e+00 1.41e-146 1.00e+00 1.00e+00 1.00e-01 55 1.9 2.039e-28 2.400e+02 2.400e+02 5.95e-30 1.91e-152 0.00e+00 8.29e-146 1.00e+00 1.00e+00 1.00e-01 56 2.0 2.040e-29 2.400e+02 2.400e+02 5.95e-31 1.91e-152 0.00e+00 2.55e-146 1.00e+00 1.00e+00 1.00e-01 57 2.0 2.040e-30 2.400e+02 2.400e+02 5.95e-32 1.91e-152 0.00e+00 1.57e-145 1.00e+00 1.00e+00 1.00e-01 58 2.0 2.040e-31 2.400e+02 2.400e+02 5.95e-33 1.91e-152 0.00e+00 1.22e-145 1.00e+00 1.00e+00 1.00e-01 59 2.1 2.040e-32 2.400e+02 2.400e+02 5.95e-34 1.91e-152 0.00e+00 1.61e-144 1.00e+00 1.00e+00 1.00e-01 60 2.1 2.040e-33 2.400e+02 2.400e+02 5.95e-35 1.91e-152 0.00e+00 2.14e-144 1.00e+00 1.00e+00 1.00e-01 61 2.1 2.041e-34 2.400e+02 2.400e+02 5.95e-36 3.82e-152 0.00e+00 2.38e-144 1.00e+00 1.00e+00 1.00e-01 62 2.1 2.041e-35 2.400e+02 2.400e+02 5.95e-37 1.91e-152 0.00e+00 2.34e-144 1.00e+00 1.00e+00 1.00e-01 63 2.2 2.041e-36 2.400e+02 2.400e+02 5.95e-38 3.82e-152 0.00e+00 1.71e-143 1.00e+00 1.00e+00 1.00e-01 64 2.2 2.041e-37 2.400e+02 2.400e+02 5.95e-39 3.82e-152 0.00e+00 4.97e-144 1.00e+00 1.00e+00 1.00e-01 65 2.2 2.041e-38 2.400e+02 2.400e+02 5.95e-40 1.91e-152 0.00e+00 1.58e-143 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 2.248217 seconds (992.26 k allocations: 58.586 MiB, 26.12% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:239.999999999999999999999999999999999999985708648903684935069575212103778941953724436950703009524115597404017771153539125638177456067684673148564528518904249 Dual objective:240.000000000000000000000000000000000000014291351096315064930424787896221058046310800125160310994948421203020002506365450319523335056947155983422135566337053 Duality gap:5.95472962346461038767699495675877418595549232801193780642350495812546486517215053814026752362863081620187465822355146891256878834910117838456246731524085658e-41 ** Starting computation of basis transformations ** Block 3 of size 1 x 1 Block 6 of size 1 x 1 Block 1 of size 1 x 1 Block 4 of size 1 x 1 Block 0 of size 1 x 1 Block 0 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 2 of size 1 x 1 Block 5 of size 1 x 1 Block B of size 3 x 3 Block B has 2 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block A of size 4 x 4 Block A has 4 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 ** Finished computation of basis transformations (10.876924519s) ** ** Transforming the problem and the solution ** (4.999754819s) ** Projection the solution into the affine space ** Reducing the system from 7 columns to 7 columns Constructing the linear system... (8.311622343s) Preprocessing to get an integer system... (6.711e-5s) Finding the pivots of A using RREF mod p... (0.000324837 6.6659e-5 s) Solving the system of size 7 x 7 using the pseudoinverse... 0.810388966s ** Finished projection into affine space (11.556488968s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.1687313) [ Info: Creating the univariate constraint [ Info: Constructing trivariate constraint iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.4 1.000e+06 1.000e+00 5.001e+03 1.00e+00 1.00e+03 0.00e+00 3.99e+06 6.53e-01 5.28e-01 3.00e-01 2 0.8 5.015e+05 5.164e+02 3.088e+03 7.13e-01 3.47e+02 0.00e+00 1.88e+06 4.22e-01 6.07e-01 3.00e-01 3 1.1 3.499e+05 6.688e+02 8.065e+03 8.47e-01 2.00e+02 0.00e+00 7.40e+05 5.84e-01 4.21e-01 3.00e-01 4 1.4 2.030e+05 5.414e+02 1.758e+04 9.40e-01 8.32e+01 0.00e+00 4.29e+05 4.22e-01 9.53e-01 3.00e-01 5 1.8 1.588e+05 3.876e+02 6.630e+04 9.88e-01 4.81e+01 0.00e+00 2.00e+04 7.78e-01 1.00e+00 3.00e-01 6 2.1 5.705e+04 1.104e+02 1.123e+05 9.98e-01 1.07e+01 0.00e+00 6.75e-67 8.24e-01 1.00e+00 3.00e-01 7 2.5 1.728e+04 2.822e+01 1.690e+05 1.00e+00 1.88e+00 0.00e+00 1.29e-66 8.75e-01 1.00e+00 3.00e-01 8 2.8 4.993e+03 1.126e+01 1.883e+05 1.00e+00 2.35e-01 0.00e+00 1.72e-66 8.48e-01 9.86e-01 3.00e-01 9 3.1 1.681e+03 9.036e+00 9.790e+04 1.00e+00 3.57e-02 0.00e+00 3.43e-66 8.19e-01 1.00e+00 3.00e-01 10 3.5 5.450e+02 8.700e+00 3.672e+04 1.00e+00 6.44e-03 0.00e+00 1.55e-66 8.33e-01 1.00e+00 3.00e-01 11 3.8 1.723e+02 8.588e+00 1.271e+04 9.99e-01 1.08e-03 0.00e+00 4.56e-67 1.00e+00 1.00e+00 3.00e-01 12 4.1 5.146e+01 8.519e+00 4.074e+03 9.96e-01 1.71e-73 0.00e+00 2.09e-67 1.00e+00 1.00e+00 3.00e-01 13 4.5 1.544e+01 8.502e+00 1.228e+03 9.86e-01 1.43e-73 0.00e+00 1.44e-68 9.92e-01 9.92e-01 1.00e-01 14 4.8 1.654e+00 8.507e+00 1.392e+02 8.85e-01 2.65e-73 0.00e+00 1.42e-69 9.78e-01 9.78e-01 1.00e-01 15 5.1 1.981e-01 8.562e+00 2.421e+01 4.77e-01 7.90e-74 0.00e+00 1.85e-69 8.60e-01 8.60e-01 1.00e-01 16 5.5 4.484e-02 8.877e+00 1.242e+01 1.66e-01 7.19e-74 0.00e+00 2.15e-69 8.02e-01 8.02e-01 1.00e-01 17 5.9 1.245e-02 9.486e+00 1.047e+01 4.93e-02 4.08e-73 0.00e+00 6.52e-70 7.62e-01 7.62e-01 1.00e-01 18 6.2 3.917e-03 9.841e+00 1.015e+01 1.55e-02 1.93e-73 0.00e+00 1.50e-69 7.52e-01 7.52e-01 1.00e-01 19 6.6 1.267e-03 9.941e+00 1.004e+01 5.01e-03 8.24e-74 0.00e+00 4.68e-70 8.14e-01 8.14e-01 1.00e-01 20 6.9 3.392e-04 9.983e+00 1.001e+01 1.34e-03 2.06e-73 0.00e+00 8.10e-71 7.89e-01 7.89e-01 1.00e-01 21 7.3 9.835e-05 9.995e+00 1.000e+01 3.89e-04 4.20e-73 0.00e+00 5.61e-71 9.42e-01 9.42e-01 1.00e-01 22 7.6 1.496e-05 9.999e+00 1.000e+01 5.91e-05 5.11e-73 0.00e+00 1.08e-70 9.79e-01 9.79e-01 1.00e-01 23 7.9 1.780e-06 1.000e+01 1.000e+01 7.03e-06 2.42e-73 0.00e+00 1.15e-70 9.89e-01 9.89e-01 1.00e-01 24 8.3 1.951e-07 1.000e+01 1.000e+01 7.71e-07 3.02e-73 0.00e+00 1.68e-70 9.97e-01 9.97e-01 1.00e-01 25 8.6 2.009e-08 1.000e+01 1.000e+01 7.94e-08 2.82e-73 0.00e+00 5.25e-71 1.00e+00 1.00e+00 1.00e-01 26 8.9 2.016e-09 1.000e+01 1.000e+01 7.96e-09 1.59e-73 0.00e+00 1.93e-70 1.00e+00 1.00e+00 1.00e-01 27 9.3 2.017e-10 1.000e+01 1.000e+01 7.97e-10 2.72e-73 0.00e+00 6.67e-71 1.00e+00 1.00e+00 1.00e-01 28 9.6 2.017e-11 1.000e+01 1.000e+01 7.97e-11 3.25e-73 0.00e+00 4.22e-70 1.00e+00 1.00e+00 1.00e-01 29 9.9 2.018e-12 1.000e+01 1.000e+01 7.97e-12 2.54e-73 0.00e+00 2.19e-70 1.00e+00 1.00e+00 1.00e-01 30 10.3 2.018e-13 1.000e+01 1.000e+01 7.97e-13 3.65e-73 0.00e+00 1.26e-70 1.00e+00 1.00e+00 1.00e-01 31 10.6 2.018e-14 1.000e+01 1.000e+01 7.97e-14 4.05e-73 0.00e+00 7.69e-71 1.00e+00 1.00e+00 1.00e-01 32 11.0 2.018e-15 1.000e+01 1.000e+01 7.97e-15 2.70e-73 0.00e+00 2.07e-70 1.00e+00 1.00e+00 1.00e-01 33 11.3 2.018e-16 1.000e+01 1.000e+01 7.97e-16 3.80e-73 0.00e+00 1.68e-70 1.00e+00 1.00e+00 1.00e-01 34 11.6 2.019e-17 1.000e+01 1.000e+01 7.97e-17 3.08e-73 0.00e+00 1.22e-70 1.00e+00 1.00e+00 1.00e-01 35 12.0 2.019e-18 1.000e+01 1.000e+01 7.97e-18 2.09e-73 0.00e+00 1.91e-70 1.00e+00 1.00e+00 1.00e-01 36 12.3 2.019e-19 1.000e+01 1.000e+01 7.97e-19 3.66e-73 0.00e+00 9.86e-70 1.00e+00 1.00e+00 1.00e-01 37 12.5 2.019e-20 1.000e+01 1.000e+01 7.98e-20 3.69e-73 0.00e+00 3.52e-70 1.00e+00 1.00e+00 1.00e-01 38 12.8 2.019e-21 1.000e+01 1.000e+01 7.98e-21 3.07e-73 0.00e+00 3.05e-69 1.00e+00 1.00e+00 1.00e-01 39 13.1 2.020e-22 1.000e+01 1.000e+01 7.98e-22 1.16e-73 0.00e+00 8.70e-69 1.00e+00 1.00e+00 1.00e-01 40 13.4 2.020e-23 1.000e+01 1.000e+01 7.98e-23 2.81e-73 0.00e+00 9.04e-69 1.00e+00 1.00e+00 1.00e-01 41 13.7 2.020e-24 1.000e+01 1.000e+01 7.98e-24 4.49e-73 0.00e+00 5.32e-68 1.00e+00 1.00e+00 1.00e-01 42 13.9 2.020e-25 1.000e+01 1.000e+01 7.98e-25 5.01e-73 0.00e+00 8.16e-68 1.00e+00 1.00e+00 1.00e-01 43 14.2 2.020e-26 1.000e+01 1.000e+01 7.98e-26 2.63e-73 0.00e+00 2.86e-68 1.00e+00 1.00e+00 1.00e-01 44 14.4 2.021e-27 1.000e+01 1.000e+01 7.98e-27 1.87e-73 0.00e+00 6.06e-68 1.00e+00 1.00e+00 1.00e-01 45 14.7 2.021e-28 1.000e+01 1.000e+01 7.98e-28 1.60e-73 0.00e+00 1.12e-67 1.00e+00 1.00e+00 1.00e-01 46 14.9 2.021e-29 1.000e+01 1.000e+01 7.98e-29 2.29e-73 0.00e+00 4.65e-67 1.00e+00 1.00e+00 1.00e-01 47 15.2 2.021e-30 1.000e+01 1.000e+01 7.98e-30 4.11e-73 0.00e+00 8.59e-67 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 15.199255 seconds (20.43 M allocations: 1.229 GiB, 8.43% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:9.999999999999999999999999999988680277134817819960449862546718572079473233955181 Dual objective:10.0000000000000000000000000000046491718910569668019580921915220823859584752432 Duality gap:7.984447378119573420754114822404418186404418995271067886260915658176174539279904e-31 ** Starting computation of basis transformations ** Block (:trivariatesos, 4, 3) of size 1 x 1 Block (:F, 4) of size 1 x 1 Block (:F, 4) has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block (:trivariatesos, 2, 2) of size 1 x 1 Block (:trivariatesos, 1, 2) of size 2 x 2 Block (:trivariatesos, 4, 1) of size 2 x 2 Block (:F, 3) of size 2 x 2 Block (:F, 3) has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block (:trivariatesos, 5, 3) of size 3 x 3 Block (:trivariatesos, 5, 3) has 2 kernel vectors. The maximum numerator and denominator are 1 and 2 After reduction, the maximum number of the basis transformation matrix is 2 Block (:trivariatesos, 3, 3) of size 3 x 3 Block (:trivariatesos, 3, 3) has 1 kernel vectors. The maximum numerator and denominator are 7 and 6 After reduction, the maximum number of the basis transformation matrix is 7 Block (:F, 2) of size 3 x 3 Block (:F, 2) has 1 kernel vectors. The maximum numerator and denominator are 1 and 2 After reduction, the maximum number of the basis transformation matrix is 2 Block (:trivariatesos, 5, 1) of size 4 x 4 Block (:trivariatesos, 5, 1) has 3 kernel vectors. The maximum numerator and denominator are 1 and 6 After reduction, the maximum number of the basis transformation matrix is 3 Block (:univariatesos, 2) of size 4 x 4 Block (:univariatesos, 2) has 1 kernel vectors. The maximum numerator and denominator are 22 and 27 After reduction, the maximum number of the basis transformation matrix is 27 Block (:F, 1) of size 4 x 4 Block (:trivariatesos, 3, 1) of size 4 x 4 Block (:trivariatesos, 3, 1) has 1 kernel vectors. The maximum numerator and denominator are 49 and 36 After reduction, the maximum number of the basis transformation matrix is 49 Block (:univariatesos, 1) of size 5 x 5 Block (:univariatesos, 1) has 2 kernel vectors. The maximum numerator and denominator are 35 and 81 After reduction, the maximum number of the basis transformation matrix is 81 Block (:F, 0) of size 5 x 5 Block (:F, 0) has 1 kernel vectors. The maximum numerator and denominator are 23 and 144 After reduction, the maximum number of the basis transformation matrix is 144 Block (:trivariatesos, 2, 3) of size 6 x 6 Block (:trivariatesos, 2, 3) has 2 kernel vectors. The maximum numerator and denominator are 13 and 36 After reduction, the maximum number of the basis transformation matrix is 36 Block (:trivariatesos, 2, 1) of size 7 x 7 Block (:trivariatesos, 2, 1) has 2 kernel vectors. The maximum numerator and denominator are 67 and 36 After reduction, the maximum number of the basis transformation matrix is 66 Block (:trivariatesos, 1, 1) of size 11 x 11 Block (:trivariatesos, 1, 1) has 3 kernel vectors. The maximum numerator and denominator are 49 and 432 After reduction, the maximum number of the basis transformation matrix is 432 Block (:trivariatesos, 1, 3) of size 11 x 11 Block (:trivariatesos, 1, 3) has 2 kernel vectors. The maximum numerator and denominator are 67 and 72 After reduction, the maximum number of the basis transformation matrix is 72 ** Finished computation of basis transformations (7.122024799s) ** ** Transforming the problem and the solution ** (2.282162439s) ** Projection the solution into the affine space ** Reducing the system from 161 columns to 161 columns Constructing the linear system... (3.151427722s) Preprocessing to get an integer system... (0.01465469s) Finding the pivots of A using RREF mod p... (0.013110025 0.194795181 s) Solving the system of size 50 x 52 using the pseudoinverse... 0.281633002s ** Finished projection into affine space (5.133953491s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.369308176) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.3 1.000e+20 1.000e+00 1.900e+11 1.00e+00 1.00e+10 0.00e+00 2.18e+11 3.69e-01 5.95e-01 3.00e-01 2 0.4 6.494e+19 1.223e+10 1.739e+11 8.69e-01 6.31e+09 0.00e+00 8.84e+10 7.31e-01 6.03e-01 3.00e-01 3 0.6 2.817e+19 3.102e+10 2.208e+11 7.54e-01 1.70e+09 0.00e+00 3.51e+10 6.85e-01 7.10e-01 3.00e-01 4 0.7 1.230e+19 3.546e+10 3.600e+11 8.21e-01 5.34e+08 0.00e+00 1.02e+10 5.57e-01 1.00e+00 3.00e-01 5 0.9 8.216e+18 2.178e+10 8.065e+11 9.47e-01 2.37e+08 0.00e+00 1.15e-78 7.69e-01 1.00e+00 3.00e-01 6 1.0 3.035e+18 5.560e+09 1.290e+12 9.91e-01 5.47e+07 0.00e+00 1.45e-77 8.01e-01 1.00e+00 3.00e-01 7 1.2 9.665e+17 1.150e+09 2.064e+12 9.99e-01 1.09e+07 0.00e+00 3.89e-77 8.65e-01 1.00e+00 3.00e-01 8 1.3 2.092e+17 1.573e+08 3.302e+12 1.00e+00 1.47e+06 0.00e+00 2.32e-76 8.98e-01 1.00e+00 3.00e-01 9 1.5 3.428e+16 1.603e+07 5.284e+12 1.00e+00 1.51e+05 0.00e+00 1.86e-76 8.88e-01 1.00e+00 3.00e-01 10 1.6 6.127e+15 1.797e+06 8.453e+12 1.00e+00 1.68e+04 0.00e+00 3.26e-76 8.99e-01 1.00e+00 3.00e-01 11 1.7 9.935e+14 1.816e+05 1.352e+13 1.00e+00 1.71e+03 0.00e+00 3.68e-76 8.93e-01 1.00e+00 3.00e-01 12 1.9 1.699e+14 1.946e+04 2.163e+13 1.00e+00 1.82e+02 0.00e+00 2.34e-76 9.00e-01 1.00e+00 3.00e-01 13 2.0 2.794e+13 2.009e+03 3.442e+13 1.00e+00 1.82e+01 0.00e+00 9.34e-77 8.98e-01 1.00e+00 3.00e-01 14 2.2 5.597e+12 2.662e+02 5.231e+13 1.00e+00 1.86e+00 0.00e+00 2.47e-75 8.79e-01 1.00e+00 3.00e-01 15 2.3 2.030e+12 9.171e+01 5.562e+13 1.00e+00 2.25e-01 0.00e+00 1.06e-75 7.97e-01 1.00e+00 3.00e-01 16 2.5 7.056e+11 7.350e+01 2.417e+13 1.00e+00 4.58e-02 0.00e+00 6.63e-76 8.24e-01 1.00e+00 3.00e-01 17 2.6 2.136e+11 7.073e+01 7.703e+12 1.00e+00 8.06e-03 0.00e+00 9.67e-77 1.00e+00 1.00e+00 3.00e-01 18 2.8 6.305e+10 6.979e+01 2.396e+12 1.00e+00 6.28e-89 0.00e+00 1.97e-75 1.00e+00 1.00e+00 3.00e-01 19 2.9 1.891e+10 6.985e+01 7.188e+11 1.00e+00 3.14e-89 0.00e+00 4.07e-75 9.94e-01 9.94e-01 1.00e-01 20 3.1 1.996e+09 6.986e+01 7.583e+10 1.00e+00 6.28e-89 0.00e+00 3.48e-76 1.00e+00 1.00e+00 1.00e-01 21 3.2 2.003e+08 6.986e+01 7.613e+09 1.00e+00 3.14e-89 0.00e+00 2.08e-77 1.00e+00 1.00e+00 1.00e-01 22 3.3 2.005e+07 6.987e+01 7.619e+08 1.00e+00 3.14e-89 0.00e+00 9.55e-79 1.00e+00 1.00e+00 1.00e-01 23 3.5 2.005e+06 6.987e+01 7.619e+07 1.00e+00 6.28e-89 0.00e+00 6.61e-80 1.00e+00 1.00e+00 1.00e-01 24 3.6 2.005e+05 6.988e+01 7.620e+06 1.00e+00 6.28e-89 0.00e+00 2.36e-80 1.00e+00 1.00e+00 1.00e-01 25 3.8 2.006e+04 6.988e+01 7.622e+05 1.00e+00 6.28e-89 0.00e+00 8.70e-82 1.00e+00 1.00e+00 1.00e-01 26 3.9 2.008e+03 6.989e+01 7.636e+04 9.98e-01 6.28e-89 0.00e+00 1.11e-82 9.99e-01 9.99e-01 1.00e-01 27 4.1 2.026e+02 6.998e+01 7.769e+03 9.82e-01 1.26e-88 0.00e+00 1.94e-83 9.90e-01 9.90e-01 1.00e-01 28 4.2 2.205e+01 7.086e+01 9.089e+02 8.55e-01 3.14e-89 0.00e+00 9.59e-84 9.26e-01 9.26e-01 1.00e-01 29 4.4 3.667e+00 7.788e+01 2.172e+02 4.72e-01 1.26e-88 0.00e+00 1.51e-83 8.10e-01 8.10e-01 1.00e-01 30 4.5 9.926e-01 1.015e+02 1.392e+02 1.57e-01 1.26e-88 0.00e+00 6.69e-85 6.72e-01 6.72e-01 1.00e-01 31 4.6 3.920e-01 1.120e+02 1.269e+02 6.23e-02 6.28e-89 0.00e+00 3.66e-84 8.04e-01 8.04e-01 1.00e-01 32 4.8 1.082e-01 1.179e+02 1.220e+02 1.71e-02 1.26e-88 0.00e+00 1.53e-84 8.72e-01 8.72e-01 1.00e-01 33 4.9 2.331e-02 1.195e+02 1.204e+02 3.69e-03 6.28e-89 0.00e+00 4.37e-84 9.67e-01 9.67e-01 1.00e-01 34 5.1 3.027e-03 1.199e+02 1.201e+02 4.79e-04 6.28e-89 0.00e+00 2.65e-84 9.83e-01 9.83e-01 1.00e-01 35 5.2 3.478e-04 1.200e+02 1.200e+02 5.51e-05 6.28e-89 0.00e+00 2.95e-84 9.94e-01 9.94e-01 1.00e-01 36 5.4 3.681e-05 1.200e+02 1.200e+02 5.83e-06 6.28e-89 0.00e+00 1.79e-84 9.99e-01 9.99e-01 1.00e-01 37 5.5 3.725e-06 1.200e+02 1.200e+02 5.90e-07 6.28e-89 0.00e+00 3.71e-84 1.00e+00 1.00e+00 1.00e-01 38 5.6 3.731e-07 1.200e+02 1.200e+02 5.91e-08 6.28e-89 0.00e+00 4.78e-84 1.00e+00 1.00e+00 1.00e-01 39 5.8 3.732e-08 1.200e+02 1.200e+02 5.91e-09 6.28e-89 0.00e+00 3.39e-84 1.00e+00 1.00e+00 1.00e-01 40 5.9 3.733e-09 1.200e+02 1.200e+02 5.91e-10 6.28e-89 0.00e+00 6.47e-85 1.00e+00 1.00e+00 1.00e-01 41 6.1 3.733e-10 1.200e+02 1.200e+02 5.91e-11 6.28e-89 0.00e+00 2.90e-85 1.00e+00 1.00e+00 1.00e-01 42 6.2 3.733e-11 1.200e+02 1.200e+02 5.91e-12 6.28e-89 0.00e+00 2.03e-84 1.00e+00 1.00e+00 1.00e-01 43 6.4 3.734e-12 1.200e+02 1.200e+02 5.91e-13 1.26e-88 0.00e+00 2.97e-84 1.00e+00 1.00e+00 1.00e-01 44 6.5 3.734e-13 1.200e+02 1.200e+02 5.91e-14 6.28e-89 0.00e+00 6.42e-85 1.00e+00 1.00e+00 1.00e-01 45 6.7 3.735e-14 1.200e+02 1.200e+02 5.91e-15 6.28e-89 0.00e+00 2.39e-84 1.00e+00 1.00e+00 1.00e-01 46 6.8 3.735e-15 1.200e+02 1.200e+02 5.91e-16 6.28e-89 0.00e+00 1.80e-83 1.00e+00 1.00e+00 1.00e-01 47 7.0 3.735e-16 1.200e+02 1.200e+02 5.91e-17 3.14e-89 0.00e+00 2.97e-83 1.00e+00 1.00e+00 1.00e-01 48 7.1 3.736e-17 1.200e+02 1.200e+02 5.91e-18 3.14e-89 0.00e+00 4.65e-83 1.00e+00 1.00e+00 1.00e-01 49 7.2 3.736e-18 1.200e+02 1.200e+02 5.92e-19 6.28e-89 0.00e+00 7.06e-83 1.00e+00 1.00e+00 1.00e-01 50 7.4 3.736e-19 1.200e+02 1.200e+02 5.92e-20 6.28e-89 0.00e+00 2.03e-82 1.00e+00 1.00e+00 1.00e-01 51 7.5 3.737e-20 1.200e+02 1.200e+02 5.92e-21 6.28e-89 0.00e+00 3.43e-82 1.00e+00 1.00e+00 1.00e-01 52 7.7 3.737e-21 1.200e+02 1.200e+02 5.92e-22 6.28e-89 0.00e+00 7.92e-82 1.00e+00 1.00e+00 1.00e-01 53 7.8 3.737e-22 1.200e+02 1.200e+02 5.92e-23 6.28e-89 0.00e+00 2.43e-81 1.00e+00 1.00e+00 1.00e-01 54 8.0 3.738e-23 1.200e+02 1.200e+02 5.92e-24 6.28e-89 0.00e+00 7.36e-81 1.00e+00 1.00e+00 1.00e-01 55 8.1 3.738e-24 1.200e+02 1.200e+02 5.92e-25 3.14e-89 0.00e+00 5.75e-81 1.00e+00 1.00e+00 1.00e-01 56 8.2 3.739e-25 1.200e+02 1.200e+02 5.92e-26 1.89e-88 0.00e+00 2.55e-81 1.00e+00 1.00e+00 1.00e-01 57 8.4 3.739e-26 1.200e+02 1.200e+02 5.92e-27 1.26e-88 0.00e+00 3.25e-80 1.00e+00 1.00e+00 1.00e-01 58 8.6 3.739e-27 1.200e+02 1.200e+02 5.92e-28 3.14e-89 0.00e+00 3.48e-80 1.00e+00 1.00e+00 1.00e-01 59 8.7 3.740e-28 1.200e+02 1.200e+02 5.92e-29 1.89e-88 0.00e+00 1.43e-79 1.00e+00 1.00e+00 1.00e-01 60 8.9 3.740e-29 1.200e+02 1.200e+02 5.92e-30 1.89e-88 0.00e+00 6.57e-80 1.00e+00 1.00e+00 1.00e-01 61 9.0 3.740e-30 1.200e+02 1.200e+02 5.92e-31 1.26e-88 0.00e+00 4.09e-79 1.00e+00 1.00e+00 1.00e-01 62 9.1 3.741e-31 1.200e+02 1.200e+02 5.92e-32 6.28e-89 0.00e+00 9.93e-79 1.00e+00 1.00e+00 1.00e-01 63 9.3 3.741e-32 1.200e+02 1.200e+02 5.92e-33 6.28e-89 0.00e+00 9.77e-79 1.00e+00 1.00e+00 1.00e-01 64 9.4 3.742e-33 1.200e+02 1.200e+02 5.92e-34 6.28e-89 0.00e+00 6.08e-78 1.00e+00 1.00e+00 1.00e-01 65 9.6 3.742e-34 1.200e+02 1.200e+02 5.92e-35 3.14e-89 0.00e+00 6.70e-78 1.00e+00 1.00e+00 1.00e-01 66 9.7 3.742e-35 1.200e+02 1.200e+02 5.93e-36 6.28e-89 0.00e+00 8.35e-78 1.00e+00 1.00e+00 1.00e-01 67 9.9 3.743e-36 1.200e+02 1.200e+02 5.93e-37 1.89e-88 0.00e+00 6.91e-77 1.00e+00 1.00e+00 1.00e-01 68 10.0 3.743e-37 1.200e+02 1.200e+02 5.93e-38 6.28e-89 0.00e+00 5.88e-77 1.00e+00 1.00e+00 1.00e-01 69 10.2 3.743e-38 1.200e+02 1.200e+02 5.93e-39 1.26e-88 0.00e+00 1.11e-76 1.00e+00 1.00e+00 1.00e-01 70 10.3 3.744e-39 1.200e+02 1.200e+02 5.93e-40 1.26e-88 0.00e+00 1.07e-76 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 10.304364 seconds (7.44 M allocations: 442.670 MiB, 8.92% gc time, 0.36% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:119.99999999999999999999999999999999999999176270714594204654988307382913652556875252209855424 Dual objective:120.00000000000000000000000000000000000000599075843931487523644867357880979958641927278612875 Duality gap:5.9283547055720119527356665623638641740278682792096665478492610725724725679553721889718260106e-41 ** Starting computation of basis transformations ** Block 14 of size 1 x 1 Block 3 of size 1 x 1 Block 17 of size 1 x 1 Block 6 of size 1 x 1 Block 9 of size 1 x 1 Block 12 of size 1 x 1 Block 12 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 1 of size 1 x 1 Block 15 of size 1 x 1 Block 4 of size 1 x 1 Block 18 of size 1 x 1 Block 0 of size 1 x 1 Block 0 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 7 of size 1 x 1 Block 10 of size 1 x 1 Block 13 of size 1 x 1 Block 2 of size 1 x 1 Block 16 of size 1 x 1 Block 5 of size 1 x 1 Block 8 of size 1 x 1 Block 11 of size 1 x 1 Block B of size 9 x 9 Block B has 6 kernel vectors. The maximum numerator and denominator are 18 and 2 After reduction, the maximum number of the basis transformation matrix is 10 Block A of size 10 x 10 Block A has 8 kernel vectors. The maximum numerator and denominator are 12 and 1 After reduction, the maximum number of the basis transformation matrix is 1 ** Finished computation of basis transformations (7.653726911s) ** ** Transforming the problem and the solution ** (2.590371403s) ** Projection the solution into the affine space ** Reducing the system from 26 columns to 26 columns Constructing the linear system... (1.57244475s) Computing an approximate solution in the extension field... (0.513359879s) Preprocessing to get an integer system... (0.003691835s) Finding the pivots of A using RREF mod p... (0.002316947 0.002521036 s) Solving the system of size 38 x 40 using the pseudoinverse... 0.016257505s ** Finished projection into affine space (3.534653269s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.277268324) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 1.000e+00 7.000e+10 1.00e+00 1.00e+10 0.00e+00 7.05e+10 6.66e-01 6.95e-01 3.00e-01 2 0.1 4.559e+19 1.338e+10 7.193e+10 6.86e-01 3.34e+09 0.00e+00 2.15e+10 7.05e-01 7.53e-01 3.00e-01 3 0.1 1.822e+19 2.640e+10 9.901e+10 5.79e-01 9.85e+08 0.00e+00 5.31e+09 6.16e-01 7.88e-01 3.00e-01 4 0.2 8.970e+18 3.260e+10 1.789e+11 6.92e-01 3.78e+08 0.00e+00 1.12e+09 7.73e-01 1.00e+00 3.00e-01 5 0.2 3.189e+18 1.238e+10 3.561e+11 9.33e-01 8.58e+07 0.00e+00 8.97e-143 8.40e-01 1.00e+00 3.00e-01 6 0.2 8.172e+17 2.052e+09 5.731e+11 9.93e-01 1.37e+07 0.00e+00 2.95e-141 8.95e-01 1.00e+00 3.00e-01 7 0.2 1.367e+17 2.121e+08 9.202e+11 1.00e+00 1.44e+06 0.00e+00 3.30e-141 8.90e-01 1.00e+00 3.00e-01 8 0.3 2.412e+16 2.361e+07 1.476e+12 1.00e+00 1.58e+05 0.00e+00 2.15e-141 8.97e-01 1.00e+00 3.00e-01 9 0.3 3.957e+15 2.403e+06 2.364e+12 1.00e+00 1.62e+04 0.00e+00 7.79e-142 8.94e-01 1.00e+00 3.00e-01 10 0.3 6.738e+14 2.573e+05 3.785e+12 1.00e+00 1.73e+03 0.00e+00 1.88e-140 8.99e-01 1.00e+00 3.00e-01 11 0.4 1.095e+14 2.604e+04 6.056e+12 1.00e+00 1.75e+02 0.00e+00 3.45e-140 8.99e-01 1.00e+00 3.00e-01 12 0.4 1.816e+13 2.738e+03 9.636e+12 1.00e+00 1.76e+01 0.00e+00 3.74e-140 9.13e-01 1.00e+00 3.00e-01 13 0.4 3.342e+12 3.449e+02 1.456e+13 1.00e+00 1.53e+00 0.00e+00 3.09e-140 1.00e+00 1.00e+00 3.00e-01 14 0.4 1.007e+12 1.188e+02 1.410e+13 1.00e+00 9.55e-153 0.00e+00 6.07e-140 1.00e+00 1.00e+00 3.00e-01 15 0.5 3.022e+11 1.198e+02 4.231e+12 1.00e+00 9.55e-153 0.00e+00 4.51e-142 9.99e-01 9.99e-01 1.00e-01 16 0.5 3.062e+10 1.199e+02 4.287e+11 1.00e+00 9.55e-153 0.00e+00 3.42e-142 1.00e+00 1.00e+00 1.00e-01 17 0.5 3.063e+09 1.200e+02 4.288e+10 1.00e+00 9.55e-153 0.00e+00 1.36e-143 1.00e+00 1.00e+00 1.00e-01 18 0.5 3.063e+08 1.201e+02 4.288e+09 1.00e+00 1.91e-152 0.00e+00 3.64e-144 1.00e+00 1.00e+00 1.00e-01 19 0.6 3.063e+07 1.202e+02 4.289e+08 1.00e+00 1.91e-152 0.00e+00 2.33e-145 1.00e+00 1.00e+00 1.00e-01 20 0.6 3.064e+06 1.202e+02 4.289e+07 1.00e+00 9.55e-153 0.00e+00 2.24e-146 1.00e+00 1.00e+00 1.00e-01 21 0.6 3.064e+05 1.203e+02 4.290e+06 1.00e+00 4.77e-153 0.00e+00 5.45e-147 1.00e+00 1.00e+00 1.00e-01 22 0.7 3.065e+04 1.203e+02 4.292e+05 9.99e-01 9.55e-153 0.00e+00 5.74e-148 1.00e+00 1.00e+00 1.00e-01 23 0.7 3.075e+03 1.204e+02 4.317e+04 9.94e-01 9.55e-153 0.00e+00 3.41e-149 9.97e-01 9.97e-01 1.00e-01 24 0.7 3.166e+02 1.211e+02 4.554e+03 9.48e-01 9.55e-153 0.00e+00 7.92e-150 9.70e-01 9.70e-01 1.00e-01 25 0.7 4.021e+01 1.274e+02 6.904e+02 6.88e-01 9.55e-153 0.00e+00 7.76e-151 8.70e-01 8.70e-01 1.00e-01 26 0.8 8.743e+00 1.689e+02 2.913e+02 2.66e-01 1.91e-152 0.00e+00 1.38e-151 9.15e-01 9.15e-01 1.00e-01 27 0.8 1.547e+00 2.316e+02 2.532e+02 4.47e-02 1.91e-152 0.00e+00 1.75e-150 9.82e-01 9.82e-01 1.00e-01 28 0.8 1.800e-01 2.389e+02 2.414e+02 5.25e-03 1.91e-152 0.00e+00 1.77e-150 9.89e-01 9.89e-01 1.00e-01 29 0.9 1.986e-02 2.399e+02 2.401e+02 5.79e-04 1.91e-152 0.00e+00 1.70e-151 9.97e-01 9.97e-01 1.00e-01 30 0.9 2.030e-03 2.400e+02 2.400e+02 5.92e-05 1.91e-152 0.00e+00 3.81e-151 1.00e+00 1.00e+00 1.00e-01 31 0.9 2.034e-04 2.400e+02 2.400e+02 5.93e-06 1.91e-152 0.00e+00 3.28e-151 1.00e+00 1.00e+00 1.00e-01 32 0.9 2.035e-05 2.400e+02 2.400e+02 5.93e-07 9.55e-153 0.00e+00 8.87e-151 1.00e+00 1.00e+00 1.00e-01 33 1.0 2.035e-06 2.400e+02 2.400e+02 5.93e-08 1.91e-152 0.00e+00 5.39e-151 1.00e+00 1.00e+00 1.00e-01 34 1.0 2.035e-07 2.400e+02 2.400e+02 5.94e-09 3.82e-152 0.00e+00 1.53e-151 1.00e+00 1.00e+00 1.00e-01 35 1.0 2.035e-08 2.400e+02 2.400e+02 5.94e-10 3.82e-152 0.00e+00 7.70e-151 1.00e+00 1.00e+00 1.00e-01 36 1.1 2.035e-09 2.400e+02 2.400e+02 5.94e-11 1.91e-152 0.00e+00 1.04e-150 1.00e+00 1.00e+00 1.00e-01 37 1.1 2.036e-10 2.400e+02 2.400e+02 5.94e-12 3.82e-152 0.00e+00 8.73e-151 1.00e+00 1.00e+00 1.00e-01 38 1.1 2.036e-11 2.400e+02 2.400e+02 5.94e-13 1.91e-152 0.00e+00 9.06e-151 1.00e+00 1.00e+00 1.00e-01 39 1.2 2.036e-12 2.400e+02 2.400e+02 5.94e-14 1.91e-152 0.00e+00 3.86e-151 1.00e+00 1.00e+00 1.00e-01 40 1.2 2.036e-13 2.400e+02 2.400e+02 5.94e-15 1.91e-152 0.00e+00 1.79e-150 1.00e+00 1.00e+00 1.00e-01 41 1.2 2.036e-14 2.400e+02 2.400e+02 5.94e-16 1.91e-152 0.00e+00 4.16e-150 1.00e+00 1.00e+00 1.00e-01 42 1.2 2.037e-15 2.400e+02 2.400e+02 5.94e-17 1.91e-152 0.00e+00 3.14e-151 1.00e+00 1.00e+00 1.00e-01 43 1.3 2.037e-16 2.400e+02 2.400e+02 5.94e-18 1.91e-152 0.00e+00 2.11e-150 1.00e+00 1.00e+00 1.00e-01 44 1.3 2.037e-17 2.400e+02 2.400e+02 5.94e-19 1.91e-152 0.00e+00 1.50e-149 1.00e+00 1.00e+00 1.00e-01 45 1.3 2.037e-18 2.400e+02 2.400e+02 5.94e-20 3.82e-152 0.00e+00 9.67e-150 1.00e+00 1.00e+00 1.00e-01 46 1.4 2.037e-19 2.400e+02 2.400e+02 5.94e-21 9.55e-153 0.00e+00 2.49e-148 1.00e+00 1.00e+00 1.00e-01 47 1.4 2.038e-20 2.400e+02 2.400e+02 5.94e-22 1.91e-152 0.00e+00 2.96e-148 1.00e+00 1.00e+00 1.00e-01 48 1.4 2.038e-21 2.400e+02 2.400e+02 5.94e-23 1.91e-152 0.00e+00 4.93e-148 1.00e+00 1.00e+00 1.00e-01 49 1.4 2.038e-22 2.400e+02 2.400e+02 5.94e-24 1.91e-152 0.00e+00 4.84e-148 1.00e+00 1.00e+00 1.00e-01 50 1.5 2.038e-23 2.400e+02 2.400e+02 5.95e-25 1.91e-152 0.00e+00 1.19e-147 1.00e+00 1.00e+00 1.00e-01 51 1.5 2.038e-24 2.400e+02 2.400e+02 5.95e-26 5.73e-152 0.00e+00 6.10e-147 1.00e+00 1.00e+00 1.00e-01 52 1.5 2.039e-25 2.400e+02 2.400e+02 5.95e-27 1.91e-152 0.00e+00 9.14e-148 1.00e+00 1.00e+00 1.00e-01 53 1.6 2.039e-26 2.400e+02 2.400e+02 5.95e-28 1.91e-152 0.00e+00 6.48e-147 1.00e+00 1.00e+00 1.00e-01 54 1.6 2.039e-27 2.400e+02 2.400e+02 5.95e-29 1.91e-152 0.00e+00 8.53e-147 1.00e+00 1.00e+00 1.00e-01 55 1.6 2.039e-28 2.400e+02 2.400e+02 5.95e-30 1.91e-152 0.00e+00 4.08e-146 1.00e+00 1.00e+00 1.00e-01 56 1.6 2.040e-29 2.400e+02 2.400e+02 5.95e-31 1.91e-152 0.00e+00 4.92e-147 1.00e+00 1.00e+00 1.00e-01 57 1.7 2.040e-30 2.400e+02 2.400e+02 5.95e-32 1.91e-152 0.00e+00 2.72e-145 1.00e+00 1.00e+00 1.00e-01 58 1.7 2.040e-31 2.400e+02 2.400e+02 5.95e-33 1.91e-152 0.00e+00 3.40e-145 1.00e+00 1.00e+00 1.00e-01 59 1.7 2.040e-32 2.400e+02 2.400e+02 5.95e-34 3.82e-152 0.00e+00 7.61e-145 1.00e+00 1.00e+00 1.00e-01 60 1.8 2.040e-33 2.400e+02 2.400e+02 5.95e-35 1.91e-152 0.00e+00 6.31e-145 1.00e+00 1.00e+00 1.00e-01 61 1.8 2.041e-34 2.400e+02 2.400e+02 5.95e-36 1.91e-152 0.00e+00 1.37e-144 1.00e+00 1.00e+00 1.00e-01 62 1.8 2.041e-35 2.400e+02 2.400e+02 5.95e-37 9.55e-153 0.00e+00 5.14e-144 1.00e+00 1.00e+00 1.00e-01 63 1.8 2.041e-36 2.400e+02 2.400e+02 5.95e-38 3.82e-152 0.00e+00 7.22e-144 1.00e+00 1.00e+00 1.00e-01 64 1.9 2.041e-37 2.400e+02 2.400e+02 5.95e-39 3.82e-152 0.00e+00 3.58e-143 1.00e+00 1.00e+00 1.00e-01 65 1.9 2.041e-38 2.400e+02 2.400e+02 5.95e-40 1.91e-152 0.00e+00 3.08e-143 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 1.892043 seconds (992.18 k allocations: 58.837 MiB, 25.35% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:239.999999999999999999999999999999999999985709081187036394589365774550978046266703949715172597217354340046938976020953143178280625396733772292906601591034903 Dual objective:240.000000000000000000000000000000000000014290918812963605410634225449021953733331285229027905272397306512924904803827822439314110120124490645545509542880629 Duality gap:5.9545495054015022544309272704258140555473615653865225114672846804137351630988910756148518966405025043325394311119604386342454301501822317349791436961005562e-41 [ Info: Empty constraint found and removed. [ Info: Empty constraint found and removed. [ Info: The coefficient for the PSD variable 1 has an empty decomposition in a constraint, so we remove it from that constraint. [ Info: The matrix variable 1 is not used in any constraint and will be removed. Test Summary: | Pass Total Time ClusteredLowRankSolver.jl | 36 36 8m21.5s Testing ClusteredLowRankSolver tests passed Testing completed after 524.38s PkgEval succeeded after 638.6s