Package evaluation of GeometryOptimization on Julia 1.13.0-DEV.791 (d5209bd37d*) started at 2025-07-04T16:13:41.712 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 7.59s ################################################################################ # Installation # Installing GeometryOptimization... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [673bf261] + GeometryOptimization v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [47edcb42] + ADTypes v1.15.0 [79e6a3ab] + Adapt v4.3.0 [66dad0bd] + AliasTables v1.1.3 [4fba245c] + ArrayInterface v7.19.0 [a963bdd2] + AtomsBase v0.5.1 [a3e0e189] + AtomsCalculators v0.2.3 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.17.0 [187b0558] + ConstructionBase v1.6.0 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.1 [ffbed154] + DocStringExtensions v0.9.5 [4e289a0a] + EnumX v1.0.5 [e2ba6199] + ExprTools v0.1.10 [1a297f60] + FillArrays v1.13.0 [6a86dc24] + FiniteDiff v2.27.0 [f6369f11] + ForwardDiff v1.0.1 [673bf261] + GeometryOptimization v0.1.4 [92d709cd] + IrrationalConstants v0.2.4 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.0 [b964fa9f] + LaTeXStrings v1.4.0 [d3d80556] + LineSearches v7.4.0 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 [e1d29d7a] + Missings v1.2.0 [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 [429524aa] + Optim v1.13.2 [bac558e1] + OrderedCollections v1.8.1 [d96e819e] + Parameters v0.12.3 [7b2266bf] + PeriodicTable v1.2.1 [85a6dd25] + PositiveFactorizations v0.2.4 [aea7be01] + PrecompileTools v1.3.2 [21216c6a] + Preferences v1.4.3 [08abe8d2] + PrettyTables v2.4.0 [43287f4e] + PtrArrays v1.3.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [efcf1570] + Setfield v1.1.2 [a2af1166] + SortingAlgorithms v1.2.1 [276daf66] + SpecialFunctions v2.5.1 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.5 [892a3eda] + StringManipulation v0.4.1 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 [a759f4b9] + TimerOutputs v0.5.29 [3a884ed6] + UnPack v1.0.2 [1986cc42] + Unitful v1.23.1 [a7773ee8] + UnitfulAtomic v1.0.0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.12.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.12.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.5+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Installation completed after 4.72s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Warning: Could not use exact versions of packages in manifest, re-resolving └ @ TestEnv ~/.julia/packages/TestEnv/iS95e/src/julia-1.11/activate_set.jl:75 Precompiling package dependencies... Precompilation completed after 429.45s ################################################################################ # Testing # Testing GeometryOptimization Test Could not use exact versions of packages in manifest. Re-resolving dependencies Updating `/tmp/jl_ZxMiqc/Project.toml` [f5cc8831] + AtomsBuilder v0.2.2 [38527215] + EmpiricalPotentials v0.2.4 [673bf261] + GeometryOptimization v0.1.4 [7f7a1694] + Optimization v4.4.0 [4e6fcdb7] + OptimizationNLopt v0.3.2 ⌅ [f8b46487] + TestItemRunner v0.2.3 Updating `/tmp/jl_ZxMiqc/Manifest.toml` [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [dce04be8] + ArgCheck v2.5.0 [f5cc8831] + AtomsBuilder v0.2.2 [9855a07e] + AtomsCalculatorsUtilities v0.1.7 [198e06fe] + BangBang v0.4.4 [9718e550] + Baselet v0.1.1 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [8ce10254] + Bumper v0.7.1 [fa961155] + CEnum v0.5.0 [2a0fbf3d] + CPUSummary v0.2.6 [ae650224] + ChunkSplitters v3.1.2 [fb6a15b2] + CloseOpenIntervals v0.1.13 [38540f10] + CommonSolve v0.2.4 [f70d9fcc] + CommonWorldInvalidations v1.0.0 [a33af91c] + CompositionsBase v0.1.2 [88cd18e8] + ConsoleProgressMonitor v0.1.2 [adafc99b] + CpuId v0.3.1 [244e2a9f] + DefineSingletons v0.1.2 [38527215] + EmpiricalPotentials v0.2.4 [55351af7] + ExproniconLite v0.10.14 [e189563c] + ExternalDocstrings v0.1.1 [9aa1b823] + FastClosures v0.3.2 [41a02a25] + Folds v0.2.10 ⌅ [f6369f11] ↓ ForwardDiff v1.0.1 ⇒ v0.10.38 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [673bf261] + GeometryOptimization v0.1.4 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [22cec73e] + InitialValues v0.3.1 [3587e190] + InverseFunctions v0.1.17 [682c06a0] + JSON v0.21.4 [ae98c720] + Jieko v0.2.1 [5be7bae1] + LBFGSB v0.4.1 [10f19ff3] + LayoutPointers v0.1.17 [1d6d02ad] + LeftChildRightSiblingTrees v0.2.0 [e6f89c97] + LoggingExtras v1.1.0 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [128add7d] + MicroCollections v0.2.0 [2e0e35c7] + Moshi v0.3.6 [76087f3c] + NLopt v1.1.4 [2fcf5ba9] + NeighbourLists v0.5.10 [6fd5a793] + Octavian v0.3.29 [6fe1bfb0] + OffsetArrays v1.17.0 [7f7a1694] + Optimization v4.4.0 [bca83a33] + OptimizationBase v2.8.0 [4e6fcdb7] + OptimizationNLopt v0.3.2 [90014a1f] + PDMats v0.11.35 [69de0a69] + Parsers v2.8.3 [1d0040c9] + PolyesterWeave v0.2.2 [33c8b6b6] + ProgressLogging v0.1.5 [92933f4c] + ProgressMeter v1.10.4 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.34.1 [42d2dcc6] + Referenceables v0.1.3 [7e49a35a] + RuntimeGeneratedFunctions v0.5.15 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 [0bca4576] + SciMLBase v2.102.1 [c0aeaf25] + SciMLOperators v1.3.1 [53ae85a6] + SciMLStructures v1.7.0 [9f842d2f] + SparseConnectivityTracer v0.6.21 [0a514795] + SparseMatrixColorings v0.4.21 [171d559e] + SplittablesBase v0.1.15 [aedffcd0] + Static v1.2.0 [0d7ed370] + StaticArrayInterface v1.8.0 [d1fa6d79] + StrideArrays v0.1.29 [7792a7ef] + StrideArraysCore v0.5.7 [2efcf032] + SymbolicIndexingInterface v0.3.41 [5d786b92] + TerminalLoggers v0.1.7 ⌅ [f8b46487] + TestItemRunner v0.2.3 ⌅ [1c621080] + TestItems v0.1.1 [24d252fe] + ThreadedScans v0.1.0 [8290d209] + ThreadingUtilities v0.5.5 [28d57a85] + Transducers v0.4.84 [c4a57d5a] + UnsafeArrays v1.0.8 [3d5dd08c] + VectorizationBase v0.21.71 [33b4df10] + VectorizedRNG v0.2.25 [3b853605] + VectorizedStatistics v0.5.10 [81d17ec3] + L_BFGS_B_jll v3.0.1+0 [079eb43e] + NLopt_jll v2.10.0+0 [0dad84c5] + ArgTools v1.1.2 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [4607b0f0] + SuiteSparse [a4e569a6] + Tar v1.10.0 [deac9b47] + LibCURL_jll v8.14.1+1 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.5.20 [458c3c95] + OpenSSL_jll v3.5.0+0 [efcefdf7] + PCRE2_jll v10.45.0+0 [83775a58] + Zlib_jll v1.3.1+2 [8e850ede] + nghttp2_jll v1.65.0+0 [3f19e933] + p7zip_jll v17.5.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Test Successfully re-resolved Status `/tmp/jl_ZxMiqc/Project.toml` [a963bdd2] AtomsBase v0.5.1 [f5cc8831] AtomsBuilder v0.2.2 [a3e0e189] AtomsCalculators v0.2.3 [ffbed154] DocStringExtensions v0.9.5 [38527215] EmpiricalPotentials v0.2.4 [673bf261] GeometryOptimization v0.1.4 [d3d80556] LineSearches v7.4.0 [429524aa] Optim v1.13.2 [7f7a1694] Optimization v4.4.0 [4e6fcdb7] OptimizationNLopt v0.3.2 [08abe8d2] PrettyTables v2.4.0 [90137ffa] StaticArrays v1.9.13 ⌅ [f8b46487] TestItemRunner v0.2.3 [a759f4b9] TimerOutputs v0.5.29 [1986cc42] Unitful v1.23.1 [a7773ee8] UnitfulAtomic v1.0.0 [37e2e46d] LinearAlgebra v1.12.0 [de0858da] Printf v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_ZxMiqc/Manifest.toml` [47edcb42] ADTypes v1.15.0 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.3.0 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.5.0 [4fba245c] ArrayInterface v7.19.0 [a963bdd2] AtomsBase v0.5.1 [f5cc8831] AtomsBuilder v0.2.2 [a3e0e189] AtomsCalculators v0.2.3 [9855a07e] AtomsCalculatorsUtilities v0.1.7 [198e06fe] BangBang v0.4.4 [9718e550] Baselet v0.1.1 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [8ce10254] Bumper v0.7.1 [fa961155] CEnum v0.5.0 [2a0fbf3d] CPUSummary v0.2.6 [ae650224] ChunkSplitters v3.1.2 [fb6a15b2] CloseOpenIntervals v0.1.13 [38540f10] CommonSolve v0.2.4 [bbf7d656] CommonSubexpressions v0.3.1 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.17.0 [a33af91c] CompositionsBase v0.1.2 [88cd18e8] ConsoleProgressMonitor v0.1.2 [187b0558] ConstructionBase v1.6.0 [adafc99b] CpuId v0.3.1 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [a0c0ee7d] DifferentiationInterface v0.7.1 [ffbed154] DocStringExtensions v0.9.5 [38527215] EmpiricalPotentials v0.2.4 [4e289a0a] EnumX v1.0.5 [e2ba6199] ExprTools v0.1.10 [55351af7] ExproniconLite v0.10.14 [e189563c] ExternalDocstrings v0.1.1 [9aa1b823] FastClosures v0.3.2 [1a297f60] FillArrays v1.13.0 [6a86dc24] FiniteDiff v2.27.0 [41a02a25] Folds v0.2.10 ⌅ [f6369f11] ForwardDiff v0.10.38 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 [46192b85] GPUArraysCore v0.2.0 [673bf261] GeometryOptimization v0.1.4 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [22cec73e] InitialValues v0.3.1 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.4 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.0 [682c06a0] JSON v0.21.4 [ae98c720] Jieko v0.2.1 [5be7bae1] LBFGSB v0.4.1 [b964fa9f] LaTeXStrings v1.4.0 [10f19ff3] LayoutPointers v0.1.17 [1d6d02ad] LeftChildRightSiblingTrees v0.2.0 [d3d80556] LineSearches v7.4.0 [2ab3a3ac] LogExpFunctions v0.3.29 [e6f89c97] LoggingExtras v1.1.0 [bdcacae8] LoopVectorization v0.12.172 [1914dd2f] MacroTools v0.5.16 [d125e4d3] ManualMemory v0.1.8 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [2e0e35c7] Moshi v0.3.6 [d41bc354] NLSolversBase v7.10.0 [76087f3c] NLopt v1.1.4 [77ba4419] NaNMath v1.1.3 [2fcf5ba9] NeighbourLists v0.5.10 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [429524aa] Optim v1.13.2 [7f7a1694] Optimization v4.4.0 [bca83a33] OptimizationBase v2.8.0 [4e6fcdb7] OptimizationNLopt v0.3.2 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.35 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.3 [7b2266bf] PeriodicTable v1.2.1 [1d0040c9] PolyesterWeave v0.2.2 [85a6dd25] PositiveFactorizations v0.2.4 [aea7be01] PrecompileTools v1.3.2 [21216c6a] Preferences v1.4.3 [08abe8d2] PrettyTables v2.4.0 [33c8b6b6] ProgressLogging v0.1.5 [92933f4c] ProgressMeter v1.10.4 [43287f4e] PtrArrays v1.3.0 [3cdcf5f2] RecipesBase v1.3.4 [731186ca] RecursiveArrayTools v3.34.1 [189a3867] Reexport v1.2.2 [42d2dcc6] Referenceables v0.1.3 [ae029012] Requires v1.3.1 [7e49a35a] RuntimeGeneratedFunctions v0.5.15 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 [0bca4576] SciMLBase v2.102.1 [c0aeaf25] SciMLOperators v1.3.1 [53ae85a6] SciMLStructures v1.7.0 [efcf1570] Setfield v1.1.2 [a2af1166] SortingAlgorithms v1.2.1 [9f842d2f] SparseConnectivityTracer v0.6.21 [0a514795] SparseMatrixColorings v0.4.21 [276daf66] SpecialFunctions v2.5.1 [171d559e] SplittablesBase v0.1.15 [aedffcd0] Static v1.2.0 [0d7ed370] StaticArrayInterface v1.8.0 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.5 [d1fa6d79] StrideArrays v0.1.29 [7792a7ef] StrideArraysCore v0.5.7 [892a3eda] StringManipulation v0.4.1 [2efcf032] SymbolicIndexingInterface v0.3.41 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [5d786b92] TerminalLoggers v0.1.7 ⌅ [f8b46487] TestItemRunner v0.2.3 ⌅ [1c621080] TestItems v0.1.1 [24d252fe] ThreadedScans v0.1.0 [8290d209] ThreadingUtilities v0.5.5 [a759f4b9] TimerOutputs v0.5.29 [28d57a85] Transducers v0.4.84 [3a884ed6] UnPack v1.0.2 [1986cc42] Unitful v1.23.1 [a7773ee8] UnitfulAtomic v1.0.0 [c4a57d5a] UnsafeArrays v1.0.8 [3d5dd08c] VectorizationBase v0.21.71 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.10 [81d17ec3] L_BFGS_B_jll v3.0.1+0 [079eb43e] NLopt_jll v2.10.0+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.12.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.14.1+1 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.5.20 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.5+0 [458c3c95] OpenSSL_jll v3.5.0+0 [efcefdf7] PCRE2_jll v10.45.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.65.0+0 [3f19e933] p7zip_jll v17.5.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Precompiling packages... 31170.0 ms ✓ GeometryOptimization 1 dependency successfully precompiled in 32 seconds. 99 already precompiled. Precompiling packages... 8912.7 ms ✓ AtomsBuilder 1 dependency successfully precompiled in 9 seconds. 19 already precompiled. Precompiling packages... 4768.1 ms ✓ NeighbourLists 1943.9 ms ✓ StaticArrayInterface → StaticArrayInterfaceStaticArraysExt 7183.6 ms ✓ VectorizedRNG 45760.0 ms ✓ VectorizedStatistics 5842.3 ms ✓ LoopVectorization → SpecialFunctionsExt 16944.4 ms ✓ Octavian → ForwardDiffExt 4227.3 ms ✓ VectorizedRNG → VectorizedRNGStaticArraysExt 18287.0 ms ✓ StrideArrays 16620.7 ms ✓ AtomsCalculatorsUtilities Info Given EmpiricalPotentials was explicitly requested, output will be shown live  WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in __init() at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/VectorizedRNG.jl WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in initXoshiro!(Ptr{UInt64}, Any, UInt64, UInt64, UInt64, UInt64) at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/xoshiro.jl 12930.0 ms ✓ EmpiricalPotentials 10 dependencies successfully precompiled in 135 seconds. 114 already precompiled. 5 dependencies had output during precompilation: ┌ VectorizedRNG → VectorizedRNGStaticArraysExt │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in __init() at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/VectorizedRNG.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initXoshiro!(Ptr{UInt64}, Any, UInt64, UInt64, UInt64, UInt64) at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/xoshiro.jl └ ┌ AtomsCalculatorsUtilities │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in __init() at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/VectorizedRNG.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initXoshiro!(Ptr{UInt64}, Any, UInt64, UInt64, UInt64, UInt64) at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/xoshiro.jl └ ┌ EmpiricalPotentials │ [Output was shown above] └ ┌ StrideArrays │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in __init() at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/VectorizedRNG.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initXoshiro!(Ptr{UInt64}, Any, UInt64, UInt64, UInt64, UInt64) at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/xoshiro.jl └ ┌ VectorizedStatistics │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in vsum(AbstractArray{T, N} where N) where {T<:Union{Bool, Float16, Float32, Float64, Int16, Int32, Int64, Int8, UInt16, UInt32, UInt64, UInt8, SIMDTypes.Bit}} at /home/pkgeval/.julia/packages/LoopVectorization/ImqiY/src/simdfunctionals/mapreduce.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vmean(Any, Base.Colon, Static.False) at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vmean.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vvar(Nothing, Bool, Any, Base.Colon, Static.False) at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vvar.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vminimum(Any, Base.Colon) at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vreducibles.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vmaximum(Any, Base.Colon) at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vreducibles.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vsum!(AbstractArray{Tₒ, N}, AbstractArray{T, N}, D, Any) where {Tₒ, T, N, M, D<:Tuple{Vararg{Union{Integer, Static.StaticInt{N} where N}, M}}} at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vsum.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vmean!(AbstractArray{Tₒ, N}, AbstractArray{T, N}, D, Any) where {Tₒ, T, N, M, D<:Tuple{Vararg{Union{Integer, Static.StaticInt{N} where N}, M}}} at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vmean.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in sqrt!(AbstractArray{T, N} where N where T, Static.False) at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vstd.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vvar!(AbstractArray{Tₒ, N}, Bool, AbstractArray{T, N}, D, Any) where {Tₒ, T, N, M, D<:Tuple{Vararg{Union{Integer, Static.StaticInt{N} where N}, M}}} at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vvar.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vminimum(Any, Int64) at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vreducibles.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vmaximum(Any, Int64) at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vreducibles.jl └ WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in __init() at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/VectorizedRNG.jl WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in initXoshiro!(Ptr{UInt64}, Any, UInt64, UInt64, UInt64, UInt64) at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/xoshiro.jl Precompiling packages... 5256.7 ms ✓ SymbolicIndexingInterface 2037.5 ms ✓ NLopt 5843.7 ms ✓ RecursiveArrayTools 3565.5 ms ✓ RecursiveArrayTools → RecursiveArrayToolsSparseArraysExt 25674.6 ms ✓ SciMLBase 9381.4 ms ✓ OptimizationBase 9492.2 ms ✓ Optimization 8272.4 ms ✓ OptimizationNLopt 8 dependencies successfully precompiled in 70 seconds. 106 already precompiled. Precompiling packages... 7491.2 ms ✓ RecursiveArrayTools → RecursiveArrayToolsForwardDiffExt 1 dependency successfully precompiled in 8 seconds. 58 already precompiled. Precompiling packages... 5581.8 ms ✓ SparseConnectivityTracer → SparseConnectivityTracerSpecialFunctionsExt 1 dependency successfully precompiled in 6 seconds. 20 already precompiled. Precompiling packages... 10993.5 ms ✓ GeometryOptimization → GeometryOptimizationOptimizationExt 1 dependency successfully precompiled in 12 seconds. 172 already precompiled. ┌ Warning: The selected optimization algorithm requires second order derivatives, but `SecondOrder` ADtype was not provided. │ So a `SecondOrder` with SciMLBase.NoAD() for both inner and outer will be created, this can be suboptimal and not work in some cases so │ an explicit `SecondOrder` ADtype is recommended. └ @ OptimizationBase ~/.julia/packages/OptimizationBase/SX92W/src/cache.jl:49 ┌ Warning: NLopt failed to converge: FORCED_STOP └ @ OptimizationNLopt ~/.julia/packages/OptimizationNLopt/YE3fr/src/OptimizationNLopt.jl:299 Geometry optimisation convergence (in atomic units) ┌─────┬─────────────────┬───────────┬─────────────┬────────┐ │ n │ Energy │ log10(ΔE) │ max(Force) │ Δtime │ ├─────┼─────────────────┼───────────┼─────────────┼────────┤ │ 0 │ -1.258642796190 │ │ 0.0450991 │ 11.2ms │ │ 1 │ -1.273108566743 │ │ 0.0113175 │ 6.38s │ │ 2 │ -1.274098574499 │ -3.00 │ 0.00410708 │ 977ms │ │ 3 │ -1.274305874006 │ -3.68 │ 0.00331049 │ 12.0ms │ │ 4 │ -1.274462190414 │ -3.81 │ 0.000682542 │ 1.53ms │ │ 5 │ -1.274465790391 │ -5.44 │ 0.000141314 │ 1.48ms │ │ 6 │ -1.274465967383 │ -6.75 │ 3.23006e-5 │ 1.49ms │ │ 7 │ -1.274465977111 │ -8.01 │ 9.90358e-6 │ 1.45ms │ │ 8 │ -1.274465979118 │ -8.70 │ 1.22134e-5 │ 1.44ms │ │ 9 │ -1.274465980129 │ -9.00 │ 2.62495e-6 │ 1.47ms │ │ 10 │ -1.274465980167 │ -10.42 │ 4.16297e-7 │ 1.45ms │ │ 11 │ -1.274465980168 │ -12.00 │ 9.91142e-8 │ 1.43ms │ │ 12 │ -1.274465980169 │ -13.21 │ 3.40999e-8 │ 1.43ms │ │ 13 │ -1.274465980169 │ -13.69 │ 2.32662e-8 │ 1.85ms │ │ 14 │ -1.274465980169 │ -13.93 │ 1.2569e-8 │ 2.41ms │ │ 15 │ -1.274465980169 │ -14.81 │ 4.8004e-9 │ 2.51ms │ ┌ Warning: Geometry optimisation not converged. └ @ GeometryOptimization ~/.julia/packages/GeometryOptimization/y8zYr/src/minimize_energy.jl:184 Geometry optimisation convergence (in atomic units) ┌─────┬─────────────────┬───────────┬─────────────┬─────────────┬──────────┬────────┐ │ n │ Energy │ log10(ΔE) │ max(Force) │ max(Virial) │ Pressure │ Δtime │ ├─────┼─────────────────┼───────────┼─────────────┼─────────────┼──────────┼────────┤ │ 0 │ -5.066030564077 │ │ 0.0382293 │ 0.0853432 │ -0.079 │ 5.50ms │ │ 1 │ -5.068938688176 │ │ 0.032228 │ 0.163772 │ 0.16 │ 158ms │ │ 2 │ -5.085486391320 │ -1.78 │ 0.0183064 │ 0.278186 │ -0.24 │ 8.18ms │ │ 3 │ -5.093489579833 │ -2.10 │ 0.00799621 │ 0.0395212 │ -0.0016 │ 8.70ms │ │ 4 │ -5.093978122352 │ -3.31 │ 0.00769582 │ 0.0554316 │ 0.022 │ 8.78ms │ │ 5 │ -5.094320780560 │ -3.47 │ 0.00681445 │ 0.090577 │ -0.048 │ 8.59ms │ │ 6 │ -5.095766614984 │ -2.84 │ 0.00558107 │ 0.0937728 │ 0.06 │ 8.61ms │ │ 7 │ -5.096382042238 │ -3.21 │ 0.00491183 │ 0.00460178 │ -0.00063 │ 8.60ms │ │ 8 │ -5.097062064789 │ -3.17 │ 0.00417285 │ 0.0568623 │ -0.039 │ 8.41ms │ │ 9 │ -5.097322809333 │ -3.58 │ 0.00341679 │ 0.0505719 │ 0.019 │ 9.00ms │ │ 10 │ -5.097404851339 │ -4.09 │ 0.00334644 │ 0.0197454 │ -0.013 │ 8.79ms │ │ 11 │ -5.097450109338 │ -4.34 │ 0.00322614 │ 0.00607895 │ 0.001 │ 8.32ms │ │ 12 │ -5.097655856863 │ -3.69 │ 0.00143486 │ 0.0194502 │ 0.017 │ 8.16ms │ │ 13 │ -5.097679398053 │ -4.63 │ 0.00141145 │ 0.00443416 │ -0.0033 │ 8.28ms │ │ 14 │ -5.097683120096 │ -5.43 │ 0.00135246 │ 0.00542205 │ 0.0025 │ 8.45ms │ │ 15 │ -5.097730871452 │ -4.32 │ 0.000890752 │ 0.0161332 │ 0.0024 │ 8.37ms │ │ 16 │ -5.097766266709 │ -4.45 │ 0.00104618 │ 0.0161672 │ -0.012 │ 8.15ms │ │ 17 │ -5.097776636234 │ -4.98 │ 0.00115857 │ 0.00296824 │ 0.0019 │ 8.63ms │ │ 18 │ -5.097781200144 │ -5.34 │ 0.00123603 │ 0.00824861 │ -0.0022 │ 8.62ms │ │ 19 │ -5.097832006440 │ -4.29 │ 0.000727375 │ 0.0045352 │ -0.003 │ 8.90ms │ │ 20 │ -5.097833161449 │ -5.94 │ 0.000706597 │ 0.00293457 │ 0.0023 │ 8.41ms │ │ 21 │ -5.097838019953 │ -5.31 │ 0.00058988 │ 0.00579923 │ -0.0023 │ 8.53ms │ │ 22 │ -5.097845569237 │ -5.12 │ 0.000491276 │ 0.00821936 │ 0.00039 │ 8.46ms │ │ 23 │ -5.097857954560 │ -4.91 │ 0.000421256 │ 0.002141 │ 0.002 │ 8.46ms │ │ 24 │ -5.097858370571 │ -6.38 │ 0.000406789 │ 0.00161731 │ -0.0013 │ 8.58ms │ │ 25 │ -5.097861851846 │ -5.46 │ 0.000285206 │ 0.00662936 │ 0.0012 │ 8.52ms │ │ 26 │ -5.097864627686 │ -5.56 │ 0.000175854 │ 0.000803727 │ 0.00027 │ 8.52ms │ │ 27 │ -5.097864729878 │ -6.99 │ 0.000165067 │ 0.0011417 │ -0.001 │ 8.53ms │ │ 28 │ -5.097864895361 │ -6.78 │ 0.000141163 │ 0.00136301 │ 0.00037 │ 64.9ms │ │ 29 │ -5.097865324581 │ -6.37 │ 9.05361e-5 │ 0.00197537 │ -0.00014 │ 8.53ms │ │ 30 │ -5.097865586315 │ -6.58 │ 8.18707e-5 │ 0.000146128 │ -0.00012 │ 8.25ms │ │ 31 │ -5.097865605151 │ -7.73 │ 7.68012e-5 │ 0.000640167 │ 0.0006 │ 8.51ms │ │ 32 │ -5.097865828882 │ -6.65 │ 5.84916e-5 │ 0.000494358 │ -5.5e-5 │ 8.76ms │ │ 33 │ -5.097865853224 │ -7.61 │ 6.20825e-5 │ 0.000193415 │ -2.6e-5 │ 8.89ms │ │ 34 │ -5.097865873234 │ -7.70 │ 5.51735e-5 │ 0.000410939 │ 0.00019 │ 9.07ms │ │ 35 │ -5.097865887094 │ -7.86 │ 4.75848e-5 │ 0.000709367 │ -0.0004 │ 9.01ms │ │ 36 │ -5.097865953394 │ -7.18 │ 1.68317e-5 │ 0.000167156 │ -7.6e-6 │ 9.11ms │ │ 37 │ -5.097865954786 │ -8.86 │ 1.60541e-5 │ 1.69462e-5 │ 1.2e-5 │ 8.85ms │ │ 38 │ -5.097865956190 │ -8.85 │ 1.30016e-5 │ 0.000190178 │ -0.00016 │ 8.74ms │ │ 39 │ -5.097865960102 │ -8.41 │ 1.16425e-5 │ 8.40225e-5 │ 1.0e-5 │ 8.43ms │ │ 40 │ -5.097865961171 │ -8.97 │ 1.23331e-5 │ 6.13385e-5 │ 8.1e-6 │ 8.67ms │ │ 41 │ -5.097865961574 │ -9.40 │ 1.33197e-5 │ 4.36619e-5 │ -1.5e-5 │ 8.82ms │ │ 42 │ -5.097865964248 │ -8.57 │ 1.04982e-5 │ 0.000250511 │ 0.00022 │ 9.14ms │ │ 43 │ -5.097865969850 │ -8.25 │ 8.06538e-6 │ 2.03407e-5 │ 1.5e-6 │ 9.21ms │ │ 44 │ -5.097865970031 │ -9.74 │ 8.15984e-6 │ 3.96754e-5 │ -1.1e-5 │ 9.00ms │ │ 45 │ -5.097865970950 │ -9.04 │ 4.52016e-6 │ 0.000114663 │ 5.1e-5 │ 8.87ms │ │ 46 │ -5.097865971298 │ -9.46 │ 3.70216e-6 │ 6.1307e-5 │ -3.4e-5 │ 8.43ms │ │ 47 │ -5.097865971641 │ -9.46 │ 2.88904e-6 │ 4.84582e-6 │ -7.7e-7 │ 8.00ms │ │ 48 │ -5.097865971667 │ -10.58 │ 2.52481e-6 │ 1.85937e-5 │ 7.0e-6 │ 8.19ms │ │ 49 │ -5.097865971860 │ -9.71 │ 2.27198e-6 │ 3.22965e-5 │ -2.9e-5 │ 8.24ms │ │ 50 │ -5.097865971903 │ -10.37 │ 2.36219e-6 │ 4.12563e-6 │ 1.1e-6 │ 8.78ms │ │ 51 │ -5.097865971942 │ -10.41 │ 2.00174e-6 │ 1.34684e-5 │ 3.8e-6 │ 8.55ms │ │ 52 │ -5.097865971989 │ -10.33 │ 1.2635e-6 │ 3.08531e-5 │ -1.0e-5 │ 8.67ms │ │ 53 │ -5.097865972051 │ -10.20 │ 6.12082e-7 │ 2.5644e-5 │ 1.7e-5 │ 9.01ms │ │ 54 │ -5.097865972072 │ -10.70 │ 7.70934e-7 │ 4.00121e-6 │ -8.7e-7 │ 8.59ms │ │ 55 │ -5.097865972073 │ -11.74 │ 7.05718e-7 │ 2.36011e-6 │ 6.1e-7 │ 8.61ms │ │ 56 │ -5.097865972075 │ -11.77 │ 6.31401e-7 │ 3.80384e-6 │ -9.0e-7 │ 8.54ms │ │ 57 │ -5.097865972080 │ -11.29 │ 2.52971e-7 │ 8.077e-6 │ 5.3e-6 │ 9.06ms │ │ 58 │ -5.097865972082 │ -11.71 │ 2.68575e-7 │ 1.99571e-6 │ -8.4e-7 │ 8.71ms │ │ 59 │ -5.097865972082 │ -12.54 │ 2.60429e-7 │ 6.04384e-7 │ 4.7e-8 │ 8.59ms │ │ 60 │ -5.097865972083 │ -13.13 │ 2.51458e-7 │ 3.88615e-6 │ 1.7e-6 │ 8.39ms │ │ 61 │ -5.097865972083 │ -12.28 │ 2.58389e-7 │ 4.01047e-6 │ -1.9e-6 │ 8.56ms │ │ 62 │ -5.097865972084 │ -11.95 │ 2.36501e-7 │ 1.36941e-6 │ -3.8e-7 │ 8.44ms │ │ 63 │ -5.097865972084 │ -12.55 │ 1.93231e-7 │ 2.41349e-6 │ 1.1e-6 │ 8.68ms │ │ 64 │ -5.097865972085 │ -12.08 │ 1.70083e-7 │ 3.93877e-6 │ -3.0e-6 │ 8.45ms │ │ 65 │ -5.097865972086 │ -12.05 │ 1.31673e-7 │ 2.22596e-6 │ 3.7e-7 │ 8.32ms │ │ 66 │ -5.097865972087 │ -11.95 │ 1.69381e-7 │ 2.4357e-6 │ 1.7e-6 │ 8.47ms │ │ 67 │ -5.097865972088 │ -12.67 │ 1.69136e-7 │ 1.49462e-6 │ -5.7e-7 │ 8.54ms │ │ 68 │ -5.097865972088 │ -12.61 │ 1.62082e-7 │ 1.11387e-6 │ -6.2e-7 │ 8.62ms │ │ 69 │ -5.097865972088 │ -12.42 │ 1.44622e-7 │ 2.12681e-6 │ 1.1e-6 │ 8.61ms │ │ 70 │ -5.097865972088 │ -12.74 │ 1.2691e-7 │ 4.57538e-6 │ -2.5e-6 │ 8.63ms │ │ 71 │ -5.097865972089 │ -12.13 │ 1.05404e-7 │ 2.72103e-6 │ 1.6e-6 │ 8.86ms │ │ 72 │ -5.097865972089 │ -12.37 │ 1.10845e-7 │ 1.15687e-6 │ 7.0e-8 │ 8.91ms │ │ 73 │ -5.097865972090 │ -13.09 │ 9.97704e-8 │ 9.16355e-7 │ -4.0e-7 │ 8.89ms │ │ 74 │ -5.097865972090 │ -13.44 │ 1.02605e-7 │ 2.13117e-6 │ 1.8e-6 │ 8.79ms │ │ 75 │ -5.097865972090 │ -12.85 │ 9.81591e-8 │ 8.30971e-7 │ -2.5e-7 │ 8.87ms │ │ 76 │ -5.097865972090 │ -13.78 │ 9.63874e-8 │ 7.40099e-7 │ -2.3e-7 │ 8.93ms │ │ 77 │ -5.097865972090 │ -14.03 │ 9.52251e-8 │ 6.21118e-7 │ -1.8e-7 │ 8.94ms │ │ 78 │ -5.097865972090 │ -14.98 │ 9.50464e-8 │ 5.95755e-7 │ -1.6e-7 │ 9.20ms │ │ 79 │ -5.097865972090 │ + -Inf │ 9.50303e-8 │ 5.93018e-7 │ -1.6e-7 │ 8.80ms │ │ 80 │ -5.097865972090 │ + -Inf │ 9.50288e-8 │ 5.92732e-7 │ -1.6e-7 │ 8.87ms │ │ 81 │ -5.097865972090 │ + -Inf │ 9.50287e-8 │ 5.92702e-7 │ -1.6e-7 │ 8.97ms │ │ 82 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 8.79ms │ │ 83 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 9.35ms │ │ 84 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 9.29ms │ │ 85 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 9.20ms │ │ 86 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 8.99ms │ │ 87 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 9.57ms │ │ 88 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 9.41ms │ │ 89 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 9.39ms │ │ 90 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 333μs │ │ 91 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 126μs │ │ 92 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 115μs │ │ 93 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 112μs │ │ 94 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 110μs │ │ 95 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 129μs │ │ 96 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 120μs │ │ 97 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 124μs │ │ 98 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 119μs │ │ 99 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 113μs │ │ 100 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 112μs │ │ 101 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 106μs │ │ 102 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 113μs │ │ 103 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 115μs │ │ 104 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 140μs │ │ 105 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 113μs │ │ 106 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 106μs │ │ 107 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 103μs │ │ 108 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 109μs │ │ 109 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 108μs │ │ 110 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 104μs │ │ 111 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 107μs │ │ 112 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 105μs │ │ 113 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 110μs │ │ 114 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 107μs │ │ 115 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 107μs │ │ 116 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 107μs │ │ 117 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 107μs │ │ 118 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 109μs │ │ 119 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 104μs │ │ 120 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 108μs │ │ 121 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 105μs │ │ 122 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 124μs │ │ 123 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 111μs │ │ 124 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 109μs │ │ 125 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 105μs │ │ 126 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 105μs │ │ 127 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 106μs │ │ 128 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 106μs │ │ 129 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 104μs │ │ 130 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 105μs │ │ 131 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 121μs │ │ 132 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 118μs │ │ 133 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 111μs │ │ 134 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 105μs │ │ 135 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 103μs │ │ 136 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 108μs │ │ 137 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 116μs │ │ 138 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 115μs │ │ 139 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 120μs │ │ 140 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 144μs │ │ 141 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 123μs │ │ 142 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 115μs │ │ 143 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 109μs │ │ 144 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 110μs │ │ 145 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 113μs │ │ 146 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 115μs │ │ 147 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 108μs │ │ 148 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 107μs │ │ 149 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 194μs │ │ 150 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 113μs │ │ 151 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 111μs │ │ 152 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 109μs │ │ 153 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 107μs │ │ 154 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 109μs │ │ 155 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 110μs │ │ 156 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 113μs │ │ 157 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 131μs │ │ 158 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 118μs │ │ 159 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 118μs │ │ 160 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 117μs │ │ 161 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 111μs │ │ 162 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 110μs │ │ 163 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 105μs │ │ 164 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 114μs │ │ 165 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 124μs │ │ 166 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 144μs │ │ 167 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 113μs │ │ 168 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 117μs │ │ 169 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 119μs │ │ 170 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 122μs │ │ 171 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 123μs │ │ 172 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 123μs │ │ 173 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 124μs │ │ 174 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 141μs │ │ 175 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 123μs │ │ 176 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 116μs │ │ 177 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 124μs │ │ 178 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 121μs │ │ 179 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 119μs │ │ 180 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 119μs │ │ 181 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 119μs │ │ 182 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 136μs │ │ 183 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 127μs │ │ 184 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 117μs │ │ 185 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 114μs │ │ 186 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 111μs │ │ 187 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 103μs │ │ 188 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 104μs │ │ 189 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 106μs │ │ 190 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 109μs │ │ 191 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 131μs │ │ 192 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 109μs │ │ 193 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 105μs │ │ 194 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 111μs │ │ 195 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 109μs │ │ 196 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 108μs │ │ 197 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 108μs │ │ 198 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 112μs │ │ 199 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 113μs │ │ 200 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 129μs │ │ 201 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 120μs │ │ 202 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 124μs │ │ 203 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 119μs │ │ 204 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 117μs │ │ 205 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 114μs │ │ 206 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 111μs │ │ 207 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 114μs │ │ 208 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 131μs │ │ 209 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 116μs │ │ 210 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 116μs │ │ 211 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 112μs │ │ 212 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 114μs │ │ 213 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 109μs │ │ 214 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 110μs │ │ 215 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 109μs │ │ 216 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 112μs │ │ 217 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 124μs │ │ 218 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 108μs │ │ 219 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 112μs │ │ 220 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 110μs │ │ 221 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 112μs │ │ 222 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 111μs │ │ 223 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 118μs │ │ 224 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 113μs │ │ 225 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 112μs │ │ 226 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 124μs │ │ 227 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 113μs │ │ 228 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 122μs │ │ 229 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 113μs │ │ 230 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 109μs │ │ 231 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 106μs │ │ 232 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 114μs │ │ 233 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 112μs │ │ 234 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 133μs │ │ 235 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 117μs │ │ 236 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 110μs │ │ 237 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 118μs │ │ 238 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 116μs │ │ 239 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 112μs │ │ 240 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 107μs │ │ 241 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 110μs │ │ 242 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 119μs │ │ 243 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 132μs │ │ 244 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 116μs │ │ 245 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 114μs │ │ 246 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 116μs │ │ 247 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 112μs │ │ 248 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 118μs │ │ 249 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 115μs │ │ 250 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 111μs │ │ 251 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 118μs │ │ 252 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 135μs │ │ 253 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 117μs │ │ 254 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 119μs │ │ 255 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 116μs │ │ 256 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 118μs │ │ 257 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 120μs │ │ 258 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 126μs │ │ 259 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 122μs │ │ 260 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 134μs │ │ 261 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 123μs │ │ 262 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 121μs │ │ 263 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 117μs │ │ 264 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 118μs │ │ 265 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 119μs │ │ 266 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 119μs │ │ 267 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 123μs │ │ 268 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 140μs │ │ 269 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 124μs │ │ 270 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 121μs │ │ 271 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 124μs │ │ 272 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 128μs │ │ 273 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 130μs │ │ 274 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 126μs │ │ 275 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 120μs │ │ 276 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 141μs │ │ 277 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 126μs │ │ 278 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 118μs │ │ 279 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 119μs │ │ 280 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 121μs │ │ 281 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 123μs │ │ 282 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 120μs │ │ 283 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 123μs │ │ 284 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 146μs │ │ 285 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 123μs │ │ 286 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 123μs │ │ 287 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 118μs │ │ 288 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 123μs │ │ 289 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 123μs │ │ 290 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 125μs │ │ 291 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 121μs │ │ 292 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 143μs │ │ 293 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 124μs │ │ 294 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 123μs │ │ 295 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 124μs │ │ 296 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 111μs │ │ 297 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 102μs │ │ 298 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 110μs │ │ 299 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 108μs │ │ 300 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 105μs │ │ 301 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 126μs │ │ 302 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 117μs │ │ 303 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 117μs │ │ 304 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 107μs │ │ 305 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 107μs │ │ 306 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 102μs │ │ 307 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 108μs │ │ 308 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 107μs │ │ 309 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 104μs │ │ 310 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 130μs │ │ 311 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 110μs │ │ 312 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 107μs │ │ 313 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 105μs │ │ 314 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 104μs │ │ 315 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 106μs │ │ 316 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 104μs │ │ 317 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 103μs │ │ 318 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 103μs │ │ 319 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 120μs │ │ 320 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 105μs │ │ 321 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 109μs │ │ 322 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 109μs │ │ 323 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 108μs │ │ 324 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 107μs │ │ 325 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 107μs │ │ 326 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 108μs │ │ 327 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 110μs │ │ 328 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 130μs │ │ 329 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 108μs │ │ 330 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 107μs │ │ 331 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 106μs │ │ 332 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 108μs │ │ 333 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 112μs │ │ 334 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 113μs │ │ 335 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 114μs │ │ 336 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 111μs │ │ 337 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 133μs │ │ 338 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 119μs │ │ 339 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 116μs │ │ 340 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 117μs │ │ 341 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 106μs │ │ 342 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 106μs │ │ 343 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 114μs │ │ 344 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 108μs │ │ 345 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 105μs │ │ 346 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 124μs │ │ 347 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 110μs │ │ 348 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 121μs │ │ 349 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 115μs │ │ 350 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 122μs │ │ 351 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 114μs │ │ 352 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 113μs │ │ 353 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 114μs │ │ 354 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 140μs │ │ 355 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 119μs │ │ 356 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 121μs │ │ 357 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 114μs │ │ 358 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 114μs │ │ 359 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 117μs │ │ 360 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 119μs │ │ 361 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 118μs │ │ 362 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 114μs │ │ 363 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 140μs │ │ 364 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 117μs │ │ 365 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 113μs │ │ 366 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 124μs │ │ 367 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 117μs │ │ 368 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 109μs │ │ 369 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 115μs │ │ 370 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 113μs │ │ 371 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 138μs │ │ 372 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 122μs │ │ 373 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 119μs │ │ 374 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 117μs │ │ 375 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 115μs │ │ 376 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 118μs │ │ 377 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 115μs │ │ 378 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 115μs │ │ 379 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 132μs │ │ 380 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 120μs │ │ 381 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 117μs │ │ 382 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 113μs │ │ 383 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 113μs │ │ 384 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 117μs │ │ 385 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 114μs │ │ 386 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 115μs │ │ 387 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 114μs │ │ 388 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 267μs │ │ 389 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 126μs │ │ 390 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 116μs │ │ 391 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 115μs │ │ 392 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 116μs │ │ 393 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 117μs │ │ 394 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 115μs │ │ 395 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 138μs │ │ 396 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 133μs │ │ 397 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 116μs │ │ 398 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 110μs │ │ 399 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 121μs │ │ 400 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 117μs │ │ 401 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 111μs │ │ 402 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 111μs │ │ 403 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 114μs │ │ 404 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 152μs │ │ 405 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 122μs │ │ 406 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 109μs │ │ 407 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 104μs │ │ 408 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 108μs │ │ 409 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 112μs │ │ 410 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 106μs │ │ 411 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 107μs │ │ 412 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 118μs │ │ 413 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 107μs │ │ 414 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 101μs │ │ 415 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 102μs │ │ 416 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 100μs │ │ 417 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 98.7μs │ │ 418 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 101μs │ │ 419 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 99.4μs │ │ 420 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 97.2μs │ │ 421 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 98.0μs │ │ 422 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 117μs │ │ 423 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 111μs │ │ 424 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 101μs │ │ 425 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 100μs │ │ 426 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 102μs │ │ 427 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 102μs │ │ 428 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 101μs │ │ 429 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 97.7μs │ │ 430 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 98.1μs │ │ 431 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 98.3μs │ │ 432 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 116μs │ │ 433 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 107μs │ │ 434 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 97.0μs │ │ 435 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 106μs │ │ 436 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 106μs │ │ 437 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 108μs │ │ 438 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 109μs │ │ 439 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 107μs │ │ 440 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 107μs │ │ 441 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 127μs │ │ 442 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 108μs │ │ 443 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 107μs │ │ 444 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 104μs │ │ 445 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 104μs │ │ 446 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 101μs │ │ 447 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 102μs │ │ 448 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 104μs │ │ 449 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 110μs │ │ 450 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 101μs │ │ 451 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 131μs │ │ 452 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 96.1μs │ │ 453 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 94.3μs │ │ 454 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 100μs │ │ 455 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 104μs │ │ 456 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 98.6μs │ │ 457 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 100μs │ │ 458 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 101μs │ │ 459 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 102μs │ │ 460 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 125μs │ │ 461 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 111μs │ │ 462 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 102μs │ │ 463 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 96.5μs │ │ 464 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 99.2μs │ │ 465 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 101μs │ │ 466 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 101μs │ │ 467 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 101μs │ │ 468 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 102μs │ │ 469 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 101μs │ │ 470 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 118μs │ │ 471 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 103μs │ │ 472 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 110μs │ │ 473 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 102μs │ │ 474 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 100μs │ │ 475 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 99.2μs │ │ 476 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 99.2μs │ │ 477 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 98.5μs │ │ 478 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 98.3μs │ │ 479 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 103μs │ │ 480 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 126μs │ │ 481 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 111μs │ │ 482 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 105μs │ │ 483 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 105μs │ │ 484 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 117μs │ │ 485 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 108μs │ │ 486 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 102μs │ │ 487 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 101μs │ │ 488 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 112μs │ │ 489 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 123μs │ │ 490 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 104μs │ │ 491 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 104μs │ │ 492 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 108μs │ │ 493 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 101μs │ │ 494 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 104μs │ │ 495 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 100μs │ │ 496 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 108μs │ │ 497 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 104μs │ │ 498 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 117μs │ │ 499 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 102μs │ │ 500 │ -5.097865972090 │ + -Inf │ 9.50286e-8 │ 5.92699e-7 │ -1.6e-7 │ 109μs │ ┌ Warning: Geometry optimisation not converged. └ @ GeometryOptimization ~/.julia/packages/GeometryOptimization/y8zYr/src/minimize_energy.jl:184 ┌ Warning: Geometry optimisation not converged. └ @ GeometryOptimization ~/.julia/packages/GeometryOptimization/y8zYr/src/minimize_energy.jl:184 ┌ Warning: Geometry optimisation not converged. └ @ GeometryOptimization ~/.julia/packages/GeometryOptimization/y8zYr/src/minimize_energy.jl:184 Test Summary: | Pass Total Time Package | 76 76 6m42.0s test/nlopt.jl | 2 2 6m06.0s Test NLopt solver via Optimization.jl interface | 2 2 6m06.0s test/minimization.jl | 48 48 24.8s Test silicon StillingerWeber fixed cell minimisation | 36 36 15.8s Test silicon StillingerWeber variable cell minimisation | 12 12 9.0s test/dofmgr.jl | 18 18 5.2s DofManager | 18 18 5.2s Fixed cell getter / setter (no clamped) | 4 4 2.4s Variable cell getter / setter (no clamped) | 6 6 1.7s eval_objective / eval_gradient agrees with raw energy | 8 8 0.7s test/calculator_interface.jl | 8 8 6.0s Test GeometryOptimization with AtomsCalculators interface | 8 8 6.0s minimize_energy! with fixed cell | 4 4 3.1s minimize_energy! with variable cell | 4 4 0.8s Testing GeometryOptimization tests passed Testing completed after 441.67s PkgEval succeeded after 904.78s