Package evaluation of RadialBasisFunctionModels on Julia 1.11.4 (a71dd056e0*) started at 2025-04-08T14:13:23.551 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.99s ################################################################################ # Installation # Installing RadialBasisFunctionModels... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [48790e7e] + RadialBasisFunctionModels v0.3.4 Updating `~/.julia/environments/v1.11/Manifest.toml` [621f4979] + AbstractFFTs v1.5.0 [79e6a3ab] + Adapt v4.3.0 [a9b6321e] + Atomix v1.1.1 [fa961155] + CEnum v0.5.0 [082447d4] + ChainRules v1.72.3 [d360d2e6] + ChainRulesCore v1.25.1 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.16.0 [187b0558] + ConstructionBase v1.5.8 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [ffbed154] + DocStringExtensions v0.9.4 [1a297f60] + FillArrays v1.13.0 ⌅ [f6369f11] + ForwardDiff v0.10.38 [0c68f7d7] + GPUArrays v11.2.2 [46192b85] + GPUArraysCore v0.2.0 [076d061b] + HashArrayMappedTries v0.2.0 [7869d1d1] + IRTools v0.4.14 [92d709cd] + IrrationalConstants v0.2.4 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.0 [63c18a36] + KernelAbstractions v0.9.34 [929cbde3] + LLVM v9.2.0 [50d2b5c4] + Lazy v0.15.1 [2ab3a3ac] + LogExpFunctions v0.3.29 [e80e1ace] + MLJModelInterface v1.11.0 [1914dd2f] + MacroTools v0.5.15 ⌅ [6fafb56a] + Memoization v0.1.14 [102ac46a] + MultivariatePolynomials v0.5.7 [d8a4904e] + MutableArithmetics v1.6.4 [77ba4419] + NaNMath v1.1.3 [bac558e1] + OrderedCollections v1.8.0 [d96e819e] + Parameters v0.12.3 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [48790e7e] + RadialBasisFunctionModels v0.3.4 [c1ae055f] + RealDot v0.1.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [30f210dd] + ScientificTypesBase v3.0.0 [7e506255] + ScopedValues v1.3.0 [dc90abb0] + SparseInverseSubset v0.1.2 [276daf66] + SpecialFunctions v2.5.0 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [62e018b1] + StaticPolynomials v1.3.7 [64bff920] + StatisticalTraits v3.4.0 [10745b16] + Statistics v1.11.1 [09ab397b] + StructArrays v0.7.1 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.0 ⌅ [4239201d] + ThreadSafeDicts v0.0.3 [3a884ed6] + UnPack v1.0.2 [013be700] + UnsafeAtomics v0.3.0 ⌅ [e88e6eb3] + Zygote v0.6.76 [700de1a5] + ZygoteRules v0.2.7 [dad2f222] + LLVMExtra_jll v0.0.35+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [4af54fe1] + LazyArtifacts v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.6.0+0 [e37daf67] + LibGit2_jll v1.7.2+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.6+0 [14a3606d] + MozillaCACerts_jll v2023.12.12 [4536629a] + OpenBLAS_jll v0.3.27+1 [05823500] + OpenLibm_jll v0.8.5+0 [bea87d4a] + SuiteSparse_jll v7.7.0+0 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.59.0+0 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.59s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 104.02s ################################################################################ # Testing # Testing RadialBasisFunctionModels Status `/tmp/jl_wTBOlA/Project.toml` [082447d4] ChainRules v1.72.3 ⌅ [f6369f11] ForwardDiff v0.10.38 [a7f614a8] MLJBase v1.8.1 [48790e7e] RadialBasisFunctionModels v0.3.4 [90137ffa] StaticArrays v1.9.13 [b77e0a4c] InteractiveUtils v1.11.0 [44cfe95a] Pkg v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_wTBOlA/Manifest.toml` [621f4979] AbstractFFTs v1.5.0 [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.3.0 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.5.0 [a9b6321e] Atomix v1.1.1 [198e06fe] BangBang v0.4.4 [9718e550] Baselet v0.1.1 [fa961155] CEnum v0.5.0 [324d7699] CategoricalArrays v0.10.8 [af321ab8] CategoricalDistributions v0.1.15 [082447d4] ChainRules v1.72.3 [d360d2e6] ChainRulesCore v1.25.1 [3da002f7] ColorTypes v0.12.1 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.16.0 [a33af91c] CompositionsBase v0.1.2 [ed09eef8] ComputationalResources v0.3.2 [187b0558] ConstructionBase v1.5.8 [6add18c4] ContextVariablesX v0.1.3 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [8bb1440f] DelimitedFiles v1.9.1 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [31c24e10] Distributions v0.25.118 [ffbed154] DocStringExtensions v0.9.4 [cc61a311] FLoops v0.2.2 [b9860ae5] FLoopsBase v0.1.1 [1a297f60] FillArrays v1.13.0 [53c48c17] FixedPointNumbers v0.8.5 ⌅ [f6369f11] ForwardDiff v0.10.38 [0c68f7d7] GPUArrays v11.2.2 [46192b85] GPUArraysCore v0.2.0 [076d061b] HashArrayMappedTries v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [7869d1d1] IRTools v0.4.14 [22cec73e] InitialValues v0.3.1 [3587e190] InverseFunctions v0.1.17 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.4 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.0 [b14d175d] JuliaVariables v0.2.4 [63c18a36] KernelAbstractions v0.9.34 [929cbde3] LLVM v9.2.0 [b964fa9f] LaTeXStrings v1.4.0 [50d2b5c4] Lazy v0.15.1 [92ad9a40] LearnAPI v1.0.1 [2ab3a3ac] LogExpFunctions v0.3.29 [c2834f40] MLCore v1.0.0 [a7f614a8] MLJBase v1.8.1 [e80e1ace] MLJModelInterface v1.11.0 [d8e11817] MLStyle v0.4.17 [f1d291b0] MLUtils v0.4.8 [1914dd2f] MacroTools v0.5.15 ⌅ [6fafb56a] Memoization v0.1.14 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [102ac46a] MultivariatePolynomials v0.5.7 [d8a4904e] MutableArithmetics v1.6.4 [872c559c] NNlib v0.9.30 [77ba4419] NaNMath v1.1.3 [71a1bf82] NameResolution v0.1.5 [bac558e1] OrderedCollections v1.8.0 [90014a1f] PDMats v0.11.33 [d96e819e] Parameters v0.12.3 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [8162dcfd] PrettyPrint v0.2.0 [08abe8d2] PrettyTables v2.4.0 [92933f4c] ProgressMeter v1.10.4 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [48790e7e] RadialBasisFunctionModels v0.3.4 [c1ae055f] RealDot v0.1.0 [3cdcf5f2] RecipesBase v1.3.4 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.8.0 [321657f4] ScientificTypes v3.1.0 [30f210dd] ScientificTypesBase v3.0.0 [7e506255] ScopedValues v1.3.0 [efcf1570] Setfield v1.1.2 [605ecd9f] ShowCases v0.1.0 [699a6c99] SimpleTraits v0.9.4 [a2af1166] SortingAlgorithms v1.2.1 [dc90abb0] SparseInverseSubset v0.1.2 [276daf66] SpecialFunctions v2.5.0 [171d559e] SplittablesBase v0.1.15 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [62e018b1] StaticPolynomials v1.3.7 [c062fc1d] StatisticalMeasuresBase v0.1.2 [64bff920] StatisticalTraits v3.4.0 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.0 [2913bbd2] StatsBase v0.34.4 [4c63d2b9] StatsFuns v1.4.0 [892a3eda] StringManipulation v0.4.1 [09ab397b] StructArrays v0.7.1 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.0 ⌅ [4239201d] ThreadSafeDicts v0.0.3 [28d57a85] Transducers v0.4.84 [3a884ed6] UnPack v1.0.2 [013be700] UnsafeAtomics v0.3.0 ⌅ [e88e6eb3] Zygote v0.6.76 [700de1a5] ZygoteRules v0.2.7 [dad2f222] LLVMExtra_jll v0.0.35+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [4af54fe1] LazyArtifacts v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [05823500] OpenLibm_jll v0.8.5+0 [bea87d4a] SuiteSparse_jll v7.7.0+0 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Precompiling RadialBasisFunctionModels... Info Given RadialBasisFunctionModels was explicitly requested, output will be shown live  WARNING: could not import Base.inner_mapslices! into RadialBasisFunctionModels ┌ Warning: │ Regarding RadialBasisFunctionModels.RBFInterpolator: `metadata_model` should not be called with the keyword argument `descr` │ or `docstring`. Implementers of the MLJ model interface should instead create an │ MLJ-compliant docstring in the usual way. See │ https://alan-turing-institute.github.io/MLJ.jl/dev/adding_models_for_general_use/#Document-strings │ for details. │ │ caller = top-level scope at mlj_interface.jl:104 └ @ Core ~/.julia/packages/RadialBasisFunctionModels/AZOSU/src/mlj_interface.jl:104 22077.6 ms ✓ RadialBasisFunctionModels 1 dependency successfully precompiled in 24 seconds. 117 already precompiled. 1 dependency had output during precompilation: ┌ RadialBasisFunctionModels │ [Output was shown above] └ ┌ Warning: `ignore(f)` is deprecated, use `ChainRulesCore.ignore_derivatives(f)` instead. │ caller = make_polys at constructors.jl:162 [inlined] └ @ Core ~/.julia/packages/RadialBasisFunctionModels/AZOSU/src/constructors.jl:162 ┌ Warning: `ignore(f)` is deprecated, use `ChainRulesCore.ignore_derivatives(f)` instead. │ caller = make_polys at constructors.jl:162 [inlined] └ @ Core ~/.julia/packages/RadialBasisFunctionModels/AZOSU/src/constructors.jl:162 ┌ Warning: `ignore(f)` is deprecated, use `ChainRulesCore.ignore_derivatives(f)` instead. │ caller = make_polys at constructors.jl:162 [inlined] └ @ Core ~/.julia/packages/RadialBasisFunctionModels/AZOSU/src/constructors.jl:162 ┌ Warning: `ignore(f)` is deprecated, use `ChainRulesCore.ignore_derivatives(f)` instead. │ caller = make_polys at constructors.jl:162 [inlined] └ @ Core ~/.julia/packages/RadialBasisFunctionModels/AZOSU/src/constructors.jl:162 Precompiling MLJBase... 1829.1 ms ✓ BangBang → BangBangTablesExt 1627.7 ms ✓ Accessors → StaticArraysExt 1733.9 ms ✓ BangBang → BangBangStaticArraysExt 2013.1 ms ✓ CategoricalArrays → CategoricalArraysRecipesBaseExt 8744.6 ms ✓ KernelAbstractions 9642.7 ms ✓ Distributions 11962.4 ms ✓ Transducers 2138.7 ms ✓ KernelAbstractions → SparseArraysExt 1671.1 ms ✓ KernelAbstractions → LinearAlgebraExt 3909.2 ms ✓ Distributions → DistributionsTestExt 4087.0 ms ✓ Distributions → DistributionsChainRulesCoreExt 38460.4 ms ✓ ScientificTypes 1515.9 ms ✓ Transducers → TransducersAdaptExt 15870.2 ms ✓ FLoops 13930.0 ms ✓ NNlib 7991.1 ms ✓ CategoricalDistributions 2289.2 ms ✓ NNlib → NNlibSpecialFunctionsExt 20809.8 ms ✓ MLUtils 16703.3 ms ✓ StatisticalMeasuresBase 26515.9 ms ✓ MLJBase 20 dependencies successfully precompiled in 196 seconds. 123 already precompiled. Precompiling StructArraysExt... 1011.5 ms ✓ Accessors → StructArraysExt 1 dependency successfully precompiled in 1 seconds. 20 already precompiled. Precompiling BangBangStructArraysExt... 1077.9 ms ✓ BangBang → BangBangStructArraysExt 1 dependency successfully precompiled in 1 seconds. 24 already precompiled. Precompiling StructArraysGPUArraysCoreExt... 1632.8 ms ✓ StructArrays → StructArraysGPUArraysCoreExt 1 dependency successfully precompiled in 2 seconds. 34 already precompiled. Precompiling NNlibForwardDiffExt... 3167.9 ms ✓ NNlib → NNlibForwardDiffExt 1 dependency successfully precompiled in 4 seconds. 48 already precompiled. ┌ Warning: Invalid kernel arguments. Using defaults for multiquadric. └ @ RadialBasisFunctionModels ~/.julia/packages/RadialBasisFunctionModels/AZOSU/src/mlj_interface.jl:44 [ Info: Training machine(RBFInterpolator(kernel_name = multiquadric, …), …). ┌ Warning: `ignore(f)` is deprecated, use `ChainRulesCore.ignore_derivatives(f)` instead. │ caller = make_polys at constructors.jl:162 [inlined] └ @ Core ~/.julia/packages/RadialBasisFunctionModels/AZOSU/src/constructors.jl:162 ┌ Warning: `ignore(f)` is deprecated, use `ChainRulesCore.ignore_derivatives(f)` instead. │ caller = make_polys at constructors.jl:162 [inlined] └ @ Core ~/.julia/packages/RadialBasisFunctionModels/AZOSU/src/constructors.jl:162 Activating project at `~/.julia/packages/RadialBasisFunctionModels/AZOSU/test` ┌ Warning: `ignore(f)` is deprecated, use `ChainRulesCore.ignore_derivatives(f)` instead. │ caller = make_polys at constructors.jl:162 [inlined] └ @ Core ~/.julia/packages/RadialBasisFunctionModels/AZOSU/src/constructors.jl:162 Precision: Error During Test at /home/pkgeval/.julia/packages/RadialBasisFunctionModels/AZOSU/test/test_machine_wrapper.jl:36 Got exception outside of a @test MethodError: no method matching Random.Sampler(::Type{Random.TaskLocalRNG}, ::Random.SamplerTrivial{Random.CloseOpen01{Core.BFloat16}, Core.BFloat16}, ::Val{1}) This error has been manually thrown, explicitly, so the method may exist but be intentionally marked as unimplemented. Closest candidates are: Random.Sampler(::Type{<:Random.AbstractRNG}, ::Random.Sampler, ::Union{Val{1}, Val{Inf}}) @ Random /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:147 Random.Sampler(::Type{<:Random.AbstractRNG}, ::Any, ::Union{Val{1}, Val{Inf}}) @ Random /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:183 Random.Sampler(::Type{<:Random.AbstractRNG}, !Matched::BitSet, ::Union{Val{1}, Val{Inf}}) @ Random /opt/julia/share/julia/stdlib/v1.11/Random/src/generation.jl:488 ... Stacktrace: [1] Random.Sampler(T::Type{Random.TaskLocalRNG}, sp::Random.SamplerTrivial{Random.CloseOpen01{Core.BFloat16}, Core.BFloat16}, r::Val{1}) @ Random /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:147 [2] Random.Sampler(rng::Random.TaskLocalRNG, x::Random.SamplerTrivial{Random.CloseOpen01{Core.BFloat16}, Core.BFloat16}, r::Val{1}) @ Random /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:141 [3] rand(rng::Random.TaskLocalRNG, X::Random.SamplerTrivial{Random.CloseOpen01{Core.BFloat16}, Core.BFloat16}) @ Random /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:255 [4] rand! @ /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:273 [inlined] [5] rand! @ /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:269 [inlined] [6] rand @ /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:290 [inlined] [7] rand @ /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:291 [inlined] [8] rand(::Type{Core.BFloat16}, ::Int64) @ Random /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:294 [9] macro expansion @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/test/test_machine_wrapper.jl:53 [inlined] [10] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:1704 [inlined] [11] top-level scope @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/test/test_machine_wrapper.jl:37 [12] include(fname::String) @ Main ./sysimg.jl:38 [13] macro expansion @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/test/runtests.jl:8 [inlined] [14] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:1704 [inlined] [15] top-level scope @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/test/runtests.jl:7 [16] include(fname::String) @ Main ./sysimg.jl:38 [17] top-level scope @ none:6 [18] eval @ ./boot.jl:430 [inlined] [19] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [20] _start() @ Base ./client.jl:531 PrecisionII: Error During Test at /home/pkgeval/.julia/packages/RadialBasisFunctionModels/AZOSU/test/test_machine_wrapper.jl:63 Got exception outside of a @test MethodError: no method matching Core.BFloat16(::Int64) The type `Core.BFloat16` exists, but no method is defined for this combination of argument types when trying to construct it. Closest candidates are: (::Type{T})(::Real, !Matched::RoundingMode) where T<:AbstractFloat @ Base rounding.jl:265 (::Type{T})(::T) where T<:Number @ Core boot.jl:900 (::Type{T})(!Matched::Rational{S}) where {S, T<:AbstractFloat} @ Base rational.jl:155 ... Stacktrace: [1] convert(::Type{Core.BFloat16}, x::Int64) @ Base ./number.jl:7 [2] one(::Type{Core.BFloat16}) @ Base ./number.jl:347 [3] ones(::Type{Core.BFloat16}, dims::Tuple{Int64}) @ Base ./array.jl:590 [4] ones(::Type{Core.BFloat16}, dims::Int64) @ Base ./array.jl:585 [5] macro expansion @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/test/test_machine_wrapper.jl:69 [inlined] [6] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:1704 [inlined] [7] top-level scope @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/test/test_machine_wrapper.jl:64 [8] include(fname::String) @ Main ./sysimg.jl:38 [9] macro expansion @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/test/runtests.jl:8 [inlined] [10] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:1704 [inlined] [11] top-level scope @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/test/runtests.jl:7 [12] include(fname::String) @ Main ./sysimg.jl:38 [13] top-level scope @ none:6 [14] eval @ ./boot.jl:430 [inlined] [15] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [16] _start() @ Base ./client.jl:531 Activating project at `/tmp/jl_wTBOlA` Activating project at `~/.julia/packages/RadialBasisFunctionModels/AZOSU/test` Activating project at `/tmp/jl_wTBOlA` Activating project at `~/.julia/packages/RadialBasisFunctionModels/AZOSU/test` 1D-Data: Error During Test at /home/pkgeval/.julia/packages/RadialBasisFunctionModels/AZOSU/test/test_rbf_models.jl:12 Got exception outside of a @test MethodError: no method matching Random.Sampler(::Type{Random.TaskLocalRNG}, ::Random.SamplerTrivial{Random.CloseOpen01{Core.BFloat16}, Core.BFloat16}, ::Val{1}) This error has been manually thrown, explicitly, so the method may exist but be intentionally marked as unimplemented. Closest candidates are: Random.Sampler(::Type{<:Random.AbstractRNG}, ::Random.Sampler, ::Union{Val{1}, Val{Inf}}) @ Random /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:147 Random.Sampler(::Type{<:Random.AbstractRNG}, ::Any, ::Union{Val{1}, Val{Inf}}) @ Random /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:183 Random.Sampler(::Type{<:Random.AbstractRNG}, !Matched::BitSet, ::Union{Val{1}, Val{Inf}}) @ Random /opt/julia/share/julia/stdlib/v1.11/Random/src/generation.jl:488 ... Stacktrace: [1] Random.Sampler(T::Type{Random.TaskLocalRNG}, sp::Random.SamplerTrivial{Random.CloseOpen01{Core.BFloat16}, Core.BFloat16}, r::Val{1}) @ Random /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:147 [2] Random.Sampler(rng::Random.TaskLocalRNG, x::Random.SamplerTrivial{Random.CloseOpen01{Core.BFloat16}, Core.BFloat16}, r::Val{1}) @ Random /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:141 [3] rand(rng::Random.TaskLocalRNG, X::Random.SamplerTrivial{Random.CloseOpen01{Core.BFloat16}, Core.BFloat16}) @ Random /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:255 [4] rand! @ /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:273 [inlined] [5] rand! @ /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:269 [inlined] [6] rand @ /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:290 [inlined] [7] rand @ /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:291 [inlined] [8] rand(::Type{Core.BFloat16}, ::Int64) @ Random /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:294 [9] macro expansion @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/test/test_rbf_models.jl:15 [inlined] [10] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:1704 [inlined] [11] top-level scope @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/test/test_rbf_models.jl:13 [12] include(fname::String) @ Main ./sysimg.jl:38 [13] macro expansion @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/test/runtests.jl:8 [inlined] [14] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:1704 [inlined] [15] top-level scope @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/test/runtests.jl:7 [16] include(fname::String) @ Main ./sysimg.jl:38 [17] top-level scope @ none:6 [18] eval @ ./boot.jl:430 [inlined] [19] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [20] _start() @ Base ./client.jl:531 NonStaticData: Error During Test at /home/pkgeval/.julia/packages/RadialBasisFunctionModels/AZOSU/test/test_rbf_models.jl:43 Got exception outside of a @test UndefVarError: `j` not defined in `Zygote` Stacktrace: [1] macro expansion @ ~/.julia/packages/Zygote/1GK3J/src/compiler/interface2.jl:0 [inlined] [2] (::Zygote.Pullback{Tuple{Core.IntrinsicFunction, Float64}, Tuple{Core.IntrinsicFunction}})(Δ::Float64) @ Zygote ~/.julia/packages/Zygote/1GK3J/src/compiler/interface2.jl:110 [3] round @ ./float.jl:464 [inlined] [4] (::Zygote.Pullback{Tuple{typeof(round), Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{Core.IntrinsicFunction, Float64}, Tuple{Core.IntrinsicFunction}}}})(Δ::Float64) @ Zygote ~/.julia/packages/Zygote/1GK3J/src/compiler/interface2.jl:0 [5] round @ ./rounding.jl:479 [inlined] [6] (::Zygote.Pullback{Tuple{typeof(round), Type{Int64}, Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{typeof(round), Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{Core.IntrinsicFunction, Float64}, Tuple{Core.IntrinsicFunction}}}}, Zygote.Pullback{Tuple{typeof(Base._round_convert), Type{Int64}, Float64, Float64, RoundingMode{:Up}}, Tuple{Zygote.ZBack{Zygote.var"#convert_pullback#334"}}}}})(Δ::Float64) @ Zygote ~/.julia/packages/Zygote/1GK3J/src/compiler/interface2.jl:0 [7] ceil @ ./rounding.jl:476 [inlined] [8] (::Zygote.Pullback{Tuple{typeof(ceil), Type{Int64}, Float64}, Tuple{Zygote.Pullback{Tuple{typeof(round), Type{Int64}, Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{typeof(round), Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{Core.IntrinsicFunction, Float64}, Tuple{Core.IntrinsicFunction}}}}, Zygote.Pullback{Tuple{typeof(Base._round_convert), Type{Int64}, Float64, Float64, RoundingMode{:Up}}, Tuple{Zygote.ZBack{Zygote.var"#convert_pullback#334"}}}}}}})(Δ::Float64) @ Zygote ~/.julia/packages/Zygote/1GK3J/src/compiler/interface2.jl:0 [9] Cubic @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/src/radial_funcs.jl:95 [inlined] [10] (::Zygote.Pullback{Tuple{Cubic, BigFloat}, Tuple{Zygote.ZBack{ChainRules.var"#power_pullback#415"{Int64, Int64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, Int64}}, Zygote.Pullback{Tuple{typeof(ceil), Type{Int64}, Float64}, Tuple{Zygote.Pullback{Tuple{typeof(round), Type{Int64}, Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{typeof(round), Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{Core.IntrinsicFunction, Float64}, Tuple{Core.IntrinsicFunction}}}}, Zygote.Pullback{Tuple{typeof(Base._round_convert), Type{Int64}, Float64, Float64, RoundingMode{:Up}}, Tuple{Zygote.ZBack{Zygote.var"#convert_pullback#334"}}}}}}}, Zygote.ZBack{ChainRules.var"#times_pullback2#423"{Int64, BigFloat}}, Zygote.ZBack{ChainRules.var"#power_pullback#415"{BigFloat, Int64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, BigFloat}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:β, Zygote.Context{false}, Cubic, Int64}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:β, Zygote.Context{false}, Cubic, Int64}}, Zygote.ZBack{ChainRules.var"#/_pullback#413"{Float64, Float64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}}}}})(Δ::BigFloat) @ Zygote ~/.julia/packages/Zygote/1GK3J/src/compiler/interface2.jl:0 [11] ShiftedKernel @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/src/RadialBasisFunctionModels.jl:91 [inlined] [12] (::Zygote.Pullback{Tuple{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Vector{BigFloat}}, Tuple{Zygote.Pullback{Tuple{typeof(RadialBasisFunctionModels.norm2), Vector{BigFloat}}, Tuple{Zygote.ZBack{ChainRules.var"#norm_pullback_p#1066"{Vector{BigFloat}, Int64, BigFloat}}}}, Zygote.Pullback{Tuple{typeof(Base.Broadcast.materialize), Vector{BigFloat}}, Tuple{}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:φ, Zygote.Context{false}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Cubic}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:c, Zygote.Context{false}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Vector{BigFloat}}}, Zygote.Pullback{Tuple{Cubic, BigFloat}, Tuple{Zygote.ZBack{ChainRules.var"#power_pullback#415"{Int64, Int64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, Int64}}, Zygote.Pullback{Tuple{typeof(ceil), Type{Int64}, Float64}, Tuple{Zygote.Pullback{Tuple{typeof(round), Type{Int64}, Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{typeof(round), Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{Core.IntrinsicFunction, Float64}, Tuple{Core.IntrinsicFunction}}}}, Zygote.Pullback{Tuple{typeof(Base._round_convert), Type{Int64}, Float64, Float64, RoundingMode{:Up}}, Tuple{Zygote.ZBack{Zygote.var"#convert_pullback#334"}}}}}}}, Zygote.ZBack{ChainRules.var"#times_pullback2#423"{Int64, BigFloat}}, Zygote.ZBack{ChainRules.var"#power_pullback#415"{BigFloat, Int64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, BigFloat}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:β, Zygote.Context{false}, Cubic, Int64}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:β, Zygote.Context{false}, Cubic, Int64}}, Zygote.ZBack{ChainRules.var"#/_pullback#413"{Float64, Float64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}}}}}, Zygote.var"#3804#back#1212"{Zygote.var"#1208#1211"{Vector{BigFloat}, Vector{BigFloat}}}}})(Δ::BigFloat) @ Zygote ~/.julia/packages/Zygote/1GK3J/src/compiler/interface2.jl:0 [13] #19 @ ./none:0 [inlined] [14] (::Zygote.Pullback{Tuple{RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, Tuple{Zygote.Pullback{Tuple{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Vector{BigFloat}}, Tuple{Zygote.Pullback{Tuple{typeof(RadialBasisFunctionModels.norm2), Vector{BigFloat}}, Tuple{Zygote.ZBack{ChainRules.var"#norm_pullback_p#1066"{Vector{BigFloat}, Int64, BigFloat}}}}, Zygote.Pullback{Tuple{typeof(Base.Broadcast.materialize), Vector{BigFloat}}, Tuple{}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:φ, Zygote.Context{false}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Cubic}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:c, Zygote.Context{false}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Vector{BigFloat}}}, Zygote.Pullback{Tuple{Cubic, BigFloat}, Tuple{Zygote.ZBack{ChainRules.var"#power_pullback#415"{Int64, Int64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, Int64}}, Zygote.Pullback{Tuple{typeof(ceil), Type{Int64}, Float64}, Tuple{Zygote.Pullback{Tuple{typeof(round), Type{Int64}, Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{typeof(round), Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{Core.IntrinsicFunction, Float64}, Tuple{Core.IntrinsicFunction}}}}, Zygote.Pullback{Tuple{typeof(Base._round_convert), Type{Int64}, Float64, Float64, RoundingMode{:Up}}, Tuple{Zygote.ZBack{Zygote.var"#convert_pullback#334"}}}}}}}, Zygote.ZBack{ChainRules.var"#times_pullback2#423"{Int64, BigFloat}}, Zygote.ZBack{ChainRules.var"#power_pullback#415"{BigFloat, Int64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, BigFloat}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:β, Zygote.Context{false}, Cubic, Int64}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:β, Zygote.Context{false}, Cubic, Int64}}, Zygote.ZBack{ChainRules.var"#/_pullback#413"{Float64, Float64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}}}}}, Zygote.var"#3804#back#1212"{Zygote.var"#1208#1211"{Vector{BigFloat}, Vector{BigFloat}}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:x, Zygote.Context{false}, RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, Vector{BigFloat}}}}})(Δ::BigFloat) @ Zygote ~/.julia/packages/Zygote/1GK3J/src/compiler/interface2.jl:0 [15] (::Zygote.var"#670#675")(::Tuple{BigFloat, Zygote.Pullback{Tuple{RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, Tuple{Zygote.Pullback{Tuple{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Vector{BigFloat}}, Tuple{Zygote.Pullback{Tuple{typeof(RadialBasisFunctionModels.norm2), Vector{BigFloat}}, Tuple{Zygote.ZBack{ChainRules.var"#norm_pullback_p#1066"{Vector{BigFloat}, Int64, BigFloat}}}}, Zygote.Pullback{Tuple{typeof(Base.Broadcast.materialize), Vector{BigFloat}}, Tuple{}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:φ, Zygote.Context{false}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Cubic}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:c, Zygote.Context{false}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Vector{BigFloat}}}, Zygote.Pullback{Tuple{Cubic, BigFloat}, Tuple{Zygote.ZBack{ChainRules.var"#power_pullback#415"{Int64, Int64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, Int64}}, Zygote.Pullback{Tuple{typeof(ceil), Type{Int64}, Float64}, Tuple{Zygote.Pullback{Tuple{typeof(round), Type{Int64}, Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{typeof(round), Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{Core.IntrinsicFunction, Float64}, Tuple{Core.IntrinsicFunction}}}}, Zygote.Pullback{Tuple{typeof(Base._round_convert), Type{Int64}, Float64, Float64, RoundingMode{:Up}}, Tuple{Zygote.ZBack{Zygote.var"#convert_pullback#334"}}}}}}}, Zygote.ZBack{ChainRules.var"#times_pullback2#423"{Int64, BigFloat}}, Zygote.ZBack{ChainRules.var"#power_pullback#415"{BigFloat, Int64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, BigFloat}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:β, Zygote.Context{false}, Cubic, Int64}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:β, Zygote.Context{false}, Cubic, Int64}}, Zygote.ZBack{ChainRules.var"#/_pullback#413"{Float64, Float64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}}}}}, Zygote.var"#3804#back#1212"{Zygote.var"#1208#1211"{Vector{BigFloat}, Vector{BigFloat}}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:x, Zygote.Context{false}, RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, Vector{BigFloat}}}}}}, δ::BigFloat) @ Zygote ~/.julia/packages/Zygote/1GK3J/src/lib/array.jl:202 [16] (::Base.var"#4#5"{Zygote.var"#670#675"})(a::Tuple{Tuple{BigFloat, Zygote.Pullback{Tuple{RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, Tuple{Zygote.Pullback{Tuple{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Vector{BigFloat}}, Tuple{Zygote.Pullback{Tuple{typeof(RadialBasisFunctionModels.norm2), Vector{BigFloat}}, Tuple{Zygote.ZBack{ChainRules.var"#norm_pullback_p#1066"{Vector{BigFloat}, Int64, BigFloat}}}}, Zygote.Pullback{Tuple{typeof(Base.Broadcast.materialize), Vector{BigFloat}}, Tuple{}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:φ, Zygote.Context{false}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Cubic}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:c, Zygote.Context{false}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Vector{BigFloat}}}, Zygote.Pullback{Tuple{Cubic, BigFloat}, Tuple{Zygote.ZBack{ChainRules.var"#power_pullback#415"{Int64, Int64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, Int64}}, Zygote.Pullback{Tuple{typeof(ceil), Type{Int64}, Float64}, Tuple{Zygote.Pullback{Tuple{typeof(round), Type{Int64}, Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{typeof(round), Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{Core.IntrinsicFunction, Float64}, Tuple{Core.IntrinsicFunction}}}}, Zygote.Pullback{Tuple{typeof(Base._round_convert), Type{Int64}, Float64, Float64, RoundingMode{:Up}}, Tuple{Zygote.ZBack{Zygote.var"#convert_pullback#334"}}}}}}}, Zygote.ZBack{ChainRules.var"#times_pullback2#423"{Int64, BigFloat}}, Zygote.ZBack{ChainRules.var"#power_pullback#415"{BigFloat, Int64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, BigFloat}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:β, Zygote.Context{false}, Cubic, Int64}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:β, Zygote.Context{false}, Cubic, Int64}}, Zygote.ZBack{ChainRules.var"#/_pullback#413"{Float64, Float64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}}}}}, Zygote.var"#3804#back#1212"{Zygote.var"#1208#1211"{Vector{BigFloat}, Vector{BigFloat}}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:x, Zygote.Context{false}, RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, Vector{BigFloat}}}}}}, BigFloat}) @ Base ./generator.jl:37 [17] iterate @ ./generator.jl:48 [inlined] [18] collect @ ./array.jl:791 [inlined] [19] map @ ./abstractarray.jl:3495 [inlined] [20] map_back @ ~/.julia/packages/Zygote/1GK3J/src/lib/array.jl:202 [inlined] [21] collect_pullback @ ~/.julia/packages/Zygote/1GK3J/src/lib/array.jl:236 [inlined] [22] _eval_vec_of_kernels @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/src/RadialBasisFunctionModels.jl:96 [inlined] [23] (::Zygote.Pullback{Tuple{typeof(RadialBasisFunctionModels._eval_vec_of_kernels), Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, Vector{BigFloat}}, Tuple{Zygote.var"#2210#back#317"{Zygote.Jnew{RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, Nothing, false}}, Zygote.Pullback{Tuple{Type{Base.Generator}, RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}}, Tuple{Zygote.var"#2210#back#317"{Zygote.Jnew{Base.Generator{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}}, Nothing, false}}}}, Zygote.var"#collect_pullback#710"{Zygote.var"#map_back#672"{RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, 1, Tuple{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}}, Tuple{Tuple{Base.OneTo{Int64}}}, Vector{Tuple{BigFloat, Zygote.Pullback{Tuple{RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, Tuple{Zygote.Pullback{Tuple{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Vector{BigFloat}}, Tuple{Zygote.Pullback{Tuple{typeof(RadialBasisFunctionModels.norm2), Vector{BigFloat}}, Tuple{Zygote.ZBack{ChainRules.var"#norm_pullback_p#1066"{Vector{BigFloat}, Int64, BigFloat}}}}, Zygote.Pullback{Tuple{typeof(Base.Broadcast.materialize), Vector{BigFloat}}, Tuple{}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:φ, Zygote.Context{false}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Cubic}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:c, Zygote.Context{false}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Vector{BigFloat}}}, Zygote.Pullback{Tuple{Cubic, BigFloat}, Tuple{Zygote.ZBack{ChainRules.var"#power_pullback#415"{Int64, Int64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, Int64}}, Zygote.Pullback{Tuple{typeof(ceil), Type{Int64}, Float64}, Tuple{Zygote.Pullback{Tuple{typeof(round), Type{Int64}, Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{typeof(round), Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{Core.IntrinsicFunction, Float64}, Tuple{Core.IntrinsicFunction}}}}, Zygote.Pullback{Tuple{typeof(Base._round_convert), Type{Int64}, Float64, Float64, RoundingMode{:Up}}, Tuple{Zygote.ZBack{Zygote.var"#convert_pullback#334"}}}}}}}, Zygote.ZBack{ChainRules.var"#times_pullback2#423"{Int64, BigFloat}}, Zygote.ZBack{ChainRules.var"#power_pullback#415"{BigFloat, Int64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, BigFloat}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:β, Zygote.Context{false}, Cubic, Int64}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:β, Zygote.Context{false}, Cubic, Int64}}, Zygote.ZBack{ChainRules.var"#/_pullback#413"{Float64, Float64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}}}}}, Zygote.var"#3804#back#1212"{Zygote.var"#1208#1211"{Vector{BigFloat}, Vector{BigFloat}}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:x, Zygote.Context{false}, RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, Vector{BigFloat}}}}}}}}, Nothing}}})(Δ::Vector{BigFloat}) @ Zygote ~/.julia/packages/Zygote/1GK3J/src/compiler/interface2.jl:0 [24] AbstractArray @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/src/RadialBasisFunctionModels.jl:99 [inlined] [25] (::Zygote.Pullback{Tuple{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, Vector{BigFloat}}, Tuple{Zygote.Pullback{Tuple{typeof(RadialBasisFunctionModels._eval_vec_of_kernels), Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, Vector{BigFloat}}, Tuple{Zygote.var"#2210#back#317"{Zygote.Jnew{RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, Nothing, false}}, Zygote.Pullback{Tuple{Type{Base.Generator}, RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}}, Tuple{Zygote.var"#2210#back#317"{Zygote.Jnew{Base.Generator{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}}, Nothing, false}}}}, Zygote.var"#collect_pullback#710"{Zygote.var"#map_back#672"{RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, 1, Tuple{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}}, Tuple{Tuple{Base.OneTo{Int64}}}, Vector{Tuple{BigFloat, Zygote.Pullback{Tuple{RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, Tuple{Zygote.Pullback{Tuple{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Vector{BigFloat}}, Tuple{Zygote.Pullback{Tuple{typeof(RadialBasisFunctionModels.norm2), Vector{BigFloat}}, Tuple{Zygote.ZBack{ChainRules.var"#norm_pullback_p#1066"{Vector{BigFloat}, Int64, BigFloat}}}}, Zygote.Pullback{Tuple{typeof(Base.Broadcast.materialize), Vector{BigFloat}}, Tuple{}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:φ, Zygote.Context{false}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Cubic}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:c, Zygote.Context{false}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Vector{BigFloat}}}, Zygote.Pullback{Tuple{Cubic, BigFloat}, Tuple{Zygote.ZBack{ChainRules.var"#power_pullback#415"{Int64, Int64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, Int64}}, Zygote.Pullback{Tuple{typeof(ceil), Type{Int64}, Float64}, Tuple{Zygote.Pullback{Tuple{typeof(round), Type{Int64}, Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{typeof(round), Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{Core.IntrinsicFunction, Float64}, Tuple{Core.IntrinsicFunction}}}}, Zygote.Pullback{Tuple{typeof(Base._round_convert), Type{Int64}, Float64, Float64, RoundingMode{:Up}}, Tuple{Zygote.ZBack{Zygote.var"#convert_pullback#334"}}}}}}}, Zygote.ZBack{ChainRules.var"#times_pullback2#423"{Int64, BigFloat}}, Zygote.ZBack{ChainRules.var"#power_pullback#415"{BigFloat, Int64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, BigFloat}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:β, Zygote.Context{false}, Cubic, Int64}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:β, Zygote.Context{false}, Cubic, Int64}}, Zygote.ZBack{ChainRules.var"#/_pullback#413"{Float64, Float64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}}}}}, Zygote.var"#3804#back#1212"{Zygote.var"#1208#1211"{Vector{BigFloat}, Vector{BigFloat}}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:x, Zygote.Context{false}, RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, Vector{BigFloat}}}}}}}}, Nothing}}}}})(Δ::Vector{BigFloat}) @ Zygote ~/.julia/packages/Zygote/1GK3J/src/compiler/interface2.jl:0 [26] RBFSum @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/src/RadialBasisFunctionModels.jl:144 [inlined] [27] (::Zygote.Pullback{Tuple{RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, Vector{BigFloat}, Int64}, Tuple{Zygote.Pullback{Tuple{typeof(Zygote.literal_getindex), BigFloat, Val{1}}, Tuple{Zygote.Pullback{Tuple{typeof(getindex), BigFloat, Int64}, Any}}}, Zygote.Pullback{Tuple{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, Vector{BigFloat}}, Tuple{Zygote.Pullback{Tuple{typeof(RadialBasisFunctionModels._eval_vec_of_kernels), Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, Vector{BigFloat}}, Tuple{Zygote.var"#2210#back#317"{Zygote.Jnew{RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, Nothing, false}}, Zygote.Pullback{Tuple{Type{Base.Generator}, RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}}, Tuple{Zygote.var"#2210#back#317"{Zygote.Jnew{Base.Generator{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}}, Nothing, false}}}}, Zygote.var"#collect_pullback#710"{Zygote.var"#map_back#672"{RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, 1, Tuple{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}}, Tuple{Tuple{Base.OneTo{Int64}}}, Vector{Tuple{BigFloat, Zygote.Pullback{Tuple{RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, Tuple{Zygote.Pullback{Tuple{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Vector{BigFloat}}, Tuple{Zygote.Pullback{Tuple{typeof(RadialBasisFunctionModels.norm2), Vector{BigFloat}}, Tuple{Zygote.ZBack{ChainRules.var"#norm_pullback_p#1066"{Vector{BigFloat}, Int64, BigFloat}}}}, Zygote.Pullback{Tuple{typeof(Base.Broadcast.materialize), Vector{BigFloat}}, Tuple{}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:φ, Zygote.Context{false}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Cubic}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:c, Zygote.Context{false}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Vector{BigFloat}}}, Zygote.Pullback{Tuple{Cubic, BigFloat}, Tuple{Zygote.ZBack{ChainRules.var"#power_pullback#415"{Int64, Int64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, Int64}}, Zygote.Pullback{Tuple{typeof(ceil), Type{Int64}, Float64}, Tuple{Zygote.Pullback{Tuple{typeof(round), Type{Int64}, Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{typeof(round), Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{Core.IntrinsicFunction, Float64}, Tuple{Core.IntrinsicFunction}}}}, Zygote.Pullback{Tuple{typeof(Base._round_convert), Type{Int64}, Float64, Float64, RoundingMode{:Up}}, Tuple{Zygote.ZBack{Zygote.var"#convert_pullback#334"}}}}}}}, Zygote.ZBack{ChainRules.var"#times_pullback2#423"{Int64, BigFloat}}, Zygote.ZBack{ChainRules.var"#power_pullback#415"{BigFloat, Int64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, BigFloat}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:β, Zygote.Context{false}, Cubic, Int64}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:β, Zygote.Context{false}, Cubic, Int64}}, Zygote.ZBack{ChainRules.var"#/_pullback#413"{Float64, Float64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}}}}}, Zygote.var"#3804#back#1212"{Zygote.var"#1208#1211"{Vector{BigFloat}, Vector{BigFloat}}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:x, Zygote.Context{false}, RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, Vector{BigFloat}}}}}}}}, Nothing}}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:weights, Zygote.Context{false}, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}}, Zygote.ZBack{ChainRules.var"#times_pullback#547"{LinearAlgebra.Adjoint{BigFloat, Vector{BigFloat}}, Vector{BigFloat}, ChainRulesCore.ProjectTo{AbstractArray, @NamedTuple{element::ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, axes::Tuple{Base.OneTo{Int64}}}}, ChainRulesCore.ProjectTo{LinearAlgebra.Adjoint, @NamedTuple{parent::ChainRulesCore.ProjectTo{AbstractArray, @NamedTuple{element::ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, axes::Tuple{Base.OneTo{Int64}}}}}}}}, Zygote.ZBack{ChainRules.var"#getindex_pullback#670"{LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}, Tuple{Int64, Colon}, Tuple{ChainRulesCore.NoTangent, ChainRulesCore.NoTangent}}}, Zygote.ZBack{typeof(ChainRules._adjoint_vec_pullback)}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:kernels, Zygote.Context{false}, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}}}}})(Δ::BigFloat) @ Zygote ~/.julia/packages/Zygote/1GK3J/src/compiler/interface2.jl:0 [28] RBFModel @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/src/RadialBasisFunctionModels.jl:268 [inlined] [29] (::Zygote.Pullback{Tuple{RBFModel{true, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, @NamedTuple{rbf_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}, poly_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}}}, Vector{BigFloat}, Int64}, Tuple{Zygote.ZBack{Zygote.var"#plus_pullback#349"{Tuple{BigFloat, BigFloat}}}, Zygote.Pullback{Tuple{RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, Vector{BigFloat}, Int64}, Tuple{Zygote.Pullback{Tuple{typeof(lastindex), BigFloat}, Tuple{}}, Zygote.Pullback{Tuple{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Vector{BigFloat}}, Tuple{Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Vector{BigFloat}}, Tuple{Zygote.Pullback{Tuple{typeof(StaticPolynomials._evaluate), StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Vector{BigFloat}}, Tuple{Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 2, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 3, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 9, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 11, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 1, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 10, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 6, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 7, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 4, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}}}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 8, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 5, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2013#back#208"{typeof(identity)}}}, Zygote.var"#2494#back#488"{Zygote.var"#collect_tuple_pullback#487"}}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:weights, Zygote.Context{false}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}}, Zygote.ZBack{ChainRules.var"#times_pullback#547"{LinearAlgebra.Adjoint{BigFloat, Vector{BigFloat}}, Vector{BigFloat}, ChainRulesCore.ProjectTo{AbstractArray, @NamedTuple{element::ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, axes::Tuple{Base.OneTo{Int64}}}}, ChainRulesCore.ProjectTo{LinearAlgebra.Adjoint, @NamedTuple{parent::ChainRulesCore.ProjectTo{AbstractArray, @NamedTuple{element::ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, axes::Tuple{Base.OneTo{Int64}}}}}}}}, Zygote.ZBack{ChainRules.var"#getindex_pullback#670"{LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}, Tuple{Int64, Colon}, Tuple{ChainRulesCore.NoTangent, ChainRulesCore.NoTangent}}}, Zygote.ZBack{typeof(ChainRules._adjoint_vec_pullback)}, Zygote.Pullback{Tuple{typeof(getindex), BigFloat, Int64}, Any}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:rbf, Zygote.Context{false}, RBFModel{true, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, @NamedTuple{rbf_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}, poly_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}}}, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}}}, Zygote.Pullback{Tuple{RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, Vector{BigFloat}, Int64}, Tuple{Zygote.Pullback{Tuple{typeof(Zygote.literal_getindex), BigFloat, Val{1}}, Tuple{Zygote.Pullback{Tuple{typeof(getindex), BigFloat, Int64}, Any}}}, Zygote.Pullback{Tuple{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, Vector{BigFloat}}, Tuple{Zygote.Pullback{Tuple{typeof(RadialBasisFunctionModels._eval_vec_of_kernels), Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, Vector{BigFloat}}, Tuple{Zygote.var"#2210#back#317"{Zygote.Jnew{RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, Nothing, false}}, Zygote.Pullback{Tuple{Type{Base.Generator}, RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}}, Tuple{Zygote.var"#2210#back#317"{Zygote.Jnew{Base.Generator{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}}, Nothing, false}}}}, Zygote.var"#collect_pullback#710"{Zygote.var"#map_back#672"{RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, 1, Tuple{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}}, Tuple{Tuple{Base.OneTo{Int64}}}, Vector{Tuple{BigFloat, Zygote.Pullback{Tuple{RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, Tuple{Zygote.Pullback{Tuple{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Vector{BigFloat}}, Tuple{Zygote.Pullback{Tuple{typeof(RadialBasisFunctionModels.norm2), Vector{BigFloat}}, Tuple{Zygote.ZBack{ChainRules.var"#norm_pullback_p#1066"{Vector{BigFloat}, Int64, BigFloat}}}}, Zygote.Pullback{Tuple{typeof(Base.Broadcast.materialize), Vector{BigFloat}}, Tuple{}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:φ, Zygote.Context{false}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Cubic}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:c, Zygote.Context{false}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Vector{BigFloat}}}, Zygote.Pullback{Tuple{Cubic, BigFloat}, Tuple{Zygote.ZBack{ChainRules.var"#power_pullback#415"{Int64, Int64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, Int64}}, Zygote.Pullback{Tuple{typeof(ceil), Type{Int64}, Float64}, Tuple{Zygote.Pullback{Tuple{typeof(round), Type{Int64}, Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{typeof(round), Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{Core.IntrinsicFunction, Float64}, Tuple{Core.IntrinsicFunction}}}}, Zygote.Pullback{Tuple{typeof(Base._round_convert), Type{Int64}, Float64, Float64, RoundingMode{:Up}}, Tuple{Zygote.ZBack{Zygote.var"#convert_pullback#334"}}}}}}}, Zygote.ZBack{ChainRules.var"#times_pullback2#423"{Int64, BigFloat}}, Zygote.ZBack{ChainRules.var"#power_pullback#415"{BigFloat, Int64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, BigFloat}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:β, Zygote.Context{false}, Cubic, Int64}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:β, Zygote.Context{false}, Cubic, Int64}}, Zygote.ZBack{ChainRules.var"#/_pullback#413"{Float64, Float64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}}}}}, Zygote.var"#3804#back#1212"{Zygote.var"#1208#1211"{Vector{BigFloat}, Vector{BigFloat}}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:x, Zygote.Context{false}, RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, Vector{BigFloat}}}}}}}}, Nothing}}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:weights, Zygote.Context{false}, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}}, Zygote.ZBack{ChainRules.var"#times_pullback#547"{LinearAlgebra.Adjoint{BigFloat, Vector{BigFloat}}, Vector{BigFloat}, ChainRulesCore.ProjectTo{AbstractArray, @NamedTuple{element::ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, axes::Tuple{Base.OneTo{Int64}}}}, ChainRulesCore.ProjectTo{LinearAlgebra.Adjoint, @NamedTuple{parent::ChainRulesCore.ProjectTo{AbstractArray, @NamedTuple{element::ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, axes::Tuple{Base.OneTo{Int64}}}}}}}}, Zygote.ZBack{ChainRules.var"#getindex_pullback#670"{LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}, Tuple{Int64, Colon}, Tuple{ChainRulesCore.NoTangent, ChainRulesCore.NoTangent}}}, Zygote.ZBack{typeof(ChainRules._adjoint_vec_pullback)}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:kernels, Zygote.Context{false}, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:psum, Zygote.Context{false}, RBFModel{true, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, @NamedTuple{rbf_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}, poly_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}}}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}}}}})(Δ::BigFloat) @ Zygote ~/.julia/packages/Zygote/1GK3J/src/compiler/interface2.jl:0 [30] #49 @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/src/derivatives.jl:34 [inlined] [31] (::Zygote.Pullback{Tuple{RadialBasisFunctionModels.var"#49#50"{RBFModel{true, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, @NamedTuple{rbf_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}, poly_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}}}, Int64}, Vector{BigFloat}}, Tuple{Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:ℓ, Zygote.Context{false}, RadialBasisFunctionModels.var"#49#50"{RBFModel{true, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, @NamedTuple{rbf_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}, poly_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}}}, Int64}, Int64}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:rbf, Zygote.Context{false}, RadialBasisFunctionModels.var"#49#50"{RBFModel{true, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, @NamedTuple{rbf_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}, poly_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}}}, Int64}, RBFModel{true, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, @NamedTuple{rbf_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}, poly_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}}}}}, Zygote.Pullback{Tuple{RBFModel{true, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, @NamedTuple{rbf_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}, poly_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}}}, Vector{BigFloat}, Int64}, Tuple{Zygote.ZBack{Zygote.var"#plus_pullback#349"{Tuple{BigFloat, BigFloat}}}, Zygote.Pullback{Tuple{RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, Vector{BigFloat}, Int64}, Tuple{Zygote.Pullback{Tuple{typeof(lastindex), BigFloat}, Tuple{}}, Zygote.Pullback{Tuple{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Vector{BigFloat}}, Tuple{Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Vector{BigFloat}}, Tuple{Zygote.Pullback{Tuple{typeof(StaticPolynomials._evaluate), StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Vector{BigFloat}}, Tuple{Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 2, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 3, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 9, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 11, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 1, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 10, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 6, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 7, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 4, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}}}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 8, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 5, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2013#back#208"{typeof(identity)}}}, Zygote.var"#2494#back#488"{Zygote.var"#collect_tuple_pullback#487"}}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:weights, Zygote.Context{false}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}}, Zygote.ZBack{ChainRules.var"#times_pullback#547"{LinearAlgebra.Adjoint{BigFloat, Vector{BigFloat}}, Vector{BigFloat}, ChainRulesCore.ProjectTo{AbstractArray, @NamedTuple{element::ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, axes::Tuple{Base.OneTo{Int64}}}}, ChainRulesCore.ProjectTo{LinearAlgebra.Adjoint, @NamedTuple{parent::ChainRulesCore.ProjectTo{AbstractArray, @NamedTuple{element::ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, axes::Tuple{Base.OneTo{Int64}}}}}}}}, Zygote.ZBack{ChainRules.var"#getindex_pullback#670"{LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}, Tuple{Int64, Colon}, Tuple{ChainRulesCore.NoTangent, ChainRulesCore.NoTangent}}}, Zygote.ZBack{typeof(ChainRules._adjoint_vec_pullback)}, Zygote.Pullback{Tuple{typeof(getindex), BigFloat, Int64}, Any}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:rbf, Zygote.Context{false}, RBFModel{true, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, @NamedTuple{rbf_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}, poly_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}}}, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}}}, Zygote.Pullback{Tuple{RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, Vector{BigFloat}, Int64}, Tuple{Zygote.Pullback{Tuple{typeof(Zygote.literal_getindex), BigFloat, Val{1}}, Tuple{Zygote.Pullback{Tuple{typeof(getindex), BigFloat, Int64}, Any}}}, Zygote.Pullback{Tuple{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, Vector{BigFloat}}, Tuple{Zygote.Pullback{Tuple{typeof(RadialBasisFunctionModels._eval_vec_of_kernels), Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, Vector{BigFloat}}, Tuple{Zygote.var"#2210#back#317"{Zygote.Jnew{RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, Nothing, false}}, Zygote.Pullback{Tuple{Type{Base.Generator}, RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}}, Tuple{Zygote.var"#2210#back#317"{Zygote.Jnew{Base.Generator{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}}, Nothing, false}}}}, Zygote.var"#collect_pullback#710"{Zygote.var"#map_back#672"{RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, 1, Tuple{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}}, Tuple{Tuple{Base.OneTo{Int64}}}, Vector{Tuple{BigFloat, Zygote.Pullback{Tuple{RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, Tuple{Zygote.Pullback{Tuple{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Vector{BigFloat}}, Tuple{Zygote.Pullback{Tuple{typeof(RadialBasisFunctionModels.norm2), Vector{BigFloat}}, Tuple{Zygote.ZBack{ChainRules.var"#norm_pullback_p#1066"{Vector{BigFloat}, Int64, BigFloat}}}}, Zygote.Pullback{Tuple{typeof(Base.Broadcast.materialize), Vector{BigFloat}}, Tuple{}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:φ, Zygote.Context{false}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Cubic}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:c, Zygote.Context{false}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Vector{BigFloat}}}, Zygote.Pullback{Tuple{Cubic, BigFloat}, Tuple{Zygote.ZBack{ChainRules.var"#power_pullback#415"{Int64, Int64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, Int64}}, Zygote.Pullback{Tuple{typeof(ceil), Type{Int64}, Float64}, Tuple{Zygote.Pullback{Tuple{typeof(round), Type{Int64}, Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{typeof(round), Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{Core.IntrinsicFunction, Float64}, Tuple{Core.IntrinsicFunction}}}}, Zygote.Pullback{Tuple{typeof(Base._round_convert), Type{Int64}, Float64, Float64, RoundingMode{:Up}}, Tuple{Zygote.ZBack{Zygote.var"#convert_pullback#334"}}}}}}}, Zygote.ZBack{ChainRules.var"#times_pullback2#423"{Int64, BigFloat}}, Zygote.ZBack{ChainRules.var"#power_pullback#415"{BigFloat, Int64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, BigFloat}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:β, Zygote.Context{false}, Cubic, Int64}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:β, Zygote.Context{false}, Cubic, Int64}}, Zygote.ZBack{ChainRules.var"#/_pullback#413"{Float64, Float64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}}}}}, Zygote.var"#3804#back#1212"{Zygote.var"#1208#1211"{Vector{BigFloat}, Vector{BigFloat}}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:x, Zygote.Context{false}, RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, Vector{BigFloat}}}}}}}}, Nothing}}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:weights, Zygote.Context{false}, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}}, Zygote.ZBack{ChainRules.var"#times_pullback#547"{LinearAlgebra.Adjoint{BigFloat, Vector{BigFloat}}, Vector{BigFloat}, ChainRulesCore.ProjectTo{AbstractArray, @NamedTuple{element::ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, axes::Tuple{Base.OneTo{Int64}}}}, ChainRulesCore.ProjectTo{LinearAlgebra.Adjoint, @NamedTuple{parent::ChainRulesCore.ProjectTo{AbstractArray, @NamedTuple{element::ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, axes::Tuple{Base.OneTo{Int64}}}}}}}}, Zygote.ZBack{ChainRules.var"#getindex_pullback#670"{LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}, Tuple{Int64, Colon}, Tuple{ChainRulesCore.NoTangent, ChainRulesCore.NoTangent}}}, Zygote.ZBack{typeof(ChainRules._adjoint_vec_pullback)}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:kernels, Zygote.Context{false}, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:psum, Zygote.Context{false}, RBFModel{true, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, @NamedTuple{rbf_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}, poly_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}}}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}}}}}}})(Δ::BigFloat) @ Zygote ~/.julia/packages/Zygote/1GK3J/src/compiler/interface2.jl:0 [32] (::Zygote.var"#78#79"{Zygote.Pullback{Tuple{RadialBasisFunctionModels.var"#49#50"{RBFModel{true, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, @NamedTuple{rbf_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}, poly_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}}}, Int64}, Vector{BigFloat}}, Tuple{Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:ℓ, Zygote.Context{false}, RadialBasisFunctionModels.var"#49#50"{RBFModel{true, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, @NamedTuple{rbf_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}, poly_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}}}, Int64}, Int64}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:rbf, Zygote.Context{false}, RadialBasisFunctionModels.var"#49#50"{RBFModel{true, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, @NamedTuple{rbf_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}, poly_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}}}, Int64}, RBFModel{true, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, @NamedTuple{rbf_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}, poly_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}}}}}, Zygote.Pullback{Tuple{RBFModel{true, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, @NamedTuple{rbf_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}, poly_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}}}, Vector{BigFloat}, Int64}, Tuple{Zygote.ZBack{Zygote.var"#plus_pullback#349"{Tuple{BigFloat, BigFloat}}}, Zygote.Pullback{Tuple{RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, Vector{BigFloat}, Int64}, Tuple{Zygote.Pullback{Tuple{typeof(lastindex), BigFloat}, Tuple{}}, Zygote.Pullback{Tuple{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Vector{BigFloat}}, Tuple{Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Vector{BigFloat}}, Tuple{Zygote.Pullback{Tuple{typeof(StaticPolynomials._evaluate), StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Vector{BigFloat}}, Tuple{Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 2, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 3, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 9, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 11, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 1, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 10, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 6, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 7, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 4, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}}}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 8, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2029#back#217"{Zygote.var"#back#215"{11, 5, Zygote.Context{false}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2013#back#208"{typeof(identity)}, Zygote.var"#2169#back#297"{Zygote.var"#295#296"{Tuple{Tuple{Nothing}, Tuple{Nothing}}, Zygote.Pullback{Tuple{typeof(StaticPolynomials.evaluate), StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, Vector{BigFloat}}, Any}}}, Zygote.var"#2013#back#208"{typeof(identity)}}}, Zygote.var"#2494#back#488"{Zygote.var"#collect_tuple_pullback#487"}}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:weights, Zygote.Context{false}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}}, Zygote.ZBack{ChainRules.var"#times_pullback#547"{LinearAlgebra.Adjoint{BigFloat, Vector{BigFloat}}, Vector{BigFloat}, ChainRulesCore.ProjectTo{AbstractArray, @NamedTuple{element::ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, axes::Tuple{Base.OneTo{Int64}}}}, ChainRulesCore.ProjectTo{LinearAlgebra.Adjoint, @NamedTuple{parent::ChainRulesCore.ProjectTo{AbstractArray, @NamedTuple{element::ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, axes::Tuple{Base.OneTo{Int64}}}}}}}}, Zygote.ZBack{ChainRules.var"#getindex_pullback#670"{LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}, Tuple{Int64, Colon}, Tuple{ChainRulesCore.NoTangent, ChainRulesCore.NoTangent}}}, Zygote.ZBack{typeof(ChainRules._adjoint_vec_pullback)}, Zygote.Pullback{Tuple{typeof(getindex), BigFloat, Int64}, Any}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:polys, Zygote.Context{false}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:rbf, Zygote.Context{false}, RBFModel{true, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, @NamedTuple{rbf_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}, poly_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}}}, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}}}, Zygote.Pullback{Tuple{RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, Vector{BigFloat}, Int64}, Tuple{Zygote.Pullback{Tuple{typeof(Zygote.literal_getindex), BigFloat, Val{1}}, Tuple{Zygote.Pullback{Tuple{typeof(getindex), BigFloat, Int64}, Any}}}, Zygote.Pullback{Tuple{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, Vector{BigFloat}}, Tuple{Zygote.Pullback{Tuple{typeof(RadialBasisFunctionModels._eval_vec_of_kernels), Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, Vector{BigFloat}}, Tuple{Zygote.var"#2210#back#317"{Zygote.Jnew{RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, Nothing, false}}, Zygote.Pullback{Tuple{Type{Base.Generator}, RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}}, Tuple{Zygote.var"#2210#back#317"{Zygote.Jnew{Base.Generator{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}}, Nothing, false}}}}, Zygote.var"#collect_pullback#710"{Zygote.var"#map_back#672"{RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, 1, Tuple{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}}, Tuple{Tuple{Base.OneTo{Int64}}}, Vector{Tuple{BigFloat, Zygote.Pullback{Tuple{RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, Tuple{Zygote.Pullback{Tuple{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Vector{BigFloat}}, Tuple{Zygote.Pullback{Tuple{typeof(RadialBasisFunctionModels.norm2), Vector{BigFloat}}, Tuple{Zygote.ZBack{ChainRules.var"#norm_pullback_p#1066"{Vector{BigFloat}, Int64, BigFloat}}}}, Zygote.Pullback{Tuple{typeof(Base.Broadcast.materialize), Vector{BigFloat}}, Tuple{}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:φ, Zygote.Context{false}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Cubic}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:c, Zygote.Context{false}, RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}, Vector{BigFloat}}}, Zygote.Pullback{Tuple{Cubic, BigFloat}, Tuple{Zygote.ZBack{ChainRules.var"#power_pullback#415"{Int64, Int64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, Int64}}, Zygote.Pullback{Tuple{typeof(ceil), Type{Int64}, Float64}, Tuple{Zygote.Pullback{Tuple{typeof(round), Type{Int64}, Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{typeof(round), Float64, RoundingMode{:Up}}, Tuple{Zygote.Pullback{Tuple{Core.IntrinsicFunction, Float64}, Tuple{Core.IntrinsicFunction}}}}, Zygote.Pullback{Tuple{typeof(Base._round_convert), Type{Int64}, Float64, Float64, RoundingMode{:Up}}, Tuple{Zygote.ZBack{Zygote.var"#convert_pullback#334"}}}}}}}, Zygote.ZBack{ChainRules.var"#times_pullback2#423"{Int64, BigFloat}}, Zygote.ZBack{ChainRules.var"#power_pullback#415"{BigFloat, Int64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, BigFloat}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:β, Zygote.Context{false}, Cubic, Int64}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:β, Zygote.Context{false}, Cubic, Int64}}, Zygote.ZBack{ChainRules.var"#/_pullback#413"{Float64, Float64, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}, ChainRulesCore.ProjectTo{Float64, @NamedTuple{}}}}}}, Zygote.var"#3804#back#1212"{Zygote.var"#1208#1211"{Vector{BigFloat}, Vector{BigFloat}}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:x, Zygote.Context{false}, RadialBasisFunctionModels.var"#19#20"{Vector{BigFloat}}, Vector{BigFloat}}}}}}}}, Nothing}}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:weights, Zygote.Context{false}, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}}, Zygote.ZBack{ChainRules.var"#times_pullback#547"{LinearAlgebra.Adjoint{BigFloat, Vector{BigFloat}}, Vector{BigFloat}, ChainRulesCore.ProjectTo{AbstractArray, @NamedTuple{element::ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, axes::Tuple{Base.OneTo{Int64}}}}, ChainRulesCore.ProjectTo{LinearAlgebra.Adjoint, @NamedTuple{parent::ChainRulesCore.ProjectTo{AbstractArray, @NamedTuple{element::ChainRulesCore.ProjectTo{Real, @NamedTuple{}}, axes::Tuple{Base.OneTo{Int64}}}}}}}}, Zygote.ZBack{ChainRules.var"#getindex_pullback#670"{LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}, Tuple{Int64, Colon}, Tuple{ChainRulesCore.NoTangent, ChainRulesCore.NoTangent}}}, Zygote.ZBack{typeof(ChainRules._adjoint_vec_pullback)}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:kernels, Zygote.Context{false}, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}}}}}, Zygote.var"#2180#back#307"{Zygote.var"#back#306"{:psum, Zygote.Context{false}, RBFModel{true, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, @NamedTuple{rbf_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}, poly_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}}}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}}}}}}}})(Δ::BigFloat) @ Zygote ~/.julia/packages/Zygote/1GK3J/src/compiler/interface.jl:91 [33] gradient(f::Function, args::Vector{BigFloat}) @ Zygote ~/.julia/packages/Zygote/1GK3J/src/compiler/interface.jl:148 [34] auto_grad(rbf::RBFModel{true, RadialBasisFunctionModels.RBFSum{Vector{RadialBasisFunctionModels.ShiftedKernel{Cubic, Vector{BigFloat}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, RadialBasisFunctionModels.PolySum{StaticPolynomials.PolynomialSystem{11, 10, 0, Tuple{StaticPolynomials.Polynomial{BigFloat, SExponents{10}(d89ed653d7c78570), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(bc99b0ce9f40b3ae), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(2cae46e3815bfab6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(dc7084a4db0a259e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(cd29cb60cdffa4e6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(fafdf72cf51f270e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(718173c87fc0a096), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(0df6fdf5dfdc33fe), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(38965f6dbf8979c6), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(b8b83b062081a86e), Nothing}, StaticPolynomials.Polynomial{BigFloat, SExponents{10}(3852a83cfd991c76), Nothing}}}, LinearAlgebra.Transpose{BigFloat, SubArray{BigFloat, 2, Matrix{BigFloat}, Tuple{UnitRange{Int64}, Base.Slice{Base.OneTo{Int64}}}, false}}}, @NamedTuple{rbf_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}, poly_mat::LinearAlgebra.Transpose{BigFloat, Matrix{BigFloat}}}}, x::Vector{BigFloat}, ℓ::Int64) @ RadialBasisFunctionModels ~/.julia/packages/RadialBasisFunctionModels/AZOSU/src/derivatives.jl:34 [35] macro expansion @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/test/test_rbf_models.jl:65 [inlined] [36] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:1704 [inlined] [37] top-level scope @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/test/test_rbf_models.jl:45 [38] include(fname::String) @ Main ./sysimg.jl:38 [39] macro expansion @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/test/runtests.jl:8 [inlined] [40] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:1704 [inlined] [41] top-level scope @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/test/runtests.jl:7 [42] include(fname::String) @ Main ./sysimg.jl:38 [43] top-level scope @ none:6 [44] eval @ ./boot.jl:430 [inlined] [45] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [46] _start() @ Base ./client.jl:531 ┌ Warning: `ignore(f)` is deprecated, use `ChainRulesCore.ignore_derivatives(f)` instead. │ caller = make_polys at constructors.jl:162 [inlined] └ @ Core ~/.julia/packages/RadialBasisFunctionModels/AZOSU/src/constructors.jl:162 ┌ Warning: `ignore(f)` is deprecated, use `ChainRulesCore.ignore_derivatives(f)` instead. │ caller = make_polys at constructors.jl:162 [inlined] └ @ Core ~/.julia/packages/RadialBasisFunctionModels/AZOSU/src/constructors.jl:162 StaticArraysAndTypes: Error During Test at /home/pkgeval/.julia/packages/RadialBasisFunctionModels/AZOSU/test/test_rbf_models.jl:77 Got exception outside of a @test MethodError: no method matching Random.Sampler(::Type{Random.TaskLocalRNG}, ::Random.SamplerTrivial{Random.CloseOpen01{Core.BFloat16}, Core.BFloat16}, ::Val{1}) This error has been manually thrown, explicitly, so the method may exist but be intentionally marked as unimplemented. Closest candidates are: Random.Sampler(::Type{<:Random.AbstractRNG}, ::Random.Sampler, ::Union{Val{1}, Val{Inf}}) @ Random /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:147 Random.Sampler(::Type{<:Random.AbstractRNG}, ::Any, ::Union{Val{1}, Val{Inf}}) @ Random /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:183 Random.Sampler(::Type{<:Random.AbstractRNG}, !Matched::BitSet, ::Union{Val{1}, Val{Inf}}) @ Random /opt/julia/share/julia/stdlib/v1.11/Random/src/generation.jl:488 ... Stacktrace: [1] Random.Sampler(T::Type{Random.TaskLocalRNG}, sp::Random.SamplerTrivial{Random.CloseOpen01{Core.BFloat16}, Core.BFloat16}, r::Val{1}) @ Random /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:147 [2] Random.Sampler(rng::Random.TaskLocalRNG, x::Random.SamplerTrivial{Random.CloseOpen01{Core.BFloat16}, Core.BFloat16}, r::Val{1}) @ Random /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:141 [3] rand(rng::Random.TaskLocalRNG, X::Random.SamplerTrivial{Random.CloseOpen01{Core.BFloat16}, Core.BFloat16}) @ Random /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:255 [4] rand! @ /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:273 [inlined] [5] rand! @ /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:269 [inlined] [6] rand @ /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:290 [inlined] [7] rand @ /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:291 [inlined] [8] rand(::Type{Core.BFloat16}, ::Int64) @ Random /opt/julia/share/julia/stdlib/v1.11/Random/src/Random.jl:294 [9] (::var"#41#43"{UnionAll, DataType, Int64})(i::Int64) @ Main ./none:0 [10] iterate @ ./generator.jl:48 [inlined] [11] collect(itr::Base.Generator{UnitRange{Int64}, var"#41#43"{UnionAll, DataType, Int64}}) @ Base ./array.jl:791 [12] macro expansion @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/test/test_rbf_models.jl:91 [inlined] [13] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:1704 [inlined] [14] top-level scope @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/test/test_rbf_models.jl:79 [15] include(fname::String) @ Main ./sysimg.jl:38 [16] macro expansion @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/test/runtests.jl:8 [inlined] [17] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:1704 [inlined] [18] top-level scope @ ~/.julia/packages/RadialBasisFunctionModels/AZOSU/test/runtests.jl:7 [19] include(fname::String) @ Main ./sysimg.jl:38 [20] top-level scope @ none:6 [21] eval @ ./boot.jl:430 [inlined] [22] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [23] _start() @ Base ./client.jl:531 Activating project at `/tmp/jl_wTBOlA` Test Summary: | Pass Error Total Time RadialBasisFunctionModels.jl | 595 5 600 10m02.9s Initialization | 9 9 1.2s Precision | 5 1 6 41.7s PrecisionII | 4 1 5 2.6s Kernels | 25 25 6.2s Gaussian | 19 19 0.8s Multiquadric | 18 18 1.0s InverseMultiquadric | 18 18 0.4s Cubic | 10 10 0.2s ThinPlateSpline | 7 7 0.4s 1D-Data | 14 1 15 4.2s NonStaticData | 424 1 425 3m38.6s StaticArraysAndTypes | 30 1 31 21.9s ERROR: LoadError: Some tests did not pass: 595 passed, 0 failed, 5 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/RadialBasisFunctionModels/AZOSU/test/runtests.jl:6 Testing failed after 635.73s ERROR: LoadError: Package RadialBasisFunctionModels errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.11/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:2124 [3] test @ /opt/julia/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:2007 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:481 [5] test(pkgs::Vector{Pkg.Types.PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:159 [6] test @ /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:147 [inlined] [7] #test#74 @ /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:146 [inlined] [8] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 783.25s: package tests unexpectedly errored