Package evaluation of OptimPack on Julia 1.11.4 (a71dd056e0*) started at 2025-04-08T07:59:04.332 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.28s ################################################################################ # Installation # Installing OptimPack... Resolving package versions... Installed OptimPack ─ v1.0.0 Updating `~/.julia/environments/v1.11/Project.toml` [04a3d532] + OptimPack v1.0.0 Updating `~/.julia/environments/v1.11/Manifest.toml` ⌅ [34da2185] + Compat v3.47.0 [8bb1440f] + DelimitedFiles v1.9.1 [04a3d532] + OptimPack v1.0.0 [10745b16] + Statistics v1.11.1 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.11.0 [de0858da] + Printf v1.11.0 [3fa0cd96] + REPL v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.11.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.6.0+0 [e37daf67] + LibGit2_jll v1.7.2+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.6+0 [14a3606d] + MozillaCACerts_jll v2023.12.12 [4536629a] + OpenBLAS_jll v0.3.27+1 [bea87d4a] + SuiteSparse_jll v7.7.0+0 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.59.0+0 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Building OptimPack → `~/.julia/scratchspaces/44cfe95a-1eb2-52ea-b672-e2afdf69b78f/e0fa9d1f1801a12382bf1a1a01f61974909b68cf/build.log` Installation completed after 43.3s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 18.29s ################################################################################ # Testing # Testing OptimPack Status `/tmp/jl_lc3gkL/Project.toml` ⌅ [34da2185] Compat v3.47.0 [04a3d532] OptimPack v1.0.0 [8f399da3] Libdl v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_lc3gkL/Manifest.toml` ⌅ [34da2185] Compat v3.47.0 [8bb1440f] DelimitedFiles v1.9.1 [04a3d532] OptimPack v1.0.0 [10745b16] Statistics v1.11.1 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [3fa0cd96] REPL v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [1a1011a3] SharedArrays v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [bea87d4a] SuiteSparse_jll v7.7.0+0 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... WARNING: Compat.Test is deprecated, use Test instead. likely near /home/pkgeval/.julia/packages/OptimPack/1ipTV/test/runtests.jl:4 WARNING: Compat.Printf is deprecated, use Printf instead. likely near /home/pkgeval/.julia/packages/OptimPack/1ipTV/test/runtests.jl:5 Testing NLCG in double precision ITER EVAL RESTARTS F(X) ||G(X)|| STEP ----------------------------------------------------------------- 0 1 0 2.4199999999999994E+02 7.36E+02 0.00E+00 1 3 0 4.1281025275807700E+01 5.61E+00 7.88E-04 2 7 1 3.4897291437611720E+01 6.29E+01 2.79E-01 3 10 1 3.2891123571996367E+01 7.69E+01 9.89E-04 4 40 1 1.3690542951671066E+01 1.95E+01 1.06E-02 5 42 2 1.2679218379115571E+01 7.69E+00 5.48E-03 6 46 2 9.7571870737319006E+00 1.70E+01 6.77E-02 7 49 2 8.7339011044091208E+00 2.44E+01 6.30E-03 8 77 2 1.9175281149829377E+00 1.22E+01 4.06E-02 9 79 3 1.7589145056321329E+00 1.75E+00 2.15E-03 10 83 3 1.0947041319498103E+00 1.39E+01 3.33E-01 11 85 3 5.3392262260573708E-01 1.76E+01 6.22E-03 12 87 3 2.9177547693884537E-01 1.50E+00 1.58E-03 13 90 3 1.4066479508388399E-01 7.83E+00 1.09E-01 14 92 3 3.8598364132262752E-02 7.17E+00 3.58E-03 15 94 4 1.1583587353933021E-02 9.89E-02 1.05E-03 16 97 4 7.8015795812283429E-04 1.10E+00 2.11E+00 17 99 4 4.2043434911335627E-05 7.55E-02 1.24E-03 18 101 4 3.3953126817268044E-07 1.28E-02 1.42E-02 19 103 4 1.6015936023330983E-07 5.32E-03 1.57E-03 20 105 4 9.8392507008406416E-08 1.16E-02 4.37E-03 21 107 4 5.7437759497567527E-14 9.17E-06 1.46E-03 Maximum absolute error: 8.014e-08 Testing VMLMB in double precision with Oren & Spedicato scaling ITER EVAL RESTARTS F(X) ||G(X)|| STEP ----------------------------------------------------------------- 0 1 0 2.4199999999999994E+02 7.36E+02 0.00E+00 1 2 0 4.4316372171777601E+01 7.90E+01 8.93E-04 2 3 0 4.1329003827568755E+01 1.55E+01 1.00E+00 3 4 0 4.1193716150917680E+01 5.65E+00 1.00E+00 4 6 0 4.0957711045905491E+01 2.36E+01 1.25E+01 5 9 0 3.5683010994046533E+01 5.22E+01 1.53E+01 6 11 0 3.3539217245874546E+01 7.03E+01 5.09E-01 7 12 0 2.8585093163539252E+01 4.37E+01 1.00E+00 8 13 0 2.3996344613233056E+01 3.27E+01 1.00E+00 9 14 0 1.9309467575435573E+01 6.97E+00 1.00E+00 10 17 0 1.7488722209523090E+01 1.81E+01 6.88E-02 11 19 0 1.6259956827682554E+01 2.82E+01 4.34E-01 12 20 0 1.4527067055591285E+01 2.59E+01 1.00E+00 13 21 0 1.0916067677778727E+01 9.07E+00 1.00E+00 14 23 0 9.9129640081244492E+00 1.66E+01 3.40E-01 15 24 0 8.2669520947712734E+00 2.31E+01 1.00E+00 16 25 0 6.0188104158255786E+00 4.56E+00 1.00E+00 17 27 0 5.1415520320778807E+00 7.80E+00 3.85E-01 18 29 0 4.4266267358812676E+00 1.61E+01 4.15E-01 19 30 0 3.5020103481310003E+00 1.49E+01 1.00E+00 20 31 0 2.3665070228160663E+00 4.29E+00 1.00E+00 21 33 0 1.8403816055217683E+00 7.65E+00 3.03E-01 22 35 0 1.6071957360986759E+00 1.33E+01 4.31E-01 23 36 0 1.1717525440024008E+00 1.42E+01 1.00E+00 24 37 0 6.5300483142613375E-01 1.19E+00 1.00E+00 25 39 0 4.6608331574303835E-01 9.62E+00 4.97E-01 26 40 0 2.9375131856434777E-01 1.02E+01 1.00E+00 27 41 0 1.2736746712652791E-01 3.82E+00 1.00E+00 28 43 0 6.0437956341559199E-02 9.09E-01 4.28E-01 29 45 0 3.4949558261604487E-02 4.62E+00 5.19E-01 30 46 0 1.8760479297775655E-02 3.41E+00 1.00E+00 31 47 0 2.8916106698074506E-03 1.63E-01 1.00E+00 32 48 0 8.0604798184235064E-04 1.27E+00 1.00E+00 33 49 0 1.8632680603125487E-05 4.03E-02 1.00E+00 34 50 0 2.8720063391280182E-07 5.80E-04 1.00E+00 Maximum absolute error: 3.393e-04 Testing VMLMB in double precision with Oren & Spedicato scaling ITER EVAL RESTARTS F(X) ||G(X)|| STEP ----------------------------------------------------------------- 0 1 0 2.4199999999999994E+02 7.36E+02 0.00E+00 1 2 0 4.4316372171777601E+01 7.90E+01 8.93E-04 2 3 0 4.1329003827568755E+01 1.55E+01 1.00E+00 3 4 0 4.1193716150917680E+01 5.65E+00 1.00E+00 4 6 0 4.0957711045905491E+01 2.36E+01 1.25E+01 5 9 0 3.5683010994046533E+01 5.22E+01 1.53E+01 6 11 0 3.3539217245874546E+01 7.03E+01 5.09E-01 7 12 0 2.8585093497824278E+01 4.37E+01 1.00E+00 8 13 0 2.3996344750418050E+01 3.27E+01 1.00E+00 9 14 0 1.9309462860707839E+01 6.97E+00 1.00E+00 10 17 0 1.7483981646371245E+01 1.81E+01 6.93E-02 11 19 0 1.6258291973993437E+01 2.82E+01 4.37E-01 12 20 0 1.4541446068581319E+01 2.59E+01 1.00E+00 13 21 0 1.0928706317645350E+01 9.12E+00 1.00E+00 14 23 0 9.9272552967232208E+00 1.67E+01 3.41E-01 15 24 0 8.2697071434109066E+00 2.30E+01 1.00E+00 16 25 0 6.0215406773644560E+00 4.56E+00 1.00E+00 17 27 0 5.1532094038671454E+00 7.70E+00 3.78E-01 18 29 0 4.4360035955317594E+00 1.59E+01 4.09E-01 19 30 0 3.5192160156022405E+00 1.51E+01 1.00E+00 20 31 0 2.3662394529971271E+00 4.21E+00 1.00E+00 21 33 0 1.8422450522345450E+00 7.78E+00 3.09E-01 22 35 0 1.6053777423400100E+00 1.36E+01 4.47E-01 23 36 0 1.1641380014375808E+00 1.39E+01 1.00E+00 24 37 0 6.5463586821012687E-01 1.70E+00 1.00E+00 25 39 0 4.7540503245484067E-01 9.97E+00 4.92E-01 26 40 0 2.8777068299340625E-01 9.77E+00 1.00E+00 27 41 0 1.3061208659628837E-01 3.45E+00 1.00E+00 28 43 0 6.5421527596293161E-02 8.65E-01 3.91E-01 29 45 0 3.6863874808860025E-02 4.68E+00 5.08E-01 30 46 0 1.9600184033394502E-02 3.49E+00 1.00E+00 31 47 0 3.1592492883752801E-03 7.26E-02 1.00E+00 32 48 0 9.4477228637246174E-04 1.37E+00 1.00E+00 33 49 0 3.0592565555752466E-05 1.22E-02 1.00E+00 34 50 0 7.9144509530532992E-07 1.61E-03 1.00E+00 35 51 0 2.4301946652851681E-10 6.84E-04 1.00E+00 Maximum absolute error: 2.056e-06 Testing VMLMB in double precision with nonnegativity ITER EVAL RESTARTS F(X) ||G(X)|| STEP ----------------------------------------------------------------- 0 1 0 1.0100000000000000E+03 6.32E+02 0.00E+00 1 2 0 9.7990504958695244E+00 6.26E+00 5.05E-03 2 5 0 7.7139954558347990E+00 1.76E+01 1.59E+01 3 6 0 6.6024454699216175E+00 1.40E+01 1.00E+00 4 7 0 4.9163057466277928E+00 6.80E+00 1.00E+00 5 9 0 3.9683142325025353E+00 9.51E+00 1.65E-01 6 10 0 3.6689082842032099E+00 2.62E+01 1.00E+00 7 11 0 2.7789577227476703E+00 7.87E+00 1.00E+00 8 12 0 1.9797039359651500E+00 3.56E+00 1.00E+00 9 14 0 1.5370048320497556E+00 1.35E+01 5.15E-01 10 15 0 1.0659127461279088E+00 1.32E+01 1.00E+00 11 16 0 7.3454391496896487E-01 1.29E+01 1.00E+00 12 18 0 4.3474443436851151E-01 5.14E+00 3.38E-01 13 20 0 2.7353078960992344E-01 5.39E+00 1.51E-01 14 21 0 2.3597282270079278E-01 9.21E+00 1.00E+00 15 22 0 1.6522583876225894E-01 7.97E+00 1.00E+00 16 23 0 5.5052179747126583E-02 1.47E+00 1.00E+00 17 24 0 2.7362231533863898E-02 5.84E+00 1.00E+00 18 25 0 5.3050212579743789E-03 3.44E-01 1.00E+00 19 26 0 5.5436398072965611E-04 5.34E-01 1.00E+00 20 27 0 2.1892220661179785E-05 1.64E-01 1.00E+00 21 28 0 1.7103483782066480E-06 4.70E-02 1.00E+00 22 29 0 4.6094881511174134E-10 3.58E-04 1.00E+00 Maximum absolute error: 1.257e-05 Testing NLCG in single precision ITER EVAL RESTARTS F(X) ||G(X)|| STEP ----------------------------------------------------------------- 0 1 0 2.4200003051757812E+02 7.36E+02 0.00E+00 1 3 0 4.1281028747558594E+01 5.61E+00 7.88E-04 2 7 1 3.4900180816650391E+01 6.29E+01 2.79E-01 3 10 1 3.2893444061279297E+01 7.69E+01 9.89E-04 4 13 1 2.9803213119506836E+01 5.45E+01 6.08E-04 5 15 2 2.7113761901855469E+01 6.65E+00 1.87E-03 6 18 2 2.2243011474609375E+01 3.54E+01 1.51E-01 7 21 2 2.0287055969238281E+01 4.38E+01 2.65E-03 8 24 2 1.7485961914062500E+01 2.72E+01 1.79E-03 9 26 3 1.5996089935302734E+01 7.66E+00 4.22E-03 10 30 3 1.2543519020080566E+01 2.03E+01 8.08E-02 11 33 3 1.1382681846618652E+01 2.70E+01 5.02E-03 12 36 3 9.6688995361328125E+00 1.73E+01 2.83E-03 13 38 4 8.8273448944091797E+00 6.32E+00 5.62E-03 14 42 4 6.7306766510009766E+00 1.54E+01 7.35E-02 15 45 4 5.6480679512023926E+00 2.36E+01 8.20E-03 16 47 4 3.6841809749603271E+00 1.24E+01 8.09E-03 17 50 4 2.5451962947845459E+00 1.19E+01 1.14E-02 18 53 4 2.3015117645263672E+00 2.01E+01 3.64E-03 19 56 4 1.9170567989349365E+00 1.42E+01 1.10E-03 20 58 5 1.7059851884841919E+00 1.70E+00 2.10E-03 21 62 5 1.0503789186477661E+00 1.36E+01 3.42E-01 22 65 5 4.6108749508857727E-01 1.53E+01 6.44E-03 23 67 5 2.9333385825157166E-01 8.48E-01 1.44E-03 24 70 5 1.1687098443508148E-01 7.32E+00 3.87E-01 25 71 5 1.7581039573997259E-03 5.72E-01 5.18E-03 26 73 6 1.5908213099464774E-03 3.61E-02 1.02E-03 27 75 6 2.4197270249715075E-05 2.20E-01 2.45E+00 28 77 6 2.9713203275605338E-07 3.03E-03 1.02E-03 29 79 7 2.9232990073069232E-07 4.85E-04 1.02E-03 Maximum absolute error: 3.424e-04 Testing VMLMB in single precision with Oren & Spedicato scaling ITER EVAL RESTARTS F(X) ||G(X)|| STEP ----------------------------------------------------------------- 0 1 0 2.4200003051757812E+02 7.36E+02 0.00E+00 1 2 0 4.4316352844238281E+01 7.90E+01 8.93E-04 2 3 0 4.1329002380371094E+01 1.55E+01 1.00E+00 3 4 0 4.1193717956542969E+01 5.65E+00 1.00E+00 4 6 0 4.0957733154296875E+01 2.36E+01 1.25E+01 5 9 0 3.5684280395507812E+01 5.22E+01 1.53E+01 6 11 0 3.3540237426757812E+01 7.03E+01 5.09E-01 7 12 0 2.8585317611694336E+01 4.37E+01 1.00E+00 8 13 0 2.3998050689697266E+01 3.27E+01 1.00E+00 9 14 0 1.9317586898803711E+01 6.94E+00 1.00E+00 10 17 0 1.7455223083496094E+01 1.78E+01 6.94E-02 11 19 0 1.6247058868408203E+01 2.79E+01 4.21E-01 12 20 0 1.4554188728332520E+01 2.60E+01 1.00E+00 13 21 0 1.0935351371765137E+01 9.88E+00 1.00E+00 14 23 0 9.9184446334838867E+00 1.77E+01 3.95E-01 15 24 0 7.9832715988159180E+00 2.13E+01 1.00E+00 16 25 0 5.7980260848999023E+00 6.39E+00 1.00E+00 17 27 0 4.5898337364196777E+00 1.01E+01 4.87E-01 18 29 0 4.2044367790222168E+00 1.61E+01 4.72E-01 19 30 0 3.2494020462036133E+00 1.46E+01 1.00E+00 20 31 0 2.1791846752166748E+00 2.09E+00 1.00E+00 21 33 0 1.7873154878616333E+00 1.06E+01 3.27E-01 22 34 0 1.3844600915908813E+00 1.95E+01 1.00E+00 23 35 0 8.2010936737060547E-01 3.59E+00 1.00E+00 24 36 0 5.2319318056106567E-01 1.43E+01 1.00E+00 25 37 0 3.0184462666511536E-01 4.04E+00 1.00E+00 26 38 0 1.7310553789138794E-01 1.25E+01 1.00E+00 27 39 0 7.2445414960384369E-02 2.59E-01 1.00E+00 28 40 0 2.5401476770639420E-02 1.62E+00 1.00E+00 29 41 0 9.3918032944202423E-03 3.90E+00 1.00E+00 30 42 0 1.2769860913977027E-03 1.68E-01 1.00E+00 31 43 0 1.0823976481333375E-04 7.58E-02 1.00E+00 32 44 0 1.2964546840521507E-06 4.71E-02 1.00E+00 33 45 0 2.4054557457020564E-07 2.17E-02 1.00E+00 34 46 0 1.7763568394002505E-11 1.72E-04 1.00E+00 Maximum absolute error: 1.073e-06 Testing VMLMB in single precision with Oren & Spedicato scaling ITER EVAL RESTARTS F(X) ||G(X)|| STEP ----------------------------------------------------------------- 0 1 0 2.4200003051757812E+02 7.36E+02 0.00E+00 1 2 0 4.4316352844238281E+01 7.90E+01 8.93E-04 2 3 0 4.1329002380371094E+01 1.55E+01 1.00E+00 3 4 0 4.1193717956542969E+01 5.65E+00 1.00E+00 4 6 0 4.0957733154296875E+01 2.36E+01 1.25E+01 5 9 0 3.5684280395507812E+01 5.22E+01 1.53E+01 6 11 0 3.3540237426757812E+01 7.03E+01 5.09E-01 7 12 0 2.8585319519042969E+01 4.37E+01 1.00E+00 8 13 0 2.3998050689697266E+01 3.27E+01 1.00E+00 9 14 0 1.9317581176757812E+01 6.94E+00 1.00E+00 10 17 0 1.7450468063354492E+01 1.79E+01 6.99E-02 11 19 0 1.6245445251464844E+01 2.80E+01 4.24E-01 12 20 0 1.4567007064819336E+01 2.60E+01 1.00E+00 13 21 0 1.0946963310241699E+01 9.93E+00 1.00E+00 14 23 0 9.9296216964721680E+00 1.77E+01 3.97E-01 15 24 0 7.9812994003295898E+00 2.11E+01 1.00E+00 16 25 0 5.8042225837707520E+00 6.46E+00 1.00E+00 17 27 0 4.5929708480834961E+00 1.00E+01 4.82E-01 18 29 0 4.2138285636901855E+00 1.59E+01 4.56E-01 19 30 0 3.2725133895874023E+00 1.49E+01 1.00E+00 20 31 0 2.1848883628845215E+00 2.18E+00 1.00E+00 21 33 0 1.7940013408660889E+00 1.09E+01 3.43E-01 22 34 0 1.3708301782608032E+00 1.89E+01 1.00E+00 23 35 0 7.9528045654296875E-01 2.95E+00 1.00E+00 24 36 0 5.4004168510437012E-01 1.65E+01 1.00E+00 25 37 0 3.2346767187118530E-01 2.88E+00 1.00E+00 26 38 0 1.4709068834781647E-01 5.24E+00 1.00E+00 27 39 0 6.7525222897529602E-02 6.39E+00 1.00E+00 28 40 0 2.0532943308353424E-02 2.48E+00 1.00E+00 29 41 0 6.1071617528796196E-03 3.40E+00 1.00E+00 30 42 0 1.7097279196605086E-03 1.68E-01 1.00E+00 31 43 0 4.5653121196664870E-04 2.08E-01 1.00E+00 32 44 0 9.2626596597256139E-06 1.26E-01 1.00E+00 33 45 0 4.8986272815909615E-08 4.55E-03 1.00E+00 34 46 0 1.4210854715202004E-13 7.54E-07 1.00E+00 Maximum absolute error: 2.384e-07 Testing VMLMB in single precision with nonnegativity ITER EVAL RESTARTS F(X) ||G(X)|| STEP ----------------------------------------------------------------- 0 1 0 1.0100000000000000E+03 6.32E+02 0.00E+00 1 2 0 9.7990512847900391E+00 6.26E+00 5.05E-03 2 5 0 7.7139997482299805E+00 1.76E+01 1.59E+01 3 6 0 6.6024413108825684E+00 1.40E+01 1.00E+00 4 7 0 4.9158406257629395E+00 6.79E+00 1.00E+00 5 9 0 3.9690885543823242E+00 9.53E+00 1.65E-01 6 10 0 3.6662578582763672E+00 2.62E+01 1.00E+00 7 11 0 2.7757463455200195E+00 7.88E+00 1.00E+00 8 12 0 1.9713389873504639E+00 3.66E+00 1.00E+00 9 14 0 1.5319637060165405E+00 1.36E+01 5.21E-01 10 15 0 1.0543516874313354E+00 1.29E+01 1.00E+00 11 16 0 7.0434069633483887E-01 1.12E+01 1.00E+00 12 18 0 3.2436430454254150E-01 4.44E+00 5.45E-01 13 20 0 2.8062188625335693E-01 9.63E+00 4.70E-01 14 21 0 1.9443945586681366E-01 7.56E+00 1.00E+00 15 22 0 7.0824414491653442E-02 1.95E+00 1.00E+00 16 23 0 4.3932437896728516E-02 7.71E+00 1.00E+00 17 24 0 7.7799325808882713E-03 5.12E-01 1.00E+00 18 25 0 1.1453659972175956E-03 5.31E-01 1.00E+00 19 26 0 1.0591231693979353E-04 4.23E-01 1.00E+00 20 27 0 1.3548562947107712E-06 1.88E-02 1.00E+00 21 28 0 3.9136693885666318E-10 7.40E-04 1.00E+00 22 29 0 3.5882408155885059E-12 8.46E-05 1.00E+00 Maximum absolute error: 5.960e-08 WARNING: Compat.Printf is deprecated, use Printf instead. likely near /home/pkgeval/.julia/packages/OptimPack/1ipTV/test/cobyla-tests.jl:3 *************************************************************************** *** Standard tests ******************************************************** *************************************************************************** Output from test problem 1 (Simple quadratic) Least squares error in variables = 4.919624E-03 Least squares error in variables = 2.458376E-04 ------------------------------------------------------------------ Output from test problem 2 (2D unit circle calculation) Least squares error in variables = 1.260168E-03 Least squares error in variables = 1.394648E-04 ------------------------------------------------------------------ Output from test problem 3 (3D ellipsoid calculation) Least squares error in variables = 1.641872E-03 Least squares error in variables = 1.109372E-04 ------------------------------------------------------------------ Output from test problem 4 (Weak Rosenbrock) Least squares error in variables = 1.346992E-02 Least squares error in variables = 7.424763E-04 ------------------------------------------------------------------ Output from test problem 5 (Intermediate Rosenbrock) Least squares error in variables = 1.421601E-01 Least squares error in variables = 2.036779E-02 ------------------------------------------------------------------ Output from test problem 6 (Equation (9.1.15) in Fletcher) Least squares error in variables = 1.229432E-04 Least squares error in variables = 2.229808E-06 ------------------------------------------------------------------ Output from test problem 7 (Equation (14.4.2) in Fletcher) Least squares error in variables = 1.688430E-04 Least squares error in variables = 2.996662E-09 ------------------------------------------------------------------ Output from test problem 8 (Rosen-Suzuki) Least squares error in variables = 2.108421E-04 Least squares error in variables = 5.912239E-05 ------------------------------------------------------------------ Output from test problem 9 (Hock and Schittkowski 100) Least squares error in variables = 5.778029E-03 Least squares error in variables = 2.459564E-04 ------------------------------------------------------------------ Output from test problem 10 (Hexagon area) Least squares error in variables = 5.782992E-05 Least squares error in variables = 5.005171E-05 ------------------------------------------------------------------ *************************************************************************** *** Tests with scale=0.7 ************************************************** *************************************************************************** Output from test problem 1 (Simple quadratic) Least squares error in variables = 3.339609E-03 Least squares error in variables = 2.013676E-04 ------------------------------------------------------------------ Output from test problem 2 (2D unit circle calculation) Least squares error in variables = 1.260168E-03 Least squares error in variables = 1.394648E-04 ------------------------------------------------------------------ Output from test problem 3 (3D ellipsoid calculation) Least squares error in variables = 9.983477E-04 Least squares error in variables = 8.991862E-05 ------------------------------------------------------------------ Output from test problem 4 (Weak Rosenbrock) Normal return from subroutine COBYLA NFVALS = 37 F = 2.996516E-05 MAXCV = 0.000000E+00 X =-1.000800E+00 4.854114E-03 Normal return from subroutine COBYLA NFVALS = 61 F = 1.003486E-07 MAXCV = 0.000000E+00 X =-9.999334E-01 2.366462E-04 Normal return from subroutine COBYLA NFVALS = 37 F =-4.999994E-01 MAXCV = 1.999501E-06 X = 7.062159E-01 -7.079980E-01 Normal return from subroutine COBYLA NFVALS = 46 F =-5.000000E-01 MAXCV = 1.999878E-08 X = 7.070082E-01 -7.072054E-01 Normal return from subroutine COBYLA NFVALS = 52 F =-7.856687E-02 MAXCV = 6.190056E-06 X = 5.780286E-01 4.069225E-01 -3.340246E-01 Normal return from subroutine COBYLA NFVALS = 65 F =-7.856742E-02 MAXCV = 4.522432E-08 X = 5.773187E-01 4.083389E-01 -3.332776E-01 Normal return from subroutine COBYLA NFVALS = 105 F = 4.696841E-05 MAXCV = 0.000000E+00 X =-9.933327E-01 9.882959E-01 Normal return from subroutine COBYLA NFVALS = 155 F = 1.306424E-07 MAXCV = 0.000000E+00 X =-9.996437E-01 9.993486E-01 Normal return from subroutine COBYLA NFVALS = 338 F = 4.232543E-03 MAXCV = 0.000000E+00 X =-9.367514E-01 8.726849E-01 Normal return from subroutine COBYLA NFVALS = 699 F = 8.279253E-05 MAXCV = 0.000000E+00 X =-9.910989E-01 9.816801E-01 Normal return from subroutine COBYLA NFVALS = 30 F =-1.414216E+00 MAXCV = 2.950397E-06 X = 7.071947E-01 7.070209E-01 Normal return from subroutine COBYLA NFVALS = 41 F =-1.414214E+00 MAXCV = 2.000086E-08 X = 7.071084E-01 7.071052E-01 Normal return from subroutine COBYLA NFVALS = 28 F =-2.999881E+00 MAXCV = 0.000000E+00 X = 1.841394E-17 -2.999881E+00 -2.999881E+00 Normal return from subroutine COBYLA NFVALS = 32 F =-3.000000E+00 MAXCV = 0.000000E+00 X = 1.745569E-17 -3.000000E+00 -3.000000E+00 Normal return from subroutine COBYLA NFVALS = 69 F =-4.400002E+01 MAXCV = 6.484421E-06 X =-8.038091E-05 9.998587E-01 2.000100E+00 -9.999099E-01 Normal return from subroutine COBYLA NFVALS = 86 F =-4.400000E+01 MAXCV = 3.042309E-08 X =-3.629933E-05 9.999862E-01 2.000030E+00 -9.999669E-01 Normal return from subroutine COBYLA NFVALS = 241 F = 6.806301E+02 MAXCV = 1.008205E-05 X = 2.331286E+00 1.951228E+00 -4.719463E-01 4.365556E+00 -6.232999E-01 1.038174E+00 1.594236E+00 Normal return from subroutine COBYLA NFVALS = 308 F = 6.806301E+02 MAXCV = 1.601943E-07 X = 2.330516E+00 1.951365E+00 -4.773138E-01 4.365738E+00 -6.245104E-01 1.038216E+00 1.594247E+00 Normal return from subroutine COBYLA NFVALS = 165 F =-8.660253E-01 MAXCV = 1.159058E-07 X = 6.882718E-01 7.254530E-01 -2.840693E-01 9.588036E-01 6.883136E-01 7.254131E-01 -2.841248E-01 9.587874E-01 -2.591632E-20 Normal return from subroutine COBYLA NFVALS = 207 F =-8.660254E-01 MAXCV = 8.424326E-09 X = 6.883578E-01 7.253713E-01 -2.840590E-01 9.588068E-01 6.883215E-01 7.254057E-01 -2.840110E-01 9.588210E-01 2.935137E-21 Normal return from subroutine COBYLA NFVALS = 37 F = 1.813991E-05 MAXCV = 0.000000E+00 X =-1.000881E+00 3.221283E-03 Normal return from subroutine COBYLA NFVALS = 69 F = 2.507672E-07 MAXCV = 0.000000E+00 X =-9.998472E-01 1.311157E-04 Normal return from subroutine COBYLA NFVALS = 37 F =-4.999994E-01 MAXCV = 1.999501E-06 X = 7.062159E-01 -7.079980E-01 Normal return from subroutine COBYLA NFVALS = 46 F =-5.000000E-01 MAXCV = 1.999878E-08 X = 7.070082E-01 -7.072054E-01 Normal return from subroutine COBYLA NFVALS = 50 F =-7.856752E-02 MAXCV = 5.428079E-06 X = 5.777752E-01 4.088132E-01 -3.326283E-01 Normal return from subroutine COBYLA NFVALS = 63 F =-7.856742E-02 MAXCV = 4.872077E-08 X = 5.773094E-01 4.081995E-01 -3.333968E-01 Least squares error in variables = 1.048383E-02 Least squares error in variables = 9.363675E-04 ------------------------------------------------------------------ Output from test problem 5 (Intermediate Rosenbrock) Least squares error in variables = 1.342229E-01 Least squares error in variables = 1.998787E-02 ------------------------------------------------------------------ Output from test problem 6 (Equation (9.1.15) in Fletcher) Least squares error in variables = 1.229432E-04 Least squares error in variables = 2.229808E-06 ------------------------------------------------------------------ Output from test problem 7 (Equation (14.4.2) in Fletcher) Least squares error in variables = 1.688430E-04 Least squares error in variables = 2.996662E-09 ------------------------------------------------------------------ Output from test problem 8 (Rosen-Suzuki) Least squares error in variables = 1.208169E-03 Least squares error in variables = 1.280512E-04 ------------------------------------------------------------------ Output from test problem 9 (Hock and Schittkowski 100) Least squares error in variables = 1.809305E-03 Least squares error in variables = 1.185794E-04 ------------------------------------------------------------------ Output from test problem 10 (Hexagon area) Least squares error in variables = 5.224520E-05 Least squares error in variables = 5.607236E-05 ------------------------------------------------------------------ *************************************************************************** *** Tests with reverse-communication ************************************** *************************************************************************** Output from test problem 1 (Simple quadratic) ┌ Warning: `create(args...; kwds...)` is deprecated, use `Context(args...; kwds...)` instead. │ caller = runtests(; revcom::Bool, scale::Float64) at cobyla-tests.jl:264 └ @ Main.OptimPackTests.CobylaTests ~/.julia/packages/OptimPack/1ipTV/test/cobyla-tests.jl:264 Least squares error in variables = 4.919624E-03 Least squares error in variables = 2.458376E-04 ------------------------------------------------------------------ Output from test problem 2 (2D unit circle calculation) Least squares error in variables = 1.260168E-03 Least squares error in variables = 1.394648E-04 ------------------------------------------------------------------ Output from test problem 3 (3D ellipsoid calculation) Least squares error in variables = 1.641872E-03 Least squares error in variables = 1.109372E-04 ------------------------------------------------------------------ Output from test problem 4 (Weak Rosenbrock) Least squares error in variables = 1.346992E-02 Least squares error in variables = 7.424763E-04 ------------------------------------------------------------------ Output from test problem 5 (Intermediate Rosenbrock) Least squares error in variables = 1.421601E-01 Least squares error in variables = 2.036779E-02 ------------------------------------------------------------------ Output from test problem 6 (Equation (9.1.15) in Fletcher) Least squares error in variables = 1.229432E-04 Least squares error in variables = 2.229808E-06 ------------------------------------------------------------------ Output from test problem 7 (Equation (14.4.2) in Fletcher) Normal return from subroutine COBYLA NFVALS = 90 F = 2.246752E-05 MAXCV = 0.000000E+00 X =-9.952611E-01 9.906483E-01 Normal return from subroutine COBYLA NFVALS = 142 F = 2.308294E-07 MAXCV = 0.000000E+00 X =-9.995344E-01 9.991876E-01 Normal return from subroutine COBYLA NFVALS = 345 F = 3.812809E-03 MAXCV = 0.000000E+00 X =-9.407881E-01 8.795437E-01 Normal return from subroutine COBYLA NFVALS = 827 F = 8.014020E-05 MAXCV = 0.000000E+00 X =-9.912968E-01 9.820064E-01 Normal return from subroutine COBYLA NFVALS = 30 F =-1.414216E+00 MAXCV = 2.950397E-06 X = 7.071947E-01 7.070209E-01 Normal return from subroutine COBYLA NFVALS = 41 F =-1.414214E+00 MAXCV = 2.000086E-08 X = 7.071084E-01 7.071052E-01 Normal return from subroutine COBYLA NFVALS = 28 F =-2.999881E+00 MAXCV = 0.000000E+00 X = 9.385894E-18 -2.999881E+00 -2.999881E+00 Normal return from subroutine COBYLA NFVALS = 32 F =-3.000000E+00 MAXCV = 0.000000E+00 X = 9.371504E-18 -3.000000E+00 -3.000000E+00 Normal return from subroutine COBYLA NFVALS = 68 F =-4.400000E+01 MAXCV = 2.856984E-06 X =-2.873675E-04 1.001164E+00 1.999873E+00 -9.999197E-01 Normal return from subroutine COBYLA NFVALS = 87 F =-4.400000E+01 MAXCV = 3.598171E-08 X =-1.249890E-05 9.998830E-01 2.000042E+00 -9.999726E-01 Normal return from subroutine COBYLA NFVALS = 238 F = 6.806300E+02 MAXCV = 4.248394E-05 X = 2.330538E+00 1.951053E+00 -4.761146E-01 4.366547E+00 -6.248756E-01 1.038671E+00 1.594359E+00 Normal return from subroutine COBYLA NFVALS = 279 F = 6.806301E+02 MAXCV = 1.898784E-07 X = 2.330464E+00 1.951356E+00 -4.776052E-01 4.365769E+00 -6.244216E-01 1.038180E+00 1.594224E+00 Normal return from subroutine COBYLA NFVALS = 165 F =-8.660253E-01 MAXCV = 1.161696E-07 X = 6.882733E-01 7.254516E-01 -2.840727E-01 9.588026E-01 6.883111E-01 7.254155E-01 -2.841228E-01 9.587880E-01 6.228660E-20 Normal return from subroutine COBYLA NFVALS = 207 F =-8.660254E-01 MAXCV = 8.493324E-09 X = 6.883596E-01 7.253696E-01 -2.840625E-01 9.588058E-01 6.883189E-01 7.254082E-01 -2.840087E-01 9.588217E-01 -2.143006E-21 Normal return from subroutine COBYLA NFVALS = 37 F = 2.996516E-05 MAXCV = 0.000000E+00 X =-1.000800E+00 4.854114E-03 Normal return from subroutine COBYLA NFVALS = 61 F = 1.003486E-07 MAXCV = 0.000000E+00 X =-9.999334E-01 2.366462E-04 Normal return from subroutine COBYLA NFVALS = 37 F =-4.999994E-01 MAXCV = 1.999501E-06 X = 7.062159E-01 -7.079980E-01 Normal return from subroutine COBYLA NFVALS = 46 F =-5.000000E-01 MAXCV = 1.999878E-08 X = 7.070082E-01 -7.072054E-01 Normal return from subroutine COBYLA NFVALS = 52 F =-7.856687E-02 MAXCV = 6.190056E-06 X = 5.780286E-01 4.069225E-01 -3.340246E-01 Normal return from subroutine COBYLA NFVALS = 65 F =-7.856742E-02 MAXCV = 4.522432E-08 X = 5.773187E-01 4.083389E-01 -3.332776E-01 Normal return from subroutine COBYLA NFVALS = 105 F = 4.696841E-05 MAXCV = 0.000000E+00 X =-9.933327E-01 9.882959E-01 Normal return from subroutine COBYLA NFVALS = 155 F = 1.306424E-07 MAXCV = 0.000000E+00 X =-9.996437E-01 9.993486E-01 Normal return from subroutine COBYLA NFVALS = 338 F = 4.232543E-03 MAXCV = 0.000000E+00 X =-9.367514E-01 8.726849E-01 Normal return from subroutine COBYLA NFVALS = 699 F = 8.279253E-05 MAXCV = 0.000000E+00 X =-9.910989E-01 9.816801E-01 Normal return from subroutine COBYLA NFVALS = 30 F =-1.414216E+00 MAXCV = 2.950397E-06 X = 7.071947E-01 7.070209E-01 Normal return from subroutine COBYLA NFVALS = 41 F =-1.414214E+00 MAXCV = 2.000086E-08 X = 7.071084E-01 7.071052E-01 Normal return from subroutine COBY Least squares error in variables = 1.688430E-04 Least squares error in variables = 2.996662E-09 ------------------------------------------------------------------ Output from test problem 8 (Rosen-Suzuki) Least squares error in variables = 2.108421E-04 Least squares error in variables = 5.912239E-05 ------------------------------------------------------------------ Output from test problem 9 (Hock and Schittkowski 100) Least squares error in variables = 5.778029E-03 Least squares error in variables = 2.459564E-04 ------------------------------------------------------------------ Output from test problem 10 (Hexagon area) Least squares error in variables = 5.782992E-05 Least squares error in variables = 5.005171E-05 ------------------------------------------------------------------ WARNING: Compat.Printf is deprecated, use Printf instead. likely near /home/pkgeval/.julia/packages/OptimPack/1ipTV/test/newuoa-tests.jl:3 *************************************************************************** *** Standard NEWUOA tests ************************************************* *************************************************************************** Results with N = 2 and NPT = 5 Results with N = 4 and NPT = 9 Results with N = 6 and NPT = 13 LA NFVALS = 28 F =-2.999881E+00 MAXCV = 0.000000E+00 X = 1.841394E-17 -2.999881E+00 -2.999881E+00 Normal return from subroutine COBYLA NFVALS = 32 F =-3.000000E+00 MAXCV = 0.000000E+00 X = 1.745569E-17 -3.000000E+00 -3.000000E+00 Normal return from subroutine COBYLA NFVALS = 69 F =-4.400002E+01 MAXCV = 6.484421E-06 X =-8.038091E-05 9.998587E-01 2.000100E+00 -9.999099E-01 Normal return from subroutine COBYLA NFVALS = 86 F =-4.400000E+01 MAXCV = 3.042309E-08 X =-3.629933E-05 9.999862E-01 2.000030E+00 -9.999669E-01 Normal return from subroutine COBYLA NFVALS = 241 F = 6.806301E+02 MAXCV = 1.008205E-05 X = 2.331286E+00 1.951228E+00 -4.719463E-01 4.365556E+00 -6.232999E-01 1.038174E+00 1.594236E+00 Normal return from subroutine COBYLA NFVALS = 308 F = 6.806301E+02 MAXCV = 1.601943E-07 X = 2.330516E+00 1.951365E+00 -4.773138E-01 4.365738E+00 -6.245104E-01 1.038216E+00 1.594247E+00 Normal return from subroutine COBYLA NFVALS = 165 F =-8.660253E-01 MAXCV = 1.159058E-07 X = 6.882718E-01 7.254530E-01 -2.840693E-01 9.588036E-01 6.883136E-01 7.254131E-01 -2.841248E-01 9.587874E-01 -2.591632E-20 Normal return from subroutine COBYLA NFVALS = 207 F =-8.660254E-01 MAXCV = 8.424326E-09 X = 6.883578E-01 7.253713E-01 -2.840590E-01 9.588068E-01 6.883215E-01 7.254057E-01 -2.840110E-01 9.588210E-01 2.935137E-21 New RHO = 6.6667E-03 Number of function values = 10 Least value of F = 2.306405855199969E-03 The corresponding X is: 2.382044E-01 8.080324E-01 New RHO = 6.6667E-04 Number of function values = 16 Least value of F = 1.227492921989321E-06 The corresponding X is: 2.108177E-01 7.885663E-01 New RHO = 6.6667E-05 Number of function values = 20 Least value of F = 2.435328676349374E-09 The corresponding X is: 2.113442E-01 7.886747E-01 New RHO = 8.1650E-06 Number of function values = 23 Least value of F = 2.435328676349374E-09 The corresponding X is: 2.113442E-01 7.886747E-01 New RHO = 1.0000E-06 Number of function values = 27 Least value of F = 1.820673221900946E-12 The corresponding X is: 2.113246E-01 7.886745E-01 At the return from NEWUOA Number of function values = 31 Least value of F = 3.788468238631679E-19 The corresponding X is: 2.113249E-01 7.886751E-01 New RHO = 4.0000E-03 Number of function values = 21 Least value of F = 2.011890578520287E-03 The corresponding X is: 1.129585E-01 4.058318E-01 6.110858E-01 9.111412E-01 New RHO = 4.0000E-04 Number of function values = 34 Least value of F = 4.013272744311518E-04 The corresponding X is: 1.111816E-01 4.192043E-01 6.050995E-01 9.037598E-01 New RHO = 4.0000E-05 Number of function values = 60 Least value of F = 4.477932880796387E-08 The corresponding X is: 1.026265E-01 4.061774E-01 5.936825E-01 8.972424E-01 New RHO = 6.3246E-06 Number of function values = 74 Least value of F = 4.867360386792098E-10 The corresponding X is: 1.026742E-01 4.062069E-01 5.937875E-01 8.973192E-01 New RHO = 1.0000E-06 Number of function values = 82 Least value of F = 9.356608022668722E-12 The corresponding X is: 1.026727E-01 4.062052E-01 5.937965E-01 8.973273E-01 At the return from NEWUOA Number of function values = 91 Least value of F = 2.192401227180582E-15 The corresponding X is: 1.026728E-01 4.062038E-01 5.937962E-01 8.973272E-01 New RHO = 2.8571E-03 Number of function values = 14 Least value of F = 3.052693663946804E-02 The corresponding X is: 1.142857E-01 2.857143E-01 4.285714E-01 5.714286E-01 7.142857E-01 8.571429E-01 New RHO = 2.8571E-04 Number of Results with N = 8 and NPT = 17 *************************************************************************** *** NEWUOA tests with scale=0.7 ******************************************* *************************************************************************** Results with N = 2 and NPT = 5 Results with N = 4 and NPT = 9 function values = 79 Least value of F = 1.937801755710736E-05 The corresponding X is: 6.822115E-02 2.926547E-01 3.677050E-01 6.359738E-01 7.128806E-01 9.344113E-01 New RHO = 2.8571E-05 Number of function values = 127 Least value of F = 1.474131538877836E-07 The corresponding X is: 6.687373E-02 2.887591E-01 3.666373E-01 6.334470E-01 7.109271E-01 9.330547E-01 New RHO = 5.3452E-06 Number of function values = 152 Least value of F = 1.458213035214064E-09 The corresponding X is: 6.686653E-02 2.887201E-01 3.666653E-01 6.333134E-01 7.112307E-01 9.331133E-01 New RHO = 1.0000E-06 Number of function values = 180 Least value of F = 3.517686213386221E-11 The corresponding X is: 6.687643E-02 2.887391E-01 3.666805E-01 6.333166E-01 7.112548E-01 9.331213E-01 At the return from NEWUOA Number of function values = 203 Least value of F = 1.808002717581203E-13 The corresponding X is: 6.687669E-02 2.887410E-01 3.666822E-01 6.333180E-01 7.112591E-01 9.331233E-01 New RHO = 2.2222E-03 Number of function values = 21 Least value of F = 1.717393681624708E-02 The corresponding X is: 9.398239E-02 2.276855E-01 3.322088E-01 4.429489E-01 5.570511E-01 6.677912E-01 7.723145E-01 9.065755E-01 New RHO = 2.2222E-04 Number of function values = 156 Least value of F = 3.522147819687429E-03 The corresponding X is: 4.304938E-02 1.929816E-01 2.666648E-01 4.993406E-01 5.015257E-01 7.342656E-01 8.074189E-01 9.573324E-01 New RHO = 1.4907E-05 Number of function values = 218 Least value of F = 3.516933663639565E-03 The corresponding X is: 4.314592E-02 1.930911E-01 2.663119E-01 5.000902E-01 4.999726E-01 7.337854E-01 8.068220E-01 9.568310E-01 New RHO = 1.0000E-06 Number of function values = 267 Least value of F = 3.516873877541009E-03 The corresponding X is: 4.315409E-02 1.930954E-01 2.663323E-01 5.000104E-01 5.000013E-01 7.336752E-01 8.069140E-01 9.568492E-01 At the return from NEWUOA Number of function values = 299 Least value of F = 3.516873726162472E-03 The corresponding X is: 4.315263E-02 1.930905E-01 2.663290E-01 5.000000E-01 4.999999E-01 7.336713E-01 8.069090E-01 9.568472E-01 New RHO = 9.5238E-03 Number of function values = 10 Least value of F = 2.306405855199963E-03 The corresponding X is: 2.382044E-01 8.080324E-01 New RHO = 9.5238E-04 Number of function values = 16 Least value of F = 1.227492922051520E-06 The corresponding X is: 2.108177E-01 7.885663E-01 New RHO = 9.5238E-05 Number of function values = 20 Least value of F = 2.435328677294653E-09 The corresponding X is: 2.113442E-01 7.886747E-01 New RHO = 1.1664E-05 Number of function values = 23 Least value of F = 2.435328677294653E-09 The corresponding X is: 2.113442E-01 7.886747E-01 New RHO = 1.4286E-06 Number of function values = 27 Least value of F = 1.820673221376869E-12 The corresponding X is: 2.113246E-01 7.886745E-01 At the return from NEWUOA Number of function values = 31 Least value of F = 3.788467447196530E-19 The corresponding X is: 2.113249E-01 7.886751E-01 New RHO = 5.7143E-03 Number of function values = 21 Least value of F = 2.011890578519909E-03 The corresponding X is: 1.129585E-01 4.058318E-01 6.110858E-01 9.111412E-01 New RHO = 5.7143E-04 Number of function values = 34 Least value of F = 4.013272744318749E-04 The corresponding X is: 1.111816E-01 4.192043E-01 6.050995E-01 9.037598E-01 New RHO = 5.7143E-05 Number of function values = 60 Least value of F = 4.477928381360371E-08 The correspon Results with N = 6 and NPT = 13 Results with N = 8 and NPT = 17 *************************************************************************** *** NEWUOA tests with reverse-communication ******************************* *************************************************************************** Results with N = 2 and NPT = 5 ┌ Warning: `create(args...; kwds...)` is deprecated, use `Context(args...; kwds...)` instead. │ caller = runtests(; revcom::Bool, scale::Int64) at newuoa-tests.jl:51 └ @ Main.OptimPackTests.NewuoaTests ~/.julia/packages/OptimPack/1ipTV/test/newuoa-tests.jl:51 ding X is: 1.026265E-01 4.061774E-01 5.936825E-01 8.972424E-01 New RHO = 9.0351E-06 Number of function values = 75 Least value of F = 4.867388253521984E-10 The corresponding X is: 1.026742E-01 4.062069E-01 5.937875E-01 8.973192E-01 New RHO = 1.4286E-06 Number of function values = 83 Least value of F = 7.260402254508110E-12 The corresponding X is: 1.026724E-01 4.062045E-01 5.937957E-01 8.973269E-01 At the return from NEWUOA Number of function values = 90 Least value of F = 3.526261288311502E-14 The corresponding X is: 1.026728E-01 4.062038E-01 5.937962E-01 8.973272E-01 New RHO = 4.0816E-03 Number of function values = 14 Least value of F = 3.052693663946804E-02 The corresponding X is: 1.142857E-01 2.857143E-01 4.285714E-01 5.714286E-01 7.142857E-01 8.571429E-01 New RHO = 4.0816E-04 Number of function values = 79 Least value of F = 1.937801342281903E-05 The corresponding X is: 6.822115E-02 2.926547E-01 3.677050E-01 6.359738E-01 7.128806E-01 9.344113E-01 New RHO = 4.0816E-05 Number of function values = 137 Least value of F = 2.190215934188822E-08 The corresponding X is: 6.690781E-02 2.888473E-01 3.666369E-01 6.333961E-01 7.112382E-01 9.331459E-01 New RHO = 7.6360E-06 Number of function values = 167 Least value of F = 2.985744503798466E-10 The corresponding X is: 6.687482E-02 2.887300E-01 3.666778E-01 6.333145E-01 7.112510E-01 9.331218E-01 New RHO = 1.4286E-06 Number of function values = 183 Least value of F = 7.256099912229281E-12 The corresponding X is: 6.687693E-02 2.887407E-01 3.666816E-01 6.333183E-01 7.112573E-01 9.331228E-01 At the return from NEWUOA Number of function values = 194 Least value of F = 8.825826923435616E-13 The corresponding X is: 6.687682E-02 2.887414E-01 3.666824E-01 6.333185E-01 7.112591E-01 9.331235E-01 New RHO = 3.1746E-03 Number of function values = 21 Least value of F = 1.717393681624720E-02 The corresponding X is: 9.398239E-02 2.276855E-01 3.322088E-01 4.429489E-01 5.570511E-01 6.677912E-01 7.723145E-01 9.065755E-01 New RHO = 3.1746E-04 Number of function values = 198 Least value of F = 3.565357866815491E-03 The corresponding X is: 4.372008E-02 1.933807E-01 2.676703E-01 5.055328E-01 4.960326E-01 7.342337E-01 8.077622E-01 9.569221E-01 New RHO = 2.1296E-05 Number of function values = 261 Least value of F = 3.516923111320953E-03 The corresponding X is: 4.320140E-02 1.931302E-01 2.663431E-01 4.999572E-01 5.000182E-01 7.335853E-01 8.069518E-01 9.568535E-01 New RHO = 1.4286E-06 Number of function values = 293 Least value of F = 3.516873954937515E-03 The corresponding X is: 4.315134E-02 1.930864E-01 2.663219E-01 4.999883E-01 4.999970E-01 7.336636E-01 8.069048E-01 9.568446E-01 At the return from NEWUOA Number of function values = 330 Least value of F = 3.516873726033439E-03 The corresponding X is: 4.315288E-02 1.930911E-01 2.663285E-01 4.999998E-01 5.000001E-01 7.336712E-01 8.069092E-01 9.568472E-01 New RHO = 6.6667E-03 Number of function values = 10 Least value of F = 2.306405855199969E-03 The corresponding X is: 2.382044E-01 8.080324E-01 New RHO = 6.6667E-04 Number of function values = 16 Least value of F = 1.227492921989321E-06 The corresponding X is: 2.108177E-01 7.885663E-01 New RHO = 6.6667E-05 Number of function values = 20 Least value of F = 2.435328676349374E-09 The corresponding X is: 2.113442E-01 7.886747E-01 New RHO = 8.1650E-06 Number of function values = 23 Least value of F = 2.435328676 Results with N = 4 and NPT = 9 Results with N = 6 and NPT = 13 Results with N = 8 and NPT = 17 349374E-09 The corresponding X is: 2.113442E-01 7.886747E-01 New RHO = 1.0000E-06 Number of function values = 27 Least value of F = 1.820673221900946E-12 The corresponding X is: 2.113246E-01 7.886745E-01 At the return from NEWUOA Number of function values = 31 Least value of F = 3.788468238631679E-19 The corresponding X is: 2.113249E-01 7.886751E-01 New RHO = 4.0000E-03 Number of function values = 21 Least value of F = 2.011890578520287E-03 The corresponding X is: 1.129585E-01 4.058318E-01 6.110858E-01 9.111412E-01 New RHO = 4.0000E-04 Number of function values = 34 Least value of F = 4.013272744311518E-04 The corresponding X is: 1.111816E-01 4.192043E-01 6.050995E-01 9.037598E-01 New RHO = 4.0000E-05 Number of function values = 60 Least value of F = 4.477932880796387E-08 The corresponding X is: 1.026265E-01 4.061774E-01 5.936825E-01 8.972424E-01 New RHO = 6.3246E-06 Number of function values = 74 Least value of F = 4.867360386792098E-10 The corresponding X is: 1.026742E-01 4.062069E-01 5.937875E-01 8.973192E-01 New RHO = 1.0000E-06 Number of function values = 82 Least value of F = 9.356608022668722E-12 The corresponding X is: 1.026727E-01 4.062052E-01 5.937965E-01 8.973273E-01 At the return from NEWUOA Number of function values = 91 Least value of F = 2.192401227180582E-15 The corresponding X is: 1.026728E-01 4.062038E-01 5.937962E-01 8.973272E-01 New RHO = 2.8571E-03 Number of function values = 14 Least value of F = 3.052693663946804E-02 The corresponding X is: 1.142857E-01 2.857143E-01 4.285714E-01 5.714286E-01 7.142857E-01 8.571429E-01 New RHO = 2.8571E-04 Number of function values = 79 Least value of F = 1.937801755710736E-05 The corresponding X is: 6.822115E-02 2.926547E-01 3.677050E-01 6.359738E-01 7.128806E-01 9.344113E-01 New RHO = 2.8571E-05 Number of function values = 127 Least value of F = 1.474131538877836E-07 The corresponding X is: 6.687373E-02 2.887591E-01 3.666373E-01 6.334470E-01 7.109271E-01 9.330547E-01 New RHO = 5.3452E-06 Number of function values = 152 Least value of F = 1.458213035214064E-09 The corresponding X is: 6.686653E-02 2.887201E-01 3.666653E-01 6.333134E-01 7.112307E-01 9.331133E-01 New RHO = 1.0000E-06 Number of function values = 180 Least value of F = 3.517686213386221E-11 The corresponding X is: 6.687643E-02 2.887391E-01 3.666805E-01 6.333166E-01 7.112548E-01 9.331213E-01 At the return from NEWUOA Number of function values = 203 Least value of F = 1.808002717581203E-13 The corresponding X is: 6.687669E-02 2.887410E-01 3.666822E-01 6.333180E-01 7.112591E-01 9.331233E-01 New RHO = 2.2222E-03 Number of function values = 21 Least value of F = 1.717393681624708E-02 The corresponding X is: 9.398239E-02 2.276855E-01 3.322088E-01 4.429489E-01 5.570511E-01 6.677912E-01 7.723145E-01 9.065755E-01 New RHO = 2.2222E-04 Number of function values = 156 Least value of F = 3.522147819687429E-03 The corresponding X is: 4.304938E-02 1.929816E-01 2.666648E-01 4.993406E-01 5.015257E-01 7.342656E-01 8.074189E-01 9.573324E-01 New RHO = 1.4907E-05 Number of function values = 218 Least value of F = 3.516933663639565E-03 The corresponding X is: 4.314592E-02 1.930911E-01 2.663119E-01 5.000902E-01 4.999726E-01 7.337854E-01 8.068220E-01 9.568310E-01 New RHO = 1.0000E-06 Number of function values = 267 Least value of F = 3.516873877541009E-03 The corresponding X is: 4.315409E-02 1.930954E-01 2.663323E-01 5WARNING: Compat.Printf is deprecated, use Printf instead. likely near /home/pkgeval/.julia/packages/OptimPack/1ipTV/test/bobyqa-tests.jl:3 *************************************************************************** *** Standard BOBYQA tests ************************************************* *************************************************************************** 2D output with M = 5, N = 10 and NPT = 16 ***** least function value: 5.680353888084284e+00 2D output with M = 5, N = 10 and NPT = 21 ***** least function value: 5.601533972186465e+00 2D output with M = 10, N = 20 and NPT = 26 .000104E-01 5.000013E-01 7.336752E-01 8.069140E-01 9.568492E-01 At the return from NEWUOA Number of function values = 299 Least value of F = 3.516873726162472E-03 The corresponding X is: 4.315263E-02 1.930905E-01 2.663290E-01 5.000000E-01 4.999999E-01 7.336713E-01 8.069090E-01 9.568472E-01 New RHO = 1.0000E-02 Number of function values = 36 Least value of F = 5.680729791421956E+00 The corresponding X is: 2.221147E-01 1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 3.265332E-01 New RHO = 1.0000E-03 Number of function values = 60 Least value of F = 5.680354430001146E+00 The corresponding X is: 2.603234E-01 1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 2.612788E-01 New RHO = 1.0000E-04 Number of function values = 73 Least value of F = 5.680353929615947E+00 The corresponding X is: 2.606974E-01 1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 2.615739E-01 New RHO = 1.0000E-05 Number of function values = 88 Least value of F = 5.680353888456104E+00 The corresponding X is: 2.613393E-01 1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 2.611534E-01 New RHO = 1.0000E-06 Number of function values = 108 Least value of F = 5.680353888084572E+00 The corresponding X is: 2.612445E-01 1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 2.612493E-01 At the return from BOBYQA Number of function values = 123 Least value of F = 5.680353888084284E+00 The corresponding X is: 2.612471E-01 1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 2.612470E-01 New RHO = 1.0000E-02 Number of function values = 44 Least value of F = 5.608887796858023E+00 The corresponding X is: 1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 -1.000000E+00 9.776403E-01 -1.000000E+00 1.000000E+00 -1.767038E-13 New RHO = 1.0000E-03 Number of function values = 59 Least value of F = 5.601550934818603E+00 The corresponding X is: 1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 -2.938660E-03 New RHO = 1.0000E-04 Number of function values = 73 Least value of F = 5.601533980345714E+00 The corresponding X is: 1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 -6.445101E-05 New RHO = 1.0000E-05 Number of function values = 78 Least value of F = 5.601533972186777E+00 The corresponding X is: 1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 3.999974E-07 New RHO = 1.0000E-06 Number of function values = 91 Least value of F = 5.601533972186777E+00 The corresponding X is: 1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 3.999974E-07 At the return from BOBYQA Number of function values = 98 Least value of F = 5.601533972186465E+00 The corresponding X is: 1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 1.916017E-10 New RHO = 1.0000E-02 Number of function values = 34 Least value of F = 3.291200620948101E+01 The corresponding X is: 1.000000E+00 ***** least function value: 3.220305336883060e+01 2D output with M = 10, N = 20 and NPT = 41 8.283285E-01 3.605841E-01 1.000000E+00 -3.605841E-01 1.000000E+00 -1.000000E+00 9.275342E-01 -9.994764E-01 8.783984E-02 -1.000000E+00 -9.995070E-01 -2.696121E-01 -1.000000E+00 2.706121E-01 -1.000000E+00 1.000000E+00 -1.000000E+00 9.994764E-01 8.783984E-02 New RHO = 1.0000E-03 Number of function values = 88 Least value of F = 3.220322024737089E+01 The corresponding X is: 1.000000E+00 1.000000E+00 3.645051E-01 1.000000E+00 -3.576367E-01 1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 -2.759587E-03 -1.000000E+00 -1.000000E+00 -3.624180E-01 -1.000000E+00 3.623725E-01 -1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 -3.349526E-03 New RHO = 1.0000E-04 Number of function values = 121 Least value of F = 3.220306285892171E+01 The corresponding X is: 1.000000E+00 1.000000E+00 3.618014E-01 1.000000E+00 -3.619181E-01 1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 -1.322484E-03 -1.000000E+00 -1.000000E+00 -3.618304E-01 -1.000000E+00 3.619566E-01 -1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 -8.843503E-04 New RHO = 1.0000E-05 Number of function values = 157 Least value of F = 3.220305336987251E+01 The corresponding X is: 1.000000E+00 1.000000E+00 3.616064E-01 1.000000E+00 -3.616179E-01 1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 -5.333451E-06 -1.000000E+00 -1.000000E+00 -3.616083E-01 -1.000000E+00 3.616038E-01 -1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 1.050743E-05 New RHO = 1.0000E-06 Number of function values = 179 Least value of F = 3.220305336890880E+01 The corresponding X is: 1.000000E+00 1.000000E+00 3.616077E-01 1.000000E+00 -3.616078E-01 1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 2.566120E-06 -1.000000E+00 -1.000000E+00 -3.616071E-01 -1.000000E+00 3.616065E-01 -1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 3.641092E-06 At the return from BOBYQA Number of function values = 205 Least value of F = 3.220305336883060E+01 The corresponding X is: 1.000000E+00 1.000000E+00 3.616077E-01 1.000000E+00 -3.616080E-01 1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 -2.954437E-07 -1.000000E+00 -1.000000E+00 -3.616079E-01 -1.000000E+00 3.616078E-01 -1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 8.866453E-08 New RHO = 1.0000E-02 Number of function values = 45 Least value of F = 3.221724258591880E+01 The corresponding X is: 1.000000E+00 1.000000E+00 3.811180E-01 1.000000E+00 -3.811180E-01 1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 1.224647E-16 -1.000000E+00 -1.000000E+00 -3.811180E-01 -1.000000E+00 3.811180E-01 -1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 -2.449294E-16 New RHO = 1.0000E-03 Number of function values = 80 Least value of F = 3.220308936260135E+01 The corresponding X is: 1.000000E+00 1.000000E+00 3.625827E-01 1.000000E+00 -3.625827E-01 1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 1.224647E-16 -1.000000E+00 -1.000000E+00 -3.625827E-01 -1.000000E+00 3.625827E-01 -1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 -2.449294E-16 New RHO = 1.0000E-04 Number of function values = 112 Least value of F = 3.220305353124637E+01 The corresponding X is: 1.000000E+00 1.000000E+00 3.615510E-01 1.000000E+00 -3.615643E-01 1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 8.602213E-05 -1.000000E+00 -1.000000E+00 -3.616122E-01 -1.000000E+00 3.615515E-01 -1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 1.687215E-04 New RHO = 1.0000E-05 Number of function values = 136 Least value of F = 3.220305337717114E+01 The corresponding X is: 1.000000E+00 1.000 ***** least function value: 3.220305336883041e+01 000E+00 3.615876E-01 1.000000E+00 -3.616140E-01 1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 1.844099E-05 -1.000000E+00 -1.000000E+00 -3.616364E-01 -1.000000E+00 3.616024E-01 -1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 1.157131E-05 New RHO = 1.0000E-06 Number of function values = 156 Least value of F = 3.220305336914299E+01 The corresponding X is: 1.000000E+00 1.000000E+00 3.616044E-01 1.000000E+00 -3.616079E-01 1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 9.207299E-07 -1.000000E+00 -1.000000E+00 -3.616044E-01 -1.000000E+00 3.616141E-01 -1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 2.382489E-06 At the return from BOBYQA Number of function values = 194 Least value of F = 3.220305336883041E+01 The corresponding X is: 1.000000E+00 1.000000E+00 3.616078E-01 1.000000E+00 -3.616080E-01 1.000000E+00 -1.000000E+00 1.000000E+00 -1.000000E+00 -1.148260E-07 -1.000000E+00 -1.000000E+00 -3.616080E-01 -1.000000E+00 3.616078E-01 -1.000000E+00 1.000000E+00 -1.000000E+00 1.000000E+00 5.206591E-08 Testing OptimPack tests passed Testing completed after 36.27s PkgEval succeeded after 113.47s