Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1688 (ee54f91d68*) started at 2026-02-10T03:55:54.970 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 12.23s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.18.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.30+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.33s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompiling packages... 1357.2 ms ✓ Measurements 4646.0 ms ✓ StatsBase 6006.1 ms ✓ RayTraceHeatTransfer 3 dependencies successfully precompiled in 12 seconds. 58 already precompiled. Precompilation completed after 33.01s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_t4yxXm/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.16 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_t4yxXm/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.18.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.30+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:03:11 Bin 1 progress: 65%|█████████████████████▍ | ETA: 0:00:02 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011035021911982184 Iteration 10: d = 1.0392212115465403e-5 Iteration 20: d = 1.6266802464465615e-7 Iteration 30: d = 2.838030401694166e-9 Iteration 40: d = 4.992694585975876e-11 Iteration 50: d = 8.794058717432109e-13 Iteration 60: d = 1.5475249150496496e-14 Converged after 65 iterations. d = 2.0817092937251284e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012058301015178154 Iteration 10: d = 1.1237771509471293e-5 Iteration 20: d = 1.5434656783830553e-7 Iteration 30: d = 2.522586921207911e-9 Iteration 40: d = 4.335000490837035e-11 Iteration 50: d = 7.607061520687619e-13 Iteration 60: d = 1.3478719937506193e-14 Converged after 65 iterations. d = 1.8057783273778147e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 65%|█████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011177461219854371 Iteration 10: d = 9.641451444608067e-6 Iteration 20: d = 1.4072695696963264e-7 Iteration 30: d = 2.3301874278447893e-9 Iteration 40: d = 3.9689992515997543e-11 Iteration 50: d = 6.844493420798795e-13 Iteration 60: d = 1.1838815203068948e-14 Converged after 65 iterations. d = 1.5798809703005625e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 68%|██████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010572655487656017 Iteration 10: d = 7.960041529189753e-6 Iteration 20: d = 1.1299594548556022e-7 Iteration 30: d = 1.894508224053166e-9 Iteration 40: d = 3.2624546200750214e-11 Iteration 50: d = 5.656348820174269e-13 Iteration 60: d = 9.806934790345082e-15 Converged after 64 iterations. d = 1.9403930897061377e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 66%|█████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012857387250332065 Iteration 10: d = 1.3164717862940932e-5 Iteration 20: d = 1.7662976751677611e-7 Iteration 30: d = 2.694714657699635e-9 Iteration 40: d = 4.168745170620486e-11 Iteration 50: d = 6.459474952471764e-13 Iteration 60: d = 1.0033638981664792e-14 Converged after 64 iterations. d = 1.86977573718437e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 64%|█████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013356623658784075 Iteration 10: d = 1.4238175703359692e-5 Iteration 20: d = 1.991316337624055e-7 Iteration 30: d = 3.073677471829859e-9 Iteration 40: d = 4.791094739724909e-11 Iteration 50: d = 7.471900114109325e-13 Iteration 60: d = 1.1627416643349976e-14 Converged after 64 iterations. d = 2.2034284977726566e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015530304466503007 Iteration 10: d = 1.3576703729679095e-5 Iteration 20: d = 1.7666870611067806e-7 Iteration 30: d = 2.7210362539672194e-9 Iteration 40: d = 4.239747816312262e-11 Iteration 50: d = 6.60034508390454e-13 Iteration 60: d = 1.0240204683662475e-14 Converged after 64 iterations. d = 1.977068892038295e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 70%|███████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017264024421989954 Iteration 10: d = 1.6854565483145263e-5 Iteration 20: d = 1.779262125480841e-7 Iteration 30: d = 2.3333264935420615e-9 Iteration 40: d = 3.3574091164894206e-11 Iteration 50: d = 5.032261688332404e-13 Iteration 60: d = 7.66209702143919e-15 Converged after 63 iterations. d = 2.194282714889243e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 70%|███████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014958423468276363 Iteration 10: d = 1.7534514255930224e-5 Iteration 20: d = 2.3302613523217014e-7 Iteration 30: d = 3.488172361996662e-9 Iteration 40: d = 5.352506767783778e-11 Iteration 50: d = 8.255270801099307e-13 Iteration 60: d = 1.2739626911059859e-14 Converged after 65 iterations. d = 1.6081203210316533e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 62%|████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015590413812788793 Iteration 10: d = 1.414221162471646e-5 Iteration 20: d = 1.7161484045568175e-7 Iteration 30: d = 2.5401519385097883e-9 Iteration 40: d = 3.8922210196361274e-11 Iteration 50: d = 5.999968891751139e-13 Iteration 60: d = 9.243681867766099e-15 Converged after 64 iterations. d = 1.785260694698788e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.005993730453483776 Iteration 10: d = 7.09594030707927e-5 Iteration 20: d = 7.689926555546701e-7 Iteration 30: d = 9.867526020313143e-9 Iteration 40: d = 1.354159932530365e-10 Iteration 50: d = 1.9065534237664877e-12 Iteration 60: d = 2.7063603447872045e-14 Converged after 66 iterations. d = 2.0879505845587402e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0033373604376162767 Iteration 10: d = 2.839486957413499e-5 Iteration 20: d = 4.0074712467945953e-7 Iteration 30: d = 6.348380120099854e-9 Iteration 40: d = 1.0104594871043766e-10 Iteration 50: d = 1.6086569109728777e-12 Iteration 60: d = 2.5679980790101557e-14 Converged after 66 iterations. d = 2.1222680283990352e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0025155369173488137 Iteration 10: d = 2.9253254921605034e-5 Iteration 20: d = 4.4576634651280093e-7 Iteration 30: d = 7.388442197972293e-9 Iteration 40: d = 1.2436712904254107e-10 Iteration 50: d = 2.1057057910857548e-12 Iteration 60: d = 3.576926600565067e-14 Converged after 67 iterations. d = 2.0716740873682776e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019415002273213968 Iteration 10: d = 2.0703007633113286e-5 Iteration 20: d = 3.331670744296691e-7 Iteration 30: d = 5.854471698369504e-9 Iteration 40: d = 1.041116157154257e-10 Iteration 50: d = 1.8572658726706245e-12 Iteration 60: d = 3.3177589672993983e-14 Converged after 67 iterations. d = 1.979758165111979e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 61%|████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012857387250332065 Iteration 10: d = 1.3164717862940932e-5 Iteration 20: d = 1.7662976751677611e-7 Iteration 30: d = 2.694714657699635e-9 Iteration 40: d = 4.168745170620486e-11 Iteration 50: d = 6.459474952471764e-13 Iteration 60: d = 1.0033638981664792e-14 Converged after 64 iterations. d = 1.86977573718437e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00169085599867308 Iteration 10: d = 1.655004268536335e-5 Iteration 20: d = 2.162110027244406e-7 Iteration 30: d = 3.0399334971035404e-9 Iteration 40: d = 4.300955144441068e-11 Iteration 50: d = 6.095393110606928e-13 Iteration 60: d = 8.672422306521223e-15 Converged after 64 iterations. d = 1.6025010654470367e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 67%|██████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012905538230913284 Iteration 10: d = 1.0194887294930354e-5 Iteration 20: d = 8.312337162384664e-8 Iteration 30: d = 9.683870145645438e-10 Iteration 40: d = 1.282293253214566e-11 Iteration 50: d = 1.7483063406580675e-13 Iteration 60: d = 2.439637520532863e-15 Converged after 61 iterations. d = 1.5158741908404423e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.695200408401 Iteration 2: convergence error = 4810.470750684084 Iteration 3: convergence error = 1104.836632268345 Iteration 4: convergence error = 318.9151755170815 Iteration 5: convergence error = 94.57355459562791 Iteration 6: convergence error = 28.213891676399726 Iteration 7: convergence error = 8.493098694068976 Iteration 8: convergence error = 2.547814801508366 Iteration 9: convergence error = 0.7625474339070024 Iteration 10: convergence error = 0.22792265151815627 Iteration 11: convergence error = 0.06807358753326298 Iteration 12: convergence error = 0.020322755576671625 Iteration 13: convergence error = 0.006065686695365002 Iteration 14: convergence error = 0.0018101578286859876 Iteration 15: convergence error = 0.0005401544403866865 Iteration 16: convergence error = 0.00016117559994199837 Iteration 17: convergence error = 4.809157667295949e-5 Iteration 18: convergence error = 1.4349337789099081e-5 Iteration 19: convergence error = 4.281449037080165e-6 Iteration 20: convergence error = 1.2774632978107547e-6 Iteration 21: convergence error = 3.811580882029375e-7 Iteration 22: convergence error = 1.1359315976733342e-7 Iteration 23: convergence error = 3.298032424936537e-8 Iteration 24: convergence error = 9.523773769615218e-9 Iteration 25: convergence error = 2.7341684472048655e-9 Iteration 26: convergence error = 7.821654435247183e-10 Iteration 27: convergence error = 2.2464519133791327e-10 Iteration 28: convergence error = 6.434675015043467e-11 Iteration 29: convergence error = 1.864464138634503e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00169085599867308 Iteration 10: d = 1.655004268536335e-5 Iteration 20: d = 2.162110027244406e-7 Iteration 30: d = 3.0399334971035404e-9 Iteration 40: d = 4.300955144441068e-11 Iteration 50: d = 6.095393110606928e-13 Iteration 60: d = 8.672422306521223e-15 Converged after 64 iterations. d = 1.6025010654470367e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.599609036259 Iteration 2: convergence error = 4815.285831359222 Iteration 3: convergence error = 1097.7156045823858 Iteration 4: convergence error = 322.40303211961555 Iteration 5: convergence error = 95.78243723445507 Iteration 6: convergence error = 28.609720631949358 Iteration 7: convergence error = 8.608312018142442 Iteration 8: convergence error = 2.585347500593116 Iteration 9: convergence error = 0.7745900666429861 Iteration 10: convergence error = 0.23175063610710822 Iteration 11: convergence error = 0.06928287112145881 Iteration 12: convergence error = 0.020703093888414514 Iteration 13: convergence error = 0.006184907701936027 Iteration 14: convergence error = 0.0018474278258509003 Iteration 15: convergence error = 0.0005517789602436096 Iteration 16: convergence error = 0.0001647941094233829 Iteration 17: convergence error = 4.9215965418625274e-5 Iteration 18: convergence error = 1.4698173799843062e-5 Iteration 19: convergence error = 4.389513151181745e-6 Iteration 20: convergence error = 1.310890866079717e-6 Iteration 21: convergence error = 3.914865374099463e-7 Iteration 22: convergence error = 1.1678071132337209e-7 Iteration 23: convergence error = 3.3978494684561156e-8 Iteration 24: convergence error = 9.817540558287874e-9 Iteration 25: convergence error = 2.8273916541365907e-9 Iteration 26: convergence error = 8.17180989542976e-10 Iteration 27: convergence error = 2.3510438040830195e-10 Iteration 28: convergence error = 6.798472895752639e-11 Iteration 29: convergence error = 2.000888343900442e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 14:04:18 Bin 1 ray tracing: 9%|██▋ | ETA: 0:01:04 Bin 1 ray tracing: 17%|█████▏ | ETA: 0:00:35 Bin 1 ray tracing: 25%|███████▌ | ETA: 0:00:24 Bin 1 ray tracing: 34%|██████████▏ | ETA: 0:00:18 Bin 1 ray tracing: 43%|████████████▊ | ETA: 0:00:14 Bin 1 ray tracing: 52%|███████████████▋ | ETA: 0:00:10 Bin 1 ray tracing: 61%|██████████████████▍ | ETA: 0:00:08 Bin 1 ray tracing: 70%|█████████████████████ | ETA: 0:00:06 Bin 1 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:04 Bin 1 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 1 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 2 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 2 ray tracing: 25%|███████▋ | ETA: 0:00:09 Bin 2 ray tracing: 33%|██████████ | ETA: 0:00:08 Bin 2 ray tracing: 41%|████████████▍ | ETA: 0:00:07 Bin 2 ray tracing: 49%|██████████████▉ | ETA: 0:00:06 Bin 2 ray tracing: 58%|█████████████████▍ | ETA: 0:00:05 Bin 2 ray tracing: 67%|████████████████████▏ | ETA: 0:00:04 Bin 2 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 2 ray tracing: 87%|██████████████████████████▎ | ETA: 0:00:01 Bin 2 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 12%|███▋ | ETA: 0:00:07 Bin 3 ray tracing: 24%|███████▏ | ETA: 0:00:07 Bin 3 ray tracing: 37%|███████████ | ETA: 0:00:06 Bin 3 ray tracing: 50%|██████████████▉ | ETA: 0:00:04 Bin 3 ray tracing: 63%|██████████████████▉ | ETA: 0:00:03 Bin 3 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:02 Bin 3 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 15%|████▍ | ETA: 0:00:06 Bin 4 ray tracing: 29%|████████▊ | ETA: 0:00:05 Bin 4 ray tracing: 44%|█████████████▏ | ETA: 0:00:04 Bin 4 ray tracing: 58%|█████████████████▍ | ETA: 0:00:03 Bin 4 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:02 Bin 4 ray tracing: 87%|██████████████████████████ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 14%|████▎ | ETA: 0:00:06 Bin 5 ray tracing: 28%|████████▌ | ETA: 0:00:05 Bin 5 ray tracing: 43%|████████████▉ | ETA: 0:00:04 Bin 5 ray tracing: 57%|█████████████████▏ | ETA: 0:00:03 Bin 5 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:02 Bin 5 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:01 Bin 5 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 12%|███▌ | ETA: 0:00:08 Bin 6 ray tracing: 23%|███████ | ETA: 0:00:07 Bin 6 ray tracing: 34%|██████████▍ | ETA: 0:00:06 Bin 6 ray tracing: 48%|██████████████▌ | ETA: 0:00:04 Bin 6 ray tracing: 62%|██████████████████▋ | ETA: 0:00:03 Bin 6 ray tracing: 77%|███████████████████████ | ETA: 0:00:02 Bin 6 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 15%|████▌ | ETA: 0:00:06 Bin 7 ray tracing: 30%|█████████ | ETA: 0:00:05 Bin 7 ray tracing: 45%|█████████████▍ | ETA: 0:00:04 Bin 7 ray tracing: 59%|█████████████████▊ | ETA: 0:00:03 Bin 7 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:02 Bin 7 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:06 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 15%|████▍ | ETA: 0:00:06 Bin 8 ray tracing: 30%|████████▉ | ETA: 0:00:05 Bin 8 ray tracing: 45%|█████████████▍ | ETA: 0:00:04 Bin 8 ray tracing: 59%|█████████████████▉ | ETA: 0:00:03 Bin 8 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:02 Bin 8 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:06 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 14%|████▍ | ETA: 0:00:06 Bin 9 ray tracing: 29%|████████▊ | ETA: 0:00:05 Bin 9 ray tracing: 43%|█████████████ | ETA: 0:00:04 Bin 9 ray tracing: 58%|█████████████████▍ | ETA: 0:00:03 Bin 9 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:02 Bin 9 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:01 Bin 9 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 14%|████▏ | ETA: 0:00:06 Bin 10 ray tracing: 29%|████████▍ | ETA: 0:00:05 Bin 10 ray tracing: 43%|████████████▌ | ETA: 0:00:04 Bin 10 ray tracing: 57%|████████████████▌ | ETA: 0:00:03 Bin 10 ray tracing: 71%|████████████████████▊ | ETA: 0:00:02 Bin 10 ray tracing: 86%|████████████████████████▉ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 24%|████████▏ | ETA: 0:00:03 Bin 2 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 2 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 24%|████████▏ | ETA: 0:00:03 Bin 3 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 3 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 3 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 22%|███████▍ | ETA: 0:00:04 Bin 4 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 4 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 4 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 24%|████████▏ | ETA: 0:00:03 Bin 5 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 5 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 5 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 24%|████████▏ | ETA: 0:00:03 Bin 6 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 6 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 6 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 27%|████████▊ | ETA: 0:00:03 Bin 7 progress: 56%|██████████████████▍ | ETA: 0:00:02 Bin 7 progress: 82%|███████████████████████████▏ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 24%|████████▏ | ETA: 0:00:03 Bin 8 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 8 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 24%|████████▏ | ETA: 0:00:03 Bin 9 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 9 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 24%|███████▉ | ETA: 0:00:03 Bin 10 progress: 51%|████████████████▍ | ETA: 0:00:02 Bin 10 progress: 76%|████████████████████████▏ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00169085599867308 Iteration 10: d = 1.655004268536335e-5 Iteration 20: d = 2.162110027244406e-7 Iteration 30: d = 3.0399334971035404e-9 Iteration 40: d = 4.300955144441068e-11 Iteration 50: d = 6.095393110606928e-13 Iteration 60: d = 8.672422306521223e-15 Converged after 64 iterations. d = 1.6025010654470367e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012816334901514879 Iteration 10: d = 1.0256710967372004e-5 Iteration 20: d = 8.356492568121232e-8 Iteration 30: d = 9.721007602181857e-10 Iteration 40: d = 1.2867902329142488e-11 Iteration 50: d = 1.7547953220143522e-13 Iteration 60: d = 2.4006109117839336e-15 Converged after 61 iterations. d = 1.5847646456482239e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012707512481100443 Iteration 10: d = 1.3118349983527918e-5 Iteration 20: d = 1.4705344121229012e-7 Iteration 30: d = 1.8224717725618318e-9 Iteration 40: d = 2.361729086115948e-11 Iteration 50: d = 3.139692043398886e-13 Iteration 60: d = 4.178655335152339e-15 Converged after 62 iterations. d = 1.7755896746533887e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013631476115067963 Iteration 10: d = 1.711744130758429e-5 Iteration 20: d = 1.8742824790086067e-7 Iteration 30: d = 2.3077837572556793e-9 Iteration 40: d = 3.026534936976146e-11 Iteration 50: d = 4.10496532095298e-13 Iteration 60: d = 5.638100264382556e-15 Converged after 63 iterations. d = 1.5931462086507768e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001986127691957463 Iteration 10: d = 2.486610766228874e-5 Iteration 20: d = 2.976368870041599e-7 Iteration 30: d = 3.871550030713681e-9 Iteration 40: d = 5.144191017303909e-11 Iteration 50: d = 6.889659412534985e-13 Iteration 60: d = 9.276841994275364e-15 Converged after 64 iterations. d = 1.6672460275232104e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001346377868081881 Iteration 10: d = 1.8721271935508324e-5 Iteration 20: d = 2.433701874309423e-7 Iteration 30: d = 3.35604026271352e-9 Iteration 40: d = 4.7272852481514126e-11 Iteration 50: d = 6.716853159291327e-13 Iteration 60: d = 9.581606673564256e-15 Converged after 64 iterations. d = 1.7389403715068446e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016640680670697951 Iteration 10: d = 1.722128174875378e-5 Iteration 20: d = 1.8906362151195773e-7 Iteration 30: d = 2.446219346739499e-9 Iteration 40: d = 3.313128751913914e-11 Iteration 50: d = 4.560739947140195e-13 Iteration 60: d = 6.3171828025459264e-15 Converged after 63 iterations. d = 1.719922706691531e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013159053422894926 Iteration 10: d = 1.3488136617067838e-5 Iteration 20: d = 1.645878654029421e-7 Iteration 30: d = 2.2107560677172536e-9 Iteration 40: d = 3.009979024998586e-11 Iteration 50: d = 4.1115217366950393e-13 Iteration 60: d = 5.610874352207068e-15 Converged after 63 iterations. d = 1.5037216697127134e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017387454767427697 Iteration 10: d = 1.6235304065236768e-5 Iteration 20: d = 1.832439769646822e-7 Iteration 30: d = 2.4098820931134395e-9 Iteration 40: d = 3.301651538062062e-11 Iteration 50: d = 4.593037708585294e-13 Iteration 60: d = 6.401463565089034e-15 Converged after 63 iterations. d = 1.7468525705177435e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019460089913612352 Iteration 10: d = 2.2830494010045145e-5 Iteration 20: d = 3.007184562868139e-7 Iteration 30: d = 4.210581992849551e-9 Iteration 40: d = 5.941117374489081e-11 Iteration 50: d = 8.394724185548723e-13 Iteration 60: d = 1.1880700531250143e-14 Converged after 64 iterations. d = 2.1428216980618047e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8650.38215032046 Iteration 2: convergence error = 4818.616150794453 Iteration 3: convergence error = 1099.0191129889 Iteration 4: convergence error = 321.93967983001176 Iteration 5: convergence error = 96.45311079773069 Iteration 6: convergence error = 29.126634698452108 Iteration 7: convergence error = 8.839811468181551 Iteration 8: convergence error = 2.672180594377096 Iteration 9: convergence error = 0.8058215456260314 Iteration 10: convergence error = 0.24265907035237433 Iteration 11: convergence error = 0.07301277852457133 Iteration 12: convergence error = 0.02195822086514454 Iteration 13: convergence error = 0.0066020411547924596 Iteration 14: convergence error = 0.0019846862280701316 Iteration 15: convergence error = 0.0005965770562852413 Iteration 16: convergence error = 0.00017931585603037092 Iteration 17: convergence error = 5.389614784689911e-5 Iteration 18: convergence error = 1.619903787286603e-5 Iteration 19: convergence error = 4.868733640250866e-6 Iteration 20: convergence error = 1.463325361328316e-6 Iteration 21: convergence error = 4.39807990915142e-7 Iteration 22: convergence error = 1.320661340287188e-7 Iteration 23: convergence error = 3.882109922415111e-8 Iteration 24: convergence error = 1.1296378943370655e-8 Iteration 25: convergence error = 3.2721345633035526e-9 Iteration 26: convergence error = 9.529230737825856e-10 Iteration 27: convergence error = 2.6761881599668413e-10 Iteration 28: convergence error = 7.73070496506989e-11 Iteration 29: convergence error = 2.432898327242583e-11 Iteration 30: convergence error = 7.275957614183426e-12 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.2378904663058 K, F = -7464.877822063947, relative_change = 0.032762109533694274 Iter 2: T = 936.5474191802718 K, F = -6327.91355941641, relative_change = 0.031730013462601216 Iter 3: T = 907.8974413121044 K, F = -5362.6178052114765, relative_change = 0.03059105954639621 Iter 5: T = 856.5821512815717 K, F = -3847.632309184428, relative_change = 0.02799705759928539 Iter 10: T = 761.027105931929 K, F = -1666.3218357730125, relative_change = 0.02009937436097724 Iter 15: T = 704.9654437983608 K, F = -713.5539832393985, relative_change = 0.012076005321967015 Iter 20: T = 676.0821704421127 K, F = -302.4637708904209, relative_change = 0.006196371978861677 Iter 25: T = 662.5975904021417 K, F = -127.3401953772515, relative_change = 0.002865716681362752 Iter 30: T = 656.6575895587198 K, F = -53.41651375305008, relative_change = 0.0012542631263869827 Iter 35: T = 654.1156622398812 K, F = -22.368749227154975, relative_change = 0.000534985086435129 Iter 40: T = 653.0420715799212 K, F = -9.36009309534136, relative_change = 0.00022561642022774286 Iter 45: T = 652.5912092510974 K, F = -3.915421279952884, relative_change = 9.468823492351716e-5 Iter 50: T = 652.4023230390933 K, F = -1.6376370738340817, relative_change = 3.9658251404080224e-5 Iter 55: T = 652.3232706354966 K, F = -0.684907599339614, relative_change = 1.659580840861376e-5 Iter 60: T = 652.2901998301991 K, F = -0.28644147537031345, relative_change = 6.9423603455018165e-6 Iter 65: T = 652.2763674489488 K, F = -0.11979410962830106, relative_change = 2.9036920849991943e-6 Iter 70: T = 652.2705822713044 K, F = -0.050099478374640294, relative_change = 1.2144136487188903e-6 Iter 75: T = 652.2681627865927 K, F = -0.020952226592730883, relative_change = 5.078919009216657e-7 Iter 80: T = 652.2671509196886 K, F = -0.008762476003570552, relative_change = 2.1240813926792389e-7 Iter 85: T = 652.266727743203 K, F = -0.0036645729168491292, relative_change = 8.88319144590988e-8 Iter 90: T = 652.2665507654524 K, F = -0.001532568299453696, relative_change = 3.715061892220943e-8 Iter 95: T = 652.2664767511926 K, F = -0.0006409383895058518, relative_change = 1.5536841479475825e-8 Iter 100: T = 652.2664457975364 K, F = -0.0002680480927261808, relative_change = 6.4976942163142605e-9 Iter 105: T = 652.2664328523462 K, F = -0.00011210091411939516, relative_change = 2.717413590729351e-9 Iter 110: T = 652.2664274385128 K, F = -4.688194106078347e-5, relative_change = 1.1364548615276736e-9 Iter 115: T = 652.2664251743829 K, F = -1.960658726807285e-5, relative_change = 4.752789940612622e-10 Iter 120: T = 652.2664242274968 K, F = -8.199709331746519e-6, relative_change = 1.9876736203186927e-10 Iter 125: T = 652.2664238314977 K, F = -3.429216499706289e-6, relative_change = 8.312688802443154e-11 Iter 130: T = 652.2664236658861 K, F = -1.4341394568018195e-6, relative_change = 3.4764661312957795e-11 Iter 135: T = 652.2664235966254 K, F = -5.997736266527554e-7, relative_change = 1.4538981482363573e-11 Iter 140: T = 652.2664235676598 K, F = -2.5083332955144755e-7, relative_change = 6.080395956440613e-12 Iter 145: T = 652.2664235555459 K, F = -1.0490098034665607e-7, relative_change = 2.542881753088709e-12 Iter 150: T = 652.2664235504799 K, F = -4.3870660992872956e-8, relative_change = 1.0634591113466046e-12 Iter 155: T = 652.2664235483611 K, F = -1.834738216910381e-8, relative_change = 4.447548839203313e-13 Converged in 159 iterations to T = 652.2664235475964 K Iter 1: T = 970.4285141214133 K, F = -6737.89118718106, relative_change = 0.029571485878586726 Iter 2: T = 943.0229711396815 K, F = -5706.706190215702, relative_change = 0.028240661298522974 Iter 3: T = 917.7380991887114 K, F = -4831.583440341713, relative_change = 0.02681257267827988 Iter 5: T = 873.31173224861 K, F = -3459.2214474991456, relative_change = 0.023710629635695785 Iter 10: T = 794.5465001145195 K, F = -1488.7115471396105, relative_change = 0.015405244487457758 Iter 15: T = 751.7015236379048 K, F = -633.6252700799633, relative_change = 0.008418867989768535 Iter 20: T = 730.9291165082727 K, F = -267.43366758655634, relative_change = 0.0040453367958310045 Iter 25: T = 721.5862101517936 K, F = -112.32578397853739, relative_change = 0.0018049511677413373 Iter 30: T = 717.5480326299215 K, F = -47.065027969982985, relative_change = 0.0007766406768954888 Iter 35: T = 715.8349311772581 K, F = -19.699109777322693, relative_change = 0.0003287747350074423 Iter 40: T = 715.1141334949273 K, F = -8.241221918243323, relative_change = 0.0001382051869197136 Iter 45: T = 714.8119167096988 K, F = -3.4470726005673273, relative_change = 5.792376857131559e-5 Iter 50: T = 714.6853906465332 K, F = -1.4416936917214058, relative_change = 2.424629265323942e-5 Iter 55: T = 714.6324522097917 K, F = -0.6029487057955172, relative_change = 1.0143921217013551e-5 Iter 60: T = 714.6103085702773 K, F = -0.25216300642385897, relative_change = 4.242979601437136e-6 Iter 65: T = 714.6010471091654 K, F = -0.10545804549287752, relative_change = 1.7745820576564609e-6 Iter 70: T = 714.59717372842 K, F = -0.044103895342749944, relative_change = 7.42171930176226e-7 Iter 75: T = 714.5955538121027 K, F = -0.01844478995664489, relative_change = 3.1038875377143726e-7 Iter 80: T = 714.5948763398645 K, F = -0.007713833920757307, relative_change = 1.2980891137442325e-7 Iter 85: T = 714.5945930122039 K, F = -0.003226017901801881, relative_change = 5.4287746758124314e-8 Iter 90: T = 714.5944745210736 K, F = -0.0013491592883628778, relative_change = 2.2703803213635913e-8 Iter 95: T = 714.594424966647 K, F = -0.0005642345397104398, relative_change = 9.49500499751408e-9 Iter 100: T = 714.5944042423905 K, F = -0.00023596962577943081, relative_change = 3.970925081189083e-9 Iter 105: T = 714.5943955752582 K, F = -9.868531484247267e-5, relative_change = 1.660688375412288e-9 Iter 110: T = 714.59439195056 K, F = -4.127137775278289e-5, relative_change = 6.945197371659364e-10 Iter 115: T = 714.5943904346678 K, F = -1.7260183434064658e-5, relative_change = 2.904564576191709e-10 Iter 120: T = 714.5943898007037 K, F = -7.218415785104071e-6, relative_change = 1.2147237573858805e-10 Iter 125: T = 714.5943895355722 K, F = -3.0188279491749626e-6, relative_change = 5.080120271498408e-11 Iter 130: T = 714.594389424691 K, F = -1.2625104479635496e-6, relative_change = 2.1245678893920595e-11 Iter 135: T = 714.5943893783192 K, F = -5.279960791915173e-7, relative_change = 8.885182041314673e-12 Iter 140: T = 714.5943893589259 K, F = -2.2081343253876895e-7, relative_change = 3.715875217354357e-12 Iter 145: T = 714.5943893508155 K, F = -9.234715758754675e-8, relative_change = 1.554029165462918e-12 Iter 150: T = 714.5943893474237 K, F = -3.862106812135835e-8, relative_change = 6.499200173690129e-13 Iter 155: T = 714.5943893460051 K, F = -1.6152636117539032e-8, relative_change = 2.718185191869393e-13 Converged in 157 iterations to T = 714.5943893457048 K Iter 1: T = 974.4286945885322 K, F = -5826.446262594046, relative_change = 0.025571305411467796 Iter 2: T = 951.0465240140809 K, F = -4929.361843055388, relative_change = 0.023995773835790803 Iter 3: T = 929.7786387088039 K, F = -4168.596712180192, relative_change = 0.022362612940859738 Iter 5: T = 893.2318339268269 K, F = -2977.1302712732913, relative_change = 0.019007908055021144 Iter 10: T = 831.6794640558315 K, F = -1273.0192353188063, relative_change = 0.01116407217198214 Iter 15: T = 800.439980292777 K, F = -539.025144974237, relative_change = 0.005633579066254704 Iter 20: T = 785.9957818727163 K, F = -226.79297304451674, relative_change = 0.0025808286038497565 Iter 25: T = 779.665255144907 K, F = -95.10583963202164, relative_change = 0.0011243909694365606 Iter 30: T = 776.9625923828515 K, F = -39.82116934431968, relative_change = 0.0004786060513324719 Iter 35: T = 775.8222945493211 K, F = -16.66199168384095, relative_change = 0.00020166166073572284 Iter 40: T = 775.3436293500497 K, F = -6.96970530881246, relative_change = 8.460307950136932e-5 Iter 45: T = 775.143132610123 K, F = -2.9150702740400214, relative_change = 3.542871608738855e-5 Iter 50: T = 775.0592275398523 K, F = -1.2191620748056293, relative_change = 1.4824895520551622e-5 Iter 55: T = 775.0241278172211 K, F = -0.5098759914424058, relative_change = 6.201380790018531e-6 Iter 60: T = 775.009447010628 K, F = -0.21323760236243894, relative_change = 2.5937421259901994e-6 Iter 65: T = 775.0033070274951 K, F = -0.08917875213982662, relative_change = 1.0847777725951186e-6 Iter 70: T = 775.0007391617115 K, F = -0.03729566117844452, relative_change = 4.536746874923565e-7 Iter 75: T = 774.9996652405646 K, F = -0.015597498255406794, relative_change = 1.8973351348096683e-7 Iter 80: T = 774.9992161123398 K, F = -0.006523061327828095, relative_change = 7.934905579450362e-8 Iter 85: T = 774.999028281277 K, F = -0.0027280223732955022, relative_change = 3.3184763781624226e-8 Iter 90: T = 774.9989497280352 K, F = -0.0011408915767471273, relative_change = 1.3878271716724542e-8 Iter 95: T = 774.9989168761228 K, F = -0.0004771344899765495, relative_change = 5.804060235636243e-9 Iter 100: T = 774.9989031370593 K, F = -0.00019954334362637383, relative_change = 2.427327531574454e-9 Iter 105: T = 774.9988973912185 K, F = -8.345140732290979e-5, relative_change = 1.0151373732278473e-9 Iter 110: T = 774.9988949882393 K, F = -3.49003744798404e-5, relative_change = 4.245425707450251e-10 Iter 115: T = 774.9988939832847 K, F = -1.4595752656831884e-5, relative_change = 1.7754876517804463e-10 Iter 120: T = 774.9988935630008 K, F = -6.1041208152534665e-6, relative_change = 7.425304754920651e-11 Iter 125: T = 774.9988933872329 K, F = -2.5528158139609403e-6, relative_change = 3.1053506305022935e-11 Iter 130: T = 774.9988933137247 K, F = -1.067616354655243e-6, relative_change = 1.2986926449724452e-11 Iter 135: T = 774.9988932829827 K, F = -4.4649118668971255e-7, relative_change = 5.4313032746272424e-12 Iter 140: T = 774.998893270126 K, F = -1.8672713641976202e-7, relative_change = 2.2714260388824235e-12 Iter 145: T = 774.9988932647492 K, F = -7.809199342734274e-8, relative_change = 9.499432739449852e-13 Iter 150: T = 774.9988932625006 K, F = -3.265888748327228e-8, relative_change = 3.9727620128629653e-13 Converged in 154 iterations to T = 774.998893261689 K Iter 1: T = 970.3161556594576 K, F = -6763.49216961814, relative_change = 0.029683844340542356 Iter 2: T = 942.7960857666611 K, F = -5728.564365460076, relative_change = 0.028361961956711926 Iter 3: T = 917.3951993414089 K, F = -4850.250188766717, relative_change = 0.026942078789600383 Iter 5: T = 872.735827019774 K, F = -3472.8391586703233, relative_change = 0.023852944503473052 Iter 10: T = 793.43131913059 K, F = -1494.8741048422808, relative_change = 0.015547187085897968 Iter 15: T = 750.193696060295 K, F = -636.3616863861947, relative_change = 0.008519924982897355 Iter 20: T = 729.1952569004508 K, F = -268.61975390746227, relative_change = 0.004101137231380509 Iter 25: T = 719.7414440357578 K, F = -112.83080460327632, relative_change = 0.0018315281028627778 Iter 30: T = 715.6533733881712 K, F = -47.277965760939416, relative_change = 0.0007884105330525992 Iter 35: T = 713.918732810462 K, F = -19.788479091966806, relative_change = 0.0003338190941425245 Iter 40: T = 713.1888046688423 K, F = -8.278653554295644, relative_change = 0.00014033673224521668 Iter 45: T = 712.8827476178487 K, F = -3.4627368847349853, relative_change = 5.881908655816172e-5 Iter 50: T = 712.754611669773 K, F = -1.4482464242949566, relative_change = 2.4621407246962166e-5 Iter 55: T = 712.70099928632 K, F = -0.6056894418803292, relative_change = 1.0300918127611029e-5 Iter 60: T = 712.6785736762783 K, F = -0.25330926837200207, relative_change = 4.3086585039443704e-6 Iter 65: T = 712.6691942710817 K, F = -0.10593743526846966, relative_change = 1.8020534191946604e-6 Iter 70: T = 712.6652715611002 K, F = -0.0443043835046133, relative_change = 7.536614218857747e-7 Iter 75: T = 712.6636310140757 K, F = -0.018528636786140584, relative_change = 3.1519390840759437e-7 Iter 80: T = 712.662944913719 K, F = -0.007748899717736846, relative_change = 1.3181850404239026e-7 Iter 85: T = 712.6626579776566 K, F = -0.0032406828460458392, relative_change = 5.512818584446051e-8 Iter 90: T = 712.6625379774464 K, F = -0.0013552923451868315, relative_change = 2.3055285483607276e-8 Iter 95: T = 712.6624877919039 K, F = -0.0005667994575390134, relative_change = 9.641999184341249e-9 Iter 100: T = 712.662466803707 K, F = -0.0002370423053547066, relative_change = 4.032399828474366e-9 Iter 105: T = 712.6624580261918 K, F = -9.91339225995258e-5, relative_change = 1.686397857671691e-9 Iter 110: T = 712.66245435533 K, F = -4.1458990950538066e-5, relative_change = 7.052717516011291e-10 Iter 115: T = 712.6624528201318 K, F = -1.733864532260654e-5, relative_change = 2.9495307536725025e-10 Iter 120: T = 712.6624521780934 K, F = -7.251228299143264e-6, relative_change = 1.2335289501582993e-10 Iter 125: T = 712.6624519095852 K, F = -3.032548896109155e-6, relative_change = 5.158763051597054e-11 Iter 130: T = 712.6624517972921 K, F = -1.268247990071636e-6, relative_change = 2.1574560214829166e-11 Iter 135: T = 712.6624517503298 K, F = -5.303970055381413e-7, relative_change = 9.022748095734459e-12 Iter 140: T = 712.6624517306894 K, F = -2.2181743397631237e-7, relative_change = 3.773405221702675e-12 Iter 145: T = 712.6624517224757 K, F = -9.276553025738821e-8, relative_change = 1.5780632297993095e-12 Iter 150: T = 712.6624517190406 K, F = -3.879636834014377e-8, relative_change = 6.599770643132812e-13 Iter 155: T = 712.6624517176041 K, F = -1.6225886634302356e-8, relative_change = 2.760235940900974e-13 Converged in 157 iterations to T = 712.6624517173001 K Iter 1: T = 969.2982985008507 K, F = -6995.411891438852, relative_change = 0.03070170149914931 Iter 2: T = 940.7369104146288 K, F = -5926.637119931438, relative_change = 0.02946604582964387 Iter 3: T = 914.276873358612 K, F = -5019.464399700372, relative_change = 0.028126925565570306 Iter 5: T = 867.4756663310484 K, F = -3596.399715807773, relative_change = 0.025169877760474385 Iter 10: T = 783.124374150854 K, F = -1550.9914657240695, relative_change = 0.016903375690336283 Iter 15: T = 736.1159693568005 K, F = -661.3886800203959, relative_change = 0.009513720606203192 Iter 20: T = 712.9029607519949 K, F = -279.5046483998549, relative_change = 0.004660441980889683 Iter 25: T = 702.3494954786466 K, F = -117.47459034322178, relative_change = 0.0021006204231276216 Iter 30: T = 697.7637687770208 K, F = -49.23785353322339, relative_change = 0.0009081438089659218 Iter 35: T = 695.8137048114858 K, F = -20.61138924994282, relative_change = 0.00038524101938543974 Iter 40: T = 694.992351167715 K, F = -8.62338635770079, relative_change = 0.00016208479463515903 Iter 45: T = 694.6478214251806 K, F = -3.607010903313923, relative_change = 6.79573814161893e-5 Iter 50: T = 694.5035538833932 K, F = -1.5086015578151721, relative_change = 2.84507104761965e-5 Iter 55: T = 694.4431877305018 K, F = -0.6309338351880427, relative_change = 1.1903703465048978e-5 Iter 60: T = 694.4179363271458 K, F = -0.263867327406242, relative_change = 4.97919442804853e-6 Iter 65: T = 694.4073749163382 K, F = -0.1103530382646673, relative_change = 2.0825201351602813e-6 Iter 70: T = 694.4029578381145 K, F = -0.04615105831166888, relative_change = 8.70963051403459e-7 Iter 75: T = 694.4011105334989 K, F = -0.01930094119957171, relative_change = 3.6425209250521763e-7 Iter 80: T = 694.4003379634437 K, F = -0.008071887164368463, relative_change = 1.5233543971498189e-7 Iter 85: T = 694.4000148645101 K, F = -0.003375760144536666, relative_change = 6.370865136425265e-8 Iter 90: T = 694.3998797405183 K, F = -0.0014117833009411607, relative_change = 2.6643745289855795e-8 Iter 95: T = 694.3998232300233 K, F = -0.0005904246540920921, relative_change = 1.1142737119201423e-8 Iter 100: T = 694.3997995966545 K, F = -0.0002469226432016969, relative_change = 4.660026522847527e-9 Iter 105: T = 694.3997897128968 K, F = -0.00010326599964349814, relative_change = 1.9488789023901384e-9 Iter 110: T = 694.3997855793909 K, F = -4.318707451778092e-5, relative_change = 8.150444585786784e-10 Iter 115: T = 694.3997838507095 K, F = -1.8061350352982508e-5, relative_change = 3.4086133081473643e-10 Iter 120: T = 694.3997831277542 K, F = -7.553471037202719e-6, relative_change = 1.425522539818715e-10 Iter 125: T = 694.3997828254057 K, F = -3.15895244495934e-6, relative_change = 5.96170674337797e-11 Iter 130: T = 694.3997826989599 K, F = -1.3211110503341672e-6, relative_change = 2.4932558503450437e-11 Iter 135: T = 694.3997826460787 K, F = -5.525037852782688e-7, relative_change = 1.0427081774343247e-11 Iter 140: T = 694.3997826239632 K, F = -2.3106272462047883e-7, relative_change = 4.360712069641604e-12 Iter 145: T = 694.3997826147142 K, F = -9.663229638690041e-8, relative_change = 1.8236849837652983e-12 Iter 150: T = 694.3997826108463 K, F = -4.04124924635596e-8, relative_change = 7.626814059058968e-13 Iter 155: T = 694.3997826092287 K, F = -1.690219564309814e-8, relative_change = 3.1898528277466506e-13 Converged in 158 iterations to T = 694.399782608755 K Iter 1: T = 963.5957681784244 K, F = -8294.738849910418, relative_change = 0.036404231821575615 Iter 2: T = 929.0714358274388 K, F = -7038.299301004213, relative_change = 0.03582864671173277 Iter 3: T = 896.3936015045854 K, F = -5971.251860106771, relative_change = 0.03517257453271097 Iter 5: T = 836.4589443541365 K, F = -4295.559543702413, relative_change = 0.03358984420836633 Iter 10: T = 716.997620479322 K, F = -1876.9980544614023, relative_change = 0.027837551557075447 Iter 15: T = 637.6115965481824 K, F = -812.6865370216848, relative_change = 0.019907315696343342 Iter 20: T = 591.1804343235409 K, F = -347.91935279763766, relative_change = 0.011912364712266092 Iter 25: T = 567.3233766853957 K, F = -147.44822417998552, relative_change = 0.006093950831183542 Iter 30: T = 556.2049788228367 K, F = -62.07003082764377, relative_change = 0.00281345707856033 Iter 35: T = 551.3118513739576 K, F = -26.035599743557597, relative_change = 0.0012303477345806174 Iter 40: T = 549.2188281591982 K, F = -10.902416806994161, relative_change = 0.0005245852958503832 Iter 45: T = 548.3350025618222 K, F = -4.5620130006553525, relative_change = 0.0002211944125486211 Iter 50: T = 547.9638637937073 K, F = -1.9083272097947364, relative_change = 9.282595045735333e-5 Iter 55: T = 547.808382674347 K, F = -0.7981622151391212, relative_change = 3.887713971085662e-5 Iter 60: T = 547.7433118668263 K, F = -0.3338144516958324, relative_change = 1.6268737742741626e-5 Iter 65: T = 547.7160902914536 K, F = -0.1396075493523789, relative_change = 6.805505357307246e-6 Iter 70: T = 547.7047044709299 K, F = -0.05838595708706007, relative_change = 2.8464454218727043e-6 Iter 75: T = 547.6999425341908 K, F = -0.02441777671017134, relative_change = 1.1904702635139179e-6 Iter 80: T = 547.6979509915392 K, F = -0.01021181845319663, relative_change = 4.978781157283005e-7 Iter 85: T = 547.6971180969509 K, F = -0.004270706638806493, relative_change = 2.0822018900381363e-7 Iter 90: T = 547.6967697691463 K, F = -0.0017860609052053888, relative_change = 8.708045219304947e-8 Iter 95: T = 547.696624094064 K, F = -0.0007469520682591158, relative_change = 3.6418134480310375e-8 Iter 100: T = 547.6965631709637 K, F = -0.0003123842872189697, relative_change = 1.5230507404142376e-8 Iter 105: T = 547.6965376921885 K, F = -0.00013064284191782738, relative_change = 6.3695816121938995e-9 Iter 110: T = 547.6965270366592 K, F = -5.463639742178672e-5, relative_change = 2.6638353812538944e-9 Iter 115: T = 547.6965225803893 K, F = -2.2849594240009763e-5, relative_change = 1.1140478291736486e-9 Iter 120: T = 547.6965207167241 K, F = -9.555973571356846e-6, relative_change = 4.659081326981044e-10 Iter 125: T = 547.696519937317 K, F = -3.996422600793803e-6, relative_change = 1.948483626623084e-10 Iter 130: T = 547.6965196113596 K, F = -1.6713516034494447e-6, relative_change = 8.148790976789707e-11 Iter 135: T = 547.6965194750403 K, F = -6.989795732492698e-7, relative_change = 3.4079235239597994e-11 Iter 140: T = 547.69651941803 K, F = -2.923219929729104e-7, relative_change = 1.4252362086718794e-11 Iter 145: T = 547.6965193941876 K, F = -1.2225275491939414e-7, relative_change = 5.96051809804361e-12 Iter 150: T = 547.6965193842163 K, F = -5.112735748658004e-8, relative_change = 2.4927498757083204e-12 Iter 155: T = 547.6965193800462 K, F = -2.1381295262079547e-8, relative_change = 1.0424599222237035e-12 Iter 160: T = 547.6965193783022 K, F = -8.941552498420435e-9, relative_change = 4.3595161134766783e-13 Converged in 164 iterations to T = 547.6965193776728 K Iter 1: T = 966.8604894280116 K, F = -7550.869007640315, relative_change = 0.03313951057198833 Iter 2: T = 935.7769430301536 K, F = -6401.461722104646, relative_change = 0.032148946758851334 Iter 3: T = 906.7190321272685 K, F = -5425.5629750446005, relative_change = 0.031052176610370668 Iter 5: T = 854.5498100415253 K, F = -3893.815736575071, relative_change = 0.028539753472467167 Iter 10: T = 756.7819752564126 K, F = -1687.7212961878581, relative_change = 0.020761834806821488 Iter 15: T = 698.808868859734 K, F = -723.3638198629146, relative_change = 0.012649680605246742 Iter 20: T = 668.6583176165822 K, F = -306.83406863047867, relative_change = 0.006560085463217961 Iter 25: T = 654.4941573152682 K, F = -129.23266438768846, relative_change = 0.003052718349981292 Iter 30: T = 648.234044383407 K, F = -54.221250708006416, relative_change = 0.0013401631855956878 Iter 35: T = 645.5509512749354 K, F = -22.707796863140217, relative_change = 0.0005724029039070737 Iter 40: T = 644.4169609531682 K, F = -9.502337451752517, relative_change = 0.00024153821900926875 Iter 45: T = 643.9405936104063 K, F = -3.974989428381148, relative_change = 0.00010139562903653285 Iter 50: T = 643.7409975014835 K, F = -1.6625632306381646, relative_change = 4.247195146664054e-5 Iter 55: T = 643.6574584627939 K, F = -0.6953344781671519, relative_change = 1.777403845050108e-5 Iter 60: T = 643.6225099560978 K, F = -0.2908025517108729, relative_change = 7.435374180753421e-6 Iter 65: T = 643.607892063645 K, F = -0.12161803926611936, relative_change = 3.1099225530082383e-6 Iter 70: T = 643.6017783348833 K, F = -0.05086228072621879, relative_change = 1.3006697747625947e-6 Iter 75: T = 643.599221439007 K, F = -0.021271241953867537, relative_change = 5.439666565382352e-7 Iter 80: T = 643.59815210386 K, F = -0.008895892440473896, relative_change = 2.274952801213546e-7 Iter 85: T = 643.5977048932498 K, F = -0.003720369336044138, relative_change = 9.514158021908013e-8 Iter 90: T = 643.5975178641028 K, F = -0.0015559030405003504, relative_change = 3.978940405595421e-8 Iter 95: T = 643.5974396462224 K, F = -0.0006506972591148186, relative_change = 1.6640414259745487e-8 Iter 100: T = 643.5974069345606 K, F = -0.0002721293696732463, relative_change = 6.959221782426489e-9 Iter 105: T = 643.5973932541513 K, F = -0.00011380775312636038, relative_change = 2.9104299755277655e-9 Iter 110: T = 643.5973875328403 K, F = -4.7595760960306155e-5, relative_change = 1.2171766111219614e-9 Iter 115: T = 643.5973851401197 K, F = -1.990511610355794e-5, relative_change = 5.090378156147981e-10 Iter 120: T = 643.5973841394555 K, F = -8.324557182470826e-6, relative_change = 2.1288569297698646e-10 Iter 125: T = 643.5973837209657 K, F = -3.481429484697429e-6, relative_change = 8.90313459862344e-11 Iter 130: T = 643.5973835459482 K, F = -1.455975172315327e-6, relative_change = 3.72339666942491e-11 Iter 135: T = 643.5973834727538 K, F = -6.089058414704418e-7, relative_change = 1.5571680248823545e-11 Iter 140: T = 643.597383442143 K, F = -2.546514232260044e-7, relative_change = 6.5122557023023695e-12 Iter 145: T = 643.5973834293413 K, F = -1.0649850301636121e-7, relative_change = 2.7235091594407415e-12 Iter 150: T = 643.5973834239876 K, F = -4.4540013621752195e-8, relative_change = 1.1390313631603422e-12 Iter 155: T = 643.5973834217484 K, F = -1.8627266340498494e-8, relative_change = 4.763590948198168e-13 Converged in 160 iterations to T = 643.597383420812 K Iter 1: T = 965.2506766476761 K, F = -7917.666380967067, relative_change = 0.03474932335232394 Iter 2: T = 932.4796071693548 K, F = -6715.346470470928, relative_change = 0.03395083813060406 Iter 3: T = 901.6573929153261 K, F = -5694.373493741952, relative_change = 0.03305403573124021 Iter 5: T = 845.7462131835372 K, F = -4091.405386660982, relative_change = 0.030947404755550977 Iter 10: T = 737.8963644688785 K, F = -1780.0660556318296, relative_change = 0.02391620387923301 Iter 15: T = 670.6225491222401 K, F = -766.2923422854351, relative_change = 0.015610267355900646 Iter 20: T = 633.9071613710951 K, F = -326.23303828387594, relative_change = 0.008564908649024058 Iter 25: T = 616.0629036081197 K, F = -137.71589454774406, relative_change = 0.00412601377307371 Iter 30: T = 608.0256785849419 K, F = -57.84761546149328, relative_change = 0.0018433870733552701 Iter 35: T = 604.5494402494883 K, F = -24.23940607368968, relative_change = 0.0007936646766912036 Iter 40: T = 603.0742703926356 K, F = -10.145605727634397, relative_change = 0.0003360713659128636 Iter 45: T = 602.4535007183562 K, F = -4.244497528557194, relative_change = 0.00014128853167565063 Iter 50: T = 602.1932090046391 K, F = -1.7753602675789146, relative_change = 5.9218887150234664e-5 Iter 55: T = 602.0842326884234 K, F = -0.7425225493844767, relative_change = 2.478891560960722e-5 Iter 60: T = 602.0386366001208 K, F = -0.310539793948031, relative_change = 1.037102592538399e-5 Iter 65: T = 602.01956411453 K, F = -0.1298728494361673, relative_change = 4.337987839920143e-6 Iter 70: T = 602.0115871334625 K, F = -0.05431462135036086, relative_change = 1.8143209455037258e-6 Iter 75: T = 602.008250952794 K, F = -0.022715066101078762, relative_change = 7.587921361468295e-7 Iter 80: T = 602.00685570262 K, F = -0.009499719402461693, relative_change = 3.1733968480578866e-7 Iter 85: T = 602.0062721889105 K, F = -0.003972897413559939, relative_change = 1.3271590218553428e-7 Iter 90: T = 602.0060281559098 K, F = -0.0016615133731449627, relative_change = 5.55034900031942e-8 Iter 95: T = 602.0059260982898 K, F = -0.0006948647747428982, relative_change = 2.321224242332729e-8 Iter 100: T = 602.005883416556 K, F = -0.00029060075437414845, relative_change = 9.707640509412517e-9 Iter 105: T = 602.005865566542 K, F = -0.00012153270692916163, relative_change = 4.059851799395327e-9 Iter 110: T = 602.0058581014524 K, F = -5.0826429758676905e-5, relative_change = 1.6978786181001053e-9 Iter 115: T = 602.0058549794627 K, F = -2.1256220118781588e-5, relative_change = 7.100731391865525e-10 Iter 120: T = 602.0058536738093 K, F = -8.889604851070043e-6, relative_change = 2.9696106140379363e-10 Iter 125: T = 602.0058531277695 K, F = -3.7177384578646056e-6, relative_change = 1.2419264767475405e-10 Iter 130: T = 602.0058528994091 K, F = -1.5548031896961412e-6, relative_change = 5.193886748051469e-11 Iter 135: T = 602.005852803906 K, F = -6.502371174832433e-7, relative_change = 2.1721449843424966e-11 Iter 140: T = 602.0058527639655 K, F = -2.719364792236334e-7, relative_change = 9.084154744629356e-12 Iter 145: T = 602.005852747262 K, F = -1.1372727715119879e-7, relative_change = 3.799108480821754e-12 Iter 150: T = 602.0058527402763 K, F = -4.7561729332734615e-8, relative_change = 1.5888199718375016e-12 Iter 155: T = 602.0058527373548 K, F = -1.9890131264244104e-8, relative_change = 6.644383675528078e-13 Iter 160: T = 602.005852736133 K, F = -8.318001065710234e-9, relative_change = 2.7786639394340193e-13 Converged in 162 iterations to T = 602.0058527358744 K Iter 1: T = 979.9516452289732 K, F = -4568.036705487191, relative_change = 0.02004835477102672 Iter 2: T = 961.9551614618631 K, F = -3858.835088671419, relative_change = 0.018364665088046368 Iter 3: T = 945.8910108958287 K, F = -3258.219712113325, relative_change = 0.016699479569943845 Iter 5: T = 919.0407674539675 K, F = -2319.694086872733, relative_change = 0.01351421053697412 Iter 10: T = 876.3355043886224 K, F = -984.9969129120609, relative_change = 0.007122952331416877 Iter 15: T = 856.0797188074577 K, F = -415.1247781503934, relative_change = 0.003346705130544299 Iter 20: T = 847.0805298275964 K, F = -174.22621204776297, relative_change = 0.0014762665447635207 Iter 25: T = 843.2139330805267 K, F = -72.97622284370217, relative_change = 0.0006318988239599882 Iter 30: T = 841.5779589863089 K, F = -30.539636918897838, relative_change = 0.00026689324311423895 Iter 35: T = 840.8903966692459 K, F = -12.775587390994637, relative_change = 0.00011208388998707924 Iter 40: T = 840.602253768662 K, F = -5.343525687142677, relative_change = 4.695681657949895e-5 Iter 45: T = 840.4816443153774 K, F = -2.234835287725196, relative_change = 1.9652279391017436e-5 Iter 50: T = 840.4311856695541 K, F = -0.9346538879962594, relative_change = 8.22133535622298e-6 Iter 55: T = 840.4100800528807 K, F = -0.39088675618468915, relative_change = 3.438701126202842e-6 Iter 60: T = 840.4012528706317 K, F = -0.1634740934843797, relative_change = 1.438182935422609e-6 Iter 65: T = 840.3975611394133 K, F = -0.0683669203039381, relative_change = 6.014787575880643e-7 Iter 70: T = 840.3960171961562 K, F = -0.02859188039948002, relative_change = 2.515479570246928e-7 Iter 75: T = 840.3953714976441 K, F = -0.011957468964765017, relative_change = 1.05200772064565e-7 Iter 80: T = 840.3951014582897 K, F = -0.0050007568678591685, relative_change = 4.399629134081545e-8 Iter 85: T = 840.3949885245149 K, F = -0.0020913763371497307, relative_change = 1.8399787059565876e-8 Iter 90: T = 840.3949412942455 K, F = -0.0008746385773119592, relative_change = 7.695012895121445e-9 Iter 95: T = 840.39492154198 K, F = -0.00036578430082645497, relative_change = 3.2181466718866773e-9 Iter 100: T = 840.3949132813462 K, F = -0.00015297536298652936, relative_change = 1.3458674339042912e-9 Iter 105: T = 840.3949098266504 K, F = -6.397612329989144e-5, relative_change = 5.628578412958687e-10 Iter 110: T = 840.3949083818553 K, F = -2.6755578865778062e-5, relative_change = 2.3539387367521105e-10 Iter 115: T = 840.3949077776249 K, F = -1.1189503190900396e-5, relative_change = 9.844453460855246e-11 Iter 120: T = 840.3949075249284 K, F = -4.679584398648018e-6, relative_change = 4.1170684800422825e-11 Iter 125: T = 840.3949074192477 K, F = -1.9570564158133408e-6, relative_change = 1.7218057420572912e-11 Iter 130: T = 840.3949073750507 K, F = -8.184635065244805e-7, relative_change = 7.2007896868185e-12 Iter 135: T = 840.3949073565672 K, F = -3.4229093648363573e-7, relative_change = 3.0114538106253355e-12 Iter 140: T = 840.394907348837 K, F = -1.4315032625944468e-7, relative_change = 1.2594274331472229e-12 Iter 145: T = 840.3949073456042 K, F = -5.986844819894088e-8, relative_change = 5.267187858616973e-13 Converged in 150 iterations to T = 840.3949073442523 K Iter 1: T = 976.3695446641871 K, F = -5384.221726631035, relative_change = 0.023630455335812914 Iter 2: T = 954.9020907795914 K, F = -4552.799438118309, relative_change = 0.021987017110390476 Iter 3: T = 935.5065646824129 K, F = -3848.022553689311, relative_change = 0.02031153380483626 Iter 5: T = 902.5124807216907 K, F = -2745.058249916981, relative_change = 0.01695746034159232 Iter 10: T = 848.1354604849619 K, F = -1170.6561636714687, relative_change = 0.009554529193399755 Iter 15: T = 821.2653295975206 K, F = -494.746145605304, relative_change = 0.004683850509624978 Iter 20: T = 809.0441833655815 K, F = -207.94503326582353, relative_change = 0.002111996185464259 Iter 25: T = 803.7327173987827 K, F = -87.1583539071324, relative_change = 0.0009132291683221594 Iter 30: T = 801.4738242129702 K, F = -36.485433219619594, relative_change = 0.0003874295077813139 Iter 35: T = 800.522355237577 K, F = -15.26479884094146, relative_change = 0.00016301118910564904 Iter 40: T = 800.123239695261 K, F = -6.385003181445925, relative_change = 6.834678560151308e-5 Iter 45: T = 799.9561138179918 K, F = -2.6704742326533197, relative_change = 2.8613911315559452e-5 Iter 50: T = 799.8861827940399 K, F = -1.1168574157194362, relative_change = 1.197201690101398e-5 Iter 55: T = 799.8569303296161 K, F = -0.46708891806974806, relative_change = 5.007774584054698e-6 Iter 60: T = 799.8446954667039 K, F = -0.19534317983338267, relative_change = 2.0944745631142213e-6 Iter 65: T = 799.8395785027341 K, F = -0.08169502840829956, relative_change = 8.759628622516625e-7 Iter 70: T = 799.8374384926276 K, F = -0.03416586760260587, relative_change = 3.6634313022234563e-7 Iter 75: T = 799.836543508781 K, F = -0.014288579291284464, relative_change = 1.5320994662267679e-7 Iter 80: T = 799.8361692147877 K, F = -0.005975655451551876, relative_change = 6.407438234341781e-8 Iter 85: T = 799.8360126803841 K, F = -0.002499090638213519, relative_change = 2.679669863358299e-8 Iter 90: T = 799.8359472157947 K, F = -0.0010451495796152122, relative_change = 1.1206704069787475e-8 Iter 95: T = 799.835919837716 K, F = -0.0004370940418089164, relative_change = 4.686778305304382e-9 Iter 100: T = 799.8359083878754 K, F = -0.00018279794769937574, relative_change = 1.9600667864967137e-9 Iter 105: T = 799.8359035994152 K, F = -7.64482845420078e-5, relative_change = 8.197233588919666e-10 Iter 110: T = 799.835901596824 K, F = -3.197158519907539e-5, relative_change = 3.4281809824666095e-10 Iter 115: T = 799.8359007593165 K, F = -1.3370899865083885e-5, relative_change = 1.4337063545349803e-10 Iter 120: T = 799.8359004090607 K, F = -5.5918705331725604e-6, relative_change = 5.995931773296361e-11 Iter 125: T = 799.8359002625797 K, F = -2.338586617578464e-6, relative_change = 2.507569825515211e-11 Iter 130: T = 799.8359002013194 K, F = -9.78023416919882e-7, relative_change = 1.0486941092433718e-11 Iter 135: T = 799.8359001756997 K, F = -4.0902249609509056e-7, relative_change = 4.38577926507353e-12 Iter 140: T = 799.8359001649853 K, F = -1.7105772243120043e-7, relative_change = 1.8341812965781195e-12 Iter 145: T = 799.8359001605044 K, F = -7.153885805966098e-8, relative_change = 7.670816235020429e-13 Iter 150: T = 799.8359001586304 K, F = -2.991823888631728e-8, relative_change = 3.2080091687170813e-13 Converged in 153 iterations to T = 799.8359001580817 K Iter 1: T = 980.7817888801163 K, F = -4378.887684903778, relative_change = 0.019218211119883696 Iter 2: T = 963.5782008911882 K, F = -3698.2023913360813, relative_change = 0.017540688646525218 Iter 3: T = 948.263911982535 K, F = -3121.8751351654414, relative_change = 0.015893145874916505 Iter 5: T = 922.7665146366046 K, F = -2221.6425470590752, relative_change = 0.012773515711164186 Iter 10: T = 882.5169162464107 K, F = -942.5113287135536, relative_change = 0.006639691406215035 Iter 15: T = 863.5825103247987 K, F = -397.00346810308747, relative_change = 0.0030939752283228013 Iter 20: T = 855.2079369582399 K, F = -166.57541915465904, relative_change = 0.001359188896904225 Iter 25: T = 851.6173374254676 K, F = -69.76299973983288, relative_change = 0.0005807050020590843 Iter 30: T = 850.0995636213053 K, F = -29.19338035327614, relative_change = 0.0002450735510336063 Iter 35: T = 849.4619345153513 K, F = -12.212132913800907, relative_change = 0.0001028854400079522 Iter 40: T = 849.1947629494009 K, F = -5.107805981871748, relative_change = 4.309699995410527e-5 Iter 45: T = 849.0829395518512 K, F = -2.1362411133254873, relative_change = 1.8035790776633258e-5 Iter 50: T = 849.0361580729594 K, F = -0.8934182845908358, relative_change = 7.544903362128238e-6 Iter 55: T = 849.0165907699602 K, F = -0.37364112456453147, relative_change = 3.1557396809366504e-6 Iter 60: T = 849.0084070125931 K, F = -0.15626169269633583, relative_change = 1.3198329196087043e-6 Iter 65: T = 849.0049843839917 K, F = -0.06535059561711454, relative_change = 5.519812404859341e-7 Iter 70: T = 849.0035529852248 K, F = -0.027330415197636126, relative_change = 2.3084713218876379e-7 Iter 75: T = 849.0029543546107 K, F = -0.01142990876847616, relative_change = 9.654337482480764e-8 Iter 80: T = 849.0027039996917 K, F = -0.004780124826467391, relative_change = 4.037565304497055e-8 Iter 85: T = 849.0025992981966 K, F = -0.0019991053708849904, relative_change = 1.688559089555691e-8 Iter 90: T = 849.0025555107673 K, F = -0.0008360497533101974, relative_change = 7.0617576116907184e-9 Iter 95: T = 849.0025371983392 K, F = -0.00034964599643716454, relative_change = 2.9533117144467286e-9 Iter 100: T = 849.0025295398625 K, F = -0.00014622613371328974, relative_change = 1.235110301854096e-9 Iter 105: T = 849.0025263369961 K, F = -6.115351496882582e-5, relative_change = 5.165378839693643e-10 Iter 110: T = 849.002524997519 K, F = -2.5575129941834973e-5, relative_change = 2.1602231054695842e-10 Iter 115: T = 849.0025244373337 K, F = -1.069582461399321e-5, relative_change = 9.034310906077125e-11 Iter 120: T = 849.0025242030574 K, F = -4.473119916248436e-6, relative_change = 3.778255305699276e-11 Iter 125: T = 849.0025241050804 K, F = -1.870710041540491e-6, relative_change = 1.5801096943734076e-11 Iter 130: T = 849.0025240641053 K, F = -7.823531875672529e-7, relative_change = 6.608206664486802e-12 Iter 135: T = 849.0025240469689 K, F = -3.271876469757018e-7, relative_change = 2.763615747784644e-12 Iter 140: T = 849.0025240398024 K, F = -1.368365956100348e-7, relative_change = 1.155800880662263e-12 Iter 145: T = 849.0025240368053 K, F = -5.7229909256051315e-8, relative_change = 4.833968517309891e-13 Converged in 150 iterations to T = 849.0025240355518 K Iter 1: T = 967.4305343907142 K, F = -7420.983720635787, relative_change = 0.032569465609285767 Iter 2: T = 936.9403369928784 K, F = -6290.376601358389, relative_change = 0.03151667878359711 Iter 3: T = 908.4977664810734 K, F = -5330.49834032002, relative_change = 0.030356864134051236 Iter 5: T = 857.6150497753939 K, F = -3824.0780699541956, relative_change = 0.027723102167812454 Iter 10: T = 763.1691125280065 K, F = -1655.432906160502, relative_change = 0.01977127903305454 Iter 15: T = 708.0493055891014 K, F = -708.579726694374, relative_change = 0.011797585876024728 Iter 20: T = 679.7810132327373 K, F = -300.255058196611, relative_change = 0.0060225668865219965 Iter 25: T = 666.6228605640946 K, F = -126.38582793428854, relative_change = 0.002777159582843244 Iter 30: T = 660.8357757237089 K, F = -53.011143738471795, relative_change = 0.0012137643948613793 Iter 35: T = 658.3611072133011 K, F = -22.198049489137812, relative_change = 0.0005173791837208428 Iter 40: T = 657.3162610514171 K, F = -9.288493792421114, relative_change = 0.00021813132536817377 Iter 45: T = 656.8775307099634 K, F = -3.885440290416237, relative_change = 9.153613333921758e-5 Iter 50: T = 656.6937378225512 K, F = -1.6250921065093844, relative_change = 3.833617244100025e-5 Iter 55: T = 656.6168189495795 K, F = -0.6796599943839584, relative_change = 1.6042226753006037e-5 Iter 60: T = 656.5846410153919 K, F = -0.28424666301984053, relative_change = 6.7107281171429e-6 Iter 65: T = 656.5711821490785 K, F = -0.11887617767317615, relative_change = 2.8068001114063175e-6 Iter 70: T = 656.5655531983131 K, F = -0.04971558210809607, relative_change = 1.1738886627823027e-6 Iter 75: T = 656.5631990527789 K, F = -0.020791675510837604, relative_change = 4.909432371527643e-7 Iter 80: T = 656.5622145120645 K, F = -0.008695331434842968, relative_change = 2.05319895353666e-7 Iter 85: T = 656.5618027638168 K, F = -0.003636492224756982, relative_change = 8.586750694365191e-8 Iter 90: T = 656.561630565509 K, F = -0.001520824613426175, relative_change = 3.591086493471519e-8 Iter 95: T = 656.5615585500723 K, F = -0.0006360270391715939, relative_change = 1.5018360976334034e-8 Iter 100: T = 656.5615284323483 K, F = -0.00026599410774114096, relative_change = 6.2808593881363176e-9 Iter 105: T = 656.561515836755 K, F = -0.00011124191372707815, relative_change = 2.626730674362744e-9 Iter 110: T = 656.5615105691272 K, F = -4.652269820548671e-5, relative_change = 1.0985302122560508e-9 Iter 115: T = 656.5615083661422 K, F = -1.9456348456681205e-5, relative_change = 4.594184723955351e-10 Iter 120: T = 656.5615074448276 K, F = -8.136876559983186e-6, relative_change = 1.9213427599512077e-10 Iter 125: T = 656.5615070595228 K, F = -3.4029393562451382e-6, relative_change = 8.035285855382422e-11 Iter 130: T = 656.5615068983838 K, F = -1.4231497708072638e-6, relative_change = 3.3604522560280414e-11 Iter 135: T = 656.5615068309935 K, F = -5.951784436408758e-7, relative_change = 1.40538177054627e-11 Iter 140: T = 656.5615068028101 K, F = -2.489105774827749e-7, relative_change = 5.877470729988383e-12 Iter 145: T = 656.5615067910234 K, F = -1.0409746198369874e-7, relative_change = 2.4580304787164e-12 Iter 150: T = 656.561506786094 K, F = -4.3534359117636257e-8, relative_change = 1.0279672486454796e-12 Iter 155: T = 656.5615067840324 K, F = -1.8205255025716127e-8, relative_change = 4.2987668359571775e-13 Converged in 159 iterations to T = 656.5615067832885 K Iter 1: T = 973.5004791689772 K, F = -6037.941028900469, relative_change = 0.026499520831022826 Iter 2: T = 949.1940116576577 K, F = -5109.5919191500725, relative_change = 0.024968110474962064 Iter 3: T = 927.0132881689229 K, F = -4322.164920026663, relative_change = 0.023367955566848408 Iter 5: T = 888.707321710562 K, F = -3088.534049424539, relative_change = 0.02003929467905908 Iter 10: T = 823.4746709899883 K, F = -1322.4698707344612, relative_change = 0.012024898814230257 Iter 15: T = 789.8943801740503 K, F = -560.539154081825, relative_change = 0.006164384578542356 Iter 20: T = 774.2254505404887 K, F = -235.98410507142987, relative_change = 0.0028493904652806697 Iter 25: T = 767.3252233079397 K, F = -98.98861295259876, relative_change = 0.0012467902808023879 Iter 30: T = 764.3727800557145 K, F = -41.452240472610875, relative_change = 0.0005317351283085238 Iter 35: T = 763.1258805068974 K, F = -17.345427716940016, relative_change = 0.00022423446886272574 Iter 40: T = 762.6022490605922 K, F = -7.255756876266964, relative_change = 9.410622827057097e-5 Iter 45: T = 762.3828789791073 K, F = -3.034740957847858, relative_change = 3.941413400408923e-5 Iter 50: T = 762.2910689183631 K, F = -1.26921688215744, relative_change = 1.6493590089818035e-5 Iter 55: T = 762.2526611431078 K, F = -0.5308107521902072, relative_change = 6.899589442758947e-6 Iter 60: T = 762.2365965033545 K, F = -0.22199298671531442, relative_change = 2.88580093597647e-6 Iter 65: T = 762.2298777206242 K, F = -0.09284039646544351, relative_change = 1.2069306835727252e-6 Iter 70: T = 762.2270677827338 K, F = -0.03882701121498, relative_change = 5.047623178248818e-7 Iter 75: T = 762.2258926221814 K, F = -0.016237928291383263, relative_change = 2.1109928964907853e-7 Iter 80: T = 762.2254011540856 K, F = -0.006790897020477749, relative_change = 8.828453435031249e-8 Iter 85: T = 762.2251956159231 K, F = -0.0028400344945037626, relative_change = 3.692169738990843e-8 Iter 90: T = 762.2251096573502 K, F = -0.001187736388550631, relative_change = 1.544110367262315e-8 Iter 95: T = 762.2250737084382 K, F = -0.0004967255510301971, relative_change = 6.45765552571788e-9 Iter 100: T = 762.2250586741721 K, F = -0.00020773655994665852, relative_change = 2.7006689457218016e-9 Iter 105: T = 762.2250523866622 K, F = -8.687791224604169e-5, relative_change = 1.129452075971747e-9 Iter 110: T = 762.2250497571505 K, F = -3.6333381762454486e-5, relative_change = 4.723503715938231e-10 Iter 115: T = 762.2250486574571 K, F = -1.5195054076988512e-5, relative_change = 1.9754256666450553e-10 Iter 120: T = 762.2250481975523 K, F = -6.354752943416031e-6, relative_change = 8.261465896778901e-11 Iter 125: T = 762.2250480052145 K, F = -2.6576330489636035e-6, relative_change = 3.455043024023736e-11 Iter 130: T = 762.2250479247766 K, F = -1.1114550663160472e-6, relative_change = 1.4449417976714681e-11 Iter 135: T = 762.2250478911365 K, F = -4.648222132752622e-7, relative_change = 6.042898763464156e-12 Iter 140: T = 762.2250478770678 K, F = -1.9439525522635392e-7, relative_change = 2.527226139337312e-12 Iter 145: T = 762.2250478711841 K, F = -8.129701811743217e-8, relative_change = 1.0568979628894323e-12 Iter 150: T = 762.2250478687234 K, F = -3.4000249060639476e-8, relative_change = 4.420185980077189e-13 Converged in 154 iterations to T = 762.2250478678353 K Iter 1: T = 970.0019168968655 K, F = -6835.091770592985, relative_change = 0.029998083103134465 Iter 2: T = 942.1610994855035 K, F = -5789.703162618087, relative_change = 0.028701816899937203 Iter 3: T = 916.4348009274461 K, F = -4902.469472630321, relative_change = 0.027305625940304792 Iter 5: T = 871.1201868712004 K, F = -3510.9474196066885, relative_change = 0.02425415328943875 Iter 10: T = 790.2890548025355 K, F = -1512.1425541901833, relative_change = 0.01595210239677602 Iter 15: T = 745.929335977637 K, F = -644.0416882769874, relative_change = 0.008811234101241664 Iter 20: T = 724.2802780041867 K, F = -271.9526808339116, relative_change = 0.004263085963023351 Iter 25: T = 714.5058706120259 K, F = -114.25091428601642, relative_change = 0.0019089374001000393 Iter 30: T = 710.2732710585614 K, F = -47.876945492975366, relative_change = 0.0008227488103390694 Iter 35: T = 708.4761770850785 K, F = -20.039906804946526, relative_change = 0.00034854656767307747 Iter 40: T = 707.7197639532002 K, F = -8.383968886504226, relative_change = 0.00014656190106523598 Iter 45: T = 707.4025653802552 K, F = -3.5068101494521158, relative_change = 6.143419985193389e-5 Iter 50: T = 707.2697584300033 K, F = -1.4666835027525227, relative_change = 2.571713062691601e-5 Iter 55: T = 707.2141905627783 K, F = -0.6134009437652583, relative_change = 1.0759522329267649e-5 Iter 60: T = 707.1909467932101 K, F = -0.2565344672681031, relative_change = 4.5005152064962044e-6 Iter 65: T = 707.1812251621795 K, F = -0.10728627937925278, relative_change = 1.8823011971887125e-6 Iter 70: T = 707.177159318465 K, F = -0.044868491016263, relative_change = 7.872239276142647e-7 Iter 75: T = 707.1754589093144 K, F = -0.01876455412426714, relative_change = 3.2923048612824e-7 Iter 80: T = 707.1747477735712 K, F = -0.007847563312791572, relative_change = 1.3768882741918791e-7 Iter 85: T = 707.1744503673535 K, F = -0.003281945166632161, relative_change = 5.758323551630533e-8 Iter 90: T = 707.1743259883891 K, F = -0.0013725487459927965, relative_change = 2.4082018397443555e-8 Iter 95: T = 707.1742739715976 K, F = -0.0005740162920625513, relative_change = 1.0071391480511657e-8 Iter 100: T = 707.17425221755 K, F = -0.00024006047049285328, relative_change = 4.2119768460715456e-9 Iter 105: T = 707.174243119747 K, F = -0.00010039615651047384, relative_change = 1.7614991409868286e-9 Iter 110: T = 707.1742393149369 K, F = -4.198687174039595e-5, relative_change = 7.366799982058227e-10 Iter 115: T = 707.1742377237199 K, F = -1.7559412217038606e-5, relative_change = 3.080883943701385e-10 Iter 120: T = 707.1742370582539 K, F = -7.343555163630278e-6, relative_change = 1.2884623366108992e-10 Iter 125: T = 707.174236779948 K, F = -3.071162469336919e-6, relative_change = 5.3885033755392066e-11 Iter 130: T = 707.1742366635573 K, F = -1.2843969413589562e-6, relative_change = 2.2535366749785188e-11 Iter 135: T = 707.1742366148812 K, F = -5.371501111683941e-7, relative_change = 9.424559004342572e-12 Iter 140: T = 707.1742365945244 K, F = -2.2464403570676694e-7, relative_change = 3.941488469912107e-12 Iter 145: T = 707.1742365860108 K, F = -9.39471737071429e-8, relative_change = 1.6483486899786146e-12 Iter 150: T = 707.1742365824504 K, F = -3.929007319491973e-8, relative_change = 6.893633743942869e-13 Iter 155: T = 707.1742365809613 K, F = -1.6430247051779645e-8, relative_change = 2.8827664671606353e-13 Converged in 157 iterations to T = 707.1742365806463 K Iter 1: T = 973.5028724116356 K, F = -6037.395726284175, relative_change = 0.026497127588364353 Iter 2: T = 949.1987952206104 K, F = -5109.127112235126, relative_change = 0.024965593712956705 Iter 3: T = 927.0204400328109 K, F = -4321.768759555478, relative_change = 0.02336534274956045 Iter 5: T = 888.719061018969 K, F = -3088.2464623024725, relative_change = 0.020036591232168718 Iter 10: T = 823.4961224121955 K, F = -1322.3419348751474, relative_change = 0.012022595022660407 Iter 15: T = 789.9221027242576 K, F = -560.4833780542479, relative_change = 0.006162941864279163 Iter 20: T = 774.2564870466379 K, F = -235.96024407138017, relative_change = 0.002848654030903883 Iter 25: T = 767.357809552087 K, F = -98.97852576810338, relative_change = 0.0012464531956838598 Iter 30: T = 764.4060474649857 K, F = -41.44800167252372, relative_change = 0.0005315885295651026 Iter 35: T = 763.1594389439927 K, F = -17.343651361433846, relative_change = 0.00022417213211101646 Iter 40: T = 762.6359303153012 K, F = -7.255013339013786, relative_change = 9.407997527915719e-5 Iter 45: T = 762.4166117933285 K, F = -3.0344298884482233, relative_change = 3.940312243195536e-5 Iter 50: T = 762.3248233297842 K, F = -1.269086769368821, relative_change = 1.648897925866409e-5 Iter 55: T = 762.2864245927642 K, F = -0.5307563339940409, relative_change = 6.897660146805206e-6 Iter 60: T = 762.2703637339639 K, F = -0.22197022776884956, relative_change = 2.8849939079021468e-6 Iter 65: T = 762.263646532658 K, F = -0.09283087829554904, relative_change = 1.2065931444408984e-6 Iter 70: T = 762.2608372561705 K, F = -0.03882303058534431, relative_change = 5.046211496370486e-7 Iter 75: T = 762.2596623722302 K, F = -0.01623626354018548, relative_change = 2.1104025048432523e-7 Iter 80: T = 762.2591710198179 K, F = -0.006790200800951385, relative_change = 8.825984330251318e-8 Iter 85: T = 762.2589655300358 K, F = -0.0028397433266711403, relative_change = 3.691137126507933e-8 Iter 90: T = 762.2588795916962 K, F = -0.0011876146193601222, relative_change = 1.5436785167922997e-8 Iter 95: T = 762.2588436512461 K, F = -0.0004966746256754861, relative_change = 6.455849474322182e-9 Iter 100: T = 762.2588286205188 K, F = -0.0002077152619657241, relative_change = 2.699913628250357e-9 Iter 105: T = 762.2588223344887 K, F = -8.686900333443326e-5, relative_change = 1.1291361692176499e-9 Iter 110: T = 762.2588197055959 K, F = -3.632965454847259e-5, relative_change = 4.722182374019702e-10 Iter 115: T = 762.2588186061615 K, F = -1.5193494208087799e-5, relative_change = 1.9748729222342967e-10 Iter 120: T = 762.2588181463649 K, F = -6.354099942984526e-6, relative_change = 8.259153415762554e-11 Iter 125: T = 762.2588179540726 K, F = -2.6573615644620574e-6, relative_change = 3.454078007167008e-11 Iter 130: T = 762.2588178736535 K, F = -1.1113398723505696e-6, relative_change = 1.444536063454041e-11 Iter 135: T = 762.2588178400213 K, F = -4.6477526838284433e-7, relative_change = 6.041217933642197e-12 Iter 140: T = 762.2588178259558 K, F = -1.943728467068695e-7, relative_change = 2.5264871160798047e-12 Iter 145: T = 762.2588178200737 K, F = -8.128896411552233e-8, relative_change = 1.0566060229318451e-12 Iter 150: T = 762.2588178176136 K, F = -3.3996772064170955e-8, relative_change = 4.4189509012253267e-13 Converged in 154 iterations to T = 762.2588178167256 K Iter 1: T = 964.3069160125016 K, F = -8132.703139439713, relative_change = 0.03569308398749847 Iter 2: T = 930.5383026112876 K, F = -6899.485770734043, relative_change = 0.03501853283480569 Iter 3: T = 898.6631522892808 K, F = -5852.204523863798, relative_change = 0.03425452797865314 Iter 5: T = 840.4802010636088 K, F = -4207.700002407272, relative_change = 0.032432570117898706 Iter 10: T = 726.1791861178357 K, F = -1835.0764696974352, relative_change = 0.026055608466491662 Iter 15: T = 652.3816056745413 K, F = -792.4232006288325, relative_change = 0.01786057236446832 Iter 20: T = 610.6159780240858 K, F = -338.3300190481041, relative_change = 0.01024715431575728 Iter 25: T = 589.7386502293604 K, F = -143.1015504417153, relative_change = 0.005085841988950715 Iter 30: T = 580.1766843664005 K, F = -60.17304178809286, relative_change = 0.0023086246521258264 Iter 35: T = 576.0062734485475 K, F = -25.22628228964438, relative_change = 0.0010014018530789307 Iter 40: T = 574.2298045460911 K, F = -10.560972072814828, relative_change = 0.000425426865096344 Iter 45: T = 573.4810154308956 K, F = -4.4186812227004335, relative_change = 0.00017910507522597252 Iter 50: T = 573.1668254665321 K, F = -1.848289385971116, relative_change = 7.511343540096234e-5 Iter 55: T = 573.0352449477818 K, F = -0.7730370245005169, relative_change = 3.1450137671272425e-5 Iter 60: T = 572.980184400398 K, F = -0.3233038778033731, relative_change = 1.3159270946063785e-5 Iter 65: T = 572.9571518187217 K, F = -0.13521139083208022, relative_change = 5.504492799585302e-6 Iter 70: T = 572.9475183375658 K, F = -0.056547341687093744, relative_change = 2.3022420675146936e-6 Iter 75: T = 572.9434893291891 K, F = -0.0236488301529256, relative_change = 9.6285966410683e-7 Iter 80: T = 572.9418043197703 K, F = -0.009890233084725197, relative_change = 4.0268545130954393e-7 Iter 85: T = 572.9410996234611 K, F = -0.0041362153194791085, relative_change = 1.6840892137150859e-7 Iter 90: T = 572.9408049101311 K, F = -0.0017298149450866718, relative_change = 7.043080690698703e-8 Iter 95: T = 572.9406816573364 K, F = -0.0007234293216041854, relative_change = 2.9455036903903808e-8 Iter 100: T = 572.9406301115176 K, F = -0.00030254679080521374, relative_change = 1.2318453840919423e-8 Iter 105: T = 572.9406085544358 K, F = -0.0001265286829695289, relative_change = 5.151725509180245e-9 Iter 110: T = 572.9405995390058 K, F = -5.2915806489861605e-5, relative_change = 2.154513302099085e-9 Iter 115: T = 572.9405957686452 K, F = -2.2130021732125194e-5, relative_change = 9.010432015345594e-10 Iter 120: T = 572.9405941918353 K, F = -9.255039744970883e-6, relative_change = 3.768270475441003e-10 Iter 125: T = 572.9405935323945 K, F = -3.8705673249261885e-6, relative_change = 1.5759353882380226e-10 Iter 130: T = 572.9405932566085 K, F = -1.6187171313908344e-6, relative_change = 6.59074859730189e-11 Iter 135: T = 572.9405931412715 K, F = -6.769663792316472e-7, relative_change = 2.7563279167769362e-11 Iter 140: T = 572.9405930930362 K, F = -2.831149915061282e-7, relative_change = 1.1527274898716343e-11 Iter 145: T = 572.9405930728637 K, F = -1.184022130340523e-7, relative_change = 4.8208498293497716e-12 Iter 150: T = 572.9405930644273 K, F = -4.951760868010524e-8, relative_change = 2.016152817205995e-12 Iter 155: T = 572.9405930608991 K, F = -2.070874682846835e-8, relative_change = 8.431747689993158e-13 Iter 160: T = 572.9405930594236 K, F = -8.660919925684851e-9, relative_change = 3.5263694216935645e-13 Converged in 163 iterations to T = 572.9405930589916 K Iter 1: T = 963.6100611524969 K, F = -8291.482182171885, relative_change = 0.036389938847503175 Iter 2: T = 929.100951928149 K, F = -7035.508857336759, relative_change = 0.035812317259404945 Iter 3: T = 896.4393295639584 K, F = -5968.858194328073, relative_change = 0.03515400807243656 Iter 5: T = 836.5402242485587 K, F = -4293.79174387779, relative_change = 0.033566251957948004 Iter 10: T = 717.1853178056132 K, F = -1876.1513113814572, relative_change = 0.027800157069844636 Iter 15: T = 637.9181293646792 K, F = -812.2738784385085, relative_change = 0.019862619985565946 Iter 20: T = 591.589730844227 K, F = -347.7218938608286, relative_change = 0.011874515680562442 Iter 25: T = 567.8002899028583 K, F = -147.3578606650068, relative_change = 0.006070360950434033 Iter 30: T = 556.7178936656039 K, F = -62.03036142821561, relative_change = 0.0028014486924631044 Iter 35: T = 551.841652157695 K, F = -26.0186253113452, relative_change = 0.0012248585799093047 Iter 40: T = 549.756059804094 K, F = -10.895245791912194, relative_change = 0.0005221994975299231 Iter 45: T = 548.8754105999826 K, F = -4.559000995496969, relative_change = 0.0002201801870816412 Iter 50: T = 548.5056125845099 K, F = -1.9070652498256409, relative_change = 9.239885868116661e-5 Iter 55: T = 548.3506943681484 K, F = -0.7976340433408441, relative_change = 3.869800836609352e-5 Iter 60: T = 548.28585935724 K, F = -0.3335934929334072, relative_change = 1.6193732257318856e-5 Iter 65: T = 548.2587364620979 K, F = -0.13951512932713578, relative_change = 6.774121297253295e-6 Iter 70: T = 548.2473919226009 K, F = -0.05834730375332417, relative_change = 2.8333174558644458e-6 Iter 75: T = 548.2426472521404 K, F = -0.024401611044217064, relative_change = 1.184979505503335e-6 Iter 80: T = 548.2406629308133 K, F = -0.010205057712046856, relative_change = 4.955817301674855e-7 Iter 85: T = 548.239833056332 K, F = -0.004267879204435193, relative_change = 2.0725979827114025e-7 Iter 90: T = 548.2394859915833 K, F = -0.001784878435833609, relative_change = 8.66788026943103e-8 Iter 95: T = 548.2393408447278 K, F = -0.0007464575449311894, relative_change = 3.625015940076798e-8 Iter 100: T = 548.2392801425389 K, F = -0.0003121774716327297, relative_change = 1.5160258142132642e-8 Iter 105: T = 548.2392547561515 K, F = -0.0001305563488655237, relative_change = 6.340202503657888e-9 Iter 110: T = 548.2392441392599 K, F = -5.460022533240738e-5, relative_change = 2.6515487012088293e-9 Iter 115: T = 548.2392396991487 K, F = -2.2834466592180913e-5, relative_change = 1.1089093900476589e-9 Iter 120: T = 548.2392378422411 K, F = -9.549646290962777e-6, relative_change = 4.6375914110775387e-10 Iter 125: T = 548.2392370656602 K, F = -3.993776576616259e-6, relative_change = 1.9394963446877005e-10 Iter 130: T = 548.2392367408847 K, F = -1.6702446626326584e-6, relative_change = 8.111203430891582e-11 Iter 135: T = 548.2392366050599 K, F = -6.985164977268976e-7, relative_change = 3.3922032779611124e-11 Iter 140: T = 548.2392365482563 K, F = -2.921282245826884e-7, relative_change = 1.4186612982340938e-11 Iter 145: T = 548.2392365245003 K, F = -1.221713767374233e-7, relative_change = 5.933004392598685e-12 Iter 150: T = 548.2392365145652 K, F = -5.1093574537919295e-8, relative_change = 2.4812555140858948e-12 Iter 155: T = 548.2392365104103 K, F = -2.136783955331012e-8, relative_change = 1.0376856619870684e-12 Iter 160: T = 548.2392365086727 K, F = -8.936584305896389e-9, relative_change = 4.3398703824836223e-13 Converged in 164 iterations to T = 548.2392365080455 K Iter 1: T = 969.3127820559066 K, F = -6992.111799641931, relative_change = 0.030687217944093334 Iter 2: T = 940.7662596925009 K, F = -5923.81790503559, relative_change = 0.02945026919263223 Iter 3: T = 914.3213977256761 K, F = -5017.0551580458605, relative_change = 0.028109917521349552 Iter 5: T = 867.5510656204649 K, F = -3594.6390016685145, relative_change = 0.0251507818955364 Iter 10: T = 783.2736989195594 K, F = -1550.1891753434152, relative_change = 0.016883143685657787 Iter 15: T = 736.321821172953 K, F = -661.0294172291434, relative_change = 0.009498509128506012 Iter 20: T = 713.142612898478 K, F = -279.3478862781663, relative_change = 0.0046517339920180015 Iter 25: T = 702.6061127646863 K, F = -117.40758420796388, relative_change = 0.002096392817479605 Iter 30: T = 698.0281052802513 K, F = -49.209547630006526, relative_change = 0.0009062547668771472 Iter 35: T = 696.0813909834525 K, F = -20.59949933024819, relative_change = 0.00038442822572269246 Iter 40: T = 695.2614604495055 K, F = -8.618404550437438, relative_change = 0.00016174076456915222 Iter 45: T = 694.9175298353863 K, F = -3.604925810525248, relative_change = 6.781277549646854e-5 Iter 50: T = 694.773513555855 K, F = -1.5077292589189724, relative_change = 2.8390106438364457e-5 Iter 55: T = 694.7132526066268 K, F = -0.6305689788875548, relative_change = 1.1878335672883848e-5 Iter 60: T = 694.6880452222063 K, F = -0.2637147313076445, relative_change = 4.9685813823215225e-6 Iter 65: T = 694.6775022244071 K, F = -0.1102892192084266, relative_change = 2.0780809446931177e-6 Iter 70: T = 694.6730928473819 K, F = -0.046124368148707906, relative_change = 8.691064085612964e-7 Iter 75: T = 694.6712487636147 K, F = -0.019289779008640373, relative_change = 3.6347560126811134e-7 Iter 80: T = 694.6704775405768 K, F = -0.008067218993226377, relative_change = 1.520106980995201e-7 Iter 85: T = 694.6701550049854 K, F = -0.003373807857119604, relative_change = 6.357283987867916e-8 Iter 90: T = 694.6700201165908 K, F = -0.0014109668308822654, relative_change = 2.6586947194040523e-8 Iter 95: T = 694.6699637046254 K, F = -0.0005900831946079599, relative_change = 1.1118983421487555e-8 Iter 100: T = 694.6699401124629 K, F = -0.0002467798407995714, relative_change = 4.6500924401221565e-9 Iter 105: T = 694.6699302459381 K, F = -0.00010320627750515232, relative_change = 1.944724340928236e-9 Iter 110: T = 694.6699261196394 K, F = -4.316209883004074e-5, relative_change = 8.1330698677679e-10 Iter 115: T = 694.669924393972 K, F = -1.8050905558064656e-5, relative_change = 3.4013470567006015e-10 Iter 120: T = 694.6699236722773 K, F = -7.549104593107536e-6, relative_change = 1.422484026239164e-10 Iter 125: T = 694.6699233704559 K, F = -3.1571247172124117e-6, relative_change = 5.948996245819505e-11 Iter 130: T = 694.6699232442306 K, F = -1.3203488006263697e-6, relative_change = 2.4879441797374422e-11 Iter 135: T = 694.6699231914416 K, F = -5.521851700329705e-7, relative_change = 1.0404870892950235e-11 Iter 140: T = 694.6699231693647 K, F = -2.3093015844022347e-7, relative_change = 4.351436102637755e-12 Iter 145: T = 694.6699231601318 K, F = -9.657759603154403e-8, relative_change = 1.8198196413267585e-12 Iter 150: T = 694.6699231562706 K, F = -4.0389113831196255e-8, relative_change = 7.610554172805419e-13 Iter 155: T = 694.6699231546557 K, F = -1.6892111376343166e-8, relative_change = 3.1829945381185264e-13 Converged in 158 iterations to T = 694.6699231541829 K Iter 1: T = 966.5035404267217 K, F = -7632.200177130407, relative_change = 0.033496459573278355 Iter 2: T = 935.0473334562008 K, F = -6471.037576625469, relative_change = 0.03254639600868149 Iter 3: T = 905.6016239004687 K, F = -5485.122910206983, relative_change = 0.03149114328457836 Iter 5: T = 852.6167326112258 K, F = -3937.5445570972856, relative_change = 0.02906047180393061 Iter 10: T = 752.7056915187545 K, F = -1708.0452902328075, relative_change = 0.021413564053955107 Iter 15: T = 692.8388201913248 K, F = -732.7250094593937, relative_change = 0.013229569354275923 Iter 20: T = 661.4065290843224 K, F = -311.02381727569696, relative_change = 0.0069355785194094265 Iter 25: T = 646.5453126971703 K, F = -131.0525481259826, relative_change = 0.0032481991745430326 Iter 30: T = 639.9543348379652 K, F = -54.996374584526805, relative_change = 0.0014305146877394601 Iter 35: T = 637.1248029222537 K, F = -23.034612853796414, relative_change = 0.0006118696905444647 Iter 40: T = 635.9280559130405 K, F = -9.639495053246382, relative_change = 0.0002583521452263766 Iter 45: T = 635.4251699694657 K, F = -4.0324353979074266, relative_change = 0.00010848247426185689 Iter 50: T = 635.2144350987296 K, F = -1.6866027810401771, relative_change = 4.544546805892688e-5 Iter 55: T = 635.1262291917063 K, F = -0.7053907283227806, relative_change = 1.901930360077596e-5 Iter 60: T = 635.0893274540135 K, F = -0.2950086548870424, relative_change = 7.95645759516127e-6 Iter 65: T = 635.0738924360195 K, F = -0.1233771622066051, relative_change = 3.327898128386759e-6 Iter 70: T = 635.0674369299286 K, F = -0.05159798100488988, relative_change = 1.391838907746554e-6 Iter 75: T = 635.0647370907027 K, F = -0.021578923054994315, relative_change = 5.820962762356847e-7 Iter 80: T = 635.0636079735425 K, F = -0.009024568782176057, relative_change = 2.4344182222574334e-7 Iter 85: T = 635.0631357611359 K, F = -0.0037741833936235647, relative_change = 1.018106634881891e-7 Iter 90: T = 635.0629382758964 K, F = -0.0015784087349421938, relative_change = 4.2578502875756516e-8 Iter 95: T = 635.0628556851458 K, F = -0.0006601094121637119, relative_change = 1.780685020598942e-8 Iter 100: T = 635.0628211446962 K, F = -0.0002760656447048926, relative_change = 7.447039482607017e-9 Iter 105: T = 635.0628066994657 K, F = -0.00011545395075890363, relative_change = 3.1144412183345842e-9 Iter 110: T = 635.0628006582974 K, F = -4.828422195957138e-5, relative_change = 1.3024965961604408e-9 Iter 115: T = 635.0627981318086 K, F = -2.01930380601123e-5, relative_change = 5.447196365642293e-10 Iter 120: T = 635.0627970752008 K, F = -8.444969975041072e-6, relative_change = 2.2780826730208422e-10 Iter 125: T = 635.0627966333147 K, F = -3.531786793464775e-6, relative_change = 9.52721247017864e-11 Iter 130: T = 635.0627964485128 K, F = -1.477035373287361e-6, relative_change = 3.984393925707293e-11 Iter 135: T = 635.0627963712263 K, F = -6.177136249174708e-7, relative_change = 1.6663205640742758e-11 Iter 140: T = 635.0627963389041 K, F = -2.5833377292894255e-7, relative_change = 6.9687127006177444e-12 Iter 145: T = 635.0627963253868 K, F = -1.0803839695094908e-7, relative_change = 2.9144023273714464e-12 Iter 150: T = 635.0627963197336 K, F = -4.518328977631825e-8, relative_change = 1.2188470821884444e-12 Iter 155: T = 635.0627963173695 K, F = -1.889640910412993e-8, relative_change = 5.097422789450744e-13 Converged in 160 iterations to T = 635.0627963163806 K Iter 1: T = 966.4377692074037 K, F = -7647.186212016576, relative_change = 0.03356223079259628 Iter 2: T = 934.912801785131 K, F = -6483.859004209987, relative_change = 0.03261975931272526 Iter 3: T = 905.3954264565008 K, F = -5496.100138126076, relative_change = 0.031572329817571715 Iter 5: T = 852.2593812284202 K, F = -3945.6071424230668, relative_change = 0.02915721860698622 Iter 10: T = 751.947941731964 K, F = -1711.7993077366173, relative_change = 0.021536432797968404 Iter 15: T = 691.7225116924652 K, F = -734.4590665323583, relative_change = 0.01334066503368591 Iter 20: T = 660.0445245446342 K, F = -311.8021387222145, relative_change = 0.007008434937398623 Iter 25: T = 645.0485480629522 K, F = -131.39127768610663, relative_change = 0.003286416783565362 Iter 30: T = 638.3933052380453 K, F = -55.14079366170408, relative_change = 0.0014482458106074463 Iter 35: T = 635.5352665035554 K, F = -23.095533339109846, relative_change = 0.0006196281574366975 Iter 40: T = 634.3262907272921 K, F = -9.665067391170755, relative_change = 0.00026165991311707834 Iter 45: T = 633.8182351733066 K, F = -4.043146858982656, relative_change = 0.0001098770926269788 Iter 50: T = 633.6053284909483 K, F = -1.6910853994201098, relative_change = 4.6030703009694585e-5 Iter 55: T = 633.5162125793717 K, F = -0.7072659314775239, relative_change = 1.926440501314241e-5 Iter 60: T = 633.4789299641412 K, F = -0.29579297804598226, relative_change = 8.059023098543317e-6 Iter 65: T = 633.4633356056062 K, F = -0.12370519140790265, relative_change = 3.3708029517605663e-6 Iter 70: T = 633.4568134521235 K, F = -0.05173516951517032, relative_change = 1.4097840901295972e-6 Iter 75: T = 633.4540857385399 K, F = -0.021636297414540373, relative_change = 5.896014934140943e-7 Iter 80: T = 633.4529449637066 K, F = -0.009048563510557717, relative_change = 2.4658065100716114e-7 Iter 85: T = 633.4524678758723 K, F = -0.003784218291193908, relative_change = 1.0312336921162626e-7 Iter 90: T = 633.4522683516619 K, F = -0.0015826054507632192, relative_change = 4.312749381764515e-8 Iter 95: T = 633.4521849081879 K, F = -0.0006618645288396507, relative_change = 1.8036445068367798e-8 Iter 100: T = 633.4521500111189 K, F = -0.00027679965568849774, relative_change = 7.543058853711356e-9 Iter 105: T = 633.4521354167458 K, F = -0.00011576092259552029, relative_change = 3.154597666340968e-9 Iter 110: T = 633.4521293132043 K, F = -4.841260046750673e-5, relative_change = 1.3192904828160102e-9 Iter 115: T = 633.4521267606304 K, F = -2.0246728631656552e-5, relative_change = 5.517430719774806e-10 Iter 120: T = 633.4521256931134 K, F = -8.467423543156993e-6, relative_change = 2.307455391887555e-10 Iter 125: T = 633.4521252466651 K, F = -3.541178234478526e-6, relative_change = 9.650055647451252e-11 Iter 130: T = 633.4521250599552 K, F = -1.480963843836225e-6, relative_change = 4.03577074595981e-11 Iter 135: T = 633.4521249818707 K, F = -6.193568106160896e-7, relative_change = 1.6878076459905508e-11 Iter 140: T = 633.4521249492149 K, F = -2.590223265874769e-7, relative_change = 7.05861073795302e-12 Iter 145: T = 633.4521249355579 K, F = -1.083264455359334e-7, relative_change = 2.952001172317773e-12 Iter 150: T = 633.4521249298463 K, F = -4.530314412498626e-8, relative_change = 1.2345548117151106e-12 Iter 155: T = 633.4521249274576 K, F = -1.8946459512392266e-8, relative_change = 5.163094793570561e-13 Converged in 160 iterations to T = 633.4521249264587 K Iter 1: T = 976.4258300924046 K, F = -5371.397038270406, relative_change = 0.02357416990759538 Iter 2: T = 955.0135437808958 K, F = -4541.8848294447325, relative_change = 0.021929250181227114 Iter 3: T = 935.6715958682647 K, F = -3838.736402951987, relative_change = 0.020253061371314624 Iter 5: T = 902.7780955718378 K, F = -2738.3452463476942, relative_change = 0.01690004154101225 Iter 10: T = 848.5994444847825 K, F = -1167.7073474560475, relative_change = 0.00951129808434734 Iter 15: T = 821.8466490114722 K, F = -493.47511322209095, relative_change = 0.004659078764299812 Iter 20: T = 809.6841181566673 K, F = -207.40518181554847, relative_change = 0.0020999636841238767 Iter 25: T = 804.3992688697945 K, F = -86.93096749007164, relative_change = 0.0009078513277635804 Iter 30: T = 802.1519159229005 K, F = -36.39004146191737, relative_change = 0.00038511535093170985 Iter 35: T = 801.2053480884861 K, F = -15.224852024275085, relative_change = 0.0001620316345308469 Iter 40: T = 800.8082956170855 K, F = -6.368287623116069, relative_change = 6.793504219709894e-5 Iter 45: T = 800.6420348959498 K, F = -2.6634819500972067, relative_change = 2.8441349126340675e-5 Iter 50: T = 800.5724661039909 K, F = -1.1139328730022415, relative_change = 1.1899785137326018e-5 Iter 55: T = 800.5433652017157 K, F = -0.4658657892109026, relative_change = 4.9775551589997206e-6 Iter 60: T = 800.5311937365751 K, F = -0.19483164396016883, relative_change = 2.0818344721628986e-6 Iter 65: T = 800.5261032885272 K, F = -0.0814810964614493, relative_change = 8.706762812565112e-7 Iter 70: T = 800.5239743680836 K, F = -0.03407639843636767, relative_change = 3.641321587165255e-7 Iter 75: T = 800.5230840221344 K, F = -0.014251162169640619, relative_change = 1.5228528140100864e-7 Iter 80: T = 800.522711667777 K, F = -0.005960007155503044, relative_change = 6.368767445662038e-8 Iter 85: T = 800.5225559445545 K, F = -0.0024925463348000054, relative_change = 2.663497247989166e-8 Iter 90: T = 800.522490819211 K, F = -0.001042412672762616, relative_change = 1.1139068196477203e-8 Iter 95: T = 800.5224635830091 K, F = -0.00043594943424685173, relative_change = 4.658492161331926e-9 Iter 100: T = 800.5224521925031 K, F = -0.00018231926055800596, relative_change = 1.9482371967668564e-9 Iter 105: T = 800.5224474288574 K, F = -7.624809247863684e-5, relative_change = 8.147760895011839e-10 Iter 110: T = 800.5224454366438 K, F = -3.188786458707682e-5, relative_change = 3.4074911350650775e-10 Iter 115: T = 800.5224446034762 K, F = -1.3335884028631284e-5, relative_change = 1.4250533053698737e-10 Iter 120: T = 800.5224442550357 K, F = -5.577225378972095e-6, relative_change = 5.959742496638882e-11 Iter 125: T = 800.5224441093136 K, F = -2.332461343068637e-6, relative_change = 2.492434509193808e-11 Iter 130: T = 800.522444048371 K, F = -9.754639098691342e-7, relative_change = 1.04236664823502e-11 Iter 135: T = 800.522444022884 K, F = -4.0795037548058133e-7, relative_change = 4.359298804375248e-12 Iter 140: T = 800.522444012225 K, F = -1.7060848744865353e-7, relative_change = 1.823097661136328e-12 Iter 145: T = 800.5224440077674 K, F = -7.135310609029943e-8, relative_change = 7.624689883651663e-13 Iter 150: T = 800.5224440059031 K, F = -2.9840135140624113e-8, relative_change = 3.188673752311533e-13 Converged in 153 iterations to T = 800.5224440053573 K Iter 1: T = 965.3058935179105 K, F = -7905.085164559355, relative_change = 0.03469410648208954 Iter 2: T = 932.5929987528469 K, F = -6704.575788705745, relative_change = 0.033888630520887385 Iter 3: T = 901.8319590229523 K, F = -5685.144725880987, relative_change = 0.032984420611168276 Iter 5: T = 846.0518700701267 K, F = -4084.611879840974, relative_change = 0.030862245337769708 Iter 10: T = 738.5663579308285 K, F = -1776.8684386976174, relative_change = 0.02379824469801691 Iter 15: T = 671.646823831444 K, F = -764.7875729750623, relative_change = 0.015492236791642446 Iter 20: T = 635.1945296891538 K, F = -325.544074418789, relative_change = 0.00848063769843379 Iter 25: T = 617.5032245580232 K, F = -137.41176716905542, relative_change = 0.004079396667873961 Iter 30: T = 609.5413973635386 K, F = -57.716939066830726, relative_change = 0.00182116273697136 Iter 35: T = 606.0991483187632 K, F = -24.18408007698935, relative_change = 0.0007838180370249481 Iter 40: T = 604.6386649399128 K, F = -10.122344144809293, relative_change = 0.00033185044386122297 Iter 45: T = 604.0241232407179 K, F = -4.234747221599494, relative_change = 0.00013950479020720402 Iter 50: T = 603.7664514274684 K, F = -1.7712786874184647, relative_change = 5.846963184497637e-5 Iter 55: T = 603.6585734780202 K, F = -0.7408149019492397, relative_change = 2.4474992817711845e-5 Iter 60: T = 603.6134372122748 K, F = -0.30982551596754854, relative_change = 1.0239638845032244e-5 Iter 65: T = 603.5945571127074 K, F = -0.12957410895392016, relative_change = 4.283022545432017e-6 Iter 70: T = 603.5866606042512 K, F = -0.054189680857725575, relative_change = 1.7913307151503732e-6 Iter 75: T = 603.5833580807226 K, F = -0.02266281385421176, relative_change = 7.491768070722015e-7 Iter 80: T = 603.5819769068095 K, F = -0.009477866777650334, relative_change = 3.133183449027929e-7 Iter 85: T = 603.581399280038 K, F = -0.003963758364335601, relative_change = 1.3103411325609654e-7 Iter 90: T = 603.5811577090386 K, F = -0.0016576913109950797, relative_change = 5.480014292459792e-8 Iter 95: T = 603.5810566810593 K, F = -0.0006932663426053587, relative_change = 2.2918093786467164e-8 Iter 100: T = 603.581014429934 K, F = -0.00028993227130852395, relative_change = 9.584623962961114e-9 Iter 105: T = 603.5809967600056 K, F = -0.00012125313994754139, relative_change = 4.008404816270262e-9 Iter 110: T = 603.58098937023 K, F = -5.070951059421569e-5, relative_change = 1.6763628425015813e-9 Iter 115: T = 603.5809862797375 K, F = -2.1207323231575703e-5, relative_change = 7.010749877958963e-10 Iter 120: T = 603.5809849872566 K, F = -8.86915545678102e-6, relative_change = 2.9319792267587595e-10 Iter 125: T = 603.5809844467256 K, F = -3.709186579492485e-6, relative_change = 1.2261886826324036e-10 Iter 130: T = 603.5809842206692 K, F = -1.5512265167383354e-6, relative_change = 5.1280688141487615e-11 Iter 135: T = 603.5809841261296 K, F = -6.487409804911692e-7, relative_change = 2.1446180535856935e-11 Iter 140: T = 603.5809840865921 K, F = -2.7131176727479556e-7, relative_change = 8.969066729662981e-12 Iter 145: T = 603.5809840700571 K, F = -1.1346584910532087e-7, relative_change = 3.750971741912969e-12 Iter 150: T = 603.5809840631418 K, F = -4.745340947964749e-8, relative_change = 1.568722214029989e-12 Iter 155: T = 603.5809840602498 K, F = -1.9844743348595983e-8, relative_change = 6.56030621713882e-13 Iter 160: T = 603.5809840590402 K, F = -8.299411990986272e-9, relative_change = 2.74363256441083e-13 Converged in 162 iterations to T = 603.5809840587843 K Iter 1: T = 964.5481087494722 K, F = -8077.747144887398, relative_change = 0.0354518912505277 Iter 2: T = 931.0350143726964 K, F = -6852.41748037775, relative_change = 0.03474486557256878 Iter 3: T = 899.4302851273429 K, F = -5811.851437192718, relative_change = 0.033945800917753635 Iter 5: T = 841.8335844745153 K, F = -4177.94642811301, relative_change = 0.03204761352855025 Iter 10: T = 729.2227216598899 K, F = -1820.952034774894, relative_change = 0.02548573069819997 Iter 15: T = 657.1817439154655 K, F = -785.6675658028687, relative_change = 0.017240148231778305 Iter 20: T = 616.8157326357906 K, F = -335.1765410200559, relative_change = 0.009768554862116401 Iter 25: T = 596.7980494526778 K, F = -141.68844230652385, relative_change = 0.004806983982615014 Iter 30: T = 587.6740938582951 K, F = -59.56058751919788, relative_change = 0.002171939832023529 Iter 35: T = 583.7044537151793 K, F = -24.965889368042927, relative_change = 0.0009400489898594712 Iter 40: T = 582.0153971371833 K, F = -10.451285510551232, relative_change = 0.0003989758579084962 Iter 45: T = 581.3037986537929 K, F = -4.372667999451813, relative_change = 0.00016789960303702136 Iter 50: T = 581.0052754767968 K, F = -1.8290211966993455, relative_change = 7.04017434505041e-5 Iter 55: T = 580.8802669760491 K, F = -0.7649744623823544, relative_change = 2.947517754892124e-5 Iter 60: T = 580.8279584328242 K, F = -0.3199312514422219, relative_change = 1.233253452249844e-5 Iter 65: T = 580.806077386627 K, F = -0.13380078403284923, relative_change = 5.158604397928023e-6 Iter 70: T = 580.7969255989034 K, F = -0.05595738560231189, relative_change = 2.157563372934078e-6 Iter 75: T = 580.7930980592872 K, F = -0.023402099365975204, relative_change = 9.02349101813935e-7 Iter 80: T = 580.7914973098011 K, F = -0.009787046604739447, relative_change = 3.7737847610414073e-7 Iter 85: T = 580.7908278525776 K, F = -0.004093061374967288, relative_change = 1.5782511346001183e-7 Iter 90: T = 580.7905478767549 K, F = -0.0017117674280007766, relative_change = 6.60045095396614e-8 Iter 95: T = 580.7904307873794 K, F = -0.0007158816302109683, relative_change = 2.7603902533882784e-8 Iter 100: T = 580.7903818191792 K, F = -0.00029939025606662284, relative_change = 1.1544286676254362e-8 Iter 105: T = 580.7903613400886 K, F = -0.0001252085813143733, relative_change = 4.827959395411352e-9 Iter 110: T = 580.7903527754877 K, F = -5.236372462447125e-5, relative_change = 2.0191104425471707e-9 Iter 115: T = 580.790349193669 K, F = -2.1899134689751243e-5, relative_change = 8.444161134484796e-10 Iter 120: T = 580.7903476957098 K, F = -9.158479125137564e-6, relative_change = 3.5314488688583374e-10 Iter 125: T = 580.7903470692453 K, F = -3.830185514863693e-6, relative_change = 1.4768941642633942e-10 Iter 130: T = 580.7903468072504 K, F = -1.6018294216602058e-6, relative_change = 6.176548161689554e-11 Iter 135: T = 580.790346697681 K, F = -6.699042461866256e-7, relative_change = 2.5831064082465826e-11 Iter 140: T = 580.7903466518578 K, F = -2.8016196240709945e-7, relative_change = 1.0802859734538011e-11 Iter 145: T = 580.790346632694 K, F = -1.1716763376190542e-7, relative_change = 4.5179063648804105e-12 Iter 150: T = 580.7903466246794 K, F = -4.900020461606758e-8, relative_change = 1.889415440272337e-12 Iter 155: T = 580.7903466213276 K, F = -2.0492456787035707e-8, relative_change = 7.901755628772723e-13 Iter 160: T = 580.7903466199258 K, F = -8.569431109162196e-9, relative_change = 3.304315885922409e-13 Converged in 163 iterations to T = 580.7903466195154 K Iter 1: T = 964.3492152724112 K, F = -8123.065212832302, relative_change = 0.035650784727588765 Iter 2: T = 930.6254425146626 K, F = -6891.230725152557, relative_change = 0.03497049847053832 Iter 3: T = 898.7977836253813 K, F = -5845.12674662884, relative_change = 0.034200288789955215 Iter 5: T = 840.717931054793 K, F = -4202.4803257728145, relative_change = 0.032364785717243764 Iter 10: T = 726.7154591597326 K, F = -1832.5960412264321, relative_change = 0.025954458007963054 Iter 15: T = 653.2307092357162 K, F = -791.2343588711831, relative_change = 0.017749289586787648 Iter 20: T = 611.7165787138069 K, F = -337.7736311023047, relative_change = 0.010160448941690634 Iter 25: T = 590.9948396437003 K, F = -142.85170127356014, relative_change = 0.005034972554612399 Iter 30: T = 581.5125041396208 K, F = -60.06462010221488, relative_change = 0.0022835964302027182 Iter 35: T = 577.3786766666858 K, F = -25.180157198709924, relative_change = 0.000990147514134234 Iter 40: T = 575.6181522849182 K, F = -10.54153724029867, relative_change = 0.0004205709603745464 Iter 45: T = 574.876150055631 K, F = -4.410527395758325, relative_change = 0.00017704726693382018 Iter 50: T = 574.5648196650615 K, F = -1.8448747725956693, relative_change = 7.424804184601359e-5 Iter 55: T = 574.4344387993316 K, F = -0.7716081868871437, relative_change = 3.1087376208225375e-5 Iter 60: T = 574.3798806187202 K, F = -0.3227061797060329, relative_change = 1.3007411854467835e-5 Iter 65: T = 574.3570582480202 K, F = -0.1349614016449922, relative_change = 5.440957615548595e-6 Iter 70: T = 574.3475126997658 K, F = -0.05644278890114501, relative_change = 2.2756663630913903e-6 Iter 75: T = 574.3435204695058 K, F = -0.023605104172407243, relative_change = 9.517445943620177e-7 Iter 80: T = 574.3418508417517 K, F = -0.009871946225483652, relative_change = 3.980368577482912e-7 Iter 85: T = 574.3411525783462 K, F = -0.00412856751291002, relative_change = 1.6646479975472545e-7 Iter 90: T = 574.3408605553523 K, F = -0.00172661653775813, relative_change = 6.961774781810659e-8 Iter 95: T = 574.3407384276915 K, F = -0.0007220917075860811, relative_change = 2.911500509378921e-8 Iter 100: T = 574.3406873524177 K, F = -0.00030198738451836515, relative_change = 1.2176248347200842e-8 Iter 105: T = 574.3406659921235 K, F = -0.00012629473217146137, relative_change = 5.092253435028892e-9 Iter 110: T = 574.3406570589925 K, F = -5.2817965385587584e-5, relative_change = 2.1296413631681025e-9 Iter 115: T = 574.3406533230503 K, F = -2.208910427142774e-5, relative_change = 8.906414937637198e-10 Iter 120: T = 574.3406517606346 K, F = -9.237926733185464e-6, relative_change = 3.7247689496067295e-10 Iter 125: T = 574.3406511072138 K, F = -3.863411289162233e-6, relative_change = 1.5577428683950467e-10 Iter 130: T = 574.3406508339455 K, F = -1.6157257307636286e-6, relative_change = 6.514670718960583e-11 Iter 135: T = 574.3406507196613 K, F = -6.757157266501501e-7, relative_change = 2.724512817431359e-11 Iter 140: T = 574.3406506718662 K, F = -2.825919507287722e-7, relative_change = 1.1394220406640524e-11 Iter 145: T = 574.3406506518778 K, F = -1.1818276446362574e-7, relative_change = 4.765176302138214e-12 Iter 150: T = 574.3406506435184 K, F = -4.942585274392286e-8, relative_change = 1.992870138835883e-12 Iter 155: T = 574.3406506400224 K, F = -2.0670695322078103e-8, relative_change = 8.334506977748154e-13 Iter 160: T = 574.3406506385603 K, F = -8.644300164561969e-9, relative_change = 3.4854163789649157e-13 Converged in 163 iterations to T = 574.3406506381323 K Iter 1: T = 980.0422917874891 K, F = -4547.382800902218, relative_change = 0.019957708212510878 Iter 2: T = 962.1325961006692 K, F = -3841.2914685632627, relative_change = 0.01827441105031767 Iter 3: T = 946.1507230476097 K, F = -3243.3255243361077, relative_change = 0.016610884110808414 Iter 5: T = 919.4494462972382 K, F = -2308.9780636697374, relative_change = 0.013432340472747625 Iter 10: T = 877.016506018607 K, F = -980.348456167742, relative_change = 0.0070688854287767906 Iter 15: T = 856.9083929006276 K, F = -413.14050566126275, relative_change = 0.0033182236994179623 Iter 20: T = 847.9793091620184 K, F = -173.3880946673091, relative_change = 0.0014630245009687197 Iter 25: T = 844.1437535528622 K, F = -72.62415439573746, relative_change = 0.0006260990263129291 Iter 30: T = 842.5210855266416 K, F = -30.39211630393693, relative_change = 0.0002644195078166328 Iter 35: T = 841.8391465160055 K, F = -12.713842612775979, relative_change = 0.00011104073088079686 Iter 40: T = 841.5533657284577 K, F = -5.31769450610805, relative_change = 4.6519034653426816e-5 Iter 45: T = 841.4337459646733 K, F = -2.2240308404201166, relative_change = 1.9468926833074427e-5 Iter 50: T = 841.3837015388793 K, F = -0.9301350696711541, relative_change = 8.14460836578166e-6 Iter 55: T = 841.3627692100035 K, F = -0.38899688525386555, relative_change = 3.4066047984599062e-6 Iter 60: T = 841.3540145085854 K, F = -0.16268371864330544, relative_change = 1.4247584360394047e-6 Iter 65: T = 841.3503530914313 K, F = -0.06803637466143408, relative_change = 5.958642211499067e-7 Iter 70: T = 841.348821826178 K, F = -0.02845364201301681, relative_change = 2.491998470376013e-7 Iter 75: T = 841.3481814298109 K, F = -0.011899655977385626, relative_change = 1.0421875677140242e-7 Iter 80: T = 841.347913607886 K, F = -0.0049765787774023185, relative_change = 4.358559946883259e-8 Iter 85: T = 841.3478016014683 K, F = -0.0020812647688666086, relative_change = 1.822803057307895e-8 Iter 90: T = 841.347754759031 K, F = -0.0008704097966625302, relative_change = 7.623182224506658e-9 Iter 95: T = 841.3477351689617 K, F = -0.0003640157759507989, relative_change = 3.188106235646942e-9 Iter 100: T = 841.3477269761601 K, F = -0.00015223574355016645, relative_change = 1.3333041529189053e-9 Iter 105: T = 841.3477235498326 K, F = -6.366680581093576e-5, relative_change = 5.57603728646005e-10 Iter 110: T = 841.3477221169015 K, F = -2.6626217827896426e-5, relative_change = 2.331965342357601e-10 Iter 115: T = 841.3477215176327 K, F = -1.1135403897855056e-5, relative_change = 9.752559007389282e-11 Iter 120: T = 841.3477212670114 K, F = -4.656961644977642e-6, relative_change = 4.078639061395601e-11 Iter 125: T = 841.3477211621985 K, F = -1.9475973398463964e-6, relative_change = 1.705735884564609e-11 Iter 130: T = 841.3477211183645 K, F = -8.145101970669089e-7, relative_change = 7.133606333304173e-12 Iter 135: T = 841.3477211000326 K, F = -3.406365478575424e-7, relative_change = 2.9833475923984202e-12 Iter 140: T = 841.3477210923659 K, F = -1.4245942203672257e-7, relative_change = 1.2476816608178753e-12 Iter 145: T = 841.3477210891596 K, F = -5.9577858424475494e-8, relative_change = 5.21792102520317e-13 Converged in 150 iterations to T = 841.3477210878186 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 8%|██▌ | ETA: 0:00:13 Bin 1 ray tracing: 15%|████▋ | ETA: 0:00:12 Bin 1 ray tracing: 22%|██████▊ | ETA: 0:00:11 Bin 1 ray tracing: 29%|████████▊ | ETA: 0:00:10 Bin 1 ray tracing: 36%|██████████▊ | ETA: 0:00:09 Bin 1 ray tracing: 43%|████████████▊ | ETA: 0:00:09 Bin 1 ray tracing: 49%|██████████████▊ | ETA: 0:00:08 Bin 1 ray tracing: 56%|████████████████▊ | ETA: 0:00:07 Bin 1 ray tracing: 62%|██████████████████▊ | ETA: 0:00:06 Bin 1 ray tracing: 69%|████████████████████▋ | ETA: 0:00:05 Bin 1 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:04 Bin 1 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:03 Bin 1 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 1 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 7%|██ | ETA: 0:00:14 Bin 2 ray tracing: 13%|███▉ | ETA: 0:00:13 Bin 2 ray tracing: 20%|█████▉ | ETA: 0:00:13 Bin 2 ray tracing: 26%|███████▊ | ETA: 0:00:12 Bin 2 ray tracing: 32%|█████████▋ | ETA: 0:00:11 Bin 2 ray tracing: 38%|███████████▌ | ETA: 0:00:10 Bin 2 ray tracing: 44%|█████████████▎ | ETA: 0:00:09 Bin 2 ray tracing: 51%|███████████████▎ | ETA: 0:00:08 Bin 2 ray tracing: 57%|█████████████████▏ | ETA: 0:00:07 Bin 2 ray tracing: 63%|███████████████████ | ETA: 0:00:06 Bin 2 ray tracing: 69%|████████████████████▊ | ETA: 0:00:05 Bin 2 ray tracing: 76%|██████████████████████▋ | ETA: 0:00:04 Bin 2 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:03 Bin 2 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:02 Bin 2 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 3 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 3 ray tracing: 19%|█████▊ | ETA: 0:00:13 Bin 3 ray tracing: 26%|███████▊ | ETA: 0:00:12 Bin 3 ray tracing: 32%|█████████▋ | ETA: 0:00:11 Bin 3 ray tracing: 39%|███████████▋ | ETA: 0:00:10 Bin 3 ray tracing: 45%|█████████████▋ | ETA: 0:00:09 Bin 3 ray tracing: 51%|███████████████▍ | ETA: 0:00:08 Bin 3 ray tracing: 57%|█████████████████▏ | ETA: 0:00:07 Bin 3 ray tracing: 63%|██████████████████▉ | ETA: 0:00:06 Bin 3 ray tracing: 69%|████████████████████▋ | ETA: 0:00:05 Bin 3 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:04 Bin 3 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 3 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 3 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 3 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 7%|██ | ETA: 0:00:15 Bin 4 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 4 ray tracing: 19%|█████▉ | ETA: 0:00:13 Bin 4 ray tracing: 26%|███████▊ | ETA: 0:00:12 Bin 4 ray tracing: 32%|█████████▋ | ETA: 0:00:11 Bin 4 ray tracing: 39%|███████████▋ | ETA: 0:00:10 Bin 4 ray tracing: 45%|█████████████▌ | ETA: 0:00:09 Bin 4 ray tracing: 52%|███████████████▌ | ETA: 0:00:08 Bin 4 ray tracing: 58%|█████████████████▌ | ETA: 0:00:06 Bin 4 ray tracing: 65%|███████████████████▋ | ETA: 0:00:05 Bin 4 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:04 Bin 4 ray tracing: 79%|███████████████████████▌ | ETA: 0:00:03 Bin 4 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 4 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 4 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 7%|██ | ETA: 0:00:14 Bin 5 ray tracing: 14%|████ | ETA: 0:00:13 Bin 5 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 5 ray tracing: 27%|████████ | ETA: 0:00:11 Bin 5 ray tracing: 33%|██████████ | ETA: 0:00:10 Bin 5 ray tracing: 40%|████████████ | ETA: 0:00:09 Bin 5 ray tracing: 47%|██████████████▏ | ETA: 0:00:08 Bin 5 ray tracing: 54%|████████████████▎ | ETA: 0:00:07 Bin 5 ray tracing: 61%|██████████████████▍ | ETA: 0:00:06 Bin 5 ray tracing: 68%|████████████████████▍ | ETA: 0:00:05 Bin 5 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:04 Bin 5 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:03 Bin 5 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 5 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 7%|██ | ETA: 0:00:14 Bin 6 ray tracing: 13%|████ | ETA: 0:00:13 Bin 6 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 6 ray tracing: 27%|████████ | ETA: 0:00:11 Bin 6 ray tracing: 33%|██████████ | ETA: 0:00:10 Bin 6 ray tracing: 40%|████████████▏ | ETA: 0:00:09 Bin 6 ray tracing: 47%|██████████████▏ | ETA: 0:00:08 Bin 6 ray tracing: 54%|████████████████▎ | ETA: 0:00:07 Bin 6 ray tracing: 60%|██████████████████▏ | ETA: 0:00:06 Bin 6 ray tracing: 67%|████████████████████▏ | ETA: 0:00:05 Bin 6 ray tracing: 73%|██████████████████████ | ETA: 0:00:04 Bin 6 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:03 Bin 6 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 6 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 7%|██ | ETA: 0:00:15 Bin 7 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 7 ray tracing: 20%|█████▉ | ETA: 0:00:13 Bin 7 ray tracing: 26%|███████▉ | ETA: 0:00:12 Bin 7 ray tracing: 33%|█████████▊ | ETA: 0:00:11 Bin 7 ray tracing: 39%|███████████▊ | ETA: 0:00:10 Bin 7 ray tracing: 45%|█████████████▋ | ETA: 0:00:09 Bin 7 ray tracing: 52%|███████████████▌ | ETA: 0:00:08 Bin 7 ray tracing: 58%|█████████████████▎ | ETA: 0:00:07 Bin 7 ray tracing: 64%|███████████████████▏ | ETA: 0:00:06 Bin 7 ray tracing: 70%|█████████████████████ | ETA: 0:00:05 Bin 7 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:04 Bin 7 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:03 Bin 7 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:02 Bin 7 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██ | ETA: 0:00:15 Bin 8 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 8 ray tracing: 20%|█████▉ | ETA: 0:00:13 Bin 8 ray tracing: 26%|███████▊ | ETA: 0:00:12 Bin 8 ray tracing: 32%|█████████▋ | ETA: 0:00:11 Bin 8 ray tracing: 38%|███████████▌ | ETA: 0:00:10 Bin 8 ray tracing: 45%|█████████████▍ | ETA: 0:00:09 Bin 8 ray tracing: 51%|███████████████▍ | ETA: 0:00:08 Bin 8 ray tracing: 58%|█████████████████▍ | ETA: 0:00:07 Bin 8 ray tracing: 64%|███████████████████▎ | ETA: 0:00:06 Bin 8 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:05 Bin 8 ray tracing: 77%|███████████████████████ | ETA: 0:00:04 Bin 8 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:03 Bin 8 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 8 ray tracing: 96%|████████████████████████████▋ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 9 ray tracing: 13%|███▊ | ETA: 0:00:14 Bin 9 ray tracing: 19%|█████▊ | ETA: 0:00:13 Bin 9 ray tracing: 26%|███████▋ | ETA: 0:00:12 Bin 9 ray tracing: 32%|█████████▋ | ETA: 0:00:11 Bin 9 ray tracing: 39%|███████████▋ | ETA: 0:00:10 Bin 9 ray tracing: 45%|█████████████▌ | ETA: 0:00:09 Bin 9 ray tracing: 52%|███████████████▌ | ETA: 0:00:08 Bin 9 ray tracing: 58%|█████████████████▍ | ETA: 0:00:07 Bin 9 ray tracing: 64%|███████████████████▎ | ETA: 0:00:06 Bin 9 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:05 Bin 9 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:04 Bin 9 ray tracing: 83%|████████████████████████▊ | ETA: 0:00:03 Bin 9 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 9 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 10 ray tracing: 13%|███▋ | ETA: 0:00:14 Bin 10 ray tracing: 19%|█████▌ | ETA: 0:00:13 Bin 10 ray tracing: 25%|███████▍ | ETA: 0:00:12 Bin 10 ray tracing: 32%|█████████▎ | ETA: 0:00:11 Bin 10 ray tracing: 38%|███████████▏ | ETA: 0:00:10 Bin 10 ray tracing: 45%|████████████▉ | ETA: 0:00:09 Bin 10 ray tracing: 51%|██████████████▊ | ETA: 0:00:08 Bin 10 ray tracing: 57%|████████████████▌ | ETA: 0:00:07 Bin 10 ray tracing: 64%|██████████████████▌ | ETA: 0:00:06 Bin 10 ray tracing: 70%|████████████████████▍ | ETA: 0:00:05 Bin 10 ray tracing: 77%|██████████████████████▎ | ETA: 0:00:04 Bin 10 ray tracing: 83%|████████████████████████▏ | ETA: 0:00:03 Bin 10 ray tracing: 89%|█████████████████████████▉ | ETA: 0:00:02 Bin 10 ray tracing: 96%|███████████████████████████▊ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2361426439853 K, F = -7465.276065042264, relative_change = 0.0327638573560147 Iter 2: T = 936.5438531639077 K, F = -6328.254142603277, relative_change = 0.0317319505825938 Iter 3: T = 907.8919909914423 K, F = -5362.909252582583, relative_change = 0.030593188002538692 Iter 5: T = 856.5727660985266 K, F = -3847.8460742207, relative_change = 0.02799955255993226 Iter 10: T = 761.0075957059245 K, F = -1666.4207343527453, relative_change = 0.020102381634626427 Iter 15: T = 704.9372861628771 K, F = -713.5992144303292, relative_change = 0.012078574531094434 Iter 20: T = 676.0483379248467 K, F = -302.48387675932224, relative_change = 0.006197984005230019 Iter 25: T = 662.5607355875151 K, F = -127.34888912227771, relative_change = 0.0028665404604174952 Iter 30: T = 656.6193163953953 K, F = -53.42020779705413, relative_change = 0.0012546403978934521 Iter 35: T = 654.0767647006493 K, F = -22.370305037033532, relative_change = 0.0005351492026393998 Iter 40: T = 653.0029071008192 K, F = -9.360745721346685, relative_change = 0.0002256862131600405 Iter 45: T = 652.5519320886162 K, F = -3.915694564530995, relative_change = 9.471762939058825e-5 Iter 50: T = 652.3629985660089 K, F = -1.6377514260051607, relative_change = 3.967058087183644e-5 Iter 55: T = 652.2839263440263 K, F = -0.6849554335286108, relative_change = 1.6600971117748777e-5 Iter 60: T = 652.2508472447424 K, F = -0.28646148207955036, relative_change = 6.944520569215437e-6 Iter 65: T = 652.2370113938503 K, F = -0.11980247700232233, relative_change = 2.904595711855418e-6 Iter 70: T = 652.2312247649855 K, F = -0.05010297776804301, relative_change = 1.2147915904645366e-6 Iter 75: T = 652.2288046733256 K, F = -0.020953690091214672, relative_change = 5.080499666628876e-7 Iter 80: T = 652.2277925525833 K, F = -0.008763088057803015, relative_change = 2.1247424529319502e-7 Iter 85: T = 652.2273692699387 K, F = -0.0036648288877831336, relative_change = 8.885956102556577e-8 Iter 90: T = 652.2271922477908 K, F = -0.0015326753490922385, relative_change = 3.7162181065952606e-8 Iter 95: T = 652.2271182149635 K, F = -0.0006409831591709936, relative_change = 1.5541676916960656e-8 Iter 100: T = 652.2270872535422 K, F = -0.00026806681634994334, relative_change = 6.499716465019653e-9 Iter 105: T = 652.2270743051045 K, F = -0.00011210874512473934, relative_change = 2.7182593330852623e-9 Iter 110: T = 652.2270688899129 K, F = -4.688521611800889e-5, relative_change = 1.1368085620128556e-9 Iter 115: T = 652.227066625215 K, F = -1.960795653993541e-5, relative_change = 4.754269062248855e-10 Iter 120: T = 652.2270656780913 K, F = -8.20028113224236e-6, relative_change = 1.988292001713618e-10 Iter 125: T = 652.227065281993 K, F = -3.429456529535635e-6, relative_change = 8.315277119958072e-11 Iter 130: T = 652.2270651163399 K, F = -1.43424039883433e-6, relative_change = 3.477549951327907e-11 Iter 135: T = 652.2270650470617 K, F = -5.998159507414336e-7, relative_change = 1.4543516784610982e-11 Iter 140: T = 652.2270650180889 K, F = -2.5085069721431097e-7, relative_change = 6.082284610186952e-12 Iter 145: T = 652.227065005972 K, F = -1.0490831536813516e-7, relative_change = 2.5436733450876087e-12 Iter 150: T = 652.2270650009045 K, F = -4.387336988154189e-8, relative_change = 1.0637814661245907e-12 Iter 155: T = 652.2270649987854 K, F = -1.8349216313051642e-8, relative_change = 4.4490670045952905e-13 Converged in 159 iterations to T = 652.2270649980204 K Iter 1: T = 970.3900218871134 K, F = -6746.661679381831, relative_change = 0.029609978112886497 Iter 2: T = 942.9452532073606 K, F = -5714.194309403851, relative_change = 0.028282204124874612 Iter 3: T = 917.6206565988304 K, F = -4837.978097597981, relative_change = 0.026856910857115435 Iter 5: T = 873.1145413198335 K, F = -3463.886175881908, relative_change = 0.023759317257100572 Iter 10: T = 794.1649475114199 K, F = -1490.822042115895, relative_change = 0.015453706312798458 Iter 15: T = 751.1859542449037 K, F = -634.5621606967117, relative_change = 0.008453309327063728 Iter 20: T = 730.3364930419312 K, F = -267.83967468851597, relative_change = 0.0040643323011705125 Iter 25: T = 720.955805904579 K, F = -112.49863643650048, relative_change = 0.0018139930052698421 Iter 30: T = 716.9006381143192 K, F = -47.13790566785662, relative_change = 0.0007806438257921435 Iter 35: T = 715.1802030513475 K, F = -19.72969554618648, relative_change = 0.00033049020668762265 Iter 40: T = 714.4562968593542 K, F = -8.254032389063457, relative_change = 0.00013893003920898672 Iter 45: T = 714.152772675343 K, F = -3.452433465314444, relative_change = 5.822822329657281e-5 Iter 50: T = 714.0256985419146 K, F = -1.4439362612007183, relative_change = 2.4373849968303513e-5 Iter 55: T = 713.9725306675106 K, F = -0.6038866787832154, relative_change = 1.0197307642026661e-5 Iter 60: T = 713.9502910344753 K, F = -0.25255529606762184, relative_change = 4.265313519536604e-6 Iter 65: T = 713.9409894207355 K, F = -0.10562210888179069, relative_change = 1.7839236072688783e-6 Iter 70: T = 713.9370992464585 K, F = -0.044172509165107066, relative_change = 7.460788943775649e-7 Iter 75: T = 713.9354723066718 K, F = -0.01847348517448022, relative_change = 3.1202273076126225e-7 Iter 80: T = 713.9347918970975 K, F = -0.007725834619972227, relative_change = 1.3049226668264163e-7 Iter 85: T = 713.9345073410012 K, F = -0.0032310367415937513, relative_change = 5.457353528641868e-8 Iter 90: T = 713.9343883361233 K, F = -0.001351258227895502, relative_change = 2.2823323596500784e-8 Iter 95: T = 713.9343385668412 K, F = -0.0005651123417933501, relative_change = 9.544989891411242e-9 Iter 100: T = 713.9343177527295 K, F = -0.0002363367319069276, relative_change = 3.991829346685919e-9 Iter 105: T = 713.9343090480187 K, F = -9.883884392836162e-5, relative_change = 1.669430805385126e-9 Iter 110: T = 713.9343054076046 K, F = -4.133558586350006e-5, relative_change = 6.981759329813324e-10 Iter 115: T = 713.93430388514 K, F = -1.7287037106572534e-5, relative_change = 2.9198554056454335e-10 Iter 120: T = 713.934303248427 K, F = -7.2296454278752975e-6, relative_change = 1.2211184162432287e-10 Iter 125: T = 713.934302982146 K, F = -3.0235234241837716e-6, relative_change = 5.106861987358926e-11 Iter 130: T = 713.9343028707841 K, F = -1.2644738405231948e-6, relative_change = 2.135751072183813e-11 Iter 135: T = 713.9343028242114 K, F = -5.288187872043437e-7, relative_change = 8.931978313177992e-12 Iter 140: T = 713.934302804734 K, F = -2.2115770892394693e-7, relative_change = 3.735449473345006e-12 Iter 145: T = 713.9343027965883 K, F = -9.249051802218133e-8, relative_change = 1.5622049013581643e-12 Iter 150: T = 713.9343027931817 K, F = -3.868055786782065e-8, relative_change = 6.533313725765765e-13 Iter 155: T = 713.934302791757 K, F = -1.617618561322587e-8, relative_change = 2.73222779928799e-13 Converged in 157 iterations to T = 713.9343027914555 K Iter 1: T = 974.4165098687678 K, F = -5829.222562583037, relative_change = 0.025583490131232248 Iter 2: T = 951.0222421172856 K, F = -4931.727151149009, relative_change = 0.024008488684815935 Iter 3: T = 929.7424476293811 K, F = -4170.611544385919, relative_change = 0.022375706419366922 Iter 5: T = 893.1728080370608 K, F = -2978.590911687173, relative_change = 0.019021227726103075 Iter 10: T = 831.5732235283264 K, F = -1273.6662197449089, relative_change = 0.011174962323267803 Iter 15: T = 800.3041528170785 K, F = -539.3060625245695, relative_change = 0.005640192003675383 Iter 20: T = 785.8446254176686 K, F = -226.9128307853973, relative_change = 0.0025841452034575576 Iter 25: T = 779.5070053516152 K, F = -95.15643952575911, relative_change = 0.0011258960996920035 Iter 30: T = 776.8012401817323 K, F = -39.84241877883383, relative_change = 0.0004792581268216969 Iter 35: T = 775.6596197238545 K, F = -16.670894232823635, relative_change = 0.000201938478531538 Iter 40: T = 775.1803968781956 K, F = -6.973431251424473, relative_change = 8.471957917364939e-5 Iter 45: T = 774.9796661270909 K, F = -2.9166289979925923, relative_change = 3.547756641307948e-5 Iter 50: T = 774.8956630505868 K, F = -1.2198140376890354, relative_change = 1.4845347898007712e-5 Iter 55: T = 774.8605223160541 K, F = -0.510148665142861, relative_change = 6.209938173958153e-6 Iter 60: T = 774.8458243535015 K, F = -0.21335164039104104, relative_change = 2.597321618311168e-6 Iter 65: T = 774.8396771947904 K, F = -0.08922644466573959, relative_change = 1.0862748801206918e-6 Iter 70: T = 774.8371063279628 K, F = -0.03731560684089452, relative_change = 4.5430081689492946e-7 Iter 75: T = 774.8360311517206 K, F = -0.015605839784497588, relative_change = 1.899953719886107e-7 Iter 80: T = 774.835581498596 K, F = -0.0065265498564619495, relative_change = 7.945856878645537e-8 Iter 85: T = 774.8353934480131 K, F = -0.002729481318406779, relative_change = 3.323056354022823e-8 Iter 90: T = 774.8353148029652 K, F = -0.0011415017241189762, relative_change = 1.3897425730733243e-8 Iter 95: T = 774.8352819126585 K, F = -0.0004773896614015394, relative_change = 5.8120706825314265e-9 Iter 100: T = 774.8352681575379 K, F = -0.00019965005805577807, relative_change = 2.43067758079116e-9 Iter 105: T = 774.835262404982 K, F = -8.349603974666664e-5, relative_change = 1.0165384425503184e-9 Iter 110: T = 774.8352599991944 K, F = -3.4919040737713125e-5, relative_change = 4.2512852009886244e-10 Iter 115: T = 774.8352589930652 K, F = -1.4603559365999885e-5, relative_change = 1.7779381932223338e-10 Iter 120: T = 774.83525857229 K, F = -6.107382775288883e-6, relative_change = 7.435549685353424e-11 Iter 125: T = 774.8352583963167 K, F = -2.5541797091799268e-6, relative_change = 3.1096348226784916e-11 Iter 130: T = 774.8352583227227 K, F = -1.0681895238340289e-6, relative_change = 1.3004877182675943e-11 Iter 135: T = 774.8352582919448 K, F = -4.4673005050732684e-7, relative_change = 5.4388002429612325e-12 Iter 140: T = 774.8352582790731 K, F = -1.8682962321658891e-7, relative_change = 2.27459289803573e-12 Iter 145: T = 774.83525827369 K, F = -7.813398994471754e-8, relative_change = 9.51257169872343e-13 Iter 150: T = 774.8352582714386 K, F = -3.267550341412573e-8, relative_change = 3.978141513609821e-13 Converged in 154 iterations to T = 774.835258270626 K Iter 1: T = 970.3392103058083 K, F = -6758.239146516525, relative_change = 0.029660789694191753 Iter 2: T = 942.8426468164537 K, F = -5724.0792167565305, relative_change = 0.028337063160303308 Iter 3: T = 917.4655797452934 K, F = -4846.419789832459, relative_change = 0.026915484950587387 Iter 5: T = 872.8540722081318 K, F = -3470.0446122513613, relative_change = 0.023823694446304184 Iter 10: T = 793.6604971318661 K, F = -1493.609112404345, relative_change = 0.01551794203324494 Iter 15: T = 750.503801955234 K, F = -635.7997976221325, relative_change = 0.00849905905920175 Iter 20: T = 729.552018758447 K, F = -268.3761451932632, relative_change = 0.004089599754461879 Iter 25: T = 720.1211182399683 K, F = -112.72706434133251, relative_change = 0.0018260289916274754 Iter 30: T = 716.043359501182 K, F = -47.234221535116596, relative_change = 0.000785974380681491 Iter 35: T = 714.3131714894214 K, F = -19.77011921910493, relative_change = 0.0003327748476561533 Iter 40: T = 713.5851309533265 K, F = -8.270963564854089, relative_change = 0.00013989544765120721 Iter 45: T = 713.2798678562609 K, F = -3.459518782073758, relative_change = 5.863372786516066e-5 Iter 50: T = 713.1520647480468 K, F = -1.4469002143437604, relative_change = 2.454374598981567e-5 Iter 55: T = 713.0985917023393 K, F = -0.6051263775804464, relative_change = 1.026841436967577e-5 Iter 60: T = 713.0762243895483 K, F = -0.2530737770937308, relative_change = 4.295060686760306e-6 Iter 65: T = 713.0668693692528 K, F = -0.10583894806745486, relative_change = 1.7963658872566517e-6 Iter 70: T = 713.0629568580795 K, F = -0.04426319464314887, relative_change = 7.512826947561272e-7 Iter 75: T = 713.0613205764497 K, F = -0.01851141105246501, relative_change = 3.141990729756424e-7 Iter 80: T = 713.0606362599551 K, F = -0.007741695700477669, relative_change = 1.3140244791484824e-7 Iter 85: T = 713.0603500699292 K, F = -0.003237670038359508, relative_change = 5.495418549260591e-8 Iter 90: T = 713.0602303817209 K, F = -0.0013540323523442144, relative_change = 2.2982516327375183e-8 Iter 95: T = 713.0601803266616 K, F = -0.0005662725130903823, relative_change = 9.61156622659038e-9 Iter 100: T = 713.0601593930343 K, F = -0.00023682192964147308, relative_change = 4.019672377165188e-9 Iter 105: T = 713.0601506383408 K, F = -9.904176124619912e-5, relative_change = 1.6810751256940974e-9 Iter 110: T = 713.0601469770232 K, F = -4.1420448736229076e-5, relative_change = 7.030457343617251e-10 Iter 115: T = 713.0601454458165 K, F = -1.732252611330587e-5, relative_change = 2.9402212164325474e-10 Iter 120: T = 713.0601448054475 K, F = -7.244487145507961e-6, relative_change = 1.2296356062127454e-10 Iter 125: T = 713.0601445376375 K, F = -3.0297303440507406e-6, relative_change = 5.1424817797348186e-11 Iter 130: T = 713.0601444256362 K, F = -1.2670690322513778e-6, relative_change = 2.1506466506785047e-11 Iter 135: T = 713.0601443787959 K, F = -5.29902715817876e-7, relative_change = 8.994249502654476e-12 Iter 140: T = 713.0601443592068 K, F = -2.2161274604304282e-7, relative_change = 3.761521259734974e-12 Iter 145: T = 713.0601443510144 K, F = -9.26811986046161e-8, relative_change = 1.573114837358414e-12 Iter 150: T = 713.0601443475882 K, F = -3.8761567844325384e-8, relative_change = 6.579155040571624e-13 Iter 155: T = 713.0601443461553 K, F = -1.6210250697312745e-8, relative_change = 2.751430308843623e-13 Converged in 157 iterations to T = 713.060144345852 K Iter 1: T = 969.3507431115382 K, F = -6983.462337006001, relative_change = 0.030649256888461807 Iter 2: T = 940.8431768222899 K, F = -5916.428911674049, relative_change = 0.029408928080811376 Iter 3: T = 914.4380740819882 K, F = -5010.740786772907, relative_change = 0.028065360296798098 Iter 5: T = 867.7486092375943 K, F = -3590.024558328109, relative_change = 0.02510078174646821 Iter 10: T = 783.6647011537145 K, F = -1548.0869199079523, relative_change = 0.016830249742271805 Iter 15: T = 736.8605647417124 K, F = -660.0882457451867, relative_change = 0.009458797169649775 Iter 20: T = 713.7696098307024 K, F = -278.9372868792349, relative_change = 0.004629022283083768 Iter 25: T = 703.2773790381968 K, F = -117.23209725799624, relative_change = 0.002085372307791188 Iter 30: T = 698.7195080952516 K, F = -49.13541930355135, relative_change = 0.0009013316164592683 Iter 35: T = 696.7815305955452 K, F = -20.568362404401864, relative_change = 0.00038231018064774716 Iter 40: T = 695.9653116703012 K, F = -8.605358493727644, relative_change = 0.00016084430363448409 Iter 45: T = 695.6229436005765 K, F = -3.5994655189668467, relative_change = 6.743597398775629e-5 Iter 50: T = 695.4795826131492 K, F = -1.5054449492721416, relative_change = 2.8232190999682277e-5 Iter 55: T = 695.4195960338712 K, F = -0.6296135218399219, relative_change = 1.1812235252334726e-5 Iter 60: T = 695.3945034501093 K, F = -0.26331512475302093, relative_change = 4.940927190772557e-6 Iter 65: T = 695.3840084730938 K, F = -0.11012209494798203, relative_change = 2.066513845676202e-6 Iter 70: T = 695.3796191806445 K, F = -0.04605447408357621, relative_change = 8.642685972286939e-7 Iter 75: T = 695.3777834967859 K, F = -0.019260548353078333, relative_change = 3.6145231615781037e-7 Iter 80: T = 695.3770157867424 K, F = -0.008054994361651469, relative_change = 1.511645265313402e-7 Iter 85: T = 695.3766947203364 K, F = -0.00336869536792761, relative_change = 6.321895917997633e-8 Iter 90: T = 695.3765604463741 K, F = -0.0014088287245257458, relative_change = 2.6438949736061377e-8 Iter 95: T = 695.3765042913722 K, F = -0.0005891890130479416, relative_change = 1.1057089069179634e-8 Iter 100: T = 695.3764808066749 K, F = -0.00024640588326796387, relative_change = 4.624207471997326e-9 Iter 105: T = 695.3764709850932 K, F = -0.00010304988403497806, relative_change = 1.933898937264112e-9 Iter 110: T = 695.3764668775904 K, F = -4.3096691912158924e-5, relative_change = 8.087796489334858e-10 Iter 115: T = 695.3764651597835 K, F = -1.802355161639735e-5, relative_change = 3.3824131907859607e-10 Iter 120: T = 695.3764644413761 K, F = -7.537662591539096e-6, relative_change = 1.4145652336095426e-10 Iter 125: T = 695.3764641409297 K, F = -3.152341745971121e-6, relative_change = 5.915883064977088e-11 Iter 130: T = 695.3764640152795 K, F = -1.3183473561717562e-6, relative_change = 2.4740936844208892e-11 Iter 135: T = 695.3764639627309 K, F = -5.513482989050189e-7, relative_change = 1.0346949446532491e-11 Iter 140: T = 695.3764639407545 K, F = -2.3058124054564644e-7, relative_change = 4.327232793393537e-12 Iter 145: T = 695.3764639315636 K, F = -9.643068643594432e-8, relative_change = 1.8096789993578011e-12 Iter 150: T = 695.37646392772 K, F = -4.032845901669191e-8, relative_change = 7.568292631554475e-13 Iter 155: T = 695.3764639261125 K, F = -1.6865296603718605e-8, relative_change = 3.165047788299533e-13 Converged in 158 iterations to T = 695.3764639256419 K Iter 1: T = 963.5685569976428 K, F = -8300.938943336021, relative_change = 0.03643144300235721 Iter 2: T = 929.0152387273171 K, F = -7043.611847309802, relative_change = 0.035859740357229386 Iter 3: T = 896.306530804568 K, F = -5975.809070617922, relative_change = 0.03520793476709555 Iter 5: T = 836.3041499739219 K, F = -4298.925331159332, relative_change = 0.03363479774868425 Iter 10: T = 716.6399110856473 K, F = -1878.6105824573128, relative_change = 0.027908930932560194 Iter 15: T = 637.026858902205 K, F = -813.472806298237, relative_change = 0.019992847672261574 Iter 20: T = 590.3989244724977 K, F = -348.2958586546136, relative_change = 0.011984986805963894 Iter 25: T = 566.4121347391931 K, F = -147.62063654254976, relative_change = 0.006139304097887377 Iter 30: T = 555.2245711596851 K, F = -62.145750284148214, relative_change = 0.0028365707891086877 Iter 35: T = 550.2989797345546 K, F = -26.068006612080076, relative_change = 0.001240919224002224 Iter 40: T = 548.1916655953224 K, F = -10.916108701340136, relative_change = 0.0005291812393773675 Iter 45: T = 547.30173030714 K, F = -4.567764174127619, relative_change = 0.00022314840551030204 Iter 50: T = 546.9280124821843 K, F = -1.9107368595521863, relative_change = 9.364881780156931e-5 Iter 55: T = 546.7714485401632 K, F = -0.7991707403236145, relative_change = 3.9222274447133535e-5 Iter 60: T = 546.7059241398216 K, F = -0.334236365861926, relative_change = 1.6413252986539324e-5 Iter 65: T = 546.6785127362209 K, F = -0.13978402286034652, relative_change = 6.865974142667166e-6 Iter 70: T = 546.6670475044576 K, F = -0.05845976460888916, relative_change = 2.8717395773310186e-6 Iter 75: T = 546.6622523529992 K, F = -0.024448644631055616, relative_change = 1.2010495238760262e-6 Iter 80: T = 546.6602469188573 K, F = -0.010224727914320192, relative_change = 5.023026535911834e-7 Iter 85: T = 546.6594082145597 K, F = -0.004276105551667658, relative_change = 2.1007061239265353e-7 Iter 90: T = 546.6590574570439 K, F = -0.0017883187988898264, relative_change = 8.78543263923621e-8 Iter 95: T = 546.6589107658236 K, F = -0.0007478963469779443, relative_change = 3.674177879106727e-8 Iter 100: T = 546.6588494177618 K, F = -0.0003127791956910875, relative_change = 1.536585946028163e-8 Iter 105: T = 546.6588237612623 K, F = -0.00013080799681733368, relative_change = 6.426187458056188e-9 Iter 110: T = 546.6588130314067 K, F = -5.470546658684072e-5, relative_change = 2.6875085978822372e-9 Iter 115: T = 546.6588085440527 K, F = -2.287847979551283e-5, relative_change = 1.1239482522686134e-9 Iter 120: T = 546.6588066673876 K, F = -9.568053582431624e-6, relative_change = 4.70048594726031e-10 Iter 125: T = 546.6588058825438 K, F = -4.001473977333081e-6, relative_change = 1.9657992260704449e-10 Iter 130: T = 546.6588055543127 K, F = -1.6734641586635401e-6, relative_change = 8.221206925238484e-11 Iter 135: T = 546.6588054170427 K, F = -6.998631017496315e-7, relative_change = 3.4382089128795426e-11 Iter 140: T = 546.6588053596346 K, F = -2.926908408973361e-7, relative_change = 1.4378987203051133e-11 Iter 145: T = 546.6588053356259 K, F = -1.2240688490594565e-7, relative_change = 6.0134680900839405e-12 Iter 150: T = 546.6588053255851 K, F = -5.119182525104016e-8, relative_change = 2.514894549303654e-12 Iter 155: T = 546.658805321386 K, F = -2.1408732980843226e-8, relative_change = 1.0517442114821837e-12 Iter 160: T = 546.6588053196299 K, F = -8.953415592261038e-9, relative_change = 4.3985335473729654e-13 Converged in 164 iterations to T = 546.658805318996 K Iter 1: T = 966.9003005985458 K, F = -7541.7979945639345, relative_change = 0.03309969940145429 Iter 2: T = 935.8582642297499 K, F = -6393.702607842382, relative_change = 0.03210469202417214 Iter 3: T = 906.843486124336 K, F = -5418.921707448877, relative_change = 0.03100338931055369 Iter 5: T = 854.7647520291014 K, F = -3888.9414907917376, relative_change = 0.02848212733812987 Iter 10: T = 757.2328837277704 K, F = -1685.4596453626018, relative_change = 0.020690689116217027 Iter 15: T = 699.4656990599206 K, F = -722.3248349948174, relative_change = 0.012587318904731285 Iter 20: T = 669.4529313307509 K, F = -306.37025092592455, relative_change = 0.006520178094342647 Iter 25: T = 655.363115462379 K, F = -129.03154583875715, relative_change = 0.0030320880868302787 Iter 30: T = 649.138139162949 K, F = -54.135668423364585, relative_change = 0.0013306611160897343 Iter 35: T = 646.4705654159906 K, F = -22.67172800883468, relative_change = 0.0005682588257090383 Iter 40: T = 645.3432198991889 K, F = -9.487202935364222, relative_change = 0.0002397739362226198 Iter 45: T = 644.8696593031057 K, F = -3.9686511113119245, relative_change = 0.00010065222324451368 Iter 50: T = 644.6712419336602 K, F = -1.6599109083785262, relative_change = 4.216006946427051e-5 Iter 55: T = 644.5881967236843 K, F = -0.6942249714030376, relative_change = 1.764343352941417e-5 Iter 60: T = 644.5534548938111 K, F = -0.2903384947752825, relative_change = 7.3807234912455024e-6 Iter 65: T = 644.5389234626405 K, F = -0.12142395672234096, relative_change = 3.0870617052046562e-6 Iter 70: T = 644.5328458976679 K, F = -0.050781111620274766, relative_change = 1.2911081720355964e-6 Iter 75: T = 644.5303041267333 K, F = -0.021237295807089662, relative_change = 5.399677185975549e-7 Iter 80: T = 644.5292411171598 K, F = -0.008881695712554816, relative_change = 2.2582284829851506e-7 Iter 85: T = 644.5287965520048 K, F = -0.003714432086712516, relative_change = 9.444214430984182e-8 Iter 90: T = 644.5286106292232 K, F = -0.0015534200110227658, relative_change = 3.9496890753705055e-8 Iter 95: T = 644.5285328740388 K, F = -0.0006496588275817783, relative_change = 1.651808158514527e-8 Iter 100: T = 644.528500355882 K, F = -0.00027169508492419503, relative_change = 6.908060764419728e-9 Iter 105: T = 644.5284867563988 K, F = -0.00011362613088689022, relative_change = 2.889033843449499e-9 Iter 110: T = 644.5284810689323 K, F = -4.7519804961926315e-5, relative_change = 1.2082285075208984e-9 Iter 115: T = 644.5284786903657 K, F = -1.9873349711707622e-5, relative_change = 5.052955941788913e-10 Iter 120: T = 644.5284776956208 K, F = -8.311272636729594e-6, relative_change = 2.1132066496792076e-10 Iter 125: T = 644.5284772796066 K, F = -3.4758741899731938e-6, relative_change = 8.837684426102599e-11 Iter 130: T = 644.5284771056245 K, F = -1.4536520481223114e-6, relative_change = 3.696025051836621e-11 Iter 135: T = 644.5284770328631 K, F = -6.079349237353426e-7, relative_change = 1.545722521508689e-11 Iter 140: T = 644.5284770024333 K, F = -2.542451564280235e-7, relative_change = 6.464383752605676e-12 Iter 145: T = 644.5284769897073 K, F = -1.0632843461255703e-7, relative_change = 2.703484364739944e-12 Iter 150: T = 644.5284769843851 K, F = -4.4467415249993536e-8, relative_change = 1.1306191265914218e-12 Iter 155: T = 644.5284769821593 K, F = -1.8597170081680048e-8, relative_change = 4.728477262948169e-13 Converged in 160 iterations to T = 644.5284769812284 K Iter 1: T = 965.1800569554921 K, F = -7933.757145007844, relative_change = 0.03481994304450787 Iter 2: T = 932.3345544749211 K, F = -6729.1221014423045, relative_change = 0.03403044047985926 Iter 3: T = 901.4340320920596 K, F = -5706.177523389092, relative_change = 0.03314316972866493 Iter 5: T = 845.354903266737 K, F = -4100.095644079861, relative_change = 0.03105659438014996 Iter 10: T = 737.0370454652164 K, F = -1784.1589305162, relative_change = 0.024068173402271027 Iter 15: T = 669.3060024558075 K, F = -768.220544255363, relative_change = 0.015763222743017925 Iter 20: T = 632.2494431953943 K, F = -327.1169828726393, relative_change = 0.008674681223803812 Iter 25: T = 614.2061233880607 K, F = -138.10645882937402, relative_change = 0.004186942251930235 Iter 30: T = 606.0705627464318 K, F = -58.01552045095449, relative_change = 0.0018724854154329763 Iter 35: T = 602.5499481756425 K, F = -24.310511980770112, relative_change = 0.0008065674285989712 Iter 40: T = 601.0555946197951 K, F = -10.175505268552191, relative_change = 0.0003416043190193941 Iter 45: T = 600.4266881979753 K, F = -4.257030801304384, relative_change = 0.00014362708792332816 Iter 50: T = 600.1629733285679 K, F = -1.7806069332037422, relative_change = 6.020125394771119e-5 Iter 55: T = 600.0525618362799 K, F = -0.7447176629142969, relative_change = 2.5200518505138323e-5 Iter 60: T = 600.0063649136224 K, F = -0.31145797345852505, relative_change = 1.0543297310449469e-5 Iter 65: T = 599.9870410421979 K, F = -0.13025687051597645, relative_change = 4.410057271599209e-6 Iter 70: T = 599.97895890937 K, F = -0.054475228353490945, relative_change = 1.8444653508743573e-6 Iter 75: T = 599.9755787496202 K, F = -0.02278223470675017, relative_change = 7.713996051032024e-7 Iter 80: T = 599.9741651062817 K, F = -0.009527810262443093, relative_change = 3.22612404591204e-7 Iter 85: T = 599.9735739002284 K, F = -0.0039846453715381425, relative_change = 1.349210385270479e-7 Iter 90: T = 599.9733266501796 K, F = -0.0016664265138005008, relative_change = 5.642570819568419e-8 Iter 95: T = 599.9732232471486 K, F = -0.0006969195101341752, relative_change = 2.3597925774529494e-8 Iter 100: T = 599.9731800027472 K, F = -0.00029146006868530083, relative_change = 9.868937986718458e-9 Iter 105: T = 599.9731619174188 K, F = -0.00012189208224572257, relative_change = 4.1273083438771365e-9 Iter 110: T = 599.973154353918 K, F = -5.097672456905178e-5, relative_change = 1.7260897460172454e-9 Iter 115: T = 599.9731511907714 K, F = -2.131907442798342e-5, relative_change = 7.218713442158133e-10 Iter 120: T = 599.9731498679057 K, F = -8.915890829797046e-6, relative_change = 3.0189519659919237e-10 Iter 125: T = 599.9731493146676 K, F = -3.7287321589252187e-6, relative_change = 1.2625618175631543e-10 Iter 130: T = 599.9731490832968 K, F = -1.5594000736252056e-6, relative_change = 5.28018348050675e-11 Iter 135: T = 599.9731489865347 K, F = -6.521601231823659e-7, relative_change = 2.2082371098723297e-11 Iter 140: T = 599.9731489460677 K, F = -2.727414109005011e-7, relative_change = 9.235120083759064e-12 Iter 145: T = 599.9731489291439 K, F = -1.1406402272706728e-7, relative_change = 3.8622479211521146e-12 Iter 150: T = 599.9731489220662 K, F = -4.770320471969569e-8, relative_change = 1.6152472871497781e-12 Iter 155: T = 599.9731489191063 K, F = -1.9950756435793693e-8, relative_change = 6.755396288281952e-13 Iter 160: T = 599.9731489178682 K, F = -8.34298874430317e-9, relative_change = 2.824965327925186e-13 Converged in 162 iterations to T = 599.9731489176063 K Iter 1: T = 980.1102052724491 K, F = -4531.908648751692, relative_change = 0.019889794727550928 Iter 2: T = 962.2654986705519 K, F = -3828.1481442184045, relative_change = 0.01820683684947115 Iter 3: T = 946.3452048498548 K, F = -3232.167618259943, relative_change = 0.016544595896550718 Iter 5: T = 919.7553343075457 K, F = -2300.9510074271593, relative_change = 0.013371163196985204 Iter 10: T = 877.525739902565 K, F = -976.8672859765074, relative_change = 0.0070285907790595134 Iter 15: T = 857.527708450174 K, F = -411.65476806740054, relative_change = 0.003297031221466574 Iter 20: T = 848.6508347363161 K, F = -172.76060809660552, relative_change = 0.0014531792832978778 Iter 25: T = 844.8383860710201 K, F = -72.36057755030522, relative_change = 0.0006217885603669628 Iter 30: T = 843.2256210298892 K, F = -30.281676837807847, relative_change = 0.0002625812954269662 Iter 35: T = 842.5478667748276 K, F = -12.667618545494543, relative_change = 0.00011026562015068658 Iter 40: T = 842.2638437608391 K, F = -5.298356546959128, relative_change = 4.619375364815422e-5 Iter 45: T = 842.1449604660182 K, F = -2.215942334981507, relative_change = 1.933269371939498e-5 Iter 50: T = 842.0952242764985 K, F = -0.9267521605188002, relative_change = 8.087599590652502e-6 Iter 55: T = 842.0744208970586 K, F = -0.38758207732293737, relative_change = 3.382757016749018e-6 Iter 60: T = 842.0657201310689 K, F = -0.16209202296264946, relative_change = 1.4147839537951686e-6 Iter 65: T = 842.0620812716205 K, F = -0.06778891939095977, relative_change = 5.916925889711085e-7 Iter 70: T = 842.0605594404906 K, F = -0.028350153077564277, relative_change = 2.474551883651415e-7 Iter 75: T = 842.0599229896252 K, F = -0.011856375634130334, relative_change = 1.0348911401652114e-7 Iter 80: T = 842.0596568177632 K, F = -0.0049584784173413166, relative_change = 4.3280453185660116e-8 Iter 85: T = 842.0595455014226 K, F = -0.002073694982296592, relative_change = 1.8100414590825038e-8 Iter 90: T = 842.059498947584 K, F = -0.0008672440233263856, relative_change = 7.56981168383499e-9 Iter 95: T = 842.05947947821 K, F = -0.00036269181095605063, relative_change = 3.1657860263133573e-9 Iter 100: T = 842.0594713358848 K, F = -0.0001516820463571822, relative_change = 1.3239695807916997e-9 Iter 105: T = 842.059467930667 K, F = -6.343524079621687e-5, relative_change = 5.536998794419908e-10 Iter 110: T = 842.0594665065644 K, F = -2.6529375271255873e-5, relative_change = 2.3156390396370443e-10 Iter 115: T = 842.0594659109877 K, F = -1.1094901693819992e-5, relative_change = 9.684279153569466e-11 Iter 120: T = 842.0594656619103 K, F = -4.640019840129739e-6, relative_change = 4.0500807229533356e-11 Iter 125: T = 842.0594655577432 K, F = -1.940511278109014e-6, relative_change = 1.6937917499404855e-11 Iter 130: T = 842.0594655141794 K, F = -8.115469296576805e-7, relative_change = 7.083656302280383e-12 Iter 135: T = 842.0594654959604 K, F = -3.393980489985182e-7, relative_change = 2.9624646969360105e-12 Iter 140: T = 842.0594654883408 K, F = -1.4193962338815425e-7, relative_change = 1.2389320582209703e-12 Iter 145: T = 842.0594654851543 K, F = -5.935982638760606e-8, relative_change = 5.181272862916369e-13 Converged in 150 iterations to T = 842.0594654838216 K Iter 1: T = 976.4173762774114 K, F = -5373.323248058246, relative_change = 0.023582623722588514 Iter 2: T = 954.9968053372651 K, F = -4543.524132884044, relative_change = 0.021937924765137014 Iter 3: T = 935.6468127885703 K, F = -3840.131102394111, relative_change = 0.020261840082136412 Iter 5: T = 902.7382138756024 K, F = -2739.3534479175046, relative_change = 0.016908658455012986 Iter 10: T = 848.5298018529326 K, F = -1168.1501777929586, relative_change = 0.0095177796765866 Iter 15: T = 821.7594142274286 K, F = -493.6659720356573, relative_change = 0.004662790371954622 Iter 20: T = 809.5880986476432 K, F = -207.4862423486204, relative_change = 0.0021017659160142096 Iter 25: T = 804.2992611100589 K, F = -86.96510953948473, relative_change = 0.0009086566908384871 Iter 30: T = 802.0501791309824 K, F = -36.40436437514605, relative_change = 0.00038546188450161174 Iter 35: T = 801.1028770060143 K, F = -15.230849944948131, relative_change = 0.00016217831347817264 Iter 40: T = 800.7055154499571 K, F = -6.370797420103318, relative_change = 6.7996696040039e-5 Iter 45: T = 800.5391251140078 K, F = -2.664531822031201, relative_change = 2.8467188190014706e-5 Iter 50: T = 800.4695020538212 K, F = -1.1143719848719134, relative_change = 1.191060093004667e-5 Iter 55: T = 800.4403784451068 K, F = -0.46604943854317205, relative_change = 4.9820801312041546e-6 Iter 60: T = 800.428197481969 K, F = -0.19490844961982556, relative_change = 2.083727163303539e-6 Iter 65: T = 800.423103061414 K, F = -0.08151321773612674, relative_change = 8.714678786811063e-7 Iter 70: T = 800.4209724795626 K, F = -0.03408983197875526, relative_change = 3.6446322321602375e-7 Iter 75: T = 800.4200814387826 K, F = -0.01425678024471877, relative_change = 1.5242373810229965e-7 Iter 80: T = 800.4197087938369 K, F = -0.0059623567024295054, relative_change = 6.374557897331374e-8 Iter 85: T = 800.4195529490866 K, F = -0.002493528942323575, relative_change = 2.6659188874744253e-8 Iter 90: T = 800.4194877729187 K, F = -0.001042823611142052, relative_change = 1.1149195791919952e-8 Iter 95: T = 800.4194605154613 K, F = -0.0004361212945059867, relative_change = 4.66272765394702e-9 Iter 100: T = 800.4194491160661 K, F = -0.0001823911327000216, relative_change = 1.950008510604193e-9 Iter 105: T = 800.4194443487027 K, F = -7.627814872290806e-5, relative_change = 8.155168576399995e-10 Iter 110: T = 800.4194423549344 K, F = -3.190043332690351e-5, relative_change = 3.4105889941237215e-10 Iter 115: T = 800.4194415211167 K, F = -1.3341142174772003e-5, relative_change = 1.4263490539366956e-10 Iter 120: T = 800.4194411724042 K, F = -5.579424910973074e-6, relative_change = 5.96516201951126e-11 Iter 125: T = 800.4194410265684 K, F = -2.3333816556725395e-6, relative_change = 2.4947014904963198e-11 Iter 130: T = 800.4194409655782 K, F = -9.758487828914753e-7, relative_change = 1.0433147137089002e-11 Iter 135: T = 800.4194409400715 K, F = -4.0811388202222076e-7, relative_change = 4.363290967946999e-12 Iter 140: T = 800.4194409294041 K, F = -1.7067675983639674e-7, relative_change = 1.8247660701708657e-12 Iter 145: T = 800.4194409249429 K, F = -7.138028990105738e-8, relative_change = 7.631521199413456e-13 Iter 150: T = 800.4194409230772 K, F = -2.985276503775225e-8, relative_change = 3.1916655082941716e-13 Converged in 153 iterations to T = 800.4194409225308 K Iter 1: T = 980.8403242432714 K, F = -4365.550346727389, relative_change = 0.01915967575672862 Iter 2: T = 963.6924834461374 K, F = -3686.878540093081, relative_change = 0.017482805685383886 Iter 3: T = 948.4307621698485 K, F = -3112.2659683588186, relative_change = 0.01583671299553292 Iter 5: T = 923.0278003290425 K, F = -2214.735964123612, relative_change = 0.012722047387387417 Iter 10: T = 882.9481709817732 K, F = -939.5226912616907, relative_change = 0.0066065977613708774 Iter 15: T = 864.1043803152055 K, F = -395.72991336565866, relative_change = 0.0030768190616239114 Iter 20: T = 855.772420828812 K, F = -166.0379952726097, relative_change = 0.001351275913455367 Iter 25: T = 852.2006045621199 K, F = -69.53734246244613, relative_change = 0.0005772517849937113 Iter 30: T = 850.6908661737408 K, F = -29.09884561344381, relative_change = 0.00024360299174184087 Iter 35: T = 850.0566299957633 K, F = -12.172568633660125, relative_change = 0.0001022657271534835 Iter 40: T = 849.7908831338518 K, F = -5.091254677065663, relative_change = 4.2836998362686536e-5 Iter 45: T = 849.6796565738914 K, F = -2.1293182747142176, relative_change = 1.7926909277561225e-5 Iter 50: T = 849.6331248765279 K, F = -0.8905229158286865, relative_change = 7.499342293208546e-6 Iter 55: T = 849.6136620661185 K, F = -0.3724302196536369, relative_change = 3.136681030571859e-6 Iter 60: T = 849.6055220142194 K, F = -0.1557552730556211, relative_change = 1.3118615828741713e-6 Iter 65: T = 849.6021176647148 K, F = -0.06513880404880479, relative_change = 5.486473955873853e-7 Iter 70: T = 849.6006939106503 K, F = -0.027241841289440405, relative_change = 2.2945285452802576e-7 Iter 75: T = 849.600098477171 K, F = -0.011392866076684216, relative_change = 9.596026707208042e-8 Iter 80: T = 849.5998494593371 K, F = -0.004764633127842144, relative_change = 4.013178970362443e-8 Iter 85: T = 849.5997453170278 K, F = -0.0019926265587308922, relative_change = 1.6783604222802464e-8 Iter 90: T = 849.5997017634569 K, F = -0.0008333402391003109, relative_change = 7.019105566245815e-9 Iter 95: T = 849.599683548831 K, F = -0.0003485128418740935, relative_change = 2.9354740875777925e-9 Iter 100: T = 849.5996759312565 K, F = -0.00014575223444901475, relative_change = 1.2276503884219097e-9 Iter 105: T = 849.5996727454958 K, F = -6.095532685068683e-5, relative_change = 5.134180776269517e-10 Iter 110: T = 849.5996714131726 K, F = -2.5492245821157056e-5, relative_change = 2.147175746211031e-10 Iter 115: T = 849.5996708559791 K, F = -1.0661161950586973e-5, relative_change = 8.979745683768148e-11 Iter 120: T = 849.5996706229541 K, F = -4.458625850523035e-6, relative_change = 3.7554373974079126e-11 Iter 125: T = 849.5996705255004 K, F = -1.864652191541083e-6, relative_change = 1.5705701289725835e-11 Iter 130: T = 849.599670484744 K, F = -7.798215908572104e-7, relative_change = 6.5683268030577005e-12 Iter 135: T = 849.5996704676992 K, F = -3.2612956601951737e-7, relative_change = 2.7469431406810424e-12 Iter 140: T = 849.5996704605709 K, F = -1.3639377716145873e-7, relative_change = 1.1488254658818416e-12 Iter 145: T = 849.5996704575897 K, F = -5.7042071510693404e-8, relative_change = 4.804572887636837e-13 Converged in 150 iterations to T = 849.5996704563429 K Iter 1: T = 967.2953551577616 K, F = -7451.784437452682, relative_change = 0.03270464484223835 Iter 2: T = 936.6646507512252 K, F = -6316.716080536099, relative_change = 0.03166634083706596 Iter 3: T = 908.0765993930123 K, F = -5353.035968955077, relative_change = 0.03052111696036 Iter 5: T = 856.8905769025511 K, F = -3840.6047878852855, relative_change = 0.027915123089102514 Iter 10: T = 761.6677945168393 K, F = -1663.071319136146, relative_change = 0.020000809368855267 Iter 15: T = 705.889409061784 K, F = -712.0678927157019, relative_change = 0.011991972389993324 Iter 20: T = 677.1917478126973 K, F = -301.8034059326002, relative_change = 0.006143729038564971 Iter 25: T = 663.8059177608773 K, F = -127.05471716824059, relative_change = 0.0028388395311233095 Iter 30: T = 657.9122340412744 K, F = -53.29522546826851, relative_change = 0.0012419595142508107 Iter 35: T = 655.3906907970384 K, F = -22.317669257783763, relative_change = 0.0005296339868989022 Iter 40: T = 654.325813948426 K, F = -9.338666725877202, relative_change = 0.00022334097983809422 Iter 45: T = 653.8786298007066 K, F = -3.906449158798807, relative_change = 9.372993004584601e-5 Iter 50: T = 653.6912878566916 K, F = -1.633882828505644, relative_change = 3.925629796609291e-5 Iter 55: T = 653.6128823404464 K, F = -0.6833371790269114, relative_change = 1.6427499822591427e-5 Iter 60: T = 653.5800822562418 K, F = -0.2857846455546407, relative_change = 6.871935456103704e-6 Iter 65: T = 653.5663631261834 K, F = -0.11951940483205048, relative_change = 2.8742332151743565e-6 Iter 70: T = 653.5606253172084 K, F = -0.0499845916733872, relative_change = 1.2020924884292036e-6 Iter 75: T = 653.5582256436314 K, F = -0.020904179275627544, relative_change = 5.027388505703632e-7 Iter 80: T = 653.557222062154 K, F = -0.008742381984191305, relative_change = 2.1025303813294103e-7 Iter 85: T = 653.5568023507631 K, F = -0.0036561693487638935, relative_change = 8.793061951232358e-8 Iter 90: T = 653.5566268221617 K, F = -0.0015290538243384333, relative_change = 3.6773685553775514e-8 Iter 95: T = 653.5565534139544 K, F = -0.0006394685952477164, relative_change = 1.5379203298257182e-8 Iter 100: T = 653.5565227137567 K, F = -0.00026743340813628613, relative_change = 6.431768038136755e-9 Iter 105: T = 653.5565098745659 K, F = -0.00011184384538281966, relative_change = 2.689842463178163e-9 Iter 110: T = 653.5565045050627 K, F = -4.6774432778617925e-5, relative_change = 1.1249243082598296e-9 Iter 115: T = 653.5565022594723 K, F = -1.956162579347387e-5, relative_change = 4.704567734319901e-10 Iter 120: T = 653.5565013203395 K, F = -8.180905766042024e-6, relative_change = 1.9675064830543115e-10 Iter 125: T = 653.556500927583 K, F = -3.4213530974991357e-6, relative_change = 8.228348561780622e-11 Iter 130: T = 653.5565007633276 K, F = -1.4308506041671443e-6, relative_change = 3.441193349384335e-11 Iter 135: T = 653.5565006946339 K, F = -5.983985464919073e-7, relative_change = 1.4391475207142772e-11 Iter 140: T = 653.5565006659054 K, F = -2.502579448115938e-7, relative_change = 6.018699460442301e-12 Iter 145: T = 653.5565006538909 K, F = -1.0466153116395205e-7, relative_change = 2.5171081048991897e-12 Iter 150: T = 653.5565006488662 K, F = -4.377101220365276e-8, relative_change = 1.0526921243766015e-12 Iter 155: T = 653.5565006467648 K, F = -1.8305178095534558e-8, relative_change = 4.402392324655268e-13 Converged in 159 iterations to T = 653.5565006460063 K Iter 1: T = 973.4966264959412 K, F = -6038.818864116544, relative_change = 0.026503373504058757 Iter 2: T = 949.1863109379098 K, F = -5110.340172590201, relative_change = 0.024972162097300122 Iter 3: T = 927.0017747670528 K, F = -4322.802666585286, relative_change = 0.023372161940405516 Iter 5: T = 888.688422812547 K, F = -3088.9970147436297, relative_change = 0.020043647210110378 Iter 10: T = 823.4401349197153 K, F = -1322.6758283632557, relative_change = 0.012028608436736447 Iter 15: T = 789.8497460931003 K, F = -560.6289464739332, relative_change = 0.006166707926294086 Iter 20: T = 774.1754798242387 K, F = -236.02251865523948, relative_change = 0.00285057649453567 Iter 25: T = 767.2727568734324 K, F = -99.00485229200434, relative_change = 0.0012473331739774227 Iter 30: T = 764.3192166443853 K, F = -41.459064524979304, relative_change = 0.0005319712365200421 Iter 35: T = 763.0718484084789 K, F = -17.34828747800424, relative_change = 0.00022433486745357145 Iter 40: T = 762.5480191693181 K, F = -7.256953900067598, relative_change = 9.414851103270363e-5 Iter 45: T = 762.3285660531823 K, F = -3.0352417498969513, relative_change = 3.943186913286077e-5 Iter 50: T = 762.2367212109403 K, F = -1.2694263513422783, relative_change = 1.6501016251969687e-5 Iter 55: T = 762.1982988799359 K, F = -0.5308983603027209, relative_change = 6.902696749646067e-6 Iter 60: T = 762.1822281510943 K, F = -0.22202962645396895, relative_change = 2.887100728337943e-6 Iter 65: T = 762.175506821537 K, F = -0.09285571981236507, relative_change = 1.2074743211500263e-6 Iter 70: T = 762.1726958184813 K, F = -0.038833419651817636, relative_change = 5.049896821076715e-7 Iter 75: T = 762.1715202124549 K, F = -0.016240608382317556, relative_change = 2.1119437761481635e-7 Iter 80: T = 762.1710285580549 K, F = -0.006792017868290312, relative_change = 8.832430154601154e-8 Iter 85: T = 762.1708229419775 K, F = -0.002840503246368642, relative_change = 3.6938328548759634e-8 Iter 90: T = 762.1707369508196 K, F = -0.0011879324261476754, relative_change = 1.5448059029111046e-8 Iter 95: T = 762.17070098828 K, F = -0.0004968075335424205, relative_change = 6.460564304416774e-9 Iter 100: T = 762.1706859483148 K, F = -0.0002077708454215621, relative_change = 2.701885424266403e-9 Iter 105: T = 762.1706796584215 K, F = -8.689225024782754e-5, relative_change = 1.1299608141591996e-9 Iter 110: T = 762.1706770279128 K, F = -3.633937543578991e-5, relative_change = 4.725630975271284e-10 Iter 115: T = 762.1706759278028 K, F = -1.5197561839985774e-5, relative_change = 1.9763154597989974e-10 Iter 120: T = 762.1706754677236 K, F = -6.355802168456215e-6, relative_change = 8.265187701356417e-11 Iter 125: T = 762.170675275313 K, F = -2.6580730823067e-6, relative_change = 3.456601132840292e-11 Iter 130: T = 762.1706751948446 K, F = -1.1116388495269192e-6, relative_change = 1.4455931005407173e-11 Iter 135: T = 762.1706751611916 K, F = -4.648997611322869e-7, relative_change = 6.045631524691251e-12 Iter 140: T = 762.1706751471177 K, F = -1.944263401387758e-7, relative_change = 2.5283515061695245e-12 Iter 145: T = 762.1706751412318 K, F = -8.131199991101568e-8, relative_change = 1.0573943700503286e-12 Iter 150: T = 762.1706751387701 K, F = -3.400522063934375e-8, relative_change = 4.4220937741371437e-13 Converged in 154 iterations to T = 762.1706751378816 K Iter 1: T = 970.0107739893859 K, F = -6833.073673636943, relative_change = 0.029989226010614073 Iter 2: T = 942.1790060946691 K, F = -5787.979773324268, relative_change = 0.028692225530910817 Iter 3: T = 916.4618987445581 K, F = -4900.997363940407, relative_change = 0.027295351715284414 Iter 5: T = 871.1658259407601 K, F = -3509.872841779501, relative_change = 0.024242780063200076 Iter 10: T = 790.3780992601837 K, F = -1511.65514934806, relative_change = 0.015940526365052887 Iter 15: T = 746.0505020815962 K, F = -643.8246684713198, relative_change = 0.008802843099821987 Iter 20: T = 724.4201661349805 K, F = -271.8584150934249, relative_change = 0.00425839819019297 Iter 25: T = 714.6550124416407 K, F = -114.21072835792273, relative_change = 0.0019066909310087902 Iter 30: T = 710.4265909694434 K, F = -47.859991469649735, relative_change = 0.0008217510973056451 Iter 35: T = 708.6313036642125 K, F = -20.032789391239188, relative_change = 0.00034811843033555567 Iter 40: T = 707.8756569264309 K, F = -8.380987478028233, relative_change = 0.00014638089083425482 Iter 45: T = 707.5587807957949 K, F = -3.505562438729573, relative_change = 6.135815261111483e-5 Iter 50: T = 707.4261090343663 K, F = -1.4661615460352486, relative_change = 2.5685265835963928e-5 Iter 55: T = 707.3705977643051 K, F = -0.6131826291003305, relative_change = 1.0746185414503148e-5 Iter 60: T = 707.3473776747818 K, F = -0.2564431608957568, relative_change = 4.494935680128943e-6 Iter 65: T = 707.337665948855 K, F = -0.10724809316594797, relative_change = 1.8799674455925652e-6 Iter 70: T = 707.3336042478925 K, F = -0.04485252094538972, relative_change = 7.862478676032953e-7 Iter 75: T = 707.3319055713462 K, F = -0.018757875225451914, relative_change = 3.2882227616804805e-7 Iter 80: T = 707.3311951602086 K, F = -0.00784477011328144, relative_change = 1.3751810738875992e-7 Iter 85: T = 707.3308980570312 K, F = -0.0032807770154202887, relative_change = 5.751183803584626e-8 Iter 90: T = 707.3307738048021 K, F = -0.0013720602096646273, relative_change = 2.4052159040183746e-8 Iter 95: T = 707.3307218410131 K, F = -0.0005738119808296194, relative_change = 1.0058903940396576e-8 Iter 100: T = 707.3307001091318 K, F = -0.00023997502632500112, relative_change = 4.206754427661151e-9 Iter 105: T = 707.3306910205988 K, F = -0.00010036042166383652, relative_change = 1.7593150441099806e-9 Iter 110: T = 707.3306872196657 K, F = -4.1971927969286504e-5, relative_change = 7.357665997380119e-10 Iter 115: T = 707.33068563007 K, F = -1.755316092388881e-5, relative_change = 3.077063716315856e-10 Iter 120: T = 707.330684965282 K, F = -7.340941082234487e-6, relative_change = 1.2868647217888213e-10 Iter 125: T = 707.3306846872598 K, F = -3.070068458121966e-6, relative_change = 5.381820607698783e-11 Iter 130: T = 707.3306845709876 K, F = -1.2839403765729784e-6, relative_change = 2.2507435509538974e-11 Iter 135: T = 707.3306845223611 K, F = -5.369575756253298e-7, relative_change = 9.412849871548766e-12 Iter 140: T = 707.3306845020251 K, F = -2.245625199126522e-7, relative_change = 3.936574103721623e-12 Iter 145: T = 707.3306844935202 K, F = -9.391369670819216e-8, relative_change = 1.6463042301591608e-12 Iter 150: T = 707.3306844899633 K, F = -3.927596670116884e-8, relative_change = 6.885064947042202e-13 Iter 155: T = 707.3306844884759 K, F = -1.6424591908759112e-8, relative_change = 2.8792259368688505e-13 Converged in 157 iterations to T = 707.3306844881611 K Iter 1: T = 973.4823934339584 K, F = -6042.0618808284935, relative_change = 0.026517606566041692 Iter 2: T = 949.1578610692507 K, F = -5113.104484246461, relative_change = 0.02498713128123762 Iter 3: T = 926.9592378580599 K, F = -4325.158740148469, relative_change = 0.023387704112973935 Iter 5: T = 888.6185953288422 K, F = -3090.7074045122067, relative_change = 0.02005973212842143 Iter 10: T = 823.3125118900264 K, F = -1323.4367563243939, relative_change = 0.012042323182095938 Iter 15: T = 789.684789074311 K, F = -560.9607061968192, relative_change = 0.006175300227546324 Iter 20: T = 773.9907883621263 K, F = -236.16445093860963, relative_change = 0.00285496352106575 Iter 25: T = 767.07883543294 K, F = -99.06485503821528, relative_change = 0.0012493414723815056 Iter 30: T = 764.1212380160636 K, F = -41.48427889273159, relative_change = 0.0005328446954086792 Iter 35: T = 762.8721362931258 K, F = -17.358854114687, relative_change = 0.00022470628853403626 Iter 40: T = 762.3475754897329 K, F = -7.2613768330795985, relative_change = 9.430493578721108e-5 Iter 45: T = 762.1278152571856 K, F = -3.0370921482487625, relative_change = 3.9497480309163276e-5 Iter 50: T = 762.0358417700085 K, F = -1.270200328331846, relative_change = 1.6528489402799114e-5 Iter 55: T = 761.9973656021963 K, F = -0.5312220674312724, relative_change = 6.914192264409411e-6 Iter 60: T = 761.9812723518642 K, F = -0.22216500826657437, relative_change = 2.8919093250519113e-6 Iter 65: T = 761.9745416024494 K, F = -0.09291233873841187, relative_change = 1.20948551482808e-6 Iter 70: T = 761.9717266597039 K, F = -0.038857098474009755, relative_change = 5.058308190017072e-7 Iter 75: T = 761.9705494060186 K, F = -0.016250511167210435, relative_change = 2.1154615664006126e-7 Iter 80: T = 761.970057062542 K, F = -0.006796159333744667, relative_change = 8.847142069353071e-8 Iter 85: T = 761.9698511582835 K, F = -0.0028422352572906595, relative_change = 3.699985570291537e-8 Iter 90: T = 761.9697650466047 K, F = -0.0011886567734662457, relative_change = 1.547379044372063e-8 Iter 95: T = 761.9697290336619 K, F = -0.0004971104661242176, relative_change = 6.471325518734062e-9 Iter 100: T = 761.9697139726175 K, F = -0.00020789753606564876, relative_change = 2.7063859015593287e-9 Iter 105: T = 761.9697076739084 K, F = -8.694523263530485e-5, relative_change = 1.1318429526690509e-9 Iter 110: T = 761.969705039713 K, F = -3.636153353792082e-5, relative_change = 4.733502333955421e-10 Iter 115: T = 761.969703938061 K, F = -1.5206827188474215e-5, relative_change = 1.9796071694592452e-10 Iter 120: T = 761.969703477337 K, F = -6.35967799167414e-6, relative_change = 8.278955253437931e-11 Iter 125: T = 761.9697032846567 K, F = -2.6596939275425058e-6, relative_change = 3.4623587969867286e-11 Iter 130: T = 761.9697032040755 K, F = -1.112314286788596e-6, relative_change = 1.4479978759714343e-11 Iter 135: T = 761.9697031703755 K, F = -4.6518483376445374e-7, relative_change = 6.055722374218819e-12 Iter 140: T = 761.9697031562818 K, F = -1.945458111274334e-7, relative_change = 2.5325748731422254e-12 Iter 145: T = 761.9697031503875 K, F = -8.136167684025253e-8, relative_change = 1.0591569009674452e-12 Iter 150: T = 761.9697031479226 K, F = -3.40268864196247e-8, relative_change = 4.4295807276806104e-13 Converged in 154 iterations to T = 761.9697031470328 K Iter 1: T = 964.2778806782188 K, F = -8139.3188679757495, relative_change = 0.03572211932178113 Iter 2: T = 930.4784803492242 K, F = -6905.152358352848, relative_change = 0.035051514720240144 Iter 3: T = 898.570714312131 K, F = -5857.063105001157, relative_change = 0.03429178289552452 Iter 5: T = 840.3169230633664 K, F = -4211.283329847729, relative_change = 0.0324791665503448 Iter 10: T = 725.810449683049 K, F = -1836.779933471677, relative_change = 0.026125342892730476 Iter 15: T = 651.7969344416874 K, F = -793.2402727928736, relative_change = 0.017937587727538 Iter 20: T = 609.85713324447 K, F = -338.7127844858515, relative_change = 0.01030738360942089 Iter 25: T = 588.8717619663593 K, F = -143.27356900652921, relative_change = 0.005121270095913883 Iter 30: T = 579.2544064382231 K, F = -60.24772399008577, relative_change = 0.0023260805263097054 Iter 35: T = 575.0585266373995 K, F = -25.258061175559483, relative_change = 0.0010092565050471272 Iter 40: T = 573.2709529628834 K, F = -10.574363518168534, relative_change = 0.0004288169292826668 Iter 45: T = 572.5174362100291 K, F = -4.424299816768738, relative_change = 0.00018054188325335172 Iter 50: T = 572.2012541642612 K, F = -1.8506423537208856, relative_change = 7.571770560905314e-5 Iter 55: T = 572.0688378982352 K, F = -0.7740216266740683, relative_change = 3.1703445506742755e-5 Iter 60: T = 572.0134273686913 K, F = -0.3237157488361012, relative_change = 1.3265311612092325e-5 Iter 65: T = 571.9902483392427 K, F = -0.13538365748346243, relative_change = 5.548858535209201e-6 Iter 70: T = 571.9805535976934 K, F = -0.05661938867922223, relative_change = 2.3207995436167247e-6 Iter 75: T = 571.9764989670067 K, F = -0.023678961593560227, relative_change = 9.706211812437576e-7 Iter 80: T = 571.9748032415977 K, F = -0.00990283450511062, relative_change = 4.0593150823436867e-7 Iter 85: T = 571.9740940636575 K, F = -0.004141485399068168, relative_change = 1.697664782019799e-7 Iter 90: T = 571.9737974760427 K, F = -0.0017320189588569956, relative_change = 7.099855640674901e-8 Iter 95: T = 571.9736734393973 K, F = -0.0007243510660780439, relative_change = 2.9692477011406167e-8 Iter 100: T = 571.9736215657625 K, F = -0.00030293227604927253, relative_change = 1.2417754245961402e-8 Iter 105: T = 571.9735998715839 K, F = -0.00012668989722536272, relative_change = 5.193254128572974e-9 Iter 110: T = 571.9735907988185 K, F = -5.298322806535083e-5, relative_change = 2.1718810631389365e-9 Iter 115: T = 571.9735870044794 K, F = -2.2158218430767818e-5, relative_change = 9.083066147505927e-10 Iter 120: T = 571.9735854176415 K, F = -9.266831845489154e-6, relative_change = 3.798646899575251e-10 Iter 125: T = 571.9735847540069 K, F = -3.875499545780148e-6, relative_change = 1.588639425066222e-10 Iter 130: T = 571.9735844764671 K, F = -1.6207800467293865e-6, relative_change = 6.643879213834055e-11 Iter 135: T = 571.9735843603966 K, F = -6.778291700704209e-7, relative_change = 2.7785479880503773e-11 Iter 140: T = 571.9735843118543 K, F = -2.834754284086749e-7, relative_change = 1.1620185680457803e-11 Iter 145: T = 571.9735842915535 K, F = -1.1855235360069827e-7, relative_change = 4.85968173559705e-12 Iter 150: T = 571.9735842830635 K, F = -4.9579793104381764e-8, relative_change = 2.0323680441857736e-12 Iter 155: T = 571.9735842795129 K, F = -2.0734759353935317e-8, relative_change = 8.49956397102055e-13 Iter 160: T = 571.973584278028 K, F = -8.671963647177705e-9, relative_change = 3.554799383792863e-13 Converged in 163 iterations to T = 571.9735842775933 K Iter 1: T = 963.4740245834248 K, F = -8322.47824383914, relative_change = 0.03652597541657524 Iter 2: T = 928.8199686532774 K, F = -7062.068368153566, relative_change = 0.03596781547393623 Iter 3: T = 896.0039129012041 K, F = -5991.642104112876, relative_change = 0.035330911112574644 Iter 5: T = 835.7658542014167 K, F = -4310.620450613189, relative_change = 0.03379135845143464 Iter 10: T = 715.3934454863962 K, F = -1884.2175215274144, relative_change = 0.02815882814487864 Iter 15: T = 634.9835681781307 K, F = -816.210950136164, relative_change = 0.020294542257345484 Iter 20: T = 587.6603045500677 K, F = -349.6098590141724, relative_change = 0.012243177731118257 Iter 25: T = 563.212330532291 K, F = -148.22352131250437, relative_change = 0.0063015180342001825 Iter 30: T = 551.777908901483 K, F = -62.410848142188215, relative_change = 0.0029195297120861155 Iter 35: T = 546.736203066919 K, F = -26.181535896941217, relative_change = 0.001278926964861132 Iter 40: T = 544.577722856924 K, F = -10.964088545657336, relative_change = 0.0005457177589717378 Iter 45: T = 543.6659032065755 K, F = -4.5879202444326195, relative_change = 0.00023018133556887505 Iter 50: T = 543.2829456761154 K, F = -1.919182378089136, relative_change = 9.661094767966895e-5 Iter 55: T = 543.1225021120896 K, F = -0.8027055727451812, relative_change = 4.046475207697477e-5 Iter 60: T = 543.0553524890091 K, F = -0.33571516862083073, relative_change = 1.6933517631148453e-5 Iter 65: T = 543.0272609214044 K, F = -0.14040256225517117, relative_change = 7.083668111803838e-6 Iter 70: T = 543.0155111535289 K, F = -0.05871846029230218, relative_change = 2.962801584453241e-6 Iter 75: T = 543.0105969910778 K, F = -0.02455683690034638, relative_change = 1.239136204769155e-6 Iter 80: T = 543.008541782565 K, F = -0.010269975676020698, relative_change = 5.182315639555322e-7 Iter 85: T = 543.0076822615845 K, F = -0.0042950287874430615, relative_change = 2.1673237888256323e-7 Iter 90: T = 543.0073227982052 K, F = -0.0017962327364710318, relative_change = 9.064037523376908e-8 Iter 95: T = 543.0071724660751 K, F = -0.000751206051922082, relative_change = 3.790694089185619e-8 Iter 100: T = 543.0071095953389 K, F = -0.00031416335365808123, relative_change = 1.5853144701829113e-8 Iter 105: T = 543.0070833020385 K, F = -0.0001313868685863806, relative_change = 6.629976079429648e-9 Iter 110: T = 543.007072305865 K, F = -5.494755767854187e-5, relative_change = 2.772735449695732e-9 Iter 115: T = 543.0070677071337 K, F = -2.2979725127991735e-5, relative_change = 1.159591140127549e-9 Iter 120: T = 543.0070657838892 K, F = -9.61039496130689e-6, relative_change = 4.849548450254307e-10 Iter 125: T = 543.0070649795655 K, F = -4.019181945452699e-6, relative_change = 2.0281390921795221e-10 Iter 130: T = 543.0070646431877 K, F = -1.6808699883907874e-6, relative_change = 8.481920422233358e-11 Iter 135: T = 543.0070645025105 K, F = -7.029600242736134e-7, relative_change = 3.547241032581203e-11 Iter 140: T = 543.0070644436776 K, F = -2.9398632264698854e-7, relative_change = 1.4834987925900446e-11 Iter 145: T = 543.0070644190729 K, F = -1.229481220443862e-7, relative_change = 6.204145451433817e-12 Iter 150: T = 543.007064408783 K, F = -5.1418558244531454e-8, relative_change = 2.5946570714248706e-12 Iter 155: T = 543.0070644044797 K, F = -2.1504548891604358e-8, relative_change = 1.085151582550304e-12 Iter 160: T = 543.0070644026799 K, F = -8.993776806631715e-9, relative_change = 4.538393799455565e-13 Converged in 165 iterations to T = 543.0070644019272 K Iter 1: T = 969.3143018758668 K, F = -6991.765507218299, relative_change = 0.03068569812413323 Iter 2: T = 940.7693393538259 K, F = -5923.52207428431, relative_change = 0.029448613795132507 Iter 3: T = 914.3260695974965 K, F = -5016.802348623125, relative_change = 0.02810813304618558 Iter 5: T = 867.5589766524458 K, F = -3594.4542468139257, relative_change = 0.025148778693721587 Iter 10: T = 783.2893636122225 K, F = -1550.1049941257952, relative_change = 0.0168810222925557 Iter 15: T = 736.3434124078286 K, F = -660.9917237622872, relative_change = 0.009496914847333096 Iter 20: T = 713.1677468207522 K, F = -279.3314398839074, relative_change = 0.004650821595847927 Iter 25: T = 702.6330245090497 K, F = -117.40055462163255, relative_change = 0.002095949932210702 Iter 30: T = 698.0558258654829 K, F = -49.206578117563716, relative_change = 0.0009060568850054564 Iter 35: T = 696.1094625410567 K, F = -20.598251993035248, relative_change = 0.0003843430863563369 Iter 40: T = 695.2896811152432 K, F = -8.61788192504042, relative_change = 0.00016170472825196482 Iter 45: T = 694.9458132750609 K, F = -3.6047070704296535, relative_change = 6.779762846602381e-5 Iter 50: T = 694.8018233215518 K, F = -1.507637749016291, relative_change = 2.838375836545592e-5 Iter 55: T = 694.7415733950301 K, F = -0.6305307030651033, relative_change = 1.1875678483145152e-5 Iter 60: T = 694.7163706226877 K, F = -0.26369872297667807, relative_change = 4.967469702461574e-6 Iter 65: T = 694.7058295541086 K, F = -0.11028252417158912, relative_change = 2.0776159549227974e-6 Iter 70: T = 694.7014209839753 K, F = -0.04612156817729207, relative_change = 8.689119317182767e-7 Iter 75: T = 694.6995772376719 K, F = -0.0192886080222473, relative_change = 3.6339426652820794e-7 Iter 80: T = 694.6988061557674 K, F = -0.008066729272640183, relative_change = 1.5197668256931826e-7 Iter 85: T = 694.6984836792002 K, F = -0.0033736030507407477, relative_change = 6.355861412485728e-8 Iter 90: T = 694.6983488154901 K, F = -0.0014108811779315333, relative_change = 2.658099779362515e-8 Iter 95: T = 694.6982924138482 K, F = -0.0005900473751413449, relative_change = 1.1116495339738196e-8 Iter 100: T = 694.6982688260031 K, F = -0.0002467648603944328, relative_change = 4.649051889070962e-9 Iter 105: T = 694.6982589612837 K, F = -0.00010320001176145066, relative_change = 1.9442891556836658e-9 Iter 110: T = 694.6982548357403 K, F = -4.3159477492449305e-5, relative_change = 8.131249695992357e-10 Iter 115: T = 694.6982531103887 K, F = -1.8049809935805072e-5, relative_change = 3.400585962014694e-10 Iter 120: T = 694.698252388826 K, F = -7.548645566513024e-6, relative_change = 1.422165572044654e-10 Iter 125: T = 694.6982520870598 K, F = -3.156933441217369e-6, relative_change = 5.94766574090863e-11 Iter 130: T = 694.6982519608576 K, F = -1.3202673546652832e-6, relative_change = 2.4873850105457175e-11 Iter 135: T = 694.6982519080783 K, F = -5.521507620009913e-7, relative_change = 1.0402525856648524e-11 Iter 140: T = 694.6982518860054 K, F = -2.3091632106453375e-7, relative_change = 4.350465789912346e-12 Iter 145: T = 694.6982518767743 K, F = -9.657235866544767e-8, relative_change = 1.8194241997054033e-12 Iter 150: T = 694.6982518729137 K, F = -4.0386659350133414e-8, relative_change = 7.608850646735399e-13 Iter 155: T = 694.6982518712991 K, F = -1.6889349918614016e-8, relative_change = 3.181955207993309e-13 Converged in 158 iterations to T = 694.6982518708264 K Iter 1: T = 966.435992842762 K, F = -7647.590958389958, relative_change = 0.03356400715723803 Iter 2: T = 934.9091679149349 K, F = -6484.205294485524, relative_change = 0.03262174128582605 Iter 3: T = 905.3898561105821 K, F = -5496.396625561994, relative_change = 0.03157452383335569 Iter 5: T = 852.2497247517066 K, F = -3945.824920876508, relative_change = 0.02915983504418954 Iter 10: T = 751.9274471335398 K, F = -1711.9007369970695, relative_change = 0.02153976353690958 Iter 15: T = 691.6922903440877 K, F = -734.5059408176943, relative_change = 0.013343684565261974 Iter 20: T = 660.0076245324642 K, F = -311.82318794897253, relative_change = 0.007010419316802903 Iter 25: T = 645.0079797262123 K, F = -131.4004413868435, relative_change = 0.003287459032787204 Iter 30: T = 638.350986164492 K, F = -55.14470132598425, relative_change = 0.0014487296713855474 Iter 35: T = 635.4921705421867 K, F = -23.09718184676681, relative_change = 0.0006198399376723188 Iter 40: T = 634.2828614433789 K, F = -9.665759402762404, relative_change = 0.00026175021542664326 Iter 45: T = 633.7746649699401 K, F = -4.043436725589134, relative_change = 0.00010991516783387979 Iter 50: T = 633.5616990839366 K, F = -1.6912067058985796, relative_change = 4.6046681172882523e-5 Iter 55: T = 633.4725583652946 K, F = -0.7073166774658954, relative_change = 1.927109686753595e-5 Iter 60: T = 633.4352653671442 K, F = -0.29581420310505985, relative_change = 8.06182339291443e-6 Iter 65: T = 633.4196666648933 K, F = -0.12371406841433413, relative_change = 3.3719743624802245e-6 Iter 70: T = 633.4131426945621 K, F = -0.0517388820593383, relative_change = 1.4102740395001831e-6 Iter 75: T = 633.4104142211064 K, F = -0.021637850058148778, relative_change = 5.898064050955997e-7 Iter 80: T = 633.4092731284778 K, F = -0.00904921284621224, relative_change = 2.466663490733015e-7 Iter 85: T = 633.4087959077365 K, F = -0.003784489852023676, relative_change = 1.0315920945533263e-7 Iter 90: T = 633.4085963279425 K, F = -0.0015827190225972676, relative_change = 4.314248273229277e-8 Iter 95: T = 633.4085128612226 K, F = -0.0006619120258719025, relative_change = 1.8042713617786937e-8 Iter 100: T = 633.4084779544319 K, F = -0.00027681951932601034, relative_change = 7.545680432215483e-9 Iter 105: T = 633.408463355993 K, F = -0.0001157692296160362, relative_change = 3.1556940368502216e-9 Iter 110: T = 633.4084572507512 K, F = -4.841607450961627e-5, relative_change = 1.3197489966528924e-9 Iter 115: T = 633.4084546974661 K, F = -2.0248180595372478e-5, relative_change = 5.519348028170385e-10 Iter 120: T = 633.408453629652 K, F = -8.468031749420124e-6, relative_change = 2.3082574996617907e-10 Iter 125: T = 633.4084531830791 K, F = -3.541431814524376e-6, relative_change = 9.653408034772213e-11 Iter 130: T = 633.408452996317 K, F = -1.4810683420241055e-6, relative_change = 4.037168524429989e-11 Iter 135: T = 633.4084529182109 K, F = -6.193992641567725e-7, relative_change = 1.6883888094991036e-11 Iter 140: T = 633.408452885546 K, F = -2.590401315116786e-7, relative_change = 7.061042604858167e-12 Iter 145: T = 633.4084528718852 K, F = -1.0833381991481872e-7, relative_change = 2.953016251111755e-12 Iter 150: T = 633.4084528661721 K, F = -4.5306698726044203e-8, relative_change = 1.2349921541876426e-12 Iter 155: T = 633.4084528637827 K, F = -1.8947222624188242e-8, relative_change = 5.1647266172338e-13 Converged in 160 iterations to T = 633.4084528627835 K Iter 1: T = 966.4972405113118 K, F = -7633.635618849295, relative_change = 0.03350275948868815 Iter 2: T = 935.034448571622 K, F = -6472.265661667948, relative_change = 0.03255342138695083 Iter 3: T = 905.5818773280449 K, F = -5486.174330125492, relative_change = 0.031498915669438105 Iter 5: T = 852.5825193502527 K, F = -3938.316764761223, relative_change = 0.029069727880623824 Iter 10: T = 752.6332009627521 K, F = -1708.4047456181709, relative_change = 0.021425294879262136 Iter 15: T = 692.7321177879817 K, F = -732.8909806889918, relative_change = 0.0132401515856503 Iter 20: T = 661.2764255872988 K, F = -311.09828156345463, relative_change = 0.006942505472250898 Iter 25: T = 646.4023900908185 K, F = -131.08494618847433, relative_change = 0.00325182872066896 Iter 30: T = 639.8053032135559 K, F = -55.010185580806706, relative_change = 0.001432197678656013 Iter 35: T = 636.9730623388263 K, F = -23.040438354355903, relative_change = 0.0006126059163139745 Iter 40: T = 635.7751534193867 K, F = -9.641940323888596, relative_change = 0.00025866599532926306 Iter 45: T = 635.2717763188219 K, F = -4.033459632635001, relative_change = 0.0001086147932922158 Iter 50: T = 635.0608351129998 K, F = -1.687031408648612, relative_change = 4.550099306733927e-5 Iter 55: T = 634.9725427510733 K, F = -0.7055700346801027, relative_change = 1.904255775810382e-5 Iter 60: T = 634.9356048283131 K, F = -0.29508365155588345, relative_change = 7.966188530935658e-6 Iter 65: T = 634.9201546722859 K, F = -0.1234085282159314, relative_change = 3.3319687316953008e-6 Iter 70: T = 634.9136928344128 K, F = -0.05161109890956023, relative_change = 1.3935414593566413e-6 Iter 75: T = 634.9109903470066 K, F = -0.021584409165418983, relative_change = 5.828083345504716e-7 Iter 80: T = 634.909860122319 K, F = -0.009026863146453012, relative_change = 2.437396189030666e-7 Iter 85: T = 634.9093874467266 K, F = -0.0037751429256348557, relative_change = 1.0193520656199796e-7 Iter 90: T = 634.9091897677763 K, F = -0.0015788100227583368, relative_change = 4.263058843713512e-8 Iter 95: T = 634.9091070960134 K, F = -0.0006602772345538632, relative_change = 1.7828633011430917e-8 Iter 100: T = 634.9090725216835 K, F = -0.00027613583002639164, relative_change = 7.456149316670307e-9 Iter 105: T = 634.9090580622839 K, F = -0.00011548330284505415, relative_change = 3.1182510537471935e-9 Iter 110: T = 634.9090520151898 K, F = -4.8296496213851015e-5, relative_change = 1.3040898842515082e-9 Iter 115: T = 634.9090494862228 K, F = -2.019817029358384e-5, relative_change = 5.453859415212423e-10 Iter 120: T = 634.9090484285787 K, F = -8.447116021770285e-6, relative_change = 2.2808691551003015e-10 Iter 125: T = 634.9090479862593 K, F = -3.5326859048612214e-6, relative_change = 9.538870214419704e-11 Iter 130: T = 634.909047801276 K, F = -1.4774104383219466e-6, relative_change = 3.989266757267596e-11 Iter 135: T = 634.9090477239138 K, F = -6.178708115700537e-7, relative_change = 1.668359330878875e-11 Iter 140: T = 634.90904769156 K, F = -2.584011726813884e-7, relative_change = 6.977283917363862e-12 Iter 145: T = 634.9090476780292 K, F = -1.0806616490555143e-7, relative_change = 2.917975590663824e-12 Iter 150: T = 634.9090476723705 K, F = -4.5194983755436624e-8, relative_change = 1.2203436620487808e-12 Iter 155: T = 634.909047670004 K, F = -1.8901768705781308e-8, relative_change = 5.103808371044451e-13 Converged in 160 iterations to T = 634.9090476690143 K Iter 1: T = 976.4377559234656 K, F = -5368.679726318763, relative_change = 0.02356224407653438 Iter 2: T = 955.0371559961198 K, F = -4539.572270111119, relative_change = 0.021917013959692852 Iter 3: T = 935.7065551441216 K, F = -3836.768917701882, relative_change = 0.020240679360622484 Iter 5: T = 902.8343493672628 K, F = -2736.9230089540306, relative_change = 0.0168878899055302 Iter 10: T = 848.69766222733 K, F = -1167.0826859842662, relative_change = 0.009502161385450493 Iter 15: T = 821.9696654358852 K, F = -493.20589459537604, relative_change = 0.004653848173204223 Iter 20: T = 809.8195158229264 K, F = -207.29084300511698, relative_change = 0.0020974242590554937 Iter 25: T = 804.5402871158346 K, F = -86.88280937195826, relative_change = 0.000906716613970426 Iter 30: T = 802.295370771201 K, F = -36.369838765049835, relative_change = 0.00038462711845419655 Iter 35: T = 801.3498377025909 K, F = -15.21639187805929, relative_change = 0.0001618249806984677 Iter 40: T = 800.953220791612 K, F = -6.364747524242704, relative_change = 6.78481794748382e-5 Iter 45: T = 800.7871427224087 K, F = -2.6620010936038634, relative_change = 2.840494513100417e-5 Iter 50: T = 800.7176504046085 K, F = -1.1133135007212398, relative_change = 1.1884547058580609e-5 Iter 55: T = 800.6885814999678 K, F = -0.4656067497534747, relative_change = 4.971180050216778e-6 Iter 60: T = 800.6764234192851 K, F = -0.19472330871893695, relative_change = 2.079167912235802e-6 Iter 65: T = 800.6713385692435 K, F = -0.08143578904649362, relative_change = 8.695610217478227e-7 Iter 70: T = 800.6692119900347 K, F = -0.03405745028131457, relative_change = 3.636657312619604e-7 Iter 75: T = 800.6683226232319 K, F = -0.014243237814248189, relative_change = 1.5209021364902678e-7 Iter 80: T = 800.6679506783678 K, F = -0.005956693093515653, relative_change = 6.360609440418036e-8 Iter 85: T = 800.6677951264006 K, F = -0.0024911603536773574, relative_change = 2.660085465448461e-8 Iter 90: T = 800.6677300726784 K, F = -0.0010418330410075782, relative_change = 1.1124799725625037e-8 Iter 95: T = 800.6677028664292 K, F = -0.00043570702430562047, relative_change = 4.652524903564576e-9 Iter 100: T = 800.6676914884499 K, F = -0.00018221788208538925, relative_change = 1.9457416207342602e-9 Iter 105: T = 800.6676867300429 K, F = -7.620569409660938e-5, relative_change = 8.13732402327683e-10 Iter 110: T = 800.6676847400203 K, F = -3.187013208061362e-5, relative_change = 3.4031262039917857e-10 Iter 115: T = 800.667683907769 K, F = -1.3328469577467139e-5, relative_change = 1.423227998802655e-10 Iter 120: T = 800.6676835597116 K, F = -5.574125674034924e-6, relative_change = 5.952110029168664e-11 Iter 125: T = 800.6676834141498 K, F = -2.331165076197017e-6, relative_change = 2.4892425921295344e-11 Iter 130: T = 800.6676833532741 K, F = -9.749208492726424e-7, relative_change = 1.0410307393597788e-11 Iter 135: T = 800.6676833278152 K, F = -4.077232406141107e-7, relative_change = 4.35371165783974e-12 Iter 140: T = 800.667683317168 K, F = -1.7051407208423797e-7, relative_change = 1.820767200779929e-12 Iter 145: T = 800.6676833127152 K, F = -7.131237678148494e-8, relative_change = 7.614810617664467e-13 Iter 150: T = 800.6676833108529 K, F = -2.982251656735713e-8, relative_change = 3.1844796941904933e-13 Converged in 153 iterations to T = 800.6676833103078 K Iter 1: T = 965.1903739827051 K, F = -7931.406400543338, relative_change = 0.03480962601729488 Iter 2: T = 932.3557477533104 K, F = -6727.109549514786, relative_change = 0.03401880822112616 Iter 3: T = 901.4666704489413 K, F = -5704.452977952256, relative_change = 0.03313014091327507 Iter 5: T = 845.4120981343817 K, F = -4098.8259416117435, relative_change = 0.031040623280405792 Iter 10: T = 737.162756555685 K, F = -1783.5607607429351, relative_change = 0.024045893861742235 Iter 15: T = 669.4988021401161 K, F = -767.9385887984809, relative_change = 0.015740735392102294 Iter 20: T = 632.4924181402042 K, F = -326.987647409776, relative_change = 0.008658502318297822 Iter 25: T = 614.4784249690329 K, F = -138.04928679907158, relative_change = 0.0041779476981733035 Iter 30: T = 606.3573663751191 K, F = -57.990935665337865, relative_change = 0.0018681861255443655 Iter 35: T = 602.8432995164449 K, F = -24.300099310723716, relative_change = 0.0008046602897558543 Iter 40: T = 601.3517771653734 K, F = -10.171126572979745, relative_change = 0.0003407863590574443 Iter 45: T = 600.7240717157936 K, F = -4.255195298985607, relative_change = 0.00014328134372273228 Iter 50: T = 600.4608621205717 K, F = -1.7798385494878963, relative_change = 6.0056011263894e-5 Iter 55: T = 600.3506624709128 K, F = -0.7443961832048256, relative_change = 2.5139662326354953e-5 Iter 60: T = 600.3045542365213 K, F = -0.3113235036033482, relative_change = 1.0517826557876774e-5 Iter 65: T = 600.2852674719016 K, F = -0.13020062955611783, relative_change = 4.399401602571189e-6 Iter 70: T = 600.2772008604375 K, F = -0.054451707001751726, relative_change = 1.840008411125713e-6 Iter 75: T = 600.2738271924068 K, F = -0.02277239767250866, relative_change = 7.695355526783923e-7 Iter 80: T = 600.2724162640701 K, F = -0.009523696275768823, relative_change = 3.2183281689851075e-7 Iter 85: T = 600.2718261934783 K, F = -0.003982924850497005, relative_change = 1.3459500240807266e-7 Iter 90: T = 600.2715794182957 K, F = -0.0016657069709686834, relative_change = 5.628935543399108e-8 Iter 95: T = 600.2714762138598 K, F = -0.000696618588910014, relative_change = 2.354090133111544e-8 Iter 100: T = 600.2714330525134 K, F = -0.0002913342199354352, relative_change = 9.845089670051847e-9 Iter 105: T = 600.2714150019196 K, F = -0.0001218394511081633, relative_change = 4.117334700691575e-9 Iter 110: T = 600.2714074529451 K, F = -5.095471348637304e-5, relative_change = 1.7219186450230323e-9 Iter 115: T = 600.2714042958738 K, F = -2.1309870305852296e-5, relative_change = 7.20126979642177e-10 Iter 120: T = 600.2714029755489 K, F = -8.912042626707528e-6, relative_change = 3.011657187166176e-10 Iter 125: T = 600.2714024233732 K, F = -3.727122231900193e-6, relative_change = 1.2595108637238224e-10 Iter 130: T = 600.2714021924468 K, F = -1.558727061257148e-6, relative_change = 5.267424969393976e-11 Iter 135: T = 600.2714020958706 K, F = -6.518788985276913e-7, relative_change = 2.202902146952257e-11 Iter 140: T = 600.2714020554812 K, F = -2.7262350582590855e-7, relative_change = 9.21279869378098e-12 Iter 145: T = 600.2714020385899 K, F = -1.140139930799755e-7, relative_change = 3.8528884861873505e-12 Iter 150: T = 600.2714020315258 K, F = -4.768276046229758e-8, relative_change = 1.611349219707097e-12 Iter 155: T = 600.2714020285714 K, F = -1.994075415900909e-8, relative_change = 6.738602871083654e-13 Iter 160: T = 600.2714020273359 K, F = -8.339376467159099e-9, relative_change = 2.8181354504993797e-13 Converged in 162 iterations to T = 600.2714020270744 K Iter 1: T = 964.6194485120499 K, F = -8061.492312122456, relative_change = 0.035380551487950086 Iter 2: T = 931.181854751188 K, F = -6838.496799439152, relative_change = 0.03466402612184545 Iter 3: T = 899.6569351379463 K, F = -5799.9180657968855, relative_change = 0.033854740029986036 Iter 5: T = 842.2328833249026 K, F = -4169.150263149139, relative_change = 0.031934470051420805 Iter 10: T = 730.1163420829444 K, F = -1816.783129173616, relative_change = 0.02532032461567868 Iter 15: T = 658.5825762700026 K, F = -783.6799912766764, relative_change = 0.017063009623354376 Iter 20: T = 618.6150786805423 K, F = -334.25244355975315, relative_change = 0.009634029596179192 Iter 25: T = 598.8394194703101 K, F = -141.27566658025884, relative_change = 0.004729445072067805 Iter 30: T = 589.8379276979357 K, F = -59.38202262557355, relative_change = 0.0021341566058178884 Iter 35: T = 585.9242225516764 K, F = -24.89004015516996, relative_change = 0.0009231367237326426 Iter 40: T = 584.2594795383527 K, F = -10.419348402158269, relative_change = 0.00039169347272023566 Iter 45: T = 583.5582182187719 K, F = -4.359272856586009, relative_change = 0.00016481618602306398 Iter 50: T = 583.2640483222491 K, F = -1.8234123602038246, relative_change = 6.910551330256237e-5 Iter 55: T = 583.140865734965 K, F = -0.7626275809356693, relative_change = 2.8931898600994282e-5 Iter 60: T = 583.0893217443108 K, F = -0.3189495475235099, relative_change = 1.2105121896708503e-5 Iter 65: T = 583.0677606066902 K, F = -0.13339018696208482, relative_change = 5.063461501810847e-6 Iter 70: T = 583.058742637179 K, F = -0.055785662570728256, relative_change = 2.1177671399220947e-6 Iter 75: T = 583.0549710669452 K, F = -0.023330281618381965, relative_change = 8.857047332649883e-7 Iter 80: T = 583.0533937253991 K, F = -0.009757011367573676, relative_change = 3.7041740846072e-7 Iter 85: T = 583.0527340578092 K, F = -0.00408050024662443, relative_change = 1.5491387795852785e-7 Iter 90: T = 583.0524581761547 K, F = -0.0017065142089446317, relative_change = 6.478699018602069e-8 Iter 95: T = 583.0523427990139 K, F = -0.0007136846697102794, relative_change = 2.7094720343364157e-8 Iter 100: T = 583.0522945468915 K, F = -0.00029847146063233243, relative_change = 1.1331340416618856e-8 Iter 105: T = 583.0522743672735 K, F = -0.00012482433047233954, relative_change = 4.738902710921405e-9 Iter 110: T = 583.0522659279155 K, F = -5.220302575120739e-5, relative_change = 1.981865845883424e-9 Iter 115: T = 583.0522623984751 K, F = -2.183192960436564e-5, relative_change = 8.288400194617095e-10 Iter 120: T = 583.0522609224209 K, F = -9.130373217591803e-6, relative_change = 3.4663078086595753e-10 Iter 125: T = 583.0522603051174 K, F = -3.818431622892859e-6, relative_change = 1.4496515205403393e-10 Iter 130: T = 583.0522600469538 K, F = -1.5969141748950477e-6, relative_change = 6.0626175752631e-11 Iter 135: T = 583.0522599389867 K, F = -6.678489287703648e-7, relative_change = 2.5354604025726645e-11 Iter 140: T = 583.0522598938336 K, F = -2.7930266338627163e-7, relative_change = 1.0603608287789397e-11 Iter 145: T = 583.0522598749499 K, F = -1.1680730593877087e-7, relative_change = 4.434540302985752e-12 Iter 150: T = 583.0522598670526 K, F = -4.8850588907356496e-8, relative_change = 1.8545920874314632e-12 Iter 155: T = 583.0522598637498 K, F = -2.0430010461147674e-8, relative_change = 7.756167652403163e-13 Iter 160: T = 583.0522598623685 K, F = -8.544131180343584e-9, relative_change = 3.243743511812908e-13 Converged in 163 iterations to T = 583.0522598619641 K Iter 1: T = 964.2800336586745 K, F = -8138.828309330926, relative_change = 0.03571996634132552 Iter 2: T = 930.4829163904192 K, F = -6904.732175905042, relative_change = 0.03504906882705247 Iter 3: T = 898.5775692769721 K, F = -5856.702833679926, relative_change = 0.034289019767516055 Iter 5: T = 840.3290328096533 K, F = -4211.017613567612, relative_change = 0.03247570952177959 Iter 10: T = 725.837809112825 K, F = -1836.6535977264841, relative_change = 0.02612016358518377 Iter 15: T = 651.8403392288901 K, F = -793.1796579776602, relative_change = 0.01793185932904102 Iter 20: T = 609.9134964636189 K, F = -338.684378486808, relative_change = 0.010302897452121767 Iter 25: T = 588.9361717979602 K, F = -143.2607992382015, relative_change = 0.005118628640286695 Iter 30: T = 579.3229440864354 K, F = -60.24217897899934, relative_change = 0.002324778340940085 Iter 35: T = 575.1289629325964 K, F = -25.25570144557171, relative_change = 0.001008670406734417 Iter 40: T = 573.3422172188143 K, F = -10.573369101583022, relative_change = 0.00042856394053541097 Iter 45: T = 572.5890529772144 K, F = -4.423882586302692, relative_change = 0.00018043465398066784 Iter 50: T = 572.273019473052 K, F = -1.8504676237154951, relative_change = 7.567260786551586e-5 Iter 55: T = 572.1406655261239 K, F = -0.7739485104703008, relative_change = 3.168454053467156e-5 Iter 60: T = 572.0852810938006 K, F = -0.32368516340152803, relative_change = 1.3257397513605363e-5 Iter 65: T = 572.0621129845881 K, F = -0.1353708649999853, relative_change = 5.545547396635259e-6 Iter 70: T = 572.0524228110738 K, F = -0.056614038483385504, relative_change = 2.3194145464999106e-6 Iter 75: T = 572.0483700909797 K, F = -0.023676724039064623, relative_change = 9.700419170635268e-7 Iter 80: T = 572.0466751646358 K, F = -0.009901898725957675, relative_change = 4.0568924570170426e-7 Iter 85: T = 572.0459663208799 K, F = -0.004141094044426696, relative_change = 1.6966515986034526e-7 Iter 90: T = 572.0456698730259 K, F = -0.0017318552893449968, relative_change = 7.095618363744896e-8 Iter 95: T = 572.0455458948303 K, F = -0.0007242826179382766, relative_change = 2.9674756192164377e-8 Iter 100: T = 572.0454940456399 K, F = -0.0003029036499936355, relative_change = 1.2410343171861599e-8 Iter 105: T = 572.0454723616842 K, F = -0.00012667792531384503, relative_change = 5.190154721449355e-9 Iter 110: T = 572.0454632931942 K, F = -5.2978221185495666e-5, relative_change = 2.1705848504479527e-9 Iter 115: T = 572.0454595006431 K, F = -2.215612446460069e-5, relative_change = 9.07764521898058e-10 Iter 120: T = 572.045457914553 K, F = -9.265955695170192e-6, relative_change = 3.7963796267826607e-10 Iter 125: T = 572.0454572512313 K, F = -3.875133663233665e-6, relative_change = 1.5876914433169225e-10 Iter 130: T = 572.0454569738221 K, F = -1.6206268462770623e-6, relative_change = 6.639913887350211e-11 Iter 135: T = 572.0454568578064 K, F = -6.777665344515071e-7, relative_change = 2.7768955198843426e-11 Iter 140: T = 572.0454568092872 K, F = -2.8345013453057177e-7, relative_change = 1.1613311796862035e-11 Iter 145: T = 572.0454567889958 K, F = -1.1854273451739061e-7, relative_change = 4.856846301080523e-12 Iter 150: T = 572.0454567805098 K, F = -4.957576221764626e-8, relative_change = 2.0311819053887684e-12 Iter 155: T = 572.0454567769608 K, F = -2.0733434635822334e-8, relative_change = 8.494751343449222e-13 Iter 160: T = 572.0454567754765 K, F = -8.671264317694494e-9, relative_change = 3.552727056894931e-13 Converged in 163 iterations to T = 572.045456775042 K Iter 1: T = 980.1686794838542 K, F = -4518.58524405969, relative_change = 0.019831320516145758 Iter 2: T = 962.3799061173888 K, F = -3816.8319944886707, relative_change = 0.018148685770935626 Iter 3: T = 946.5125887389561 K, F = -3222.5612302745253, relative_change = 0.016487581751833912 Iter 5: T = 920.0185022001257 K, F = -2294.0406684978934, relative_change = 0.013318598901703779 Iter 10: T = 877.9635251949196 K, F = -973.870994617309, relative_change = 0.006994041795520633 Iter 15: T = 858.0598961965467 K, F = -410.3761493980194, relative_change = 0.003278883674146907 Iter 20: T = 849.2277624648334 K, F = -172.2206366262277, relative_change = 0.00144475399628236 Iter 25: T = 845.4351075142752 K, F = -72.133769589205, relative_change = 0.0006181008411376042 Iter 30: T = 843.8308241345089 K, F = -30.186645119947944, relative_change = 0.00026100885281649913 Iter 35: T = 843.15665377065 K, F = -12.627843604044324, relative_change = 0.00010960261070667415 Iter 40: T = 842.8741360977649 K, F = -5.281716643146699, relative_change = 4.591552302697825e-5 Iter 45: T = 842.7558835004203 K, F = -2.208982355762994, relative_change = 1.9216167188132767e-5 Iter 50: T = 842.7064112769964 K, F = -0.9238412437887159, relative_change = 8.038837520441178e-6 Iter 55: T = 842.6857183264987 K, F = -0.38636466738789266, relative_change = 3.362359011617739e-6 Iter 60: T = 842.6770637493647 K, F = -0.1615828823756651, relative_change = 1.4062523678148996e-6 Iter 65: T = 842.673444207724 K, F = -0.06757598980907487, relative_change = 5.881244210196259e-7 Iter 70: T = 842.6719304557199 K, F = -0.028261103221212336, relative_change = 2.459629104578365e-7 Iter 75: T = 842.6712973836744 K, F = -0.01181913389136291, relative_change = 1.0286502076329984e-7 Iter 80: T = 842.671032624881 K, F = -0.0049429034718375675, relative_change = 4.3019449103093846e-8 Iter 85: T = 842.6709218995037 K, F = -0.002067181353862635, relative_change = 1.7991259425226165e-8 Iter 90: T = 842.6708755928132 K, F = -0.0008645199456802644, relative_change = 7.524161661732992e-9 Iter 95: T = 842.6708562267995 K, F = -0.00036155256855430196, relative_change = 3.1466946324165322e-9 Iter 100: T = 842.6708481277009 K, F = -0.00015120560391079785, relative_change = 1.3159853514341284e-9 Iter 105: T = 842.6708447405609 K, F = -6.323599036739402e-5, relative_change = 5.503608097002067e-10 Iter 110: T = 842.6708433240185 K, F = -2.644604482426871e-5, relative_change = 2.3016745171199023e-10 Iter 115: T = 842.6708427316037 K, F = -1.106005250584019e-5, relative_change = 9.625878374277946e-11 Iter 120: T = 842.6708424838487 K, F = -4.625447177497577e-6, relative_change = 4.0256582865277045e-11 Iter 125: T = 842.6708423802346 K, F = -1.9344174138069548e-6, relative_change = 1.683578516243596e-11 Iter 130: T = 842.6708423369018 K, F = -8.089960494839232e-7, relative_change = 7.040922808330708e-12 Iter 135: T = 842.6708423187797 K, F = -3.3833319457166056e-7, relative_change = 2.9446100611227507e-12 Iter 140: T = 842.6708423112007 K, F = -1.4149402605134753e-7, relative_change = 1.231462769252922e-12 Iter 145: T = 842.6708423080312 K, F = -5.917628365104122e-8, relative_change = 5.150280345678147e-13 Converged in 150 iterations to T = 842.6708423067055 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00169085599867308 Iteration 10: d = 1.655004268536335e-5 Iteration 20: d = 2.162110027244406e-7 Iteration 30: d = 3.0399334971035404e-9 Iteration 40: d = 4.300955144441068e-11 Iteration 50: d = 6.095393110606928e-13 Iteration 60: d = 8.672422306521223e-15 Converged after 64 iterations. d = 1.6025010654470367e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.599609036259 Iteration 2: convergence error = 4815.285831359222 Iteration 3: convergence error = 1097.7156045823858 Iteration 4: convergence error = 322.40303211961555 Iteration 5: convergence error = 95.78243723445507 Iteration 6: convergence error = 28.609720631949358 Iteration 7: convergence error = 8.608312018142442 Iteration 8: convergence error = 2.585347500593116 Iteration 9: convergence error = 0.7745900666429861 Iteration 10: convergence error = 0.23175063610710822 Iteration 11: convergence error = 0.06928287112145881 Iteration 12: convergence error = 0.020703093888414514 Iteration 13: convergence error = 0.006184907701936027 Iteration 14: convergence error = 0.0018474278258509003 Iteration 15: convergence error = 0.0005517789602436096 Iteration 16: convergence error = 0.0001647941094233829 Iteration 17: convergence error = 4.9215965418625274e-5 Iteration 18: convergence error = 1.4698173799843062e-5 Iteration 19: convergence error = 4.389513151181745e-6 Iteration 20: convergence error = 1.310890866079717e-6 Iteration 21: convergence error = 3.914865374099463e-7 Iteration 22: convergence error = 1.1678071132337209e-7 Iteration 23: convergence error = 3.3978494684561156e-8 Iteration 24: convergence error = 9.817540558287874e-9 Iteration 25: convergence error = 2.8273916541365907e-9 Iteration 26: convergence error = 8.17180989542976e-10 Iteration 27: convergence error = 2.3510438040830195e-10 Iteration 28: convergence error = 6.798472895752639e-11 Iteration 29: convergence error = 2.000888343900442e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014561871581911061 Iteration 10: d = 1.2499926162823326e-5 Iteration 20: d = 1.2809006566062223e-7 Iteration 30: d = 1.6016853734514528e-9 Iteration 40: d = 2.0864008518433426e-11 Iteration 50: d = 2.7453682426832815e-13 Iteration 60: d = 3.604650685352228e-15 Converged after 62 iterations. d = 1.5318599836113392e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12291.474922155287 Iteration 2: convergence error = 8325.101186704462 Iteration 3: convergence error = 1960.199937656234 Iteration 4: convergence error = 484.6395724400254 Iteration 5: convergence error = 123.96819704986638 Iteration 6: convergence error = 33.19407922245705 Iteration 7: convergence error = 9.06785893360393 Iteration 8: convergence error = 2.491232772813646 Iteration 9: convergence error = 0.6852426964069309 Iteration 10: convergence error = 0.1885070424971218 Iteration 11: convergence error = 0.051854074523362215 Iteration 12: convergence error = 0.014263012633591643 Iteration 13: convergence error = 0.003923047874195618 Iteration 14: convergence error = 0.001079015565892405 Iteration 15: convergence error = 0.0002967753737266321 Iteration 16: convergence error = 8.162557014657068e-5 Iteration 17: convergence error = 2.2450382630267995e-5 Iteration 18: convergence error = 6.174773488965002e-6 Iteration 19: convergence error = 1.6983119621727383e-6 Iteration 20: convergence error = 4.671053375204792e-7 Iteration 21: convergence error = 1.2931081982969772e-7 Iteration 22: convergence error = 3.4926870284834877e-8 Iteration 23: convergence error = 9.371888154419139e-9 Iteration 24: convergence error = 2.5086137611651793e-9 Iteration 25: convergence error = 6.705249688820913e-10 Iteration 26: convergence error = 1.8144419300369918e-10 Iteration 27: convergence error = 4.843059286940843e-11 Iteration 28: convergence error = 1.2960299500264227e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014561871581911061 Iteration 10: d = 1.2499926162823326e-5 Iteration 20: d = 1.2809006566062223e-7 Iteration 30: d = 1.6016853734514528e-9 Iteration 40: d = 2.0864008518433426e-11 Iteration 50: d = 2.7453682426832815e-13 Iteration 60: d = 3.604650685352228e-15 Converged after 62 iterations. d = 1.5318599836113392e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10994.496540941767 Iteration 2: convergence error = 5737.755160458779 Iteration 3: convergence error = 2016.2549569573803 Iteration 4: convergence error = 896.3189327803193 Iteration 5: convergence error = 413.1120266220755 Iteration 6: convergence error = 195.25998451290616 Iteration 7: convergence error = 92.35713608101833 Iteration 8: convergence error = 43.70209506225501 Iteration 9: convergence error = 20.678479634925225 Iteration 10: convergence error = 9.782077652229418 Iteration 11: convergence error = 4.626199608142542 Iteration 12: convergence error = 2.1873313612691163 Iteration 13: convergence error = 1.0340127944555206 Iteration 14: convergence error = 0.4887431122756425 Iteration 15: convergence error = 0.23099166484780653 Iteration 16: convergence error = 0.10908446316580012 Iteration 17: convergence error = 0.05109332381243803 Iteration 18: convergence error = 0.023381035747206624 Iteration 19: convergence error = 0.010658946225248656 Iteration 20: convergence error = 0.004848578292694583 Iteration 21: convergence error = 0.0022027445161256765 Iteration 22: convergence error = 0.0009999830945162103 Iteration 23: convergence error = 0.00045376618845693883 Iteration 24: convergence error = 0.00020585400670825038 Iteration 25: convergence error = 9.337255460195593e-5 Iteration 26: convergence error = 4.23485412284208e-5 Iteration 27: convergence error = 1.9205830994906137e-5 Iteration 28: convergence error = 8.70989015311352e-6 Iteration 29: convergence error = 3.949865458707791e-6 Iteration 30: convergence error = 1.7912138901010621e-6 Iteration 31: convergence error = 8.122829058265779e-7 Iteration 32: convergence error = 3.6835126593359746e-7 Iteration 33: convergence error = 1.6704007066437043e-7 Iteration 34: convergence error = 7.574908522656187e-8 Iteration 35: convergence error = 3.435434337006882e-8 Iteration 36: convergence error = 1.5579189494019374e-8 Iteration 37: convergence error = 7.060862117214128e-9 Iteration 38: convergence error = 3.2023308449424803e-9 Iteration 39: convergence error = 1.4551915228366852e-9 Iteration 40: convergence error = 6.580194167327136e-10 Iteration 41: convergence error = 2.9876900953240693e-10 Iteration 42: convergence error = 1.3460521586239338e-10 Iteration 43: convergence error = 6.275513442233205e-11 Iteration 44: convergence error = 2.7284841053187847e-11 Iteration 45: convergence error = 1.2732925824820995e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:01 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014561871581911061 Iteration 10: d = 1.2499926162823326e-5 Iteration 20: d = 1.2809006566062223e-7 Iteration 30: d = 1.6016853734514528e-9 Iteration 40: d = 2.0864008518433426e-11 Iteration 50: d = 2.7453682426832815e-13 Iteration 60: d = 3.604650685352228e-15 Converged after 62 iterations. d = 1.5318599836113392e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.660059487209 Iteration 2: convergence error = 7356.57231810315 Iteration 3: convergence error = 1733.975664757435 Iteration 4: convergence error = 508.38381489172843 Iteration 5: convergence error = 158.3819495431885 Iteration 6: convergence error = 49.32132828542626 Iteration 7: convergence error = 15.330621041645372 Iteration 8: convergence error = 4.756902758681463 Iteration 9: convergence error = 1.4742217821185477 Iteration 10: convergence error = 0.45653906461257066 Iteration 11: convergence error = 0.14132007854823314 Iteration 12: convergence error = 0.04373422587332243 Iteration 13: convergence error = 0.01353248184432232 Iteration 14: convergence error = 0.004186957400634128 Iteration 15: convergence error = 0.0012953877899235522 Iteration 16: convergence error = 0.000400764992718905 Iteration 17: convergence error = 0.00012398618810038897 Iteration 18: convergence error = 3.835775578409084e-5 Iteration 19: convergence error = 1.1866721251863055e-5 Iteration 20: convergence error = 3.6711858228954952e-6 Iteration 21: convergence error = 1.135752427217085e-6 Iteration 22: convergence error = 3.51222297467757e-7 Iteration 23: convergence error = 1.0747999112936668e-7 Iteration 24: convergence error = 3.207014742656611e-8 Iteration 25: convergence error = 9.54014467424713e-9 Iteration 26: convergence error = 2.830802259268239e-9 Iteration 27: convergence error = 8.376446203328669e-10 Iteration 28: convergence error = 2.4647306418046355e-10 Iteration 29: convergence error = 7.185008144006133e-11 Iteration 30: convergence error = 2.4556356947869062e-11 Iteration 31: convergence error = 8.185452315956354e-12 Converged after 31 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014561871581911061 Iteration 10: d = 1.2499926162823326e-5 Iteration 20: d = 1.2809006566062223e-7 Iteration 30: d = 1.6016853734514528e-9 Iteration 40: d = 2.0864008518433426e-11 Iteration 50: d = 2.7453682426832815e-13 Iteration 60: d = 3.604650685352228e-15 Converged after 62 iterations. d = 1.5318599836113392e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.7142688794065 Iteration 2: convergence error = 5525.068317122583 Iteration 3: convergence error = 938.1437802550499 Iteration 4: convergence error = 171.06066528763063 Iteration 5: convergence error = 31.1002449015989 Iteration 6: convergence error = 5.671235900918418 Iteration 7: convergence error = 1.0429828248611557 Iteration 8: convergence error = 0.19132772936836773 Iteration 9: convergence error = 0.03505466185606565 Iteration 10: convergence error = 0.006418727478830988 Iteration 11: convergence error = 0.0011749468653761141 Iteration 12: convergence error = 0.0002150398026969924 Iteration 13: convergence error = 3.935355516659911e-5 Iteration 14: convergence error = 7.2016364356386475e-6 Iteration 15: convergence error = 1.3178523659007624e-6 Iteration 16: convergence error = 2.4115797714330256e-7 Iteration 17: convergence error = 4.411549525684677e-8 Iteration 18: convergence error = 8.074948709690943e-9 Iteration 19: convergence error = 1.4779288903810084e-9 Iteration 20: convergence error = 2.72393663180992e-10 Iteration 21: convergence error = 4.729372449219227e-11 Iteration 22: convergence error = 9.094947017729282e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014561871581911061 Iteration 10: d = 1.2499926162823326e-5 Iteration 20: d = 1.2809006566062223e-7 Iteration 30: d = 1.6016853734514528e-9 Iteration 40: d = 2.0864008518433426e-11 Iteration 50: d = 2.7453682426832815e-13 Iteration 60: d = 3.604650685352228e-15 Converged after 62 iterations. d = 1.5318599836113392e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4854713980894 Iteration 2: convergence error = 2716.6714257639396 Iteration 3: convergence error = 205.06697404356146 Iteration 4: convergence error = 19.345093646661844 Iteration 5: convergence error = 1.6028495729764207 Iteration 6: convergence error = 0.1308666147562579 Iteration 7: convergence error = 0.01069889882090521 Iteration 8: convergence error = 0.0008767382706326935 Iteration 9: convergence error = 7.205290139595729e-5 Iteration 10: convergence error = 5.92713483468761e-6 Iteration 11: convergence error = 4.874633884869814e-7 Iteration 12: convergence error = 4.008607547603402e-8 Iteration 13: convergence error = 3.2974414759443725e-9 Iteration 14: convergence error = 2.6988076545847886e-10 Iteration 15: convergence error = 2.3419488570652902e-11 Iteration 16: convergence error = 4.320099833421409e-12 Converged after 16 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00169085599867308 Iteration 10: d = 1.655004268536335e-5 Iteration 20: d = 2.162110027244406e-7 Iteration 30: d = 3.0399334971035404e-9 Iteration 40: d = 4.300955144441068e-11 Iteration 50: d = 6.095393110606928e-13 Iteration 60: d = 8.672422306521223e-15 Converged after 64 iterations. d = 1.6025010654470367e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.315716088848 Iteration 2: convergence error = 3604.4262743280997 Iteration 3: convergence error = 593.8140143600887 Iteration 4: convergence error = 105.68515116383378 Iteration 5: convergence error = 18.841893127989124 Iteration 6: convergence error = 3.3286048430970823 Iteration 7: convergence error = 0.5858233188851045 Iteration 8: convergence error = 0.10294150444360639 Iteration 9: convergence error = 0.01807732447446142 Iteration 10: convergence error = 0.0031736813875795633 Iteration 11: convergence error = 0.0005571164167577081 Iteration 12: convergence error = 9.779343486115977e-5 Iteration 13: convergence error = 1.7165869849122828e-5 Iteration 14: convergence error = 3.0131493531371234e-6 Iteration 15: convergence error = 5.288914053380722e-7 Iteration 16: convergence error = 9.282234714191873e-8 Iteration 17: convergence error = 1.6312469597323798e-8 Iteration 18: convergence error = 2.8426256903912872e-9 Iteration 19: convergence error = 5.040874384576455e-10 Iteration 20: convergence error = 8.662937034387141e-11 Iteration 21: convergence error = 1.432454155292362e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 9m29.9s Testing RayTraceHeatTransfer tests passed Testing completed after 579.28s PkgEval succeeded after 645.3s