Package evaluation of StructuralIdentifiability on Julia 1.13.0-DEV.123 (e910e6fb06*) started at 2025-03-01T16:49:27.911 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 7.58s ################################################################################ # Installation # Installing StructuralIdentifiability... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [220ca800] + StructuralIdentifiability v0.5.13 Updating `~/.julia/environments/v1.13/Manifest.toml` [c3fe647b] + AbstractAlgebra v0.44.8 [a9b6321e] + Atomix v1.1.1 [861a8166] + Combinatorics v1.0.2 [34da2185] + Compat v4.16.0 [864edb3b] + DataStructures v0.18.20 [e2ba6199] + ExprTools v0.1.10 ⌅ [0b43b601] + Groebner v0.8.3 [18e54dd8] + IntegerMathUtils v0.1.2 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.0 [1914dd2f] + MacroTools v0.5.15 ⌅ [2edaba10] + Nemo v0.48.4 [bac558e1] + OrderedCollections v1.8.0 [3e851597] + ParamPunPam v0.5.2 [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [27ebfcd6] + Primes v0.5.6 [92933f4c] + ProgressMeter v1.10.2 [fb686558] + RandomExtensions v0.4.4 [220ca800] + StructuralIdentifiability v0.5.13 [a759f4b9] + TimerOutputs v0.5.28 [013be700] + UnsafeAtomics v0.3.0 [e134572f] + FLINT_jll v300.100.301+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.12.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.12.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.1+2 [4536629a] + OpenBLAS_jll v0.3.29+0 [bea87d4a] + SuiteSparse_jll v7.8.3+2 [8e850b90] + libblastrampoline_jll v5.12.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 3.3s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 142.03s ################################################################################ # Testing # Testing StructuralIdentifiability Status `/tmp/jl_hgMFwE/Project.toml` [c3fe647b] AbstractAlgebra v0.44.8 [4c88cf16] Aqua v0.8.11 [2a0fbf3d] CPUSummary v0.2.6 [861a8166] Combinatorics v1.0.2 [864edb3b] DataStructures v0.18.20 ⌅ [0b43b601] Groebner v0.8.3 [c8e1da08] IterTools v1.10.0 [1914dd2f] MacroTools v0.5.15 ⌅ [2edaba10] Nemo v0.48.4 [3e851597] ParamPunPam v0.5.2 [aea7be01] PrecompileTools v1.2.1 [27ebfcd6] Primes v0.5.6 [276daf66] SpecialFunctions v2.5.0 [220ca800] StructuralIdentifiability v0.5.13 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.28 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [44cfe95a] Pkg v1.12.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_hgMFwE/Manifest.toml` [c3fe647b] AbstractAlgebra v0.44.8 [4c88cf16] Aqua v0.8.11 [a9b6321e] Atomix v1.1.1 [2a0fbf3d] CPUSummary v0.2.6 [861a8166] Combinatorics v1.0.2 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.16.0 [adafc99b] CpuId v0.3.1 [864edb3b] DataStructures v0.18.20 [ab62b9b5] DeepDiffs v1.2.0 [ffbed154] DocStringExtensions v0.9.3 [e2ba6199] ExprTools v0.1.10 ⌅ [0b43b601] Groebner v0.8.3 [615f187c] IfElse v0.1.1 [18e54dd8] IntegerMathUtils v0.1.2 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.0 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.15 ⌅ [2edaba10] Nemo v0.48.4 [bac558e1] OrderedCollections v1.8.0 [3e851597] ParamPunPam v0.5.2 [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [27ebfcd6] Primes v0.5.6 [92933f4c] ProgressMeter v1.10.2 [fb686558] RandomExtensions v0.4.4 [276daf66] SpecialFunctions v2.5.0 [aedffcd0] Static v1.1.1 [220ca800] StructuralIdentifiability v0.5.13 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.28 [013be700] UnsafeAtomics v0.3.0 [e134572f] FLINT_jll v300.100.301+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.12.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.12.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [deac9b47] LibCURL_jll v8.11.1+1 [e37daf67] LibGit2_jll v1.9.0+0 [29816b5a] LibSSH2_jll v1.11.3+1 [3a97d323] MPFR_jll v4.2.1+2 [14a3606d] MozillaCACerts_jll v2024.12.31 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.5+0 [458c3c95] OpenSSL_jll v3.0.16+0 [bea87d4a] SuiteSparse_jll v7.8.3+2 [83775a58] Zlib_jll v1.3.1+2 [8e850b90] libblastrampoline_jll v5.12.0+0 [8e850ede] nghttp2_jll v1.64.0+1 [3f19e933] p7zip_jll v17.5.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Resolving package versions... Updating `/tmp/jl_hgMFwE/Project.toml` [961ee093] + ModelingToolkit v9.64.3 Updating `/tmp/jl_hgMFwE/Manifest.toml` [47edcb42] + ADTypes v1.13.0 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.2.0 [66dad0bd] + AliasTables v1.1.3 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.18.0 [4c555306] + ArrayLayouts v1.11.1 [e2ed5e7c] + Bijections v0.1.9 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] + BlockArrays v1.4.0 [70df07ce] + BracketingNonlinearSolve v1.1.0 [00ebfdb7] + CSTParser v3.4.3 [d360d2e6] + ChainRulesCore v1.25.1 [fb6a15b2] + CloseOpenIntervals v0.1.13 [a80b9123] + CommonMark v0.8.15 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 [2569d6c7] + ConcreteStructs v0.2.3 [187b0558] + ConstructionBase v1.5.8 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [e2d170a0] + DataValueInterfaces v1.0.0 [2b5f629d] + DiffEqBase v6.164.1 [459566f4] + DiffEqCallbacks v4.3.0 [77a26b50] + DiffEqNoiseProcess v5.24.1 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.6.42 [8d63f2c5] + DispatchDoctor v0.4.19 [31c24e10] + Distributions v0.25.117 [5b8099bc] + DomainSets v0.7.15 [7c1d4256] + DynamicPolynomials v0.6.1 [06fc5a27] + DynamicQuantities v1.4.0 [4e289a0a] + EnumX v1.0.4 [f151be2c] + EnzymeCore v0.8.8 ⌅ [6b7a57c9] + Expronicon v0.8.5 [55351af7] + ExproniconLite v0.10.14 [7034ab61] + FastBroadcast v0.3.5 [9aa1b823] + FastClosures v0.3.2 [a4df4552] + FastPower v1.1.1 [1a297f60] + FillArrays v1.13.0 [64ca27bc] + FindFirstFunctions v1.4.1 [6a86dc24] + FiniteDiff v2.27.0 [1fa38f19] + Format v1.3.7 [f6369f11] + ForwardDiff v0.10.38 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [d9f16b24] + Functors v0.5.2 [46192b85] + GPUArraysCore v0.2.0 [c27321d9] + Glob v1.3.1 [86223c79] + Graphs v1.12.0 [34004b35] + HypergeometricFunctions v0.3.27 [d25df0c9] + Inflate v0.1.5 [8197267c] + IntervalSets v0.7.10 [3587e190] + InverseFunctions v0.1.17 [82899510] + IteratorInterfaceExtensions v1.0.0 [ae98c720] + Jieko v0.2.1 [98e50ef6] + JuliaFormatter v1.0.62 [ccbc3e58] + JumpProcesses v9.14.2 [ba0b0d4f] + Krylov v0.9.10 [b964fa9f] + LaTeXStrings v1.4.0 [23fbe1c1] + Latexify v0.16.6 [10f19ff3] + LayoutPointers v0.1.17 [5078a376] + LazyArrays v2.6.1 [87fe0de2] + LineSearch v0.1.4 [d3d80556] + LineSearches v7.3.0 [7ed4a6bd] + LinearSolve v3.4.0 [d8e11817] + MLStyle v0.4.17 [d125e4d3] + ManualMemory v0.1.8 [bb5d69b7] + MaybeInplace v0.1.4 [e1d29d7a] + Missings v1.2.0 [961ee093] + ModelingToolkit v9.64.3 [2e0e35c7] + Moshi v0.3.5 [46d2c3a1] + MuladdMacro v0.2.4 [102ac46a] + MultivariatePolynomials v0.5.7 [d8a4904e] + MutableArithmetics v1.6.4 [d41bc354] + NLSolversBase v7.8.3 [77ba4419] + NaNMath v1.1.2 [8913a72c] + NonlinearSolve v4.4.0 [be0214bd] + NonlinearSolveBase v1.5.0 [5959db7a] + NonlinearSolveFirstOrder v1.3.0 [9a2c21bd] + NonlinearSolveQuasiNewton v1.2.0 [26075421] + NonlinearSolveSpectralMethods v1.1.0 [6fe1bfb0] + OffsetArrays v1.15.0 [429524aa] + Optim v1.11.0 [90014a1f] + PDMats v0.11.32 [d96e819e] + Parameters v0.12.3 [e409e4f3] + PoissonRandom v0.4.4 [f517fe37] + Polyester v0.7.16 [1d0040c9] + PolyesterWeave v0.2.2 [85a6dd25] + PositiveFactorizations v0.2.4 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [74087812] + Random123 v1.7.0 [e6cf234a] + RandomNumbers v1.6.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.31.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [ae5879a3] + ResettableStacks v1.1.1 [79098fc4] + Rmath v0.8.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.13 [9dfe8606] + SCCNonlinearSolve v1.0.0 [94e857df] + SIMDTypes v0.1.0 [0bca4576] + SciMLBase v2.75.1 [19f34311] + SciMLJacobianOperators v0.1.1 [c0aeaf25] + SciMLOperators v0.3.12 [53ae85a6] + SciMLStructures v1.6.1 [efcf1570] + Setfield v1.1.2 [727e6d20] + SimpleNonlinearSolve v2.1.0 [699a6c99] + SimpleTraits v0.9.4 [a2af1166] + SortingAlgorithms v1.2.1 [0a514795] + SparseMatrixColorings v0.4.13 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.0 [2913bbd2] + StatsBase v0.34.4 [4c63d2b9] + StatsFuns v1.3.2 [7792a7ef] + StrideArraysCore v0.5.7 [2efcf032] + SymbolicIndexingInterface v0.3.38 [19f23fe9] + SymbolicLimits v0.2.2 [d1185830] + SymbolicUtils v3.16.0 [0c5d862f] + Symbolics v6.29.1 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.0 [8ea1fca8] + TermInterface v2.0.0 [1c621080] + TestItems v1.0.0 [8290d209] + ThreadingUtilities v0.5.2 [0796e94c] + Tokenize v0.5.29 [410a4b4d] + Tricks v0.1.10 [781d530d] + TruncatedStacktraces v1.4.0 [5c2747f8] + URIs v1.5.1 [3a884ed6] + UnPack v1.0.2 [1986cc42] + Unitful v1.22.0 [a7c27f48] + Unityper v0.1.6 [897b6980] + WeakValueDicts v0.1.0 [1d5cc7b8] + IntelOpenMP_jll v2025.0.4+0 [856f044c] + MKL_jll v2025.0.1+1 [f50d1b31] + Rmath_jll v0.5.1+0 [1317d2d5] + oneTBB_jll v2022.0.0+0 [9fa8497b] + Future v1.11.0 [4af54fe1] + LazyArtifacts v1.11.0 [a63ad114] + Mmap v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [4607b0f0] + SuiteSparse Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Resolving package versions... Updating `/tmp/jl_hgMFwE/Project.toml` [0c5d862f] + Symbolics v6.29.1 No packages added to or removed from `/tmp/jl_hgMFwE/Manifest.toml` Precompiling packages... 3834.4 ms ✓ DispatchDoctor → DispatchDoctorChainRulesCoreExt 1198.1 ms ✓ ResettableStacks 3657.2 ms ✓ DomainSets 2638.7 ms ✓ SparseMatrixColorings 8936.5 ms ✓ Graphs 1487.5 ms ✓ RecursiveArrayTools → RecursiveArrayToolsForwardDiffExt 2512.9 ms ✓ SciMLBase → SciMLBaseChainRulesCoreExt 2421.5 ms ✓ SCCNonlinearSolve 52033.2 ms ✓ SymbolicUtils 3336.5 ms ✓ FastPower → FastPowerForwardDiffExt 2008.5 ms ✓ DifferentiationInterface → DifferentiationInterfaceForwardDiffExt 4689.1 ms ✓ NLSolversBase 80660.2 ms ✓ NonlinearSolveBase 4357.2 ms ✓ StrideArraysCore 2471.7 ms ✓ DifferentiationInterface → DifferentiationInterfaceSparseMatrixColoringsExt 32531.4 ms ✓ LinearSolve 8178.5 ms ✓ SymbolicLimits 5047.5 ms ✓ LineSearches 3391.9 ms ✓ NonlinearSolveBase → NonlinearSolveBaseSparseMatrixColoringsExt 70356.7 ms ✓ NonlinearSolveBase → NonlinearSolveBaseForwardDiffExt 4551.0 ms ✓ NonlinearSolveBase → NonlinearSolveBaseSparseArraysExt 17418.7 ms ✓ NonlinearSolveBase → NonlinearSolveBaseLineSearchExt 50696.3 ms ✓ BracketingNonlinearSolve 2547.4 ms ✓ Polyester 25118.6 ms ✓ LinearSolve → LinearSolveEnzymeExt 6862.1 ms ✓ LinearSolve → LinearSolveSparseArraysExt 4130.3 ms ✓ NonlinearSolveBase → NonlinearSolveBaseLinearSolveExt 78267.9 ms ✓ Symbolics 12010.8 ms ✓ Optim 4096.3 ms ✓ LineSearch → LineSearchLineSearchesExt 4025.6 ms ✓ BracketingNonlinearSolve → BracketingNonlinearSolveForwardDiffExt 3241.6 ms ✓ FastBroadcast 15790.7 ms ✓ Symbolics → SymbolicsForwardDiffExt 11411.4 ms ✓ DifferentiationInterface → DifferentiationInterfaceSymbolicsExt 34346.9 ms ✓ SimpleNonlinearSolve 29523.8 ms ✓ RecursiveArrayTools → RecursiveArrayToolsFastBroadcastExt 3352.9 ms ✓ SimpleNonlinearSolve → SimpleNonlinearSolveChainRulesCoreExt 11232.7 ms ✓ DiffEqBase 3618.7 ms ✓ DiffEqBase → DiffEqBaseChainRulesCoreExt 4433.7 ms ✓ DiffEqBase → DiffEqBaseUnitfulExt 5979.0 ms ✓ DiffEqBase → DiffEqBaseForwardDiffExt 4970.4 ms ✓ DiffEqBase → DiffEqBaseDistributionsExt 3253.5 ms ✓ DiffEqBase → DiffEqBaseSparseArraysExt 8242.4 ms ✓ DiffEqCallbacks 4252.0 ms ✓ NonlinearSolveBase → NonlinearSolveBaseDiffEqBaseExt 4458.5 ms ✓ SimpleNonlinearSolve → SimpleNonlinearSolveDiffEqBaseExt 21198.8 ms ✓ JumpProcesses 8076.6 ms ✓ DiffEqNoiseProcess 14071.8 ms ✓ NonlinearSolveSpectralMethods 32352.7 ms ✓ NonlinearSolveQuasiNewton 36238.8 ms ✓ NonlinearSolveFirstOrder 4838.4 ms ✓ NonlinearSolveSpectralMethods → NonlinearSolveSpectralMethodsForwardDiffExt 6683.0 ms ✓ NonlinearSolveQuasiNewton → NonlinearSolveQuasiNewtonForwardDiffExt 32264.3 ms ✓ NonlinearSolve Info Given ModelingToolkit was explicitly requested, output will be shown live  WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl WARNING: Detected access to binding `ModelingToolkit.SystemStructure` in a world prior to its definition world.  Julia 1.12 has introduced more strict world age semantics for global bindings.  !!! This code may malfunction under Revise.  !!! This code will error in future versions of Julia. Hint: Add an appropriate `invokelatest` around the access to this binding. WARNING: Detected access to binding `ModelingToolkit.SparseMatrixCLIL` in a world prior to its definition world.  Julia 1.12 has introduced more strict world age semantics for global bindings.  !!! This code may malfunction under Revise.  !!! This code will error in future versions of Julia. Hint: Add an appropriate `invokelatest` around the access to this binding. WARNING: Detected access to binding `BipartiteGraphs.BipartiteGraph` in a world prior to its definition world.  Julia 1.12 has introduced more strict world age semantics for global bindings.  !!! This code may malfunction under Revise.  !!! This code will error in future versions of Julia. Hint: Add an appropriate `invokelatest` around the access to this binding. WARNING: Detected access to binding `ModelingToolkit.ODESystem` in a world prior to its definition world.  Julia 1.12 has introduced more strict world age semantics for global bindings.  !!! This code may malfunction under Revise.  !!! This code will error in future versions of Julia. Hint: Add an appropriate `invokelatest` around the access to this binding. WARNING: Detected access to binding `ModelingToolkit.NonlinearSystem` in a world prior to its definition world.  Julia 1.12 has introduced more strict world age semantics for global bindings.  !!! This code may malfunction under Revise.  !!! This code will error in future versions of Julia. Hint: Add an appropriate `invokelatest` around the access to this binding. WARNING: Detected access to binding `ModelingToolkit.TearingState` in a world prior to its definition world.  Julia 1.12 has introduced more strict world age semantics for global bindings.  !!! This code may malfunction under Revise.  !!! This code will error in future versions of Julia. Hint: Add an appropriate `invokelatest` around the access to this binding. WARNING: Detected access to binding `ModelingToolkit.ClockInference` in a world prior to its definition world.  Julia 1.12 has introduced more strict world age semantics for global bindings.  !!! This code may malfunction under Revise.  !!! This code will error in future versions of Julia. Hint: Add an appropriate `invokelatest` around the access to this binding. WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in var"#bareiss_update_virtual_colswap_mtk!#1499"(Any, ModelingToolkit.var"#bareiss_update_virtual_colswap_mtk!", Any, ModelingToolkit.SparseMatrixCLIL{T, Ti} where Ti<:Integer where T, Any, Any, Any, Any) at /home/pkgeval/.julia/packages/ModelingToolkit/8S2W1/src/systems/sparsematrixclil.jl WARNING: Detected access to binding `ModelingToolkit.InitializationSystemMetadata` in a world prior to its definition world.  Julia 1.12 has introduced more strict world age semantics for global bindings.  !!! This code may malfunction under Revise.  !!! This code will error in future versions of Julia. Hint: Add an appropriate `invokelatest` around the access to this binding. 310866.9 ms ✓ ModelingToolkit 49965.8 ms ✓ ModelingToolkit → MTKChainRulesCoreExt 56 dependencies successfully precompiled in 1172 seconds. 241 already precompiled. 24 dependencies had output during precompilation: ┌ NonlinearSolveQuasiNewton │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl └ ┌ SimpleNonlinearSolve │ WARNING: Detected access to binding `SimpleNonlinearSolve.SimpleNewtonRaphson` in a world prior to its definition world. │ Julia 1.12 has introduced more strict world age semantics for global bindings. │ !!! This code may malfunction under Revise. │ !!! This code will error in future versions of Julia. │ Hint: Add an appropriate `invokelatest` around the access to this binding. └ ┌ DiffEqBase → DiffEqBaseSparseArraysExt │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl └ ┌ FastBroadcast │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl └ ┌ DiffEqBase │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl └ ┌ DiffEqBase → DiffEqBaseDistributionsExt │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl └ ┌ DiffEqBase → DiffEqBaseChainRulesCoreExt │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl └ ┌ SimpleNonlinearSolve → SimpleNonlinearSolveDiffEqBaseExt │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl └ ┌ NonlinearSolveSpectralMethods → NonlinearSolveSpectralMethodsForwardDiffExt │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl └ ┌ NonlinearSolveBase → NonlinearSolveBaseDiffEqBaseExt │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl └ ┌ ModelingToolkit │ [Output was shown above] └ ┌ RecursiveArrayTools → RecursiveArrayToolsFastBroadcastExt │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl └ ┌ NonlinearSolveQuasiNewton → NonlinearSolveQuasiNewtonForwardDiffExt │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl └ ┌ ModelingToolkit → MTKChainRulesCoreExt │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl └ ┌ NonlinearSolveFirstOrder │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl │ WARNING: Detected access to binding `NonlinearSolveFirstOrder.GeneralizedFirstOrderAlgorithm` in a world prior to its definition world. │ Julia 1.12 has introduced more strict world age semantics for global bindings. │ !!! This code may malfunction under Revise. │ !!! This code will error in future versions of Julia. │ Hint: Add an appropriate `invokelatest` around the access to this binding. └ ┌ Polyester │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl └ ┌ DiffEqBase → DiffEqBaseForwardDiffExt │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl └ ┌ NonlinearSolveSpectralMethods │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl └ ┌ DiffEqBase → DiffEqBaseUnitfulExt │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl └ ┌ JumpProcesses │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl └ ┌ NonlinearSolve │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl └ ┌ DiffEqCallbacks │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl └ ┌ DiffEqNoiseProcess │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl └ ┌ StrideArraysCore │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl └ WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl Precompiling packages... 26498.7 ms ✓ Groebner → GroebnerDynamicPolynomialsExt 1 dependency successfully precompiled in 27 seconds. 45 already precompiled. Precompiling packages... Info Given SymbolicsNemoExt was explicitly requested, output will be shown live  [ Info: Assuming ((1//128)*(√((5120//1)*(a^4)) - (80//1)*(a^2))) != 0 [ Info: Assuming ((1//128)*(√((5120//1)*(a^4)) - (80//1)*(a^2))) != 0 117977.6 ms ✓ Symbolics → SymbolicsNemoExt 1 dependency successfully precompiled in 120 seconds. 162 already precompiled. 1 dependency had output during precompilation: ┌ Symbolics → SymbolicsNemoExt │ [Output was shown above] └ Precompiling packages... 35610.8 ms ✓ Symbolics → SymbolicsGroebnerExt 1 dependency successfully precompiled in 37 seconds. 167 already precompiled. Precompiling packages... Info Given MTKDeepDiffsExt was explicitly requested, output will be shown live  WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl 49392.3 ms ✓ ModelingToolkit → MTKDeepDiffsExt 1 dependency successfully precompiled in 51 seconds. 298 already precompiled. 1 dependency had output during precompilation: ┌ ModelingToolkit → MTKDeepDiffsExt │ [Output was shown above] └ Precompiling packages... Info Given ModelingToolkitSIExt was explicitly requested, output will be shown live  WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/3z3g0/src/ThreadingUtilities.jl 66804.7 ms ✓ StructuralIdentifiability → ModelingToolkitSIExt 1 dependency successfully precompiled in 70 seconds. 315 already precompiled. 1 dependency had output during precompilation: ┌ StructuralIdentifiability → ModelingToolkitSIExt │ [Output was shown above] └ [ Info: Testing started [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y ┌ Warning: New variable c, treating as a scalar parameter └ @ StructuralIdentifiability ~/.julia/packages/StructuralIdentifiability/tZdGp/src/pb_representation.jl:94 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: a [ Info: Parameters: b [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: a, b [ Info: Parameters: k1, k2 [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y 2.085408 seconds (854.35 k allocations: 44.823 MiB, 99.50% compilation time) 0.001964 seconds (7.16 k allocations: 320.062 KiB) 0.002220 seconds (11.00 k allocations: 496.750 KiB) 0.002141 seconds (10.93 k allocations: 490.047 KiB) 0.002526 seconds (14.57 k allocations: 644.055 KiB) 0.001415 seconds (8.13 k allocations: 371.094 KiB) 0.001061 seconds (7.52 k allocations: 304.398 KiB) 15.488177 seconds (6.34 M allocations: 334.121 MiB, 0.85% gc time, 99.81% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.334912 seconds (97.75 k allocations: 5.307 MiB, 98.30% compilation time) [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.013230 seconds (9.57 k allocations: 539.258 KiB, 92.08% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 IOEQS: Dict{QQMPolyRingElem, QQMPolyRingElem}(y1(t)_2 => -y1(t)_0 + y1(t)_2, y2(t)_1 => -a*y2(t)_0 + a*u(t)_0 + y2(t)_1 - u(t)_1) [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a, b, c, d [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, I, W, R [ Info: Parameters: a, bi, bw, gam, k, mu, xi [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a01, a12, a13, a21, a31 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, In [ Info: Parameters: N, a, b, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002633435 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 6.854074413 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.06396789 seconds [ Info: Global identifiability assessed in 7.768569766 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001959342 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Global identifiability assessed in 0.8151337 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Global identifiability assessed in 7.6869e-5 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.033776328 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.340632723 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.355e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:14 ✓ # Computing specializations.. Time: 0:00:16 [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 4 specializations in 14.749492699 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings ⌜ # Computing specializations.. Time: 0:00:31 ✓ # Computing specializations.. Time: 0:00:31 [ Info: Computed Groebner bases in 41.175312411 seconds [ Info: Inclusion checked with probability 0.9955 in 0.034938246 seconds [ Info: Global identifiability assessed in 149.624204377 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.800706801 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 1.705933575 seconds [ Info: Dimensions of the Wronskians [676] [ Info: Ranks of the Wronskians computed in 0.107486354 seconds [ Info: Global identifiability assessed in 39.939853584 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015768259 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.034832037 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000311887 seconds [ Info: Global identifiability assessed in 0.06288569 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Note: the input model has nontrivial submodels. If the computation for the full model will be too heavy, you may want to try to first analyze one of the submodels. They can be produced using function `find_submodels` [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 15.158455411 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005018172 seconds [ Info: Dimensions of the Wronskians [2, 3, 2] [ Info: Ranks of the Wronskians computed in 3.4959e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.196022729 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.010028764 seconds [ Info: Inclusion checked with probability 0.9955 in 0.00099983 seconds [ Info: Global identifiability assessed in 16.957057476 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002509426 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002015741 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.969e-5 seconds [ Info: Global identifiability assessed in 0.006657807 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002973181 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002259279 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.2159e-5 seconds [ Info: Global identifiability assessed in 0.007730546 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004829114 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004553257 seconds [ Info: Dimensions of the Wronskians [6] [ Info: Ranks of the Wronskians computed in 2.09e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 5 variables [ Info: Used 9 specializations in 0.205759947 seconds, found 11 relations [ Info: Computing 6 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.355853984 seconds [ Info: Inclusion checked with probability 0.9955 in 0.001739443 seconds [ Info: Global identifiability assessed in 1.80223532 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008152012 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004484717 seconds [ Info: Dimensions of the Wronskians [5, 2] [ Info: Ranks of the Wronskians computed in 3.165e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 5 specializations in 0.003473127 seconds, found 7 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.053907586 seconds [ Info: Inclusion checked with probability 0.9955 in 0.001288728 seconds [ Info: Global identifiability assessed in 0.095716196 seconds [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: V_m, c, k01, k_m [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k1, k2, k3, k4 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: s, i, r, x1, x2 [ Info: Parameters: M, b0, b1, g, mu, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, E, I, R, Q [ Info: Parameters: beta, gamma, psi, v [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: k01, k12, k13, k14, k21, k31, k41 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x5, x7, x4, x6 [ Info: Parameters: k10, k5, k6, k7, k8, k9 [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, In, L, Q [ Info: Parameters: Ninv, a, b, e, g, s [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, R, W [ Info: Parameters: Dd, T, a, d, dr, e, g, r, rR [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: P3, P0, P5, P4, P1, P2 [ Info: Parameters: Ks, M, Mar, alpa, beta, beta_SA, beta_SI, phi, siga1, siga2 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: C, α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR [ Info: Parameters: EGFR_turnover, a1, a2, a3, reaction_1_k1, reaction_1_k2, reaction_2_k1, reaction_2_k2, reaction_3_k1, reaction_4_k1, reaction_5_k1, reaction_5_k2, reaction_6_k1, reaction_7_k1, reaction_8_k1, reaction_9_k1 [ Info: Inputs: pro_EGFR [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: beta, cry, zea, beta10, OHbeta10, betaio, OHbetaio [ Info: Parameters: kOHbeta10, kbeta, kbeta10, kcryOH, kcrybeta, kzea [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: EpoR_A, k1, k2, k3, k5, k6, k7 [ Info: Inputs: [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, U, I [ Info: Parameters: N, a, b, d, g [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: alpha [ Info: Inputs: [ Info: Outputs: y [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001640534 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001260847 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.185e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.000814112 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.000811352 seconds [ Info: The search for identifiable functions concluded in 2.083160838 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002208749 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.0021172 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.172e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.000940761 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.009590859 seconds [ Info: Inclusion checked with probability 0.995 in 0.000669223 seconds [ Info: The search for identifiable functions concluded in 0.02199765 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002181849 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001528836 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.135e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: The search for identifiable functions concluded in 0.004696925 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002026831 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001344038 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.237e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: The search for identifiable functions concluded in 0.00415016 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00203929 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001432936 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.875e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: The search for identifiable functions concluded in 0.006886385 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002203369 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001537495 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.002e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: The search for identifiable functions concluded in 0.007501979 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.331820473 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00206729 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.763e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.000753553 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.000655944 seconds [ Info: The search for identifiable functions concluded in 0.340820427 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002620305 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001786303 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.017e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.000707153 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.008631308 seconds [ Info: Inclusion checked with probability 0.995 in 0.000647073 seconds [ Info: The search for identifiable functions concluded in 0.019254836 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001583405 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002190399 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.569e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 5 specializations in 0.003313069 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001259458 seconds [ Info: The search for identifiable functions concluded in 0.019354156 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001568705 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001424187 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.289e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 5 specializations in 0.003014041 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.041200857 seconds [ Info: Inclusion checked with probability 0.995 in 0.001066739 seconds [ Info: The search for identifiable functions concluded in 0.059458622 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001375666 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001284527 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.2709e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 3 variables [ Info: Used 3 specializations in 0.195710602 seconds, found 2 relations [ Info: Computing 4 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.000833302 seconds [ Info: The search for identifiable functions concluded in 1.355082196 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001372317 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001235778 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.189e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 3 variables [ Info: Used 3 specializations in 0.001421247 seconds, found 2 relations [ Info: Computing 4 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.021668133 seconds [ Info: Inclusion checked with probability 0.995 in 0.000786222 seconds [ Info: The search for identifiable functions concluded in 0.033693359 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002320868 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001785803 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.602e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 3 variables [ Info: Used 3 specializations in 0.001909812 seconds, found 3 relations [ Info: Computing 4 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.000995801 seconds [ Info: The search for identifiable functions concluded in 0.019288826 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002415087 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001776003 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.049e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 3 variables [ Info: Used 3 specializations in 0.001670864 seconds, found 3 relations [ Info: Computing 4 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.232210744 seconds [ Info: Inclusion checked with probability 0.995 in 0.000939521 seconds [ Info: The search for identifiable functions concluded in 0.251028584 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002833023 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002220508 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.492e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 4 specializations in 0.002858983 seconds, found 6 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001197988 seconds [ Info: The search for identifiable functions concluded in 0.021803692 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002594215 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00206664 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.4319e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 4 specializations in 0.002794583 seconds, found 6 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.044471595 seconds [ Info: Inclusion checked with probability 0.995 in 0.00099262 seconds [ Info: The search for identifiable functions concluded in 0.065796832 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014359402 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005103201 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.391e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 1 specializations in 0.186195582 seconds, found 6 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001268318 seconds [ Info: The search for identifiable functions concluded in 1.379064657 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004118861 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003636205 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.36e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 1 specializations in 0.000857021 seconds, found 6 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.04714229 seconds [ Info: Inclusion checked with probability 0.995 in 0.001322347 seconds [ Info: The search for identifiable functions concluded in 0.070826714 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004322679 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003052321 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.461e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 1 specializations in 0.000971671 seconds, found 4 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.00109143 seconds [ Info: The search for identifiable functions concluded in 0.019848751 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004792305 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003433267 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.189e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 1 specializations in 0.001000631 seconds, found 4 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.031615459 seconds [ Info: Inclusion checked with probability 0.995 in 0.00101338 seconds [ Info: The search for identifiable functions concluded in 0.053496549 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004754445 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003237129 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.358e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 3 specializations in 0.002435186 seconds, found 4 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001188189 seconds [ Info: The search for identifiable functions concluded in 0.0272152 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004675565 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003136511 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 4.484e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 3 specializations in 0.002453016 seconds, found 4 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.077324852 seconds [ Info: Inclusion checked with probability 0.995 in 0.001164339 seconds [ Info: The search for identifiable functions concluded in 0.106771731 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002561896 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001996931 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.279e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 3 specializations in 0.00208226 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.000951571 seconds [ Info: The search for identifiable functions concluded in 0.017425344 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002814763 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002002231 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.4409e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 3 specializations in 0.00208595 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.038486222 seconds [ Info: Inclusion checked with probability 0.995 in 0.000939991 seconds [ Info: The search for identifiable functions concluded in 0.056513921 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014028156 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.032974955 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000294907 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:05 ✓ # Computing specializations.. Time: 0:00:05 [ Info: Computing normal forms of degree 2 in 7 variables [ Info: Used 6 specializations in 2.037259083 seconds, found 9 relations [ Info: Computing 8 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.00735141 seconds [ Info: The search for identifiable functions concluded in 13.567364377 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013916327 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.031142542 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000320597 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 7 variables [ Info: Used 6 specializations in 0.005951204 seconds, found 9 relations [ Info: Computing 8 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.092572126 seconds [ Info: Inclusion checked with probability 0.995 in 0.006149281 seconds [ Info: The search for identifiable functions concluded in 0.206222101 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.578386979 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.319985989 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.192291874 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 6 specializations in 0.004112411 seconds, found 5 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 2.421712471 seconds [ Info: The search for identifiable functions concluded in 14.203110797 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.414057618 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 7.293122475 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.145460571 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 5   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 6 specializations in 0.00316093 seconds, found 5 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.149061577 seconds [ Info: Inclusion checked with probability 0.995 in 0.623093172 seconds [ Info: The search for identifiable functions concluded in 10.40685156 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007795716 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007474419 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.1839e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 10 specializations in 0.004541197 seconds, found 4 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001658904 seconds [ Info: The search for identifiable functions concluded in 0.044680744 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, gamma*psi - psi*v, beta*gamma - beta*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007602198 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007165411 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 2.689e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 10 specializations in 0.003996462 seconds, found 4 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.067193179 seconds [ Info: Inclusion checked with probability 0.995 in 0.001630124 seconds [ Info: The search for identifiable functions concluded in 0.113583146 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.018674312 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010680368 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.5249e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 11 specializations in 0.005929184 seconds, found 11 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.002401017 seconds [ Info: The search for identifiable functions concluded in 0.064031589 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.018576882 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010521529 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 6.7109e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 11 specializations in 0.005846634 seconds, found 11 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.362670648 seconds [ Info: Inclusion checked with probability 0.995 in 0.002965762 seconds [ Info: The search for identifiable functions concluded in 0.429182002 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008787316 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011893357 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.021e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 8 specializations in 0.007559027 seconds, found 8 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.004541137 seconds [ Info: The search for identifiable functions concluded in 0.3278694 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, (a*e)//(a + e*s - s), (a^2*e*s + a^2*g + 3*a*e*g*s - a*e*s^2 - 2*a*g*s + e^2*g*s^2 - 2*e*g*s^2 + g*s^2)//(a + e*s - s)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = RingElem[(a*e)//(a + e*s - s), b, a + g, (a^2*e*s + a^2*g + 3*a*e*g*s - a*e*s^2 - 2*a*g*s + e^2*g*s^2 - 2*e*g*s^2 + g*s^2)//(a + e*s - s), s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008574338 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01362343 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.452e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 8 specializations in 0.277401712 seconds, found 8 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.167779358 seconds [ Info: Inclusion checked with probability 0.995 in 0.004343089 seconds [ Info: The search for identifiable functions concluded in 0.848109013 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, (a*e)//(a + e*s - s), (a^2*e*s + a^2*g + 3*a*e*g*s - a*e*s^2 - 2*a*g*s + e^2*g*s^2 - 2*e*g*s^2 + g*s^2)//(a + e*s - s)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = RingElem[(a*e)//(a + e*s - s), b, a + g, (a^2*e*s + a^2*g + 3*a*e*g*s - a*e*s^2 - 2*a*g*s + e^2*g*s^2 - 2*e*g*s^2 + g*s^2)//(a + e*s - s), s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.995321061 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.053268151 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 6.5349e-5 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 18   ⌟ # Computing specializations.. Time: 0:00:00 Points: 27   ⌞ # Computing specializations.. Time: 0:00:01 Points: 35   ⌜ # Computing specializations.. Time: 0:00:01 Points: 45   ⌝ # Computing specializations.. Time: 0:00:01 Points: 54   ⌟ # Computing specializations.. Time: 0:00:02 Points: 62   ⌞ # Computing specializations.. Time: 0:00:02 Points: 69   ⌜ # Computing specializations.. Time: 0:00:02 Points: 75   ⌝ # Computing specializations.. Time: 0:00:03 Points: 81   ⌟ # Computing specializations.. Time: 0:00:03 Points: 88   ⌞ # Computing specializations.. Time: 0:00:04 Points: 95   ✓ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ⌝ # Computing specializations.. Time: 0:00:00 Points: 13   ⌟ # Computing specializations.. Time: 0:00:01 Points: 18   ⌞ # Computing specializations.. Time: 0:00:01 Points: 24   ⌜ # Computing specializations.. Time: 0:00:01 Points: 30   ⌝ # Computing specializations.. Time: 0:00:01 Points: 36   ⌟ # Computing specializations.. Time: 0:00:02 Points: 42   ⌞ # Computing specializations.. Time: 0:00:02 Points: 48   ⌜ # Computing specializations.. Time: 0:00:03 Points: 55   ⌝ # Computing specializations.. Time: 0:00:03 Points: 61   ⌟ # Computing specializations.. Time: 0:00:03 Points: 66   ⌞ # Computing specializations.. Time: 0:00:04 Points: 72   ⌜ # Computing specializations.. Time: 0:00:04 Points: 79   ⌝ # Computing specializations.. Time: 0:00:04 Points: 85   ⌟ # Computing specializations.. Time: 0:00:05 Points: 90   ⌞ # Computing specializations.. Time: 0:00:05 Points: 97   ⌜ # Computing specializations.. Time: 0:00:05 Points: 104   ⌝ # Computing specializations.. Time: 0:00:06 Points: 111   ⌟ # Computing specializations.. Time: 0:00:06 Points: 117   ⌞ # Computing specializations.. Time: 0:00:06 Points: 124   ⌜ # Computing specializations.. Time: 0:00:07 Points: 131   ⌝ # Computing specializations.. Time: 0:00:07 Points: 137   ⌟ # Computing specializations.. Time: 0:00:07 Points: 142   ⌞ # Computing specializations.. Time: 0:00:08 Points: 149   ⌜ # Computing specializations.. Time: 0:00:08 Points: 155   ⌝ # Computing specializations.. Time: 0:00:08 Points: 160   ⌟ # Computing specializations.. Time: 0:00:09 Points: 167   ⌞ # Computing specializations.. Time: 0:00:09 Points: 172   ⌜ # Computing specializations.. Time: 0:00:09 Points: 178   ⌝ # Computing specializations.. Time: 0:00:10 Points: 185   ⌟ # Computing specializations.. Time: 0:00:10 Points: 192   ⌞ # Computing specializations.. Time: 0:00:10 Points: 197   ⌜ # Computing specializations.. Time: 0:00:11 Points: 204   ⌝ # Computing specializations.. Time: 0:00:11 Points: 210   ⌟ # Computing specializations.. Time: 0:00:11 Points: 216   ⌞ # Computing specializations.. Time: 0:00:12 Points: 223   ⌜ # Computing specializations.. Time: 0:00:12 Points: 229   ⌝ # Computing specializations.. Time: 0:00:13 Points: 235   ⌟ # Computing specializations.. Time: 0:00:13 Points: 242   ⌞ # Computing specializations.. Time: 0:00:13 Points: 249   ⌜ # Computing specializations.. Time: 0:00:14 Points: 255   ⌝ # Computing specializations.. Time: 0:00:14 Points: 262   ⌟ # Computing specializations.. Time: 0:00:14 Points: 269   ⌞ # Computing specializations.. Time: 0:00:15 Points: 275   ⌜ # Computing specializations.. Time: 0:00:15 Points: 282   ⌝ # Computing specializations.. Time: 0:00:15 Points: 288   ⌟ # Computing specializations.. Time: 0:00:16 Points: 295   ⌞ # Computing specializations.. Time: 0:00:16 Points: 300   ⌜ # Computing specializations.. Time: 0:00:16 Points: 306   ⌝ # Computing specializations.. Time: 0:00:17 Points: 313   ⌟ # Computing specializations.. Time: 0:00:17 Points: 318   ⌞ # Computing specializations.. Time: 0:00:17 Points: 324   ⌜ # Computing specializations.. Time: 0:00:18 Points: 330   ⌝ # Computing specializations.. Time: 0:00:18 Points: 336   ⌟ # Computing specializations.. Time: 0:00:19 Points: 343   ⌞ # Computing specializations.. Time: 0:00:19 Points: 350   ⌜ # Computing specializations.. Time: 0:00:19 Points: 357   ⌝ # Computing specializations.. Time: 0:00:20 Points: 362   ⌟ # Computing specializations.. Time: 0:00:20 Points: 368   ⌞ # Computing specializations.. Time: 0:00:20 Points: 375   ⌜ # Computing specializations.. Time: 0:00:21 Points: 382   ⌝ # Computing specializations.. Time: 0:00:21 Points: 388   ⌟ # Computing specializations.. Time: 0:00:21 Points: 394   ⌞ # Computing specializations.. Time: 0:00:22 Points: 400   ⌜ # Computing specializations.. Time: 0:00:22 Points: 407   ⌝ # Computing specializations.. Time: 0:00:23 Points: 414   ⌟ # Computing specializations.. Time: 0:00:23 Points: 420   ⌞ # Computing specializations.. Time: 0:00:23 Points: 426   ⌜ # Computing specializations.. Time: 0:00:23 Points: 431   ⌝ # Computing specializations.. Time: 0:00:24 Points: 438   ⌟ # Computing specializations.. Time: 0:00:24 Points: 444   ⌞ # Computing specializations.. Time: 0:00:24 Points: 450   ⌜ # Computing specializations.. Time: 0:00:25 Points: 456   ⌝ # Computing specializations.. Time: 0:00:25 Points: 462   ⌟ # Computing specializations.. Time: 0:00:26 Points: 469   ⌞ # Computing specializations.. Time: 0:00:26 Points: 474   ⌜ # Computing specializations.. Time: 0:00:26 Points: 481   ⌝ # Computing specializations.. Time: 0:00:27 Points: 487   ⌟ # Computing specializations.. Time: 0:00:27 Points: 493   ⌞ # Computing specializations.. Time: 0:00:27 Points: 499   ⌜ # Computing specializations.. Time: 0:00:28 Points: 504   ⌝ # Computing specializations.. Time: 0:00:28 Points: 511   ⌟ # Computing specializations.. Time: 0:00:28 Points: 518   ⌞ # Computing specializations.. Time: 0:00:29 Points: 524   ⌜ # Computing specializations.. Time: 0:00:29 Points: 530   ⌝ # Computing specializations.. Time: 0:00:29 Points: 536   ⌟ # Computing specializations.. Time: 0:00:30 Points: 543   ⌞ # Computing specializations.. Time: 0:00:30 Points: 550   ⌜ # Computing specializations.. Time: 0:00:30 Points: 556   ⌝ # Computing specializations.. Time: 0:00:31 Points: 562   ⌟ # Computing specializations.. Time: 0:00:31 Points: 568   ⌞ # Computing specializations.. Time: 0:00:32 Points: 575   ⌜ # Computing specializations.. Time: 0:00:32 Points: 582   ⌝ # Computing specializations.. Time: 0:00:32 Points: 588   ⌟ # Computing specializations.. Time: 0:00:33 Points: 594   ⌞ # Computing specializations.. Time: 0:00:33 Points: 599   ⌜ # Computing specializations.. Time: 0:00:33 Points: 606   ⌝ # Computing specializations.. Time: 0:00:34 Points: 612   ⌟ # Computing specializations.. Time: 0:00:34 Points: 619   ⌞ # Computing specializations.. Time: 0:00:34 Points: 625   ⌜ # Computing specializations.. Time: 0:00:35 Points: 631   ⌝ # Computing specializations.. Time: 0:00:35 Points: 638   ✓ # Computing specializations.. Time: 0:00:36 [ Info: Computing normal forms of degree 2 in 9 variables [ Info: Used 7 specializations in 0.314960242 seconds, found 3 relations [ Info: Computing 10 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 13.606338105 seconds [ Info: The search for identifiable functions concluded in 65.005194853 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.53803995 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.075504369 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000106139 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 5   ⌝ # Computing specializations.. Time: 0:00:00 Points: 12   ⌟ # Computing specializations.. Time: 0:00:01 Points: 19   ⌞ # Computing specializations.. Time: 0:00:01 Points: 24   ⌜ # Computing specializations.. Time: 0:00:01 Points: 31   ⌝ # Computing specializations.. Time: 0:00:02 Points: 37   ⌟ # Computing specializations.. Time: 0:00:02 Points: 42   ⌞ # Computing specializations.. Time: 0:00:02 Points: 49   ⌜ # Computing specializations.. Time: 0:00:03 Points: 55   ⌝ # Computing specializations.. Time: 0:00:03 Points: 60   ⌟ # Computing specializations.. Time: 0:00:03 Points: 67   ⌞ # Computing specializations.. Time: 0:00:04 Points: 73   ⌜ # Computing specializations.. Time: 0:00:04 Points: 78   ⌝ # Computing specializations.. Time: 0:00:04 Points: 84   ⌟ # Computing specializations.. Time: 0:00:05 Points: 90   ⌞ # Computing specializations.. Time: 0:00:05 Points: 95   ✓ # Computing specializations.. Time: 0:00:05 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:00 Points: 5   ⌝ # Computing specializations.. Time: 0:00:00 Points: 12   ⌟ # Computing specializations.. Time: 0:00:01 Points: 18   ⌞ # Computing specializations.. Time: 0:00:01 Points: 24   ⌜ # Computing specializations.. Time: 0:00:01 Points: 31   ⌝ # Computing specializations.. Time: 0:00:02 Points: 37   ⌟ # Computing specializations.. Time: 0:00:02 Points: 42   ⌞ # Computing specializations.. Time: 0:00:02 Points: 49   ⌜ # Computing specializations.. Time: 0:00:03 Points: 55   ⌝ # Computing specializations.. Time: 0:00:03 Points: 60   ⌟ # Computing specializations.. Time: 0:00:03 Points: 67   ⌞ # Computing specializations.. Time: 0:00:04 Points: 73   ⌜ # Computing specializations.. Time: 0:00:04 Points: 78   ⌝ # Computing specializations.. Time: 0:00:04 Points: 85   ⌟ # Computing specializations.. Time: 0:00:05 Points: 91   ⌞ # Computing specializations.. Time: 0:00:05 Points: 97   ⌜ # Computing specializations.. Time: 0:00:05 Points: 104   ⌝ # Computing specializations.. Time: 0:00:06 Points: 110   ⌟ # Computing specializations.. Time: 0:00:06 Points: 116   ⌞ # Computing specializations.. Time: 0:00:07 Points: 123   ⌜ # Computing specializations.. Time: 0:00:07 Points: 129   ⌝ # Computing specializations.. Time: 0:00:07 Points: 134   ⌟ # Computing specializations.. Time: 0:00:08 Points: 141   ⌞ # Computing specializations.. Time: 0:00:08 Points: 147   ⌜ # Computing specializations.. Time: 0:00:08 Points: 153   ⌝ # Computing specializations.. Time: 0:00:09 Points: 159   ⌟ # Computing specializations.. Time: 0:00:09 Points: 165   ⌞ # Computing specializations.. Time: 0:00:09 Points: 171   ⌜ # Computing specializations.. Time: 0:00:10 Points: 178   ⌝ # Computing specializations.. Time: 0:00:10 Points: 185   ⌟ # Computing specializations.. Time: 0:00:11 Points: 191   ⌞ # Computing specializations.. Time: 0:00:11 Points: 198   ⌜ # Computing specializations.. Time: 0:00:11 Points: 204   ⌝ # Computing specializations.. Time: 0:00:12 Points: 210   ⌟ # Computing specializations.. Time: 0:00:12 Points: 217   ⌞ # Computing specializations.. Time: 0:00:12 Points: 223   ⌜ # Computing specializations.. Time: 0:00:13 Points: 229   ⌝ # Computing specializations.. Time: 0:00:13 Points: 234   ⌟ # Computing specializations.. Time: 0:00:13 Points: 240   ⌞ # Computing specializations.. Time: 0:00:14 Points: 247   ⌜ # Computing specializations.. Time: 0:00:14 Points: 252   ⌝ # Computing specializations.. Time: 0:00:14 Points: 258   ⌟ # Computing specializations.. Time: 0:00:15 Points: 264   ⌞ # Computing specializations.. Time: 0:00:15 Points: 269   ⌜ # Computing specializations.. Time: 0:00:15 Points: 276   ⌝ # Computing specializations.. Time: 0:00:16 Points: 281   ⌟ # Computing specializations.. Time: 0:00:16 Points: 287   ⌞ # Computing specializations.. Time: 0:00:16 Points: 292   ⌜ # Computing specializations.. Time: 0:00:17 Points: 298   ⌝ # Computing specializations.. Time: 0:00:17 Points: 305   ⌟ # Computing specializations.. Time: 0:00:18 Points: 311   ⌞ # Computing specializations.. Time: 0:00:18 Points: 317   ⌜ # Computing specializations.. Time: 0:00:18 Points: 323   ⌝ # Computing specializations.. Time: 0:00:19 Points: 328   ⌟ # Computing specializations.. Time: 0:00:19 Points: 335   ⌞ # Computing specializations.. Time: 0:00:19 Points: 341   ⌜ # Computing specializations.. Time: 0:00:20 Points: 347   ⌝ # Computing specializations.. Time: 0:00:20 Points: 353   ⌟ # Computing specializations.. Time: 0:00:20 Points: 359   ⌞ # Computing specializations.. Time: 0:00:21 Points: 366   ⌜ # Computing specializations.. Time: 0:00:21 Points: 372   ⌝ # Computing specializations.. Time: 0:00:21 Points: 378   ⌟ # Computing specializations.. Time: 0:00:22 Points: 384   ⌞ # Computing specializations.. Time: 0:00:22 Points: 389   ⌜ # Computing specializations.. Time: 0:00:23 Points: 396   ⌝ # Computing specializations.. Time: 0:00:23 Points: 402   ⌟ # Computing specializations.. Time: 0:00:23 Points: 408   ⌞ # Computing specializations.. Time: 0:00:24 Points: 414   ⌜ # Computing specializations.. Time: 0:00:24 Points: 419   ⌝ # Computing specializations.. Time: 0:00:24 Points: 426   ⌟ # Computing specializations.. Time: 0:00:25 Points: 433   ⌞ # Computing specializations.. Time: 0:00:25 Points: 439   ⌜ # Computing specializations.. Time: 0:00:25 Points: 445   ⌝ # Computing specializations.. Time: 0:00:26 Points: 450   ⌟ # Computing specializations.. Time: 0:00:26 Points: 457   ⌞ # Computing specializations.. Time: 0:00:26 Points: 463   ⌜ # Computing specializations.. Time: 0:00:27 Points: 469   ⌝ # Computing specializations.. Time: 0:00:27 Points: 475   ⌟ # Computing specializations.. Time: 0:00:28 Points: 480   ⌞ # Computing specializations.. Time: 0:00:28 Points: 487   ⌜ # Computing specializations.. Time: 0:00:28 Points: 493   ⌝ # Computing specializations.. Time: 0:00:29 Points: 499   ⌟ # Computing specializations.. Time: 0:00:29 Points: 505   ⌞ # Computing specializations.. Time: 0:00:29 Points: 511   ⌜ # Computing specializations.. Time: 0:00:30 Points: 518   ⌝ # Computing specializations.. Time: 0:00:30 Points: 524   ⌟ # Computing specializations.. Time: 0:00:30 Points: 530   ⌞ # Computing specializations.. Time: 0:00:31 Points: 536   ⌜ # Computing specializations.. Time: 0:00:31 Points: 542   ⌝ # Computing specializations.. Time: 0:00:31 Points: 549   ⌟ # Computing specializations.. Time: 0:00:32 Points: 555   ⌞ # Computing specializations.. Time: 0:00:32 Points: 561   ⌜ # Computing specializations.. Time: 0:00:33 Points: 566   ⌝ # Computing specializations.. Time: 0:00:33 Points: 572   ⌟ # Computing specializations.. Time: 0:00:33 Points: 578   ⌞ # Computing specializations.. Time: 0:00:34 Points: 584   ⌜ # Computing specializations.. Time: 0:00:34 Points: 591   ⌝ # Computing specializations.. Time: 0:00:34 Points: 597   ⌟ # Computing specializations.. Time: 0:00:35 Points: 603   ⌞ # Computing specializations.. Time: 0:00:35 Points: 609   ⌜ # Computing specializations.. Time: 0:00:35 Points: 615   ⌝ # Computing specializations.. Time: 0:00:36 Points: 622   ⌟ # Computing specializations.. Time: 0:00:36 Points: 628   ⌞ # Computing specializations.. Time: 0:00:36 Points: 634   ⌜ # Computing specializations.. Time: 0:00:37 Points: 640   ✓ # Computing specializations.. Time: 0:00:37 [ Info: Computing normal forms of degree 2 in 9 variables [ Info: Used 7 specializations in 0.086631142 seconds, found 3 relations [ Info: Computing 10 Groebner bases for degrees (3, 3) for block orderings ⌜ # Computing specializations.. Time: 0:00:00 Points: 15   ⌝ # Computing specializations.. Time: 0:00:00 Points: 27   ⌟ # Computing specializations.. Time: 0:00:01 Points: 43   ⌞ # Computing specializations.. Time: 0:00:01 Points: 59   ⌜ # Computing specializations.. Time: 0:00:01 Points: 74   ⌝ # Computing specializations.. Time: 0:00:02 Points: 88   ✓ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:00 Points: 27   ⌝ # Computing specializations.. Time: 0:00:00 Points: 60   ⌟ # Computing specializations.. Time: 0:00:01 Points: 93   ✓ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:00 Points: 66   ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 22   ⌝ # Computing specializations.. Time: 0:00:00 Points: 67   ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 25   ⌝ # Computing specializations.. Time: 0:00:00 Points: 54   ⌟ # Computing specializations.. Time: 0:00:01 Points: 84   ✓ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:00 Points: 22   ⌝ # Computing specializations.. Time: 0:00:00 Points: 62   ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 34   ⌝ # Computing specializations.. Time: 0:00:00 Points: 75   ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 34   ⌝ # Computing specializations.. Time: 0:00:00 Points: 74   ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 18   ⌝ # Computing specializations.. Time: 0:00:00 Points: 36   ⌟ # Computing specializations.. Time: 0:00:00 Points: 54   ⌞ # Computing specializations.. Time: 0:00:01 Points: 72   ⌜ # Computing specializations.. Time: 0:00:01 Points: 90   ✓ # Computing specializations.. Time: 0:00:01 [ Info: Computed Groebner bases in 13.899758331 seconds [ Info: Inclusion checked with probability 0.995 in 13.814754873 seconds [ Info: The search for identifiable functions concluded in 82.230019514 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003892973 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.001462096 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.000739362 seconds [ Info: The search for identifiable functions concluded in 0.029364449 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :weak │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001136369 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.000848982 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.00834416 seconds [ Info: Inclusion checked with probability 0.995 in 0.000559085 seconds [ Info: The search for identifiable functions concluded in 0.016494123 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :standard │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t)] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001419727 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002469816 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.6279e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.000612934 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.007156642 seconds [ Info: Inclusion checked with probability 0.995 in 0.000546145 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 2 variables [ Info: Used 1 specializations in 0.202934901 seconds, found 2 relations [ Info: Computing 3 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.0010008 seconds [ Info: The search for identifiable functions concluded in 1.474864667 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001350337 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001156249 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.4619e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.000667944 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.007415219 seconds [ Info: Inclusion checked with probability 0.995 in 0.000579035 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 2 variables [ Info: Used 1 specializations in 0.000719213 seconds, found 2 relations [ Info: Computing 3 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.013934386 seconds [ Info: Inclusion checked with probability 0.995 in 0.000812033 seconds [ Info: The search for identifiable functions concluded in 0.037024477 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002594485 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002319528 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.132e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 4 specializations in 0.002036271 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.027016691 seconds [ Info: Inclusion checked with probability 0.995 in 0.000793132 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 6 specializations in 0.003395328 seconds, found 5 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001289018 seconds [ Info: The search for identifiable functions concluded in 0.061164836 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002445977 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00209401 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.8379e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 4 specializations in 0.001815762 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.026731004 seconds [ Info: Inclusion checked with probability 0.995 in 0.000779333 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 6 specializations in 0.003873483 seconds, found 5 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.054282411 seconds [ Info: Inclusion checked with probability 0.995 in 0.001220758 seconds [ Info: The search for identifiable functions concluded in 0.115431987 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002366128 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002061221 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.189e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 4 specializations in 0.001750604 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.026696365 seconds [ Info: Inclusion checked with probability 0.995 in 0.000804552 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 6 specializations in 0.003525496 seconds, found 5 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001246618 seconds [ Info: The search for identifiable functions concluded in 0.059507671 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002403877 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00205813 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.2249e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 4 specializations in 0.001536195 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.02610644 seconds [ Info: Inclusion checked with probability 0.995 in 0.000866442 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 6 specializations in 0.003897833 seconds, found 5 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.069859653 seconds [ Info: Inclusion checked with probability 0.995 in 0.001658044 seconds [ Info: The search for identifiable functions concluded in 0.132117217 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007568388 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006436409 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.772e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 1 specializations in 0.001407026 seconds, found 6 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.07327666 seconds [ Info: Inclusion checked with probability 0.995 in 0.001815792 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 9 variables [ Info: Used 1 specializations in 0.001618865 seconds, found 9 relations [ Info: Computing 10 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.002259648 seconds [ Info: The search for identifiable functions concluded in 0.149200774 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006963204 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006665796 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.5899e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 1 specializations in 0.001351187 seconds, found 6 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.061572331 seconds [ Info: Inclusion checked with probability 0.995 in 0.001642654 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 9 variables [ Info: Used 1 specializations in 0.001615005 seconds, found 9 relations [ Info: Computing 10 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.292969231 seconds [ Info: Inclusion checked with probability 0.995 in 0.002246439 seconds [ Info: The search for identifiable functions concluded in 0.428258138 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002281858 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001529605 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.8419e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 3 variables [ Info: Used 3 specializations in 0.001556345 seconds, found 2 relations [ Info: Computing 4 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.000960531 seconds [ Info: The search for identifiable functions concluded in 0.018057597 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002450586 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001593475 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.883e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 3 variables [ Info: Used 3 specializations in 0.001486585 seconds, found 2 relations [ Info: Computing 4 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.02512777 seconds [ Info: Inclusion checked with probability 0.995 in 0.00104177 seconds [ Info: The search for identifiable functions concluded in 0.043317646 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00423392 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002774293 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.114e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 2 variables [ Info: Used 2 specializations in 0.001145069 seconds, found 1 relations [ Info: Computing 3 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.015078376 seconds [ Info: Inclusion checked with probability 0.995 in 0.000844341 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 5 variables [ Info: Used 7 specializations in 0.005779314 seconds, found 4 relations [ Info: Computing 6 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001535336 seconds [ Info: The search for identifiable functions concluded in 0.05332888 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004275469 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002739254 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.182e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 2 variables [ Info: Used 2 specializations in 0.001170098 seconds, found 1 relations [ Info: Computing 3 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.017288585 seconds [ Info: Inclusion checked with probability 0.995 in 0.000883092 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 5 variables [ Info: Used 7 specializations in 0.005770355 seconds, found 4 relations [ Info: Computing 6 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.060273455 seconds [ Info: Inclusion checked with probability 0.995 in 0.001468756 seconds [ Info: The search for identifiable functions concluded in 0.118708556 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), C, α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002497686 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001658314 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.222e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.000785742 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.009698287 seconds [ Info: Inclusion checked with probability 0.995 in 0.000627144 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 3 variables [ Info: Used 3 specializations in 0.001724493 seconds, found 2 relations [ Info: Computing 4 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.00104369 seconds [ Info: The search for identifiable functions concluded in 0.03237006 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002474157 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001706354 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.0679e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.000773413 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.009858976 seconds [ Info: Inclusion checked with probability 0.995 in 0.000650843 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 3 variables [ Info: Used 3 specializations in 0.001592174 seconds, found 2 relations [ Info: Computing 4 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.473651854 seconds [ Info: Inclusion checked with probability 0.995 in 0.00095353 seconds [ Info: The search for identifiable functions concluded in 0.50549269 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001483045 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001308948 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 3.479e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 3 variables [ Info: Used 3 specializations in 0.001368637 seconds, found 2 relations [ Info: Computing 4 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.0198784 seconds [ Info: Inclusion checked with probability 0.995 in 0.000789242 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 5 specializations in 0.002584315 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.00109752 seconds [ Info: The search for identifiable functions concluded in 0.043796962 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001343097 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001230518 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.084e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 3 variables [ Info: Used 3 specializations in 0.001341247 seconds, found 2 relations [ Info: Computing 4 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.019408214 seconds [ Info: Inclusion checked with probability 0.995 in 0.000757383 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 5 specializations in 0.002503816 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.034929047 seconds [ Info: Inclusion checked with probability 0.995 in 0.00104768 seconds [ Info: The search for identifiable functions concluded in 0.078144333 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005891333 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005530877 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 2.659e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 3 specializations in 0.001875843 seconds, found 4 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.040928709 seconds [ Info: Inclusion checked with probability 0.995 in 0.001354057 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 7 variables [ Info: Used 5 specializations in 0.009559999 seconds, found 8 relations [ Info: Computing 8 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.003458727 seconds [ Info: The search for identifiable functions concluded in 0.127425233 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, (x1(t)*p4 - x2(t)*p2)//(p1 - p3)] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, (x1(t)*p4 - x2(t)*p2)//(p1 - p3)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005765275 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00525477 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 2.401e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 3 specializations in 0.001930121 seconds, found 4 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.040463763 seconds [ Info: Inclusion checked with probability 0.995 in 0.001186748 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 7 variables [ Info: Used 5 specializations in 0.009535138 seconds, found 8 relations [ Info: Computing 8 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.260027865 seconds [ Info: Inclusion checked with probability 0.995 in 0.003463237 seconds [ Info: The search for identifiable functions concluded in 0.390541939 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, (x1(t)*p4 - x2(t)*p2)//(p1 - p3)] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, (x1(t)*p4 - x2(t)*p2)//(p1 - p3)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y1(t), u(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.158993131 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.429973242 seconds [ Info: Dimensions of the Wronskians [18, 9, 145] [ Info: Ranks of the Wronskians computed in 0.001724974 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:17 ✓ # Computing specializations.. Time: 0:00:17 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 29 running 1 of 2 signal (10): User defined signal 1 unknown function (ip: 0x714f7d3d6f14) at /lib/x86_64-linux-gnu/libc.so.6 pthread_cond_wait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv_cond_wait at /workspace/srcdir/libuv/src/unix/thread.c:822 ijl_task_get_next at /source/src/scheduler.c:520 poptask at ./task.jl:1187 wait at ./task.jl:1199 #wait#400 at ./condition.jl:141 wait at ./condition.jl:136 [inlined] _trywait at ./asyncevent.jl:185 profile_printing_listener at ./Base.jl:333 #start_profile_listener##0 at ./Base.jl:353 jfptr_YY.start_profile_listenerYY.YY.0_59886.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 jl_apply at /source/src/julia.h:2290 [inlined] start_task at /source/src/task.c:1249 unknown function (ip: (nil)) at (unknown file) _ZNK4llvm18TargetRegisterInfo22getMinimalPhysRegClassENS_10MCRegisterENS_3MVTE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm18ScheduleDAGSDNodes13AddSchedEdgesEv at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN12_GLOBAL__N_117ScheduleDAGRRList8ScheduleEv at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm16SelectionDAGISel17CodeGenAndEmitDAGEv at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm16SelectionDAGISel16FinishBasicBlockEv at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm16SelectionDAGISel20SelectAllBasicBlocksERKNS_8FunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm16SelectionDAGISel20runOnMachineFunctionERNS_15MachineFunctionE.part.0 at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN12_GLOBAL__N_115X86DAGToDAGISel20runOnMachineFunctionERN4llvm15MachineFunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm19MachineFunctionPass13runOnFunctionERNS_8FunctionE.part.0 at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm13FPPassManager13runOnFunctionERNS_8FunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm13FPPassManager11runOnModuleERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm6legacy15PassManagerImpl3runERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm3orc14SimpleCompilerclERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) operator() at /source/src/jitlayers.cpp:1683 addModule at /source/src/jitlayers.cpp:2159 jl_compile_codeinst_now at /source/src/jitlayers.cpp:626 jl_compile_codeinst_impl at /source/src/jitlayers.cpp:946 jl_compile_method_internal at /source/src/gf.c:2985 _jl_invoke at /source/src/gf.c:3467 [inlined] ijl_apply_generic at /source/src/gf.c:3675 __groebner1 at /home/pkgeval/.julia/packages/Groebner/kmkwE/src/groebner/groebner.jl:57 _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 _groebner1 at /home/pkgeval/.julia/packages/Groebner/kmkwE/src/groebner/groebner.jl:34 _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 groebner0 at /home/pkgeval/.julia/packages/Groebner/kmkwE/src/groebner/groebner.jl:10 #groebner#160 at /home/pkgeval/.julia/packages/Groebner/kmkwE/src/interface.jl:110 [inlined] groebner at /home/pkgeval/.julia/packages/Groebner/kmkwE/src/interface.jl:108 unknown function (ip: 0x714f4c4a68f2) at (unknown file) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 check_field_membership_mod_p! at ./none (unknown line) #groebner_basis_coeffs#323 at ./none (unknown line) groebner_basis_coeffs at ./none (unknown line) unknown function (ip: 0x714f4c4183e4) at (unknown file) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 #simplified_generating_set#326 at ./none (unknown line) simplified_generating_set at ./none (unknown line) unknown function (ip: 0x714f4c59cb11) at (unknown file) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 #initial_identifiable_functions#333 at ./none (unknown line) initial_identifiable_functions at ./none (unknown line) [inlined] #_find_identifiable_functions#369 at /home/pkgeval/.julia/packages/StructuralIdentifiability/tZdGp/src/identifiable_functions.jl:108 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/tZdGp/src/identifiable_functions.jl:86 [inlined] #367 at /home/pkgeval/.julia/packages/StructuralIdentifiability/tZdGp/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:534 with_logger at ./logging/logging.jl:644 [inlined] #find_identifiable_functions#365 at /home/pkgeval/.julia/packages/StructuralIdentifiability/tZdGp/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/tZdGp/src/identifiable_functions.jl:49 unknown function (ip: 0x714f4be9bcf4) at (unknown file) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 jl_apply at /source/src/julia.h:2290 [inlined] do_call at /source/src/interpreter.c:124 eval_value at /source/src/interpreter.c:242 eval_body at /source/src/interpreter.c:580 eval_body at /source/src/interpreter.c:557 eval_body at /source/src/interpreter.c:557 jl_interpret_toplevel_thunk at /source/src/interpreter.c:897 jl_toplevel_eval_flex at /source/src/toplevel.c:1032 jl_toplevel_eval_flex at /source/src/toplevel.c:972 ijl_toplevel_eval at /source/src/toplevel.c:1044 ijl_toplevel_eval_in at /source/src/toplevel.c:1089 [ Info: Computing normal forms of degree 2 in 16 variables eval at ./boot.jl:488 include_string at ./loading.jl:2855 _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 _include at ./loading.jl:2915 include at ./Base.jl:308 IncludeInto at ./Base.jl:309 jfptr_IncludeInto_116304.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/tZdGp/test/runtests.jl:151 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.13/Test/src/Test.jl:1771 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/tZdGp/test/runtests.jl:150 [inlined] macro expansion at ./timing.jl:621 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/tZdGp/test/runtests.jl:353 _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_invoke at /source/src/gf.c:3482 jl_toplevel_eval_flex at /source/src/toplevel.c:1021 jl_toplevel_eval_flex at /source/src/toplevel.c:972 ijl_toplevel_eval at /source/src/toplevel.c:1044 ijl_toplevel_eval_in at /source/src/toplevel.c:1089 eval at ./boot.jl:488 include_string at ./loading.jl:2855 _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 _include at ./loading.jl:2915 include at ./Base.jl:308 IncludeInto at ./Base.jl:309 jfptr_IncludeInto_116304.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 jl_apply at /source/src/julia.h:2290 [inlined] do_call at /source/src/interpreter.c:124 eval_value at /source/src/interpreter.c:242 eval_stmt_value at /source/src/interpreter.c:193 [inlined] eval_body at /source/src/interpreter.c:692 jl_interpret_toplevel_thunk at /source/src/interpreter.c:897 jl_toplevel_eval_flex at /source/src/toplevel.c:1032 jl_toplevel_eval_flex at /source/src/toplevel.c:972 ijl_toplevel_eval at /source/src/toplevel.c:1044 ijl_toplevel_eval_in at /source/src/toplevel.c:1089 eval at ./boot.jl:488 exec_options at ./client.jl:294 _start at ./client.jl:560 jfptr__start_63968.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 jl_apply at /source/src/julia.h:2290 [inlined] true_main at /source/src/jlapi.c:964 jl_repl_entrypoint at /source/src/jlapi.c:1124 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x714f7d378249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point ============================================================== [ Info: Used 46 specializations in 3.292187177 seconds, found 16 relations [ Info: Computing 17 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 1.610928224 seconds ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 2 signal (10): User defined signal 1 unknown function (ip: 0x71523b3b8f14) at /lib/x86_64-linux-gnu/libc.so.6 pthread_cond_wait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv_cond_wait at /workspace/srcdir/libuv/src/unix/thread.c:822 ijl_task_get_next at /source/src/scheduler.c:520 poptask at ./task.jl:1187 wait at ./task.jl:1199 #wait#400 at ./condition.jl:141 wait at ./condition.jl:136 [inlined] _trywait at ./asyncevent.jl:185 profile_printing_listener at ./Base.jl:333 #start_profile_listener##0 at ./Base.jl:353 jfptr_YY.start_profile_listenerYY.YY.0_59886.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 jl_apply at /source/src/julia.h:2290 [inlined] start_task at /source/src/task.c:1249 unknown function (ip: (nil)) at (unknown file) epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:454 poptask at ./task.jl:1187 wait at ./task.jl:1199 #wait#400 at ./condition.jl:141 wait at ./condition.jl:136 [inlined] wait at ./process.jl:694 wait at ./process.jl:687 jfptr_wait_79110.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 subprocess_handler at /source/usr/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2404 unknown function (ip: 0x715231c8a773) at (unknown file) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 #203 at /source/usr/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2344 withenv at ./env.jl:265 #188 at /source/usr/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2165 with_temp_env at /source/usr/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2023 #184 at /source/usr/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2132 #mktempdir#21 at ./file.jl:899 unknown function (ip: 0x715231c8292c) at (unknown file) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 mktempdir at ./file.jl:895 mktempdir at ./file.jl:895 #sandbox#180 at /source/usr/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2079 [inlined] sandbox at /source/usr/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2071 unknown function (ip: 0x715231c76589) at (unknown file) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 #test#191 at /source/usr/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2329 test at /source/usr/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2241 [inlined] #test#170 at /source/usr/share/julia/stdlib/v1.13/Pkg/src/API.jl:486 test at /source/usr/share/julia/stdlib/v1.13/Pkg/src/API.jl:465 unknown function (ip: 0x715231c761c1) at (unknown file) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 #test#84 at /source/usr/share/julia/stdlib/v1.13/Pkg/src/API.jl:164 unknown function (ip: 0x715231c73f58) at (unknown file) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 test at /source/usr/share/julia/stdlib/v1.13/Pkg/src/API.jl:153 #test#82 at /source/usr/share/julia/stdlib/v1.13/Pkg/src/API.jl:152 test at /source/usr/share/julia/stdlib/v1.13/Pkg/src/API.jl:152 [inlined] #test#81 at /source/usr/share/julia/stdlib/v1.13/Pkg/src/API.jl:151 [inlined] test at /source/usr/share/julia/stdlib/v1.13/Pkg/src/API.jl:151 unknown function (ip: 0x715231c6ac3f) at (unknown file) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 jl_apply at /source/src/julia.h:2290 [inlined] do_call at /source/src/interpreter.c:124 eval_value at /source/src/interpreter.c:242 eval_stmt_value at /source/src/interpreter.c:193 [inlined] eval_body at /source/src/interpreter.c:692 eval_body at /source/src/interpreter.c:557 eval_body at /source/src/interpreter.c:557 jl_interpret_toplevel_thunk at /source/src/interpreter.c:897 jl_toplevel_eval_flex at /source/src/toplevel.c:1032 jl_toplevel_eval_flex at /source/src/toplevel.c:972 ijl_toplevel_eval at /source/src/toplevel.c:1044 ijl_toplevel_eval_in at /source/src/toplevel.c:1089 eval at ./boot.jl:488 include_string at ./loading.jl:2855 _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 _include at ./loading.jl:2915 include at ./Base.jl:307 exec_options at ./client.jl:328 _start at ./client.jl:560 jfptr__start_63968.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 jl_apply at /source/src/julia.h:2290 [inlined] true_main at /source/src/jlapi.c:964 jl_repl_entrypoint at /source/src/jlapi.c:1124 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x71523b35a249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point ============================================================== [1] signal 15: Terminated in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 _ZNK4llvm4Type11isIntegerTyEj at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) [29] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/StructuralIdentifiability/tZdGp/test/identifiable_functions.jl:958 _ZL16simplifyICmpInstjPN4llvm5ValueES1_RKNS_13SimplifyQueryEj at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN12_GLOBAL__N_111DAGCombiner5visitEPN4llvm6SDNodeE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm16InstCombinerImpl13visitICmpInstERNS_8ICmpInstE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN12_GLOBAL__N_111DAGCombiner7combineEPN4llvm6SDNodeE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm16InstCombinerImpl3runEv at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN12_GLOBAL__N_111DAGCombiner3RunEN4llvm12CombineLevelE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm12SelectionDAG7CombineENS_12CombineLevelEPNS_9AAResultsENS_15CodeGenOptLevelE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm16SelectionDAGISel17CodeGenAndEmitDAGEv at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm16SelectionDAGISel20SelectAllBasicBlocksERKNS_8FunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZL31combineInstructionsOverFunctionRN4llvm8FunctionERNS_19InstructionWorklistEPNS_9AAResultsERNS_15AssumptionCacheERNS_17TargetLibraryInfoERNS_19TargetTransformInfoERNS_13DominatorTreeERNS_25OptimizationRemarkEmitterEPNS_18BlockFrequencyInfoEPNS_18ProfileSummaryInfoEPNS_8LoopInfoERKNS_18InstCombineOptionsE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm15InstCombinePass3runERNS_8FunctionERNS_15AnalysisManagerIS1_JEEE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm16SelectionDAGISel20runOnMachineFunctionERNS_15MachineFunctionE.part.0 at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:89 run at /source/usr/include/llvm/IR/PassManager.h:543 [inlined] run at /source/usr/include/llvm/IR/PassManagerInternal.h:89 _ZN4llvm27ModuleToFunctionPassAdaptor3runERNS_6ModuleERNS_15AnalysisManagerIS1_JEEE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:89 _ZN4llvm11PassManagerINS_6ModuleENS_15AnalysisManagerIS1_JEEEJEE3runERS1_RS3_ at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN12_GLOBAL__N_115X86DAGToDAGISel20runOnMachineFunctionERN4llvm15MachineFunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) run at /source/src/pipeline.cpp:777 _ZN4llvm19MachineFunctionPass13runOnFunctionERNS_8FunctionE.part.0 at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm13FPPassManager13runOnFunctionERNS_8FunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm13FPPassManager11runOnModuleERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm6legacy15PassManagerImpl3runERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm3orc14SimpleCompilerclERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) operator() at /source/src/jitlayers.cpp:1683 addModule at /source/src/jitlayers.cpp:2159 jl_compile_codeinst_now at /source/src/jitlayers.cpp:626 jl_compile_codeinst_impl at /source/src/jitlayers.cpp:946 jl_compile_method_internal at /source/src/gf.c:2985 _jl_invoke at /source/src/gf.c:3467 [inlined] ijl_apply_generic at /source/src/gf.c:3675 jl_apply at /source/src/julia.h:2290 [inlined] jl_f__call_latest at /source/src/builtins.c:883 operator() at /source/src/jitlayers.cpp:1581 withModuleDo<(anonymous namespace)::sizedOptimizerT::operator()(llvm::orc::ThreadSafeModule) [with long unsigned int N = 4]:: > at /source/usr/include/llvm/ExecutionEngine/Orc/ThreadSafeModule.h:136 [inlined] operator() at /source/src/jitlayers.cpp:1542 [inlined] operator() at /source/src/jitlayers.cpp:1694 [inlined] addModule at /source/src/jitlayers.cpp:2153 jl_compile_codeinst_now at /source/src/jitlayers.cpp:626 jl_compile_codeinst_impl at /source/src/jitlayers.cpp:946 jl_compile_method_internal at /source/src/gf.c:2985 _jl_invoke at /source/src/gf.c:3467 [inlined] ijl_apply_generic at /source/src/gf.c:3675 tree_format at /source/usr/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1067 print_tree at /source/usr/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1255 tree at /source/usr/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1309 print_group at /source/usr/share/julia/stdlib/v1.13/Profile/src/Profile.jl:389 #print#5 at /source/usr/share/julia/stdlib/v1.13/Profile/src/Profile.jl:331 print at /source/usr/share/julia/stdlib/v1.13/Profile/src/Profile.jl:271 [inlined] print at /source/usr/share/julia/stdlib/v1.13/Profile/src/Profile.jl:271 [inlined] print at /source/usr/share/julia/stdlib/v1.13/Profile/src/Profile.jl:271 _peek_report at /source/usr/share/julia/stdlib/v1.13/Profile/src/Profile.jl:94 jfptr__peek_report_2548.1 at /opt/julia/share/julia/compiled/v1.13/Profile/nGhxz_X6ROR.so (unknown line) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 jl_apply at /source/src/julia.h:2290 [inlined] jl_f__call_latest at /source/src/builtins.c:883 #invokelatest#1 at ./essentials.jl:1090 [inlined] invokelatest at ./essentials.jl:1086 [inlined] profile_printing_listener at ./Base.jl:335 #invokelatest#1 at ./essentials.jl:1090 [inlined] invokelatest at ./essentials.jl:1086 [inlined] profile_printing_listener at ./Base.jl:335 #start_profile_listener##0 at ./Base.jl:353 #start_profile_listener##0 at ./Base.jl:353 jfptr_YY.start_profile_listenerYY.YY.0_59886.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 jl_apply at /source/src/julia.h:2290 [inlined] start_task at /source/src/task.c:1249 unknown function (ip: (nil)) at (unknown file) _ZNK4llvm19SmallPtrSetImplBase13FindBucketForEPKv at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm22containsIrreducibleCFGIPKNS_10BasicBlockENS_13LoopBlocksRPOENS_8LoopInfoENS_11GraphTraitsIS3_EEEEbRT0_RKT1_ at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm22SimpleLoopUnswitchPass3runERNS_4LoopERNS_15AnalysisManagerIS1_JRNS_27LoopStandardAnalysisResultsEEEES5_RNS_10LPMUpdaterE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) jfptr_YY.start_profile_listenerYY.YY.0_59886.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 jl_apply at /source/src/julia.h:2290 [inlined] start_task at /source/src/task.c:1249 unknown function (ip: (nil)) at (unknown file) epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:454 run at /source/usr/include/llvm/IR/PassManagerInternal.h:89 poptask at ./task.jl:1187 _ZN4llvm11PassManagerINS_4LoopENS_15AnalysisManagerIS1_JRNS_27LoopStandardAnalysisResultsEEEEJS4_RNS_10LPMUpdaterEEE13runSinglePassIS1_St10unique_ptrINS_6detail11PassConceptIS1_S5_JS4_S7_EEESt14default_deleteISD_EEEESt8optionalINS_17PreservedAnalysesEERT_RT0_RS5_S4_S7_RNS_19PassInstrumentationE.isra.0 at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm11PassManagerINS_4LoopENS_15AnalysisManagerIS1_JRNS_27LoopStandardAnalysisResultsEEEEJS4_RNS_10LPMUpdaterEEE24runWithoutLoopNestPassesERS1_RS5_S4_S7_ at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm11PassManagerINS_4LoopENS_15AnalysisManagerIS1_JRNS_27LoopStandardAnalysisResultsEEEEJS4_RNS_10LPMUpdaterEEE3runERS1_RS5_S4_S7_ at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:89 _ZN4llvm25FunctionToLoopPassAdaptor3runERNS_8FunctionERNS_15AnalysisManagerIS1_JEEE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:89 run at /source/usr/include/llvm/IR/PassManager.h:543 [inlined] run at /source/usr/include/llvm/IR/PassManagerInternal.h:89 _ZN4llvm27ModuleToFunctionPassAdaptor3runERNS_6ModuleERNS_15AnalysisManagerIS1_JEEE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:89 _ZN4llvm11PassManagerINS_6ModuleENS_15AnalysisManagerIS1_JEEEJEE3runERS1_RS3_ at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) run at /source/src/pipeline.cpp:777 operator() at /source/src/jitlayers.cpp:1581 withModuleDo<(anonymous namespace)::sizedOptimizerT::operator()(llvm::orc::ThreadSafeModule) [with long unsigned int N = 4]:: > at /source/usr/include/llvm/ExecutionEngine/Orc/ThreadSafeModule.h:136 [inlined] operator() at /source/src/jitlayers.cpp:1542 [inlined] operator() at /source/src/jitlayers.cpp:1694 [inlined] addModule at /source/src/jitlayers.cpp:2153 jl_compile_codeinst_now at /source/src/jitlayers.cpp:626 jl_compile_codeinst_impl at /source/src/jitlayers.cpp:946 jl_compile_method_internal at /source/src/gf.c:2985 _jl_invoke at /source/src/gf.c:3467 [inlined] ijl_apply_generic at /source/src/gf.c:3675 __groebner1 at /home/pkgeval/.julia/packages/Groebner/kmkwE/src/groebner/groebner.jl:57 _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 _groebner1 at /home/pkgeval/.julia/packages/Groebner/kmkwE/src/groebner/groebner.jl:34 _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 groebner0 at /home/pkgeval/.julia/packages/Groebner/kmkwE/src/groebner/groebner.jl:10 #groebner#160 at /home/pkgeval/.julia/packages/Groebner/kmkwE/src/interface.jl:110 [inlined] groebner at /home/pkgeval/.julia/packages/Groebner/kmkwE/src/interface.jl:108 [inlined] field_contains at ./none (unknown line) wait at ./task.jl:1199 issubfield at /home/pkgeval/.julia/packages/StructuralIdentifiability/tZdGp/src/RationalFunctionFields/RationalFunctionField.jl:230 unknown function (ip: 0x714f4bf6a101) at (unknown file) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 #simplified_generating_set#326 at ./none (unknown line) simplified_generating_set at ./none (unknown line) unknown function (ip: 0x714f4c59cb11) at (unknown file) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 #initial_identifiable_functions#333 at ./none (unknown line) initial_identifiable_functions at ./none (unknown line) [inlined] #_find_identifiable_functions#369 at /home/pkgeval/.julia/packages/StructuralIdentifiability/tZdGp/src/identifiable_functions.jl:108 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/tZdGp/src/identifiable_functions.jl:86 [inlined] #367 at /home/pkgeval/.julia/packages/StructuralIdentifiability/tZdGp/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:534 with_logger at ./logging/logging.jl:644 [inlined] #find_identifiable_functions#365 at /home/pkgeval/.julia/packages/StructuralIdentifiability/tZdGp/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/tZdGp/src/identifiable_functions.jl:49 unknown function (ip: 0x714f4be9bcf4) at (unknown file) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 jl_apply at /source/src/julia.h:2290 [inlined] do_call at /source/src/interpreter.c:124 eval_value at /source/src/interpreter.c:242 eval_body at /source/src/interpreter.c:580 eval_body at /source/src/interpreter.c:557 eval_body at /source/src/interpreter.c:557 jl_interpret_toplevel_thunk at /source/src/interpreter.c:897 jl_toplevel_eval_flex at /source/src/toplevel.c:1032 jl_toplevel_eval_flex at /source/src/toplevel.c:972 ijl_toplevel_eval at /source/src/toplevel.c:1044 ijl_toplevel_eval_in at /source/src/toplevel.c:1089 #wait#400 at ./condition.jl:141 eval at ./boot.jl:488 wait at ./condition.jl:136 [inlined] wait at ./process.jl:694 include_string at ./loading.jl:2855 _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 wait at ./process.jl:687 _include at ./loading.jl:2915 jfptr_wait_79110.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 subprocess_handler at /source/usr/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2404 unknown function (ip: 0x715231c8a773) at (unknown file) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 #203 at /source/usr/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2344 withenv at ./env.jl:265 #188 at /source/usr/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2165 with_temp_env at /source/usr/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2023 #184 at /source/usr/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2132 #mktempdir#21 at ./file.jl:899 unknown function (ip: 0x715231c8292c) at (unknown file) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 include at ./Base.jl:308 mktempdir at ./file.jl:895 IncludeInto at ./Base.jl:309 mktempdir at ./file.jl:895 #sandbox#180 at /source/usr/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2079 [inlined] sandbox at /source/usr/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2071 unknown function (ip: 0x715231c76589) at (unknown file) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 #test#191 at /source/usr/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2329 test at /source/usr/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2241 [inlined] #test#170 at /source/usr/share/julia/stdlib/v1.13/Pkg/src/API.jl:486 test at /source/usr/share/julia/stdlib/v1.13/Pkg/src/API.jl:465 unknown function (ip: 0x715231c761c1) at (unknown file) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 #test#84 at /source/usr/share/julia/stdlib/v1.13/Pkg/src/API.jl:164 unknown function (ip: 0x715231c73f58) at (unknown file) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 test at /source/usr/share/julia/stdlib/v1.13/Pkg/src/API.jl:153 #test#82 at /source/usr/share/julia/stdlib/v1.13/Pkg/src/API.jl:152 test at /source/usr/share/julia/stdlib/v1.13/Pkg/src/API.jl:152 [inlined] #test#81 at /source/usr/share/julia/stdlib/v1.13/Pkg/src/API.jl:151 [inlined] test at /source/usr/share/julia/stdlib/v1.13/Pkg/src/API.jl:151 unknown function (ip: 0x715231c6ac3f) at (unknown file) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 jl_apply at /source/src/julia.h:2290 [inlined] do_call at /source/src/interpreter.c:124 eval_value at /source/src/interpreter.c:242 eval_stmt_value at /source/src/interpreter.c:193 [inlined] eval_body at /source/src/interpreter.c:692 eval_body at /source/src/interpreter.c:557 eval_body at /source/src/interpreter.c:557 jl_interpret_toplevel_thunk at /source/src/interpreter.c:897 jl_toplevel_eval_flex at /source/src/toplevel.c:1032 jl_toplevel_eval_flex at /source/src/toplevel.c:972 ijl_toplevel_eval at /source/src/toplevel.c:1044 ijl_toplevel_eval_in at /source/src/toplevel.c:1089 jfptr_IncludeInto_116304.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/tZdGp/test/runtests.jl:151 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.13/Test/src/Test.jl:1771 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/tZdGp/test/runtests.jl:150 [inlined] macro expansion at ./timing.jl:621 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/tZdGp/test/runtests.jl:353 _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_invoke at /source/src/gf.c:3482 jl_toplevel_eval_flex at /source/src/toplevel.c:1021 jl_toplevel_eval_flex at /source/src/toplevel.c:972 ijl_toplevel_eval at /source/src/toplevel.c:1044 ijl_toplevel_eval_in at /source/src/toplevel.c:1089 eval at ./boot.jl:488 eval at ./boot.jl:488 include_string at ./loading.jl:2855 _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 include_string at ./loading.jl:2855 _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 _include at ./loading.jl:2915 _include at ./loading.jl:2915 include at ./Base.jl:307 include at ./Base.jl:308 exec_options at ./client.jl:328 IncludeInto at ./Base.jl:309 _start at ./client.jl:560 jfptr_IncludeInto_116304.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 jl_apply at /source/src/julia.h:2290 [inlined] do_call at /source/src/interpreter.c:124 eval_value at /source/src/interpreter.c:242 eval_stmt_value at /source/src/interpreter.c:193 [inlined] eval_body at /source/src/interpreter.c:692 jl_interpret_toplevel_thunk at /source/src/interpreter.c:897 jl_toplevel_eval_flex at /source/src/toplevel.c:1032 jl_toplevel_eval_flex at /source/src/toplevel.c:972 ijl_toplevel_eval at /source/src/toplevel.c:1044 ijl_toplevel_eval_in at /source/src/toplevel.c:1089 jfptr__start_63968.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 jl_apply at /source/src/julia.h:2290 [inlined] true_main at /source/src/jlapi.c:964 jl_repl_entrypoint at /source/src/jlapi.c:1124 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x71523b35a249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) Allocations: 18994185 (Pool: 18993665; Big: 520); GC: 18 eval at ./boot.jl:488 exec_options at ./client.jl:294 _start at ./client.jl:560 jfptr__start_63968.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3475 [inlined] ijl_apply_generic at /source/src/gf.c:3675 jl_apply at /source/src/julia.h:2290 [inlined] true_main at /source/src/jlapi.c:964 jl_repl_entrypoint at /source/src/jlapi.c:1124 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x714f7d378249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) Allocations: 916290383 (Pool: 916286332; Big: 4051); GC: 369 ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (interactive) Task 0x000071522d600010 Total snapshots: 1. Utilization: 0% ╎1 @Base/client.jl:560 _start() ╎ 1 @Base/client.jl:328 exec_options(opts::Base.JLOptions) ╎ 1 @Base/Base.jl:307 include(mod::Module, _path::String) ╎ 1 @Base/loading.jl:2915 _include(mapexpr::Function, mod::Module, _path::S… ╎ 1 @Base/loading.jl:2855 include_string(mapexpr::typeof(identity), mod::M… ╎ 1 @Base/boot.jl:488 eval(m::Module, e::Any) ╎ ╎ 1 @Pkg/src/API.jl:151 kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(… ╎ ╎ 1 @Pkg/src/API.jl:151 #test#81 ╎ ╎ 1 @Pkg/src/API.jl:152 test ╎ ╎ 1 @Pkg/src/API.jl:152 test(pkgs::Vector{String}; kwargs::Base.Pairs… ╎ ╎ 1 @Pkg/src/API.jl:153 kwcall(::@NamedTuple{julia_args::Cmd}, ::typ… ╎ ╎ ╎ 1 @Pkg/src/API.jl:164 test(pkgs::Vector{Pkg.Types.PackageSpec}; i… ╎ ╎ ╎ 1 @Pkg/src/API.jl:465 kwcall(::@NamedTuple{julia_args::Cmd, io::… ╎ ╎ ╎ 1 @Pkg/src/API.jl:486 test(ctx::Pkg.Types.Context, pkgs::Vector… ╎ ╎ ╎ 1 @Pkg/…Operations.jl:2241 test ╎ ╎ ╎ 1 @Pkg/…perations.jl:2329 test(ctx::Pkg.Types.Context, pkgs::… ╎ ╎ ╎ ╎ 1 @Pkg/…perations.jl:2071 kwcall(::@NamedTuple{preferences::… ╎ ╎ ╎ ╎ 1 @Pkg/…perations.jl:2079 #sandbox#180 ╎ ╎ ╎ ╎ 1 @Base/file.jl:895 mktempdir(fn::Function) ╎ ╎ ╎ ╎ 1 @Base/file.jl:895 mktempdir(fn::Function, parent::Strin… ╎ ╎ ╎ ╎ 1 @Base/file.jl:899 mktempdir(fn::Pkg.Operations.var"#18… ╎ ╎ ╎ ╎ ╎ 1 @Pkg/…rations.jl:2132 (::Pkg.Operations.var"#184#185"… ╎ ╎ ╎ ╎ ╎ 1 @Pkg/…rations.jl:2023 with_temp_env(fn::Pkg.Operatio… ╎ ╎ ╎ ╎ ╎ 1 @Pkg/…ations.jl:2165 (::Pkg.Operations.var"#188#189… ╎ ╎ ╎ ╎ ╎ 1 @Base/env.jl:265 withenv(::Pkg.Operations.var"#203… ╎ ╎ ╎ ╎ ╎ 1 @Pkg/…tions.jl:2344 (::Pkg.Operations.var"#203#20… ╎ ╎ ╎ ╎ ╎ ╎ 1 @Pkg/…tions.jl:2404 subprocess_handler(cmd::Cmd,… ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…cess.jl:687 wait(x::Base.Process) ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…cess.jl:694 wait(x::Base.Process, syncd… ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ion.jl:136 wait ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ion.jl:141 wait(c::Base.GenericCondit… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…sk.jl:1199 wait() ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…sk.jl:1187 poptask(W::Base.Intrusiv… Thread 2 (default) Task 0x000071522d600100 Total snapshots: 1. Utilization: 0% ╎1 @Base/Base.jl:353 (::Base.var"#start_profile_listener##0#start_profile_lis… ╎ 1 @Base/Base.jl:333 profile_printing_listener(cond::Base.AsyncCondition) ╎ 1 @Base/asyncevent.jl:185 _trywait(t::Base.AsyncCondition) ╎ 1 @Base/condition.jl:136 wait ╎ 1 @Base/condition.jl:141 wait(c::Base.GenericCondition{Base.Threads.Spin… ╎ 1 @Base/task.jl:1199 wait() ╎ ╎ 1 @Base/task.jl:1187 poptask(W::Base.IntrusiveLinkedListSynchronized{T… PkgEval terminated after 2730.02s: test duration exceeded the time limit