Package evaluation of QuasiNewtonMethods on Julia 1.11.4 (a71dd056e0*) started at 2025-04-08T13:12:22.607 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.01s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.11/Manifest.toml` [79e6a3ab] + Adapt v4.3.0 [4fba245c] + ArrayInterface v7.18.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.16.0 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.4 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.16.0 [1d0040c9] + PolyesterWeave v0.2.2 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.2 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.71 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [4536629a] + OpenBLAS_jll v0.3.27+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 2.34s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 193.6s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_9ExQw7/Project.toml` [4c88cf16] Aqua v0.8.11 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_9ExQw7/Manifest.toml` [79e6a3ab] Adapt v4.3.0 [4c88cf16] Aqua v0.8.11 [4fba245c] ArrayInterface v7.18.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.16.0 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.4 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.172 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.28 [6fe1bfb0] OffsetArrays v1.16.0 [1d0040c9] PolyesterWeave v0.2.2 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.2 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.71 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.10 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/epbUr/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:679 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/epbUr/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/epbUr/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/epbUr/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:1704 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/epbUr/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [-5.032485539402387e-11, -1.0342415812658601e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-7.66053886991358e-14, -1.532107773982716e-13] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [1.5520607021812793e-10, 2.8772362270501617e-10, 2.900746309819624e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-4.0799097433819043e-10, -8.080845992353147e-10, -2.1944834838194538e-10] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [9.54227807881125e-11, -5.6026516759288825e-11, 1.7915802175139106e-10, -1.0866829658340293e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.0996759058912176e-10, 3.427087502672066e-10, -2.4073298909854657e-10, 6.856484269235352e-10] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [-1.0529910277057297e-11, 7.195555262740072e-11, -1.3942402787847641e-11, 1.5684342713484511e-10, -2.0088375407567582e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.3928413977737364e-11, -8.402278872665647e-12, -2.6836755040449134e-11, -2.333733206683064e-11, 5.6237903223177454e-11] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [5.050848628229687e-12, 1.2761125489646474e-11, 4.5210502008785625e-12, 1.0042411346944391e-11, 2.5543789305970677e-11, 8.621992009238966e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-2.4485968808107827e-12, 6.441980282545501e-11, -9.82480763411786e-12, -1.1576295477766507e-12, 1.2736189880513393e-10, -1.818789563401424e-11] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [7.367062515584166e-11, 7.523603962056313e-11, 1.5083934101767227e-11, 1.4241852142049538e-10, 1.4982193263790577e-10, 2.7308155736704975e-11, 7.527978240773336e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-5.815533610231682e-10, -4.5516135305234684e-10, -1.5545886800083508e-10, -1.1836027713485464e-9, -9.198255490616702e-10, -3.2384495085580056e-10, -1.515758629722086e-10] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [1.4201462228413675e-10, 1.3590817360409346e-10, 1.4807222115109653e-10, 1.4442824713967184e-10, 2.779165786392923e-10, 2.759632522497668e-10, 3.091695788270954e-10, 3.0086799718276325e-10] QuasiNewtonMethods.optimum(state) .- 1 = [7.008860158919106e-11, -7.959188863537747e-11, 1.1267164978789879e-10, -1.4418022331597058e-11, 1.3230061490787648e-10, -1.5200518621583115e-10, 2.2684165656983168e-10, -1.6432188942872017e-11] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [-1.2666201421041023e-10, -2.7329427609856793e-10, 6.467049118441537e-11, 1.824609352496509e-10, -2.385012187744451e-10, -5.594833485389472e-10, 1.4586087893064814e-10, 3.7747782677399755e-10, 8.514011717863923e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.4105761003690986e-10, 6.348854775239943e-11, 1.3030243550815612e-11, -5.202671626847177e-11, 2.8600610768592105e-10, 1.3287526634542246e-10, 3.292477401828364e-11, -1.0170753128591059e-10, -4.2532644073389747e-13] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [5.725264706768485e-11, -2.8802071838640586e-11, -2.5294977223921933e-10, -7.835299076219826e-11, -4.6888826155111474e-11, 1.1375922426282159e-10, -4.9383275246839275e-11, -4.867645175821167e-10, -1.6528389767955787e-10, -8.431466635983043e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.9558023523511565e-11, -1.7583734468473722e-10, 5.797384794448135e-11, 5.216294063359328e-11, -1.3991829916903953e-10, -7.706024707232473e-11, -3.432798489910738e-10, 1.1640710617655259e-10, 9.93356508161014e-11, -2.6716673318105677e-10] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [2.743627547374672e-11, -8.034983789428907e-11, 3.616440480413985e-12, 4.587108470843759e-11, 5.332223551590687e-11, 5.030642569181509e-11, -1.6047507767069646e-10, 7.172262783683436e-12, 9.502931774818535e-11, 1.0705725195236937e-10, 2.3365753776261045e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-3.0382363291892034e-12, 1.7290613385512188e-12, 4.8545611974759595e-12, -1.439515173728978e-12, 1.9895196601282805e-12, -5.6494808831075716e-12, 3.2112090764258028e-12, 9.565681580170349e-12, -2.4175106361212784e-12, 3.8260505874632145e-12, 3.856914787547794e-13] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [-4.07642808397668e-11, -5.607891928605113e-11, -2.3831825401998685e-11, -1.6473045150178223e-11, -3.045819152447393e-11, -2.2408075395219385e-11, -7.913425470462698e-11, -1.1697176560687694e-10, -5.5212723282238585e-11, -2.538724785949853e-11, -5.428002491925099e-11, -4.36357616706573e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-5.630163002479094e-12, 1.588906783922539e-11, -2.4957147459758744e-11, -2.9707236670617476e-11, -8.570699705501283e-12, -1.59539048638635e-11, -1.1453171744335577e-11, 3.1387337173782726e-11, -5.017686266484134e-11, -5.801126246041122e-11, -1.6743717523581836e-11, -3.248434854441484e-11] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [-1.2929557424712357e-10, 4.6100900874535e-11, 1.2096545987105856e-11, 2.5515811685750123e-11, -4.296563105299356e-12, -1.620636957966326e-11, -2.532754006523419e-10, 8.983458421596424e-11, 3.058175934711471e-11, 5.1377568865973444e-11, -1.548916550575541e-11, -2.670419441130889e-11, -7.85427278771067e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.113287240173122e-11, 1.687849859877133e-11, -3.3146818623208674e-11, 1.2034595542331772e-11, 1.4929835145949255e-11, 1.2694068018959115e-11, -2.434574764009767e-11, 3.320410613127933e-11, -7.087985753884141e-11, 2.7330582241802404e-11, 2.969557932885891e-11, 2.3499424628425913e-11, -3.6038949602357206e-12] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [-8.952394381367412e-12, -2.6802671193593142e-11, -7.246758748635784e-12, 1.8047785488306545e-11, 1.5616175019772527e-11, -5.449141138313962e-11, -1.1079692718851675e-11, -1.6829204696477973e-11, -5.721090268195894e-11, -1.458499987450068e-11, 3.7406078234880624e-11, 2.7641000599487597e-11, -1.0717216003541807e-10, -2.5929369762422994e-11] QuasiNewtonMethods.optimum(state) .- 1 = [3.230238299067878e-11, -4.1733283495659634e-13, 2.404076937523314e-11, -9.070855178094916e-12, -7.1944672441759394e-12, -4.110156659464792e-12, -2.3792967596136805e-11, 7.150235958874873e-11, -2.695399459184955e-12, 4.968891964551858e-11, -1.6687762283140728e-11, -1.4136025683342268e-11, -8.668732398575685e-12, -5.019273885409348e-11] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [-7.782996469529735e-12, 2.1020962748252714e-12, -2.5658475344414455e-11, -4.973910172623164e-12, 2.3635315926640033e-11, -2.5015545190854027e-12, 1.2003287253037342e-11, -1.5596191005329274e-11, 3.679723192817619e-12, -5.4106719105107004e-11, -1.0914602555089914e-11, 4.6097126116251275e-11, -5.024758387150996e-12, 2.5142110615661295e-11, -2.007949362337058e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.794697723767058e-11, -1.745836808453305e-11, -4.867550806864074e-12, 2.6367352745637618e-11, -6.819977915739628e-11, -6.872280522429719e-13, -1.0020428931056813e-11, 3.671885018263765e-11, -3.555045147152214e-11, -1.2224110612635286e-11, 5.2755355639533263e-11, -1.4634926603918075e-10, -1.450062292462917e-12, -1.9871326806253364e-11, -5.603295605283165e-12] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [5.3436366442838334e-11, -5.687794679687386e-11, -5.719846818408314e-11, -4.528055708163947e-11, -1.5102363803976004e-11, 5.0768500514664083e-11, 4.0641934262453105e-11, 1.8579138227892145e-11, 1.0660583527055678e-10, -1.1212719641662261e-10, -1.1580802983246485e-10, -9.253142696508121e-11, -3.133493464702042e-11, 1.0115575044267189e-10, 8.470402157456647e-11, 4.11537470768053e-11] QuasiNewtonMethods.optimum(state) .- 1 = [4.250577667619382e-11, 1.1847189895775045e-11, 7.72626407297139e-12, -3.196842790487153e-11, -2.431388423929093e-12, -8.56831272599834e-11, -2.8048230404920105e-11, -5.7981619505653725e-11, 8.7376994528654e-11, 2.6783464335267126e-11, 1.6304957384249974e-11, -5.640887756896973e-11, -1.438327235092629e-11, -1.791987669363948e-10, -5.779032807851081e-11, -1.2082113087785729e-10] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [1.6822987447540072e-11, 2.1990631537960326e-11, -2.4447111002245947e-13, -4.033995359975506e-12, -1.1439516001132688e-11, -3.1138425171661765e-12, -2.5955015914291835e-11, -1.6001644453922381e-12, 3.205125054250857e-11, 4.7158055238583074e-11, -4.306555112520982e-12, -7.746359109717105e-12, -2.4625412820000747e-11, -7.004841151569963e-12, -5.07314190656416e-11, -1.461275545011631e-12, -4.8616666248335605e-12] QuasiNewtonMethods.optimum(state) .- 1 = [2.3984148000977257e-11, -7.310618777012223e-11, -2.6995539137431024e-10, 2.988076452936639e-11, -3.709133000739939e-10, -1.9656776206744553e-10, 4.282529886268094e-11, -4.100653150374001e-11, 6.268408014875604e-11, -1.5673273789928999e-10, -5.408636871706562e-10, 5.854539075755838e-11, -7.229562504207365e-10, -3.7112235506953084e-10, 9.245404442026484e-11, -1.0463885313782839e-10, 6.9118044621063746e-12] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [-4.329121505719513e-10, -2.788353992144721e-10, 2.2755264339480163e-10, 3.1632585439922423e-10, 5.200426755891385e-10, 2.8439250954193085e-10, 1.736832899723595e-10, 7.266263146732399e-10, -8.281064722837073e-11, -8.857570232834178e-10, -5.500603306174412e-10, 4.5899062328658147e-10, 6.550351372425212e-10, 1.027299134648274e-9, 5.675480085898243e-10, 3.288005423485174e-10, 1.442488795078134e-9, -1.6662127233502133e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-3.532862891120203e-11, 1.35130573397646e-10, -2.6780000439430296e-10, 1.8522428035794292e-10, 2.1287638318767677e-11, 2.477784644128178e-10, 4.219640192815177e-10, -3.482757415795845e-10, -1.0168121900022697e-10, -7.259914891477592e-11, 2.886413330571713e-10, -5.371176836632685e-10, 3.8555536541196034e-10, 5.441114225845922e-11, 5.184297435789631e-10, 8.659453154535868e-10, -6.811164965370153e-10, -1.975322128089374e-10] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [8.468337142630844e-12, -2.8610447344590284e-13, -2.941913379572725e-11, 8.799405648574066e-12, -9.590550575921952e-12, -4.9064641238771856e-11, 3.0346170021289254e-11, -2.5078938925560124e-11, 8.426370712300013e-12, 1.5197842984093768e-11, 5.453415496958769e-13, -5.6729954067691324e-11, 1.9715118426688605e-11, -1.8694823467058086e-11, -9.318146254599924e-11, 6.146905207060627e-11, -4.762423788662318e-11, 1.8805179635705827e-11, -5.770384170489251e-12] QuasiNewtonMethods.optimum(state) .- 1 = [2.1366197699990153e-10, -7.335809737440968e-11, -1.117593795285643e-10, 4.863287550449513e-11, 1.4589551788901645e-10, -1.035008745375876e-10, -9.137024470362576e-12, 2.1663559834905755e-11, -9.788669874666311e-11, 4.3494541301924983e-10, -1.6605938846225854e-10, -2.004173493830308e-10, 9.205525230981948e-11, 2.9587643446404854e-10, -2.1030577279645968e-10, -1.5449197476868903e-11, 4.555045229892585e-11, -2.0514434595497733e-10, 3.356914746177608e-11] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [7.838885096589365e-11, 1.2840173368999785e-11, -1.2919443292958022e-11, -9.269818246337991e-11, -1.354250045437766e-11, 1.014122119613603e-11, 6.936673457857978e-12, 5.658407076225558e-11, -2.858857595100517e-11, -5.5080717764610654e-11, 1.5249779217185733e-10, 3.313593843756735e-11, -2.804045884374773e-11, -1.864176590871125e-10, -1.4633183553769413e-11, 2.2571722269049133e-11, 2.4180879520940834e-11, 1.0860201626883281e-10, -5.196876262658634e-11, -1.0506395753395736e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-7.938960600029077e-11, -6.147031772485434e-10, 1.934294946437376e-10, -3.3639069307866976e-10, -5.998546104279967e-11, 2.6134649999676185e-11, 1.5321099944287653e-10, -2.575498703194512e-10, -2.045374980497172e-11, 1.087128165266904e-10, -1.446235353697034e-10, -1.2206960997573901e-9, 3.75954156695002e-10, -6.885249037580365e-10, -1.261482029946137e-10, 3.9460434919647014e-11, 2.9968805215219163e-10, -5.277860370966891e-10, -6.451228440340628e-11, 2.0272405976129448e-10] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [-1.8638457444097867e-10, 1.4241274826076733e-10, -1.4342238507936145e-10, -1.1940448629843559e-11, 1.459670162518023e-10, -4.510436468763146e-11, 1.1049827719489258e-10, 5.74651437545981e-13, 6.288369824858364e-11, -9.314304882934721e-11, -3.890658906158251e-10, 2.939566368098667e-10, -2.635867080158505e-10, -2.3693380590827928e-11, 2.886879624242056e-10, -9.25886034508494e-11, 2.1119461734997458e-10, 1.0502709812953981e-13, 1.2633316615051626e-10, -2.002905619136186e-10, 6.373568339768099e-12] QuasiNewtonMethods.optimum(state) .- 1 = [6.473266367379438e-12, -7.71305241897835e-12, 2.5708324358220125e-11, -1.7769341553730555e-11, -1.8272827695398064e-11, -3.4210523303102036e-11, 6.850031653016231e-11, -3.991207364606453e-11, 9.459988348226034e-12, 2.651834307698664e-11, 1.9538592965773205e-11, -1.596933696390579e-11, 5.1781468002332076e-11, -3.6892822130596414e-11, -3.239952750533348e-11, -6.88205048504642e-11, 1.4148615612441517e-10, -8.170564225196131e-11, 2.3059554266069426e-11, 5.678790770957676e-11, 1.481614830822764e-11] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [-9.512468590600065e-11, 5.913802780810329e-11, -2.1650348180912715e-11, -1.9249046800950964e-12, -1.3598555614890984e-10, -1.1443634928554047e-10, 2.248645714075792e-11, 7.363665233128813e-11, 6.185008061265762e-11, -1.0864587007830551e-10, 8.19189160949918e-12, -1.9626678060546965e-10, 1.2485168454645645e-10, -4.5189296749015284e-11, -3.821609695364714e-12, -2.802552634406652e-10, -2.351154826385482e-10, 4.00839361702765e-11, 1.5321588442418488e-10, 1.2621126366241242e-10, -2.1328716570678807e-10, 1.6502132993423402e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.3243962310459665e-11, -7.700706738944518e-11, -7.706213445146659e-11, -2.094269202501664e-11, -6.325273638196904e-12, 1.1252998532995662e-11, 1.1557910184478715e-10, -5.954681192577027e-12, -4.629197025707299e-11, 1.5552226173554118e-11, -1.796462978376212e-11, -4.446742973840401e-11, -1.5326551139338562e-10, -1.489522949427169e-10, -4.2405412514767704e-11, -7.736700169402866e-12, 2.8028246390476852e-11, 2.350606376211317e-10, -1.143340977449725e-11, -8.521439109898665e-11, 3.2971625429922824e-11, -3.494549094540389e-11] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [-7.422307213289514e-11, -1.871797161712152e-10, 4.809357356805322e-10, -2.0535073641525514e-10, -1.1070977468108367e-10, 1.5093393201937033e-10, 2.6290347676649617e-10, 1.3454570790827347e-10, -9.884426610540231e-11, -1.1078615802517788e-10, 3.785727287208829e-11, -1.490597645315006e-10, -3.747909760321022e-10, 9.662672884047652e-10, -4.1152314889103536e-10, -2.184469272137335e-10, 3.0743940726551955e-10, 5.242031253516188e-10, 2.680282662481659e-10, -1.9614943003176677e-10, -2.2108215258498376e-10, 7.437472859805894e-11, -8.931633210806922e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-2.6354440851861227e-10, 2.893241202173158e-11, 1.5782664064545315e-10, -1.9526114058976418e-10, -3.9936165485698893e-11, 2.836442192233335e-11, -9.134659695320124e-11, -1.2001855065335576e-10, -2.2771551311251415e-10, 2.7424951198895542e-11, 4.8932191631934074e-11, -5.350714316065819e-10, 5.640310440924168e-11, 3.369375889406001e-10, -3.799267567217157e-10, -7.761280507168067e-11, 4.222511229556858e-11, -1.922110248742115e-10, -2.516072905578426e-10, -4.4405679133774356e-10, 6.088285431360418e-11, 9.96105420369986e-11, 1.460609411196856e-12] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [2.361666417982633e-12, 1.935251958684603e-11, -1.86284321301855e-11, -5.2770010583458316e-12, -1.400457527722665e-11, -2.091304907025915e-11, -3.3210101335612308e-12, 2.7755575615628914e-13, -3.345568266865939e-11, 9.877654250090018e-12, 2.557754008591928e-11, 6.390465934202894e-11, 4.5996539910220235e-12, 3.912736801225947e-11, -3.641387191777312e-11, -1.2796430581829554e-11, -2.839228852025144e-11, -3.9500624993138445e-11, -8.888667579753928e-12, 1.957989326228926e-12, -6.982503464314505e-11, 1.8911983090674767e-11, 5.279576775762962e-11, 1.2676859562077425e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.5799406227756663e-10, 9.466738504215755e-11, -6.290779008821801e-11, -2.007283228522283e-12, -5.6965210326609395e-11, -4.601208303256499e-11, -1.0694167773550589e-10, -4.5824455341403336e-11, -3.51030315925982e-11, -1.348299250025775e-10, -1.1049305914667684e-10, 2.475080140840191e-10, -3.1005231715397485e-10, 1.976094843314513e-10, -1.2112177927292578e-10, -1.0164535879653158e-11, -1.108551028750071e-10, -7.342304542135025e-11, -2.1238921732447125e-10, -9.291489799778674e-11, -7.290434922424538e-11, -2.5669200098832334e-10, -2.355093897676852e-10, 4.979581191832949e-10] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 4m03.7s Method ambiguity | 1 1 9.2s Unbound type parameters | 1 1 0.2s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.5s Stale dependencies | 1 1 6.0s Compat bounds | 3 1 4 10.8s julia | 1 1 0.0s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.6s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 10.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.4s Persistent tasks | 1 1 17.0s ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 258.82s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.11/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:2124 [3] test @ /opt/julia/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:2007 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:481 [5] test(pkgs::Vector{Pkg.Types.PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:159 [6] test @ /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:147 [inlined] [7] #test#74 @ /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:146 [inlined] [8] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 478.06s: package has test failures