Package evaluation of QuasiNewtonMethods on Julia 1.13.0-DEV.1234 (bbaa34b41d*) started at 2025-10-01T18:12:06.528 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.69s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [79e6a3ab] + Adapt v4.4.0 [4fba245c] + ArrayInterface v7.20.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.1 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 5.16s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 203.6s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_yYYMhS/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_yYYMhS/Manifest.toml` [79e6a3ab] Adapt v4.4.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.20.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.172 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.2+0 [efcefdf7] PCRE2_jll v10.46.0+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:751 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [-3.037725626597876e-11, -5.72912828289418e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-4.43312053732825e-13, -1.2154721673596214e-12] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [9.184319971211607e-11, 1.8314416649900522e-10, 6.178391132038996e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.2992718012583282e-11, -2.610833771399257e-11, -4.0453973504384066e-11] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [-2.3660073900089174e-11, 5.477396314290672e-12, -4.8447246214777806e-11, 1.4355183708403274e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.8957836956399206e-11, -1.0063483379951776e-10, -7.518086153623926e-11, -2.0045987092487394e-10] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [2.4210944360447684e-10, -7.516296474108231e-10, 4.94264407180367e-10, -1.5157418653544141e-9, 6.290568066447122e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.6006529435230732e-11, -2.478972582764527e-11, -3.3423597223247725e-11, -4.5716763708014696e-11, 2.942623922308485e-11] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [1.084465850453853e-12, -8.786082972278564e-12, -2.770561557952078e-12, 2.2175594693862877e-12, -1.7747359137842977e-11, -5.520250923041203e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.8737456031203692e-11, -3.79056674937317e-10, 2.1989232656949298e-10, 2.613398386586141e-11, -7.619718189744162e-10, 4.539575382267458e-10] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [-1.7219004000423865e-11, -7.504219468046358e-12, -1.9423462838119576e-11, -3.697020467541279e-11, -1.5865420088800875e-11, -4.006650566878989e-11, 2.517541730640005e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.003175320590799e-11, -5.99231775311182e-12, -1.847832997725618e-11, 2.0625057217671383e-11, -1.1793455101383188e-11, -3.740685539099786e-11, 1.883670996960518e-11] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [2.49703147048308e-10, 4.6266768194414e-11, -9.884426610540231e-12, 2.942981414122414e-10, 5.13637798960076e-10, 1.0837286623655018e-10, -2.7157942561473192e-11, 5.985028028732131e-10] QuasiNewtonMethods.optimum(state) .- 1 = [1.013900075008678e-11, 1.6333379093680378e-11, -1.1181056080999952e-11, -2.0497936681351803e-11, 2.2359891715950653e-11, 2.99820168692122e-11, -2.1744828160308316e-11, -4.0344838581063414e-11] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [1.4625012312308172e-10, -1.5436329992013498e-10, -9.26004828372129e-11, 1.9075896418030425e-10, 3.0001090500775263e-10, -3.035145468288647e-10, -1.8759904740761613e-10, 3.7757907911384336e-10, 1.3018475186754586e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.465294552360774e-11, -6.746159186832301e-12, -5.014866300001586e-11, -2.997924131165064e-11, -2.9172220195050613e-11, -1.306321717464698e-11, -1.0366463243371982e-10, -6.10134165413001e-11, -4.330980019062736e-12] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [7.327471962526033e-12, -4.803935027553052e-12, -6.122879980807738e-12, 4.313660539878583e-12, -5.590750085104901e-12, 1.4002132786572474e-11, -9.373612996910197e-12, -1.2240097824189888e-11, 8.796297024105115e-12, -1.1433298752194787e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.639266500319536e-11, 2.0466739414359836e-11, 1.4199752484955752e-11, 4.637401573859279e-12, -6.179523559524114e-11, -3.677524951228861e-11, 3.602496079224693e-11, 3.044453578127104e-11, 7.704281657083811e-12, -1.2111323055563616e-10] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [-1.9791168703875428e-11, -1.517230785452739e-12, -4.6388448637912916e-12, 1.7820855902073163e-11, -1.0216938406415466e-11, -4.140732201562969e-11, -2.573496971081113e-12, -9.350631380300456e-12, 3.625699740439359e-11, -1.9609203150139365e-11, -2.4454882563418323e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-4.2113312836988825e-11, 4.909672668418352e-11, 3.649103241798457e-11, -1.315991760009183e-11, -5.29299937213068e-11, -8.610356871940894e-11, 1.0032596975406705e-10, 7.817080316385727e-11, -3.359823530502126e-11, -1.0611067580157396e-10, -4.745426274155307e-12] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [9.57989243488555e-12, -4.598543767997398e-12, -2.3443469387984806e-12, -1.411004646456604e-11, 4.568789790937444e-12, 3.063327369545732e-12, 1.9118484573255046e-11, -9.162892666836342e-12, -5.891953591685706e-12, -2.5653146273896255e-11, 8.348655100576252e-12, 7.783995670251898e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.545119587831323e-11, -1.3865952830371953e-10, 6.341260849751507e-11, -3.754897504038013e-10, -1.0833178798463905e-10, 9.524114830128383e-11, 2.5278890092295114e-11, -2.749717120664741e-10, 1.3657808217715228e-10, -7.5520023568032e-10, -2.2011659162046726e-10, 1.8572920978954244e-10] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [-9.828049485349766e-11, 1.6081069809104065e-10, 2.017386258046372e-11, -1.621487388803189e-10, -8.251066496711701e-12, -4.136624376371856e-11, -2.1075463596531563e-10, 3.151867655759588e-10, 2.8968383247729435e-11, -3.1836855374223205e-10, -7.135847468475731e-12, -8.560596675977195e-11, -8.229972259243823e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-6.086264825455601e-11, -3.0605296075236765e-11, -6.841494037956863e-11, 4.088263061419184e-11, 4.115596752285455e-12, 1.9741097645464833e-11, -1.181800213245765e-10, -6.860534362829185e-11, -1.2868017762457384e-10, 8.119016570162785e-11, -9.52604661819123e-12, 3.300093531777293e-11, -2.393973907999225e-12] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [8.01936295147243e-12, 6.408651387346254e-12, 4.057865155004947e-12, 1.2687184636206439e-11, 2.103406337994329e-11, 1.9465318246147945e-11, -8.40194580575826e-12, 1.2335243937400264e-11, 1.089106582696786e-11, 8.481659818926346e-12, 1.9270363083023767e-11, 4.192646230194441e-11, 3.8547387504195285e-11, -1.7882806346847246e-11] QuasiNewtonMethods.optimum(state) .- 1 = [7.818301561712815e-11, 1.315192399431453e-11, -1.7974843835588672e-11, -6.11437567243911e-11, 1.1830758595010593e-11, -3.5025982114689214e-11, -4.388844843106199e-11, 1.5235501749089053e-10, 2.5195179276238377e-11, -3.517408586617421e-11, -1.174167429951467e-10, 2.1422197349352246e-11, -6.680700437300402e-11, -9.105449727542236e-11] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [-3.514399882220687e-11, 1.537439064946966e-10, 2.3292034967425934e-11, 1.0305756248385478e-11, -6.171885225114693e-11, -2.054201253542942e-11, -2.7857716133894428e-11, -5.2509552261881254e-11, 3.0487745661389454e-10, 3.8871794671990756e-11, 3.2631897184387526e-11, -1.212324685084809e-10, -4.5377368529386786e-11, -5.910139044829066e-11, -1.7580381594939354e-12] QuasiNewtonMethods.optimum(state) .- 1 = [8.137734930357965e-11, -1.1256184873076336e-10, 9.811929047032208e-12, -1.767641588656943e-11, 1.3346479477149842e-10, 1.7010659547622708e-10, -6.773159810791185e-11, 1.6528223234502093e-10, -2.3035928720105403e-10, 1.9289236874442395e-11, -3.6801450775669764e-11, 2.5641000434006855e-10, 3.414306615212581e-10, -1.394234727669641e-10, -2.6767477123712524e-13] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [4.1921799365240986e-11, -1.7626167192474895e-10, -3.9278691410515876e-11, -9.787426424878731e-11, 1.0398704120007096e-10, 4.054423463628609e-11, -2.1827650797945353e-10, -3.7561398436025684e-11, 7.588196737629005e-11, -3.572675488783261e-10, -8.296718867484287e-11, -1.9388390892771667e-10, 2.014113320569777e-10, 7.491451903263169e-11, -4.439704159864277e-10, -6.861078372111251e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.596234421365807e-12, 2.942890375834395e-11, -5.101474798152594e-12, -1.40032430095971e-11, 1.020739048840369e-12, 1.308841923730597e-11, -6.14636119777856e-11, 2.6676216791088336e-11, -3.473887844052115e-13, 5.806555236631539e-11, -1.0333955913210957e-11, -2.4706015011588534e-11, 1.0311751452718454e-12, 2.475752935993114e-11, -1.1229861485162473e-10, 5.5578652791155037e-11] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [2.751132655021138e-12, 7.751577157932843e-12, -1.130540105975797e-12, -1.689526296644317e-11, 7.888134589961737e-12, -8.818501484597618e-13, 2.4834578837840127e-11, -2.11104467240375e-11, 3.0166980025114754e-12, 1.5029533173560594e-11, -4.3453018960804e-12, -3.395794756499981e-11, 1.592614928824787e-11, -1.7222889781010053e-12, 4.9291903891912625e-11, -4.039990564308482e-11, 6.473266367379438e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.218982692563486e-10, -8.917810934150339e-11, 1.185123110758468e-10, 1.0231682168182488e-10, -7.206280017157951e-11, -3.670286297108305e-11, 2.240385654772581e-11, -8.133105300345278e-11, 2.264195497758692e-10, -1.8013979197206709e-10, 2.250091224453854e-10, 2.1358737001264672e-10, -1.3036538515365237e-10, -7.968858906082232e-11, 4.408984288772899e-11, -1.553454032077184e-10, -2.6769697569761775e-12] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [3.112088364787269e-11, -6.462608226343036e-12, -2.945466093251525e-11, 1.3025136524902337e-11, -8.839595722065496e-13, 1.0524692228841559e-11, -1.1376455333333979e-11, -5.952127679620389e-12, 2.353450767600407e-12, 6.447309353063702e-11, -1.2232881374529825e-11, -5.970612892980398e-11, 2.65898414397725e-11, -1.5007994846882866e-12, 2.1074919587249497e-11, -2.219124883851009e-11, -1.2391643267051222e-11, 1.6842083283563625e-12] QuasiNewtonMethods.optimum(state) .- 1 = [7.174683069877119e-11, 1.024473839095208e-10, -4.164624201052902e-11, 2.3749224808966574e-11, -1.2018830375382095e-10, -3.5436986678405447e-11, -5.0645043714325766e-11, 9.056666527840207e-11, 2.1778734371480368e-10, 1.1942447031287884e-10, 2.0358226215932973e-10, -9.00014507365654e-11, 5.0959680919504535e-11, -2.2239610153462763e-10, -7.864942030977318e-11, -7.760525555511322e-11, 2.0210544349197335e-10, 4.248221774361127e-10] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [8.80928663349323e-11, 5.928257884590948e-11, 3.1566083080747376e-11, 2.906785923073585e-12, -1.977019659094026e-10, 2.3101742741005182e-11, -2.647948527112476e-11, 3.191358288745505e-11, 2.6166846467390315e-11, 1.7062506962872703e-10, 1.1530421062388996e-10, 7.325740014607618e-11, 1.1747491868163706e-11, -3.883867671916619e-10, 4.737410463917513e-11, -4.6353920701847073e-11, 6.183809020399167e-11, 2.8494095971609568e-11, -1.3280487820566123e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-6.616340808562882e-11, -2.448474756278074e-11, -1.581579311960013e-11, -6.053491041768666e-12, -3.4420577499361116e-11, -5.5006110777355843e-11, 2.8557600728618127e-11, -1.168800611850429e-10, 1.2250200853713977e-11, -1.3249557007100066e-10, -4.8975046240684605e-11, -3.197064835092078e-11, -1.2307821428692023e-11, -6.224831761159066e-11, -1.1761558393885707e-10, 5.6405102810686e-11, -2.440918578372475e-10, 2.3540502880337044e-11, -3.395950187723429e-12] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [9.683032153873228e-11, -2.595614834177695e-10, 3.45518280653323e-10, 2.043103464188789e-10, -6.141254171865285e-11, 1.1385270504149503e-10, 1.195812338039559e-10, -2.7453816997535796e-11, 4.925282404144582e-11, -1.1541878564003127e-12, 2.070921212293797e-10, -4.990146074135282e-10, 6.818543507591812e-10, 4.1539283124336635e-10, -1.1889744744308928e-10, 2.4385604646681713e-10, 2.43086439866147e-10, -4.5332737563796854e-11, 1.0458323096429467e-10, 1.120081805083828e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.2500246110723765e-10, 8.264855466677545e-11, -2.0230150887812215e-10, 9.20217235744758e-11, -2.2415147515886247e-10, -1.6321266560481718e-10, -2.904942952852707e-11, -2.7224666965253164e-11, 1.0904432912184348e-10, -9.057021799208087e-11, -4.532291209002892e-10, 1.5607737324785376e-10, -4.068451131544748e-10, 1.8910961685492111e-10, -4.520032126364981e-10, -3.16157766633296e-10, -5.727340823824534e-11, -5.351297183153747e-11, 2.1271717720594552e-10, -1.8607682061855257e-10] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [3.4141578453272814e-11, 7.750688979513143e-11, -4.3477887956555605e-11, -1.7011825281798565e-10, -4.420552812689493e-11, 8.642575544115516e-11, 1.3488499206459892e-10, -6.057143675519683e-11, -2.507030139042854e-10, -2.9964475345423125e-11, 7.718403693957043e-11, 1.4935963577045186e-10, -9.292044911290986e-11, -3.352013111523888e-10, -9.434542036501625e-11, 1.829558726740288e-10, 2.6123747609574366e-10, -1.1839551561365624e-10, -5.039614281443505e-10, -6.69030386646341e-11, -4.3309800190627357e-13] QuasiNewtonMethods.optimum(state) .- 1 = [9.038103598868474e-12, 6.205991276431178e-11, 8.564327025339935e-11, -1.84587234386413e-10, 1.3235634810371266e-11, -2.4063417924935493e-11, -3.8773317889706505e-11, 2.330484694113011e-10, 2.6259439067644053e-11, -1.0393652605245052e-10, 9.78550573904613e-12, 1.2776291136162854e-10, 1.7354362391586164e-10, -3.718514385298022e-10, 2.514810581999427e-11, -3.8267167212779896e-11, -6.978195798978959e-11, 4.6410897347470836e-10, 5.771183531066981e-11, -2.027041867691537e-10, -8.93685125902266e-12] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [-4.025557664988355e-12, 9.693135183397317e-12, 3.3436364788030914e-11, 7.782885447227272e-12, -1.0839551478625253e-11, -4.783173856992562e-12, 3.923306124420378e-12, 1.68383085252799e-11, 1.4266365866433262e-11, -3.199662756969701e-13, 1.697997298322207e-11, -7.2691852537332124e-12, 1.947930705625822e-11, 6.936562435555516e-11, 1.5981882484084053e-11, -2.2499890839355885e-11, -1.012978589898239e-11, 9.10893582783956e-12, 3.538636050848254e-11, 2.9722224681449916e-11, 4.6118664442929e-13, 3.345990151615297e-11] QuasiNewtonMethods.optimum(state) .- 1 = [5.085754040123902e-11, -2.3208546195974122e-11, 6.5922822756192545e-12, -3.073485910221052e-11, 1.1208589612010655e-11, 1.0341061340568558e-11, -4.540789966256398e-11, -1.822320072619732e-12, -2.8894775461196787e-11, -3.591904551569769e-11, 9.933609490531126e-12, 1.0219380897069641e-10, -4.7686854465212036e-11, 1.2776446567386301e-11, -6.0643490229495e-11, 2.0976997916477558e-11, 2.1679547046460357e-11, -8.965306275143803e-11, -2.897793116574121e-12, -5.6797455627588533e-11, -7.044664851463267e-11, 2.1430857088944322e-11] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [-1.2871592680596677e-11, -5.858646900946951e-12, 9.157119507108291e-13, 2.897082573838361e-11, -1.7439716337719346e-11, -1.913458280711211e-11, -2.9189872741142153e-11, -3.5194624992129775e-11, -7.91300358571334e-12, -2.8613444946756772e-11, 3.260991476849995e-11, -2.531264087224372e-11, -1.5427992217098563e-11, 3.455014052633487e-13, 5.826472637693314e-11, -3.5825675759326714e-11, -3.587929953141611e-11, -6.189582180127218e-11, -7.264744361634712e-11, -1.3592127423578404e-11, -5.722533558127907e-11, 7.230060994345422e-11, -6.38807895469995e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.800914972704959e-10, -2.6527002816578715e-11, -1.6560031124157604e-10, 8.855982613908964e-11, -3.448730190314109e-11, 1.4741541320972829e-12, -5.568434602309935e-11, 1.0159428853739882e-11, -2.5860980024106084e-11, 1.3683520982965547e-10, 5.026778993055814e-11, 3.59204888056297e-10, -4.9598547491314093e-11, -3.2527136539783896e-10, 1.8388157663196125e-10, -7.426659287546045e-11, 4.2024161928111425e-12, -1.139863758936599e-10, 2.4201085579989012e-11, -5.771871869342249e-11, 2.6782931428215306e-10, 1.0774048320172369e-10, -1.3989254199486822e-11] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [1.1795009413617663e-12, -5.077593900892907e-11, 2.71300759635551e-11, 7.656386635801482e-11, 3.355182798259193e-11, 2.070033033874097e-11, 3.856426289416959e-11, -2.9591884498358922e-12, -1.3249623620481543e-11, -4.958877752869739e-11, 9.864997707609291e-11, 3.015365734881925e-12, 4.623634808353927e-12, -9.976164339065008e-11, 5.515743417561225e-11, 1.5788770291180754e-10, 6.479083936028474e-11, 4.249223195529339e-11, 8.023803843570931e-11, -4.297895372928906e-12, -1.7836288002115452e-11, -9.54542000997094e-11, 1.8970802706519407e-10, 6.9828587356823846e-12] QuasiNewtonMethods.optimum(state) .- 1 = [5.358757881879228e-11, -5.8761884247360285e-12, -3.395606018585795e-11, -2.4210411453395864e-11, -3.33431060539624e-11, -7.283684766434817e-11, -3.140820936664568e-13, -2.7662205859257938e-11, -5.209166431541234e-13, 3.886713173528733e-11, 3.190558928167775e-12, -6.3504757008558954e-12, 1.0537171135638346e-10, -1.2977063867936067e-11, -6.652189910028028e-11, -5.025868610175621e-11, -6.445943778743413e-11, -1.4452472552051177e-10, -8.139044993527023e-13, -5.100364575127969e-11, -8.101630477597155e-12, 7.660938550202445e-11, 7.178924121831187e-12, -1.358402279549864e-11] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 4m09.3s Method ambiguity | 1 1 9.5s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 7.2s Compat bounds | 3 1 4 10.0s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.5s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 9.4s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 49.5s RNG of the outermost testset: Random.Xoshiro(0x3b0b1c7301c5c6df, 0xadc195147f0d19a9, 0x68d6cd867630c333, 0xb298124e98b4f4a3, 0x32aa5f76fad3944e) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 278.48s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2673 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2522 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:538 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:515 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:168 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:157 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:155 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:309 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [14] _start() @ Base ./client.jl:577 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 516.73s: package has test failures