Package evaluation of ParamPunPam on Julia 1.11.4 (a71dd056e0*) started at 2025-04-08T10:38:20.606 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 6.67s ################################################################################ # Installation # Installing ParamPunPam... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [3e851597] + ParamPunPam v0.5.2 Updating `~/.julia/environments/v1.11/Manifest.toml` [c3fe647b] + AbstractAlgebra v0.44.11 [a9b6321e] + Atomix v1.1.1 [861a8166] + Combinatorics v1.0.2 [0b43b601] + Groebner v0.9.0 [18e54dd8] + IntegerMathUtils v0.1.2 [692b3bcd] + JLLWrappers v1.7.0 [1914dd2f] + MacroTools v0.5.15 ⌅ [2edaba10] + Nemo v0.48.4 [3e851597] + ParamPunPam v0.5.2 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [27ebfcd6] + Primes v0.5.7 [92933f4c] + ProgressMeter v1.10.4 [fb686558] + RandomExtensions v0.4.4 [013be700] + UnsafeAtomics v0.3.0 [e134572f] + FLINT_jll v300.200.100+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [56ddb016] + Logging v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.11.0 [fa267f1f] + TOML v1.0.3 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [781609d7] + GMP_jll v6.3.0+0 [3a97d323] + MPFR_jll v4.2.1+0 [4536629a] + OpenBLAS_jll v0.3.27+1 [bea87d4a] + SuiteSparse_jll v7.7.0+0 [8e850b90] + libblastrampoline_jll v5.11.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 2.15s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 188.25s ################################################################################ # Testing # Testing ParamPunPam Status `/tmp/jl_ZPTSuF/Project.toml` [c3fe647b] AbstractAlgebra v0.44.11 [6e4b80f9] BenchmarkTools v1.6.0 [0b43b601] Groebner v0.9.0 ⌅ [2edaba10] Nemo v0.48.4 [3e851597] ParamPunPam v0.5.2 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.10.4 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [56ddb016] Logging v1.11.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_ZPTSuF/Manifest.toml` [c3fe647b] AbstractAlgebra v0.44.11 [a9b6321e] Atomix v1.1.1 [6e4b80f9] BenchmarkTools v1.6.0 [861a8166] Combinatorics v1.0.2 [34da2185] Compat v4.16.0 [ab62b9b5] DeepDiffs v1.2.0 [0b43b601] Groebner v0.9.0 [18e54dd8] IntegerMathUtils v0.1.2 [692b3bcd] JLLWrappers v1.7.0 [682c06a0] JSON v0.21.4 [1914dd2f] MacroTools v0.5.15 ⌅ [2edaba10] Nemo v0.48.4 [3e851597] ParamPunPam v0.5.2 [69de0a69] Parsers v2.8.1 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.10.4 [fb686558] RandomExtensions v0.4.4 [10745b16] Statistics v1.11.1 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [013be700] UnsafeAtomics v0.3.0 [e134572f] FLINT_jll v300.200.100+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [de0858da] Printf v1.11.0 [9abbd945] Profile v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.11.0 [fa267f1f] TOML v1.0.3 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [781609d7] GMP_jll v6.3.0+0 [3a97d323] MPFR_jll v4.2.1+0 [4536629a] OpenBLAS_jll v0.3.27+1 [bea87d4a] SuiteSparse_jll v7.7.0+0 [8e850b90] libblastrampoline_jll v5.11.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... discrete-log: div-and-conq: fastgcd: ben-or-tiwari: interpolators: ┌ Warning: Testing ParamPunPam.VanDerHoevenLecerf └ @ Main ~/.julia/packages/ParamPunPam/wEEQO/test/interpolators.jl:43 ┌ Info: └ case = 1 ┌ Info: └ case = 922337203685477608 ┌ Info: └ case = 0 ┌ Info: └ case = 512409557603043116 ┌ Info: └ case = x1 + x2 + 5 ┌ Info: └ case = 3074457345618258693*x1 + 3074457345618258693*x2 + 1537228672809129348 ┌ Info: └ case = x1//(x1 + 9) ┌ Info: └ case = 1//(x1 + 9) ┌ Info: └ case = 1//(x1*x2) ┌ Info: └ case = 1//(x1^3*x2^3) ┌ Info: └ case = (x1 + 2)//(x1 + 3) ┌ Info: └ case = (x1^5 + 5*x1^4*x2 + 10*x1^3*x2^2 + 10*x1^2*x2^3 + 5*x1*x2^4 + x2^5)//(x1^8 + 8*x1^7*x2 + 40*x1^7 + 28*x1^6*x2^2 + 280*x1^6*x2 + 700*x1^6 + 56*x1^5*x2^3 + 840*x1^5*x2^2 + 4200*x1^5*x2 + 7000*x1^5 + 70*x1^4*x2^4 + 1400*x1^4*x2^3 + 10500*x1^4*x2^2 + 35000*x1^4*x2 + 43750*x1^4 + 56*x1^3*x2^5 + 1400*x1^3*x2^4 + 14000*x1^3*x2^3 + 70000*x1^3*x2^2 + 175000*x1^3*x2 + 175000*x1^3 + 28*x1^2*x2^6 + 840*x1^2*x2^5 + 10500*x1^2*x2^4 + 70000*x1^2*x2^3 + 262500*x1^2*x2^2 + 525000*x1^2*x2 + 437500*x1^2 + 8*x1*x2^7 + 280*x1*x2^6 + 4200*x1*x2^5 + 35000*x1*x2^4 + 175000*x1*x2^3 + 525000*x1*x2^2 + 875000*x1*x2 + 625000*x1 + x2^8 + 40*x2^7 + 700*x2^6 + 7000*x2^5 + 43750*x2^4 + 175000*x2^3 + 437500*x2^2 + 625000*x2 + 390625) ┌ Info: └ case = x1*x4 + 4611686018427388038*x2*x3 ┌ Info: └ case = (x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10)//(x1*x2*x3*x4*x5*x6*x7*x8*x9*x10) ┌ Info: └ case = (x1 + x10)//(x1 + 4611686018427388038*x10 + 4611686018427388037) ┌ Info: └ case = (x1^5 + 5*x1^4*x3 + 5*x1^4*x5 + 5*x1^4*x7 + 10*x1^3*x3^2 + 20*x1^3*x3*x5 + 20*x1^3*x3*x7 + 10*x1^3*x5^2 + 20*x1^3*x5*x7 + 10*x1^3*x7^2 + 10*x1^2*x3^3 + 30*x1^2*x3^2*x5 + 30*x1^2*x3^2*x7 + 30*x1^2*x3*x5^2 + 60*x1^2*x3*x5*x7 + 30*x1^2*x3*x7^2 + 10*x1^2*x5^3 + 30*x1^2*x5^2*x7 + 30*x1^2*x5*x7^2 + 10*x1^2*x7^3 + 5*x1*x3^4 + 20*x1*x3^3*x5 + 20*x1*x3^3*x7 + 30*x1*x3^2*x5^2 + 60*x1*x3^2*x5*x7 + 30*x1*x3^2*x7^2 + 20*x1*x3*x5^3 + 60*x1*x3*x5^2*x7 + 60*x1*x3*x5*x7^2 + 20*x1*x3*x7^3 + 5*x1*x5^4 + 20*x1*x5^3*x7 + 30*x1*x5^2*x7^2 + 20*x1*x5*x7^3 + 5*x1*x7^4 + x3^5 + 5*x3^4*x5 + 5*x3^4*x7 + 10*x3^3*x5^2 + 20*x3^3*x5*x7 + 10*x3^3*x7^2 + 10*x3^2*x5^3 + 30*x3^2*x5^2*x7 + 30*x3^2*x5*x7^2 + 10*x3^2*x7^3 + 5*x3*x5^4 + 20*x3*x5^3*x7 + 30*x3*x5^2*x7^2 + 20*x3*x5*x7^3 + 5*x3*x7^4 + x5^5 + 5*x5^4*x7 + 10*x5^3*x7^2 + 10*x5^2*x7^3 + 5*x5*x7^4 + x7^5)//(x1 + 2) ┌ Info: └ case = (x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10)//(x1*x2*x3*x4*x5*x6*x7*x8*x9*x10) ┌ Info: └ case = (x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10)//(x1*x2*x3*x4*x5*x6*x7*x8*x9*x10 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + 2) ┌ Info: └ case = (x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + 3)//(x1*x2*x3*x4*x5*x6*x7*x8*x9*x10) ┌ Info: └ case = (1976436865040309160*x1 + 1317624576693539440*x2 + 3294061441733848600*x3 + 3952873730080618319)//(x4 + 2635249153387078881*x5 + 3952873730080618321*x6) ┌ Warning: Testing ParamPunPam.CuytLee └ @ Main ~/.julia/packages/ParamPunPam/wEEQO/test/interpolators.jl:43 ┌ Info: └ case = 1 ┌ Info: └ case = 922337203685477608 ┌ Info: └ case = 0 ┌ Info: └ case = 512409557603043116 ┌ Info: └ case = x1 + x2 + 5 ┌ Info: └ case = 3074457345618258693*x1 + 3074457345618258693*x2 + 1537228672809129348 ┌ Info: └ case = x1//(x1 + 9) ┌ Info: └ case = 1//(x1 + 9) ┌ Info: └ case = 1//(x1*x2) ┌ Info: └ case = 1//(x1^3*x2^3) ┌ Info: └ case = (x1 + 2)//(x1 + 3) ┌ Info: └ case = (x1^5 + 5*x1^4*x2 + 10*x1^3*x2^2 + 10*x1^2*x2^3 + 5*x1*x2^4 + x2^5)//(x1^8 + 8*x1^7*x2 + 40*x1^7 + 28*x1^6*x2^2 + 280*x1^6*x2 + 700*x1^6 + 56*x1^5*x2^3 + 840*x1^5*x2^2 + 4200*x1^5*x2 + 7000*x1^5 + 70*x1^4*x2^4 + 1400*x1^4*x2^3 + 10500*x1^4*x2^2 + 35000*x1^4*x2 + 43750*x1^4 + 56*x1^3*x2^5 + 1400*x1^3*x2^4 + 14000*x1^3*x2^3 + 70000*x1^3*x2^2 + 175000*x1^3*x2 + 175000*x1^3 + 28*x1^2*x2^6 + 840*x1^2*x2^5 + 10500*x1^2*x2^4 + 70000*x1^2*x2^3 + 262500*x1^2*x2^2 + 525000*x1^2*x2 + 437500*x1^2 + 8*x1*x2^7 + 280*x1*x2^6 + 4200*x1*x2^5 + 35000*x1*x2^4 + 175000*x1*x2^3 + 525000*x1*x2^2 + 875000*x1*x2 + 625000*x1 + x2^8 + 40*x2^7 + 700*x2^6 + 7000*x2^5 + 43750*x2^4 + 175000*x2^3 + 437500*x2^2 + 625000*x2 + 390625) ┌ Info: └ case = x1*x4 + 4611686018427388038*x2*x3 ┌ Info: └ case = (x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10)//(x1*x2*x3*x4*x5*x6*x7*x8*x9*x10) ┌ Info: └ case = (x1 + x10)//(x1 + 4611686018427388038*x10 + 4611686018427388037) ┌ Info: └ case = (x1^5 + 5*x1^4*x3 + 5*x1^4*x5 + 5*x1^4*x7 + 10*x1^3*x3^2 + 20*x1^3*x3*x5 + 20*x1^3*x3*x7 + 10*x1^3*x5^2 + 20*x1^3*x5*x7 + 10*x1^3*x7^2 + 10*x1^2*x3^3 + 30*x1^2*x3^2*x5 + 30*x1^2*x3^2*x7 + 30*x1^2*x3*x5^2 + 60*x1^2*x3*x5*x7 + 30*x1^2*x3*x7^2 + 10*x1^2*x5^3 + 30*x1^2*x5^2*x7 + 30*x1^2*x5*x7^2 + 10*x1^2*x7^3 + 5*x1*x3^4 + 20*x1*x3^3*x5 + 20*x1*x3^3*x7 + 30*x1*x3^2*x5^2 + 60*x1*x3^2*x5*x7 + 30*x1*x3^2*x7^2 + 20*x1*x3*x5^3 + 60*x1*x3*x5^2*x7 + 60*x1*x3*x5*x7^2 + 20*x1*x3*x7^3 + 5*x1*x5^4 + 20*x1*x5^3*x7 + 30*x1*x5^2*x7^2 + 20*x1*x5*x7^3 + 5*x1*x7^4 + x3^5 + 5*x3^4*x5 + 5*x3^4*x7 + 10*x3^3*x5^2 + 20*x3^3*x5*x7 + 10*x3^3*x7^2 + 10*x3^2*x5^3 + 30*x3^2*x5^2*x7 + 30*x3^2*x5*x7^2 + 10*x3^2*x7^3 + 5*x3*x5^4 + 20*x3*x5^3*x7 + 30*x3*x5^2*x7^2 + 20*x3*x5*x7^3 + 5*x3*x7^4 + x5^5 + 5*x5^4*x7 + 10*x5^3*x7^2 + 10*x5^2*x7^3 + 5*x5*x7^4 + x7^5)//(x1 + 2) ┌ Info: └ case = (x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10)//(x1*x2*x3*x4*x5*x6*x7*x8*x9*x10) ┌ Info: └ case = (x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10)//(x1*x2*x3*x4*x5*x6*x7*x8*x9*x10 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + 2) ┌ Info: └ case = (x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + 3)//(x1*x2*x3*x4*x5*x6*x7*x8*x9*x10) ┌ Info: └ case = (1976436865040309160*x1 + 1317624576693539440*x2 + 3294061441733848600*x3 + 3952873730080618319)//(x4 + 2635249153387078881*x5 + 3952873730080618321*x6) blackbox: utils: paramgb: ⌜ # Computing specializations.. Time: 0:00:57 ✓ # Computing specializations.. Time: 0:00:59 ⌜ # Computing specializations.. Time: 0:00:15 ✓ # Computing specializations.. Time: 0:00:15 ⌜ # Computing specializations.. Time: 0:00:16 ✓ # Computing specializations.. Time: 0:00:16 ⌜ # Computing specializations.. Time: 0:00:00 Points: 1354   ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 1359   ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 1001   ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 834   ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:05 ✓ # Computing specializations.. Time: 0:00:05 ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:05 ✓ # Computing specializations.. Time: 0:00:05 ⌜ # Computing specializations.. Time: 0:00:17 ✓ # Computing specializations.. Time: 0:00:17 ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:05 ✓ # Computing specializations.. Time: 0:00:05 ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:08 ✓ # Computing specializations.. Time: 0:00:08 [ Info: Correctness check failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. [ Info: Rational reconstruction failed, selecting next prime.. [ Info: Rational reconstruction failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. [ Info: Rational reconstruction failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. [ Info: Rational reconstruction failed, selecting next prime.. [ Info: Rational reconstruction failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. [ Info: Rational reconstruction failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. [ Info: Rational reconstruction failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. [ Info: Rational reconstruction failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. [ Info: Rational reconstruction failed, selecting next prime.. [ Info: Rational reconstruction failed, selecting next prime.. [ Info: Rational reconstruction failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. [ Info: Rational reconstruction failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. [ Info: Rational reconstruction failed, selecting next prime.. [ Info: Rational reconstruction failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. [ Info: Rational reconstruction failed, selecting next prime.. [ Info: Rational reconstruction failed, selecting next prime.. [ Info: Rational reconstruction failed, selecting next prime.. [ Info: Rational reconstruction failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. [ Info: Rational reconstruction failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. [ Info: Correctness check failed, selecting next prime.. ⌜ # Computing specializations.. Time: 0:00:00 Points: 1001   ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 3097   ⌝ # Computing specializations.. Time: 0:00:00 Points: 6193   ⌟ # Computing specializations.. Time: 0:00:01 Points: 8119   ⌞ # Computing specializations.. Time: 0:00:01 Points: 9928   ⌜ # Computing specializations.. Time: 0:00:01 Points: 13194   ✓ # Computing specializations.. Time: 0:00:02 logging: ┌ Debug: Constructing a blackbox from 2 input polynomials └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/blackboxes.jl:31 ┌ Debug: Computing parametric Groebner basis up to degrees (Inf, Inf) │ Ordering, input / target: degrevlex / InputOrdering │ Rational interpolator: VanDerHoevenLecerf │ Polynomial interpolator: PrimesBenOrTiwari │ Estimate degrees: true │ Assess correctness: true └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:96 ┌ Debug: Given 2 functions in Rational field(a, b, c)[x, y, z] └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/state.jl:24 ┌ Debug: Specializing at 3 points to guess the shape of the basis.. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:171 ┌ Debug: Reducing modulo Finite field of characteristic 4611686018427388073.. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/blackboxes.jl:49 ┌ Debug: The shape of the basis is: 2 polynomials └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:209 ┌ Debug: Monomials in the basis are: │ state.shape = │ 2-element Vector{Vector{fpMPolyRingElem}}: │ [y, z, 1] │ [x, 1] └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:210 ┌ Debug: Specializing at random points to guess the total degrees in parameters.. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:220 ┌ Debug: Using 6 points.. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:274 ┌ Debug: Using 10 points.. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:274 ┌ Debug: Success! 10 points used. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:331 ┌ Debug: The total degrees in the coefficients │ state.param_degrees = │ 2-element Vector{Vector{Tuple{Int64, Int64}}}: │ [(0, 0), (0, 0), (0, 0)] │ [(0, 0), (2, 1)] └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:332 ┌ Debug: Interpolating the exponents in parameters.. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:340 ┌ Debug: Reducing modulo Finite field of characteristic 4611686018427388073.. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/blackboxes.jl:49 ┌ Debug: Interpolating for degrees: │ Numerator: 2, Denominator: 1 └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:394 ┌ Debug: Using 10 points.. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:423 ┌ Debug: Using 20 points.. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:423 ┌ Debug: Checking interpolated coefficients at a random points. │ Point: fpFieldElem[544043191995019560, 3265869776555198802, 2196163318871526148] │ Basis: fpMPolyRingElem[y + z + 1024, x + 2134769421016613223] │ Interpolated coeffs: Vector{Tuple{fpMPolyRingElem, fpMPolyRingElem}}[[(1, 1), (1, 1), (1024, 1)], [(1, 1), (a^2, b + c)]] │ The number of eval. points: 20 │ Global index: 21 └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:484 ┌ Debug: Success! 20 points used. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:515 ┌ Debug: Basis interpolated exponents summary: │ Maximal interpolated degrees are: 2 for num. and 1 for den. │ Maximal number of interpolated terms are: 1 for num. and 2 for den. │ Points used: 20. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:520 ┌ Debug: Recovering the coefficients.. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:530 ┌ Debug: CRT-Reconstructed coefficients │ param_coeffs_crt = │ 2-element Vector{Vector{Tuple{Vector{BigInt}, Vector{BigInt}}}}: │ [([1], [1]), ([1], [1]), ([1024], [1])] │ [([1], [1]), ([1], [1, 1])] └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/state.jl:63 ┌ Debug: Reconstruction │ modulo = 4611686018427388073 │ bnd = 1518500249 └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/state.jl:145 ┌ Debug: QQ-Reconstructed coefficients │ coeffsrec = │ 3-element Vector{AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}}: │ 1 │ 1 │ 1024 └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/state.jl:171 ┌ Debug: QQ-Reconstructed coefficients │ coeffsrec = │ 2-element Vector{AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}}: │ 1 │ a^2//(b + c) └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/state.jl:171 ┌ Debug: Reducing modulo Finite field of characteristic 4611686018427388081.. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/blackboxes.jl:49 ┌ Debug: Checking correctness at fpFieldElem[1982373563102406190, 2106820994515533668, 3320140648123729188] in Finite field of characteristic 4611686018427388081 └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/state.jl:186 ┌ Debug: Evaluated basis │ param_basis_specialized = │ 2-element Vector{fpMPolyRingElem}: │ y + z + 1024 │ x + 2456218680766926058 └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/state.jl:202 ┌ Debug: Evaluated generators │ generators_zp = │ 2-element Vector{fpMPolyRingElem}: │ y + z + 1024 │ 815275624211874775*x + 463216433068700176 └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/state.jl:203 ┌ Debug: Inclusion in correctness assessment │ inclusion = │ 2-element Vector{fpMPolyRingElem}: │ 0 │ 0 └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/state.jl:209 ┌ Debug: Success! Used 2 prime in total └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:542 ┌ Debug: Constructing a blackbox from 2 input polynomials └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/blackboxes.jl:31 ┌ Debug: Computing parametric Groebner basis up to degrees (Inf, Inf) │ Ordering, input / target: degrevlex / InputOrdering │ Rational interpolator: VanDerHoevenLecerf │ Polynomial interpolator: PrimesBenOrTiwari │ Estimate degrees: true │ Assess correctness: true └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:96 ┌ Debug: Given 2 functions in Rational field(a, b, c)[x, y, z] └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/state.jl:24 ┌ Debug: Specializing at 3 points to guess the shape of the basis.. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:171 ┌ Debug: Reducing modulo Finite field of characteristic 4611686018427388073.. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/blackboxes.jl:49 ┌ Debug: The shape of the basis is: 2 polynomials └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:209 ┌ Debug: Monomials in the basis are: │ state.shape = │ 2-element Vector{Vector{fpMPolyRingElem}}: │ [y, z, 1] │ [x, 1] └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:210 ┌ Debug: Specializing at random points to guess the total degrees in parameters.. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:220 ┌ Debug: Using 6 points.. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:274 ┌ Debug: Using 10 points.. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:274 ┌ Debug: Success! 10 points used. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:331 ┌ Debug: The total degrees in the coefficients │ state.param_degrees = │ 2-element Vector{Vector{Tuple{Int64, Int64}}}: │ [(0, 0), (0, 0), (0, 0)] │ [(0, 0), (2, 1)] └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:332 ┌ Debug: Interpolating the exponents in parameters.. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:340 ┌ Debug: Reducing modulo Finite field of characteristic 4611686018427388073.. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/blackboxes.jl:49 ┌ Debug: Interpolating for degrees: │ Numerator: 2, Denominator: 1 └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:394 ┌ Debug: Using 10 points.. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:423 ┌ Debug: Using 20 points.. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:423 ┌ Debug: Checking interpolated coefficients at a random points. │ Point: fpFieldElem[2579178369309942242, 2551173830828694404, 2557941099936607452] │ Basis: fpMPolyRingElem[y + z + 1024, x + 3356442753201597119] │ Interpolated coeffs: Vector{Tuple{fpMPolyRingElem, fpMPolyRingElem}}[[(1, 1), (1, 1), (1024, 1)], [(1, 1), (a^2, b + c)]] │ The number of eval. points: 20 │ Global index: 21 └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:484 ┌ Debug: Success! 20 points used. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:515 ┌ Debug: Basis interpolated exponents summary: │ Maximal interpolated degrees are: 2 for num. and 1 for den. │ Maximal number of interpolated terms are: 1 for num. and 2 for den. │ Points used: 20. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:520 ┌ Debug: Recovering the coefficients.. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:530 ┌ Debug: CRT-Reconstructed coefficients │ param_coeffs_crt = │ 2-element Vector{Vector{Tuple{Vector{BigInt}, Vector{BigInt}}}}: │ [([1], [1]), ([1], [1]), ([1024], [1])] │ [([1], [1]), ([1], [1, 1])] └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/state.jl:63 ┌ Debug: Reconstruction │ modulo = 4611686018427388073 │ bnd = 1518500249 └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/state.jl:145 ┌ Debug: QQ-Reconstructed coefficients │ coeffsrec = │ 3-element Vector{AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}}: │ 1 │ 1 │ 1024 └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/state.jl:171 ┌ Debug: QQ-Reconstructed coefficients │ coeffsrec = │ 2-element Vector{AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}}: │ 1 │ a^2//(b + c) └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/state.jl:171 ┌ Debug: Reducing modulo Finite field of characteristic 4611686018427388081.. └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/blackboxes.jl:49 ┌ Debug: Checking correctness at fpFieldElem[4387980129473061980, 2373946082145115234, 2913626914495753746] in Finite field of characteristic 4611686018427388081 └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/state.jl:186 ┌ Debug: Evaluated basis │ param_basis_specialized = │ 2-element Vector{fpMPolyRingElem}: │ y + z + 1024 │ x + 99425776853411278 └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/state.jl:202 ┌ Debug: Evaluated generators │ generators_zp = │ 2-element Vector{fpMPolyRingElem}: │ y + z + 1024 │ 675886978213480899*x + 861722172743153930 └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/state.jl:203 ┌ Debug: Inclusion in correctness assessment │ inclusion = │ 2-element Vector{fpMPolyRingElem}: │ 0 │ 0 └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/state.jl:209 ┌ Debug: Success! Used 2 prime in total └ @ ParamPunPam ~/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:542 regressions: Test Summary: | Pass Broken Total Time All tests | 19996 1 19997 9m43.1s Baby-step-giant-step, Pohlig Hellman | 9720 9720 0.3s Discrete log, base isn't a generator | 580 580 0.5s Univariate interpolate | 230 230 4.7s Transposed Vandermonde solve | 28 28 5.5s Fast gcd | 228 228 1.0s Pade approximation | 1840 1840 0.3s Cauchy interpolation | 528 528 2.8s Ben-or-Tiwari, Primes & Kronecker | 317 317 8.8s van-der-Hoeven-Lecerf & Cuyt-Lee | 846 846 53.9s Blackbox | 3 3 13.8s Rational reconstruction | 4 4 0.0s GB over Q(a...) | 5149 1 5150 2m28.0s Monomial orderings | 506 506 4m27.3s Multi-modular over the rationals | 7 7 1.1s Noon | 0 3.7s Generic logging | 8 8 10.3s Regression: cancellation of leading terms | 2 2 0.1s Testing ParamPunPam tests passed Testing completed after 595.58s PkgEval succeeded after 801.32s