Package evaluation to test RayTraceHeatTransfer on Julia 1.13.0-DEV.1324 (c1d413cf8a*) started at 2025-10-17T18:04:40.462 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 6.61s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.13/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.1 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.16.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.9.9 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.46.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.67.1+0 [3f19e933] + p7zip_jll v17.6.0+0 Installation completed after 3.96s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 26.46s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_PvAUUB/Project.toml` [5c1252a2] GeometryBasics v0.5.10 [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_PvAUUB/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.1 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.46.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:04:14 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:07 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:05 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012094346003108534 Iteration 10: d = 1.5227496090260578e-5 Iteration 20: d = 2.544580563739993e-7 Iteration 30: d = 4.391885340474865e-9 Iteration 40: d = 7.567033119114729e-11 Iteration 50: d = 1.3012430256865914e-12 Iteration 60: d = 2.2341601752195393e-14 Converged after 66 iterations. d = 1.946295883516768e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 65%|█████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013334086657324717 Iteration 10: d = 1.2201408787178431e-5 Iteration 20: d = 1.724938095956243e-7 Iteration 30: d = 2.80880397818057e-9 Iteration 40: d = 4.7374511987585254e-11 Iteration 50: d = 8.10565663103052e-13 Iteration 60: d = 1.3969958430770806e-14 Converged after 65 iterations. d = 1.8687044568230143e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 70%|███████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012493038158719848 Iteration 10: d = 1.4700209714287031e-5 Iteration 20: d = 2.2690596263025255e-7 Iteration 30: d = 3.788963456531748e-9 Iteration 40: d = 6.475613446699149e-11 Iteration 50: d = 1.1176609911545482e-12 Iteration 60: d = 1.9421445338925962e-14 Converged after 66 iterations. d = 1.710800411310052e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 57%|██████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001218615045972609 Iteration 10: d = 1.6001137506171537e-5 Iteration 20: d = 2.694791841336111e-7 Iteration 30: d = 4.696868155148154e-9 Iteration 40: d = 8.210315891972999e-11 Iteration 50: d = 1.4355108030910417e-12 Iteration 60: d = 2.5115510897349057e-14 Converged after 66 iterations. d = 2.218044375737607e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 64%|█████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013472649901635305 Iteration 10: d = 1.4294625093619142e-5 Iteration 20: d = 2.055327426440207e-7 Iteration 30: d = 3.231176333786609e-9 Iteration 40: d = 5.0916940697585116e-11 Iteration 50: d = 7.998097204266491e-13 Iteration 60: d = 1.2560685743429248e-14 Converged after 65 iterations. d = 1.5564540528745716e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 62%|████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001115966971401587 Iteration 10: d = 1.1972487887398349e-5 Iteration 20: d = 1.6239606663636412e-7 Iteration 30: d = 2.4624769596124163e-9 Iteration 40: d = 3.82262578262067e-11 Iteration 50: d = 5.968359162769918e-13 Iteration 60: d = 9.320238283693954e-15 Converged after 64 iterations. d = 1.7598187876330433e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 71%|███████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011580230308571827 Iteration 10: d = 1.1963278897534994e-5 Iteration 20: d = 1.6386292343299814e-7 Iteration 30: d = 2.5206100567820605e-9 Iteration 40: d = 3.9455186656761326e-11 Iteration 50: d = 6.192510078036512e-13 Iteration 60: d = 9.702752437753759e-15 Converged after 64 iterations. d = 1.8390494883087657e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 65%|█████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014499594929067933 Iteration 10: d = 1.8319987055440256e-5 Iteration 20: d = 2.63172753830274e-7 Iteration 30: d = 4.028684498793311e-9 Iteration 40: d = 6.256604160483937e-11 Iteration 50: d = 9.767356434294633e-13 Iteration 60: d = 1.5279113221681764e-14 Converged after 65 iterations. d = 1.928103041540727e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 70%|███████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001247951837171553 Iteration 10: d = 1.2570597005133878e-5 Iteration 20: d = 1.6508229467354176e-7 Iteration 30: d = 2.46218355820229e-9 Iteration 40: d = 3.795554931339783e-11 Iteration 50: d = 5.920025510809988e-13 Iteration 60: d = 9.268862059311127e-15 Converged after 64 iterations. d = 1.7430324481256827e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 70%|███████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013312968929284732 Iteration 10: d = 1.1683103256715669e-5 Iteration 20: d = 1.332626867236666e-7 Iteration 30: d = 1.8280281093859946e-9 Iteration 40: d = 2.6848379960754188e-11 Iteration 50: d = 4.0748319404779984e-13 Iteration 60: d = 6.253573530043358e-15 Converged after 63 iterations. d = 1.7985369589601997e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004915001127046736 Iteration 10: d = 3.999168099455072e-5 Iteration 20: d = 4.5362817739775574e-7 Iteration 30: d = 6.305046511854547e-9 Iteration 40: d = 9.079860346754502e-11 Iteration 50: d = 1.3210939752339316e-12 Iteration 60: d = 1.933981937697405e-14 Converged after 66 iterations. d = 1.5633342335919753e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.003263501115444755 Iteration 10: d = 4.000187848789425e-5 Iteration 20: d = 5.598668280623757e-7 Iteration 30: d = 8.422461659167064e-9 Iteration 40: d = 1.2964295948448665e-10 Iteration 50: d = 2.0174988278475414e-12 Iteration 60: d = 3.158909385169168e-14 Converged after 67 iterations. d = 1.7535680556553051e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002520162920468706 Iteration 10: d = 2.7914434631815893e-5 Iteration 20: d = 4.0864177675341973e-7 Iteration 30: d = 6.61192990204946e-9 Iteration 40: d = 1.0932642941697508e-10 Iteration 50: d = 1.8234951054314202e-12 Iteration 60: d = 3.058536995426748e-14 Converged after 67 iterations. d = 1.7579843425890297e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0023845013884553163 Iteration 10: d = 3.139448321891359e-5 Iteration 20: d = 4.686879593407183e-7 Iteration 30: d = 7.973218786895305e-9 Iteration 40: d = 1.4235238900495497e-10 Iteration 50: d = 2.593641037525908e-12 Iteration 60: d = 4.767400194699354e-14 Converged after 68 iterations. d = 1.973615153797817e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013472649901635305 Iteration 10: d = 1.4294625093619142e-5 Iteration 20: d = 2.055327426440207e-7 Iteration 30: d = 3.231176333786609e-9 Iteration 40: d = 5.0916940697585116e-11 Iteration 50: d = 7.998097204266491e-13 Iteration 60: d = 1.2560685743429248e-14 Converged after 65 iterations. d = 1.5564540528745716e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014495987252181174 Iteration 10: d = 1.9243932989694913e-5 Iteration 20: d = 2.584210055285963e-7 Iteration 30: d = 3.6494922395666695e-9 Iteration 40: d = 5.1827705392000314e-11 Iteration 50: d = 7.36504460020129e-13 Iteration 60: d = 1.045187143545421e-14 Converged after 64 iterations. d = 1.906287519037172e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 60%|███████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014606480819012565 Iteration 10: d = 1.2203503458805068e-5 Iteration 20: d = 1.2267198878940822e-7 Iteration 30: d = 1.4853747841574648e-9 Iteration 40: d = 1.9375985961137034e-11 Iteration 50: d = 2.6184637712941606e-13 Iteration 60: d = 3.5507572260452622e-15 Converged after 62 iterations. d = 1.5278575956776118e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.617611257661 Iteration 2: convergence error = 4833.892860780779 Iteration 3: convergence error = 1098.8546124552615 Iteration 4: convergence error = 321.80880582015084 Iteration 5: convergence error = 95.45029675229102 Iteration 6: convergence error = 28.45550040892749 Iteration 7: convergence error = 8.49075277955717 Iteration 8: convergence error = 2.5325991617332875 Iteration 9: convergence error = 0.7556788598208186 Iteration 10: convergence error = 0.22557641320713628 Iteration 11: convergence error = 0.0672844789046394 Iteration 12: convergence error = 0.02006066162221032 Iteration 13: convergence error = 0.005979525274597108 Iteration 14: convergence error = 0.0017820740968090831 Iteration 15: convergence error = 0.0005310664807893772 Iteration 16: convergence error = 0.00015825274522285326 Iteration 17: convergence error = 4.715650493380963e-5 Iteration 18: convergence error = 1.4051572861717432e-5 Iteration 19: convergence error = 4.187005515632336e-6 Iteration 20: convergence error = 1.2476184565457515e-6 Iteration 21: convergence error = 3.717568688443862e-7 Iteration 22: convergence error = 1.1063275451306254e-7 Iteration 23: convergence error = 3.205468601663597e-8 Iteration 24: convergence error = 9.231371222995222e-9 Iteration 25: convergence error = 2.652313924045302e-9 Iteration 26: convergence error = 7.571543392259628e-10 Iteration 27: convergence error = 2.1827872842550278e-10 Iteration 28: convergence error = 6.320988177321851e-11 Iteration 29: convergence error = 1.9099388737231493e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 29%|█████████▌ | ETA: 0:00:04 Bin 1 progress: 62%|████████████████████▌ | ETA: 0:00:01 Bin 1 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014495987252181174 Iteration 10: d = 1.9243932989694913e-5 Iteration 20: d = 2.584210055285963e-7 Iteration 30: d = 3.6494922395666695e-9 Iteration 40: d = 5.1827705392000314e-11 Iteration 50: d = 7.36504460020129e-13 Iteration 60: d = 1.045187143545421e-14 Converged after 64 iterations. d = 1.906287519037172e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.978259869466 Iteration 2: convergence error = 4826.206295762377 Iteration 3: convergence error = 1100.2540434911039 Iteration 4: convergence error = 322.2273435197212 Iteration 5: convergence error = 95.6820927222152 Iteration 6: convergence error = 28.565415593742955 Iteration 7: convergence error = 8.561216401259344 Iteration 8: convergence error = 2.569871633980938 Iteration 9: convergence error = 0.7696269259211022 Iteration 10: convergence error = 0.23018007744917668 Iteration 11: convergence error = 0.06878977174619649 Iteration 12: convergence error = 0.020549046751739297 Iteration 13: convergence error = 0.0061369453508177685 Iteration 14: convergence error = 0.0018325318883398722 Iteration 15: convergence error = 0.0005471616573231586 Iteration 16: convergence error = 0.0001633651668271341 Iteration 17: convergence error = 4.8774366860016016e-5 Iteration 18: convergence error = 1.4561861235051765e-5 Iteration 19: convergence error = 4.347483582023415e-6 Iteration 20: convergence error = 1.2979535313206725e-6 Iteration 21: convergence error = 3.874945377901895e-7 Iteration 22: convergence error = 1.1556608114915434e-7 Iteration 23: convergence error = 3.358786671014968e-8 Iteration 24: convergence error = 9.70612745732069e-9 Iteration 25: convergence error = 2.7987425710307434e-9 Iteration 26: convergence error = 8.046754373935983e-10 Iteration 27: convergence error = 2.3010215954855084e-10 Iteration 28: convergence error = 6.389200279954821e-11 Iteration 29: convergence error = 2.000888343900442e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 12:02:42 Bin 1 ray tracing: 9%|██▋ | ETA: 0:00:55 Bin 1 ray tracing: 18%|█████▍ | ETA: 0:00:29 Bin 1 ray tracing: 27%|████████ | ETA: 0:00:20 Bin 1 ray tracing: 36%|██████████▊ | ETA: 0:00:15 Bin 1 ray tracing: 45%|█████████████▌ | ETA: 0:00:11 Bin 1 ray tracing: 58%|█████████████████▎ | ETA: 0:00:08 Bin 1 ray tracing: 70%|████████████████████▉ | ETA: 0:00:05 Bin 1 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 1 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 1 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 9%|██▉ | ETA: 0:00:10 Bin 2 ray tracing: 18%|█████▌ | ETA: 0:00:10 Bin 2 ray tracing: 26%|███████▉ | ETA: 0:00:09 Bin 2 ray tracing: 36%|██████████▊ | ETA: 0:00:08 Bin 2 ray tracing: 46%|█████████████▉ | ETA: 0:00:06 Bin 2 ray tracing: 60%|██████████████████ | ETA: 0:00:04 Bin 2 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:03 Bin 2 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 2 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▍ | ETA: 0:00:11 Bin 3 ray tracing: 16%|████▉ | ETA: 0:00:10 Bin 3 ray tracing: 25%|███████▌ | ETA: 0:00:09 Bin 3 ray tracing: 34%|██████████▍ | ETA: 0:00:08 Bin 3 ray tracing: 46%|█████████████▋ | ETA: 0:00:06 Bin 3 ray tracing: 57%|█████████████████ | ETA: 0:00:05 Bin 3 ray tracing: 67%|████████████████████ | ETA: 0:00:04 Bin 3 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 3 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 3 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 15%|████▌ | ETA: 0:00:06 Bin 4 ray tracing: 30%|█████████ | ETA: 0:00:05 Bin 4 ray tracing: 45%|█████████████▋ | ETA: 0:00:04 Bin 4 ray tracing: 61%|██████████████████▏ | ETA: 0:00:03 Bin 4 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:02 Bin 4 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:01 Bin 4 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 13%|███▉ | ETA: 0:00:07 Bin 5 ray tracing: 26%|███████▊ | ETA: 0:00:06 Bin 5 ray tracing: 38%|███████████▎ | ETA: 0:00:06 Bin 5 ray tracing: 47%|██████████████▎ | ETA: 0:00:05 Bin 5 ray tracing: 57%|█████████████████▏ | ETA: 0:00:04 Bin 5 ray tracing: 67%|████████████████████ | ETA: 0:00:03 Bin 5 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:02 Bin 5 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 5 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 6 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 6 ray tracing: 28%|████████▍ | ETA: 0:00:08 Bin 6 ray tracing: 37%|███████████▏ | ETA: 0:00:07 Bin 6 ray tracing: 48%|██████████████▎ | ETA: 0:00:06 Bin 6 ray tracing: 61%|██████████████████▍ | ETA: 0:00:04 Bin 6 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:02 Bin 6 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:01 Bin 6 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 13%|████ | ETA: 0:00:07 Bin 7 ray tracing: 26%|███████▋ | ETA: 0:00:07 Bin 7 ray tracing: 35%|██████████▍ | ETA: 0:00:06 Bin 7 ray tracing: 44%|█████████████▏ | ETA: 0:00:06 Bin 7 ray tracing: 52%|███████████████▊ | ETA: 0:00:05 Bin 7 ray tracing: 61%|██████████████████▍ | ETA: 0:00:04 Bin 7 ray tracing: 70%|█████████████████████ | ETA: 0:00:03 Bin 7 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:01 Bin 7 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 9%|██▉ | ETA: 0:00:10 Bin 8 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 8 ray tracing: 28%|████████▎ | ETA: 0:00:08 Bin 8 ray tracing: 37%|███████████ | ETA: 0:00:07 Bin 8 ray tracing: 46%|█████████████▊ | ETA: 0:00:06 Bin 8 ray tracing: 55%|████████████████▌ | ETA: 0:00:05 Bin 8 ray tracing: 65%|███████████████████▍ | ETA: 0:00:04 Bin 8 ray tracing: 74%|██████████████████████▍ | ETA: 0:00:03 Bin 8 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 8 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 9%|██▉ | ETA: 0:00:10 Bin 9 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 9 ray tracing: 28%|████████▍ | ETA: 0:00:08 Bin 9 ray tracing: 37%|███████████▎ | ETA: 0:00:07 Bin 9 ray tracing: 46%|██████████████ | ETA: 0:00:06 Bin 9 ray tracing: 55%|████████████████▋ | ETA: 0:00:05 Bin 9 ray tracing: 64%|███████████████████▍ | ETA: 0:00:04 Bin 9 ray tracing: 73%|██████████████████████ | ETA: 0:00:03 Bin 9 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:02 Bin 9 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 10%|██▉ | ETA: 0:00:09 Bin 10 ray tracing: 20%|█████▊ | ETA: 0:00:08 Bin 10 ray tracing: 29%|████████▍ | ETA: 0:00:08 Bin 10 ray tracing: 39%|███████████▎ | ETA: 0:00:06 Bin 10 ray tracing: 48%|██████████████ | ETA: 0:00:05 Bin 10 ray tracing: 58%|████████████████▊ | ETA: 0:00:04 Bin 10 ray tracing: 67%|███████████████████▌ | ETA: 0:00:03 Bin 10 ray tracing: 76%|██████████████████████▏ | ETA: 0:00:03 Bin 10 ray tracing: 86%|████████████████████████▉ | ETA: 0:00:02 Bin 10 ray tracing: 95%|███████████████████████████▋ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 24%|████████▏ | ETA: 0:00:03 Bin 1 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 24%|████████▏ | ETA: 0:00:03 Bin 2 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 2 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 27%|████████▊ | ETA: 0:00:03 Bin 3 progress: 56%|██████████████████▍ | ETA: 0:00:02 Bin 3 progress: 82%|███████████████████████████▏ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 22%|███████▍ | ETA: 0:00:04 Bin 4 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 4 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 4 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 5 progress: 58%|███████████████████▏ | ETA: 0:00:02 Bin 5 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 24%|████████▏ | ETA: 0:00:03 Bin 6 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 6 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 6 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 24%|████████▏ | ETA: 0:00:03 Bin 7 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 7 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 7 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 24%|████████▏ | ETA: 0:00:03 Bin 8 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 8 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 24%|████████▏ | ETA: 0:00:03 Bin 9 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 9 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 9 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 22%|███████▏ | ETA: 0:00:04 Bin 10 progress: 44%|██████████████▎ | ETA: 0:00:03 Bin 10 progress: 69%|██████████████████████ | ETA: 0:00:01 Bin 10 progress: 93%|█████████████████████████████▉ | ETA: 0:00:00 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014495987252181174 Iteration 10: d = 1.9243932989694913e-5 Iteration 20: d = 2.584210055285963e-7 Iteration 30: d = 3.6494922395666695e-9 Iteration 40: d = 5.1827705392000314e-11 Iteration 50: d = 7.36504460020129e-13 Iteration 60: d = 1.045187143545421e-14 Converged after 64 iterations. d = 1.906287519037172e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014660690188945092 Iteration 10: d = 1.238385237099526e-5 Iteration 20: d = 1.2546926761029302e-7 Iteration 30: d = 1.5279315608467294e-9 Iteration 40: d = 1.9990656230381514e-11 Iteration 50: d = 2.70411931540259e-13 Iteration 60: d = 3.705094927574058e-15 Converged after 62 iterations. d = 1.5795545301334654e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013240564479344791 Iteration 10: d = 1.7111936508649563e-5 Iteration 20: d = 2.0354349601095733e-7 Iteration 30: d = 2.6055261490133148e-9 Iteration 40: d = 3.403429106237974e-11 Iteration 50: d = 4.4895333243987823e-13 Iteration 60: d = 5.965837376024812e-15 Converged after 63 iterations. d = 1.5938603246154875e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014335823829777733 Iteration 10: d = 1.471882466427164e-5 Iteration 20: d = 1.6281448211812393e-7 Iteration 30: d = 2.1381492313753877e-9 Iteration 40: d = 2.954764071464566e-11 Iteration 50: d = 4.1528906060550094e-13 Iteration 60: d = 5.886164286861123e-15 Converged after 63 iterations. d = 1.667280773862823e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017387953818120536 Iteration 10: d = 1.104290468442428e-5 Iteration 20: d = 8.96986391776877e-8 Iteration 30: d = 1.1102268042658877e-9 Iteration 40: d = 1.513356812458495e-11 Iteration 50: d = 2.0954943884385603e-13 Iteration 60: d = 2.8867271264149384e-15 Converged after 61 iterations. d = 1.933380004521678e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014086978889061446 Iteration 10: d = 1.0045697986237179e-5 Iteration 20: d = 1.0825960996736021e-7 Iteration 30: d = 1.4669015090784578e-9 Iteration 40: d = 2.054678487220573e-11 Iteration 50: d = 2.900947121937715e-13 Iteration 60: d = 4.130551228319594e-15 Converged after 62 iterations. d = 1.6779729933416331e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014437997858007734 Iteration 10: d = 1.5295976425683765e-5 Iteration 20: d = 1.7314957577275436e-7 Iteration 30: d = 2.2707552648934906e-9 Iteration 40: d = 3.0810103559857994e-11 Iteration 50: d = 4.220761866876516e-13 Iteration 60: d = 5.8038080897381545e-15 Converged after 63 iterations. d = 1.5589294730449332e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001306598751743324 Iteration 10: d = 1.3151177217829971e-5 Iteration 20: d = 1.5995650633514694e-7 Iteration 30: d = 2.179668809826508e-9 Iteration 40: d = 3.0424876199841705e-11 Iteration 50: d = 4.280462278857913e-13 Iteration 60: d = 6.049849101748417e-15 Converged after 63 iterations. d = 1.7248482356666612e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015767978083439842 Iteration 10: d = 1.8812508648266466e-5 Iteration 20: d = 2.390959407370192e-7 Iteration 30: d = 3.2662459717284535e-9 Iteration 40: d = 4.514752080710485e-11 Iteration 50: d = 6.26970315366966e-13 Iteration 60: d = 8.730759211128811e-15 Converged after 64 iterations. d = 1.5433315135007662e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001172884189354764 Iteration 10: d = 1.2018417852587198e-5 Iteration 20: d = 1.1621549240483419e-7 Iteration 30: d = 1.296632730111417e-9 Iteration 40: d = 1.5860828054510986e-11 Iteration 50: d = 2.0597918768988898e-13 Iteration 60: d = 2.76343193286806e-15 Converged after 61 iterations. d = 1.816948866340914e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.95858292325 Iteration 2: convergence error = 4826.058813880788 Iteration 3: convergence error = 1103.4376046194247 Iteration 4: convergence error = 317.5216547576215 Iteration 5: convergence error = 95.44351989077813 Iteration 6: convergence error = 29.010467666503473 Iteration 7: convergence error = 8.76475408719557 Iteration 8: convergence error = 2.6380759676969774 Iteration 9: convergence error = 0.7922563537465521 Iteration 10: convergence error = 0.23762181467077426 Iteration 11: convergence error = 0.07121791484587447 Iteration 12: convergence error = 0.02133593615690188 Iteration 13: convergence error = 0.006390448608044608 Iteration 14: convergence error = 0.0019137808153573133 Iteration 15: convergence error = 0.0005730852997203328 Iteration 16: convergence error = 0.00017160379024971917 Iteration 17: convergence error = 5.13834409048286e-5 Iteration 18: convergence error = 1.5385548294943874e-5 Iteration 19: convergence error = 4.606794163919403e-6 Iteration 20: convergence error = 1.3793746802548412e-6 Iteration 21: convergence error = 4.1301814235339407e-7 Iteration 22: convergence error = 1.2352552403172012e-7 Iteration 23: convergence error = 3.59793830284616e-8 Iteration 24: convergence error = 1.040893948811572e-8 Iteration 25: convergence error = 3.002924131578766e-9 Iteration 26: convergence error = 8.633378456579521e-10 Iteration 27: convergence error = 2.460183168295771e-10 Iteration 28: convergence error = 7.09405867382884e-11 Iteration 29: convergence error = 2.0463630789890885e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.2946590099933 K, F = -7451.943055383903, relative_change = 0.03270534099000668 Iter 2: T = 936.6632306995359 K, F = -6316.851728767389, relative_change = 0.031667112006808856 Iter 3: T = 908.0744294366194 K, F = -5353.152042843594, relative_change = 0.030521963845602542 Iter 5: T = 856.8868421413373 K, F = -3840.6899145895295, relative_change = 0.027916114576497904 Iter 10: T = 761.6600418706726 K, F = -1663.1106847744622, relative_change = 0.02000199985608349 Iter 15: T = 705.8782366391591 K, F = -712.085883990506, relative_change = 0.011992985342172439 Iter 20: T = 677.1783379777136 K, F = -301.8113980393115, relative_change = 0.006144362653843433 Iter 25: T = 663.7913187503198 K, F = -127.05817146402592, relative_change = 0.0028391627446620058 Iter 30: T = 657.8970775634704 K, F = -53.2966929018349, relative_change = 0.00124210740912743 Iter 35: T = 655.3752890405228 K, F = -22.31828722950989, relative_change = 0.0005296982971301541 Iter 40: T = 654.310307351438 K, F = -9.338925939095974, relative_change = 0.00022336832411929287 Iter 45: T = 653.8630789516711 K, F = -3.906557701260829, relative_change = 9.374144572339173e-5 Iter 50: T = 653.6757184290022 K, F = -1.6339282462434832, relative_change = 3.9261128055075186e-5 Iter 55: T = 653.5973051303024 K, F = -0.6833561774718184, relative_change = 1.6429522296693486e-5 Iter 60: T = 653.5645017891671 K, F = -0.28579259166520965, relative_change = 6.872781712027285e-6 Iter 65: T = 653.5507812966338 K, F = -0.11952272811928205, relative_change = 2.874587205311684e-6 Iter 70: T = 653.5450429177876 K, F = -0.04998598153339767, relative_change = 1.2022405445706849e-6 Iter 75: T = 653.5426430058717 K, F = -0.02090476053312873, relative_change = 5.028007716764597e-7 Iter 80: T = 653.5416393247161 K, F = -0.008742625073727417, relative_change = 2.1027893468514804e-7 Iter 85: T = 653.5412195716384 K, F = -0.003656271012425716, relative_change = 8.794144984497481e-8 Iter 90: T = 653.5410440256029 K, F = -0.00152909634199494, relative_change = 3.67782149569467e-8 Iter 95: T = 653.5409706101045 K, F = -0.000639486376150078, relative_change = 1.538109753906943e-8 Iter 100: T = 653.5409399068576 K, F = -0.00026744084359353604, relative_change = 6.432560215110391e-9 Iter 105: T = 653.5409270663915 K, F = -0.00011184695538896117, relative_change = 2.6901737709520275e-9 Iter 110: T = 653.540921696355 K, F = -4.677573283040637e-5, relative_change = 1.125062850951562e-9 Iter 115: T = 653.5409194505415 K, F = -1.9562169836617738e-5, relative_change = 4.705147219618698e-10 Iter 120: T = 653.5409185113156 K, F = -8.18113292527789e-6, relative_change = 1.9677487426793142e-10 Iter 125: T = 653.5409181185199 K, F = -3.421447216211959e-6, relative_change = 8.229359599216249e-11 Iter 130: T = 653.5409179542481 K, F = -1.430889573494909e-6, relative_change = 3.441615233856352e-11 Iter 135: T = 653.5409178855479 K, F = -5.984157892546804e-7, relative_change = 1.4393262314991326e-11 Iter 140: T = 653.5409178568166 K, F = -2.5026554112406174e-7, relative_change = 6.019456116026354e-12 Iter 145: T = 653.5409178448007 K, F = -1.046645335955887e-7, relative_change = 2.5174203532313126e-12 Iter 150: T = 653.5409178397756 K, F = -4.377217588391602e-8, relative_change = 1.0528204989208426e-12 Iter 155: T = 653.540917837674 K, F = -1.83063431635766e-8, relative_change = 4.4030923649536626e-13 Converged in 159 iterations to T = 653.5409178369155 K Iter 1: T = 970.4748460491062 K, F = -6727.33441338319, relative_change = 0.029525153950893817 Iter 2: T = 943.1165048367116 K, F = -5697.693172041205, relative_change = 0.028190675238799798 Iter 3: T = 917.8794205304351 K, F = -4823.886767821502, relative_change = 0.026759243610783703 Iter 5: T = 873.5489399154687 K, F = -3453.6073250678896, relative_change = 0.023652118475458162 Iter 10: T = 795.0050877945702 K, F = -1486.1721726661635, relative_change = 0.015347139587053431 Iter 15: T = 752.3207410258888 K, F = -632.4983359934548, relative_change = 0.008377657026632873 Iter 20: T = 731.6405608301658 K, F = -266.9454181361425, relative_change = 0.0040226373138764066 Iter 25: T = 722.342837946075 K, F = -112.11794546891326, relative_change = 0.0017941536045913342 Iter 30: T = 718.3249715548282 K, F = -46.97740513188858, relative_change = 0.0007718617136703225 Iter 35: T = 716.6206355225737 K, F = -19.66233672266676, relative_change = 0.00032672708590284714 Iter 40: T = 715.9035529616293 K, F = -8.225820167654625, relative_change = 0.00013734002790360739 Iter 45: T = 715.6028986560964 K, F = -3.4406273827452827, relative_change = 5.756039079211863e-5 Iter 50: T = 715.4770275856198 K, F = -1.438997518983929, relative_change = 2.4094049947073228e-5 Iter 55: T = 715.4243633456699 K, F = -0.6018210105706471, relative_change = 1.0080203519838279e-5 Iter 60: T = 715.4023344259901 K, F = -0.2516913691859019, relative_change = 4.216323700935316e-6 Iter 65: T = 715.3931209503884 K, F = -0.10526079738475258, relative_change = 1.763432772309898e-6 Iter 70: T = 715.3892676392093 K, F = -0.04402140316498915, relative_change = 7.375089088263158e-7 Iter 75: T = 715.3876561164785 K, F = -0.01841029062690358, relative_change = 3.0843857759386835e-7 Iter 80: T = 715.386982154583 K, F = -0.007699405869638354, relative_change = 1.2899331655742132e-7 Iter 85: T = 715.3867002949974 K, F = -0.0032199839163012944, relative_change = 5.394665391232241e-8 Iter 90: T = 715.3865824178349 K, F = -0.0013466358037120818, relative_change = 2.2561153884362598e-8 Iter 95: T = 715.3865331201772 K, F = -0.0005631791874600722, relative_change = 9.435347290236502e-9 Iter 100: T = 715.3865125033045 K, F = -0.00023552826430772722, relative_change = 3.945975499126542e-9 Iter 105: T = 715.3865038810814 K, F = -9.850073217254618e-5, relative_change = 1.6502541605583174e-9 Iter 110: T = 715.3865002751647 K, F = -4.119418368120353e-5, relative_change = 6.9015603379547e-10 Iter 115: T = 715.3864987671273 K, F = -1.7227899246630152e-5, relative_change = 2.8863149288332144e-10 Iter 120: T = 715.386498136448 K, F = -7.20491470840301e-6, relative_change = 1.2070916293052161e-10 Iter 125: T = 715.3864978726904 K, F = -3.013182686584237e-6, relative_change = 5.048203555672806e-11 Iter 130: T = 715.3864977623838 K, F = -1.2601492500596834e-6, relative_change = 2.1112194616753505e-11 Iter 135: T = 715.3864977162522 K, F = -5.270083489605781e-7, relative_change = 8.829353214151987e-12 Iter 140: T = 715.3864976969594 K, F = -2.204009887929459e-7, relative_change = 3.692537666413148e-12 Iter 145: T = 715.386497688891 K, F = -9.217415775086835e-8, relative_change = 1.5442605373382e-12 Iter 150: T = 715.3864976855166 K, F = -3.854732588681742e-8, relative_change = 6.458113167592618e-13 Iter 155: T = 715.3864976841054 K, F = -1.6120912715855695e-8, relative_change = 2.7008534649211807e-13 Converged in 157 iterations to T = 715.3864976838069 K Iter 1: T = 974.29503656263 K, F = -5856.900370937467, relative_change = 0.02570496343737 Iter 2: T = 950.7801158134847 K, F = -4955.30849477417, relative_change = 0.024135318221580354 Iter 3: T = 929.3814882641649 K, F = -4190.69958592388, relative_change = 0.02250638943054805 Iter 5: T = 892.5838299557564 K, F = -2993.1550441493187, relative_change = 0.01915433077382726 Iter 10: T = 830.5119868597728 K, F = -1280.1192974292048, relative_change = 0.011284107948709396 Iter 15: T = 798.9463519832244 K, F = -542.1087435367399, relative_change = 0.005706612477361082 Iter 20: T = 784.3329637857835 K, F = -228.10885225654178, relative_change = 0.002617497807577848 Iter 25: T = 777.9240944878673 K, F = -95.66140605898222, relative_change = 0.0011410410076678893 Iter 30: T = 775.1871565492845 K, F = -40.05448854217319, relative_change = 0.0004858211598757812 Iter 35: T = 774.0322444827852 K, F = -16.759743478385694, relative_change = 0.0002047249193103036 Iter 40: T = 773.5474172582321 K, F = -7.010617206087101, relative_change = 8.58923179659291e-5 Iter 45: T = 773.3443346180873 K, F = -2.9321855525497282, relative_change = 3.59693259413811e-5 Iter 50: T = 773.2593465357395 K, F = -1.2263208410051964, relative_change = 1.505123672460118e-5 Iter 55: T = 773.2237936115793 K, F = -0.51287003965543, relative_change = 6.29608346240279e-6 Iter 60: T = 773.2089232229197 K, F = -0.21448977824693305, relative_change = 2.633355627778838e-6 Iter 65: T = 773.202703945944 K, F = -0.08970243215199869, relative_change = 1.1013459614822463e-6 Iter 70: T = 773.2001029170663 K, F = -0.037514671305835634, relative_change = 4.606039379708161e-7 Iter 75: T = 773.1990151264616 K, F = -0.01568909106384675, relative_change = 1.926314500845849e-7 Iter 80: T = 773.1985601978192 K, F = -0.006561366561521731, relative_change = 8.056101471173153e-8 Iter 85: T = 773.1983699409445 K, F = -0.0027440420832783863, relative_change = 3.369162072537336e-8 Iter 90: T = 773.1982903731979 K, F = -0.0011475912104895736, relative_change = 1.4090245551001311e-8 Iter 95: T = 773.1982570970074 K, F = -0.0004799363557229652, relative_change = 5.892710248090463e-9 Iter 100: T = 773.1982431805056 K, F = -0.00020071511794805819, relative_change = 2.4644020394210363e-9 Iter 105: T = 773.1982373604582 K, F = -8.394146045243023e-5, relative_change = 1.0306424142814387e-9 Iter 110: T = 773.1982349264446 K, F = -3.51053202140017e-5, relative_change = 4.310269600595687e-10 Iter 115: T = 773.198233908511 K, F = -1.4681462997212513e-5, relative_change = 1.80260609104423e-10 Iter 120: T = 773.1982334827991 K, F = -6.139961255757775e-6, relative_change = 7.538711632158257e-11 Iter 125: T = 773.1982333047614 K, F = -2.567805744591034e-6, relative_change = 3.152780001492815e-11 Iter 130: T = 773.1982332303038 K, F = -1.0738870739324113e-6, relative_change = 1.3185303051992833e-11 Iter 135: T = 773.1982331991647 K, F = -4.4911099361666373e-7, relative_change = 5.514233944793253e-12 Iter 140: T = 773.198233186142 K, F = -1.8782260102767623e-7, relative_change = 2.3061064569558075e-12 Iter 145: T = 773.1982331806958 K, F = -7.854802264173344e-8, relative_change = 9.644212209296144e-13 Iter 150: T = 773.198233178418 K, F = -3.2848577524724476e-8, relative_change = 4.033184309060931e-13 Converged in 154 iterations to T = 773.198233177596 K Iter 1: T = 970.4058585636046 K, F = -6743.053277578773, relative_change = 0.02959414143639543 Iter 2: T = 942.9772295133788 K, F = -5711.113489743518, relative_change = 0.028265110735033825 Iter 3: T = 917.6689791624534 K, F = -4835.3471394315175, relative_change = 0.02683866540869247 Iter 5: T = 873.195683894301 K, F = -3461.966927834141, relative_change = 0.02373927747349586 Iter 10: T = 794.3219896652363 K, F = -1489.9536430861683, relative_change = 0.015433747097464794 Iter 15: T = 751.3981967969913 K, F = -634.1766295371982, relative_change = 0.008439116817813933 Iter 20: T = 730.5804853507301 K, F = -267.67259199943044, relative_change = 0.004056501936416281 Iter 25: T = 721.2153689944628 K, F = -112.4275005299594, relative_change = 0.0018102650806659962 Iter 30: T = 717.1672042431293 K, F = -47.10791297775233, relative_change = 0.0007789931989976811 Iter 35: T = 715.4497920905991 K, F = -19.71710792980122, relative_change = 0.0003297828364838992 Iter 40: T = 714.7271672516958 K, F = -8.248760204381291, relative_change = 0.00013863114357491718 Iter 45: T = 714.424181992964 K, F = -3.4502271835411626, relative_change = 5.810267938315773e-5 Iter 50: T = 714.2973337814453 K, F = -1.4430133237117335, relative_change = 2.4321250721682104e-5 Iter 55: T = 714.2442604844707 K, F = -0.6035006525493457, relative_change = 1.0175293310518047e-5 Iter 60: T = 714.2220604213401 K, F = -0.25239384780618973, relative_change = 4.256103940208941e-6 Iter 65: T = 714.2127753590933 K, F = -0.1055545879794495, relative_change = 1.7800715397513291e-6 Iter 70: T = 714.2088921073533 K, F = -0.044144270887961023, relative_change = 7.444678242702183e-7 Iter 75: T = 714.2072680627427 K, F = -0.01846167554962952, relative_change = 3.1134894635342543e-7 Iter 80: T = 714.2065888639812 K, F = -0.007720895688677731, relative_change = 1.302104792911728e-7 Iter 85: T = 714.2063048142638 K, F = -0.0032289712198845244, relative_change = 5.445568794806419e-8 Iter 90: T = 714.2061860211602 K, F = -0.001350394402580557, relative_change = 2.277403836107783e-8 Iter 95: T = 714.2061363404447 K, F = -0.0005647510801022326, relative_change = 9.524378209625526e-9 Iter 100: T = 714.2061155633725 K, F = -0.00023618564851957125, relative_change = 3.983209302323093e-9 Iter 105: T = 714.2061068741522 K, F = -9.877566032223672e-5, relative_change = 1.6658258208960449e-9 Iter 110: T = 714.2061032402162 K, F = -4.1309159918179184e-5, relative_change = 6.966682548489396e-10 Iter 115: T = 714.2061017204609 K, F = -1.727598387335494e-5, relative_change = 2.9135498474485563e-10 Iter 120: T = 714.2061010848811 K, F = -7.22502323369234e-6, relative_change = 1.2184814239143644e-10 Iter 125: T = 714.206100819074 K, F = -3.021591792107259e-6, relative_change = 5.0958361748785205e-11 Iter 130: T = 714.2061007079103 K, F = -1.2636668393906092e-6, relative_change = 2.1311413456819654e-11 Iter 135: T = 714.2061006614202 K, F = -5.284808264338636e-7, relative_change = 8.91269205501636e-12 Iter 140: T = 714.2061006419776 K, F = -2.2101712227051706e-7, relative_change = 3.727396437881649e-12 Iter 145: T = 714.2061006338464 K, F = -9.243181653406651e-8, relative_change = 1.5588386102185893e-12 Iter 150: T = 714.2061006304458 K, F = -3.865578401818226e-8, relative_change = 6.519197706665277e-13 Iter 155: T = 714.2061006290237 K, F = -1.616624178968351e-8, relative_change = 2.72639474475872e-13 Converged in 157 iterations to T = 714.2061006287227 K Iter 1: T = 969.2847590947086 K, F = -6998.496858007626, relative_change = 0.030715240905291392 Iter 2: T = 940.7094730827027 K, F = -5929.272576325116, relative_change = 0.029480795755722624 Iter 3: T = 914.2352474350022 K, F = -5021.716625565454, relative_change = 0.02814282879595606 Iter 5: T = 867.405167623248 K, F = -3598.045719258353, relative_change = 0.025187738286030825 Iter 10: T = 782.9847120187403 K, F = -1551.7415576017754, relative_change = 0.016922314369001004 Iter 15: T = 735.9233857096513 K, F = -661.724608894088, relative_change = 0.009527970542302918 Iter 20: T = 712.6787156839553 K, F = -279.65124328973917, relative_change = 0.004668603737818636 Iter 25: T = 702.1093536374455 K, F = -117.53725425255249, relative_change = 0.0021045839421767777 Iter 30: T = 697.5163926315267 K, F = -49.264325873805355, relative_change = 0.000909915079600733 Iter 35: T = 695.5631891820383 K, F = -20.622509122786493, relative_change = 0.0003860031837288982 Iter 40: T = 694.7405016817075 K, F = -8.628045545602342, relative_change = 0.0001624074028495715 Iter 45: T = 694.3954103784656 K, F = -3.608960971103988, relative_change = 6.809298451486685e-5 Iter 50: T = 694.2509073281645 K, F = -1.5094173697864341, relative_change = 2.8507541698894887e-5 Iter 55: T = 694.1904425674674 K, F = -0.6312750648547921, relative_change = 1.1927492066224955e-5 Iter 60: T = 694.1651499049481 K, F = -0.26401004201719214, relative_change = 4.989146800092617e-6 Iter 65: T = 694.1545712355303 K, F = -0.11041272466922214, relative_change = 2.086682982512409e-6 Iter 70: T = 694.1501469389312 K, F = -0.0461760201326995, relative_change = 8.727041169792268e-7 Iter 75: T = 694.1482966153966 K, F = -0.019311380577389792, relative_change = 3.649802467372233e-7 Iter 80: T = 694.1475227827744 K, F = -0.008076253043532322, relative_change = 1.5263996595048998e-7 Iter 85: T = 694.1471991558169 K, F = -0.0033775860073165243, relative_change = 6.383600845175935e-8 Iter 90: T = 694.1470638109986 K, F = -0.0014125468980391576, relative_change = 2.6697007636308355e-8 Iter 95: T = 694.1470072081513 K, F = -0.0005907439987919982, relative_change = 1.1165012072614368e-8 Iter 100: T = 694.1469835361598 K, F = -0.0002470561990520759, relative_change = 4.669342216823068e-9 Iter 105: T = 694.1469736362493 K, F = -0.00010332185290951035, relative_change = 1.9527748112421095e-9 Iter 110: T = 694.1469694959884 K, F = -4.321043250821166e-5, relative_change = 8.16673764600621e-10 Iter 115: T = 694.1469677644818 K, F = -1.8071119155638193e-5, relative_change = 3.415427300768017e-10 Iter 120: T = 694.146967040345 K, F = -7.5575567404229105e-6, relative_change = 1.4283722842087955e-10 Iter 125: T = 694.1469667375023 K, F = -3.160659242218422e-6, relative_change = 5.973621139545886e-11 Iter 130: T = 694.14696661085 K, F = -1.3218254476532465e-6, relative_change = 2.4982397147654264e-11 Iter 135: T = 694.1469665578825 K, F = -5.528037985147449e-7, relative_change = 1.0447948379843395e-11 Iter 140: T = 694.1469665357308 K, F = -2.3118911329778058e-7, relative_change = 4.369456086542333e-12 Iter 145: T = 694.1469665264667 K, F = -9.668528722084346e-8, relative_change = 1.827344336101608e-12 Iter 150: T = 694.1469665225924 K, F = -4.043537793485541e-8, relative_change = 7.642254677340441e-13 Iter 155: T = 694.1469665209721 K, F = -1.6910858491314684e-8, relative_change = 3.196138975447178e-13 Converged in 158 iterations to T = 694.1469665204977 K Iter 1: T = 963.5526044814662 K, F = -8304.573739321608, relative_change = 0.03644739551853376 Iter 2: T = 928.9822908789253 K, F = -7046.726355009934, relative_change = 0.03587797224744668 Iter 3: T = 896.2554778462624 K, F = -5978.480797909274, relative_change = 0.03522867266037932 Iter 5: T = 836.2133699666014 K, F = -4300.898655516973, relative_change = 0.03366117504727216 Iter 10: T = 716.4299793826866 K, F = -1879.556221373872, relative_change = 0.027950891511019007 Iter 15: T = 636.6833496474155 K, F = -813.9341495428408, relative_change = 0.0200432605557052 Iter 20: T = 589.9393636173205 K, F = -348.5169409406944, relative_change = 0.01202790925534388 Iter 25: T = 565.8759005948448 K, F = -147.72194480923108, relative_change = 0.0061661657985514415 Iter 30: T = 554.6474024607408 K, F = -62.19026151716971, relative_change = 0.002850277106553401 Iter 35: T = 549.702583507453 K, F = -26.08706095008971, relative_change = 0.0012471917849920739 Iter 40: T = 547.5868022838451 K, F = -10.924159956704994, relative_change = 0.0005319089545882422 Iter 45: T = 546.6932465692357 K, F = -4.571146187573778, relative_change = 0.00022430824313897943 Iter 50: T = 546.3180003688714 K, F = -1.912153895201347, relative_change = 9.413727346550936e-5 Iter 55: T = 546.1607947172243 K, F = -0.7997638253590527, relative_change = 3.942715129126195e-5 Iter 60: T = 546.0950015025214 K, F = -0.3344844824146467, relative_change = 1.6499040007669496e-5 Iter 65: T = 546.0674775997775 K, F = -0.13988780240049187, relative_change = 6.901869702533863e-6 Iter 70: T = 546.0559653059157 K, F = -0.05850316894298149, relative_change = 2.886754749711353e-6 Iter 75: T = 546.0511504701439 K, F = -0.024466797277271662, relative_change = 1.2073296116762838e-6 Iter 80: T = 546.0491368033705 K, F = -0.01023231964492649, relative_change = 5.049291599069942e-7 Iter 85: T = 546.0482946560153 K, F = -0.004279280518443951, relative_change = 2.1116906598946397e-7 Iter 90: T = 546.0479424585589 K, F = -0.0017896466105890296, relative_change = 8.831371583666232e-8 Iter 95: T = 546.0477951651359 K, F = -0.0007484516537621388, relative_change = 3.693390145379356e-8 Iter 100: T = 546.0477335652253 K, F = -0.00031301143186060476, relative_change = 1.5446207552774186e-8 Iter 105: T = 546.0477078033997 K, F = -0.00013090512105320973, relative_change = 6.459790019970344e-9 Iter 110: T = 546.0476970294952 K, F = -5.4746085181106574e-5, relative_change = 2.701561597132418e-9 Iter 115: T = 546.0476925237195 K, F = -2.2895466945199727e-5, relative_change = 1.12982538336482e-9 Iter 120: T = 546.0476906393503 K, F = -9.575157495389508e-6, relative_change = 4.72506465652675e-10 Iter 125: T = 546.0476898512845 K, F = -4.004445200045392e-6, relative_change = 1.976078474202694e-10 Iter 130: T = 546.047689521706 K, F = -1.674706941040549e-6, relative_change = 8.264196863675469e-11 Iter 135: T = 546.0476893838724 K, F = -7.003823651874352e-7, relative_change = 3.456185444072417e-11 Iter 140: T = 546.0476893262287 K, F = -2.929083467717586e-7, relative_change = 1.4454184105531148e-11 Iter 145: T = 546.0476893021214 K, F = -1.2249734204772267e-7, relative_change = 6.0448913603266315e-12 Iter 150: T = 546.0476892920395 K, F = -5.1230003100810606e-8, relative_change = 2.5280532457608134e-12 Iter 155: T = 546.0476892878231 K, F = -2.142506697055957e-8, relative_change = 1.0572654073624303e-12 Iter 160: T = 546.0476892860597 K, F = -8.960225228449303e-9, relative_change = 4.421613332354405e-13 Converged in 164 iterations to T = 546.0476892854233 K Iter 1: T = 966.9176506889582 K, F = -7537.844759959255, relative_change = 0.03308234931104181 Iter 2: T = 935.8937014343642 K, F = -6390.3211620336915, relative_change = 0.03208540999586528 Iter 3: T = 906.8977135578275 K, F = -5416.027477148733, relative_change = 0.030982138069843863 Iter 5: T = 854.8583847117226 K, F = -3886.8174297668106, relative_change = 0.028457041395723793 Iter 10: T = 757.4291629883985 K, F = -1684.4743141154618, relative_change = 0.020659777961782175 Iter 15: T = 699.7513978233927 K, F = -721.8723479595918, relative_change = 0.012560281120146954 Iter 20: T = 669.798365603793 K, F = -306.16832635672495, relative_change = 0.0065029039505656895 Iter 25: T = 655.7407464731698 K, F = -128.94400900350632, relative_change = 0.0030231667606830663 Iter 30: T = 649.5309779906073 K, F = -54.09842337666622, relative_change = 0.0013265540131712718 Iter 35: T = 646.8701194403537 K, F = -22.65603190155176, relative_change = 0.000566468006282099 Iter 40: T = 645.7456487603216 K, F = -9.480617003755599, relative_change = 0.00023901159109488993 Iter 45: T = 645.2733024224634 K, F = -3.9658929607689375, relative_change = 0.000100331010898462 Iter 50: T = 645.075394989281 K, F = -1.6587567422337406, relative_change = 4.202531306715704e-5 Iter 55: T = 644.9925634132713 K, F = -0.693742167055912, relative_change = 1.7587002808942765e-5 Iter 60: T = 644.9579109929716 K, F = -0.29013655952256134, relative_change = 7.3571105310856245e-6 Iter 65: T = 644.9434169653834 K, F = -0.1213395013655374, relative_change = 3.0771842153911e-6 Iter 70: T = 644.9373550450357 K, F = -0.05074579074733809, relative_change = 1.2869768910686735e-6 Iter 75: T = 644.9348198172199 K, F = -0.021222524086411787, relative_change = 5.382398981859412e-7 Iter 80: T = 644.933759544118 K, F = -0.008875517983503889, relative_change = 2.2510024103774135e-7 Iter 85: T = 644.9333161233989 K, F = -0.003711848483957947, relative_change = 9.413993921843094e-8 Iter 90: T = 644.9331306792357 K, F = -0.0015523395158612563, relative_change = 3.937050457760758e-8 Iter 95: T = 644.9330531242156 K, F = -0.0006492069504775433, relative_change = 1.6465225286075062e-8 Iter 100: T = 644.9330206897702 K, F = -0.0002715061052677159, relative_change = 6.885955636907851e-9 Iter 105: T = 644.933007125296 K, F = -0.00011354709589844747, relative_change = 2.879789176672424e-9 Iter 110: T = 644.9330014524705 K, F = -4.748675235982658e-5, relative_change = 1.2043622967718758e-9 Iter 115: T = 644.9329990800272 K, F = -1.9859527134624688e-5, relative_change = 5.036787091759832e-10 Iter 120: T = 644.932998087843 K, F = -8.305491074001026e-6, relative_change = 2.106444441253861e-10 Iter 125: T = 644.9329976728997 K, F = -3.473455535807357e-6, relative_change = 8.809402192556288e-11 Iter 130: T = 644.9329974993655 K, F = -1.4526408289028403e-6, relative_change = 3.684197821911266e-11 Iter 135: T = 644.9329974267914 K, F = -6.075121080639789e-7, relative_change = 1.540776454840276e-11 Iter 140: T = 644.9329973964401 K, F = -2.540696993347247e-7, relative_change = 6.443733474852438e-12 Iter 145: T = 644.9329973837467 K, F = -1.0625468632730062e-7, relative_change = 2.6948387824448945e-12 Iter 150: T = 644.9329973784384 K, F = -4.443700568623754e-8, relative_change = 1.1270144446600457e-12 Iter 155: T = 644.9329973762183 K, F = -1.8585167349538523e-8, relative_change = 4.713583135549678e-13 Converged in 160 iterations to T = 644.9329973752898 K Iter 1: T = 965.3452355570139 K, F = -7896.121043525685, relative_change = 0.03465476444298605 Iter 2: T = 932.6737775847888 K, F = -6696.9018637652025, relative_change = 0.03384432508580553 Iter 3: T = 901.9562959158335 K, F = -5678.5695956807285, relative_change = 0.03293486147803999 Iter 5: T = 846.2694879128616 K, F = -4079.7722115442093, relative_change = 0.030801683947648473 Iter 10: T = 739.0427169414625 K, F = -1774.5915012248477, relative_change = 0.023714657304450586 Iter 15: T = 672.3739055039249 K, F = -763.7169478794377, relative_change = 0.015408963339664012 Iter 20: T = 636.1071401656684 K, F = -325.05434010017893, relative_change = 0.008421410030920992 Iter 25: T = 618.5234064166186 K, F = -137.19573457668523, relative_change = 0.004046714247131919 Iter 30: T = 610.6145235528425 K, F = -57.62415088862564, relative_change = 0.0018056018482213944 Iter 35: T = 607.1961233142193 K, F = -24.144802541991474, relative_change = 0.000776927827099184 Iter 40: T = 605.7459411960938 K, F = -10.105831428651562, relative_change = 0.0003288976205718817 Iter 45: T = 605.1357672081614 K, F = -4.2278260085224675, relative_change = 0.00013825708120457863 Iter 50: T = 604.8799326268554 K, F = -1.7683814386592598, relative_change = 5.794556017645354e-5 Iter 55: T = 604.7728248975257 K, F = -0.7396027614967087, relative_change = 2.425542176583697e-5 Iter 60: T = 604.7280110746902 K, F = -0.3093185009102643, relative_change = 1.0147741855274786e-5 Iter 65: T = 604.7092658819784 K, F = -0.12936205459773206, relative_change = 4.244577916601861e-6 Iter 70: T = 604.7014258032212 K, F = -0.05410099463859669, relative_change = 1.7752505759187022e-6 Iter 75: T = 604.6981468810234 K, F = -0.022625723771557027, relative_change = 7.424515271153275e-7 Iter 80: T = 604.6967755777761 K, F = -0.009462355184151783, relative_change = 3.1050568714969144e-7 Iter 85: T = 604.6962020790885 K, F = -0.0039572712179234415, relative_change = 1.2985781479102028e-7 Iter 90: T = 604.6959622345124 K, F = -0.0016549783057309142, relative_change = 5.430819883359806e-8 Iter 95: T = 604.6958619285456 K, F = -0.0006921317305502162, relative_change = 2.2712356528567243e-8 Iter 100: T = 604.6958199793748 K, F = -0.0002894577618999805, relative_change = 9.498582089778721e-9 Iter 105: T = 604.6958024357275 K, F = -0.00012105469366169297, relative_change = 3.972421041244191e-9 Iter 110: T = 604.6957950987642 K, F = -5.0626518629526274e-5, relative_change = 1.6613140175154016e-9 Iter 115: T = 604.6957920303585 K, F = -2.117261516593194e-5, relative_change = 6.947813945054984e-10 Iter 120: T = 604.6957907471145 K, F = -8.854641100786154e-6, relative_change = 2.9056589872304525e-10 Iter 125: T = 604.6957902104466 K, F = -3.7031167142709265e-6, relative_change = 1.2151813139093822e-10 Iter 130: T = 604.6957899860057 K, F = -1.5486878359172174e-6, relative_change = 5.08203404812595e-11 Iter 135: T = 604.6957898921418 K, F = -6.476795377241551e-7, relative_change = 2.125366642059089e-11 Iter 140: T = 604.6957898528867 K, F = -2.708678150109556e-7, relative_change = 8.888553444694908e-12 Iter 145: T = 604.6957898364699 K, F = -1.132806621839677e-7, relative_change = 3.7173158433830464e-12 Iter 150: T = 604.6957898296041 K, F = -4.73753949958855e-8, relative_change = 1.554628151168939e-12 Iter 155: T = 604.6957898267327 K, F = -1.9812456786283406e-8, relative_change = 6.501476782862842e-13 Iter 160: T = 604.6957898255318 K, F = -8.285186592349447e-9, relative_change = 2.7187919627235873e-13 Converged in 162 iterations to T = 604.6957898252778 K Iter 1: T = 979.920416420804 K, F = -4575.152219134832, relative_change = 0.020079583579196023 Iter 2: T = 961.8940212627404 K, F = -3864.879272494079, relative_change = 0.01839577465270676 Iter 3: T = 945.8015024555641 K, F = -3263.351288045816, relative_change = 0.01673003309247166 Iter 5: T = 918.8998668871396 K, F = -2323.3864198068427, relative_change = 0.013542472718615042 Iter 10: T = 876.1005434563214 K, F = -986.5988961210679, relative_change = 0.007141654727486029 Iter 15: T = 855.7936850726677 K, F = -415.8087039878214, relative_change = 0.0033565693893883837 Iter 20: T = 846.7702322940568 K, F = -174.5151100083279, relative_change = 0.0014808556457403656 Iter 25: T = 842.8928882481638 K, F = -73.0975845867713, relative_change = 0.0006339093429941882 Iter 30: T = 841.2523065003985 K, F = -30.590489623621522, relative_change = 0.0002677508767639199 Iter 35: T = 840.5627968009788 K, F = -12.796871938354784, relative_change = 0.00011244556770362226 Iter 40: T = 840.2738358640504 K, F = -5.352430189359793, relative_change = 4.710860496604974e-5 Iter 45: T = 840.1528836618301 K, F = -2.2385597917058373, relative_change = 1.9715852241069562e-5 Iter 50: T = 840.1022815627416 K, F = -0.9362116136772778, relative_change = 8.247938596923796e-6 Iter 55: T = 840.0811159326668 K, F = -0.3915382320557731, relative_change = 3.4498297747525526e-6 Iter 60: T = 840.0722636486786 K, F = -0.16374655134031935, relative_change = 1.4428375687314916e-6 Iter 65: T = 840.0685614190153 K, F = -0.06848086593262437, relative_change = 6.034254681969656e-7 Iter 70: T = 840.0670130850787 K, F = -0.02863953390911189, relative_change = 2.5236210992800204e-7 Iter 75: T = 840.0663655503135 K, F = -0.01197739824750399, relative_change = 1.05541263210184e-7 Iter 80: T = 840.0660947430131 K, F = -0.005009091534829091, relative_change = 4.413868927391144e-8 Iter 85: T = 840.0659814880735 K, F = -0.002094861996520203, relative_change = 1.8459339671957906e-8 Iter 90: T = 840.065934123489 K, F = -0.0008760963206284611, relative_change = 7.719918513075525e-9 Iter 95: T = 840.0659143150515 K, F = -0.00036639394889870225, relative_change = 3.2285625223390702e-9 Iter 100: T = 840.0659060309258 K, F = -0.00015323032660874425, relative_change = 1.3502234807365608e-9 Iter 105: T = 840.0659025664053 K, F = -6.40827521272147e-5, relative_change = 5.646795921303128e-10 Iter 110: T = 840.0659011175015 K, F = -2.6800173338337174e-5, relative_change = 2.361557606631598e-10 Iter 115: T = 840.0659005115527 K, F = -1.1208153417152644e-5, relative_change = 9.87631673695606e-11 Iter 120: T = 840.0659002581376 K, F = -4.687384384638449e-6, relative_change = 4.130394293693029e-11 Iter 125: T = 840.0659001521564 K, F = -1.960318313232179e-6, relative_change = 1.72737862211492e-11 Iter 130: T = 840.0659001078337 K, F = -8.198279675131204e-7, relative_change = 7.2240987378977406e-12 Iter 135: T = 840.0659000892974 K, F = -3.428615120704137e-7, relative_change = 3.021201416676682e-12 Iter 140: T = 840.0659000815454 K, F = -1.4338679843461932e-7, relative_change = 1.2634850612613318e-12 Iter 145: T = 840.0659000783033 K, F = -5.99665446188169e-8, relative_change = 5.284087107731619e-13 Converged in 150 iterations to T = 840.0659000769475 K Iter 1: T = 976.4636784379429 K, F = -5362.773256736425, relative_change = 0.023536321562057042 Iter 2: T = 955.0884774243772 K, F = -4534.545639889147, relative_change = 0.02189042100138308 Iter 3: T = 935.7825348306013 K, F = -3832.4923970908635, relative_change = 0.02021377395928688 Iter 5: T = 902.9565949461507 K, F = -2733.831718664593, relative_change = 0.01686149383769173 Iter 10: T = 848.9110421586298 K, F = -1165.7250598341616, relative_change = 0.009482329298897177 Iter 15: T = 822.236873776581 K, F = -492.62081661327915, relative_change = 0.004642500433293607 Iter 20: T = 810.1135906405525 K, F = -207.04236597138805, relative_change = 0.0020919164939674473 Iter 25: T = 804.8465562751243 K, F = -86.77815577995138, relative_change = 0.0009042558467623176 Iter 30: T = 802.6069259674384 K, F = -36.32593614934475, relative_change = 0.0003835683858806459 Iter 35: T = 801.663637679088 K, F = -15.198007143209539, relative_change = 0.00016137686252339618 Iter 40: T = 801.2679656430108 K, F = -6.35705455072328, relative_change = 6.765982406774843e-5 Iter 45: T = 801.1022838041275 K, F = -2.6587830528203384, relative_change = 2.8326006090684966e-5 Iter 50: T = 801.0329573827827 K, F = -1.111967546716889, relative_change = 1.1851504609854627e-5 Iter 55: T = 801.0039578909854 K, F = -0.465043832803935, relative_change = 4.957356191590479e-6 Iter 60: T = 800.9918288453518 K, F = -0.1944878861172571, relative_change = 2.07338571498792e-6 Iter 65: T = 800.9867561391239 K, F = -0.08133733180340319, relative_change = 8.671426813545666e-7 Iter 70: T = 800.9846346387794 K, F = -0.03401627416334485, relative_change = 3.626543250554576e-7 Iter 75: T = 800.9837473960492 K, F = -0.014226017449470718, relative_change = 1.5166722671808756e-7 Iter 80: T = 800.983376339503 K, F = -0.0059494913263205, relative_change = 6.342919536770301e-8 Iter 85: T = 800.983221159042 K, F = -0.0024881484867838033, relative_change = 2.652687320570499e-8 Iter 90: T = 800.9831562606881 K, F = -0.0010405734404566047, relative_change = 1.109385975611617e-8 Iter 95: T = 800.983129119416 K, F = -0.0004351802453864684, relative_change = 4.639585446010102e-9 Iter 100: T = 800.9831177686109 K, F = -0.00018199757602399558, relative_change = 1.9403301754960115e-9 Iter 105: T = 800.9831130215684 K, F = -7.61135578445371e-5, relative_change = 8.114692538431691e-10 Iter 110: T = 800.9831110362985 K, F = -3.1831597958498214e-5, relative_change = 3.3936612714387244e-10 Iter 115: T = 800.983110206035 K, F = -1.3312353228767115e-5, relative_change = 1.419269553041191e-10 Iter 120: T = 800.9831098588089 K, F = -5.567386266669416e-6, relative_change = 5.935556019906132e-11 Iter 125: T = 800.9831097135948 K, F = -2.3283483745473177e-6, relative_change = 2.4823214271388972e-11 Iter 130: T = 800.9831096528645 K, F = -9.737428826595007e-7, relative_change = 1.0381362383076386e-11 Iter 135: T = 800.9831096274664 K, F = -4.0723276517606877e-7, relative_change = 4.341629587727215e-12 Iter 140: T = 800.9831096168446 K, F = -1.703094606453348e-7, relative_change = 1.8157197963544114e-12 Iter 145: T = 800.9831096124025 K, F = -7.122604761544693e-8, relative_change = 7.593620705791743e-13 Iter 150: T = 800.9831096105447 K, F = -2.9787697752858833e-8, relative_change = 3.175755022344063e-13 Converged in 153 iterations to T = 800.9831096100007 K Iter 1: T = 980.836129887344 K, F = -4366.5060347153185, relative_change = 0.019163870112656058 Iter 2: T = 963.68429522829 K, F = -3687.689939531913, relative_change = 0.017486952342410152 Iter 3: T = 948.4188085519576 K, F = -3112.9544929091076, relative_change = 0.01584075485293254 Iter 5: T = 923.0090840781068 K, F = -2215.2308242159406, relative_change = 0.012725732068499935 Iter 10: T = 882.9172892689114 K, F = -939.7368115487202, relative_change = 0.006608964903468865 Iter 15: T = 864.0670164412415 K, F = -395.82115189432955, relative_change = 0.003078045581692326 Iter 20: T = 855.7320094996759 K, F = -166.07649563465, relative_change = 0.001351841478886238 Iter 25: T = 852.1588501766307 K, F = -69.55350803933489, relative_change = 0.0005774985684058857 Iter 30: T = 850.6485372704716 K, F = -29.105617827371105, relative_change = 0.00024370807965846437 Iter 35: T = 850.0140585109556 K, F = -12.175402904715298, relative_change = 0.00010231001162653578 Iter 40: T = 849.7482097892763 K, F = -5.09244036357126, relative_change = 4.2855577822575597e-5 Iter 45: T = 849.6369405583905 K, F = -2.129814206164167, relative_change = 1.7934689813916903e-5 Iter 50: T = 849.5903910029242 K, F = -0.8907303313438935, relative_change = 7.50259802531652e-6 Iter 55: T = 849.5709207218351 K, F = -0.372516965234269, relative_change = 3.138042934941278e-6 Iter 60: T = 849.5627775452223 K, F = -0.1557915514323993, relative_change = 1.312431203239036e-6 Iter 65: T = 849.5593718888574 K, F = -0.06515397615602936, relative_change = 5.488856273474691e-7 Iter 70: T = 849.5579475882366 K, F = -0.027248186459133406, relative_change = 2.2955248762342356e-7 Iter 75: T = 849.5573519261787 K, F = -0.011395519703061963, relative_change = 9.600193511053502e-8 Iter 80: T = 849.5571028127501 K, F = -0.004765742903522163, relative_change = 4.014921580279563e-8 Iter 85: T = 849.5569986304621 K, F = -0.001993090679681231, relative_change = 1.679089203008693e-8 Iter 90: T = 849.5569550601714 K, F = -0.0008335343382521732, relative_change = 7.02215340086979e-9 Iter 95: T = 849.5569368385532 K, F = -0.00034859401765841014, relative_change = 2.9367487387972016e-9 Iter 100: T = 849.5569292180544 K, F = -0.00014578618098526341, relative_change = 1.2281834447523416e-9 Iter 105: T = 849.5569260310708 K, F = -6.0969522543530275e-5, relative_change = 5.136409984391834e-10 Iter 110: T = 849.5569246982361 K, F = -2.549818142294491e-5, relative_change = 2.1481079260454562e-10 Iter 115: T = 849.5569241408288 K, F = -1.066364466217884e-5, relative_change = 8.983644484663313e-11 Iter 120: T = 849.5569239077143 K, F = -4.459662832134725e-6, relative_change = 3.7570668122320894e-11 Iter 125: T = 849.5569238102231 K, F = -1.8650847077861243e-6, relative_change = 1.571250591179626e-11 Iter 130: T = 849.556923769451 K, F = -7.800000121349626e-7, relative_change = 6.571151837505532e-12 Iter 135: T = 849.5569237523997 K, F = -3.2620388212833973e-7, relative_change = 2.7481220593661065e-12 Iter 140: T = 849.5569237452687 K, F = -1.3642381002654247e-7, relative_change = 1.1493096873206237e-12 Iter 145: T = 849.5569237422864 K, F = -5.705318151250083e-8, relative_change = 4.806475804562089e-13 Converged in 150 iterations to T = 849.5569237410392 K Iter 1: T = 967.3709790519198 K, F = -7434.553461231863, relative_change = 0.03262902094808025 Iter 2: T = 936.8188942713366 K, F = -6301.980643048257, relative_change = 0.03158259389849174 Iter 3: T = 908.3122634615524 K, F = -5340.42720383438, relative_change = 0.03042918005187845 Iter 5: T = 857.2960555499227 K, F = -3831.358357265377, relative_change = 0.027807575635831007 Iter 10: T = 762.5086874411294 K, F = -1658.7967398200808, relative_change = 0.019872001483699463 Iter 15: T = 707.1000704421608 K, F = -710.1151709937691, relative_change = 0.01188266305090644 Iter 20: T = 678.6438537166463 K, F = -300.9363352746676, relative_change = 0.006075491042130485 Iter 25: T = 665.3861817864578 K, F = -126.68006126686454, relative_change = 0.002804070828808766 Iter 30: T = 659.5525343342601 K, F = -53.136089125378135, relative_change = 0.0012260591676642454 Iter 35: T = 657.057397553704 K, F = -22.25065750907539, relative_change = 0.0005227216742587225 Iter 40: T = 656.0038060777568 K, F = -9.31055891409064, relative_change = 0.00022040223202677043 Iter 45: T = 655.5613850679758 K, F = -3.894679489322003, relative_change = 9.249237312438769e-5 Iter 50: T = 655.3760428135062 K, F = -1.6289580368285452, relative_change = 3.8737232233532296e-5 Iter 55: T = 655.2984749424684 K, F = -0.6812771209030909, relative_change = 1.6210156326782776e-5 Iter 60: T = 655.2660254082867 K, F = -0.28492302561452487, relative_change = 6.780993573428789e-6 Iter 65: T = 655.2524529238847 K, F = -0.11915905125500281, relative_change = 2.836192142307805e-6 Iter 70: T = 655.2467764511267 K, F = -0.04983388508486841, relative_change = 1.1861818419120682e-6 Iter 75: T = 655.2444024303569 K, F = -0.020841151557120186, relative_change = 4.960845805747551e-7 Iter 80: T = 655.2434095774115 K, F = -0.008716022964897374, relative_change = 2.0747009962800402e-7 Iter 85: T = 655.2429943528597 K, F = -0.003645145679498085, relative_change = 8.676675382797488e-8 Iter 90: T = 655.2428207007149 K, F = -0.0015244435931306977, relative_change = 3.628694172886502e-8 Iter 95: T = 655.2427480772653 K, F = -0.000637540540982473, relative_change = 1.5175640982968028e-8 Iter 100: T = 655.242717705263 K, F = -0.00026662707326413626, relative_change = 6.346635818491544e-9 Iter 105: T = 655.2427050033273 K, F = -0.00011150662810410772, relative_change = 2.6542391835009268e-9 Iter 110: T = 655.2426996912258 K, F = -4.6633402613294184e-5, relative_change = 1.1100345455531258e-9 Iter 115: T = 655.2426974696415 K, F = -1.9502646003644042e-5, relative_change = 4.6422971368215646e-10 Iter 120: T = 655.2426965405483 K, F = -8.156239468148918e-6, relative_change = 1.9414641161387108e-10 Iter 125: T = 655.2426961519906 K, F = -3.411037293288288e-6, relative_change = 8.119436105681257e-11 Iter 130: T = 655.2426959894909 K, F = -1.4265361882315197e-6, relative_change = 3.3956443306130207e-11 Iter 135: T = 655.2426959215318 K, F = -5.965940012564452e-7, relative_change = 1.4200978956979304e-11 Iter 140: T = 655.2426958931104 K, F = -2.4950335131279644e-7, relative_change = 5.939033639222781e-12 Iter 145: T = 655.2426958812243 K, F = -1.0434574437834243e-7, relative_change = 2.483785819972091e-12 Iter 150: T = 655.2426958762534 K, F = -4.363922451178226e-8, relative_change = 1.038762890490772e-12 Iter 155: T = 655.2426958741744 K, F = -1.8250064848235326e-8, relative_change = 4.3441400083919796e-13 Converged in 159 iterations to T = 655.2426958734239 K Iter 1: T = 973.5995628416754 K, F = -6015.364719823278, relative_change = 0.026400437158324623 Iter 2: T = 949.3920269112566 K, F = -5090.348743831703, relative_change = 0.02486395521764968 Iter 3: T = 927.309290573086 K, F = -4305.764224804737, relative_change = 0.02325987127784758 Iter 5: T = 889.1930248252927 K, F = -3076.629060299195, relative_change = 0.01992756176389189 Iter 10: T = 824.3614827068907 K, F = -1317.1750599436316, relative_change = 0.011929894850446798 Iter 15: T = 791.0397684079926 K, F = -558.2313039663652, relative_change = 0.006104989654636598 Iter 20: T = 775.5073343275002 K, F = -234.9969538882294, relative_change = 0.0028191017565846275 Iter 25: T = 768.6709006193345 K, F = -98.57132963316124, relative_change = 0.001232932952086709 Iter 30: T = 765.7464891833711 K, F = -41.27689752953637, relative_change = 0.0005257098464241687 Iter 35: T = 764.5115647756638 K, F = -17.271947845810086, relative_change = 0.0002216726331999622 Iter 40: T = 763.9929867357777 K, F = -7.2250002772744635, relative_change = 9.302735871275228e-5 Iter 45: T = 763.7757380556702 K, F = -3.021873533074438, relative_change = 3.896161967028493e-5 Iter 50: T = 763.684816597363 K, F = -1.2638347568181603, relative_change = 1.630411189451765e-5 Iter 55: T = 763.6467806928465 K, F = -0.5285597404927675, relative_change = 6.820306890143343e-6 Iter 60: T = 763.6308716170415 K, F = -0.2210515617923725, relative_change = 2.8526369367037757e-6 Iter 65: T = 763.6242179005645 K, F = -0.09244667695602016, relative_change = 1.1930598628678248e-6 Iter 70: T = 763.6214351754792 K, F = -0.03866235224953829, relative_change = 4.989611580121894e-7 Iter 75: T = 763.620271395878 K, F = -0.01616906581274402, relative_change = 2.0867313740174458e-7 Iter 80: T = 763.6197846874724 K, F = -0.006762097886772844, relative_change = 8.72698818778357e-8 Iter 85: T = 763.6195811398762 K, F = -0.00282799034942649, relative_change = 3.6497356456218484e-8 Iter 90: T = 763.6194960137832 K, F = -0.0011826993839362254, relative_change = 1.5263639041604532e-8 Iter 95: T = 763.6194604130243 K, F = -0.0004946190130000749, relative_change = 6.383437630824615e-9 Iter 100: T = 763.61944552436 K, F = -0.00020685557813260314, relative_change = 2.669630098058771e-9 Iter 105: T = 763.6194392977426 K, F = -8.650947285548938e-5, relative_change = 1.1164712286382647e-9 Iter 110: T = 763.6194366936967 K, F = -3.617929549337706e-5, relative_change = 4.669216192551591e-10 Iter 115: T = 763.6194356046536 K, F = -1.5130614965386258e-5, relative_change = 1.9527221831142465e-10 Iter 120: T = 763.6194351492028 K, F = -6.3278031986468974e-6, relative_change = 8.166516522782314e-11 Iter 125: T = 763.6194349587279 K, F = -2.6463622146977173e-6, relative_change = 3.415333900062404e-11 Iter 130: T = 763.619434879069 K, F = -1.106741467582495e-6, relative_change = 1.4283349549519084e-11 Iter 135: T = 763.6194348457547 K, F = -4.628525163141717e-7, relative_change = 5.973467585165954e-12 Iter 140: T = 763.6194348318222 K, F = -1.9357178115964047e-7, relative_change = 2.4981926628989856e-12 Iter 145: T = 763.6194348259954 K, F = -8.095428427612461e-8, relative_change = 1.0447772800592864e-12 Iter 150: T = 763.6194348235587 K, F = -3.385593283500299e-8, relative_change = 4.3693684328197763e-13 Converged in 154 iterations to T = 763.6194348226791 K Iter 1: T = 970.0460826846138 K, F = -6825.028553842042, relative_change = 0.02995391731538624 Iter 2: T = 942.2503854076057 K, F = -5781.109582390291, relative_change = 0.028653996725684604 Iter 3: T = 916.5699076213215 K, F = -4895.128971538512, relative_change = 0.027254409426614487 Iter 5: T = 871.3477072438236 K, F = -3505.58931757201, relative_change = 0.02419747836624235 Iter 10: T = 790.7327969367058 K, F = -1509.712509415125, relative_change = 0.01589447384478235 Iter 15: T = 746.5329631096869 K, F = -642.9598434113396, relative_change = 0.008769498319884285 Iter 20: T = 724.9770367356499 K, F = -271.4828153797976, relative_change = 0.004239783066941449 Iter 25: T = 715.2486446214283 K, F = -114.05062065657079, relative_change = 0.001897773619644218 Iter 30: T = 711.0368173900512 K, F = -47.79244620488064, relative_change = 0.0008177914009286782 Iter 35: T = 709.2487049600282 K, F = -20.00443390098849, relative_change = 0.0003464193829958862 Iter 40: T = 708.4961016905428 K, F = -8.369109750926095, relative_change = 0.00014566258226611636 Iter 45: T = 708.1805060035136 K, F = -3.5005916596427733, relative_change = 6.105637619912217e-5 Iter 50: T = 708.0483710832032 K, F = -1.4640821151241226, relative_change = 2.555881830774586e-5 Iter 55: T = 707.9930845623692 K, F = -0.6123128826191511, relative_change = 1.0693261303255815e-5 Iter 60: T = 707.969958506963 K, F = -0.25607940439230314, relative_change = 4.472794789579506e-6 Iter 65: T = 707.9602861144556 K, F = -0.10709596267824062, relative_change = 1.8707065668351006e-6 Iter 70: T = 707.9562408644634 K, F = -0.04478889760345228, relative_change = 7.823746311676332e-7 Iter 75: T = 707.9545490681305 K, F = -0.01873126708720263, relative_change = 3.2720240284952184e-7 Iter 80: T = 707.9538415344189 K, F = -0.007833642252759065, relative_change = 1.3684065005602043e-7 Iter 85: T = 707.9535456346223 K, F = -0.0032761232076218283, relative_change = 5.7228516066101055e-8 Iter 90: T = 707.9534218856627 K, F = -0.0013701139321147249, relative_change = 2.393367021401452e-8 Iter 95: T = 707.953370132347 K, F = -0.0005729980233268872, relative_change = 1.0009350445459777e-8 Iter 100: T = 707.9533484884882 K, F = -0.00023963461788323315, relative_change = 4.186030528459843e-9 Iter 105: T = 707.9533394367674 K, F = -0.00010021805943938311, relative_change = 1.7506480723020478e-9 Iter 110: T = 707.9533356512295 K, F = -4.1912388718201576e-5, relative_change = 7.32141939222648e-10 Iter 115: T = 707.9533340680722 K, F = -1.7528260158550246e-5, relative_change = 3.061904824036494e-10 Iter 120: T = 707.953333405977 K, F = -7.330527393989428e-6, relative_change = 1.2805251112947493e-10 Iter 125: T = 707.953333129081 K, F = -3.0657139579171044e-6, relative_change = 5.355308702193678e-11 Iter 130: T = 707.9533330132797 K, F = -1.2821181107902646e-6, relative_change = 2.2396539193002347e-11 Iter 135: T = 707.9533329648503 K, F = -5.361980298657087e-7, relative_change = 9.36651630917783e-12 Iter 140: T = 707.9533329445965 K, F = -2.2424378420815572e-7, relative_change = 3.9171778807721144e-12 Iter 145: T = 707.9533329361261 K, F = -9.378116971880956e-8, relative_change = 1.638206048714291e-12 Iter 150: T = 707.9533329325837 K, F = -3.922137969958328e-8, relative_change = 6.851343575363923e-13 Iter 155: T = 707.9533329311023 K, F = -1.6403391867036987e-8, relative_change = 2.86540846712525e-13 Converged in 157 iterations to T = 707.9533329307887 K Iter 1: T = 973.5980640145784 K, F = -6015.706229003078, relative_change = 0.026401935985421603 Iter 2: T = 949.3890320324685 K, F = -5090.639825508026, relative_change = 0.024865530116488982 Iter 3: T = 927.3048144291463 K, F = -4306.0123022232765, relative_change = 0.023261504881770055 Iter 5: T = 889.1856825481105 K, F = -3076.8091223379665, relative_change = 0.019929248982623552 Iter 10: T = 824.3480879330315 K, F = -1317.255124716731, relative_change = 0.011931326240629968 Iter 15: T = 791.0224782482671 K, F = -558.266193885734, relative_change = 0.006105883020008745 Iter 20: T = 775.4879901506807 K, F = -235.01187532924584, relative_change = 0.002819556885258703 Iter 25: T = 768.6505970276065 K, F = -98.5776366505335, relative_change = 0.0012331410770691285 Iter 30: T = 765.7257641275454 K, F = -41.27954764952936, relative_change = 0.0005258003213758355 Iter 35: T = 764.490659693178 K, F = -17.273058397437694, relative_change = 0.000221711097855903 Iter 40: T = 763.9720056875708 K, F = -7.22546511968394, relative_change = 9.304355675040906e-5 Iter 45: T = 763.7547251180396 K, F = -3.022068005414866, relative_change = 3.896841356182234e-5 Iter 50: T = 763.6637903021674 K, F = -1.2639160996878032, relative_change = 1.630695663393232e-5 Iter 55: T = 763.6257488076726 K, F = -0.5285937611903895, relative_change = 6.821497198852126e-6 Iter 60: T = 763.609837393427 K, F = -0.2210657900270575, relative_change = 2.8531348438264396e-6 Iter 65: T = 763.6031826988732 K, F = -0.09245262743768468, relative_change = 1.1932681120672513e-6 Iter 70: T = 763.6003995647249 K, F = -0.03866484082410948, relative_change = 4.990482535607943e-7 Iter 75: T = 763.5992356140451 K, F = -0.016170106565663978, relative_change = 2.0870956235783377e-7 Iter 80: T = 763.5987488340918 K, F = -0.0067625331401168776, relative_change = 8.728511529877265e-8 Iter 85: T = 763.5985452565734 K, F = -0.0028281723779541856, relative_change = 3.6503727276236836e-8 Iter 90: T = 763.5984601179666 K, F = -0.001182775509081635, relative_change = 1.5266303379976776e-8 Iter 95: T = 763.5984245119744 K, F = -0.0004946508508485437, relative_change = 6.384551907570013e-9 Iter 100: T = 763.5984096211215 K, F = -0.0002068688956609055, relative_change = 2.6700961350278003e-9 Iter 105: T = 763.5984033935887 K, F = -8.651504499057605e-5, relative_change = 1.1166661642532776e-9 Iter 110: T = 763.59840078916 K, F = -3.618162601548569e-5, relative_change = 4.67003146096371e-10 Iter 115: T = 763.5983996999568 K, F = -1.513158763266631e-5, relative_change = 1.9530628819321915e-10 Iter 120: T = 763.598399244439 K, F = -6.3282107802820065e-6, relative_change = 8.167942399140009e-11 Iter 125: T = 763.598399053936 K, F = -2.646532169858773e-6, relative_change = 3.4159295726858114e-11 Iter 130: T = 763.5983989742654 K, F = -1.1068130942870624e-6, relative_change = 1.4285847816809207e-11 Iter 135: T = 763.5983989409461 K, F = -4.6288212574019383e-7, relative_change = 5.974507928169032e-12 Iter 140: T = 763.5983989270117 K, F = -1.9358198377616986e-7, relative_change = 2.4985996058336788e-12 Iter 145: T = 763.5983989211841 K, F = -8.09584993488599e-8, relative_change = 1.0449468004377315e-12 Iter 150: T = 763.598398918747 K, F = -3.385824109969349e-8, relative_change = 4.370147790617354e-13 Converged in 154 iterations to T = 763.5983989178673 K Iter 1: T = 964.3333459254025 K, F = -8126.681058643885, relative_change = 0.03566665407459749 Iter 2: T = 930.5927518154853 K, F = -6894.327736332089, relative_change = 0.03498851745869964 Iter 3: T = 898.7472789467135 K, F = -5847.782063289723, relative_change = 0.03422063282423447 Iter 5: T = 840.6287612544729 K, F = -4204.438502114968, relative_change = 0.032390202645508834 Iter 10: T = 726.5143926330549 K, F = -1833.5264515232109, relative_change = 0.02599234549468113 Iter 15: T = 652.9125203848647 K, F = -791.6801690362176, relative_change = 0.017790913002567934 Iter 20: T = 611.3043455339708 K, F = -337.9821999319311, relative_change = 0.010192835095583795 Iter 25: T = 590.524483894776 K, F = -142.94533313846517, relative_change = 0.005053955029084851 Iter 30: T = 581.0124196939252 K, F = -60.10524451964739, relative_change = 0.0022929310497858536 Iter 35: T = 576.8649387439052 K, F = -25.19743829684335, relative_change = 0.0009943439203060143 Iter 40: T = 575.0984645079172 K, F = -10.548818362263052, relative_change = 0.00042238138050325954 Iter 45: T = 574.353929847998 K, F = -4.413582118730286, relative_change = 0.00017781444012488284 Iter 50: T = 574.0415324769888 K, F = -1.846154003206395, relative_change = 7.4570663423873e-5 Iter 55: T = 573.9107039950519 K, F = -0.7721434766081516, relative_change = 3.1222613736196074e-5 Iter 60: T = 573.8559583715554 K, F = -0.3229300968612672, relative_change = 1.3064024745903655e-5 Iter 65: T = 573.8330575671803 K, F = -0.1350550556804429, relative_change = 5.46464342257415e-6 Iter 70: T = 573.8234792095317 K, F = -0.056481957747834544, relative_change = 2.2855737337017152e-6 Iter 75: T = 573.8194732566801 K, F = -0.023621485334985426, relative_change = 9.558882695821068e-7 Iter 80: T = 573.8177978897447 K, F = -0.00987879707189998, relative_change = 3.997698436881353e-7 Iter 85: T = 573.8170972261051 K, F = -0.004131432628009024, relative_change = 1.6718956420738086e-7 Iter 90: T = 573.8168041992976 K, F = -0.0017278147647296072, relative_change = 6.992085454789668e-8 Iter 95: T = 573.8166816518287 K, F = -0.0007225928211770927, relative_change = 2.924176824365298e-8 Iter 100: T = 573.8166304009861 K, F = -0.0003021969573190342, relative_change = 1.2229262301645864e-8 Iter 105: T = 573.8166089672668 K, F = -0.0001263823782049478, relative_change = 5.114424519487382e-9 Iter 110: T = 573.8166000034284 K, F = -5.285461985005124e-5, relative_change = 2.138913570650271e-9 Iter 115: T = 573.8165962546442 K, F = -2.210443370126436e-5, relative_change = 8.945192458077046e-10 Iter 120: T = 573.8165946868577 K, F = -9.244338100289351e-6, relative_change = 3.7409863400181096e-10 Iter 125: T = 573.8165940311907 K, F = -3.866092668003418e-6, relative_change = 1.564525202563831e-10 Iter 130: T = 573.8165937569829 K, F = -1.6168458406018438e-6, relative_change = 6.54303010626871e-11 Iter 135: T = 573.816593642306 K, F = -6.761844023595032e-7, relative_change = 2.7363739913449178e-11 Iter 140: T = 573.8165935943467 K, F = -2.827888518353028e-7, relative_change = 1.1443861420230084e-11 Iter 145: T = 573.8165935742896 K, F = -1.1826588197649812e-7, relative_change = 4.785967889193143e-12 Iter 150: T = 573.8165935659014 K, F = -4.9460410544988065e-8, relative_change = 2.0015572768327017e-12 Iter 155: T = 573.8165935623933 K, F = -2.0684622736855118e-8, relative_change = 8.370625456300798e-13 Iter 160: T = 573.8165935609263 K, F = -8.651034333340135e-9, relative_change = 3.500889000302861e-13 Converged in 163 iterations to T = 573.8165935604968 K Iter 1: T = 963.5792594786941 K, F = -8298.500372847788, relative_change = 0.03642074052130588 Iter 2: T = 929.0373423253734 K, F = -7041.522350690621, relative_change = 0.03584751001387076 Iter 3: T = 896.3407787691855 K, F = -5974.016647793877, relative_change = 0.03519402511243376 Iter 5: T = 836.3650406586968 K, F = -4297.601491970893, relative_change = 0.033617110998234855 Iter 10: T = 716.7806601413612 K, F = -1877.9762799599307, relative_change = 0.027880827236979985 Iter 15: T = 637.2570243986806 K, F = -813.1634563325626, relative_change = 0.019959137900209808 Iter 20: T = 590.7066602498422 K, F = -348.1476832842178, relative_change = 0.01195633485403573 Iter 25: T = 566.7710534533393 K, F = -147.552765473677, relative_change = 0.006121396397183546 Iter 30: T = 555.610792080762 K, F = -62.115938060640744, relative_change = 0.002827440157108233 Iter 35: T = 550.6980189763906 K, F = -26.05524634033513, relative_change = 0.0012367422174068552 Iter 40: T = 548.5963483225453 K, F = -10.910717285457464, relative_change = 0.0005273651067613635 Iter 45: T = 547.7088258921577 K, F = -4.565499514674868, relative_change = 0.00022237623218809697 Iter 50: T = 547.3361266217205 K, F = -1.9097879968071036, relative_change = 9.332363344695682e-5 Iter 55: T = 547.1799903265638 K, F = -0.7987736059320523, relative_change = 3.908588151771657e-5 Iter 60: T = 547.1146450676601 K, F = -0.33407022540767484, relative_change = 1.635614218457665e-5 Iter 65: T = 547.0873086347456 K, F = -0.13971453146583634, relative_change = 6.842077525012579e-6 Iter 70: T = 547.0758747656504 K, F = -0.058430700820241016, relative_change = 2.861743591751091e-6 Iter 75: T = 547.0710927320146 K, F = -0.024436489517043414, relative_change = 1.1968687098551747e-6 Iter 80: T = 547.0690927841794 K, F = -0.010219644449657367, relative_change = 5.005541219106832e-7 Iter 85: T = 547.0682563743691 K, F = -0.0042739795775828815, relative_change = 2.093393441571824e-7 Iter 90: T = 547.0679065764436 K, F = -0.001787429689824649, relative_change = 8.754849929645811e-8 Iter 95: T = 547.0677602865369 K, F = -0.0007475245096581484, relative_change = 3.6613877847773165e-8 Iter 100: T = 547.0676991063095 K, F = -0.0003126236888394973, relative_change = 1.531236969743178e-8 Iter 105: T = 547.0676735200005 K, F = -0.00013074296197090884, relative_change = 6.403817389012555e-9 Iter 110: T = 547.0676628194993 K, F = -5.4678267861707486e-5, relative_change = 2.6781531476863614e-9 Iter 115: T = 547.0676583444216 K, F = -2.2867104382318093e-5, relative_change = 1.120035662429666e-9 Iter 120: T = 547.0676564728907 K, F = -9.563295618297829e-6, relative_change = 4.684122719790988e-10 Iter 125: T = 547.0676556901941 K, F = -3.999484089023397e-6, relative_change = 1.958955904343066e-10 Iter 130: T = 547.067655362861 K, F = -1.6726316962034637e-6, relative_change = 8.19258602727192e-11 Iter 135: T = 547.0676552259664 K, F = -6.995144457011548e-7, relative_change = 3.426236806083051e-11 Iter 140: T = 547.0676551687155 K, F = -2.9254554814728273e-7, relative_change = 1.4328943900689114e-11 Iter 145: T = 547.0676551447725 K, F = -1.223464115296391e-7, relative_change = 5.992553565510094e-12 Iter 150: T = 547.0676551347592 K, F = -5.1166349768205777e-8, relative_change = 2.5061388227969177e-12 Iter 155: T = 547.0676551305716 K, F = -2.1398481958589954e-8, relative_change = 1.0481022513867045e-12 Iter 160: T = 547.0676551288202 K, F = -8.948710772394008e-9, relative_change = 4.3830977944360723e-13 Converged in 164 iterations to T = 547.0676551281881 K Iter 1: T = 969.2580232910486 K, F = -7004.588636303861, relative_change = 0.030741976708951343 Iter 2: T = 940.6552899297715 K, F = -5934.47677751938, relative_change = 0.02950992684502994 Iter 3: T = 914.1530388009327 K, F = -5026.164124237506, relative_change = 0.028174243437059057 Iter 5: T = 867.2659149936688 K, F = -3601.296213895138, relative_change = 0.025223033772928824 Iter 10: T = 782.7087227572737 K, F = -1553.2230252593984, relative_change = 0.016959784629399854 Iter 15: T = 735.5426682867121 K, F = -662.3881996259083, relative_change = 0.009556195056478348 Iter 20: T = 712.2352938392617 K, F = -279.94086645226133, relative_change = 0.00468478158223751 Iter 25: T = 701.6344338853039 K, F = -117.6610678553741, relative_change = 0.0021124433912699998 Iter 30: T = 697.0271353815222 K, F = -49.31663303423637, relative_change = 0.0009134280790384804 Iter 35: T = 695.0677091821086 K, F = -20.644481481475804, relative_change = 0.0003875149265709691 Iter 40: T = 694.2423777279846 K, F = -8.637251960844639, relative_change = 0.00016304731472547825 Iter 45: T = 693.8961732836212 K, F = -3.6128142595043107, relative_change = 6.836196507119894e-5 Iter 50: T = 693.7512033978736 K, F = -1.5110293974849234, relative_change = 2.8620272089914707e-5 Iter 55: T = 693.6905431717014 K, F = -0.6319493280703639, relative_change = 1.1974679250871101e-5 Iter 60: T = 693.6651687230195 K, F = -0.26429204339527207, relative_change = 5.008888395356305e-6 Iter 65: T = 693.6545558426224 K, F = -0.1105306638909298, relative_change = 2.0949404396577917e-6 Iter 70: T = 693.6501172373534 K, F = -0.046225344227237675, relative_change = 8.761577091790779e-7 Iter 75: T = 693.648260929547 K, F = -0.019332008590224103, relative_change = 3.66424619584527e-7 Iter 80: T = 693.6474845941932 K, F = -0.008084879940202794, relative_change = 1.5324402680736773e-7 Iter 85: T = 693.6471599205569 K, F = -0.0033811938819702236, relative_change = 6.408863513413349e-8 Iter 90: T = 693.6470241380039 K, F = -0.001414055755006971, relative_change = 2.6802659346762255e-8 Iter 95: T = 693.6469673520907 K, F = -0.0005913750219149749, relative_change = 1.1209196936177245e-8 Iter 100: T = 693.6469436035386 K, F = -0.0002473201005889214, relative_change = 4.687820863141889e-9 Iter 105: T = 693.6469336716096 K, F = -0.00010343221959263627, relative_change = 1.9605028011361235e-9 Iter 110: T = 693.6469295179581 K, F = -4.3256590353646374e-5, relative_change = 8.199057248090843e-10 Iter 115: T = 693.6469277808513 K, F = -1.809042172518094e-5, relative_change = 3.4289435187272934e-10 Iter 120: T = 693.6469270543727 K, F = -7.565631098827019e-6, relative_change = 1.434025267340986e-10 Iter 125: T = 693.6469267505506 K, F = -3.164037048364321e-6, relative_change = 5.997264503582498e-11 Iter 130: T = 693.6469266234886 K, F = -1.323238127182158e-6, relative_change = 2.5081277290858985e-11 Iter 135: T = 693.6469265703497 K, F = -5.533934133161722e-7, relative_change = 1.0489278815550363e-11 Iter 140: T = 693.6469265481264 K, F = -2.314355703747495e-7, relative_change = 4.386738561487017e-12 Iter 145: T = 693.6469265388323 K, F = -9.678779910871071e-8, relative_change = 1.834561428786528e-12 Iter 150: T = 693.6469265349456 K, F = -4.0478895013684735e-8, relative_change = 7.672559987708527e-13 Iter 155: T = 693.64692653332 K, F = -1.6929117774289182e-8, relative_change = 3.208824539794226e-13 Converged in 158 iterations to T = 693.6469265328441 K Iter 1: T = 966.4950743532233 K, F = -7634.129180030305, relative_change = 0.033504925646776644 Iter 2: T = 935.0300181805866 K, F = -6472.68792642484, relative_change = 0.03255583707314088 Iter 3: T = 905.5750874805994 K, F = -5486.535851358498, relative_change = 0.03150158832044938 Iter 5: T = 852.5707547186129 K, F = -3938.5822834493924, relative_change = 0.029072911013190192 Iter 10: T = 752.6082714326756 K, F = -1708.5283465557577, relative_change = 0.02142933026111757 Iter 15: T = 692.6954184077917 K, F = -732.9480542548332, relative_change = 0.013243793049762677 Iter 20: T = 661.2316735214316 K, F = -311.1238895698265, relative_change = 0.006944889739460248 Iter 25: T = 646.3532259897696 K, F = -131.09608821451513, relative_change = 0.0032530782129072677 Iter 30: T = 639.7540363278982 K, F = -55.014935425281486, relative_change = 0.0014327771037802584 Iter 35: T = 636.9208629591569 K, F = -23.042441866332652, relative_change = 0.00061285939539937 Iter 40: T = 635.7225540717742 K, F = -9.642781307474143, relative_change = 0.00025877405412829465 Iter 45: T = 635.2190078972195 K, F = -4.033811890655658, relative_change = 0.0001086603511227034 Iter 50: T = 635.0079956631351 K, F = -1.6871788237143976, relative_change = 4.552011054369904e-5 Iter 55: T = 634.919673540147 K, F = -0.7056317023520973, relative_change = 1.9050564264209632e-5 Iter 60: T = 634.8827231611039 K, F = -0.2951094446780712, relative_change = 7.969538935517032e-6 Iter 65: T = 634.8672677939855 K, F = -0.12341931572627313, relative_change = 3.3333702588464676e-6 Iter 70: T = 634.8608037764701 K, F = -0.05161561046498242, relative_change = 1.3941276555954408e-6 Iter 75: T = 634.8581003774588 K, F = -0.021586295967424174, relative_change = 5.8305349946005e-7 Iter 80: T = 634.8569697715177 K, F = -0.009027652232134198, relative_change = 2.438421516524182e-7 Iter 85: T = 634.8564969364791 K, F = -0.003775472931759394, relative_change = 1.0197808732377015e-7 Iter 90: T = 634.8562991908462 K, F = -0.0015789480368038622, relative_change = 4.264852178016857e-8 Iter 95: T = 634.8562164911957 K, F = -0.0006603349542957937, relative_change = 1.783613297595276e-8 Iter 100: T = 634.8561819052028 K, F = -0.00027615996843272095, relative_change = 7.45928587473291e-9 Iter 105: T = 634.8561674409256 K, F = -0.0001154933976029171, relative_change = 3.1195627943560387e-9 Iter 110: T = 634.8561613917918 K, F = -4.8300718340443805e-5, relative_change = 1.3046384801057007e-9 Iter 115: T = 634.8561588619718 K, F = -2.019993812246712e-5, relative_change = 5.456154271775755e-10 Iter 120: T = 634.8561578039709 K, F = -8.447855571580565e-6, relative_change = 2.2818289516774487e-10 Iter 125: T = 634.8561573615021 K, F = -3.532994281851831e-6, relative_change = 9.542881737125334e-11 Iter 130: T = 634.8561571764565 K, F = -1.4775407729539225e-6, relative_change = 3.9909481173166034e-11 Iter 135: T = 634.8561570990681 K, F = -6.179251869076197e-7, relative_change = 1.6690621388622854e-11 Iter 140: T = 634.8561570667034 K, F = -2.584235113678446e-7, relative_change = 6.980212295264297e-12 Iter 145: T = 634.8561570531681 K, F = -1.0807503281196063e-7, relative_change = 2.919187456778681e-12 Iter 150: T = 634.8561570475075 K, F = -4.5199492815228837e-8, relative_change = 1.2208721020158953e-12 Iter 155: T = 634.8561570451402 K, F = -1.8903275667003783e-8, relative_change = 5.10591612019037e-13 Converged in 160 iterations to T = 634.8561570441501 K Iter 1: T = 966.4445041948803 K, F = -7645.65163871341, relative_change = 0.0335554958051197 Iter 2: T = 934.9265792068569 K, F = -6482.546066869338, relative_change = 0.032612245039646826 Iter 3: T = 905.4165454832339 K, F = -5494.976028217855, relative_change = 0.03156401195552468 Iter 5: T = 852.2959908090314 K, F = -3944.781458192621, relative_change = 0.0291473001939383 Iter 10: T = 752.025631924325 K, F = -1711.414763430085, relative_change = 0.021523810367419335 Iter 15: T = 691.8370598265002 K, F = -734.2813646844583, relative_change = 0.013329225789993149 Iter 20: T = 660.1843738691775 K, F = -311.72234525418435, relative_change = 0.007000919288403131 Iter 25: T = 645.2022918294151 K, F = -131.3565413312362, relative_change = 0.0032824699995413075 Iter 30: T = 638.5536795768588 K, F = -55.12598141011937, relative_change = 0.0014464136771499764 Iter 35: T = 635.6985830123057 K, F = -23.08928462918022, relative_change = 0.0006188262833566215 Iter 40: T = 634.4908695428395 K, F = -9.662444315506734, relative_change = 0.00026131800241233945 Iter 45: T = 633.9833476520162 K, F = -4.042048119314145, relative_change = 0.00010973292983689468 Iter 50: T = 633.7706651734999 K, F = -1.6906255874577543, relative_change = 4.5970205635483836e-5 Iter 55: T = 633.6816432059757 K, F = -0.7070735789787354, relative_change = 1.9239067987175948e-5 Iter 60: T = 633.6443999107089 K, F = -0.2957125245413143, relative_change = 8.048420492485722e-6 Iter 65: T = 633.6288220017564 K, F = -0.12367154314733048, relative_change = 3.366367702301435e-6 Iter 70: T = 633.6223067286486 K, F = -0.05172109712350398, relative_change = 1.407929021131731e-6 Iter 75: T = 633.6195818926885 K, F = -0.021630412122411347, relative_change = 5.888256473569199e-7 Iter 80: T = 633.6184423213411 K, F = -0.009046102201362871, relative_change = 2.462561769374541e-7 Iter 85: T = 633.6179657368242 K, F = -0.0037831889400315455, relative_change = 1.0298766921897003e-7 Iter 90: T = 633.617766423108 K, F = -0.001582174963560945, relative_change = 4.3070742278342504e-8 Iter 95: T = 633.6176830676654 K, F = -0.0006616844939397182, relative_change = 1.801271086600395e-8 Iter 100: T = 633.6176482074122 K, F = -0.0002767243629985816, relative_change = 7.533132922985298e-9 Iter 105: T = 633.6176336284359 K, F = -0.00011572943406124026, relative_change = 3.1504465163146753e-9 Iter 110: T = 633.6176275313336 K, F = -4.839943157275428e-5, relative_change = 1.317554421764101e-9 Iter 115: T = 633.6176249814525 K, F = -2.024122048033261e-5, relative_change = 5.510170097069493e-10 Iter 120: T = 633.6176239150618 K, F = -8.465120138856363e-6, relative_change = 2.3044189591384882e-10 Iter 125: T = 633.6176234690845 K, F = -3.540214118857854e-6, relative_change = 9.637354731443262e-11 Iter 130: T = 633.6176232825713 K, F = -1.4805590428657034e-6, relative_change = 4.030454723327077e-11 Iter 135: T = 633.6176232045693 K, F = -6.19186959371909e-7, relative_change = 1.685582900939467e-11 Iter 140: T = 633.617623171948 K, F = -2.589506297723254e-7, relative_change = 7.0492885425346616e-12 Iter 145: T = 633.6176231583054 K, F = -1.0829615393337377e-7, relative_change = 2.9480941516634487e-12 Iter 150: T = 633.6176231525999 K, F = -4.529014613341431e-8, relative_change = 1.2329118819101383e-12 Iter 155: T = 633.6176231502137 K, F = -1.8940406243395103e-8, relative_change = 5.156055764827145e-13 Converged in 160 iterations to T = 633.6176231492158 K Iter 1: T = 976.3482050011196 K, F = -5389.083989160212, relative_change = 0.023651794998880354 Iter 2: T = 954.8598299854908 K, F = -4556.937612755961, relative_change = 0.022008925612357906 Iter 3: T = 935.4439801257773 K, F = -3851.543395980811, relative_change = 0.02033371731640287 Iter 5: T = 902.4117263529209 K, F = -2747.603621060143, relative_change = 0.016979258937001196 Iter 10: T = 847.9593615523927 K, F = -1171.7744378856985, relative_change = 0.009570966856327067 Iter 15: T = 821.0446172170161 K, F = -495.22821840754324, relative_change = 0.004693279272739341 Iter 20: T = 808.801169711261 K, F = -208.14980194794614, relative_change = 0.0021165786464173303 Iter 25: T = 803.4795736145024 K, F = -87.24460612189006, relative_change = 0.0009152778100887145 Iter 30: T = 801.2162876289761 K, F = -36.521617839418525, relative_change = 0.00038831116888259434 Iter 35: T = 800.2629529086012 K, F = -15.279951838228188, relative_change = 0.00016338440424126086 Iter 40: T = 799.863051983533 K, F = -6.391343902036286, relative_change = 6.850366518690993e-5 Iter 45: T = 799.6955967493401 K, F = -2.6731266219726693, relative_change = 2.8679660334120426e-5 Iter 50: T = 799.6255278263452 K, F = -1.1179667859554412, relative_change = 1.1999538487480526e-5 Iter 55: T = 799.5962176632123 K, F = -0.46755288908621284, relative_change = 5.019288740266211e-6 Iter 60: T = 799.5839586651663 K, F = -0.19553722140454544, relative_change = 2.099290673184085e-6 Iter 65: T = 799.5788316067476 K, F = -0.08177617949565719, relative_change = 8.779771486103529e-7 Iter 70: T = 799.5766873748738 K, F = -0.03419980605793749, relative_change = 3.6718555184444113e-7 Iter 75: T = 799.5757906254078 K, F = -0.014302772775167782, relative_change = 1.5356226141766787e-7 Iter 80: T = 799.5754155930067 K, F = -0.005981591337576253, relative_change = 6.422172528556893e-8 Iter 85: T = 799.5752587497916 K, F = -0.002501573099583987, relative_change = 2.685831936052575e-8 Iter 90: T = 799.5751931560534 K, F = -0.0010461877750036486, relative_change = 1.1232474618476158e-8 Iter 95: T = 799.575165723963 K, F = -0.0004375282277495618, relative_change = 4.697555862605827e-9 Iter 100: T = 799.5751542515342 K, F = -0.00018297953103108, relative_change = 1.9645741073070158e-9 Iter 105: T = 799.5751494536272 K, F = -7.652422504911272e-5, relative_change = 8.216083764192493e-10 Iter 110: T = 799.5751474470852 K, F = -3.200334327990717e-5, relative_change = 3.436064227960655e-10 Iter 115: T = 799.5751466079254 K, F = -1.338418054186441e-5, relative_change = 1.437003122081499e-10 Iter 120: T = 799.5751462569787 K, F = -5.597423232917009e-6, relative_change = 6.009717705886596e-11 Iter 125: T = 799.5751461102087 K, F = -2.3409100580185083e-6, relative_change = 2.513336592653134e-11 Iter 130: T = 799.5751460488277 K, F = -9.789982063912461e-7, relative_change = 1.0511091653162523e-11 Iter 135: T = 799.5751460231573 K, F = -4.094271023324936e-7, relative_change = 4.3958464586232025e-12 Iter 140: T = 799.5751460124217 K, F = -1.7122646700507005e-7, relative_change = 1.8383865024247126e-12 Iter 145: T = 799.5751460079321 K, F = -7.160890458379754e-8, relative_change = 7.688346664297756e-13 Iter 150: T = 799.5751460060544 K, F = -2.994813408374597e-8, relative_change = 3.2154050969714474e-13 Converged in 153 iterations to T = 799.5751460055046 K Iter 1: T = 965.2680978573337 K, F = -7913.6969417747305, relative_change = 0.03473190214266632 Iter 2: T = 932.5153850535673 K, F = -6711.948230827129, relative_change = 0.033931208206786946 Iter 3: T = 901.7124767813799 K, F = -5691.461703985331, relative_change = 0.03303206442048996 Iter 5: T = 845.8426783600062 K, F = -4089.261874612374, relative_change = 0.03092051618246464 Iter 10: T = 738.1079303987384 K, F = -1779.0569485905514, relative_change = 0.023878905634137984 Iter 15: T = 670.9461957920064 K, F = -765.8173088517865, relative_change = 0.015572881228610344 Iter 20: T = 634.3141592585373 K, F = -326.01546121846025, relative_change = 0.008538174819712354 Iter 25: T = 616.5184107215043 K, F = -137.61982331978774, relative_change = 0.004111210396324102 Iter 30: T = 608.5051132811034 K, F = -57.80632945114796, relative_change = 0.0018363260068736224 Iter 35: T = 605.0396648363545 K, F = -24.221925021902685, relative_change = 0.0007905354691967632 Iter 40: T = 603.5691578524643 K, F = -10.138255648489622, relative_change = 0.00033472983860641573 Iter 45: T = 602.9503656448398 K, F = -4.241416631163638, relative_change = 0.0001407215831222022 Iter 50: T = 602.6909058065316 K, F = -1.7740705640300738, relative_change = 5.898073757258e-5 Iter 55: T = 602.5822782494472 K, F = -0.7419829631345117, relative_change = 2.4689134966780228e-5 Iter 60: T = 602.5368281670592 K, F = -0.3103140945571257, relative_change = 1.0329264283904356e-5 Iter 65: T = 602.5178167692735 K, F = -0.12977845260813212, relative_change = 4.320516988699919e-6 Iter 70: T = 602.5098653404733 K, F = -0.054275142306977886, relative_change = 1.8070134411443524e-6 Iter 75: T = 602.5065398468761 K, F = -0.022698555289374256, relative_change = 7.557358780916454e-7 Iter 80: T = 602.5051490663042 K, F = -0.009492814348667777, relative_change = 3.1606149104125304e-7 Iter 85: T = 602.5045674218605 K, F = -0.003970009630952509, relative_change = 1.3218134099900384e-7 Iter 90: T = 602.5043241706134 K, F = -0.001660305667159634, relative_change = 5.527992921760475e-8 Iter 95: T = 602.5042224399328 K, F = -0.0006943596983368661, relative_change = 2.3118746499922844e-8 Iter 100: T = 602.5041798949292 K, F = -0.000290389525560375, relative_change = 9.668539376233957e-9 Iter 105: T = 602.5041621020973 K, F = -0.00012144436911726286, relative_change = 4.043499253820164e-9 Iter 110: T = 602.504154660922 K, F = -5.078948637043945e-5, relative_change = 1.6910398053779653e-9 Iter 115: T = 602.5041515489336 K, F = -2.1240770679442633e-5, relative_change = 7.072130900701942e-10 Iter 120: T = 602.5041502474628 K, F = -8.883143874649502e-6, relative_change = 2.9576496015829144e-10 Iter 125: T = 602.5041497031721 K, F = -3.7150366640759103e-6, relative_change = 1.2369243267560418e-10 Iter 130: T = 602.5041494755432 K, F = -1.5536721379993956e-6, relative_change = 5.172963393160113e-11 Iter 135: T = 602.504149380346 K, F = -6.497634252866646e-7, relative_change = 2.1633923487092777e-11 Iter 140: T = 602.5041493405337 K, F = -2.7173967837024193e-7, relative_change = 9.047593606126457e-12 Iter 145: T = 602.5041493238834 K, F = -1.1364452262574432e-7, relative_change = 3.783803169938014e-12 Iter 150: T = 602.5041493169202 K, F = -4.7527227209354095e-8, relative_change = 1.5824227057140619e-12 Iter 155: T = 602.5041493140081 K, F = -1.9876554346875963e-8, relative_change = 6.617914142567393e-13 Iter 160: T = 602.5041493127902 K, F = -8.312559529599639e-9, relative_change = 2.7676731244440543e-13 Converged in 162 iterations to T = 602.5041493125325 K Iter 1: T = 964.5951303551906 K, F = -8067.033227295405, relative_change = 0.03540486964480947 Iter 2: T = 931.1318040182932 K, F = -6843.241995391814, relative_change = 0.034691577101965236 Iter 3: T = 899.5796880283833 K, F = -5803.985775628465, relative_change = 0.033885767679448814 Iter 5: T = 842.0968224232126 K, F = -4172.148461380111, relative_change = 0.03197300151408302 Iter 10: T = 729.8120612570643 K, F = -1818.2037697854603, relative_change = 0.025376548934293232 Iter 15: T = 658.106016893155 K, F = -784.3569780135526, relative_change = 0.01712307577468566 Iter 20: T = 618.0034391730396 K, F = -334.5670174982402, relative_change = 0.009679541778324906 Iter 25: T = 598.1458779777613 K, F = -141.41611566961745, relative_change = 0.004755636785554676 Iter 30: T = 589.1029854394751 K, F = -59.442763914860635, relative_change = 0.002146908518876887 Iter 35: T = 585.1703802493004 K, F = -24.915837908063743, relative_change = 0.0009288423639881159 Iter 40: T = 583.4974237701675 K, F = -10.430210177064144, relative_change = 0.0003941498754533655 Iter 45: T = 582.7926707653046 K, F = -4.363828414079661, relative_change = 0.0001658561669780395 Iter 50: T = 582.4970304820591 K, F = -1.8253198503091586, relative_change = 6.954269441117666e-5 Iter 55: T = 582.3732311759463 K, F = -0.7634257202494937, relative_change = 2.9115128494126524e-5 Iter 60: T = 582.3214289527008 K, F = -0.31928340972576424, relative_change = 1.218182017015928e-5 Iter 65: T = 582.2997597642282 K, F = -0.13352982451448786, relative_change = 5.0955497761117295e-6 Iter 70: T = 582.2906965969527 K, F = -0.05584406283129281, relative_change = 2.13118896371629e-6 Iter 75: T = 582.2869061227932 K, F = -0.023354705684419996, relative_change = 8.913182718783485e-7 Iter 80: T = 582.2853208751056 K, F = -0.00976722587015566, relative_change = 3.7276512235144467e-7 Iter 85: T = 582.2846579010214 K, F = -0.004084772084850141, relative_change = 1.5589573130061846e-7 Iter 90: T = 582.2843806365426 K, F = -0.001708300744370117, relative_change = 6.519761495386291e-8 Iter 95: T = 582.2842646810865 K, F = -0.0007144318210187683, relative_change = 2.7266448892023782e-8 Iter 100: T = 582.2842161871056 K, F = -0.00029878392793591946, relative_change = 1.1403159393715046e-8 Iter 105: T = 582.2841959063393 K, F = -0.000124955008339922, relative_change = 4.768938286814759e-9 Iter 110: T = 582.2841874246799 K, F = -5.225767637540013e-5, relative_change = 1.9944270681109756e-9 Iter 115: T = 582.2841838775485 K, F = -2.1854783754937657e-5, relative_change = 8.340932199048978e-10 Iter 120: T = 582.2841823940959 K, F = -9.139932449442334e-6, relative_change = 3.4882778362943853e-10 Iter 125: T = 582.2841817736982 K, F = -3.822428470967587e-6, relative_change = 1.4588392920284764e-10 Iter 130: T = 582.2841815142403 K, F = -1.5985848415001058e-6, relative_change = 6.101038648810617e-11 Iter 135: T = 582.284181405732 K, F = -6.68547026683175e-7, relative_change = 2.551526291299388e-11 Iter 140: T = 582.2841813603527 K, F = -2.795945703848446e-7, relative_change = 1.0670796055222886e-11 Iter 145: T = 582.2841813413744 K, F = -1.1692956308761993e-7, relative_change = 4.462645748129148e-12 Iter 150: T = 582.2841813334375 K, F = -4.890088389775116e-8, relative_change = 1.8663143507745077e-12 Iter 155: T = 582.2841813301181 K, F = -2.045007302386992e-8, relative_change = 7.804821041614354e-13 Iter 160: T = 582.28418132873 K, F = -8.552943353556941e-9, relative_change = 3.2642520237662254e-13 Converged in 163 iterations to T = 582.2841813283236 K Iter 1: T = 964.3021993725755 K, F = -8133.777830333541, relative_change = 0.035697800627424496 Iter 2: T = 930.5285851884881 K, F = -6900.4062727616765, relative_change = 0.03502389002748533 Iter 3: T = 898.6481375171213 K, F = -5852.993763780623, relative_change = 0.03426057853441339 Iter 5: T = 840.4536825956233 K, F = -4208.282073101469, relative_change = 0.03244013573046464 Iter 10: T = 726.1193214268708 K, F = -1835.3531424447187, relative_change = 0.026066919689494997 Iter 15: T = 652.286730185795 K, F = -792.555873137273, relative_change = 0.0178730481565275 Iter 20: T = 610.492894707776 K, F = -338.39215024307924, relative_change = 0.010256898496433206 Iter 25: T = 589.5980852062934 K, F = -143.12946525276675, relative_change = 0.0050915685938163775 Iter 30: T = 580.027162333415 K, F = -60.1851591054473, relative_change = 0.002311444834580114 Iter 35: T = 575.8526340917105 K, F = -25.23143805871917, relative_change = 0.0010026705584646855 Iter 40: T = 574.0743702273792 K, F = -10.563144607283915, relative_change = 0.00042597438091464723 Iter 45: T = 573.3248169883143 K, F = -4.419592730018027, relative_change = 0.00017933711806319047 Iter 50: T = 573.0103050538154 K, F = -1.8486711065997041, relative_change = 7.521102250626914e-5 Iter 55: T = 572.8785894588725 K, F = -0.7731967555150963, relative_change = 3.149104550157994e-5 Iter 60: T = 572.8234723464886 K, F = -0.32337069514712397, relative_change = 1.317639587709499e-5 Iter 65: T = 572.8004160955987 K, F = -0.13523933743179806, relative_change = 5.5116575896860114e-6 Iter 70: T = 572.7907727134099 K, F = -0.056559029776247854, relative_change = 2.305238982622238e-6 Iter 75: T = 572.7867395639032 K, F = -0.02365371833660282, relative_change = 9.641130997658046e-7 Iter 80: T = 572.7850528225445 K, F = -0.009892277396903237, relative_change = 4.0320966882809925e-7 Iter 85: T = 572.784347401905 K, F = -0.00413707027693605, relative_change = 1.6862815811338736e-7 Iter 90: T = 572.7840523856494 K, F = -0.0017301724993881717, relative_change = 7.052249482946329e-8 Iter 95: T = 572.7839290061671 K, F = -0.0007235788543314414, relative_change = 2.9493381938393743e-8 Iter 100: T = 572.783877407366 K, F = -0.000302609327381409, relative_change = 1.2334490214733624e-8 Iter 105: T = 572.7838558281263 K, F = -0.0001265548362478497, relative_change = 5.1584321039234436e-9 Iter 110: T = 572.7838468034297 K, F = -5.292674356111027e-5, relative_change = 2.1573180584483107e-9 Iter 115: T = 572.7838430291937 K, F = -2.2134596708522913e-5, relative_change = 9.0221622342278e-10 Iter 120: T = 572.7838414507631 K, F = -9.256953044045613e-6, relative_change = 3.773176189000846e-10 Iter 125: T = 572.7838407906445 K, F = -3.871367801444592e-6, relative_change = 1.5779871430609703e-10 Iter 130: T = 572.7838405145751 K, F = -1.6190521850423245e-6, relative_change = 6.599330440395503e-11 Iter 135: T = 572.7838403991195 K, F = -6.771072913469567e-7, relative_change = 2.7599201587014054e-11 Iter 140: T = 572.7838403508346 K, F = -2.831736823916131e-7, relative_change = 1.1542288271704863e-11 Iter 145: T = 572.7838403306413 K, F = -1.1842639063841531e-7, relative_change = 4.827113623027956e-12 Iter 150: T = 572.7838403221963 K, F = -4.9527844492303075e-8, relative_change = 2.018777500487597e-12 Iter 155: T = 572.7838403186644 K, F = -2.0713163573216065e-8, relative_change = 8.442779817170066e-13 Iter 160: T = 572.7838403171874 K, F = -8.662759842792411e-9, relative_change = 3.5309803692754397e-13 Converged in 163 iterations to T = 572.783840316755 K Iter 1: T = 980.0269629986531 K, F = -4550.8754800199595, relative_change = 0.019973037001346946 Iter 2: T = 962.1025946121802 K, F = -3844.2581223096404, relative_change = 0.01828966861445175 Iter 3: T = 946.1068148898588 K, F = -3245.844099429376, relative_change = 0.016625856547834397 Iter 5: T = 919.3803687384922 K, F = -2310.790034410743, relative_change = 0.013446167855518729 Iter 10: T = 876.901450524741 K, F = -981.1343715535096, relative_change = 0.007078005525304291 Iter 15: T = 856.7684250641319 K, F = -413.47595911035256, relative_change = 0.003323024328277018 Iter 20: T = 847.8275199190302 K, F = -173.52977714717852, relative_change = 0.0014652556297430634 Iter 25: T = 843.9867311785731 K, F = -72.68366976581245, relative_change = 0.0006270760535186481 Iter 30: T = 842.3618201406787 K, F = -30.41705367464175, relative_change = 0.0002648361988616768 Iter 35: T = 841.6789332455871 K, F = -12.72428011149278, relative_change = 0.0001112164413070959 Iter 40: T = 841.3927542989354 K, F = -5.322061069059345, relative_change = 4.6592773939589916e-5 Iter 45: T = 841.2729677137709 K, F = -2.2258572480329137, relative_change = 1.9499810268881963e-5 Iter 50: T = 841.2228534675517 K, F = -0.9308989404663773, relative_change = 8.157532033084633e-6 Iter 55: T = 841.2018919295331 K, F = -0.3893163530730719, relative_change = 3.412011003595948e-6 Iter 60: T = 841.1931250108565 K, F = -0.16281732528678416, relative_change = 1.4270196158111981e-6 Iter 65: T = 841.1894584840112 K, F = -0.06809225079867498, relative_change = 5.968099155618901e-7 Iter 70: T = 841.1879250817736 K, F = -0.028477010122888613, relative_change = 2.495953550804814e-7 Iter 75: T = 841.1872837916852 K, F = -0.011909428802182598, relative_change = 1.0438416419782858e-7 Iter 80: T = 841.1870155959941 K, F = -0.004980665891720637, relative_change = 4.365477506333994e-8 Iter 85: T = 841.1869034332626 K, F = -0.0020829740524750395, relative_change = 1.8256960701614794e-8 Iter 90: T = 841.1868565254529 K, F = -0.000871124638587295, relative_change = 7.63528114844677e-9 Iter 95: T = 841.1868369080439 K, F = -0.0003643147293104221, relative_change = 3.1931661331344884e-9 Iter 100: T = 841.1868287038088 K, F = -0.00015236077106473012, relative_change = 1.3354202771203257e-9 Iter 105: T = 841.1868252726996 K, F = -6.371909327107517e-5, relative_change = 5.584887123622958e-10 Iter 110: T = 841.1868238377687 K, F = -2.6648086562719442e-5, relative_change = 2.335666580956404e-10 Iter 115: T = 841.1868232376636 K, F = -1.1144548053287906e-5, relative_change = 9.768036618719075e-11 Iter 120: T = 841.1868229866924 K, F = -4.660785306809245e-6, relative_change = 4.085111517836932e-11 Iter 125: T = 841.1868228817333 K, F = -1.9491963578754934e-6, relative_change = 1.70844267063328e-11 Iter 130: T = 841.1868228378381 K, F = -8.151777279863381e-7, relative_change = 7.144915951442227e-12 Iter 135: T = 841.1868228194805 K, F = -3.409161437595287e-7, relative_change = 2.98808113897041e-12 Iter 140: T = 841.1868228118033 K, F = -1.4257548253127084e-7, relative_change = 1.2496536701128315e-12 Iter 145: T = 841.1868228085925 K, F = -5.96274385422646e-8, relative_change = 5.226259528792369e-13 Converged in 150 iterations to T = 841.1868228072498 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 7%|██ | ETA: 0:00:15 Bin 1 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 1 ray tracing: 19%|█████▊ | ETA: 0:00:13 Bin 1 ray tracing: 26%|███████▋ | ETA: 0:00:12 Bin 1 ray tracing: 32%|█████████▋ | ETA: 0:00:11 Bin 1 ray tracing: 38%|███████████▍ | ETA: 0:00:10 Bin 1 ray tracing: 44%|█████████████▎ | ETA: 0:00:09 Bin 1 ray tracing: 51%|███████████████▏ | ETA: 0:00:08 Bin 1 ray tracing: 57%|█████████████████ | ETA: 0:00:07 Bin 1 ray tracing: 63%|██████████████████▉ | ETA: 0:00:06 Bin 1 ray tracing: 69%|████████████████████▉ | ETA: 0:00:05 Bin 1 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:04 Bin 1 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:03 Bin 1 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 1 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 6%|██ | ETA: 0:00:15 Bin 2 ray tracing: 13%|████ | ETA: 0:00:13 Bin 2 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 2 ray tracing: 26%|████████ | ETA: 0:00:11 Bin 2 ray tracing: 33%|█████████▉ | ETA: 0:00:10 Bin 2 ray tracing: 40%|███████████▉ | ETA: 0:00:09 Bin 2 ray tracing: 46%|█████████████▉ | ETA: 0:00:08 Bin 2 ray tracing: 53%|███████████████▉ | ETA: 0:00:07 Bin 2 ray tracing: 60%|██████████████████ | ETA: 0:00:06 Bin 2 ray tracing: 66%|███████████████████▉ | ETA: 0:00:05 Bin 2 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:04 Bin 2 ray tracing: 79%|███████████████████████▉ | ETA: 0:00:03 Bin 2 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 2 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 2 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 7%|██ | ETA: 0:00:14 Bin 3 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 3 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 3 ray tracing: 26%|███████▉ | ETA: 0:00:12 Bin 3 ray tracing: 33%|█████████▉ | ETA: 0:00:10 Bin 3 ray tracing: 39%|███████████▉ | ETA: 0:00:09 Bin 3 ray tracing: 46%|█████████████▉ | ETA: 0:00:08 Bin 3 ray tracing: 53%|███████████████▉ | ETA: 0:00:07 Bin 3 ray tracing: 60%|█████████████████▉ | ETA: 0:00:06 Bin 3 ray tracing: 66%|███████████████████▉ | ETA: 0:00:05 Bin 3 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:04 Bin 3 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:03 Bin 3 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 3 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 3 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 7%|██▎ | ETA: 0:00:13 Bin 4 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 4 ray tracing: 22%|██████▌ | ETA: 0:00:11 Bin 4 ray tracing: 29%|████████▋ | ETA: 0:00:10 Bin 4 ray tracing: 36%|██████████▉ | ETA: 0:00:09 Bin 4 ray tracing: 43%|█████████████ | ETA: 0:00:08 Bin 4 ray tracing: 50%|███████████████▏ | ETA: 0:00:07 Bin 4 ray tracing: 57%|█████████████████▎ | ETA: 0:00:06 Bin 4 ray tracing: 65%|███████████████████▍ | ETA: 0:00:05 Bin 4 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:04 Bin 4 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 4 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 4 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 8%|██▎ | ETA: 0:00:13 Bin 5 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 5 ray tracing: 22%|██████▋ | ETA: 0:00:11 Bin 5 ray tracing: 29%|████████▉ | ETA: 0:00:10 Bin 5 ray tracing: 37%|███████████ | ETA: 0:00:09 Bin 5 ray tracing: 44%|█████████████▎ | ETA: 0:00:08 Bin 5 ray tracing: 51%|███████████████▌ | ETA: 0:00:07 Bin 5 ray tracing: 59%|█████████████████▋ | ETA: 0:00:06 Bin 5 ray tracing: 66%|███████████████████▉ | ETA: 0:00:05 Bin 5 ray tracing: 73%|██████████████████████ | ETA: 0:00:04 Bin 5 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 5 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 5 ray tracing: 96%|████████████████████████████▋ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 6 ray tracing: 14%|████▍ | ETA: 0:00:12 Bin 6 ray tracing: 22%|██████▌ | ETA: 0:00:11 Bin 6 ray tracing: 29%|████████▋ | ETA: 0:00:10 Bin 6 ray tracing: 36%|██████████▉ | ETA: 0:00:09 Bin 6 ray tracing: 44%|█████████████▏ | ETA: 0:00:08 Bin 6 ray tracing: 51%|███████████████▍ | ETA: 0:00:07 Bin 6 ray tracing: 59%|█████████████████▋ | ETA: 0:00:06 Bin 6 ray tracing: 66%|███████████████████▉ | ETA: 0:00:05 Bin 6 ray tracing: 74%|██████████████████████ | ETA: 0:00:04 Bin 6 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 6 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 6 ray tracing: 96%|████████████████████████████▋ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 7%|██▎ | ETA: 0:00:13 Bin 7 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 7 ray tracing: 22%|██████▋ | ETA: 0:00:11 Bin 7 ray tracing: 29%|████████▉ | ETA: 0:00:10 Bin 7 ray tracing: 37%|███████████▏ | ETA: 0:00:09 Bin 7 ray tracing: 44%|█████████████▎ | ETA: 0:00:08 Bin 7 ray tracing: 52%|███████████████▌ | ETA: 0:00:07 Bin 7 ray tracing: 59%|█████████████████▋ | ETA: 0:00:06 Bin 7 ray tracing: 66%|███████████████████▉ | ETA: 0:00:05 Bin 7 ray tracing: 73%|██████████████████████ | ETA: 0:00:04 Bin 7 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 7 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:02 Bin 7 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 8 ray tracing: 14%|████▍ | ETA: 0:00:12 Bin 8 ray tracing: 22%|██████▌ | ETA: 0:00:11 Bin 8 ray tracing: 29%|████████▋ | ETA: 0:00:10 Bin 8 ray tracing: 36%|██████████▊ | ETA: 0:00:09 Bin 8 ray tracing: 43%|█████████████ | ETA: 0:00:08 Bin 8 ray tracing: 51%|███████████████▏ | ETA: 0:00:07 Bin 8 ray tracing: 60%|█████████████████▉ | ETA: 0:00:05 Bin 8 ray tracing: 69%|████████████████████▋ | ETA: 0:00:04 Bin 8 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 8 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 8 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 10%|███ | ETA: 0:00:09 Bin 9 ray tracing: 20%|██████▏ | ETA: 0:00:08 Bin 9 ray tracing: 32%|█████████▌ | ETA: 0:00:07 Bin 9 ray tracing: 43%|████████████▊ | ETA: 0:00:05 Bin 9 ray tracing: 53%|████████████████ | ETA: 0:00:04 Bin 9 ray tracing: 64%|███████████████████▎ | ETA: 0:00:03 Bin 9 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:02 Bin 9 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:01 Bin 9 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 12%|███▍ | ETA: 0:00:08 Bin 10 ray tracing: 23%|██████▊ | ETA: 0:00:07 Bin 10 ray tracing: 35%|██████████ | ETA: 0:00:06 Bin 10 ray tracing: 46%|█████████████▍ | ETA: 0:00:05 Bin 10 ray tracing: 58%|████████████████▊ | ETA: 0:00:04 Bin 10 ray tracing: 70%|████████████████████▏ | ETA: 0:00:03 Bin 10 ray tracing: 81%|███████████████████████▌ | ETA: 0:00:02 Bin 10 ray tracing: 91%|██████████████████████████▌ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2955613274709 K, F = -7451.737461488323, relative_change = 0.03270443867252915 Iter 2: T = 936.6650713102216 K, F = -6316.67590724094, relative_change = 0.031666112449863185 Iter 3: T = 908.0772420408739 K, F = -5353.001592766326, relative_change = 0.03052086615054258 Iter 5: T = 856.8916829742411 K, F = -3840.5795769673027, relative_change = 0.02791482945736546 Iter 10: T = 761.6700904830368 K, F = -1663.059660746368, relative_change = 0.020000456813305045 Iter 15: T = 705.8927177660447 K, F = -712.0625645114767, relative_change = 0.011991672419801598 Iter 20: T = 677.1957190922071 K, F = -301.8010390430352, relative_change = 0.0061435414076209255 Iter 25: T = 663.8102411909199 K, F = -127.05369417017694, relative_change = 0.0028387438200069433 Iter 30: T = 657.9167225526917 K, F = -53.29479088500423, relative_change = 0.001241915719401515 Iter 35: T = 655.3952519419369 K, F = -22.31748624441551, relative_change = 0.0005296149433159358 Iter 40: T = 654.3304061392931 K, F = -9.338589959471228, relative_change = 0.00022333288264425632 Iter 45: T = 653.8832350957367 K, F = -3.906417013780474, relative_change = 9.372652002305499e-5 Iter 50: T = 653.6958986533348 K, F = -1.6338693779732607, relative_change = 3.9254867680332654e-5 Iter 55: T = 653.6174954416723 K, F = -0.6833315526077551, relative_change = 1.6426900927677697e-5 Iter 60: T = 653.5846963219277 K, F = -0.2857822923003637, relative_change = 6.871684862829229e-6 Iter 65: T = 653.5709775953328 K, F = -0.11951842063423707, relative_change = 2.8741283916145706e-6 Iter 70: T = 653.565239955111 K, F = -0.04998418006152372, relative_change = 1.2020486459921643e-6 Iter 75: T = 653.5628403521122 K, F = -0.02090400713151086, relative_change = 5.027205144058284e-7 Iter 80: T = 653.561836800152 K, F = -0.00874230999077552, relative_change = 2.1024536959813007e-7 Iter 85: T = 653.5614171011058 K, F = -0.0036561392412494675, relative_change = 8.792741244318516e-8 Iter 90: T = 653.561241577667 K, F = -0.0015290412332373826, relative_change = 3.677234432095304e-8 Iter 95: T = 653.5611681716189 K, F = -0.0006394633280739637, relative_change = 1.537864234378774e-8 Iter 100: T = 653.5611374723242 K, F = -0.00026743120409761234, relative_change = 6.431533410259996e-9 Iter 105: T = 653.561124633511 K, F = -0.00011184292382926397, relative_change = 2.6897443438312096e-9 Iter 110: T = 653.5611192641658 K, F = -4.677404675046404e-5, relative_change = 1.1248832585797238e-9 Iter 115: T = 653.5611170186413 K, F = -1.9561464753625746e-5, relative_change = 4.704396156268491e-10 Iter 120: T = 653.5611160795362 K, F = -8.18083804571268e-6, relative_change = 1.9674346377083196e-10 Iter 125: T = 653.5611156867913 K, F = -3.4213245664882486e-6, relative_change = 8.228047591942506e-11 Iter 130: T = 653.5611155225406 K, F = -1.4308390268724658e-6, relative_change = 3.4410683332760344e-11 Iter 135: T = 653.5611154538491 K, F = -5.983935239539662e-7, relative_change = 1.4390948027512566e-11 Iter 140: T = 653.5611154251213 K, F = -2.5025494487795896e-7, relative_change = 6.018457356161934e-12 Iter 145: T = 653.5611154131071 K, F = -1.046585779151954e-7, relative_change = 2.51696600241588e-12 Iter 150: T = 653.5611154080827 K, F = -4.3769840307739116e-8, relative_change = 1.0526342148376226e-12 Iter 155: T = 653.5611154059814 K, F = -1.8305343463254076e-8, relative_change = 4.4023077782770493e-13 Converged in 159 iterations to T = 653.5611154052228 K Iter 1: T = 970.3850744717728 K, F = -6747.7889526734325, relative_change = 0.029614925528227268 Iter 2: T = 942.9352633930524 K, F = -5715.1567700756195, relative_change = 0.02828754460559138 Iter 3: T = 917.6055594492418 K, F = -4838.800025153824, relative_change = 0.026862611811403023 Iter 5: T = 873.0891883875911 K, F = -3464.485771040846, relative_change = 0.02376558016164272 Iter 10: T = 794.115869442005 K, F = -1491.093357321323, relative_change = 0.015459947590970026 Iter 15: T = 751.1196134837857 K, F = -634.682621848422, relative_change = 0.008457749560685759 Iter 20: T = 730.2602198499375 K, F = -267.8918835282401, relative_change = 0.004066782879000891 Iter 25: T = 720.874660651823 K, F = -112.5208652208615, relative_change = 0.0018151598864623384 Iter 30: T = 716.8173014095488 K, F = -47.147278031627685, relative_change = 0.0007811605302894913 Iter 35: T = 715.0959203486443 K, F = -19.73362905633487, relative_change = 0.00033071164609562256 Iter 40: T = 714.3716131587005 K, F = -8.255679901510545, relative_change = 0.00013902360864880304 Iter 45: T = 714.0679203172656 K, F = -3.453122910309018, relative_change = 5.8267525127247285e-5 Iter 50: T = 713.940775481013 K, F = -1.4442246717666163, relative_change = 2.4390316334067175e-5 Iter 55: T = 713.8875780083241 K, F = -0.6040073089123844, relative_change = 1.0204199307725767e-5 Iter 60: T = 713.865325991763 K, F = -0.2526057473708933, relative_change = 4.268196612790716e-6 Iter 65: T = 713.8560191981803 K, F = -0.10564320862889931, relative_change = 1.7851295116223181e-6 Iter 70: T = 713.8521268574729 K, F = -0.044181333403256584, relative_change = 7.465832460292728e-7 Iter 75: T = 713.8504990116315 K, F = -0.01847717558986217, relative_change = 3.1223366156871817e-7 Iter 80: T = 713.8498182231295 K, F = -0.007727378000530916, relative_change = 1.3058048136693575e-7 Iter 85: T = 713.8495335085602 K, F = -0.003231682201358499, relative_change = 5.461042785743664e-8 Iter 90: T = 713.849414437407 K, F = -0.0013515281678687652, relative_change = 2.2838752552148357e-8 Iter 95: T = 713.8493646404075 K, F = -0.0005652252345799136, relative_change = 9.551442480570619e-9 Iter 100: T = 713.8493438147042 K, F = -0.000236383947084029, relative_change = 3.994527932200044e-9 Iter 105: T = 713.8493351051454 K, F = -9.885858911184986e-5, relative_change = 1.6705593732390045e-9 Iter 110: T = 713.8493314627038 K, F = -4.134384167009397e-5, relative_change = 6.986478820515363e-10 Iter 115: T = 713.8493299393914 K, F = -1.7290488036780793e-5, relative_change = 2.921828858009716e-10 Iter 120: T = 713.8493293023239 K, F = -7.231089374504229e-6, relative_change = 1.22194386035277e-10 Iter 125: T = 713.8493290358947 K, F = -3.0241284110221756e-6, relative_change = 5.110315970319244e-11 Iter 130: T = 713.8493289244708 K, F = -1.2647261413700761e-6, relative_change = 2.137194366340515e-11 Iter 135: T = 713.8493288778719 K, F = -5.289238512729e-7, relative_change = 8.938006723655808e-12 Iter 140: T = 713.8493288583837 K, F = -2.2120108089662693e-7, relative_change = 3.7379610388771775e-12 Iter 145: T = 713.8493288502335 K, F = -9.250876809030473e-8, relative_change = 1.5632571481713465e-12 Iter 150: T = 713.8493288468251 K, F = -3.868820364072434e-8, relative_change = 6.537716601480118e-13 Iter 155: T = 713.8493288453996 K, F = -1.6179892758927394e-8, relative_change = 2.734155208743438e-13 Converged in 157 iterations to T = 713.849328845098 K Iter 1: T = 974.4585273578597 K, F = -5819.648837724487, relative_change = 0.025541472642140305 Iter 2: T = 951.105971168537 K, F = -4923.570745750416, relative_change = 0.023964648606073204 Iter 3: T = 929.8672357865469 K, F = -4163.6637656378625, relative_change = 0.022330566756821144 Iter 5: T = 893.3763105853767 K, F = -2973.554271614829, relative_change = 0.018975320759034714 Iter 10: T = 831.9394198852393 K, F = -1271.435412009745, relative_change = 0.011137453362207804 Iter 15: T = 800.7722532222733 K, F = -538.337516617844, relative_change = 0.0056174259167106125 Iter 20: T = 786.365506204726 K, F = -226.49960239158048, relative_change = 0.002572730357345501 Iter 25: T = 780.0523058424606 K, F = -94.98199200025971, relative_change = 0.0011207165188564544 Iter 30: T = 777.3572203012964 K, F = -39.76916019362451, relative_change = 0.0004770142799565625 Iter 35: T = 776.220152653489 K, F = -16.640202334095466, relative_change = 0.0002009859488572377 Iter 40: T = 775.7428493419224 K, F = -6.960585935339082, relative_change = 8.431870818349492e-5 Iter 45: T = 775.5429241008849 K, F = -2.9112552471347017, relative_change = 3.530947502529765e-5 Iter 50: T = 775.4592583792567 K, F = -1.2175663754090238, relative_change = 1.4774972479391224e-5 Iter 55: T = 775.4242588148322 K, F = -0.5092086142119806, relative_change = 6.180492745876899e-6 Iter 60: T = 775.4096199060548 K, F = -0.2129584908154618, relative_change = 2.585004810943934e-6 Iter 65: T = 775.4034974469184 K, F = -0.0890620232364503, relative_change = 1.0811234282545266e-6 Iter 70: T = 775.4009369101993 K, F = -0.03724684355733454, relative_change = 4.52146345430756e-7 Iter 75: T = 775.3998660542107 K, F = -0.015577082108315432, relative_change = 1.890943335503636e-7 Iter 80: T = 775.3994182078817 K, F = -0.006514523045110798, relative_change = 7.908174153418103e-8 Iter 85: T = 775.3992309129246 K, F = -0.0027244515609006204, relative_change = 3.3072969495147e-8 Iter 90: T = 775.3991525838888 K, F = -0.0011393982166398864, relative_change = 1.383151791979334e-8 Iter 95: T = 775.3991198257423 K, F = -0.0004765099482455515, relative_change = 5.784507222841592e-9 Iter 100: T = 775.3991061258928 K, F = -0.0001992821522966981, relative_change = 2.4191502203876214e-9 Iter 105: T = 775.3991003964519 K, F = -8.334217731065241e-5, relative_change = 1.0117175641576172e-9 Iter 110: T = 775.399098000331 K, F = -3.4854692864239034e-5, relative_change = 4.231123618411832e-10 Iter 115: T = 775.3990969982449 K, F = -1.4576649861042235e-5, relative_change = 1.76950656613459e-10 Iter 120: T = 775.3990965791604 K, F = -6.096128240873355e-6, relative_change = 7.400286815431167e-11 Iter 125: T = 775.3990964038943 K, F = -2.549473408497427e-6, relative_change = 3.094888054519887e-11 Iter 130: T = 775.3990963305959 K, F = -1.0662202869493598e-6, relative_change = 1.2943192190407394e-11 Iter 135: T = 775.3990962999417 K, F = -4.459060547468141e-7, relative_change = 5.4129975176647496e-12 Iter 140: T = 775.3990962871218 K, F = -1.8648505839546914e-7, relative_change = 2.2638023133120844e-12 Iter 145: T = 775.3990962817603 K, F = -7.799101287009336e-8, relative_change = 9.467580774448363e-13 Iter 150: T = 775.3990962795181 K, F = -3.2618772904946525e-8, relative_change = 3.959698122649231e-13 Converged in 154 iterations to T = 775.3990962787086 K Iter 1: T = 970.3915945790395 K, F = -6746.303340030477, relative_change = 0.0296084054209605 Iter 2: T = 942.9484287508085 K, F = -5713.888361467139, relative_change = 0.028280506531114382 Iter 3: T = 917.6254555974351 K, F = -4837.716823009287, relative_change = 0.02685509873209129 Iter 5: T = 873.1226001696308 K, F = -3463.6955774057406, relative_change = 0.02375732663770095 Iter 10: T = 794.1805467544011 K, F = -1490.7357985474896, relative_change = 0.015451722921686749 Iter 15: T = 751.2070391866474 K, F = -634.5238703479556, relative_change = 0.00845189850366529 Iter 20: T = 730.3607339492378 K, F = -267.82307964163994, relative_change = 0.004063553742391357 Iter 25: T = 720.9815947800713 K, F = -112.49157089133625, relative_change = 0.0018136223018329475 Iter 30: T = 716.9271232438922 K, F = -47.13492662369283, relative_change = 0.0007804796793073772 Iter 35: T = 715.2069887330822 K, F = -19.728445266660366, relative_change = 0.00033041986065517645 Iter 40: T = 714.4832099410147 K, F = -8.253508722147641, relative_change = 0.00013890031455936533 Iter 45: T = 714.1797393405386 K, F = -3.4522143231841476, relative_change = 5.821573812086278e-5 Iter 50: T = 714.0526876698221 K, F = -1.4438445890648592, relative_change = 2.4368619033753586e-5 Iter 55: T = 713.9995291989668 K, F = -0.6038483361493829, relative_change = 1.0195118340485746e-5 Iter 60: T = 713.9772935002494 K, F = -0.25253925997545185, relative_change = 4.264397636502963e-6 Iter 65: T = 713.9679935321756 K, F = -0.10561540226559551, relative_change = 1.7835405231242848e-6 Iter 70: T = 713.964104046186 K, F = -0.04416970435450229, relative_change = 7.459186750936401e-7 Iter 75: T = 713.9624773942581 K, F = -0.01847231216390588, relative_change = 3.119557235637016e-7 Iter 80: T = 713.9617971050715 K, F = -0.007725344053861272, relative_change = 1.3046424322725304e-7 Iter 85: T = 713.961512599323 K, F = -0.003230831580812832, relative_change = 5.4561815494161126e-8 Iter 90: T = 713.9613936155012 K, F = -0.0013511724261902058, relative_change = 2.2818422214274492e-8 Iter 95: T = 713.961343855025 K, F = -0.0005650764584456125, relative_change = 9.542940072591844e-9 Iter 100: T = 713.9613230445959 K, F = -0.00023632172570386967, relative_change = 3.99097209856697e-9 Iter 105: T = 713.9613143414252 K, F = -9.883256676102015e-5, relative_change = 1.669072270400096e-9 Iter 110: T = 713.9613107016553 K, F = -4.13329598792922e-5, relative_change = 6.980259758849108e-10 Iter 115: T = 713.9613091794599 K, F = -1.728593699423797e-5, relative_change = 2.91922794718959e-10 Iter 120: T = 713.9613085428598 K, F = -7.229185537305227e-6, relative_change = 1.2208560376301788e-10 Iter 125: T = 713.9613082766259 K, F = -3.023332212914731e-6, relative_change = 5.105766581041141e-11 Iter 130: T = 713.9613081652838 K, F = -1.2643934486078479e-6, relative_change = 2.1352922422504314e-11 Iter 135: T = 713.9613081187192 K, F = -5.287847151258518e-7, relative_change = 8.930051809606003e-12 Iter 140: T = 713.9613080992453 K, F = -2.2114493436475868e-7, relative_change = 3.734668694225888e-12 Iter 145: T = 713.9613080911012 K, F = -9.248684107454608e-8, relative_change = 1.5619064981067683e-12 Iter 150: T = 713.9613080876951 K, F = -3.8678950264880996e-8, relative_change = 6.53205397201797e-13 Iter 155: T = 713.9613080862706 K, F = -1.6176699424441665e-8, relative_change = 2.731901279816024e-13 Converged in 157 iterations to T = 713.9613080859692 K Iter 1: T = 969.3658296196975 K, F = -6980.024861770941, relative_change = 0.030634170380302552 Iter 2: T = 940.8737426130517 K, F = -5913.492414098732, relative_change = 0.02939250191831483 Iter 3: T = 914.4844352555424 K, F = -5008.231403163733, relative_change = 0.028047660554560018 Iter 5: T = 867.827086569409 K, F = -3588.1908225166994, relative_change = 0.025080930594221704 Iter 10: T = 783.8199432769169 K, F = -1547.2516523254421, relative_change = 0.016809282160260494 Iter 15: T = 737.0743562470902 K, F = -659.7143842458968, relative_change = 0.009443077604013271 Iter 20: T = 714.0183404712284 K, F = -278.77421449615446, relative_change = 0.004620040815759021 Iter 25: T = 703.5436249539641 K, F = -117.1624089789389, relative_change = 0.0020810164620787084 Iter 30: T = 698.9937186057658 K, F = -49.10598349927957, relative_change = 0.0008993862237350423 Iter 35: T = 697.0591962753343 K, F = -20.55599846060323, relative_change = 0.0003814733214095857 Iter 40: T = 696.2444451012454 K, F = -8.600178180042178, relative_change = 0.00016049011998978683 Iter 45: T = 695.9026949215718 K, F = -3.597297361971285, relative_change = 6.728710601000107e-5 Iter 50: T = 695.759593058937 K, F = -1.504537903785629, relative_change = 2.8169801760815858e-5 Iter 55: T = 695.6997149743684 K, F = -0.6292341326726822, relative_change = 1.1786120384758081e-5 Iter 60: T = 695.6746677863937 K, F = -0.26315645058469744, relative_change = 4.930001624626285e-6 Iter 65: T = 695.6641917982896 K, F = -0.11005573392837792, relative_change = 2.0619439406803227e-6 Iter 70: T = 695.6598104479034 K, F = -0.04602672083439474, relative_change = 8.623572854389711e-7 Iter 75: T = 695.6579780856283 K, F = -0.01924894156420487, relative_change = 3.606529612378571e-7 Iter 80: T = 695.6572117647313 K, F = -0.008050140255222549, relative_change = 1.5083022299263968e-7 Iter 85: T = 695.6568912792867 K, F = -0.0033666653205164376, relative_change = 6.307914877774316e-8 Iter 90: T = 695.65675724829 K, F = -0.0014079797348072187, relative_change = 2.638047925263171e-8 Iter 95: T = 695.6567011948991 K, F = -0.0005888339560041755, relative_change = 1.1032636006633615e-8 Iter 100: T = 695.6566777526969 K, F = -0.0002462573940991142, relative_change = 4.613980904510367e-9 Iter 105: T = 695.656667948887 K, F = -0.0001029877830657222, relative_change = 1.9296220447926185e-9 Iter 110: T = 695.6566638488166 K, F = -4.307072013287616e-5, relative_change = 8.069909936076097e-10 Iter 115: T = 695.6566621341182 K, F = -1.8012689484647737e-5, relative_change = 3.3749327409674493e-10 Iter 120: T = 695.6566614170108 K, F = -7.5331215324547784e-6, relative_change = 1.411437123146713e-10 Iter 125: T = 695.656661117108 K, F = -3.1504417201677626e-6, relative_change = 5.902799242152843e-11 Iter 130: T = 695.656660991685 K, F = -1.3175533083442659e-6, relative_change = 2.4686229321050117e-11 Iter 135: T = 695.6566609392316 K, F = -5.51015169825142e-7, relative_change = 1.0324050465675598e-11 Iter 140: T = 695.6566609172951 K, F = -2.304426427457429e-7, relative_change = 4.317669646486985e-12 Iter 145: T = 695.6566609081209 K, F = -9.637377806903658e-8, relative_change = 1.8056993764439305e-12 Iter 150: T = 695.6566609042842 K, F = -4.030599654036848e-8, relative_change = 7.55189993378385e-13 Iter 155: T = 695.6566609026795 K, F = -1.685494122050102e-8, relative_change = 3.15801221689051e-13 Converged in 158 iterations to T = 695.6566609022098 K Iter 1: T = 963.530613477916 K, F = -8309.584410399397, relative_change = 0.03646938652208409 Iter 2: T = 928.9368684376793 K, F = -7051.019836041595, relative_change = 0.03590310941483079 Iter 3: T = 896.1850903143405 K, F = -5982.1639347501, relative_change = 0.03525727015057758 Iter 5: T = 836.0881882749876 K, F = -4303.6191052136855, relative_change = 0.03369756524308552 Iter 10: T = 716.1403090606938 K, F = -1880.8601721464868, relative_change = 0.028008874703640867 Iter 15: T = 636.2089506351988 K, F = -814.570604161039, relative_change = 0.020113085799822836 Iter 20: T = 589.3041348977657 K, F = -348.8221441784484, relative_change = 0.012087505720168852 Iter 25: T = 565.1342169956396 K, F = -147.86188474743986, relative_change = 0.006203531829680426 Iter 30: T = 553.8488142988645 K, F = -62.25176954571676, relative_change = 0.002869363878850581 Iter 35: T = 548.8772488052988 K, F = -26.11339638371296, relative_change = 0.001255931274882891 Iter 40: T = 546.7496857367277 K, F = -10.935288769030201, relative_change = 0.0005357103520631998 Iter 45: T = 545.8510915507494 K, F = -4.57582114142696, relative_change = 0.00022592478107792233 Iter 50: T = 545.4737182174371 K, F = -1.9141126943589746, relative_change = 9.481809407061322e-5 Iter 55: T = 545.3156194373357 K, F = -0.8005836653565361, relative_change = 3.971271850037955e-5 Iter 60: T = 545.2494520841633 K, F = -0.3348274626806583, relative_change = 1.6618615001924376e-5 Iter 65: T = 545.2217716033227 K, F = -0.14003126069467392, relative_change = 6.9519032045911685e-6 Iter 70: T = 545.2101938075643 K, F = -0.058563168387641, relative_change = 2.9076838747831725e-6 Iter 75: T = 545.2053515747813 K, F = -0.024491890369754937, relative_change = 1.2160832119745979e-6 Iter 80: T = 545.203326449667 K, F = -0.010242813981738347, relative_change = 5.085901582945586e-7 Iter 85: T = 545.2024795101946 K, F = -0.0042836693939212744, relative_change = 2.1270016340829283e-7 Iter 90: T = 545.2021253085998 K, F = -0.0017914820936534293, relative_change = 8.895404327475773e-8 Iter 95: T = 545.2019771770191 K, F = -0.0007492192753496829, relative_change = 3.720169477904435e-8 Iter 100: T = 545.2019152265805 K, F = -0.0003133324606657273, relative_change = 1.5558202058286363e-8 Iter 105: T = 545.2018893181596 K, F = -0.00013103937890970863, relative_change = 6.50662747032667e-9 Iter 110: T = 545.2018784829474 K, F = -5.480223370915582e-5, relative_change = 2.721149596343477e-9 Iter 115: T = 545.201873951532 K, F = -2.2918948984207432e-5, relative_change = 1.1380173219903996e-9 Iter 120: T = 545.2018720564399 K, F = -9.584978292259683e-6, relative_change = 4.759324485393425e-10 Iter 125: T = 545.2018712638898 K, F = -4.008552645401453e-6, relative_change = 1.9904064784047111e-10 Iter 130: T = 545.2018709324359 K, F = -1.676424699753598e-6, relative_change = 8.32411817375752e-11 Iter 135: T = 545.2018707938179 K, F = -7.011007386314994e-7, relative_change = 3.481245180889616e-11 Iter 140: T = 545.201870735846 K, F = -2.9320812447442e-7, relative_change = 1.4558954435469156e-11 Iter 145: T = 545.2018707116017 K, F = -1.226233570517099e-7, relative_change = 6.0887394290938754e-12 Iter 150: T = 545.2018707014623 K, F = -5.128215491145838e-8, relative_change = 2.5463638099083412e-12 Iter 155: T = 545.2018706972219 K, F = -2.144675537163465e-8, relative_change = 1.0649170615899315e-12 Iter 160: T = 545.2018706954485 K, F = -8.96922738857775e-9, relative_change = 4.4535796254555135e-13 Converged in 164 iterations to T = 545.2018706948085 K Iter 1: T = 966.8178997845806 K, F = -7560.573098409282, relative_change = 0.03318210021541935 Iter 2: T = 935.689934444514 K, F = -6409.762534327985, relative_change = 0.03219630640578978 Iter 3: T = 906.5858540420396 K, F = -5432.668091722162, relative_change = 0.031104406845791858 Iter 5: T = 854.3197213771865 K, F = -3899.0308070806545, relative_change = 0.028601500949563687 Iter 10: T = 756.2987774080758 K, F = -1690.1419185350003, relative_change = 0.02083828310033282 Iter 15: T = 698.1042265290894 K, F = -724.476428461274, relative_change = 0.012716894534497397 Iter 20: T = 667.8051615123138 K, F = -307.33101098831577, relative_change = 0.0066032000024053485 Iter 25: T = 653.5607405151226 K, F = -129.4482208669751, relative_change = 0.003075037809890578 Iter 30: T = 647.2626622147876 K, F = -54.31299344562936, relative_change = 0.001350450414598635 Iter 35: T = 644.5627934884396 K, F = -22.74646530796217, relative_change = 0.000576890814102844 Iter 40: T = 643.4216191824371 K, F = -9.518563354902803, relative_change = 0.00024344914209944735 Iter 45: T = 642.9422171102224 K, F = -3.981784923408307, relative_change = 0.00010220087005287118 Iter 50: T = 642.7413464749956 K, F = -1.6654068816605065, relative_change = 4.28097834418403e-5 Iter 55: T = 642.657273470702 K, F = -0.6965240239623713, relative_change = 1.7915511715933607e-5 Iter 60: T = 642.6221014878347 K, F = -0.29130008596358015, relative_change = 7.494572901771354e-6 Iter 65: T = 642.6073901060265 K, F = -0.12182612312933722, relative_change = 3.1346859249441038e-6 Iter 70: T = 642.6012372738345 K, F = -0.05094930547393073, relative_change = 1.3110271202931218e-6 Iter 75: T = 642.5986640235506 K, F = -0.021307637021544534, relative_change = 5.482983984045814e-7 Iter 80: T = 642.5975878486399 K, F = -0.0089111133418322, relative_change = 2.293068971493e-7 Iter 85: T = 642.5971377775318 K, F = -0.0037267349074109335, relative_change = 9.589922549076747e-8 Iter 90: T = 642.5969495520857 K, F = -0.0015585651998508698, relative_change = 4.010626129713983e-8 Iter 95: T = 642.5968708338979 K, F = -0.0006518106080088959, relative_change = 1.6772927953247673e-8 Iter 100: T = 642.5968379130014 K, F = -0.00027259498547976824, relative_change = 7.0146406193860355e-9 Iter 105: T = 642.5968241450876 K, F = -0.00011400247913428974, relative_change = 2.93360679768966e-9 Iter 110: T = 642.5968183871813 K, F = -4.767719945020232e-5, relative_change = 1.226869480653304e-9 Iter 115: T = 642.596815979156 K, F = -1.9939173417471423e-5, relative_change = 5.130914578433488e-10 Iter 120: T = 642.596814972091 K, F = -8.338799983131917e-6, relative_change = 2.145809649352956e-10 Iter 125: T = 642.5968145509244 K, F = -3.487384653277914e-6, relative_change = 8.974029450877418e-11 Iter 130: T = 642.5968143747874 K, F = -1.4584646292337133e-6, relative_change = 3.7530429975897496e-11 Iter 135: T = 642.596814301125 K, F = -6.099479095134086e-7, relative_change = 1.5695689055866177e-11 Iter 140: T = 642.5968142703184 K, F = -2.5508736511969943e-7, relative_change = 6.564121137995045e-12 Iter 145: T = 642.5968142574347 K, F = -1.066804155014367e-7, relative_change = 2.745189555512956e-12 Iter 150: T = 642.5968142520467 K, F = -4.461433011915261e-8, relative_change = 1.148053206378304e-12 Iter 155: T = 642.5968142497933 K, F = -1.8658142253435983e-8, relative_change = 4.801269005332802e-13 Converged in 160 iterations to T = 642.5968142488509 K Iter 1: T = 965.1680755382112 K, F = -7936.487122332582, relative_change = 0.03483192446178883 Iter 2: T = 932.3099412863193 K, F = -6731.45934106985, relative_change = 0.03404395056640166 Iter 3: T = 901.3961253789392 K, F = -5708.180306985997, relative_change = 0.0331583034121977 Iter 5: T = 845.2884697206343 K, F = -4101.570231723635, relative_change = 0.031075150304275313 Iter 10: T = 736.8909805386494 K, F = -1784.853698916238, relative_change = 0.024094080782397137 Iter 15: T = 669.0819001692535 K, F = -768.5480978580716, relative_change = 0.015789399208954433 Iter 20: T = 631.966926961992 K, F = -327.2672687707872, relative_change = 0.008693531856364423 Iter 25: T = 613.8894428820972 K, F = -138.1729032458284, relative_change = 0.004197428500411221 Iter 30: T = 605.7369814938347 K, F = -58.04409524903506, relative_change = 0.0018774993170558312 Iter 35: T = 602.208734737415 K, F = -24.322615145770435, relative_change = 0.0008087918947630799 Iter 40: T = 600.7110807699756 K, F = -10.180594949170969, relative_change = 0.000342558440684007 Iter 45: T = 600.0807742902015 K, F = -4.259164359775066, relative_change = 0.00014403039760993734 Iter 50: T = 599.8164703777384 K, F = -1.7815000934481833, relative_change = 6.0370681130890886e-5 Iter 55: T = 599.7058119200096 K, F = -0.7450913477534032, relative_change = 2.527150825316904e-5 Iter 60: T = 599.6595116045738 K, F = -0.31161427999326197, relative_change = 1.0573009429411604e-5 Iter 65: T = 599.6401444739864 K, F = -0.13032224451384333, relative_change = 4.422487323577598e-6 Iter 70: T = 599.6320442463232 K, F = -0.05450256936981657, relative_change = 1.849664462510659e-6 Iter 75: T = 599.6286565185134 K, F = -0.022793669191593535, relative_change = 7.735740608378658e-7 Iter 80: T = 599.6272397100195 K, F = -0.009532592325785239, relative_change = 3.235218098330125e-7 Iter 85: T = 599.6266471802426 K, F = -0.003986645291881974, relative_change = 1.3530136648522812e-7 Iter 90: T = 599.6263993765937 K, F = -0.0016672629051247556, relative_change = 5.658476655865925e-8 Iter 95: T = 599.6262957420399 K, F = -0.0006972692991290552, relative_change = 2.3664445999234265e-8 Iter 100: T = 599.6262524008129 K, F = -0.00029160635415309555, relative_change = 9.896757542886739e-9 Iter 105: T = 599.6262342749909 K, F = -0.00012195326077274471, relative_change = 4.1389428246040355e-9 Iter 110: T = 599.626226694555 K, F = -5.10023098639345e-5, relative_change = 1.730955415355849e-9 Iter 115: T = 599.6262235243263 K, F = -2.1329776159206837e-5, relative_change = 7.239062814791469e-10 Iter 120: T = 599.6262221984987 K, F = -8.920367142783991e-6, relative_change = 3.0274625610412536e-10 Iter 125: T = 599.6262216440216 K, F = -3.7306036128614828e-6, relative_change = 1.266120848723396e-10 Iter 130: T = 599.6262214121327 K, F = -1.5601821928834525e-6, relative_change = 5.295065921888572e-11 Iter 135: T = 599.6262213151541 K, F = -6.524875484914539e-7, relative_change = 2.2144622601727838e-11 Iter 140: T = 599.6262212745964 K, F = -2.728782254046713e-7, relative_change = 9.261150398551586e-12 Iter 145: T = 599.6262212576348 K, F = -1.1412090672457964e-7, relative_change = 3.873122816488572e-12 Iter 150: T = 599.6262212505412 K, F = -4.772644807138349e-8, relative_change = 1.6197767814074864e-12 Iter 155: T = 599.6262212475746 K, F = -1.9959849772988036e-8, relative_change = 6.774126826926857e-13 Iter 160: T = 599.6262212463339 K, F = -8.347615876314052e-9, relative_change = 2.8330778684368456e-13 Converged in 162 iterations to T = 599.6262212460714 K Iter 1: T = 980.1066803754287 K, F = -4532.711799890828, relative_change = 0.019893319624571304 Iter 2: T = 962.2586013685099 K, F = -3828.8303070509974, relative_change = 0.01821034318435848 Iter 3: T = 946.335112765007 K, F = -3232.7467233163975, relative_change = 0.01654803457288578 Iter 5: T = 919.7394641712054 K, F = -2301.3676018359383, relative_change = 0.013374335085817925 Iter 10: T = 877.4993298707153 K, F = -977.0479365744344, relative_change = 0.007030677716788209 Iter 15: T = 857.4955965401259 K, F = -411.7318629760488, relative_change = 0.003298128109082931 Iter 20: T = 848.6160195517298 K, F = -172.79316712179664, relative_change = 0.0014536886895785714 Iter 25: T = 844.8023747010313 K, F = -72.3742537796774, relative_change = 0.0006220115573208801 Iter 30: T = 843.1890970507567 K, F = -30.28740717219767, relative_change = 0.0002626763871115087 Iter 35: T = 842.5111261874681 K, F = -12.67001694953577, relative_change = 0.00011030571594021702 Iter 40: T = 842.2270121902657 K, F = -5.299359924103072, relative_change = 4.6210579952620934e-5 Iter 45: T = 842.1080907756932 K, F = -2.2163620181833195, relative_change = 1.9339740822643243e-5 Iter 50: T = 842.0583386318567 K, F = -0.926927687357818, relative_change = 8.090548550017576e-6 Iter 55: T = 842.0375285779984 K, F = -0.38765548654897997, relative_change = 3.383990617726041e-6 Iter 60: T = 842.0288250203139 K, F = -0.16212272389269278, relative_change = 1.4152999148496032e-6 Iter 65: T = 842.0251849932803 K, F = -0.06780175894484186, relative_change = 5.919083795883764e-7 Iter 70: T = 842.0236626738406 K, F = -0.028355522739534234, relative_change = 2.4754543622127294e-7 Iter 75: T = 842.0230260187562 K, F = -0.011858621289444038, relative_change = 1.0352685701144468e-7 Iter 80: T = 842.0227597614871 K, F = -0.004959417576830827, relative_change = 4.3296237801888174e-8 Iter 85: T = 842.0226484094283 K, F = -0.0020740877506033595, relative_change = 1.8107015919462085e-8 Iter 90: T = 842.022601840652 K, F = -0.0008674082854889242, relative_change = 7.572572455203986e-9 Iter 95: T = 842.0225823650309 K, F = -0.0003627605096148123, relative_change = 3.166940633865802e-9 Iter 100: T = 842.0225742200929 K, F = -0.00015171077749909223, relative_change = 1.3244524562379008e-9 Iter 105: T = 842.0225708137825 K, F = -6.34472581886314e-5, relative_change = 5.539018384411134e-10 Iter 110: T = 842.0225693892228 K, F = -2.653440078836944e-5, relative_change = 2.316483630121202e-10 Iter 115: T = 842.0225687934549 K, F = -1.1096999180670863e-5, relative_change = 9.687807626452654e-11 Iter 120: T = 842.0225685442977 K, F = -4.6408974048173235e-6, relative_change = 4.051556695942657e-11 Iter 125: T = 842.0225684400971 K, F = -1.940877876638325e-6, relative_change = 1.694408661904866e-11 Iter 130: T = 842.0225683965193 K, F = -8.116986247586055e-7, relative_change = 7.086222155143081e-12 Iter 135: T = 842.0225683782945 K, F = -3.3946135880036366e-7, relative_change = 2.963536623595229e-12 Iter 140: T = 842.0225683706726 K, F = -1.419668431701382e-7, relative_change = 1.2393868350019297e-12 Iter 145: T = 842.0225683674851 K, F = -5.937061331451332e-8, relative_change = 5.183122684579221e-13 Converged in 150 iterations to T = 842.0225683661521 K Iter 1: T = 976.4967891819393 K, F = -5355.228942220391, relative_change = 0.023503210818060623 Iter 2: T = 955.1540238874437 K, F = -4528.125243247991, relative_change = 0.021856462336528083 Iter 3: T = 935.8795648301718 K, F = -3827.0301952920036, relative_change = 0.020179425072016685 Iter 5: T = 903.1126787808196 K, F = -2729.8835180559904, relative_change = 0.016827812583749404 Iter 10: T = 849.1833718332915 K, F = -1163.9912979927954, relative_change = 0.009457053176891286 Iter 15: T = 822.5778090959318 K, F = -491.87371224264825, relative_change = 0.00462804909235698 Iter 20: T = 810.4887512147387 K, F = -206.72509612057462, relative_change = 0.002084905337726236 Iter 25: T = 805.2372473896759 K, F = -86.64453182149884, relative_change = 0.0009011240184221116 Iter 30: T = 803.0043485395453 K, F = -36.269881063233875, relative_change = 0.0003822210513185748 Iter 35: T = 802.0639187058852 K, F = -15.174533548836672, relative_change = 0.0001608066124094923 Iter 40: T = 801.6694498278365 K, F = -6.347232199850476, relative_change = 6.742013732684213e-5 Iter 45: T = 801.5042725250291 K, F = -2.6546742781732497, relative_change = 2.8225554952471335e-5 Iter 50: T = 801.4351573455606 K, F = -1.1102490416476547, relative_change = 1.1809457705184851e-5 Iter 55: T = 801.4062462394764 K, F = -0.4643251043302229, relative_change = 4.939765189440393e-6 Iter 60: T = 801.3941541651257 K, F = -0.1941873001910852, relative_change = 2.0660278132195503e-6 Iter 65: T = 801.3890969220105 K, F = -0.08121162228597467, relative_change = 8.640653204662072e-7 Iter 70: T = 801.3869818887487 K, F = -0.033963700786072026, relative_change = 3.613673012656723e-7 Iter 75: T = 801.3860973506689 K, F = -0.014204030608702123, relative_change = 1.5112897193471685e-7 Iter 80: T = 801.3857274252467 K, F = -0.00594029616655134, relative_change = 6.320408977389806e-8 Iter 85: T = 801.3855727178363 K, F = -0.0024843029614685097, relative_change = 2.6432731184545443e-8 Iter 90: T = 801.3855080173182 K, F = -0.0010389651958857549, relative_change = 1.1054488408080805e-8 Iter 95: T = 801.3854809587833 K, F = -0.00043450765941432934, relative_change = 4.623119884498724e-9 Iter 100: T = 801.3854696425798 K, F = -0.00018171629284102764, relative_change = 1.933444083322012e-9 Iter 105: T = 801.3854649100082 K, F = -7.599592246987363e-5, relative_change = 8.085894142466252e-10 Iter 110: T = 801.3854629307903 K, F = -3.1782403434821305e-5, relative_change = 3.381617650485863e-10 Iter 115: T = 801.3854621030576 K, F = -1.3291782144930764e-5, relative_change = 1.4142330494587096e-10 Iter 120: T = 801.38546175689 K, F = -5.558781382974942e-6, relative_change = 5.914490831228047e-11 Iter 125: T = 801.3854616121185 K, F = -2.3247487270783296e-6, relative_change = 2.4735106664118908e-11 Iter 130: T = 801.3854615515734 K, F = -9.722373344178692e-7, relative_change = 1.0344513322323001e-11 Iter 135: T = 801.3854615262527 K, F = -4.0660247724311205e-7, relative_change = 4.326211918082824e-12 Iter 140: T = 801.3854615156632 K, F = -1.700460645626123e-7, relative_change = 1.8092740510783514e-12 Iter 145: T = 801.3854615112346 K, F = -7.111363231615542e-8, relative_change = 7.566423249010691e-13 Iter 150: T = 801.3854615093825 K, F = -2.9740647722320546e-8, relative_change = 3.1643768014667625e-13 Converged in 153 iterations to T = 801.3854615088402 K Iter 1: T = 980.8445860452155 K, F = -4364.579291100416, relative_change = 0.019155413954784567 Iter 2: T = 963.7008032202051 K, F = -3686.0540950973586, relative_change = 0.01747859249968887 Iter 3: T = 948.4429076808564 K, F = -3111.5663755320834, relative_change = 0.015832606435902643 Iter 5: T = 923.0468165617233 K, F = -2214.233151590067, relative_change = 0.01271830397493864 Iter 10: T = 882.9795461388081 K, F = -939.3051327394858, relative_change = 0.006604193215701822 Iter 15: T = 864.1423401506551 K, F = -395.63721056785084, relative_change = 0.0030755732614820225 Iter 20: T = 855.813476169507 K, F = -165.998877204872, relative_change = 0.0013507014806637089 Iter 25: T = 852.2430241047426 K, F = -69.52091755771583, relative_change = 0.0005770011368484096 Iter 30: T = 850.7338692737244 K, F = -29.091964766268163, relative_change = 0.00024349625893660377 Iter 35: T = 850.0998794930558 K, F = -12.169688899152543, relative_change = 0.0001022207496666155 Iter 40: T = 849.8342360929629 K, F = -5.090049971625719, relative_change = 4.2818128176575645e-5 Iter 45: T = 849.7230528750231 K, F = -2.1288143883422133, relative_change = 1.7919006998160527e-5 Iter 50: T = 849.6765393166149 K, F = -0.8903121732953165, relative_change = 7.496035619022651e-6 Iter 55: T = 849.657084094375 K, F = -0.3723420826447007, relative_change = 3.135297816780902e-6 Iter 60: T = 849.6489472163312 K, F = -0.15571841276293807, relative_change = 1.3112830498187955e-6 Iter 65: T = 849.6455441942392 K, F = -0.06512338856905409, relative_change = 5.484054362230347e-7 Iter 70: T = 849.6441209953266 K, F = -0.02723539434409572, relative_change = 2.293516625270027e-7 Iter 75: T = 849.6435257940205 K, F = -0.011390169884256451, relative_change = 9.591794705737123e-8 Iter 80: T = 849.6432768732847 K, F = -0.004763505546765634, relative_change = 4.0114090907722196e-8 Iter 85: T = 849.643172771583 K, F = -0.0019921549906785074, relative_change = 1.6776202364691156e-8 Iter 90: T = 849.6431292349946 K, F = -0.0008331430246319993, relative_change = 7.016010027021693e-9 Iter 95: T = 849.643111027471 K, F = -0.0003484303642369291, relative_change = 2.9341794942277787e-9 Iter 100: T = 849.6431034128668 K, F = -0.00014571774158422812, relative_change = 1.227108976230239e-9 Iter 105: T = 849.6431002283483 K, F = -6.0940899467620824e-5, relative_change = 5.131916352653509e-10 Iter 110: T = 849.6430988965446 K, F = -2.5486210847525115e-5, relative_change = 2.1462286302687226e-10 Iter 115: T = 849.6430983395684 K, F = -1.0658637255689385e-5, relative_change = 8.975784060670511e-11 Iter 120: T = 849.6430981066344 K, F = -4.4575714479577755e-6, relative_change = 3.7537818244775585e-11 Iter 125: T = 849.6430980092186 K, F = -1.8642114145706046e-6, relative_change = 1.569877905608211e-11 Iter 130: T = 849.6430979684782 K, F = -7.796375363078312e-7, relative_change = 6.5654342278224435e-12 Iter 135: T = 849.6430979514399 K, F = -3.260552756678692e-7, relative_change = 2.7457560309039236e-12 Iter 140: T = 849.6430979443144 K, F = -1.3635989715155006e-7, relative_change = 1.1483053271422773e-12 Iter 145: T = 849.6430979413343 K, F = -5.702648464556148e-8, relative_change = 4.802278197306834e-13 Converged in 150 iterations to T = 849.6430979400881 K Iter 1: T = 967.2664086951468 K, F = -7458.379916494684, relative_change = 0.03273359130485326 Iter 2: T = 936.6056009400489 K, F = -6322.356500224679, relative_change = 0.03169841057176751 Iter 3: T = 907.9863617507808 K, F = -5357.862508247197, relative_change = 0.03055634000111006 Iter 5: T = 856.7352486622901 K, F = -3844.144583170321, relative_change = 0.027956372721704252 Iter 10: T = 761.3452487116513 K, F = -1664.7084323768893, relative_change = 0.020050384566159467 Iter 15: T = 705.424419242695 K, F = -712.8162293341401, relative_change = 0.012034196169440922 Iter 20: T = 676.633494037454 K, F = -302.1358859398464, relative_change = 0.006170160325197572 Iter 25: T = 663.1980701698304 K, F = -127.19843437764696, relative_change = 0.0028523282360029584 Iter 30: T = 657.2811314934993 K, F = -53.356281839956196, relative_change = 0.001248132936225221 Iter 35: T = 654.7493550828398 K, F = -22.34338220553679, relative_change = 0.0005323186776844568 Iter 40: T = 653.6801039906189 K, F = -9.349452344945254, relative_change = 0.0002244825393361985 Iter 45: T = 653.2310734779148 K, F = -3.91096552964685, relative_change = 9.421069089746602e-5 Iter 50: T = 653.042956353581 K, F = -1.6357726303272315, relative_change = 3.9457947819269324e-5 Iter 55: T = 652.964226118942 K, F = -0.6841276922896227, relative_change = 1.651193571114649e-5 Iter 60: T = 652.9312901409648 K, F = -0.28611527837718254, relative_change = 6.90726568184375e-6 Iter 65: T = 652.9175141622875 K, F = -0.11965768480512429, relative_change = 2.8890119100532928e-6 Iter 70: T = 652.9117525757031 K, F = -0.050042422949739984, relative_change = 1.2082736701203174e-6 Iter 75: T = 652.9093429575495 K, F = -0.020928365169487317, relative_change = 5.053239916271497e-7 Iter 80: T = 652.9083352170444 K, F = -0.008752496843241031, relative_change = 2.11334191991083e-7 Iter 85: T = 652.9079137662834 K, F = -0.0036603995090247476, relative_change = 8.838277394637366e-8 Iter 90: T = 652.9077375102539 K, F = -0.0015308229286565833, relative_change = 3.6962782454864364e-8 Iter 95: T = 652.9076637978271 K, F = -0.000640208454718072, relative_change = 1.5458285941639592e-8 Iter 100: T = 652.907632970401 K, F = -0.0002677428254972969, relative_change = 6.464841342300449e-9 Iter 105: T = 652.9076200780017 K, F = -0.00011197324675138454, relative_change = 2.7036741004719852e-9 Iter 110: T = 652.9076146862461 K, F = -4.682854841664419e-5, relative_change = 1.130708827044861e-9 Iter 115: T = 652.9076124313495 K, F = -1.9584258433125168e-5, relative_change = 4.728759484183146e-10 Iter 120: T = 652.9076114883248 K, F = -8.190369865324065e-6, relative_change = 1.9776234866489456e-10 Iter 125: T = 652.9076110939407 K, F = -3.4253105052339805e-6, relative_change = 8.270657656593046e-11 Iter 130: T = 652.9076109290045 K, F = -1.4325054416564065e-6, relative_change = 3.45888703966913e-11 Iter 135: T = 652.9076108600261 K, F = -5.990901913999203e-7, relative_change = 1.4465461975992975e-11 Iter 140: T = 652.9076108311787 K, F = -2.505461888513416e-7, relative_change = 6.049617271069731e-12 Iter 145: T = 652.9076108191143 K, F = -1.0478174061745449e-7, relative_change = 2.5300302139657657e-12 Iter 150: T = 652.9076108140689 K, F = -4.38216331000163e-8, relative_change = 1.0581047338888532e-12 Iter 155: T = 652.9076108119589 K, F = -1.8327172113252743e-8, relative_change = 4.42522703977449e-13 Converged in 159 iterations to T = 652.9076108111973 K Iter 1: T = 973.5625548741439 K, F = -6023.797020428997, relative_change = 0.026437445125856125 Iter 2: T = 949.3180752397822 K, F = -5097.535992666462, relative_change = 0.024902847293151998 Iter 3: T = 927.1987558044224 K, F = -4311.889700678395, relative_change = 0.023300219401987936 Iter 5: T = 889.0116905951826 K, F = -3081.075233052805, relative_change = 0.019969247858856974 Iter 10: T = 824.0305697803626 K, F = -1319.1522241989558, relative_change = 0.011965289013970691 Iter 15: T = 790.6125294084502 K, F = -559.0929661654383, relative_change = 0.0061270936071348816 Iter 20: T = 775.0292828930698 K, F = -235.3654827495204, relative_change = 0.0028303667141198175 Iter 25: T = 768.1691100391514 K, F = -98.7271044038697, relative_change = 0.001238085181607015 Iter 30: T = 765.2342691179001 K, F = -41.34235275755582, relative_change = 0.0005279497704475502 Iter 35: T = 763.9948896007878 K, F = -17.299377481950458, relative_change = 0.00022262494992869144 Iter 40: T = 763.4744316059055 K, F = -7.236481498945754, relative_change = 9.342839915100051e-5 Iter 45: T = 763.256393738758 K, F = -3.0266768433580666, relative_change = 3.912982779778272e-5 Iter 50: T = 763.165141711526 K, F = -1.2658438611081746, relative_change = 1.6374544207502822e-5 Iter 55: T = 763.1269674677476 K, F = -0.5294000248654354, relative_change = 6.849777527600648e-6 Iter 60: T = 763.1110005208138 K, F = -0.22140298801707659, relative_change = 2.8649645347331676e-6 Iter 65: T = 763.1043225991405 K, F = -0.09259364921933388, relative_change = 1.198215870876023e-6 Iter 70: T = 763.1015297506636 K, F = -0.038723818090087514, relative_change = 5.011175424954673e-7 Iter 75: T = 763.1003617372535 K, F = -0.016194771608911807, relative_change = 2.0957497717187266e-7 Iter 80: T = 763.0998732582034 K, F = -0.006772848367340822, relative_change = 8.76470445099803e-8 Iter 85: T = 763.0996689701 K, F = -0.0028324863296562697, relative_change = 3.665509079475605e-8 Iter 90: T = 763.0995835343174 K, F = -0.0011845796553238142, relative_change = 1.5329605481519135e-8 Iter 95: T = 763.0995478040428 K, F = -0.0004954053671415437, relative_change = 6.41102562466203e-9 Iter 100: T = 763.0995328612134 K, F = -0.0002071844420146185, relative_change = 2.6811677440817298e-9 Iter 105: T = 763.0995266119435 K, F = -8.664701046134926e-5, relative_change = 1.1212964466313938e-9 Iter 110: T = 763.099523998424 K, F = -3.6236813563905734e-5, relative_change = 4.689395598610661e-10 Iter 115: T = 763.099522905419 K, F = -1.515466886714556e-5, relative_change = 1.9611613433754966e-10 Iter 120: T = 763.0995224483112 K, F = -6.3378635257738125e-6, relative_change = 8.201811000128991e-11 Iter 125: T = 763.0995222571432 K, F = -2.650569294604388e-6, relative_change = 3.4300941215622044e-11 Iter 130: T = 763.0995221771946 K, F = -1.1084995328314307e-6, relative_change = 1.4345060666613147e-11 Iter 135: T = 763.0995221437591 K, F = -4.6358988381456356e-7, relative_change = 5.999303393614221e-12 Iter 140: T = 763.0995221297759 K, F = -1.9387757843603026e-7, relative_change = 2.5089641835750573e-12 Iter 145: T = 763.099522123928 K, F = -8.108108273674475e-8, relative_change = 1.049267966932661e-12 Iter 150: T = 763.0995221214823 K, F = -3.390813996251296e-8, relative_change = 4.3880426704456497e-13 Converged in 154 iterations to T = 763.0995221205995 K Iter 1: T = 970.0071136681819 K, F = -6833.907681305148, relative_change = 0.029992886331818115 Iter 2: T = 942.1716059933341 K, F = -5788.691987822748, relative_change = 0.028696189216164545 Iter 3: T = 916.4507003791689 K, F = -4901.605732235273, relative_change = 0.027299597494288314 Iter 5: T = 871.1469656487171 K, F = -3510.3169232961736, relative_change = 0.02424747975478603 Iter 10: T = 790.3413037364775 K, F = -1511.8565716202265, relative_change = 0.01594530916389569 Iter 15: T = 746.0004353596208 K, F = -643.9143511035031, relative_change = 0.008806309507513344 Iter 20: T = 724.3623650246428 K, F = -271.89736945322824, relative_change = 0.004260334591020497 Iter 25: T = 714.5933886754493 K, F = -114.22733463489641, relative_change = 0.0019076188489288908 Iter 30: T = 710.3632413052854 K, F = -47.86699745380746, relative_change = 0.0008221632001729188 Iter 35: T = 708.5672077035915 K, F = -20.03573054504884, relative_change = 0.00034829526976054375 Iter 40: T = 707.8112443862722 K, F = -8.382219494867801, relative_change = 0.0001464556556737968 Iter 45: T = 707.4942350625308 K, F = -3.5060780339899886, relative_change = 6.13895632684264e-5 Iter 50: T = 707.3615074579272 K, F = -1.4663772357501172, relative_change = 2.5698427304049187e-5 Iter 55: T = 707.3059728089801 K, F = -0.6132728439075661, relative_change = 1.075169410674164e-5 Iter 60: T = 707.2827429378185 K, F = -0.2564808916938703, relative_change = 4.497240252840776e-6 Iter 65: T = 707.2730271203397 K, F = -0.10726387296396422, relative_change = 1.8809313804192432e-6 Iter 70: T = 707.2689637081095 K, F = -0.04485912030239558, relative_change = 7.866510202691896e-7 Iter 75: T = 707.2672643158675 K, F = -0.018760635164409845, relative_change = 3.289908835408837e-7 Iter 80: T = 707.2665536054134 K, F = -0.007845924355090239, relative_change = 1.3758862173903485e-7 Iter 85: T = 707.2662563770575 K, F = -0.0032812597333270466, relative_change = 5.754132810369367e-8 Iter 90: T = 707.2661320724773 K, F = -0.0013722620877983926, relative_change = 2.406449215534304e-8 Iter 95: T = 707.2660800867941 K, F = -0.0005738964068967567, relative_change = 1.0064061768948566e-8 Iter 100: T = 707.2660583457565 K, F = -0.00024001033285614426, relative_change = 4.2089114682357315e-9 Iter 105: T = 707.2660492533944 K, F = -0.00010037518856642613, relative_change = 1.7602171669627588e-9 Iter 110: T = 707.2660454508598 K, F = -4.19781031777422e-5, relative_change = 7.361438697823278e-10 Iter 115: T = 707.2660438605943 K, F = -1.7555743983876937e-5, relative_change = 3.0786415948401097e-10 Iter 120: T = 707.2660431955263 K, F = -7.342021384304509e-6, relative_change = 1.287524615640399e-10 Iter 125: T = 707.266042917387 K, F = -3.0705209994597027e-6, relative_change = 5.384581670517364e-11 Iter 130: T = 707.2660428010659 K, F = -1.2841284257048002e-6, relative_change = 2.2518961408410574e-11 Iter 135: T = 707.2660427524189 K, F = -5.370379279057147e-7, relative_change = 9.417700079868833e-12 Iter 140: T = 707.2660427320741 K, F = -2.245953689694602e-7, relative_change = 3.938589277707199e-12 Iter 145: T = 707.2660427235658 K, F = -9.392845667921534e-8, relative_change = 1.6471649173667325e-12 Iter 150: T = 707.2660427200074 K, F = -3.928028302624398e-8, relative_change = 6.888338894737964e-13 Iter 155: T = 707.2660427185193 K, F = -1.6427757376646923e-8, relative_change = 2.880833623739537e-13 Converged in 157 iterations to T = 707.2660427182043 K Iter 1: T = 973.5464059959687 K, F = -6027.476557682749, relative_change = 0.02645359400403126 Iter 2: T = 949.2858027394735 K, F = -5100.672280876481, relative_change = 0.024919822113334038 Iter 3: T = 927.1505141014252 K, F = -4314.562708831094, relative_change = 0.02331783386433228 Iter 5: T = 888.9325344544188 K, F = -3083.015511730686, relative_change = 0.01998745541735545 Iter 10: T = 823.8860549868594 K, F = -1320.0151553365426, relative_change = 0.011980767267563456 Iter 15: T = 790.4258872819612 K, F = -559.4690841855083, relative_change = 0.006136768819556 Iter 20: T = 774.8204051732761 K, F = -235.52635981229707, relative_change = 0.0028353001748378905 Iter 25: T = 767.949840712768 K, F = -98.79510900486038, relative_change = 0.0012403421768524515 Iter 30: T = 765.0104336860354 K, F = -41.37092827411561, relative_change = 0.0005289311106561449 Iter 35: T = 763.7691035595467 K, F = -17.31135242729519, relative_change = 0.00022304219349595896 Iter 40: T = 763.2478224283914 K, F = -7.241493869729588, relative_change = 9.360411287925268e-5 Iter 45: T = 763.0294390123967 K, F = -3.0287738335630614, relative_change = 3.920352795434949e-5 Iter 50: T = 762.9380422434476 K, F = -1.2667209801154902, relative_change = 1.6405404143600648e-5 Iter 55: T = 762.8998074268113 K, F = -0.5297668697336888, relative_change = 6.862690115406396e-6 Iter 60: T = 762.8838151405579 K, F = -0.22155641098660694, relative_change = 2.8703658871206456e-6 Iter 65: T = 762.8771266204491 K, F = -0.09265781324895828, relative_change = 1.2004749828326557e-6 Iter 70: T = 762.8743293393647 K, F = -0.038750652376718486, relative_change = 5.020623653913761e-7 Iter 75: T = 762.8731594721477 K, F = -0.016205994052141515, relative_change = 2.0997011959707683e-7 Iter 80: T = 762.8726702178068 K, F = -0.006777541729925951, relative_change = 8.781229885847675e-8 Iter 85: T = 762.8724656054662 K, F = -0.002834449150325824, relative_change = 3.6724202322165815e-8 Iter 90: T = 762.8723800340838 K, F = -0.0011854005315442562, relative_change = 1.5358508794417204e-8 Iter 95: T = 762.8723442470995 K, F = -0.0004957486668873967, relative_change = 6.423113334432914e-9 Iter 100: T = 762.8723292805535 K, F = -0.0002073280129377686, relative_change = 2.6862229549796095e-9 Iter 105: T = 762.872323021365 K, F = -8.670705192870276e-5, relative_change = 1.1234105755796232e-9 Iter 110: T = 762.8723204036976 K, F = -3.626192574424092e-5, relative_change = 4.698237413375851e-10 Iter 115: T = 762.8723193089578 K, F = -1.5165172787434678e-5, relative_change = 1.9648593171684903e-10 Iter 120: T = 762.8723188511244 K, F = -6.342255014279985e-6, relative_change = 8.217274584962132e-11 Iter 125: T = 762.872318659653 K, F = -2.652407847358873e-6, relative_change = 3.436563741134324e-11 Iter 130: T = 762.8723185795774 K, F = -1.1092664473633107e-6, relative_change = 1.4372091599588001e-11 Iter 135: T = 762.8723185460889 K, F = -4.639096355951722e-7, relative_change = 6.01059537494071e-12 Iter 140: T = 762.8723185320835 K, F = -1.9401159123688672e-7, relative_change = 2.513690347429778e-12 Iter 145: T = 762.8723185262263 K, F = -8.113677474330672e-8, relative_change = 1.0512399089200045e-12 Iter 150: T = 762.8723185237769 K, F = -3.39343676492021e-8, relative_change = 4.396669903408173e-13 Converged in 154 iterations to T = 762.8723185228927 K Iter 1: T = 964.309654457405 K, F = -8132.079182163523, relative_change = 0.035690345542595 Iter 2: T = 930.5439444021212 K, F = -6898.951335366931, relative_change = 0.03501542258672407 Iter 3: T = 898.6718695194239 K, F = -5851.7462992726905, relative_change = 0.03425101530608013 Iter 5: T = 840.4955965573973 K, F = -4207.362060606038, relative_change = 0.03242817824610388 Iter 10: T = 726.2139369397305 K, F = -1834.9158438292595, relative_change = 0.026049044237323665 Iter 15: T = 652.4366716574538 K, F = -792.3461820499095, relative_change = 0.01785333521498235 Iter 20: T = 610.6874060533357 K, F = -338.29395450491694, relative_change = 0.010241503958706925 Iter 25: T = 589.8202157177299 K, F = -143.08534840731497, relative_change = 0.0050825222079237415 Iter 30: T = 580.2634430168061 K, F = -60.16600912184739, relative_change = 0.0023069900036787844 Iter 35: T = 576.0954190554731 K, F = -25.22329004946669, relative_change = 0.0010006665320748912 Iter 40: T = 574.3199907117082 K, F = -10.559711218443688, relative_change = 0.00042510954385805707 Iter 45: T = 573.5716445592625 K, F = -4.41815222185535, relative_change = 0.0001789705930412312 Iter 50: T = 573.2576412395982 K, F = -1.848067851674375, relative_change = 7.505687837816002e-5 Iter 55: T = 573.1261390236784 K, F = -0.772944323542412, relative_change = 3.142642942087941e-5 Iter 60: T = 573.0711112666288 K, F = -0.3232650999266127, relative_change = 1.314934615316031e-5 Iter 65: T = 573.0480924058222 K, F = -0.13519517184598537, relative_change = 5.50034043090675e-6 Iter 70: T = 573.038464664221 K, F = -0.05654055843017192, relative_change = 2.3005051995412805e-6 Iter 75: T = 573.0344380564261 K, F = -0.023645993263978232, relative_change = 9.62133233067905e-7 Iter 80: T = 573.0327540509999 K, F = -0.00988904665598439, relative_change = 4.0238164009239213e-7 Iter 85: T = 573.0320497745793 K, F = -0.004135719138583738, relative_change = 1.6828186226948822e-7 Iter 90: T = 573.031755236853 K, F = -0.0017296074363093994, relative_change = 7.03776690051153e-8 Iter 95: T = 573.0316320574981 K, F = -0.0007233425381876768, relative_change = 2.9432813920626425e-8 Iter 100: T = 573.0315805423927 K, F = -0.0003025104970890147, relative_change = 1.2309159921624866e-8 Iter 105: T = 573.0315589981557 K, F = -0.00012651350438586118, relative_change = 5.147838674891735e-9 Iter 110: T = 573.0315499880976 K, F = -5.290945935093605e-5, relative_change = 2.1528878108747778e-9 Iter 115: T = 573.0315462199834 K, F = -2.212736765966339e-5, relative_change = 9.003634169957132e-10 Iter 120: T = 573.0315446441131 K, F = -9.253929380947934e-6, relative_change = 3.765427372702461e-10 Iter 125: T = 573.0315439850654 K, F = -3.8701037800015214e-6, relative_change = 1.5747467036232255e-10 Iter 130: T = 573.0315437094437 K, F = -1.6185238310151284e-6, relative_change = 6.585779654369422e-11 Iter 135: T = 573.0315435941754 K, F = -6.768861687267425e-7, relative_change = 2.7542524102335227e-11 Iter 140: T = 573.0315435459688 K, F = -2.8308213906313995e-7, relative_change = 1.1518623073471923e-11 Iter 145: T = 573.0315435258083 K, F = -1.1838848840151073e-7, relative_change = 4.817232125193738e-12 Iter 150: T = 573.0315435173768 K, F = -4.951144116915884e-8, relative_change = 2.014622436706234e-12 Iter 155: T = 573.0315435138507 K, F = -2.070596910597189e-8, relative_change = 8.425266756695352e-13 Iter 160: T = 573.0315435123761 K, F = -8.659271744093644e-9, relative_change = 3.52346098799866e-13 Converged in 163 iterations to T = 573.0315435119443 K Iter 1: T = 963.5527072874015 K, F = -8304.550314891467, relative_change = 0.03644729271259851 Iter 2: T = 928.9825032168482 K, F = -7046.706283493129, relative_change = 0.03587785474431969 Iter 3: T = 896.2558068755357 K, F = -5978.463579808498, relative_change = 0.03522853899614646 Iter 5: T = 836.2139550738588 K, F = -4300.8859381125, relative_change = 0.03366100500356446 Iter 10: T = 716.4313328203043 K, F = -1879.5501265041405, relative_change = 0.027950620824506296 Iter 15: T = 636.6855650714374 K, F = -813.9311754826997, relative_change = 0.02004293502806998 Iter 20: T = 589.9423285885052 K, F = -348.51551532947144, relative_change = 0.012027631812050193 Iter 25: T = 565.8793611616367 K, F = -147.72129137651288, relative_change = 0.006165992034885973 Iter 30: T = 554.6511277531934 K, F = -62.18997437672562, relative_change = 0.0028501884030521607 Iter 35: T = 549.7064331793774 K, F = -26.086938021277042, relative_change = 0.0012471511818023572 Iter 40: T = 547.5907067349219 K, F = -10.924108012218491, relative_change = 0.000531891295955789 Iter 45: T = 546.6971744445742 K, F = -4.571124367402126, relative_change = 0.00022430073428451565 Iter 50: T = 546.3219381330836 K, F = -1.9121447526680662, relative_change = 9.41341111189941e-5 Iter 55: T = 546.1647366334602 K, F = -0.7997599988387593, relative_change = 3.942582487305706e-5 Iter 60: T = 546.0989451580615 K, F = -0.33448288159107886, relative_change = 1.649848460164611e-5 Iter 65: T = 546.07142198322 K, F = -0.13988713282483256, relative_change = 6.901637305649654e-6 Iter 70: T = 546.0599099938639 K, F = -0.058502888901823036, relative_change = 2.886657537630041e-6 Iter 75: T = 546.0550952854555 K, F = -0.024466680157792187, relative_change = 1.2072889527608226e-6 Iter 80: T = 546.0530816719498 K, F = -0.010232270662813098, relative_change = 5.04912155181101e-7 Iter 85: T = 546.0522395468722 K, F = -0.004279260033322685, relative_change = 2.11161954291706e-7 Iter 90: T = 546.0518873587326 K, F = -0.0017896380434138381, relative_change = 8.83107416182965e-8 Iter 95: T = 546.0517400692062 K, F = -0.0007484480707879715, relative_change = 3.693265759295365e-8 Iter 100: T = 546.0516784709251 K, F = -0.00031300993373606367, relative_change = 1.544568737043461e-8 Iter 105: T = 546.0516527097811 K, F = -0.00013090449516550695, relative_change = 6.4595725052738974e-9 Iter 110: T = 546.0516419361617 K, F = -5.47458234705922e-5, relative_change = 2.7014706320029044e-9 Iter 115: T = 546.0516374305053 K, F = -2.2895357899427315e-5, relative_change = 1.1297873606275829e-9 Iter 120: T = 546.0516355461857 K, F = -9.575111894977173e-6, relative_change = 4.724905642787442e-10 Iter 125: T = 546.0516347581408 K, F = -4.004425943032741e-6, relative_change = 1.9760118807888528e-10 Iter 130: T = 546.051634428571 K, F = -1.6746989685012537e-6, relative_change = 8.263918761613725e-11 Iter 135: T = 546.0516342907409 K, F = -7.003785811865448e-7, relative_change = 3.456066918960924e-11 Iter 140: T = 546.0516342330989 K, F = -2.9290723108088557e-7, relative_change = 1.445371145497971e-11 Iter 145: T = 546.0516342089923 K, F = -1.2249715825030094e-7, relative_change = 6.044707647685342e-12 Iter 150: T = 546.0516341989106 K, F = -5.123043464450028e-8, relative_change = 2.5280015025680317e-12 Iter 155: T = 546.0516341946942 K, F = -2.142489730072583e-8, relative_change = 1.0572264894185553e-12 Iter 160: T = 546.0516341929308 K, F = -8.959593955637501e-9, relative_change = 4.421174081501461e-13 Converged in 164 iterations to T = 546.0516341922944 K Iter 1: T = 969.3666676115391 K, F = -6979.833924532668, relative_change = 0.03063333238846083 Iter 2: T = 940.8754403692401 K, F = -5913.329304740236, relative_change = 0.029391589575180777 Iter 3: T = 914.487010282625 K, F = -5008.092018798769, relative_change = 0.02804667754560497 Iter 5: T = 867.8314451442166 K, F = -3588.0889685560805, relative_change = 0.025079828278704887 Iter 10: T = 783.8285638199721 K, F = -1547.205260270599, relative_change = 0.016808118390538133 Iter 15: T = 737.0862262003301 K, F = -659.6936208041723, relative_change = 0.009442205491338177 Iter 20: T = 714.0321489111614 K, F = -278.76515831429384, relative_change = 0.004619542673772707 Iter 25: T = 703.5584049944929 K, F = -117.1585389843695, relative_change = 0.002080774910125825 Iter 30: T = 699.0089404141273 K, F = -49.104348868802894, relative_change = 0.0008992783505568961 Iter 35: T = 697.0746097215433 K, F = -20.555311870412368, relative_change = 0.00038142691856956165 Iter 40: T = 696.2599399534447 K, F = -8.5998905095667, relative_change = 0.0001604704812033475 Iter 45: T = 695.9182240435832 K, F = -3.5971769611658697, relative_change = 6.727885162160433e-5 Iter 50: T = 695.7751365526457 K, F = -1.5044875343041335, relative_change = 2.816634242892193e-5 Iter 55: T = 695.7152644854517 K, F = -0.6292130646775111, relative_change = 1.1784672380237296e-5 Iter 60: T = 695.6902198152338 K, F = -0.26314763919526873, relative_change = 4.9293958294190846e-6 Iter 65: T = 695.6797448802989 K, F = -0.11005204881085878, relative_change = 2.0616905509465258e-6 Iter 70: T = 695.6753639703979 K, F = -0.04602517965823416, relative_change = 8.622513080063693e-7 Iter 75: T = 695.6735317923456 K, F = -0.01924829702241415, relative_change = 3.606086390036274e-7 Iter 80: T = 695.672765548494 K, F = -0.00804987070083818, relative_change = 1.5081168671842747e-7 Iter 85: T = 695.6724450952707 K, F = -0.0033665525893186166, relative_change = 6.307139664533248e-8 Iter 90: T = 695.6723110777494 K, F = -0.0014079325886743321, relative_change = 2.637723720094265e-8 Iter 95: T = 695.6722550299942 K, F = -0.0005888142375931604, relative_change = 1.1031280115817238e-8 Iter 100: T = 695.672231590149 K, F = -0.0002462491483014029, relative_change = 4.6134138672820315e-9 Iter 105: T = 695.6722217873248 K, F = -0.000102984335864309, relative_change = 1.9293849271817333e-9 Iter 110: T = 695.6722176876666 K, F = -4.3069277886775836e-5, relative_change = 8.068918172210639e-10 Iter 115: T = 695.6722159731405 K, F = -1.8012085998608818e-5, relative_change = 3.374517913234431e-10 Iter 120: T = 695.6722152561052 K, F = -7.5328693943665925e-6, relative_change = 1.4112636835095994e-10 Iter 125: T = 695.6722149562326 K, F = -3.1503365812701745e-6, relative_change = 5.902074474339989e-11 Iter 130: T = 695.6722148308222 K, F = -1.3175078483751435e-6, relative_change = 2.4683170346123688e-11 Iter 135: T = 695.672214778374 K, F = -5.509966393146826e-7, relative_change = 1.0322780186851147e-11 Iter 140: T = 695.6722147564398 K, F = -2.304343751369231e-7, relative_change = 4.3171286949200684e-12 Iter 145: T = 695.6722147472665 K, F = -9.637077880153555e-8, relative_change = 1.8054817311645073e-12 Iter 150: T = 695.6722147434301 K, F = -4.0302990833573915e-8, relative_change = 7.550661576894862e-13 Iter 155: T = 695.6722147418258 K, F = -1.6856162021738896e-8, relative_change = 3.157958560406161e-13 Converged in 158 iterations to T = 695.672214741356 K Iter 1: T = 966.4363086672217 K, F = -7647.518997486371, relative_change = 0.033563691332778256 Iter 2: T = 934.909813991672 K, F = -6484.143726619068, relative_change = 0.03262138890355526 Iter 3: T = 905.3908464818398 K, F = -5496.34391224901, relative_change = 0.03157413374857895 Iter 5: T = 852.2514416210673 K, F = -3945.786201396982, relative_change = 0.029159369847676937 Iter 10: T = 751.9310910333104 K, F = -1711.8827034732099, relative_change = 0.021539171308887838 Iter 15: T = 691.6976637528257 K, F = -734.4976067612789, relative_change = 0.013343147641322559 Iter 20: T = 660.0141855239219 K, F = -311.8194454438467, relative_change = 0.0070100664443021364 Iter 25: T = 645.0151930297807 K, F = -131.39881208998236, relative_change = 0.0032872736895665153 Iter 30: T = 638.358510794475 K, F = -55.14400654455454, relative_change = 0.001448643625209731 Iter 35: T = 635.4998333241052 K, F = -23.096888742129856, relative_change = 0.0006198022760243976 Iter 40: T = 634.2905834993927 K, F = -9.665636363016446, relative_change = 0.0002617341565953061 Iter 45: T = 633.7824120854236 K, F = -4.043385187253836, relative_change = 0.00010990839675528362 Iter 50: T = 633.5694567275118 K, F = -1.691185137582444, relative_change = 4.604383970570186e-5 Iter 55: T = 633.4803204202727 K, F = -0.7073076548181998, relative_change = 1.9269906825324438e-5 Iter 60: T = 633.4430292685015 K, F = -0.2958104292847406, relative_change = 8.0613254040729e-6 Iter 65: T = 633.4274313386873 K, F = -0.12371249008100166, relative_change = 3.3717660452902448e-6 Iter 70: T = 633.4209076914437 K, F = -0.05173822197057587, relative_change = 1.4101869096798394e-6 Iter 75: T = 633.4181793531149 K, F = -0.021637573999213566, relative_change = 5.897699647746417e-7 Iter 80: T = 633.4170383169991 K, F = -0.009049097393909855, relative_change = 2.466511089954859e-7 Iter 85: T = 633.4165611198925 K, F = -0.003784441568805197, relative_change = 1.031528358343039e-7 Iter 90: T = 633.4163615499829 K, F = -0.0015826988284101673, relative_change = 4.31398171568842e-8 Iter 95: T = 633.4162780873967 K, F = -0.0006619035813342222, relative_change = 1.804159886575306e-8 Iter 100: T = 633.4162431823348 K, F = -0.0002768159878240861, relative_change = 7.545214232201004e-9 Iter 105: T = 633.416228584619 K, F = -0.00011576775289262597, relative_change = 3.1554990716499e-9 Iter 110: T = 633.4162224796796 K, F = -4.841545655775992e-5, relative_change = 1.3196674498261162e-9 Iter 115: T = 633.416219926521 K, F = -2.0247921947269543e-5, relative_change = 5.519006931460927e-10 Iter 120: T = 633.4162188587595 K, F = -8.467923612309747e-6, relative_change = 2.3081148578211948e-10 Iter 125: T = 633.4162184122089 K, F = -3.5413861559363546e-6, relative_change = 9.65281030564797e-11 Iter 130: T = 633.4162182254561 K, F = -1.4810500169604168e-6, relative_change = 4.0369206456061875e-11 Iter 135: T = 633.4162181473539 K, F = -6.193923935970957e-7, relative_change = 1.6882873058150414e-11 Iter 140: T = 633.4162181146907 K, F = -2.5903808986704746e-7, relative_change = 7.060640774303035e-12 Iter 145: T = 633.4162181010305 K, F = -1.0833312669156214e-7, relative_change = 2.952852578542815e-12 Iter 150: T = 633.4162180953176 K, F = -4.5305838636267026e-8, relative_change = 1.2349081627338502e-12 Iter 155: T = 633.4162180929284 K, F = -1.8946228086402783e-8, relative_change = 5.164202323937842e-13 Converged in 160 iterations to T = 633.4162180919292 K Iter 1: T = 966.5025427720693 K, F = -7632.427493691944, relative_change = 0.03349745722793065 Iter 2: T = 935.0452930237198 K, F = -6471.232055911972, relative_change = 0.032547508522973605 Iter 3: T = 905.5984968911171 K, F = -5485.289412550146, relative_change = 0.03149237406177251 Iter 5: T = 852.6113148211009 K, F = -3937.6668429291494, relative_change = 0.029061937443377386 Iter 10: T = 752.6942131920969 K, F = -1708.1022118389153, relative_change = 0.021415421210118458 Iter 15: T = 692.8219259429318 K, F = -732.7512908926409, relative_change = 0.013231244326985374 Iter 20: T = 661.385930903882 K, F = -311.0356082119773, relative_change = 0.006936674748638639 Iter 25: T = 646.5226857281583 K, F = -131.0576780201002, relative_change = 0.003248773513852637 Iter 30: T = 639.9307410973563 K, F = -54.998561382092696, relative_change = 0.001430780991016382 Iter 35: T = 637.1007804927449 K, F = -23.03553524281348, relative_change = 0.0006119861825188195 Iter 40: T = 635.9038496152801 K, F = -9.639882227638157, relative_change = 0.00025840180480651484 Iter 45: T = 635.400885948253 K, F = -4.032597570956429, relative_change = 0.00010850341062702316 Iter 50: T = 635.190118425966 K, F = -1.686670648112118, relative_change = 4.545425356641268e-5 Iter 55: T = 635.101898837877 K, F = -0.7054191189235499, relative_change = 1.9022983013558406e-5 Iter 60: T = 635.0649913740765 K, F = -0.2950205295374516, relative_change = 7.957997281939754e-6 Iter 65: T = 635.0495539605641 K, F = -0.12338212856566105, relative_change = 3.3285422034738813e-6 Iter 70: T = 635.0430974525003 K, F = -0.05160005803779272, relative_change = 1.392108295591303e-6 Iter 75: T = 635.0403971942131 K, F = -0.02157979170266583, relative_change = 5.822089423474192e-7 Iter 80: T = 635.0392679017922 K, F = -0.00902493206244126, relative_change = 2.434889413982239e-7 Iter 85: T = 635.0387956160888 K, F = -0.0037743353221033615, relative_change = 1.0183036944133715e-7 Iter 90: T = 635.0385981001955 K, F = -0.0015784722734271672, relative_change = 4.258674417065963e-8 Iter 95: T = 635.0385154966251 K, F = -0.0006601359846065136, relative_change = 1.7810296815348995e-8 Iter 100: T = 635.038480950814 K, F = -0.00027607675720031644, relative_change = 7.448480885306338e-9 Iter 105: T = 635.0384665033413 K, F = -0.00011545859716788343, relative_change = 3.1150440041411073e-9 Iter 110: T = 635.0384604612354 K, F = -4.828616501445504e-5, relative_change = 1.3027486849341266e-9 Iter 115: T = 635.0384579343546 K, F = -2.0193851997418744e-5, relative_change = 5.448250989470565e-10 Iter 120: T = 635.0384568775827 K, F = -8.445310060389843e-6, relative_change = 2.278523644886183e-10 Iter 125: T = 635.0384564356281 K, F = -3.5319294462432538e-6, relative_change = 9.5290578136909e-11 Iter 130: T = 635.0384562507974 K, F = -1.4770951475284733e-6, relative_change = 3.9851659810466186e-11 Iter 135: T = 635.0384561734991 K, F = -6.177394555884064e-7, relative_change = 1.666645692464019e-11 Iter 140: T = 635.0384561411719 K, F = -2.5834575362315704e-7, relative_change = 6.970104202533647e-12 Iter 145: T = 635.0384561276522 K, F = -1.080434385847262e-7, relative_change = 2.9149851114271014e-12 Iter 150: T = 635.0384561219981 K, F = -4.518468343928106e-8, relative_change = 1.2190715254989501e-12 Iter 155: T = 635.0384561196336 K, F = -1.8896110565158608e-8, relative_change = 5.098123651575067e-13 Converged in 160 iterations to T = 635.0384561186447 K Iter 1: T = 976.3378511349172 K, F = -5391.443127423504, relative_change = 0.02366214886508278 Iter 2: T = 954.8393242752217 K, F = -4558.945445371321, relative_change = 0.022019556892836932 Iter 3: T = 935.4136113755736 K, F = -3853.2517167741676, relative_change = 0.02034448352280978 Iter 5: T = 902.362830871657 K, F = -2748.8386681901943, relative_change = 0.0169898412732998 Iter 10: T = 847.873882321505 K, F = -1172.3170729802223, relative_change = 0.009578951707848537 Iter 15: T = 820.9374664412123 K, F = -495.4621532436295, relative_change = 0.0046978614043748455 Iter 20: T = 808.6831829347057 K, F = -208.2491728972553, relative_change = 0.0021188061165497403 Iter 25: T = 803.3566640288984 K, F = -87.2864635864389, relative_change = 0.0009162737345027539 Iter 30: T = 801.0912431990367 K, F = -36.539178050152564, relative_change = 0.0003887397991729714 Iter 35: T = 800.1370017261404 K, F = -15.28730553251838, relative_change = 0.00016356585104928547 Iter 40: T = 799.7367191004946 K, F = -6.394421034552339, relative_change = 6.857993633390374e-5 Iter 45: T = 799.5691037961534 K, F = -2.6744138191772193, relative_change = 2.8711626069336588e-5 Iter 50: T = 799.4989678529646 K, F = -1.1185051603859124, relative_change = 1.2012918901432927e-5 Iter 55: T = 799.4696296477086 K, F = -0.46777805301164876, relative_change = 5.02488668336626e-6 Iter 60: T = 799.4573589197531 K, F = -0.19563138927453627, relative_change = 2.1016321662556014e-6 Iter 65: T = 799.4522269553336 K, F = -0.08181556190823724, relative_change = 8.789564530742913e-7 Iter 70: T = 799.4500806716395 K, F = -0.034216276304284476, relative_change = 3.675951198919314e-7 Iter 75: T = 799.4491830640651 K, F = -0.014309660838878302, relative_change = 1.5373354964112196e-7 Iter 80: T = 799.4488076727906 K, F = -0.0059844720092073755, relative_change = 6.429336040493403e-8 Iter 85: T = 799.4486506794899 K, F = -0.0025027778313708726, relative_change = 2.6888278085534894e-8 Iter 90: T = 799.448585022984 K, F = -0.001046691607013317, relative_change = 1.1245003712040612e-8 Iter 95: T = 799.4485575646435 K, F = -0.0004377389352550054, relative_change = 4.702795669551131e-9 Iter 100: T = 799.4485460812365 K, F = -0.00018306764951281362, relative_change = 1.9667654368977734e-9 Iter 105: T = 799.4485412787384 K, F = -7.656107614939511e-5, relative_change = 8.225248048461387e-10 Iter 110: T = 799.4485392702763 K, F = -3.201875712910418e-5, relative_change = 3.43989708591205e-10 Iter 115: T = 799.4485384303134 K, F = -1.3390624110543037e-5, relative_change = 1.4386057803899044e-10 Iter 120: T = 799.448538079031 K, F = -5.60011875994082e-6, relative_change = 6.016421019116337e-11 Iter 125: T = 799.4485379321205 K, F = -2.342036520830426e-6, relative_change = 2.516139097725104e-11 Iter 130: T = 799.4485378706808 K, F = -9.794688462516632e-7, relative_change = 1.0522807129777195e-11 Iter 135: T = 799.4485378449859 K, F = -4.096244844431496e-7, relative_change = 4.400751961213267e-12 Iter 140: T = 799.44853783424 K, F = -1.7131042739926272e-7, relative_change = 1.8404532151604513e-12 Iter 145: T = 799.448537829746 K, F = -7.164455895214417e-8, relative_change = 7.697048035986796e-13 Iter 150: T = 799.4485378278665 K, F = -2.9960955494345853e-8, relative_change = 3.218819642684427e-13 Converged in 153 iterations to T = 799.4485378273163 K Iter 1: T = 965.1806730059672 K, F = -7933.616777321099, relative_change = 0.03481932699403286 Iter 2: T = 932.3358199886941 K, F = -6729.001927608707, relative_change = 0.0340297458661089 Iter 3: T = 901.4359810609017 K, F = -5706.074546712675, relative_change = 0.03314239168475485 Iter 5: T = 845.3583187500706 K, F = -4100.019826448286, relative_change = 0.031055640528141183 Iter 10: T = 737.0445535721157 K, F = -1784.1232103773814, relative_change = 0.02406684229490821 Iter 15: T = 669.3175193674591 K, F = -768.2037056281288, relative_change = 0.015761878607363448 Iter 20: T = 632.2639593934596 K, F = -327.10925808241166, relative_change = 0.008673713771720718 Iter 25: T = 614.2223931172183 K, F = -138.10304387472678, relative_change = 0.004186404261617071 Iter 30: T = 606.0876997427388 K, F = -58.01405191045274, relative_change = 0.0018722282268379044 Iter 35: T = 602.5674767777168 K, F = -24.309889980839056, relative_change = 0.0008064533339585453 Iter 40: T = 601.0732925569934 K, F = -10.175243705222561, relative_change = 0.0003415553831594732 Iter 45: T = 600.4444579668127 K, F = -4.256921156336174, relative_change = 0.00014360640293375944 Iter 50: T = 600.180773318689 K, F = -1.7805610332101944, relative_change = 6.0192564406036226e-5 Iter 55: T = 600.0703744970954 K, F = -0.7446984590637746, relative_change = 2.5196877609709236e-5 Iter 60: T = 600.0241828790514 K, F = -0.31144994079104293, relative_change = 1.0541773448282164e-5 Iter 65: T = 600.0048612270564 K, F = -0.13025351091639567, relative_change = 4.409419764867561e-6 Iter 70: T = 599.9967800225913 K, F = -0.0544738232865386, relative_change = 1.8441987013150583e-6 Iter 75: T = 599.9934002511238 K, F = -0.02278164708284497, relative_change = 7.712880826406468e-7 Iter 80: T = 599.9919867701748 K, F = -0.009527564509837494, relative_change = 3.22565763445503e-7 Iter 85: T = 599.9913956320357 K, F = -0.003984542595006468, relative_change = 1.3490153245937447e-7 Iter 90: T = 599.9911484103897 K, F = -0.0016663835323421083, relative_change = 5.641755052325169e-8 Iter 95: T = 599.9910450192369 K, F = -0.0006969015340102525, relative_change = 2.359451410684259e-8 Iter 100: T = 599.9910017798034 K, F = -0.00029145255249740654, relative_change = 9.867511241127962e-9 Iter 105: T = 599.9909836965525 K, F = -0.00012188893928932742, relative_change = 4.126711675306968e-9 Iter 110: T = 599.9909761339204 K, F = -5.0975410346154604e-5, relative_change = 1.7258402188027012e-9 Iter 115: T = 599.9909729711372 K, F = -2.131852515879773e-5, relative_change = 7.217670009547071e-10 Iter 120: T = 599.9909716484235 K, F = -8.915661503683392e-6, relative_change = 3.018515720317478e-10 Iter 125: T = 599.990971095249 K, F = -3.7286368297362316e-6, relative_change = 1.2623795700035015e-10 Iter 130: T = 599.9909708639047 K, F = -1.559361151315386e-6, relative_change = 5.2794245006440183e-11 Iter 135: T = 599.9909707671538 K, F = -6.521430077621737e-7, relative_change = 2.207916859312712e-11 Iter 140: T = 599.9909707266913 K, F = -2.727337082286674e-7, relative_change = 9.233762311745771e-12 Iter 145: T = 599.9909707097695 K, F = -1.1406027566884802e-7, relative_change = 3.861662284871387e-12 Iter 150: T = 599.9909707026926 K, F = -4.7701243288678086e-8, relative_change = 1.614989014181532e-12 Iter 155: T = 599.990970699733 K, F = -1.994906606572755e-8, relative_change = 6.75402155560483e-13 Iter 160: T = 599.9909706984952 K, F = -8.343288726564424e-9, relative_change = 2.824731329213192e-13 Converged in 162 iterations to T = 599.9909706982332 K Iter 1: T = 964.5071738676966 K, F = -8087.07419663913, relative_change = 0.03549282613230346 Iter 2: T = 930.9507413286051 K, F = -6860.405425485123, relative_change = 0.034791273147849584 Iter 3: T = 899.3001810927835 K, F = -5818.69928566692, relative_change = 0.03399810412165465 Iter 5: T = 841.6042596922234 K, F = -4182.994572142271, relative_change = 0.0321126830453356 Iter 10: T = 728.7086111259865 K, F = -1823.345964322243, relative_change = 0.025581283214056092 Iter 15: T = 656.374089164142 K, F = -786.8101967968705, relative_change = 0.01734307502125496 Iter 20: T = 615.7763033700279 K, F = -335.7085351121644, relative_change = 0.009847149734227633 Iter 25: T = 595.6173056649582 K, F = -141.9263380004302, relative_change = 0.0048524552676537745 Iter 30: T = 586.4216730008636 K, F = -59.663567100255754, relative_change = 0.0021941421329485186 Iter 35: T = 582.4192545082273 K, F = -25.00964605140287, relative_change = 0.0009499965613382372 Iter 40: T = 580.715942006412 K, F = -10.469712351429271, relative_change = 0.0004032610731399605 Iter 45: T = 579.9982809913398 K, F = -4.380397106852627, relative_change = 0.00016971432412895312 Iter 50: T = 579.6972044409894 K, F = -1.8322576256595338, relative_change = 7.116468794941645e-5 Iter 55: T = 579.5711249220652 K, F = -0.76632868232099, relative_change = 2.979495486128054e-5 Iter 60: T = 579.5183679103195 K, F = -0.32049772620839817, relative_change = 1.2466392785712276e-5 Iter 65: T = 579.4962992118498 K, F = -0.1340377122155194, relative_change = 5.214607157099551e-6 Iter 70: T = 579.4870689286619 K, F = -0.05605647558989124, relative_change = 2.180988181238896e-6 Iter 75: T = 579.4832085583234 K, F = -0.023443540645092686, relative_change = 9.12146298606289e-7 Iter 80: T = 579.4815940781156 K, F = -0.009804377957715327, relative_change = 3.81475896603272e-7 Iter 85: T = 579.4809188784492 K, F = -0.004100309574100736, relative_change = 1.5953872390748837e-7 Iter 90: T = 579.4806365010522 K, F = -0.0017147987154735866, relative_change = 6.672116545561764e-8 Iter 95: T = 579.4805184073069 K, F = -0.0007171493516187066, relative_change = 2.790361722276473e-8 Iter 100: T = 579.4804690190667 K, F = -0.00029992043195697926, relative_change = 1.1669631029459572e-8 Iter 105: T = 579.4804483643104 K, F = -0.00012543030788819687, relative_change = 4.880379945454343e-9 Iter 110: T = 579.4804397262438 K, F = -5.245645223234119e-5, relative_change = 2.041033303379441e-9 Iter 115: T = 579.4804361137012 K, F = -2.1937915265723973e-5, relative_change = 8.535845465623288e-10 Iter 120: T = 579.4804346028926 K, F = -9.174697864100523e-6, relative_change = 3.5697924431396286e-10 Iter 125: T = 579.4804339710544 K, F = -3.836967573556116e-6, relative_change = 1.4929295899051712e-10 Iter 130: T = 579.4804337068122 K, F = -1.6046657067558812e-6, relative_change = 6.243610024836706e-11 Iter 135: T = 579.480433596303 K, F = -6.710910940288528e-7, relative_change = 2.6111551262177226e-11 Iter 140: T = 579.4804335500866 K, F = -2.8065735696580774e-7, relative_change = 1.092012549638667e-11 Iter 145: T = 579.4804335307584 K, F = -1.173743359172974e-7, relative_change = 4.566929911734413e-12 Iter 150: T = 579.4804335226752 K, F = -4.9087546638570956e-8, relative_change = 1.9099523187947456e-12 Iter 155: T = 579.4804335192947 K, F = -2.0529079103326353e-8, relative_change = 7.987680159675911e-13 Iter 160: T = 579.4804335178809 K, F = -8.586006183808337e-9, relative_change = 3.340737833434753e-13 Converged in 163 iterations to T = 579.480433517467 K Iter 1: T = 964.252363548999 K, F = -8145.132970141547, relative_change = 0.03574763645100098 Iter 2: T = 930.4259019510658 K, F = -6910.132397568748, relative_change = 0.03508050680159346 Iter 3: T = 898.4894612525311 K, F = -5861.333112111686, relative_change = 0.034324539580814904 Iter 5: T = 840.1733662917364 K, F = -4214.432737277227, relative_change = 0.032520162296282 Iter 10: T = 725.4859718664497 K, F = -1838.277549675698, relative_change = 0.02618683177324835 Iter 15: T = 651.28187384626 K, F = -793.9590301250739, relative_change = 0.01800569774274463 Iter 20: T = 609.1879560308998 K, F = -339.0497444502515, relative_change = 0.010360801379283729 Iter 25: T = 588.1067834893482 K, F = -143.4250948159079, relative_change = 0.005152754843178737 Iter 30: T = 578.4402504236082 K, F = -60.31353320666729, relative_change = 0.0023416106633787344 Iter 35: T = 574.2217429878633 K, F = -25.286069460526768, relative_change = 0.0010162483213313751 Iter 40: T = 572.4243003121821 K, F = -10.586167010858105, relative_change = 0.00043183530030932134 Iter 45: T = 571.6665814594837 K, F = -4.42925233346518, relative_change = 0.00018182128525046987 Iter 50: T = 571.3486286759802 K, F = -1.8527164108441263, relative_change = 7.625579927288181e-5 Iter 55: T = 571.2154695060204 K, F = -0.7748895237801041, relative_change = 3.192901639775401e-5 Iter 60: T = 571.1597478707444 K, F = -0.32407880167139813, relative_change = 1.3359741640184231e-5 Iter 65: T = 571.1364386605591 K, F = -0.13553550590081315, relative_change = 5.5883666871479204e-6 Iter 70: T = 571.1266894631639 K, F = -0.056682896192494614, relative_change = 2.3373251918950322e-6 Iter 75: T = 571.1226120561688 K, F = -0.023705521665919216, relative_change = 9.775329063448603e-7 Iter 80: T = 571.1209068050467 K, F = -0.009913942327084618, relative_change = 4.0882216195728385e-7 Iter 85: T = 571.1201936432716 K, F = -0.0041461308374856065, relative_change = 1.7097539946439857e-7 Iter 90: T = 571.1198953895574 K, F = -0.0017339617387476802, relative_change = 7.150414438154063e-8 Iter 95: T = 571.1197706561273 K, F = -0.000725163560196751, relative_change = 2.990392040670347e-8 Iter 100: T = 571.1197184910884 K, F = -0.0003032720694545743, relative_change = 1.250618242285125e-8 Iter 105: T = 571.1196966750413 K, F = -0.00012683200354346447, relative_change = 5.230235889136368e-9 Iter 110: T = 571.1196875513089 K, F = -5.3042658926916175e-5, relative_change = 2.18734729188137e-9 Iter 115: T = 571.1196837356548 K, F = -2.2183073476345072e-5, relative_change = 9.147747910660667e-10 Iter 120: T = 571.1196821399027 K, F = -9.277226011294992e-6, relative_change = 3.825697376017661e-10 Iter 125: T = 571.1196814725402 K, F = -3.879846181276125e-6, relative_change = 1.5999521214168704e-10 Iter 130: T = 571.1196811934411 K, F = -1.622598037598344e-6, relative_change = 6.69119098337154e-11 Iter 135: T = 571.1196810767185 K, F = -6.785894288707794e-7, relative_change = 2.7983341327159806e-11 Iter 140: T = 571.1196810279038 K, F = -2.8379355870855605e-7, relative_change = 1.1702940961278564e-11 Iter 145: T = 571.1196810074889 K, F = -1.1868584842700258e-7, relative_change = 4.8943093833333245e-12 Iter 150: T = 571.1196809989511 K, F = -4.9636019017196276e-8, relative_change = 2.046866049020839e-12 Iter 155: T = 571.1196809953807 K, F = -2.0758954444310973e-8, relative_change = 8.560476828686494e-13 Iter 160: T = 571.1196809938873 K, F = -8.681925622866515e-9, relative_change = 3.580210329148896e-13 Converged in 163 iterations to T = 571.1196809934501 K Iter 1: T = 980.2630455375889 K, F = -4497.083848950949, relative_change = 0.019736954462411065 Iter 2: T = 962.5644926430308 K, F = -3798.570677837085, relative_change = 0.01805490166657465 Iter 3: T = 946.782583394916 K, F = -3207.0597153142244, relative_change = 0.016395690230355902 Iter 5: T = 920.442805263247 K, F = -2282.8907452253156, relative_change = 0.013233984218061002 Iter 10: T = 878.6687230117392 K, F = -969.0375676190299, relative_change = 0.006938567677698186 Iter 15: T = 858.9167071601637 K, F = -408.3139040582933, relative_change = 0.0032497892409174625 Iter 20: T = 850.1563623370702 K, F = -171.34981118730067, relative_change = 0.0014312567754029078 Iter 25: T = 846.3954542135676 K, F = -71.76800620690295, relative_change = 0.0006121952057327287 Iter 30: T = 844.8047718074026 K, F = -30.033394434884375, relative_change = 0.00025849107035188856 Iter 35: T = 844.1363480017744 K, F = -12.563701982168922, relative_change = 0.00010854107317416865 Iter 40: T = 843.8562439697745 K, F = -5.254882993774402, relative_change = 4.5470062855037815e-5 Iter 45: T = 843.7390026081767 K, F = -2.197758650341187, relative_change = 1.9029604893771157e-5 Iter 50: T = 843.6899536150813 K, F = -0.9191470842863518, relative_change = 7.960768426407528e-6 Iter 55: T = 843.6694377204899 K, F = -0.38440146625241123, relative_change = 3.3297014433354004e-6 Iter 60: T = 843.6608572000365 K, F = -0.16076183989467863, relative_change = 1.3925931585274931e-6 Iter 65: T = 843.6572686314958 K, F = -0.06723261858103369, relative_change = 5.824117274289993e-7 Iter 70: T = 843.6557678331117 K, F = -0.028117501021464264, relative_change = 2.4357375022683977e-7 Iter 75: T = 843.6551401784772 K, F = -0.011759077692634179, relative_change = 1.018658378069385e-7 Iter 80: T = 843.6548776853188 K, F = -0.0049177872432895064, relative_change = 4.260157751431618e-8 Iter 85: T = 843.6547679074587 K, F = -0.002056677446594879, relative_change = 1.7816500310400322e-8 Iter 90: T = 843.6547219970314 K, F = -0.0008601270855450593, relative_change = 7.451075268307932e-9 Iter 95: T = 843.6547027967397 K, F = -0.0003597154214629583, relative_change = 3.116129018570345e-9 Iter 100: T = 843.6546947669481 K, F = -0.00015043728452668326, relative_change = 1.3032024235324498e-9 Iter 105: T = 843.6546914087932 K, F = -6.291466925523181e-5, relative_change = 5.450148296749342e-10 Iter 110: T = 843.6546900043727 K, F = -2.631166734134993e-5, relative_change = 2.279317236810998e-10 Iter 115: T = 843.6546894170273 K, F = -1.100385285845995e-5, relative_change = 9.532376359647236e-11 Iter 120: T = 843.6546891713923 K, F = -4.601941139270593e-6, relative_change = 3.986552305773304e-11 Iter 125: T = 843.6546890686649 K, F = -1.9245839657511254e-6, relative_change = 1.667221378668859e-11 Iter 130: T = 843.6546890257031 K, F = -8.048835857810133e-7, relative_change = 6.972515337128438e-12 Iter 135: T = 843.654689007736 K, F = -3.3661257892170227e-7, relative_change = 2.915994823229605e-12 Iter 140: T = 843.6546890002218 K, F = -1.4077241505816573e-7, relative_change = 1.2194779972142124e-12 Iter 145: T = 843.6546889970793 K, F = -5.887217580102799e-8, relative_change = 5.09995676419202e-13 Converged in 150 iterations to T = 843.6546889957652 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 71%|███████████████████████▌ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014495987252181174 Iteration 10: d = 1.9243932989694913e-5 Iteration 20: d = 2.584210055285963e-7 Iteration 30: d = 3.6494922395666695e-9 Iteration 40: d = 5.1827705392000314e-11 Iteration 50: d = 7.36504460020129e-13 Iteration 60: d = 1.045187143545421e-14 Converged after 64 iterations. d = 1.906287519037172e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.978259869466 Iteration 2: convergence error = 4826.206295762377 Iteration 3: convergence error = 1100.2540434911039 Iteration 4: convergence error = 322.2273435197212 Iteration 5: convergence error = 95.6820927222152 Iteration 6: convergence error = 28.565415593742955 Iteration 7: convergence error = 8.561216401259344 Iteration 8: convergence error = 2.569871633980938 Iteration 9: convergence error = 0.7696269259211022 Iteration 10: convergence error = 0.23018007744917668 Iteration 11: convergence error = 0.06878977174619649 Iteration 12: convergence error = 0.020549046751739297 Iteration 13: convergence error = 0.0061369453508177685 Iteration 14: convergence error = 0.0018325318883398722 Iteration 15: convergence error = 0.0005471616573231586 Iteration 16: convergence error = 0.0001633651668271341 Iteration 17: convergence error = 4.8774366860016016e-5 Iteration 18: convergence error = 1.4561861235051765e-5 Iteration 19: convergence error = 4.347483582023415e-6 Iteration 20: convergence error = 1.2979535313206725e-6 Iteration 21: convergence error = 3.874945377901895e-7 Iteration 22: convergence error = 1.1556608114915434e-7 Iteration 23: convergence error = 3.358786671014968e-8 Iteration 24: convergence error = 9.70612745732069e-9 Iteration 25: convergence error = 2.7987425710307434e-9 Iteration 26: convergence error = 8.046754373935983e-10 Iteration 27: convergence error = 2.3010215954855084e-10 Iteration 28: convergence error = 6.389200279954821e-11 Iteration 29: convergence error = 2.000888343900442e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 72%|███████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015081952708913176 Iteration 10: d = 1.6772967394651183e-5 Iteration 20: d = 1.9353232515210764e-7 Iteration 30: d = 2.4035205605507914e-9 Iteration 40: d = 3.0448309368404313e-11 Iteration 50: d = 3.899817397764998e-13 Iteration 60: d = 5.016689126059596e-15 Converged after 62 iterations. d = 2.1368860913819922e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12279.743029377354 Iteration 2: convergence error = 8307.05795380756 Iteration 3: convergence error = 1951.5550988785567 Iteration 4: convergence error = 480.36087871777204 Iteration 5: convergence error = 122.5187744514567 Iteration 6: convergence error = 32.74516478878331 Iteration 7: convergence error = 8.932862292350592 Iteration 8: convergence error = 2.451252864515027 Iteration 9: convergence error = 0.6735153976394486 Iteration 10: convergence error = 0.18508895284139726 Iteration 11: convergence error = 0.05086230359461297 Iteration 12: convergence error = 0.013976227614193704 Iteration 13: convergence error = 0.003840348286303197 Iteration 14: convergence error = 0.0010552234527949622 Iteration 15: convergence error = 0.0002899446149058349 Iteration 16: convergence error = 7.966805628711882e-5 Iteration 17: convergence error = 2.1890355128562078e-5 Iteration 18: convergence error = 6.0147983731440036e-6 Iteration 19: convergence error = 1.6526821582374396e-6 Iteration 20: convergence error = 4.5410797611111775e-7 Iteration 21: convergence error = 1.2562691154016647e-7 Iteration 22: convergence error = 3.387117430975195e-8 Iteration 23: convergence error = 9.075165507965721e-9 Iteration 24: convergence error = 2.429032974760048e-9 Iteration 25: convergence error = 6.507434591185302e-10 Iteration 26: convergence error = 1.7280399333685637e-10 Iteration 27: convergence error = 4.6838977141305804e-11 Iteration 28: convergence error = 1.2505552149377763e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 72%|███████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015081952708913176 Iteration 10: d = 1.6772967394651183e-5 Iteration 20: d = 1.9353232515210764e-7 Iteration 30: d = 2.4035205605507914e-9 Iteration 40: d = 3.0448309368404313e-11 Iteration 50: d = 3.899817397764998e-13 Iteration 60: d = 5.016689126059596e-15 Converged after 62 iterations. d = 2.1368860913819922e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.054726705657 Iteration 2: convergence error = 5717.538488377024 Iteration 3: convergence error = 2018.7620696794093 Iteration 4: convergence error = 898.7294294896442 Iteration 5: convergence error = 410.7925626723959 Iteration 6: convergence error = 193.8584496595672 Iteration 7: convergence error = 91.59109535973903 Iteration 8: convergence error = 43.30169079282359 Iteration 9: convergence error = 20.47400417018889 Iteration 10: convergence error = 9.679056217432844 Iteration 11: convergence error = 4.574732571104505 Iteration 12: convergence error = 2.1617661820491776 Iteration 13: convergence error = 1.021365586419961 Iteration 14: convergence error = 0.48250570777145185 Iteration 15: convergence error = 0.22792293973861888 Iteration 16: convergence error = 0.10757444959335771 Iteration 17: convergence error = 0.050344008338015556 Iteration 18: convergence error = 0.02301457443218169 Iteration 19: convergence error = 0.0104824883414949 Iteration 20: convergence error = 0.004764408118262509 Iteration 21: convergence error = 0.0021628342506119225 Iteration 22: convergence error = 0.0009811344621084572 Iteration 23: convergence error = 0.00044488962203104165 Iteration 24: convergence error = 0.0002016825810642331 Iteration 25: convergence error = 9.141558075498324e-5 Iteration 26: convergence error = 4.143174965065555e-5 Iteration 27: convergence error = 1.8776846900436794e-5 Iteration 28: convergence error = 8.509378403687151e-6 Iteration 29: convergence error = 3.856244802591391e-6 Iteration 30: convergence error = 1.7475331333116628e-6 Iteration 31: convergence error = 7.919175004644785e-7 Iteration 32: convergence error = 3.588761501305271e-7 Iteration 33: convergence error = 1.6262220015050843e-7 Iteration 34: convergence error = 7.369681043201126e-8 Iteration 35: convergence error = 3.339573595440015e-8 Iteration 36: convergence error = 1.5134446584852412e-8 Iteration 37: convergence error = 6.85486156726256e-9 Iteration 38: convergence error = 3.110926627414301e-9 Iteration 39: convergence error = 1.4038050721865147e-9 Iteration 40: convergence error = 6.430127541534603e-10 Iteration 41: convergence error = 2.9058355721645057e-10 Iteration 42: convergence error = 1.318767317570746e-10 Iteration 43: convergence error = 5.95719029661268e-11 Iteration 44: convergence error = 2.8194335754960775e-11 Iteration 45: convergence error = 1.546140993013978e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 72%|███████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015081952708913176 Iteration 10: d = 1.6772967394651183e-5 Iteration 20: d = 1.9353232515210764e-7 Iteration 30: d = 2.4035205605507914e-9 Iteration 40: d = 3.0448309368404313e-11 Iteration 50: d = 3.899817397764998e-13 Iteration 60: d = 5.016689126059596e-15 Converged after 62 iterations. d = 2.1368860913819922e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.811348737849 Iteration 2: convergence error = 7332.928305550431 Iteration 3: convergence error = 1737.1457737039232 Iteration 4: convergence error = 505.8515454720655 Iteration 5: convergence error = 157.25555976645364 Iteration 6: convergence error = 48.90243785222037 Iteration 7: convergence error = 15.184491886150681 Iteration 8: convergence error = 4.707420837435166 Iteration 9: convergence error = 1.4577345341299406 Iteration 10: convergence error = 0.4510988361453201 Iteration 11: convergence error = 0.13953650631947312 Iteration 12: convergence error = 0.04315216671284361 Iteration 13: convergence error = 0.013343196602818352 Iteration 14: convergence error = 0.004125576519527385 Iteration 15: convergence error = 0.0012755309567182849 Iteration 16: convergence error = 0.0003943546034861356 Iteration 17: convergence error = 0.0001219205464622064 Iteration 18: convergence error = 3.769324348468217e-5 Iteration 19: convergence error = 1.1653288311208598e-5 Iteration 20: convergence error = 3.602735432650661e-6 Iteration 21: convergence error = 1.1138163245050237e-6 Iteration 22: convergence error = 3.44180989486631e-7 Iteration 23: convergence error = 1.0521944204811007e-7 Iteration 24: convergence error = 3.136301529593766e-8 Iteration 25: convergence error = 9.320046956418082e-9 Iteration 26: convergence error = 2.757133188424632e-9 Iteration 27: convergence error = 8.189999789465219e-10 Iteration 28: convergence error = 2.4419932742603123e-10 Iteration 29: convergence error = 7.366907084360719e-11 Iteration 30: convergence error = 2.2737367544323206e-11 Iteration 31: convergence error = 6.366462912410498e-12 Converged after 31 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015081952708913176 Iteration 10: d = 1.6772967394651183e-5 Iteration 20: d = 1.9353232515210764e-7 Iteration 30: d = 2.4035205605507914e-9 Iteration 40: d = 3.0448309368404313e-11 Iteration 50: d = 3.899817397764998e-13 Iteration 60: d = 5.016689126059596e-15 Converged after 62 iterations. d = 2.1368860913819922e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.751277657341 Iteration 2: convergence error = 5504.931703129004 Iteration 3: convergence error = 939.7056162574554 Iteration 4: convergence error = 171.5061452105881 Iteration 5: convergence error = 31.181493876610375 Iteration 6: convergence error = 5.68295606191441 Iteration 7: convergence error = 1.0370058938242437 Iteration 8: convergence error = 0.18958946544398714 Iteration 9: convergence error = 0.034705866431522736 Iteration 10: convergence error = 0.006349533955926745 Iteration 11: convergence error = 0.001161328280431917 Iteration 12: convergence error = 0.0002123752456100192 Iteration 13: convergence error = 3.883464160026051e-5 Iteration 14: convergence error = 7.10099402567721e-6 Iteration 15: convergence error = 1.2983941815036815e-6 Iteration 16: convergence error = 2.3741858967696317e-7 Iteration 17: convergence error = 4.339426595834084e-8 Iteration 18: convergence error = 7.934431778267026e-9 Iteration 19: convergence error = 1.457010512240231e-9 Iteration 20: convergence error = 2.6693669497035444e-10 Iteration 21: convergence error = 4.729372449219227e-11 Iteration 22: convergence error = 9.549694368615746e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 72%|███████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015081952708913176 Iteration 10: d = 1.6772967394651183e-5 Iteration 20: d = 1.9353232515210764e-7 Iteration 30: d = 2.4035205605507914e-9 Iteration 40: d = 3.0448309368404313e-11 Iteration 50: d = 3.899817397764998e-13 Iteration 60: d = 5.016689126059596e-15 Converged after 62 iterations. d = 2.1368860913819922e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.491007458553 Iteration 2: convergence error = 2708.1821856355245 Iteration 3: convergence error = 205.5026532598132 Iteration 4: convergence error = 19.3227387064019 Iteration 5: convergence error = 1.6009140923043335 Iteration 6: convergence error = 0.13066005356409244 Iteration 7: convergence error = 0.010675704906271198 Iteration 8: convergence error = 0.0008742045214931505 Iteration 9: convergence error = 7.169145504680976e-5 Iteration 10: convergence error = 5.889765942158313e-6 Iteration 11: convergence error = 4.839498495276765e-7 Iteration 12: convergence error = 3.976117139246342e-8 Iteration 13: convergence error = 3.2676534104169955e-9 Iteration 14: convergence error = 2.6724403292690954e-10 Iteration 15: convergence error = 2.1616225907007365e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 67%|██████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014495987252181174 Iteration 10: d = 1.9243932989694913e-5 Iteration 20: d = 2.584210055285963e-7 Iteration 30: d = 3.6494922395666695e-9 Iteration 40: d = 5.1827705392000314e-11 Iteration 50: d = 7.36504460020129e-13 Iteration 60: d = 1.045187143545421e-14 Converged after 64 iterations. d = 1.906287519037172e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.4309364864885 Iteration 2: convergence error = 3610.628996918129 Iteration 3: convergence error = 594.9857027692099 Iteration 4: convergence error = 105.59465612061149 Iteration 5: convergence error = 18.814532351631215 Iteration 6: convergence error = 3.321926954187802 Iteration 7: convergence error = 0.5843606462146909 Iteration 8: convergence error = 0.10263929406642092 Iteration 9: convergence error = 0.01801694622326977 Iteration 10: convergence error = 0.00316186621421366 Iteration 11: convergence error = 0.0005548360456941737 Iteration 12: convergence error = 9.735764797369484e-5 Iteration 13: convergence error = 1.7083208604162792e-5 Iteration 14: convergence error = 2.9975551569805248e-6 Iteration 15: convergence error = 5.259832960291533e-7 Iteration 16: convergence error = 9.227801456290763e-8 Iteration 17: convergence error = 1.6206968211918138e-8 Iteration 18: convergence error = 2.821934685925953e-9 Iteration 19: convergence error = 5.052243068348616e-10 Iteration 20: convergence error = 8.753886504564434e-11 Iteration 21: convergence error = 1.48929757415317e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 8m27.2s Testing RayTraceHeatTransfer tests passed Testing completed after 516.88s PkgEval succeeded after 635.77s