Package evaluation of EvoTrees on Julia 1.13.0-DEV.791 (d5209bd37d*) started at 2025-07-04T14:29:15.722 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.49s ################################################################################ # Installation # Installing EvoTrees... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [f6006082] + EvoTrees v0.17.3 Updating `~/.julia/environments/v1.13/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [fbb218c0] + BSON v0.3.9 [324d7699] + CategoricalArrays v0.10.8 [34da2185] + Compat v4.17.0 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [31c24e10] + Distributions v0.25.120 [ffbed154] + DocStringExtensions v0.9.5 [f6006082] + EvoTrees v0.17.3 [411431e0] + Extents v0.1.6 [1a297f60] + FillArrays v1.13.0 [68eda718] + GeoFormatTypes v0.4.4 [cf35fbd7] + GeoInterface v1.4.1 [5c1252a2] + GeometryBasics v0.5.9 [34004b35] + HypergeometricFunctions v0.3.28 [92d709cd] + IrrationalConstants v0.2.4 [c8e1da08] + IterTools v1.10.0 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.0 [2ab3a3ac] + LogExpFunctions v0.3.29 [e80e1ace] + MLJModelInterface v1.11.1 [e1d29d7a] + Missings v1.2.0 [46757867] + NetworkLayout v0.4.10 [bac558e1] + OrderedCollections v1.8.1 [90014a1f] + PDMats v0.11.35 [aea7be01] + PrecompileTools v1.3.2 [21216c6a] + Preferences v1.4.3 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [3cdcf5f2] + RecipesBase v1.3.4 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.8.0 [30f210dd] + ScientificTypesBase v3.0.0 [a2af1166] + SortingAlgorithms v1.2.1 [276daf66] + SpecialFunctions v2.5.1 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [64bff920] + StatisticalTraits v3.4.0 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.5 [4c63d2b9] + StatsFuns v1.5.0 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 [5ae413db] + EarCut_jll v2.2.4+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.12.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [3fa0cd96] + REPL v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.12.0 [f489334b] + StyledStrings v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.14.1+1 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.5.20 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.5+0 [458c3c95] + OpenSSL_jll v3.5.0+0 [efcefdf7] + PCRE2_jll v10.45.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [8e850b90] + libblastrampoline_jll v5.13.1+0 [8e850ede] + nghttp2_jll v1.65.0+0 [3f19e933] + p7zip_jll v17.5.0+2 Installation completed after 4.08s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 405.8s ################################################################################ # Testing # Testing EvoTrees Status `/tmp/jl_MyptC4/Project.toml` [fbb218c0] BSON v0.3.9 [052768ef] CUDA v5.8.2 [324d7699] CategoricalArrays v0.10.8 [a93c6f00] DataFrames v1.7.0 [31c24e10] Distributions v0.25.120 [f6006082] EvoTrees v0.17.3 [a7f614a8] MLJBase v1.8.1 [e80e1ace] MLJModelInterface v1.11.1 [72560011] MLJTestInterface v0.2.8 [46757867] NetworkLayout v0.4.10 [3cdcf5f2] RecipesBase v1.3.4 [10745b16] Statistics v1.11.1 [2913bbd2] StatsBase v0.34.5 [bd369af6] Tables v1.12.1 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_MyptC4/Manifest.toml` [621f4979] AbstractFFTs v1.5.0 [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.3.0 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.5.0 [a9b6321e] Atomix v1.1.1 [ab4f0b2a] BFloat16s v0.5.1 [fbb218c0] BSON v0.3.9 [198e06fe] BangBang v0.4.4 [9718e550] Baselet v0.1.1 [fa961155] CEnum v0.5.0 [052768ef] CUDA v5.8.2 [1af6417a] CUDA_Runtime_Discovery v0.3.5 [324d7699] CategoricalArrays v0.10.8 [af321ab8] CategoricalDistributions v0.1.15 [d360d2e6] ChainRulesCore v1.25.2 [3da002f7] ColorTypes v0.12.1 [5ae59095] Colors v0.13.1 [34da2185] Compat v4.17.0 [a33af91c] CompositionsBase v0.1.2 [ed09eef8] ComputationalResources v0.3.2 [187b0558] ConstructionBase v1.6.0 [6add18c4] ContextVariablesX v0.1.3 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [a93c6f00] DataFrames v1.7.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [8bb1440f] DelimitedFiles v1.9.1 [31c24e10] Distributions v0.25.120 [ffbed154] DocStringExtensions v0.9.5 [f6006082] EvoTrees v0.17.3 [e2ba6199] ExprTools v0.1.10 [411431e0] Extents v0.1.6 [cc61a311] FLoops v0.2.2 [b9860ae5] FLoopsBase v0.1.1 [1a297f60] FillArrays v1.13.0 [53c48c17] FixedPointNumbers v0.8.5 [0c68f7d7] GPUArrays v11.2.3 [46192b85] GPUArraysCore v0.2.0 [61eb1bfa] GPUCompiler v1.6.1 [096a3bc2] GPUToolbox v0.2.0 [68eda718] GeoFormatTypes v0.4.4 [cf35fbd7] GeoInterface v1.4.1 [5c1252a2] GeometryBasics v0.5.9 [076d061b] HashArrayMappedTries v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [22cec73e] InitialValues v0.3.1 [842dd82b] InlineStrings v1.4.4 [3587e190] InverseFunctions v0.1.17 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.0 [b14d175d] JuliaVariables v0.2.4 [63c18a36] KernelAbstractions v0.9.36 [929cbde3] LLVM v9.4.2 [8b046642] LLVMLoopInfo v1.0.0 [b964fa9f] LaTeXStrings v1.4.0 [92ad9a40] LearnAPI v1.0.1 [2ab3a3ac] LogExpFunctions v0.3.29 [c2834f40] MLCore v1.0.0 [a7f614a8] MLJBase v1.8.1 [e80e1ace] MLJModelInterface v1.11.1 [72560011] MLJTestInterface v0.2.8 [d8e11817] MLStyle v0.4.17 [f1d291b0] MLUtils v0.4.8 [1914dd2f] MacroTools v0.5.16 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [872c559c] NNlib v0.9.30 [5da4648a] NVTX v1.0.0 [71a1bf82] NameResolution v0.1.5 [46757867] NetworkLayout v0.4.10 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.35 [d96e819e] Parameters v0.12.3 [2dfb63ee] PooledArrays v1.4.3 [aea7be01] PrecompileTools v1.3.2 [21216c6a] Preferences v1.4.3 [8162dcfd] PrettyPrint v0.2.0 [08abe8d2] PrettyTables v2.4.0 [92933f4c] ProgressMeter v1.10.4 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [74087812] Random123 v1.7.1 [e6cf234a] RandomNumbers v1.6.0 [3cdcf5f2] RecipesBase v1.3.4 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.8.0 [321657f4] ScientificTypes v3.1.0 [30f210dd] ScientificTypesBase v3.0.0 [7e506255] ScopedValues v1.3.0 [6c6a2e73] Scratch v1.3.0 [91c51154] SentinelArrays v1.4.8 [efcf1570] Setfield v1.1.2 [605ecd9f] ShowCases v0.1.0 [699a6c99] SimpleTraits v0.9.4 [a2af1166] SortingAlgorithms v1.2.1 [276daf66] SpecialFunctions v2.5.1 [171d559e] SplittablesBase v0.1.15 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [c062fc1d] StatisticalMeasuresBase v0.1.2 [64bff920] StatisticalTraits v3.4.0 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.5 [4c63d2b9] StatsFuns v1.5.0 [892a3eda] StringManipulation v0.4.1 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [e689c965] Tracy v0.1.5 [28d57a85] Transducers v0.4.84 [3a884ed6] UnPack v1.0.2 [013be700] UnsafeAtomics v0.3.0 ⌅ [4ee394cb] CUDA_Driver_jll v0.13.1+0 ⌅ [76a88914] CUDA_Runtime_jll v0.17.1+0 [5ae413db] EarCut_jll v2.2.4+0 [9c1d0b0a] JuliaNVTXCallbacks_jll v0.2.1+0 [dad2f222] LLVMExtra_jll v0.0.37+2 [ad6e5548] LibTracyClient_jll v0.9.1+6 [e98f9f5b] NVTX_jll v3.2.1+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [1e29f10c] demumble_jll v1.3.0+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [4af54fe1] LazyArtifacts v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [3fa0cd96] REPL v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.12.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.14.1+1 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.5.20 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.5+0 [458c3c95] OpenSSL_jll v3.5.0+0 [efcefdf7] PCRE2_jll v10.45.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.65.0+0 [3f19e933] p7zip_jll v17.5.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Precompiling packages... 4362.0 ms ✓ Distributions → DistributionsTestExt 1 dependency successfully precompiled in 5 seconds. 49 already precompiled. ┌ Info: initialization └ metric = 0.12850541855989803 ┌ Info: iter 25 └ metric = 0.0218534840818225 ┌ Info: iter 50 └ metric = 0.020308791952156183 ┌ Info: iter 75 └ metric = 0.020313633117741006 ┌ Info: iter 100 └ metric = 0.02053429553996752 ┌ Info: initialization └ metric = 0.6720977827906609 ┌ Info: iter 25 └ metric = 0.4854209664463997 ┌ Info: iter 50 └ metric = 0.4371707334369421 ┌ Info: iter 75 └ metric = 0.42108118496835234 ┌ Info: iter 100 └ metric = 0.41446558825671675 ┌ Info: initialization └ metric = 1.4709549355506897 ┌ Info: iter 25 └ metric = 0.34493750214576724 ┌ Info: iter 50 └ metric = 0.30455422043800356 ┌ Info: iter 75 └ metric = 0.2981378662586212 ┌ Info: iter 100 └ metric = 0.30318266987800596 ┌ Info: initialization └ metric = 0.5471089428663254 ┌ Info: iter 25 └ metric = 0.1568716686964035 ┌ Info: iter 50 └ metric = 0.11345964685082435 ┌ Info: iter 75 └ metric = 0.10337476193904876 ┌ Info: iter 100 └ metric = 0.10000559814274311 ┌ Info: initialization └ metric = 0.32020851522684096 ┌ Info: iter 25 └ metric = 0.12922271866351365 ┌ Info: iter 50 └ metric = 0.10199518817476928 ┌ Info: iter 75 └ metric = 0.09919940970372408 ┌ Info: iter 100 └ metric = 0.0991425906540826 ┌ Info: initialization └ metric = 0.16010425761342048 ┌ Info: iter 25 └ metric = 0.060825394783169034 ┌ Info: iter 50 └ metric = 0.049247815741691736 ┌ Info: iter 75 └ metric = 0.04860964736551978 ┌ Info: iter 100 └ metric = 0.04866470103792381 ┌ Info: initialization └ metric = 0.2957647952437401 ┌ Info: iter 25 └ metric = 0.09982108637690544 ┌ Info: iter 50 └ metric = 0.07062815807759762 ┌ Info: iter 75 └ metric = 0.0608156019821763 ┌ Info: iter 100 └ metric = 0.05664134617894888 ┌ Info: initialization └ metric = 0.5254025399684906 ┌ Info: iter 25 └ metric = 1.6643243443965912 ┌ Info: iter 50 └ metric = 1.7553918981552123 ┌ Info: iter 75 └ metric = 1.6366464787721633 ┌ Info: iter 100 └ metric = 1.527500919699669 ┌ Info: initialization └ metric = -1.7957830564654431 ┌ Info: iter 25 └ metric = -0.11804731893353164 ┌ Info: iter 50 └ metric = -0.2167155128903687 ┌ Info: iter 75 └ metric = -0.3314145844290033 ┌ Info: iter 100 └ metric = -0.33276243005879225 ┌ Info: initialization └ metric = 0.5254025399684906 ┌ Info: iter 25 └ metric = 1.6643243443965912 ┌ Info: iter 50 └ metric = 1.7553918981552123 ┌ Info: iter 75 └ metric = 1.6366464787721633 ┌ Info: iter 100 └ metric = 1.527500919699669 ┌ Info: initialization └ metric = 0.12850541855989803 ┌ Info: iter 25 └ metric = 0.0423259663949284 ┌ Info: iter 50 └ metric = 0.029923325241811655 ┌ Info: iter 75 └ metric = 0.025185474146319962 ┌ Info: iter 100 └ metric = 0.02273554716364629 ┌ Info: iter 125 └ metric = 0.021428670910092932 ┌ Info: iter 150 └ metric = 0.020671600587487547 ┌ Info: iter 175 └ metric = 0.020286477897562917 ┌ Info: iter 200 └ metric = 0.02007343324829222 ┌ Info: initialization └ metric = 0.6720977827906609 ┌ Info: iter 25 └ metric = 0.48906796604394914 ┌ Info: iter 50 └ metric = 0.45056863233447075 ┌ Info: iter 75 └ metric = 0.4339840408042073 ┌ Info: iter 100 └ metric = 0.42426158741116526 ┌ Info: iter 125 └ metric = 0.41806680407375096 ┌ Info: iter 150 └ metric = 0.41389062194153664 ┌ Info: iter 175 └ metric = 0.4110515335574746 ┌ Info: iter 200 └ metric = 0.4090116586722434 ┌ Info: initialization └ metric = 0.16010425761342048 ┌ Info: iter 25 └ metric = 0.08159953819587827 ┌ Info: iter 50 └ metric = 0.06353082546032965 ┌ Info: iter 75 └ metric = 0.05730581597425043 ┌ Info: iter 100 └ metric = 0.05306666763499379 ┌ Info: iter 125 └ metric = 0.050234638033434746 ┌ Info: iter 150 └ metric = 0.04865887098945677 ┌ Info: iter 175 └ metric = 0.0479407334595453 ┌ Info: iter 200 └ metric = 0.047474883199320174 ┌ Info: initialization └ metric = 0.32020851522684096 ┌ Info: iter 25 └ metric = 0.1865524584800005 ┌ Info: iter 50 └ metric = 0.14815250769257546 ┌ Info: iter 75 └ metric = 0.13184949912130833 ┌ Info: iter 100 └ metric = 0.12151799038052559 ┌ Info: iter 125 └ metric = 0.11525779008865357 ┌ Info: iter 150 └ metric = 0.1107572434656322 ┌ Info: iter 175 └ metric = 0.10741648390889168 ┌ Info: iter 200 └ metric = 0.1050634808279574 ┌ Info: initialization └ metric = 1.4709549355506897 ┌ Info: iter 25 └ metric = 0.49673894643783567 ┌ Info: iter 50 └ metric = 0.4472580850124359 ┌ Info: iter 75 └ metric = 0.4267463994026184 ┌ Info: iter 100 └ metric = 0.4109067535400391 ┌ Info: iter 125 └ metric = 0.3999123275279999 ┌ Info: iter 150 └ metric = 0.3913017475605011 ┌ Info: iter 175 └ metric = 0.3847887325286865 ┌ Info: iter 200 └ metric = 0.3801265645027161 ┌ Info: initialization └ metric = 0.5471089428663254 ┌ Info: iter 25 └ metric = 0.21913841038942336 ┌ Info: iter 50 └ metric = 0.13720423802733422 ┌ Info: iter 75 └ metric = 0.11385027751326561 ┌ Info: iter 100 └ metric = 0.10443447336554527 ┌ Info: iter 125 └ metric = 0.09951980963349343 ┌ Info: iter 150 └ metric = 0.09702852010726928 ┌ Info: iter 175 └ metric = 0.09551732912659645 ┌ Info: iter 200 └ metric = 0.094958426207304 ┌ Info: initialization └ metric = 0.2957647952437401 ┌ Info: iter 25 └ metric = 0.07575521223247052 ┌ Info: iter 50 └ metric = 0.055389644242823124 ┌ Info: iter 75 └ metric = 0.04930419464595616 ┌ Info: iter 100 └ metric = 0.04735164218582213 ┌ Info: iter 125 └ metric = 0.04671690450981259 ┌ Info: iter 150 └ metric = 0.04653070217464119 ┌ Info: iter 175 └ metric = 0.046541841465514155 ┌ Info: iter 200 └ metric = 0.04664113273145631 ┌ Info: initialization └ metric = 0.5254025399684906 ┌ Info: iter 25 └ metric = 1.2444885614514352 ┌ Info: iter 50 └ metric = 1.5074850124120713 ┌ Info: iter 75 └ metric = 1.6780072042346001 ┌ Info: iter 100 └ metric = 1.7726103961467743 ┌ Info: iter 125 └ metric = 1.8351438862085343 ┌ Info: iter 150 └ metric = 1.8794235858321189 ┌ Info: iter 175 └ metric = 1.9026350170373916 ┌ Info: iter 200 └ metric = 1.9192887452244758 ┌ Info: initialization └ metric = -1.7957830564654431 ┌ Info: iter 25 └ metric = -0.5233324768813327 ┌ Info: iter 50 └ metric = -0.3126774764340371 ┌ Info: iter 75 └ metric = -0.1482080158177996 ┌ Info: iter 100 └ metric = -0.08164310291409492 ┌ Info: iter 125 └ metric = -0.04318209574557841 ┌ Info: iter 150 └ metric = -0.03685651195701212 ┌ Info: iter 175 └ metric = -0.03313629071228206 ┌ Info: iter 200 └ metric = -0.041607066886499525 ┌ Info: initialization └ metric = 0.6875359496474266 ┌ Info: iter 50 └ metric = 0.298640475012362 ┌ Info: iter 100 └ metric = 0.2744265696126968 ┌ Info: initialization └ metric = 0.12692690002214477 ┌ Info: iter 25 └ metric = 0.035449535256672104 ┌ Info: iter 50 └ metric = 0.022091049771033867 ┌ Info: iter 75 └ metric = 0.019839464080984897 ┌ Info: iter 100 └ metric = 0.019345529151084194 ┌ Info: initialization └ metric = 0.12692690002214477 ┌ Info: iter 25 └ metric = 0.03533317220291012 ┌ Info: iter 50 └ metric = 0.021854105652548982 ┌ Info: iter 75 └ metric = 0.019633157023992282 ┌ Info: iter 100 └ metric = 0.01929916271276106 ┌ Info: initialization └ metric = 0.020358958927368376 ┌ Info: iter 25 └ metric = 0.004361602189505604 ┌ Info: iter 50 └ metric = 0.0013782550718356656 ┌ Info: iter 75 └ metric = 0.000822369201089872 ┌ Info: iter 100 └ metric = 0.0007169724630985339 ┌ Info: iter 125 └ metric = 0.000697192498014724 ┌ Info: iter 150 └ metric = 0.0006930728099176076 ┌ Info: iter 175 └ metric = 0.0006917962010436209 ┌ Info: iter 200 └ metric = 0.0006918942449952894 ┌ Info: initialization └ metric = 0.020358958927368376 ┌ Info: iter 25 └ metric = 0.0024131638495896064 ┌ Info: iter 50 └ metric = 0.0024127923751441054 ┌ Info: iter 75 └ metric = 0.0024143452895525356 ┌ Info: iter 100 └ metric = 0.0024144685438429506 ┌ Info: iter 125 └ metric = 0.0024142454706221946 ┌ Info: iter 150 └ metric = 0.00241333997505191 ┌ Info: iter 175 └ metric = 0.0024134418835719505 ┌ Info: iter 200 └ metric = 0.0024133667874534693 ┌ Info: initialization └ metric = 0.40619069431722166 ┌ Info: iter 25 └ metric = 0.34405948795750735 ┌ Info: iter 50 └ metric = 0.33176836168952284 ┌ Info: iter 75 └ metric = 0.328082158215344 ┌ Info: iter 100 └ metric = 0.3265756065798923 ┌ Info: iter 125 └ metric = 0.32582493518106637 ┌ Info: iter 150 └ metric = 0.3254002459323965 ┌ Info: iter 175 └ metric = 0.32513588516507297 ┌ Info: iter 200 └ metric = 0.3249636071003042 ┌ Info: initialization └ metric = 0.40619069431722166 ┌ Info: iter 25 └ metric = 0.3523449128419161 ┌ Info: iter 50 └ metric = 0.34380327036231756 ┌ Info: iter 75 └ metric = 0.34201818084344265 ┌ Info: iter 100 └ metric = 0.3415592436958104 ┌ Info: iter 125 └ metric = 0.34141718253679576 ┌ Info: iter 150 └ metric = 0.3413602010793984 ┌ Info: iter 175 └ metric = 0.34133762077614666 ┌ Info: iter 200 └ metric = 0.34132483863271773 [ Info: The following kwargs are not supported and will be ignored: [:metric]. ┌ Info: initialization └ metric = 1.4467687221169472 ┌ Info: iter 25 └ metric = 2.3832271227240565 ┌ Info: iter 50 └ metric = 2.996125996410847 ┌ Info: iter 75 └ metric = 3.403247866272926 ┌ Info: iter 100 └ metric = 3.639958354651928 ┌ Info: iter 125 └ metric = 3.7699330707788468 ┌ Info: iter 150 └ metric = 3.842245651423931 ┌ Info: iter 175 └ metric = 3.8804836964011193 ┌ Info: iter 200 └ metric = 3.891482799530029 ┌ Info: initialization └ metric = 1.4467687221169472 ┌ Info: iter 25 └ metric = 2.6959541272521017 ┌ Info: iter 50 └ metric = 2.696875432550907 ┌ Info: iter 75 └ metric = 2.696397373497486 ┌ Info: iter 100 └ metric = 2.696485609412193 ┌ Info: iter 125 └ metric = 2.6961648224592207 ┌ Info: iter 150 └ metric = 2.6968972423672675 ┌ Info: iter 175 └ metric = 2.6965816232562063 ┌ Info: iter 200 └ metric = 2.6968879861831665 ┌ Info: initialization └ metric = 0.006764594764525853 Precompiling packages... 3184.9 ms ✓ LogExpFunctions → LogExpFunctionsChainRulesCoreExt 4202.0 ms ✓ SpecialFunctions → SpecialFunctionsChainRulesCoreExt 14692.9 ms ✓ NNlib 3839.6 ms ✓ StatsFuns → StatsFunsChainRulesCoreExt 1517.1 ms ✓ StatsFuns → StatsFunsInverseFunctionsExt 4856.7 ms ✓ Distributions → DistributionsChainRulesCoreExt 8743.9 ms ✓ ScientificTypes 3331.8 ms ✓ NNlib → NNlibSpecialFunctionsExt 24139.5 ms ✓ MLUtils 8208.3 ms ✓ CategoricalDistributions 21061.0 ms ✓ StatisticalMeasuresBase 18379.5 ms ✓ MLJBase 12 dependencies successfully precompiled in 117 seconds. 134 already precompiled. Precompiling packages... 12418.2 ms ✓ BangBang → BangBangDataFramesExt 1 dependency successfully precompiled in 13 seconds. 47 already precompiled. Precompiling packages... 7649.6 ms ✓ Transducers → TransducersDataFramesExt 1 dependency successfully precompiled in 8 seconds. 63 already precompiled. Precompiling packages... 19468.7 ms ✓ MLJTestInterface 1 dependency successfully precompiled in 21 seconds. 163 already precompiled. ┌ Info: Training machine(EvoTreeRegressor │ - loss: logloss │ - metric: logloss │ - nrounds: 10 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.05 │ - max_depth: 5 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) │ - device: cpu └ , …). ┌ Info: Updating machine(EvoTreeRegressor │ - loss: logloss │ - metric: logloss │ - nrounds: 20 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.05 │ - max_depth: 5 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 2004, 1002, 908)) │ - device: cpu └ , …). ┌ Info: Training machine(EvoTreeClassifier │ - loss: mlogloss │ - metric: mlogloss │ - nrounds: 10 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.05 │ - max_depth: 4 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary │ - rng: MersenneTwister(123) │ - device: cpu └ , …). ┌ Info: Updating machine(EvoTreeClassifier │ - loss: mlogloss │ - metric: mlogloss │ - nrounds: 60 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.05 │ - max_depth: 4 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 1002, 0, 510)) │ - device: cpu └ , …). [ Info: The following kwargs are not supported and will be ignored: [:loss, :metric]. ┌ Info: Training machine(EvoTreeCount │ - loss: poisson │ - metric: poisson │ - nrounds: 10 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) │ - device: cpu └ , …). ┌ Info: Updating machine(EvoTreeCount │ - loss: poisson │ - metric: poisson │ - nrounds: 20 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 3006, 2004, 106)) │ - device: cpu └ , …). ┌ Info: Training machine(EvoTreeGaussian │ - loss: gaussian_mle │ - metric: gaussian_mle │ - nrounds: 10 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) │ - device: cpu └ , …). ┌ Info: Updating machine(EvoTreeGaussian │ - loss: gaussian_mle │ - metric: gaussian_mle │ - nrounds: 20 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 3006, 2004, 106)) │ - device: cpu └ , …). ┌ Info: Training machine(EvoTreeMLE │ - loss: logistic_mle │ - metric: logistic_mle │ - nrounds: 10 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 1.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 32.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) │ - device: cpu └ , …). ┌ Info: Updating machine(EvoTreeMLE │ - loss: logistic_mle │ - metric: logistic_mle │ - nrounds: 20 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 1.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 32.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 3006, 2004, 106)) │ - device: cpu └ , …). ┌ Info: Training machine(EvoTreeClassifier │ - loss: mlogloss │ - metric: mlogloss │ - nrounds: 100 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary │ - rng: MersenneTwister(123) │ - device: cpu └ , …). ┌ Info: Training machine(EvoTreeRegressor │ - loss: mse │ - metric: mse │ - nrounds: 100 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) │ - device: cpu └ , …). ┌ Info: Training machine(EvoTreeRegressor │ - loss: logloss │ - metric: logloss │ - nrounds: 10 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 1.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 32.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) │ - device: cpu └ , …). ┌ Info: Updating machine(EvoTreeRegressor │ - loss: logloss │ - metric: logloss │ - nrounds: 20 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 1.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 32.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 3006, 2004, 106)) │ - device: cpu └ , …). ┌ Info: Training machine(EvoTreeRegressor │ - loss: mse │ - metric: mse │ - nrounds: 100 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) │ - device: cpu └ , …). ┌ Info: Not retraining machine(EvoTreeRegressor │ - loss: mse │ - metric: mse │ - nrounds: 100 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 18036, 17034, 866)) │ - device: cpu └ , …). Use `force=true` to force. ┌ Info: Training machine(EvoTreeRegressor │ - loss: mse │ - metric: mse │ - nrounds: 100 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) │ - device: cpu └ , …). ┌ Info: Not retraining machine(EvoTreeRegressor │ - loss: mse │ - metric: mse │ - nrounds: 100 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 18036, 17034, 866)) │ - device: cpu └ , …). Use `force=true` to force. ┌ Info: Training machine(EvoTreeClassifier │ - loss: mlogloss │ - metric: mlogloss │ - nrounds: 100 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary │ - rng: MersenneTwister(123) │ - device: cpu └ , …). Test Summary: | Pass Total Time EvoTrees | 87 87 14m00.5s Testing EvoTrees tests passed Testing completed after 865.09s PkgEval succeeded after 1308.51s