Package evaluation of OVERT on Julia 1.11.4 (8561cc3d68*) started at 2025-04-09T01:57:51.720 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.16s ################################################################################ # Installation # Installing OVERT... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [07e67fc4] + OVERT v0.1.2 Updating `~/.julia/environments/v1.11/Manifest.toml` [47edcb42] + ADTypes v1.14.0 [621f4979] + AbstractFFTs v1.5.0 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.3.0 [66dad0bd] + AliasTables v1.1.3 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.18.0 ⌃ [13072b0f] + AxisAlgorithms v1.0.1 [39de3d68] + AxisArrays v0.4.7 [d1d4a3ce] + BitFlags v0.1.9 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [fa961155] + CEnum v0.5.0 [2a0fbf3d] + CPUSummary v0.2.6 [49dc2e85] + Calculus v0.5.2 [aafaddc9] + CatIndices v0.2.2 [d360d2e6] + ChainRulesCore v1.25.1 [fb6a15b2] + CloseOpenIntervals v0.1.13 [aaaa29a8] + Clustering v0.15.8 [944b1d66] + CodecZlib v0.7.8 [a2cac450] + ColorBrewer v0.4.1 ⌃ [35d6a980] + ColorSchemes v3.26.0 ⌅ [3da002f7] + ColorTypes v0.11.5 ⌅ [c3611d14] + ColorVectorSpace v0.9.10 ⌅ [5ae59095] + Colors v0.12.11 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [f70d9fcc] + CommonWorldInvalidations v1.0.0 [34da2185] + Compat v4.16.0 [a33af91c] + CompositionsBase v0.1.2 [ed09eef8] + ComputationalResources v0.3.2 [f0e56b4a] + ConcurrentUtilities v2.5.0 [187b0558] + ConstructionBase v1.5.8 [d38c429a] + Contour v0.6.3 [150eb455] + CoordinateTransformations v0.6.4 [adafc99b] + CpuId v0.3.1 [a8cc5b0e] + Crayons v4.1.1 [dc8bdbbb] + CustomUnitRanges v1.0.2 [9a962f9c] + DataAPI v1.16.0 [a93c6f00] + DataFrames v1.7.0 [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [8bb1440f] + DelimitedFiles v1.9.1 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.6.50 [6e83dbb3] + Discretizers v3.2.4 [b4f34e82] + Distances v0.10.12 [ffbed154] + DocStringExtensions v0.9.4 [460bff9d] + ExceptionUnwrapping v0.1.11 [c87230d0] + FFMPEG v0.4.2 [4f61f5a4] + FFTViews v0.3.2 [7a1cc6ca] + FFTW v1.8.1 [5789e2e9] + FileIO v1.17.0 [6a86dc24] + FiniteDiff v2.27.0 [53c48c17] + FixedPointNumbers v0.8.5 [1fa38f19] + Format v1.3.7 [f6369f11] + ForwardDiff v1.0.1 [28b8d3ca] + GR v0.73.13 [a2bd30eb] + Graphics v1.1.3 [86223c79] + Graphs v1.12.1 [42e2da0e] + Grisu v1.0.2 [cd3eb016] + HTTP v1.10.15 [2c695a8d] + HistogramThresholding v0.3.1 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 ⌃ [2803e5a7] + ImageAxes v0.6.11 ⌃ [c817782e] + ImageBase v0.1.5 [cbc4b850] + ImageBinarization v0.3.1 [f332f351] + ImageContrastAdjustment v0.3.12 ⌅ [a09fc81d] + ImageCore v0.9.4 [89d5987c] + ImageCorners v0.1.3 [51556ac3] + ImageDistances v0.2.17 ⌃ [6a3955dd] + ImageFiltering v0.7.6 ⌃ [82e4d734] + ImageIO v0.6.8 ⌃ [6218d12a] + ImageMagick v1.2.1 ⌃ [bc367c6b] + ImageMetadata v0.9.9 [787d08f9] + ImageMorphology v0.4.6 [2996bd0c] + ImageQualityIndexes v0.3.7 ⌃ [80713f31] + ImageSegmentation v1.8.1 [4e3cecfd] + ImageShow v0.3.8 [02fcd773] + ImageTransformations v0.10.1 ⌃ [916415d5] + Images v0.26.1 [9b13fd28] + IndirectArrays v1.0.0 [d25df0c9] + Inflate v0.1.5 [842dd82b] + InlineStrings v1.4.3 [1d092043] + IntegralArrays v0.1.6 ⌅ [a98d9a8b] + Interpolations v0.14.0 [8197267c] + IntervalSets v0.7.10 [3587e190] + InverseFunctions v0.1.17 [41ab1584] + InvertedIndices v1.3.1 [92d709cd] + IrrationalConstants v0.2.4 [c8e1da08] + IterTools v1.10.0 [82899510] + IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] + JLD2 v0.4.54 [1019f520] + JLFzf v0.1.10 [692b3bcd] + JLLWrappers v1.7.0 [682c06a0] + JSON v0.21.4 [b835a17e] + JpegTurbo v0.1.6 [b964fa9f] + LaTeXStrings v1.4.0 ⌃ [23fbe1c1] + Latexify v0.16.3 [10f19ff3] + LayoutPointers v0.1.17 [8cdb02fc] + LazyModules v0.3.1 [d3d80556] + LineSearches v7.3.0 [2ab3a3ac] + LogExpFunctions v0.3.29 [e6f89c97] + LoggingExtras v1.1.0 [bdcacae8] + LoopVectorization v0.12.172 [1914dd2f] + MacroTools v0.5.15 [d125e4d3] + ManualMemory v0.1.8 [dbb5928d] + MappedArrays v0.4.2 [739be429] + MbedTLS v1.1.9 [442fdcdd] + Measures v0.3.2 ⌅ [626554b9] + MetaGraphs v0.7.2 [e1d29d7a] + Missings v1.2.0 [e94cdb99] + MosaicViews v0.3.4 [0db19996] + NBInclude v2.4.0 [d41bc354] + NLSolversBase v7.9.1 [2774e3e8] + NLsolve v4.5.1 [77ba4419] + NaNMath v1.1.3 [b8a86587] + NearestNeighbors v0.4.21 [f09324ee] + Netpbm v1.1.1 [07e67fc4] + OVERT v0.1.2 [6fe1bfb0] + OffsetArrays v1.16.0 [52e1d378] + OpenEXR v0.3.3 [4d8831e6] + OpenSSL v1.4.3 [bac558e1] + OrderedCollections v1.8.0 [3b7a836e] + PGFPlots v3.4.6 [f57f5aa1] + PNGFiles v0.4.4 [5432bcbf] + PaddedViews v0.5.12 [d96e819e] + Parameters v0.12.3 [69de0a69] + Parsers v2.8.1 [eebad327] + PkgVersion v0.3.3 [ccf2f8ad] + PlotThemes v3.3.0 [995b91a9] + PlotUtils v1.4.3 [a03496cd] + PlotlyBase v0.8.20 [91a5bcdd] + Plots v1.40.11 [1d0040c9] + PolyesterWeave v0.2.2 [f27b6e38] + Polynomials v4.0.19 [2dfb63ee] + PooledArrays v1.4.3 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [08abe8d2] + PrettyTables v2.4.0 [92933f4c] + ProgressMeter v1.10.4 [43287f4e] + PtrArrays v1.3.0 [4b34888f] + QOI v1.0.1 [94ee1d12] + Quaternions v0.7.6 [b3c3ace0] + RangeArrays v0.3.2 [c84ed2f1] + Ratios v0.4.5 [c1ae055f] + RealDot v0.1.0 [3cdcf5f2] + RecipesBase v1.3.4 [01d81517] + RecipesPipeline v0.6.12 [189a3867] + Reexport v1.2.2 [dee08c22] + RegionTrees v0.3.2 [05181044] + RelocatableFolders v1.0.1 [ae029012] + Requires v1.3.1 [f2b01f46] + Roots v2.2.7 [6038ab10] + Rotations v1.7.1 [fdea26ae] + SIMD v3.7.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 [6c6a2e73] + Scratch v1.2.1 [91c51154] + SentinelArrays v1.4.8 [efcf1570] + Setfield v1.1.2 [992d4aef] + Showoff v1.0.3 [777ac1f9] + SimpleBufferStream v1.2.0 [699a6c99] + SimpleTraits v0.9.4 [47aef6b3] + SimpleWeightedGraphs v1.5.0 [45858cf5] + Sixel v0.1.3 [b85f4697] + SoftGlobalScope v1.1.0 [a2af1166] + SortingAlgorithms v1.2.1 [276daf66] + SpecialFunctions v2.5.0 [860ef19b] + StableRNGs v1.0.2 [cae243ae] + StackViews v0.1.1 [aedffcd0] + Static v1.2.0 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.0 [2913bbd2] + StatsBase v0.34.4 [892a3eda] + StringManipulation v0.4.1 ⌅ [123dc426] + SymEngine v0.9.1 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.0 [62fd8b95] + TensorCore v0.1.1 [8290d209] + ThreadingUtilities v0.5.2 ⌅ [731e570b] + TiffImages v0.10.2 ⌃ [37f6aa50] + TikzPictures v3.2.0 [06e1c1a7] + TiledIteration v0.5.0 [3bb67fe8] + TranscodingStreams v0.11.3 [5c2747f8] + URIs v1.5.2 [3a884ed6] + UnPack v1.0.2 [1cfade01] + UnicodeFun v0.4.1 [1986cc42] + Unitful v1.22.0 [45397f5d] + UnitfulLatexify v1.6.4 [41fe7b60] + Unzip v0.2.0 [3d5dd08c] + VectorizationBase v0.21.71 ⌅ [efce3f68] + WoodburyMatrices v0.5.6 [6e34b625] + Bzip2_jll v1.0.9+0 [83423d85] + Cairo_jll v1.18.4+0 [ee1fde0b] + Dbus_jll v1.16.2+0 [2702e6a9] + EpollShim_jll v0.0.20230411+1 [2e619515] + Expat_jll v2.6.5+0 ⌅ [b22a6f82] + FFMPEG_jll v4.4.4+1 [f5851436] + FFTW_jll v3.3.11+0 [a3f928ae] + Fontconfig_jll v2.16.0+0 [d7e528f0] + FreeType2_jll v2.13.4+0 [559328eb] + FriBidi_jll v1.0.17+0 [0656b61e] + GLFW_jll v3.4.0+2 [d2c73de3] + GR_jll v0.73.13+0 [78b55507] + Gettext_jll v0.21.0+0 [61579ee1] + Ghostscript_jll v9.55.0+4 ⌃ [7746bdde] + Glib_jll v2.82.4+0 [3b182d85] + Graphite2_jll v1.3.15+0 [2e76f6c2] + HarfBuzz_jll v8.5.0+0 ⌅ [c73af94c] + ImageMagick_jll v6.9.13+0 [905a6f67] + Imath_jll v3.1.11+0 [1d5cc7b8] + IntelOpenMP_jll v2025.0.4+0 [aacddb02] + JpegTurbo_jll v3.1.1+0 [c1c5ebd0] + LAME_jll v3.100.2+0 [88015f11] + LERC_jll v4.0.1+0 [1d63c593] + LLVMOpenMP_jll v18.1.7+0 [dd4b983a] + LZO_jll v2.10.3+0 ⌅ [e9f186c6] + Libffi_jll v3.2.2+2 [d4300ac3] + Libgcrypt_jll v1.11.1+0 [7e76a0d4] + Libglvnd_jll v1.7.0+0 [7add5ba3] + Libgpg_error_jll v1.51.1+0 [94ce4f54] + Libiconv_jll v1.18.0+0 [4b2f31a3] + Libmount_jll v2.41.0+0 [89763e89] + Libtiff_jll v4.7.1+0 [38a345b3] + Libuuid_jll v2.41.0+0 [d3a379c0] + LittleCMS_jll v2.16.0+0 [856f044c] + MKL_jll v2025.0.1+1 [2ce0c516] + MPC_jll v1.3.1+0 [e7412a2a] + Ogg_jll v1.3.5+1 [18a262bb] + OpenEXR_jll v3.2.4+0 [643b3616] + OpenJpeg_jll v2.5.4+0 [458c3c95] + OpenSSL_jll v3.0.16+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [91d4177d] + Opus_jll v1.3.3+0 [36c8627f] + Pango_jll v1.56.1+0 [30392449] + Pixman_jll v0.44.2+0 [9c32591e] + Poppler_jll v24.6.0+0 ⌅ [c0090381] + Qt6Base_jll v6.7.1+1 ⌅ [629bc702] + Qt6Declarative_jll v6.7.1+2 ⌅ [ce943373] + Qt6ShaderTools_jll v6.7.1+1 ⌃ [e99dba38] + Qt6Wayland_jll v6.7.1+1 ⌅ [3428059b] + SymEngine_jll v0.9.0+1 [a44049a8] + Vulkan_Loader_jll v1.3.243+0 ⌃ [a2964d1f] + Wayland_jll v1.21.0+2 [2381bf8a] + Wayland_protocols_jll v1.36.0+0 [02c8fc9c] + XML2_jll v2.13.6+1 [aed1982a] + XSLT_jll v1.1.43+0 [ffd25f8a] + XZ_jll v5.8.1+0 [f67eecfb] + Xorg_libICE_jll v1.1.2+0 [c834827a] + Xorg_libSM_jll v1.2.4+0 [4f6342f7] + Xorg_libX11_jll v1.8.6+3 [0c0b7dd1] + Xorg_libXau_jll v1.0.12+0 [935fb764] + Xorg_libXcursor_jll v1.2.3+0 [a3789734] + Xorg_libXdmcp_jll v1.1.5+0 [1082639a] + Xorg_libXext_jll v1.3.6+3 [d091e8ba] + Xorg_libXfixes_jll v6.0.0+0 [a51aa0fd] + Xorg_libXi_jll v1.8.2+0 [d1454406] + Xorg_libXinerama_jll v1.1.5+0 [ec84b674] + Xorg_libXrandr_jll v1.5.4+0 [ea2f1a96] + Xorg_libXrender_jll v0.9.11+1 [14d82f49] + Xorg_libpthread_stubs_jll v0.1.2+0 [c7cfdc94] + Xorg_libxcb_jll v1.17.0+3 [cc61e674] + Xorg_libxkbfile_jll v1.1.2+1 [e920d4aa] + Xorg_xcb_util_cursor_jll v0.1.4+0 [12413925] + Xorg_xcb_util_image_jll v0.4.0+1 [2def613f] + Xorg_xcb_util_jll v0.4.0+1 [975044d2] + Xorg_xcb_util_keysyms_jll v0.4.0+1 [0d47668e] + Xorg_xcb_util_renderutil_jll v0.3.9+1 [c22f9ab0] + Xorg_xcb_util_wm_jll v0.4.1+1 [35661453] + Xorg_xkbcomp_jll v1.4.6+1 [33bec58e] + Xorg_xkeyboard_config_jll v2.39.0+0 [c5fb5394] + Xorg_xtrans_jll v1.6.0+0 [3161d3a3] + Zstd_jll v1.5.7+1 [35ca27e7] + eudev_jll v3.2.9+0 [214eeab7] + fzf_jll v0.56.3+0 [1a1c6b14] + gperf_jll v3.1.1+1 [a4ae2306] + libaom_jll v3.11.0+0 [0ac62f75] + libass_jll v0.15.2+0 [1183f4f0] + libdecor_jll v0.2.2+0 [2db6ffa8] + libevdev_jll v1.11.0+0 [f638f0a6] + libfdk_aac_jll v2.0.3+0 [36db933b] + libinput_jll v1.18.0+0 [b53b4c65] + libpng_jll v1.6.47+0 [075b6546] + libsixel_jll v1.10.5+0 [f27f6e37] + libvorbis_jll v1.3.7+2 [009596ad] + mtdev_jll v1.1.6+0 [1317d2d5] + oneTBB_jll v2022.0.0+0 ⌅ [1270edf5] + x264_jll v2021.5.5+0 ⌅ [dfaa095f] + x265_jll v3.5.0+0 [d8fb68d0] + xkbcommon_jll v1.4.1+2 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [4af54fe1] + LazyArtifacts v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.11.0 [de0858da] + Printf v1.11.0 [3fa0cd96] + REPL v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.11.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [781609d7] + GMP_jll v6.3.0+0 [deac9b47] + LibCURL_jll v8.6.0+0 [e37daf67] + LibGit2_jll v1.7.2+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [3a97d323] + MPFR_jll v4.2.1+0 [c8ffd9c3] + MbedTLS_jll v2.28.6+0 [14a3606d] + MozillaCACerts_jll v2023.12.12 [4536629a] + OpenBLAS_jll v0.3.27+1 [05823500] + OpenLibm_jll v0.8.1+4 [efcefdf7] + PCRE2_jll v10.42.0+1 [bea87d4a] + SuiteSparse_jll v7.7.0+0 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.59.0+0 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 7.32s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 1486.72s ################################################################################ # Testing # Testing OVERT Status `/tmp/jl_OZMh4t/Project.toml` [49dc2e85] Calculus v0.5.2 ⌅ [a98d9a8b] Interpolations v0.14.0 [b964fa9f] LaTeXStrings v1.4.0 [1914dd2f] MacroTools v0.5.15 [0db19996] NBInclude v2.4.0 [2774e3e8] NLsolve v4.5.1 [07e67fc4] OVERT v0.1.2 [3b7a836e] PGFPlots v3.4.6 [a03496cd] PlotlyBase v0.8.20 [91a5bcdd] Plots v1.40.11 [f2b01f46] Roots v2.2.7 ⌅ [123dc426] SymEngine v0.9.1 [8dfed614] Test v1.11.0 Status `/tmp/jl_OZMh4t/Manifest.toml` [47edcb42] ADTypes v1.14.0 [621f4979] AbstractFFTs v1.5.0 [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.3.0 [66dad0bd] AliasTables v1.1.3 [ec485272] ArnoldiMethod v0.4.0 [4fba245c] ArrayInterface v7.18.0 ⌃ [13072b0f] AxisAlgorithms v1.0.1 [39de3d68] AxisArrays v0.4.7 [d1d4a3ce] BitFlags v0.1.9 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [fa961155] CEnum v0.5.0 [2a0fbf3d] CPUSummary v0.2.6 [49dc2e85] Calculus v0.5.2 [aafaddc9] CatIndices v0.2.2 [d360d2e6] ChainRulesCore v1.25.1 [fb6a15b2] CloseOpenIntervals v0.1.13 [aaaa29a8] Clustering v0.15.8 [944b1d66] CodecZlib v0.7.8 [a2cac450] ColorBrewer v0.4.1 ⌃ [35d6a980] ColorSchemes v3.26.0 ⌅ [3da002f7] ColorTypes v0.11.5 ⌅ [c3611d14] ColorVectorSpace v0.9.10 ⌅ [5ae59095] Colors v0.12.11 [38540f10] CommonSolve v0.2.4 [bbf7d656] CommonSubexpressions v0.3.1 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.16.0 [a33af91c] CompositionsBase v0.1.2 [ed09eef8] ComputationalResources v0.3.2 [f0e56b4a] ConcurrentUtilities v2.5.0 [187b0558] ConstructionBase v1.5.8 [d38c429a] Contour v0.6.3 [150eb455] CoordinateTransformations v0.6.4 [adafc99b] CpuId v0.3.1 [a8cc5b0e] Crayons v4.1.1 [dc8bdbbb] CustomUnitRanges v1.0.2 [9a962f9c] DataAPI v1.16.0 [a93c6f00] DataFrames v1.7.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [8bb1440f] DelimitedFiles v1.9.1 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [a0c0ee7d] DifferentiationInterface v0.6.50 [6e83dbb3] Discretizers v3.2.4 [b4f34e82] Distances v0.10.12 [ffbed154] DocStringExtensions v0.9.4 [460bff9d] ExceptionUnwrapping v0.1.11 [c87230d0] FFMPEG v0.4.2 [4f61f5a4] FFTViews v0.3.2 [7a1cc6ca] FFTW v1.8.1 [5789e2e9] FileIO v1.17.0 [6a86dc24] FiniteDiff v2.27.0 [53c48c17] FixedPointNumbers v0.8.5 [1fa38f19] Format v1.3.7 [f6369f11] ForwardDiff v1.0.1 [28b8d3ca] GR v0.73.13 [a2bd30eb] Graphics v1.1.3 [86223c79] Graphs v1.12.1 [42e2da0e] Grisu v1.0.2 [cd3eb016] HTTP v1.10.15 [2c695a8d] HistogramThresholding v0.3.1 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 ⌃ [2803e5a7] ImageAxes v0.6.11 ⌃ [c817782e] ImageBase v0.1.5 [cbc4b850] ImageBinarization v0.3.1 [f332f351] ImageContrastAdjustment v0.3.12 ⌅ [a09fc81d] ImageCore v0.9.4 [89d5987c] ImageCorners v0.1.3 [51556ac3] ImageDistances v0.2.17 ⌃ [6a3955dd] ImageFiltering v0.7.6 ⌃ [82e4d734] ImageIO v0.6.8 ⌃ [6218d12a] ImageMagick v1.2.1 ⌃ [bc367c6b] ImageMetadata v0.9.9 [787d08f9] ImageMorphology v0.4.6 [2996bd0c] ImageQualityIndexes v0.3.7 ⌃ [80713f31] ImageSegmentation v1.8.1 [4e3cecfd] ImageShow v0.3.8 [02fcd773] ImageTransformations v0.10.1 ⌃ [916415d5] Images v0.26.1 [9b13fd28] IndirectArrays v1.0.0 [d25df0c9] Inflate v0.1.5 [842dd82b] InlineStrings v1.4.3 [1d092043] IntegralArrays v0.1.6 ⌅ [a98d9a8b] Interpolations v0.14.0 [8197267c] IntervalSets v0.7.10 [3587e190] InverseFunctions v0.1.17 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [82899510] IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] JLD2 v0.4.54 [1019f520] JLFzf v0.1.10 [692b3bcd] JLLWrappers v1.7.0 [682c06a0] JSON v0.21.4 [b835a17e] JpegTurbo v0.1.6 [b964fa9f] LaTeXStrings v1.4.0 ⌃ [23fbe1c1] Latexify v0.16.3 [10f19ff3] LayoutPointers v0.1.17 [8cdb02fc] LazyModules v0.3.1 [d3d80556] LineSearches v7.3.0 [2ab3a3ac] LogExpFunctions v0.3.29 [e6f89c97] LoggingExtras v1.1.0 [bdcacae8] LoopVectorization v0.12.172 [1914dd2f] MacroTools v0.5.15 [d125e4d3] ManualMemory v0.1.8 [dbb5928d] MappedArrays v0.4.2 [739be429] MbedTLS v1.1.9 [442fdcdd] Measures v0.3.2 ⌅ [626554b9] MetaGraphs v0.7.2 [e1d29d7a] Missings v1.2.0 [e94cdb99] MosaicViews v0.3.4 [0db19996] NBInclude v2.4.0 [d41bc354] NLSolversBase v7.9.1 [2774e3e8] NLsolve v4.5.1 [77ba4419] NaNMath v1.1.3 [b8a86587] NearestNeighbors v0.4.21 [f09324ee] Netpbm v1.1.1 [07e67fc4] OVERT v0.1.2 [6fe1bfb0] OffsetArrays v1.16.0 [52e1d378] OpenEXR v0.3.3 [4d8831e6] OpenSSL v1.4.3 [bac558e1] OrderedCollections v1.8.0 [3b7a836e] PGFPlots v3.4.6 [f57f5aa1] PNGFiles v0.4.4 [5432bcbf] PaddedViews v0.5.12 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.1 [eebad327] PkgVersion v0.3.3 [ccf2f8ad] PlotThemes v3.3.0 [995b91a9] PlotUtils v1.4.3 [a03496cd] PlotlyBase v0.8.20 [91a5bcdd] Plots v1.40.11 [1d0040c9] PolyesterWeave v0.2.2 [f27b6e38] Polynomials v4.0.19 [2dfb63ee] PooledArrays v1.4.3 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [08abe8d2] PrettyTables v2.4.0 [92933f4c] ProgressMeter v1.10.4 [43287f4e] PtrArrays v1.3.0 [4b34888f] QOI v1.0.1 [94ee1d12] Quaternions v0.7.6 [b3c3ace0] RangeArrays v0.3.2 [c84ed2f1] Ratios v0.4.5 [c1ae055f] RealDot v0.1.0 [3cdcf5f2] RecipesBase v1.3.4 [01d81517] RecipesPipeline v0.6.12 [189a3867] Reexport v1.2.2 [dee08c22] RegionTrees v0.3.2 [05181044] RelocatableFolders v1.0.1 [ae029012] Requires v1.3.1 [f2b01f46] Roots v2.2.7 [6038ab10] Rotations v1.7.1 [fdea26ae] SIMD v3.7.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 [6c6a2e73] Scratch v1.2.1 [91c51154] SentinelArrays v1.4.8 [efcf1570] Setfield v1.1.2 [992d4aef] Showoff v1.0.3 [777ac1f9] SimpleBufferStream v1.2.0 [699a6c99] SimpleTraits v0.9.4 [47aef6b3] SimpleWeightedGraphs v1.5.0 [45858cf5] Sixel v0.1.3 [b85f4697] SoftGlobalScope v1.1.0 [a2af1166] SortingAlgorithms v1.2.1 [276daf66] SpecialFunctions v2.5.0 [860ef19b] StableRNGs v1.0.2 [cae243ae] StackViews v0.1.1 [aedffcd0] Static v1.2.0 [0d7ed370] StaticArrayInterface v1.8.0 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.0 [2913bbd2] StatsBase v0.34.4 [892a3eda] StringManipulation v0.4.1 ⌅ [123dc426] SymEngine v0.9.1 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.0 [62fd8b95] TensorCore v0.1.1 [8290d209] ThreadingUtilities v0.5.2 ⌅ [731e570b] TiffImages v0.10.2 ⌃ [37f6aa50] TikzPictures v3.2.0 [06e1c1a7] TiledIteration v0.5.0 [3bb67fe8] TranscodingStreams v0.11.3 [5c2747f8] URIs v1.5.2 [3a884ed6] UnPack v1.0.2 [1cfade01] UnicodeFun v0.4.1 [1986cc42] Unitful v1.22.0 [45397f5d] UnitfulLatexify v1.6.4 [41fe7b60] Unzip v0.2.0 [3d5dd08c] VectorizationBase v0.21.71 ⌅ [efce3f68] WoodburyMatrices v0.5.6 [6e34b625] Bzip2_jll v1.0.9+0 [83423d85] Cairo_jll v1.18.4+0 [ee1fde0b] Dbus_jll v1.16.2+0 [2702e6a9] EpollShim_jll v0.0.20230411+1 [2e619515] Expat_jll v2.6.5+0 ⌅ [b22a6f82] FFMPEG_jll v4.4.4+1 [f5851436] FFTW_jll v3.3.11+0 [a3f928ae] Fontconfig_jll v2.16.0+0 [d7e528f0] FreeType2_jll v2.13.4+0 [559328eb] FriBidi_jll v1.0.17+0 [0656b61e] GLFW_jll v3.4.0+2 [d2c73de3] GR_jll v0.73.13+0 [78b55507] Gettext_jll v0.21.0+0 [61579ee1] Ghostscript_jll v9.55.0+4 ⌃ [7746bdde] Glib_jll v2.82.4+0 [3b182d85] Graphite2_jll v1.3.15+0 [2e76f6c2] HarfBuzz_jll v8.5.0+0 ⌅ [c73af94c] ImageMagick_jll v6.9.13+0 [905a6f67] Imath_jll v3.1.11+0 [1d5cc7b8] IntelOpenMP_jll v2025.0.4+0 [aacddb02] JpegTurbo_jll v3.1.1+0 [c1c5ebd0] LAME_jll v3.100.2+0 [88015f11] LERC_jll v4.0.1+0 [1d63c593] LLVMOpenMP_jll v18.1.7+0 [dd4b983a] LZO_jll v2.10.3+0 ⌅ [e9f186c6] Libffi_jll v3.2.2+2 [d4300ac3] Libgcrypt_jll v1.11.1+0 [7e76a0d4] Libglvnd_jll v1.7.0+0 [7add5ba3] Libgpg_error_jll v1.51.1+0 [94ce4f54] Libiconv_jll v1.18.0+0 [4b2f31a3] Libmount_jll v2.41.0+0 [89763e89] Libtiff_jll v4.7.1+0 [38a345b3] Libuuid_jll v2.41.0+0 [d3a379c0] LittleCMS_jll v2.16.0+0 [856f044c] MKL_jll v2025.0.1+1 [2ce0c516] MPC_jll v1.3.1+0 [e7412a2a] Ogg_jll v1.3.5+1 [18a262bb] OpenEXR_jll v3.2.4+0 [643b3616] OpenJpeg_jll v2.5.4+0 [458c3c95] OpenSSL_jll v3.0.16+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [91d4177d] Opus_jll v1.3.3+0 [36c8627f] Pango_jll v1.56.1+0 [30392449] Pixman_jll v0.44.2+0 [9c32591e] Poppler_jll v24.6.0+0 ⌅ [c0090381] Qt6Base_jll v6.7.1+1 ⌅ [629bc702] Qt6Declarative_jll v6.7.1+2 ⌅ [ce943373] Qt6ShaderTools_jll v6.7.1+1 ⌃ [e99dba38] Qt6Wayland_jll v6.7.1+1 ⌅ [3428059b] SymEngine_jll v0.9.0+1 [a44049a8] Vulkan_Loader_jll v1.3.243+0 ⌃ [a2964d1f] Wayland_jll v1.21.0+2 [2381bf8a] Wayland_protocols_jll v1.36.0+0 [02c8fc9c] XML2_jll v2.13.6+1 [aed1982a] XSLT_jll v1.1.43+0 [ffd25f8a] XZ_jll v5.8.1+0 [f67eecfb] Xorg_libICE_jll v1.1.2+0 [c834827a] Xorg_libSM_jll v1.2.4+0 [4f6342f7] Xorg_libX11_jll v1.8.6+3 [0c0b7dd1] Xorg_libXau_jll v1.0.12+0 [935fb764] Xorg_libXcursor_jll v1.2.3+0 [a3789734] Xorg_libXdmcp_jll v1.1.5+0 [1082639a] Xorg_libXext_jll v1.3.6+3 [d091e8ba] Xorg_libXfixes_jll v6.0.0+0 [a51aa0fd] Xorg_libXi_jll v1.8.2+0 [d1454406] Xorg_libXinerama_jll v1.1.5+0 [ec84b674] Xorg_libXrandr_jll v1.5.4+0 [ea2f1a96] Xorg_libXrender_jll v0.9.11+1 [14d82f49] Xorg_libpthread_stubs_jll v0.1.2+0 [c7cfdc94] Xorg_libxcb_jll v1.17.0+3 [cc61e674] Xorg_libxkbfile_jll v1.1.2+1 [e920d4aa] Xorg_xcb_util_cursor_jll v0.1.4+0 [12413925] Xorg_xcb_util_image_jll v0.4.0+1 [2def613f] Xorg_xcb_util_jll v0.4.0+1 [975044d2] Xorg_xcb_util_keysyms_jll v0.4.0+1 [0d47668e] Xorg_xcb_util_renderutil_jll v0.3.9+1 [c22f9ab0] Xorg_xcb_util_wm_jll v0.4.1+1 [35661453] Xorg_xkbcomp_jll v1.4.6+1 [33bec58e] Xorg_xkeyboard_config_jll v2.39.0+0 [c5fb5394] Xorg_xtrans_jll v1.6.0+0 [3161d3a3] Zstd_jll v1.5.7+1 [35ca27e7] eudev_jll v3.2.9+0 [214eeab7] fzf_jll v0.56.3+0 [1a1c6b14] gperf_jll v3.1.1+1 [a4ae2306] libaom_jll v3.11.0+0 [0ac62f75] libass_jll v0.15.2+0 [1183f4f0] libdecor_jll v0.2.2+0 [2db6ffa8] libevdev_jll v1.11.0+0 [f638f0a6] libfdk_aac_jll v2.0.3+0 [36db933b] libinput_jll v1.18.0+0 [b53b4c65] libpng_jll v1.6.47+0 [075b6546] libsixel_jll v1.10.5+0 [f27f6e37] libvorbis_jll v1.3.7+2 [009596ad] mtdev_jll v1.1.6+0 [1317d2d5] oneTBB_jll v2022.0.0+0 ⌅ [1270edf5] x264_jll v2021.5.5+0 ⌅ [dfaa095f] x265_jll v3.5.0+0 [d8fb68d0] xkbcommon_jll v1.4.1+2 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [4af54fe1] LazyArtifacts v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [3fa0cd96] REPL v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [1a1011a3] SharedArrays v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [781609d7] GMP_jll v6.3.0+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [3a97d323] MPFR_jll v4.2.1+0 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [05823500] OpenLibm_jll v0.8.1+4 [efcefdf7] PCRE2_jll v10.42.0+1 [bea87d4a] SuiteSparse_jll v7.7.0+0 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... Test Summary: | Pass Total Time Testing Second Derivative Zero Computation | 26 26 9.5s WARNING: Method definition add_var(Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:23 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition add_var() in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:25 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition reset_NVARS() in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:36 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition to_pairs(Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:41 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition find_variables(Expr) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:55 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition is_affine(Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:80 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition is_outer_affine(Symbol) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:121 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition is_outer_affine(Real) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:122 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition is_outer_affine(Expr) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:123 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition add_ϵ(Any, Real) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:148 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition rewrite_division_by_const(Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:158 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition rewrite_division_by_const(Expr) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:161 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition get_sincos_regions(Any, Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:174 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition kwcall(NamedTuple{names, T} where T<:Tuple where names, typeof(Main.get_sincos_regions), Any, Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:174 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition get_tan_regions(Any, Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:191 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition get_regions_unary(Symbol, Any, Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:212 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition division_d2f_regions(Any, Any, Any, Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:245 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition exponent_d2f_regions(Any, Any, Any, Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:270 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition get_regions_1arg(Expr, Symbol, Any, Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:310 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition find_UB(Any, Any, Any, Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:328 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition kwcall(NamedTuple{names, T} where T<:Tuple where names, typeof(Main.find_UB), Any, Any, Any, Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:328 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition find_1d_range(Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:361 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition check_expr_args_length(Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:373 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition find_affine_range(Any, Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:385 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition (::Type{Main.MyException})(String) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:433 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition (::Type{Main.MyException})(Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:433 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition find_range(Any, Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:436 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition is_relu(Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:474 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition is_min(Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:484 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition substitute!(Any, Any, Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:490 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition substitute!(Expr, Array{Any, 1}, Array{Any, N} where N) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:509 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition ∉(Any, Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:516 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition reduce_args_to_2(Symbol, Array{T, N} where N where T) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:518 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition reduce_args_to_2(Number) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:549 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition reduce_args_to_2(Symbol) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:550 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition reduce_args_to_2(Expr) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:552 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition is_number(Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:559 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition is_unary(Expr) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:568 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition is_1d(Expr) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:573 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition is_binary(Expr) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:577 overwritten on the same line (check for duplicate calls to `include`). WARNING: Method definition multiply_interval(Any, Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/overt_utils.jl:579 overwritten on the same line (check for duplicate calls to `include`). Test Summary: | Pass Total Time test for find_variables | 2 2 0.5s Test Summary: | Pass Total Time test for is_affine | 6 6 0.6s Test Summary: | Pass Total Time test for is_1d | 2 2 0.0s Test Summary: | Pass Total Time test for is_unary | 4 4 0.0s Test Summary: | Pass Total Time test find_affine_range | 7 7 0.9s Test Summary: | Pass Total Time test substitute | 1 1 0.1s Test Summary: | Pass Total Time test count min max | 1 1 0.5s Test Summary: | Pass Total Time test reduce_args_to_2! | 2 2 1.3s Test Summary: | Pass Total Time PWL_tests | 11 11 1.4s Using N=2, ϵ=0.0001, rel_error_tol=0.005 Using N=2, ϵ=0.0001, rel_error_tol=0.005 Using N=2, ϵ=0.0001, rel_error_tol=0.005 Using N=2, ϵ=0.0001, rel_error_tol=0.005 Using N=2, ϵ=0.0001, rel_error_tol=0.005 Using N=2, ϵ=0.0001, rel_error_tol=0.005 Using N=2, ϵ=0.0001, rel_error_tol=0.005 Using N=2, ϵ=0.0001, rel_error_tol=0.005 Using N=2, ϵ=0.0001, rel_error_tol=0.005 Using N=2, ϵ=0.0001, rel_error_tol=0.005 Using N=2, ϵ=0.0001, rel_error_tol=0.005 Using N=2, ϵ=0.0001, rel_error_tol=0.005 Using N=2, ϵ=0.0001, rel_error_tol=0.005 Using N=2, ϵ=0.0001, rel_error_tol=0.005 Using N=2, ϵ=0.0001, rel_error_tol=0.005 Using N=2, ϵ=0.0001, rel_error_tol=0.005 Using N=2, ϵ=0.0001, rel_error_tol=0.005 Using N=2, ϵ=0.0001, rel_error_tol=0.005 Using N=2, ϵ=0.0001, rel_error_tol=0.005 Using N=2, ϵ=0.0001, rel_error_tol=0.005 Using N=2, ϵ=0.0001, rel_error_tol=0.005 Using N=-1, ϵ=0.0001, rel_error_tol=0.005 Using N=12 Using N=19 Using N=1, ϵ=0.0001, rel_error_tol=0.005 Using N=2, ϵ=0.0001, rel_error_tol=0.005 Using N=2, ϵ=0.0001, rel_error_tol=0.005 Using N=2, ϵ=0.0001, rel_error_tol=0.005 WARNING: Method definition (::Type{Expr})(SymEngine.Basic) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/autoline.jl:157 overwritten in module OVERT on the same line (check for duplicate calls to `include`). WARNING: Method definition occursin(Union{Expr, Symbol}, Expr) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/autoline.jl:148 overwritten in module OVERT on the same line (check for duplicate calls to `include`). WARNING: Method definition occursin(Any, Any) in module Main at /home/pkgeval/.julia/packages/OVERT/nY5U2/src/autoline.jl:147 overwritten in module OVERT on the same line (check for duplicate calls to `include`). WARNING: using OVERT.OverApproximation in module Main conflicts with an existing identifier. WARNING: using OVERT.overapprox in module Main conflicts with an existing identifier. Using N=1, ϵ=0.0, rel_error_tol=0.005 Using N=2, ϵ=0.0, rel_error_tol=0.005 Using N=3, ϵ=0.0, rel_error_tol=0.005 WARNING: using PGFPlots.plot in module Main conflicts with an existing identifier. WARNING: using PGFPlots.Plots in module Main conflicts with an existing identifier. Axis(PGFPlots.Plots.Plot[PGFPlots.Plots.Linear(Real[-1.0 -0.9696969696969697 -0.9393939393939394 -0.9090909090909091 -0.8787878787878788 -0.8484848484848485 -0.8181818181818182 -0.7878787878787878 -0.7575757575757576 -0.7272727272727273 -0.696969696969697 -0.6666666666666666 -0.6363636363636364 -0.6060606060606061 -0.5757575757575758 -0.5454545454545454 -0.5151515151515151 -0.48484848484848486 -0.45454545454545453 -0.42424242424242425 -0.3939393939393939 -0.36363636363636365 -0.3333333333333333 -0.30303030303030304 -0.2727272727272727 -0.24242424242424243 -0.21212121212121213 -0.18181818181818182 -0.15151515151515152 -0.12121212121212122 -0.09090909090909091 -0.06060606060606061 -0.030303030303030304 0.0 0.030303030303030304 0.06060606060606061 0.09090909090909091 0.12121212121212122 0.15151515151515152 0.18181818181818182 0.21212121212121213 0.24242424242424243 0.2727272727272727 0.30303030303030304 0.3333333333333333 0.36363636363636365 0.3939393939393939 0.42424242424242425 0.45454545454545453 0.48484848484848486 0.5151515151515151 0.5454545454545454 0.5757575757575758 0.6060606060606061 0.6363636363636364 0.6666666666666666 0.696969696969697 0.7272727272727273 0.7575757575757576 0.7878787878787878 0.8181818181818182 0.8484848484848485 0.8787878787878788 0.9090909090909091 0.9393939393939394 0.9696969696969697 1.0 1.0303030303030303 1.0606060606060606 1.0909090909090908 1.121212121212121 1.1515151515151516 1.1818181818181819 1.2121212121212122 1.2424242424242424 1.2727272727272727 1.303030303030303 1.3333333333333333 1.3636363636363635 1.393939393939394 1.4242424242424243 1.4545454545454546 1.4848484848484849 1.5151515151515151 1.5454545454545454 1.5757575757575757 1.606060606060606 1.6363636363636365 1.6666666666666667 1.696969696969697 1.7272727272727273 1.7575757575757576 1.7878787878787878 1.8181818181818181 1.8484848484848484 1.878787878787879 1.9090909090909092 1.9393939393939394 1.9696969696969697 2.0; 1.0 0.9403122130394859 0.8824609733700643 0.8264462809917354 0.7722681359044995 0.7199265381083564 0.6694214876033059 0.620752984389348 0.573921028466483 0.5289256198347108 0.4857667584940313 0.4444444444444444 0.4049586776859504 0.36730945821854916 0.33149678604224064 0.29752066115702475 0.26538108356290174 0.23507805325987147 0.20661157024793386 0.1799816345270891 0.155188246097337 0.1322314049586777 0.1111111111111111 0.09182736455463729 0.07438016528925619 0.05876951331496787 0.044995408631772274 0.03305785123966942 0.022956841138659322 0.014692378328741967 0.008264462809917356 0.0036730945821854917 0.0009182736455463729 0.0 0.0009182736455463729 0.0036730945821854917 0.008264462809917356 0.014692378328741967 0.022956841138659322 0.03305785123966942 0.044995408631772274 0.05876951331496787 0.07438016528925619 0.09182736455463729 0.1111111111111111 0.1322314049586777 0.155188246097337 0.1799816345270891 0.20661157024793386 0.23507805325987147 0.26538108356290174 0.29752066115702475 0.33149678604224064 0.36730945821854916 0.4049586776859504 0.4444444444444444 0.4857667584940313 0.5289256198347108 0.573921028466483 0.620752984389348 0.6694214876033059 0.7199265381083564 0.7722681359044995 0.8264462809917354 0.8824609733700643 0.9403122130394859 1.0 1.061524334251607 1.1248852157943066 1.190082644628099 1.2571166207529842 1.3259871441689626 1.3966942148760333 1.4692378328741966 1.5436179981634528 1.6198347107438016 1.6978879706152432 1.7777777777777777 1.8595041322314048 1.9430670339761251 2.028466483011938 2.115702479338843 2.204775022956841 2.295684113865932 2.3884297520661155 2.483011937557392 2.579430670339761 2.6776859504132235 2.777777777777778 2.8797061524334255 2.9834710743801653 3.089072543617998 3.1965105601469235 3.305785123966942 3.416896235078053 3.5298438934802574 3.6446280991735542 3.7612488521579435 3.879706152433425 4.0], nothing, nothing, "solid, ultra thick, black, mark=none", "\$f(x)\$", nothing, nothing, nothing, false), PGFPlots.Plots.Linear(Real[-1.0 -0.9696969696969697 -0.9393939393939394 -0.9090909090909091 -0.8787878787878788 -0.8484848484848485 -0.8181818181818182 -0.7878787878787878 -0.7575757575757576 -0.7272727272727273 -0.696969696969697 -0.6666666666666666 -0.6363636363636364 -0.6060606060606061 -0.5757575757575758 -0.5454545454545454 -0.5151515151515151 -0.48484848484848486 -0.45454545454545453 -0.42424242424242425 -0.3939393939393939 -0.36363636363636365 -0.3333333333333333 -0.30303030303030304 -0.2727272727272727 -0.24242424242424243 -0.21212121212121213 -0.18181818181818182 -0.15151515151515152 -0.12121212121212122 -0.09090909090909091 -0.06060606060606061 -0.030303030303030304 0.0 0.030303030303030304 0.06060606060606061 0.09090909090909091 0.12121212121212122 0.15151515151515152 0.18181818181818182 0.21212121212121213 0.24242424242424243 0.2727272727272727 0.30303030303030304 0.3333333333333333 0.36363636363636365 0.3939393939393939 0.42424242424242425 0.45454545454545453 0.48484848484848486 0.5151515151515151 0.5454545454545454 0.5757575757575758 0.6060606060606061 0.6363636363636364 0.6666666666666666 0.696969696969697 0.7272727272727273 0.7575757575757576 0.7878787878787878 0.8181818181818182 0.8484848484848485 0.8787878787878788 0.9090909090909091 0.9393939393939394 0.9696969696969697 1.0 1.0303030303030303 1.0606060606060606 1.0909090909090908 1.121212121212121 1.1515151515151516 1.1818181818181819 1.2121212121212122 1.2424242424242424 1.2727272727272727 1.303030303030303 1.3333333333333333 1.3636363636363635 1.393939393939394 1.4242424242424243 1.4545454545454546 1.4848484848484849 1.5151515151515151 1.5454545454545454 1.5757575757575757 1.606060606060606 1.6363636363636365 1.6666666666666667 1.696969696969697 1.7272727272727273 1.7575757575757576 1.7878787878787878 1.8181818181818181 1.8484848484848484 1.878787878787879 1.9090909090909092 1.9393939393939394 1.9696969696969697 2.0; 1.0 0.9848484848484849 0.9696969696969696 0.9545454545454546 0.9393939393939394 0.9242424242424243 0.9090909090909092 0.8939393939393939 0.8787878787878788 0.8636363636363635 0.8484848484848485 0.8333333333333333 0.8181818181818181 0.8030303030303029 0.7878787878787878 0.7727272727272727 0.7575757575757575 0.7424242424242424 0.7272727272727273 0.712121212121212 0.6969696969696969 0.6818181818181818 0.6666666666666666 0.6515151515151514 0.6363636363636364 0.6212121212121211 0.6060606060606061 0.5909090909090909 0.5757575757575757 0.5606060606060606 0.5454545454545454 0.5303030303030303 0.5151515151515151 0.5 0.48484848484848486 0.46969696969696967 0.4545454545454545 0.43939393939393934 0.42424242424242425 0.40909090909090906 0.3939393939393939 0.3787878787878788 0.36363636363636365 0.34848484848484845 0.3333333333333333 0.3181818181818182 0.30303030303030304 0.28787878787878785 0.27272727272727276 0.25757575757575757 0.28787878787878785 0.36363636363636354 0.4393939393939395 0.5151515151515151 0.5909090909090908 0.6666666666666665 0.7424242424242424 0.8181818181818181 0.8939393939393939 0.9696969696969695 1.0454545454545456 1.121212121212121 1.1969696969696968 1.2727272727272727 1.3484848484848484 1.4242424242424243 1.5 1.5757575757575755 1.6515151515151514 1.727272727272727 1.8030303030303025 1.878787878787879 1.9545454545454546 2.0303030303030303 2.106060606060606 2.1818181818181817 2.2575757575757573 2.333333333333333 2.4090909090909087 2.4848484848484853 2.5606060606060606 2.6363636363636362 2.712121212121212 2.7878787878787876 2.8636363636363633 2.9393939393939394 3.0151515151515147 3.090909090909091 3.1666666666666665 3.2424242424242427 3.318181818181818 3.3939393939393936 3.4696969696969697 3.545454545454545 3.6212121212121207 3.6969696969696972 3.772727272727273 3.848484848484848 3.9242424242424243 4.0], nothing, nothing, "solid, ultra thick, red, mark=none", "\$g(x),~n=2\$", nothing, nothing, nothing, false), PGFPlots.Plots.Linear(Real[-1.0 -0.9696969696969697 -0.9393939393939394 -0.9090909090909091 -0.8787878787878788 -0.8484848484848485 -0.8181818181818182 -0.7878787878787878 -0.7575757575757576 -0.7272727272727273 -0.696969696969697 -0.6666666666666666 -0.6363636363636364 -0.6060606060606061 -0.5757575757575758 -0.5454545454545454 -0.5151515151515151 -0.48484848484848486 -0.45454545454545453 -0.42424242424242425 -0.3939393939393939 -0.36363636363636365 -0.3333333333333333 -0.30303030303030304 -0.2727272727272727 -0.24242424242424243 -0.21212121212121213 -0.18181818181818182 -0.15151515151515152 -0.12121212121212122 -0.09090909090909091 -0.06060606060606061 -0.030303030303030304 0.0 0.030303030303030304 0.06060606060606061 0.09090909090909091 0.12121212121212122 0.15151515151515152 0.18181818181818182 0.21212121212121213 0.24242424242424243 0.2727272727272727 0.30303030303030304 0.3333333333333333 0.36363636363636365 0.3939393939393939 0.42424242424242425 0.45454545454545453 0.48484848484848486 0.5151515151515151 0.5454545454545454 0.5757575757575758 0.6060606060606061 0.6363636363636364 0.6666666666666666 0.696969696969697 0.7272727272727273 0.7575757575757576 0.7878787878787878 0.8181818181818182 0.8484848484848485 0.8787878787878788 0.9090909090909091 0.9393939393939394 0.9696969696969697 1.0 1.0303030303030303 1.0606060606060606 1.0909090909090908 1.121212121212121 1.1515151515151516 1.1818181818181819 1.2121212121212122 1.2424242424242424 1.2727272727272727 1.303030303030303 1.3333333333333333 1.3636363636363635 1.393939393939394 1.4242424242424243 1.4545454545454546 1.4848484848484849 1.5151515151515151 1.5454545454545454 1.5757575757575757 1.606060606060606 1.6363636363636365 1.6666666666666667 1.696969696969697 1.7272727272727273 1.7575757575757576 1.7878787878787878 1.8181818181818181 1.8484848484848484 1.878787878787879 1.9090909090909092 1.9393939393939394 1.9696969696969697 2.0; 1.0 0.9696969696969697 0.9393939393939394 0.9090909090909091 0.8787878787878788 0.8484848484848485 0.8181818181818182 0.7878787878787878 0.7575757575757576 0.7272727272727273 0.696969696969697 0.6666666666666666 0.6363636363636364 0.6060606060606061 0.5757575757575758 0.5454545454545454 0.5151515151515151 0.48484848484848486 0.45454545454545453 0.42424242424242425 0.3939393939393939 0.36363636363636365 0.3333333333333333 0.30303030303030304 0.2727272727272727 0.24242424242424243 0.21212121212121213 0.18181818181818182 0.15151515151515152 0.12121212121212122 0.09090909090909091 0.06060606060606061 0.030303030303030304 0.0 0.030303030303030304 0.06060606060606061 0.09090909090909091 0.12121212121212122 0.15151515151515152 0.18181818181818182 0.21212121212121213 0.24242424242424243 0.2727272727272727 0.30303030303030304 0.3333333333333333 0.36363636363636365 0.3939393939393939 0.42424242424242425 0.45454545454545453 0.48484848484848486 0.5151515151515151 0.5454545454545454 0.5757575757575758 0.6060606060606061 0.6363636363636364 0.6666666666666666 0.696969696969697 0.7272727272727273 0.7575757575757576 0.7878787878787878 0.8181818181818182 0.8484848484848485 0.8787878787878788 0.9090909090909091 0.9393939393939394 0.9696969696969697 1.0 1.0909090909090908 1.1818181818181817 1.2727272727272725 1.3636363636363633 1.4545454545454548 1.5454545454545456 1.6363636363636365 1.7272727272727273 1.8181818181818181 1.909090909090909 1.9999999999999998 2.090909090909091 2.181818181818182 2.272727272727273 2.3636363636363638 2.4545454545454546 2.5454545454545454 2.6363636363636362 2.727272727272727 2.818181818181818 2.909090909090909 3.0 3.090909090909091 3.1818181818181817 3.2727272727272725 3.3636363636363633 3.454545454545454 3.545454545454545 3.6363636363636367 3.7272727272727275 3.8181818181818183 3.909090909090909 4.0], nothing, nothing, "solid, ultra thick, blue, mark=none", "\$g(x),~n=3\$", nothing, nothing, nothing, false), PGFPlots.Plots.Linear(Real[-1.0 -0.9696969696969697 -0.9393939393939394 -0.9090909090909091 -0.8787878787878788 -0.8484848484848485 -0.8181818181818182 -0.7878787878787878 -0.7575757575757576 -0.7272727272727273 -0.696969696969697 -0.6666666666666666 -0.6363636363636364 -0.6060606060606061 -0.5757575757575758 -0.5454545454545454 -0.5151515151515151 -0.48484848484848486 -0.45454545454545453 -0.42424242424242425 -0.3939393939393939 -0.36363636363636365 -0.3333333333333333 -0.30303030303030304 -0.2727272727272727 -0.24242424242424243 -0.21212121212121213 -0.18181818181818182 -0.15151515151515152 -0.12121212121212122 -0.09090909090909091 -0.06060606060606061 -0.030303030303030304 0.0 0.030303030303030304 0.06060606060606061 0.09090909090909091 0.12121212121212122 0.15151515151515152 0.18181818181818182 0.21212121212121213 0.24242424242424243 0.2727272727272727 0.30303030303030304 0.3333333333333333 0.36363636363636365 0.3939393939393939 0.42424242424242425 0.45454545454545453 0.48484848484848486 0.5151515151515151 0.5454545454545454 0.5757575757575758 0.6060606060606061 0.6363636363636364 0.6666666666666666 0.696969696969697 0.7272727272727273 0.7575757575757576 0.7878787878787878 0.8181818181818182 0.8484848484848485 0.8787878787878788 0.9090909090909091 0.9393939393939394 0.9696969696969697 1.0 1.0303030303030303 1.0606060606060606 1.0909090909090908 1.121212121212121 1.1515151515151516 1.1818181818181819 1.2121212121212122 1.2424242424242424 1.2727272727272727 1.303030303030303 1.3333333333333333 1.3636363636363635 1.393939393939394 1.4242424242424243 1.4545454545454546 1.4848484848484849 1.5151515151515151 1.5454545454545454 1.5757575757575757 1.606060606060606 1.6363636363636365 1.6666666666666667 1.696969696969697 1.7272727272727273 1.7575757575757576 1.7878787878787878 1.8181818181818181 1.8484848484848484 1.878787878787879 1.9090909090909092 1.9393939393939394 1.9696969696969697 2.0; 1.0 0.962121212121212 0.9242424242424243 0.8863636363636362 0.8484848484848484 0.8106060606060607 0.7727272727272727 0.7348484848484849 0.6969696969696969 0.6590909090909091 0.6212121212121213 0.5833333333333333 0.5454545454545454 0.5075757575757576 0.4696969696969697 0.43181818181818177 0.39393939393939387 0.3560606060606061 0.3181818181818182 0.2803030303030303 0.24242424242424238 0.20454545454545453 0.16666666666666663 0.12878787878787878 0.09090909090909088 0.06439393939393939 0.07196969696969696 0.07954545454545454 0.08712121212121211 0.0946969696969697 0.10227272727272727 0.10984848484848483 0.11742424242424242 0.125 0.13257575757575757 0.14015151515151514 0.14772727272727273 0.15530303030303028 0.16287878787878785 0.17045454545454544 0.178030303030303 0.1856060606060606 0.19318181818181818 0.20075757575757572 0.20833333333333331 0.21590909090909088 0.22348484848484848 0.23106060606060608 0.23863636363636365 0.24621212121212122 0.2765151515151515 0.3295454545454545 0.3825757575757576 0.43560606060606066 0.4886363636363636 0.5416666666666665 0.5946969696969697 0.6477272727272727 0.7007575757575757 0.7537878787878787 0.8068181818181819 0.8598484848484849 0.9128787878787877 0.9659090909090908 1.018939393939394 1.071969696969697 1.1249999999999998 1.178030303030303 1.231060606060606 1.2840909090909087 1.337121212121212 1.3901515151515154 1.4431818181818183 1.496212121212121 1.5492424242424243 1.6363636363636362 1.7348484848484844 1.833333333333333 1.9318181818181814 2.0303030303030307 2.128787878787879 2.2272727272727275 2.3257575757575757 2.424242424242424 2.5227272727272725 2.621212121212121 2.7196969696969693 2.8181818181818183 2.9166666666666665 3.0151515151515156 3.1136363636363633 3.212121212121212 3.3106060606060606 3.4090909090909087 3.507575757575757 3.606060606060606 3.704545454545455 3.803030303030303 3.9015151515151514 4.0], nothing, nothing, "solid, ultra thick, green, mark=none", "\$g(x),~n=4\$", nothing, nothing, nothing, false)], "a) \$f(x) = x^2\$ over \$[-1,2]\$", "\$x\$", nothing, "\$f(x),~g(x)\$", nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, "at={(0.05,.95)}, anchor=north west", nothing, nothing, nothing, nothing, nothing, nothing, "axis") Using N=1, ϵ=0.0, rel_error_tol=0.005 Using N=2, ϵ=0.0, rel_error_tol=0.005 Using N=3, ϵ=0.0, rel_error_tol=0.005 Axis(PGFPlots.Plots.Plot[PGFPlots.Plots.Linear(Real[-1.0471975511965976 -1.020753168590623 -0.9943087859846482 -0.9678644033786735 -0.9414200207726989 -0.9149756381667242 -0.8885312555607495 -0.8620868729547748 -0.8356424903488001 -0.8091981077428254 -0.7827537251368507 -0.756309342530876 -0.7298649599249014 -0.7034205773189267 -0.676976194712952 -0.6505318121069773 -0.6240874295010026 -0.5976430468950279 -0.5711986642890532 -0.5447542816830785 -0.5183098990771039 -0.4918655164711292 -0.4654211338651545 -0.4389767512591798 -0.4125323686532051 -0.38608798604723044 -0.35964360344125573 -0.33319922083528103 -0.3067548382293063 -0.2803104556233317 -0.253866073017357 -0.22742169041138227 -0.2009773078054076 -0.1745329251994329 -0.14808854259345822 -0.12164415998748353 -0.09519977738150884 -0.06875539477553415 -0.04231101216955946 -0.01586662956358477 0.01057775304238992 0.03702213564836461 0.0634665182543393 0.08991090086031399 0.11635528346628868 0.14279966607226335 0.16924404867823806 0.19568843128421273 0.22213281389018744 0.2485771964961621 0.2750215791021368 0.3014659617081115 0.32791034431408617 0.35435472692006087 0.3807991095260356 0.4072434921320103 0.4336878747379849 0.4601322573439596 0.48657663994993433 0.513021022555909 0.5394654051618837 0.5659097877678584 0.5923541703738331 0.6187985529798078 0.6452429355857825 0.6716873181917571 0.6981317007977318 0.7245760834037065 0.7510204660096812 0.7774648486156559 0.8039092312216306 0.8303536138276053 0.85679799643358 0.8832423790395546 0.9096867616455293 0.936131144251504 0.9625755268574787 0.9890199094634534 1.0154642920694281 1.0419086746754027 1.0683530572813775 1.0947974398873521 1.121241822493327 1.1476862050993015 1.1741305877052761 1.200574970311251 1.2270193529172255 1.2534637355232003 1.279908118129175 1.3063525007351497 1.3327968833411243 1.3592412659470992 1.3856856485530737 1.4121300311590483 1.4385744137650232 1.4650187963709977 1.4914631789769726 1.5179075615829472 1.544351944188922 1.5707963267948966; 0.5000000000000001 0.5227240218713324 0.5450825213281317 0.5670598638627709 0.588640681497173 0.6098098835290953 0.6305526670845225 0.6508545274687936 0.6707012683092209 0.690079011482112 0.7089742068172501 0.7273736415730488 0.7452644496757548 0.7626341207162382 0.7794705086980789 0.7957618405308322 0.8114967242625343 0.8266641570456912 0.8412535328311812 0.8552546497846892 0.8686577174204886 0.8814533634475821 0.8936326403234123 0.9051870315105626 0.9161084574320696 0.9263892811211865 0.9360223135616424 0.9450008187146685 0.9533185182292703 0.9609695958324572 0.9679487013963562 0.9742509546793673 0.979871948738743 0.984807753012208 0.9890549160664629 0.9926104680106482 0.9954719225730846 0.9976372788398349 0.9991050226538718 0.9998741276738751 0.9999440560919151 0.999314759009523 0.9979866764718844 0.99596073716013 0.993238357741943 0.9898214418809327 0.9857123789054705 0.9809140421379164 0.975429786885407 0.9692634480936076 0.9624193376650706 0.9549022414440739 0.9467174158700503 0.9378705843019449 0.9283679330160726 0.918216106880274 0.9074222047073945 0.8959937742913359 0.8839388071291503 0.8712657328328699 0.8579834132349771 0.8441011361916385 0.829628609088036 0.8145759520503357 0.7989536908690412 0.7827727496386817 0.766044443118978 0.7487804688228326 0.7309928988366716 0.7126941713788629 0.693897082102109 0.6746147751459006 0.654860733945285 0.6346487718023762 0.613993022227202 0.5929079290546405 0.5714082363443572 0.549508978070806 0.5272254676105024 0.5045732870339213 0.4815682762095063 0.45822652172741046 0.4345643456507121 0.41059829410197507 0.3863451256931288 0.361821799806765 0.33704546473704183 0.3120334456984871 0.2868032327110903 0.261372468370149 0.23575893550942728 0.2099805447662483 0.18405532205722036 0.15800139597335003 0.13183698510336037 0.10558038529407703 0.07924995685678844 0.052864111728531414 0.02644130059727322 6.123233995736766e-17], nothing, nothing, "solid, ultra thick, black, mark=none", "\$f(x)\$", nothing, nothing, nothing, false), PGFPlots.Plots.Linear(Real[-1.0471975511965976 -1.020753168590623 -0.9943087859846482 -0.9678644033786735 -0.9414200207726989 -0.9149756381667242 -0.8885312555607495 -0.8620868729547748 -0.8356424903488001 -0.8091981077428254 -0.7827537251368507 -0.756309342530876 -0.7298649599249014 -0.7034205773189267 -0.676976194712952 -0.6505318121069773 -0.6240874295010026 -0.5976430468950279 -0.5711986642890532 -0.5447542816830785 -0.5183098990771039 -0.4918655164711292 -0.4654211338651545 -0.4389767512591798 -0.4125323686532051 -0.38608798604723044 -0.35964360344125573 -0.33319922083528103 -0.3067548382293063 -0.2803104556233317 -0.253866073017357 -0.22742169041138227 -0.2009773078054076 -0.1745329251994329 -0.14808854259345822 -0.12164415998748353 -0.09519977738150884 -0.06875539477553415 -0.04231101216955946 -0.01586662956358477 0.01057775304238992 0.03702213564836461 0.0634665182543393 0.08991090086031399 0.11635528346628868 0.14279966607226335 0.16924404867823806 0.19568843128421273 0.22213281389018744 0.2485771964961621 0.2750215791021368 0.3014659617081115 0.32791034431408617 0.35435472692006087 0.3807991095260356 0.4072434921320103 0.4336878747379849 0.4601322573439596 0.48657663994993433 0.513021022555909 0.5394654051618837 0.5659097877678584 0.5923541703738331 0.6187985529798078 0.6452429355857825 0.6716873181917571 0.6981317007977318 0.7245760834037065 0.7510204660096812 0.7774648486156559 0.8039092312216306 0.8303536138276053 0.85679799643358 0.8832423790395546 0.9096867616455293 0.936131144251504 0.9625755268574787 0.9890199094634534 1.0154642920694281 1.0419086746754027 1.0683530572813775 1.0947974398873521 1.121241822493327 1.1476862050993015 1.1741305877052761 1.200574970311251 1.2270193529172255 1.2534637355232003 1.279908118129175 1.3063525007351497 1.3327968833411243 1.3592412659470992 1.3856856485530737 1.4121300311590483 1.4385744137650232 1.4650187963709977 1.4914631789769726 1.5179075615829472 1.544351944188922 1.5707963267948966; 0.5000000000000001 0.5229015071239197 0.5458030142478395 0.5687045213717593 0.5916060284956789 0.6145075356195986 0.6374090427435183 0.660310549867438 0.6832120569913578 0.7061135641152774 0.7290150712391972 0.7519165783631168 0.7748180854870363 0.7977195926109562 0.8206210997348757 0.8435226068587955 0.8664241139827152 0.889325621106635 0.9122271282305547 0.9351286353544744 0.958030142478394 0.9809316496023137 1.0038331567262335 1.026734663850153 1.0496361709740727 1.0725376780979925 1.095439185221912 1.1183406923458319 1.1412421994697515 1.1641437065936713 1.1870452137175909 1.2099467208415107 1.2328482279654305 1.2557497350893503 1.2786512422132699 1.3015527493371895 1.324454256461109 1.3473557635850288 1.3702572707089484 1.3931587778328682 1.4160602849567878 1.4389617920807076 1.4618632992046274 1.4808854259188315 1.454441043313138 1.4279966607074448 1.4015522781017513 1.375107895496058 1.3486635128903643 1.322219130284671 1.2957747476789776 1.2693303650732843 1.2428859824675906 1.2164415998618974 1.189997217256204 1.1635528346505104 1.1371084520448171 1.1106640694391237 1.0842196868334302 1.057775304227737 1.0313309216220434 1.00488653901635 0.9784421564106566 0.9519977738049631 0.9255533911992697 0.8991090085935763 0.8726646259878829 0.8462202433821895 0.819775860776496 0.7933314781708026 0.7668870955651091 0.7404427129594158 0.7139983303537223 0.687553947748029 0.6611095651423355 0.6346651825366422 0.6082207999309487 0.5817764173252552 0.5553320347195618 0.5288876521138685 0.502443269508175 0.47599888690248165 0.44955450429678817 0.4231101216910948 0.3966657390854015 0.37022135647970794 0.34377697387401457 0.31733259126832103 0.29088820866262777 0.2644438260569342 0.23799944345124086 0.21155506084554732 0.185110678239854 0.15866629563416068 0.13222191302846711 0.10577753042277381 0.07933314781708024 0.05288876521138694 0.026444382605693383 6.123233995736766e-17], nothing, nothing, "solid, ultra thick, red, mark=none", "\$g(x),~n=2\$", nothing, nothing, nothing, false), PGFPlots.Plots.Linear(Real[-1.0471975511965976 -1.020753168590623 -0.9943087859846482 -0.9678644033786735 -0.9414200207726989 -0.9149756381667242 -0.8885312555607495 -0.8620868729547748 -0.8356424903488001 -0.8091981077428254 -0.7827537251368507 -0.756309342530876 -0.7298649599249014 -0.7034205773189267 -0.676976194712952 -0.6505318121069773 -0.6240874295010026 -0.5976430468950279 -0.5711986642890532 -0.5447542816830785 -0.5183098990771039 -0.4918655164711292 -0.4654211338651545 -0.4389767512591798 -0.4125323686532051 -0.38608798604723044 -0.35964360344125573 -0.33319922083528103 -0.3067548382293063 -0.2803104556233317 -0.253866073017357 -0.22742169041138227 -0.2009773078054076 -0.1745329251994329 -0.14808854259345822 -0.12164415998748353 -0.09519977738150884 -0.06875539477553415 -0.04231101216955946 -0.01586662956358477 0.01057775304238992 0.03702213564836461 0.0634665182543393 0.08991090086031399 0.11635528346628868 0.14279966607226335 0.16924404867823806 0.19568843128421273 0.22213281389018744 0.2485771964961621 0.2750215791021368 0.3014659617081115 0.32791034431408617 0.35435472692006087 0.3807991095260356 0.4072434921320103 0.4336878747379849 0.4601322573439596 0.48657663994993433 0.513021022555909 0.5394654051618837 0.5659097877678584 0.5923541703738331 0.6187985529798078 0.6452429355857825 0.6716873181917571 0.6981317007977318 0.7245760834037065 0.7510204660096812 0.7774648486156559 0.8039092312216306 0.8303536138276053 0.85679799643358 0.8832423790395546 0.9096867616455293 0.936131144251504 0.9625755268574787 0.9890199094634534 1.0154642920694281 1.0419086746754027 1.0683530572813775 1.0947974398873521 1.121241822493327 1.1476862050993015 1.1741305877052761 1.200574970311251 1.2270193529172255 1.2534637355232003 1.279908118129175 1.3063525007351497 1.3327968833411243 1.3592412659470992 1.3856856485530737 1.4121300311590483 1.4385744137650232 1.4650187963709977 1.4914631789769726 1.5179075615829472 1.544351944188922 1.5707963267948966; 0.5000000000000001 0.5229015071239197 0.5458030142478395 0.5687045213717592 0.5916060284956788 0.6145075356195986 0.6374090427435183 0.660310549867438 0.6832120569913577 0.7061135641152774 0.7290150712391971 0.7519165783631168 0.7748180854870363 0.7977195926109562 0.8206210997348757 0.8435226068587955 0.8664241139827152 0.8893256211066349 0.9122271282305546 0.9351286353544743 0.958030142478394 0.9809316496023137 1.0038331567262333 1.026734663850153 1.049636170974073 1.0504322286885024 1.047422161447471 1.0444120942064399 1.0414020269654085 1.0383919597243774 1.0353818924833462 1.0323718252423149 1.0293617580012837 1.0263516907602523 1.0233416235192212 1.02033155627819 1.0173214890371587 1.0143114217961275 1.0113013545550964 1.008291287314065 1.0052812200730337 1.0022711528320025 0.9992610855909712 0.9962510183499401 0.9932409511089089 0.9902308838678775 0.9872208166268464 0.984210749385815 0.9812006821447838 0.9781906149037527 0.9751805476627213 0.9721704804216902 0.9691604131806588 0.9661503459396277 0.9631402786985963 0.9601302114575653 0.957120144216534 0.9541100769755027 0.9511000097344715 0.9480899424934403 0.945079875252409 0.9420698080113779 0.9390597407703467 0.9360496735293153 0.9255533911992697 0.8991090085935765 0.872664625987883 0.8462202433821896 0.8197758607764962 0.7933314781708026 0.7668870955651093 0.7404427129594158 0.7139983303537224 0.6875539477480291 0.6611095651423355 0.6346651825366422 0.6082207999309487 0.5817764173252553 0.5553320347195619 0.5288876521138686 0.502443269508175 0.47599888690248165 0.44955450429678817 0.42311012169109485 0.3966657390854015 0.37022135647970794 0.3437769738740147 0.3173325912683211 0.29088820866262777 0.26444382605693423 0.23799944345124086 0.21155506084554734 0.185110678239854 0.15866629563416068 0.13222191302846714 0.1057775304227738 0.07933314781708026 0.052888765211386926 0.026444382605693387 6.123233995736766e-17], nothing, nothing, "solid, ultra thick, blue, mark=none", "\$g(x),~n=3\$", nothing, nothing, nothing, false), PGFPlots.Plots.Linear(Real[-1.0471975511965976 -1.020753168590623 -0.9943087859846482 -0.9678644033786735 -0.9414200207726989 -0.9149756381667242 -0.8885312555607495 -0.8620868729547748 -0.8356424903488001 -0.8091981077428254 -0.7827537251368507 -0.756309342530876 -0.7298649599249014 -0.7034205773189267 -0.676976194712952 -0.6505318121069773 -0.6240874295010026 -0.5976430468950279 -0.5711986642890532 -0.5447542816830785 -0.5183098990771039 -0.4918655164711292 -0.4654211338651545 -0.4389767512591798 -0.4125323686532051 -0.38608798604723044 -0.35964360344125573 -0.33319922083528103 -0.3067548382293063 -0.2803104556233317 -0.253866073017357 -0.22742169041138227 -0.2009773078054076 -0.1745329251994329 -0.14808854259345822 -0.12164415998748353 -0.09519977738150884 -0.06875539477553415 -0.04231101216955946 -0.01586662956358477 0.01057775304238992 0.03702213564836461 0.0634665182543393 0.08991090086031399 0.11635528346628868 0.14279966607226335 0.16924404867823806 0.19568843128421273 0.22213281389018744 0.2485771964961621 0.2750215791021368 0.3014659617081115 0.32791034431408617 0.35435472692006087 0.3807991095260356 0.4072434921320103 0.4336878747379849 0.4601322573439596 0.48657663994993433 0.513021022555909 0.5394654051618837 0.5659097877678584 0.5923541703738331 0.6187985529798078 0.6452429355857825 0.6716873181917571 0.6981317007977318 0.7245760834037065 0.7510204660096812 0.7774648486156559 0.8039092312216306 0.8303536138276053 0.85679799643358 0.8832423790395546 0.9096867616455293 0.936131144251504 0.9625755268574787 0.9890199094634534 1.0154642920694281 1.0419086746754027 1.0683530572813775 1.0947974398873521 1.121241822493327 1.1476862050993015 1.1741305877052761 1.200574970311251 1.2270193529172255 1.2534637355232003 1.279908118129175 1.3063525007351497 1.3327968833411243 1.3592412659470992 1.3856856485530737 1.4121300311590483 1.4385744137650232 1.4650187963709977 1.4914631789769726 1.5179075615829472 1.544351944188922 1.5707963267948966; 0.5000000000000001 0.5229015071239198 0.5458030142478396 0.5687045213717593 0.5916060284956789 0.6145075356195986 0.6374090427435183 0.660310549867438 0.6832120569913578 0.7061135641152775 0.7290150712391972 0.7519165783631169 0.7748180854870363 0.7977195926109562 0.820621099734876 0.8435226068587957 0.8664241139827153 0.8858825794639515 0.892201271034379 0.8985199626048064 0.9048386541752338 0.911157345745661 0.9174760373160885 0.9237947288865158 0.9301134204569432 0.9364321120273704 0.9427508035977978 0.9490694951682253 0.9553881867386527 0.96170687830908 0.9680255698795074 0.9743442614499348 0.9806629530203622 0.9869816445907895 0.9933003361612169 0.9996190277316442 1.0059377193020715 1.012256410872499 1.0185751024429264 1.0248937940133538 1.0312124855837812 1.0375311771542086 1.0438498687246358 1.0501685602950632 1.0564872518654906 1.0469614367984457 1.034423096554129 1.0218847563098123 1.0093464160654957 0.9968080758211791 0.9842697355768624 0.9717313953325457 0.9591930550882292 0.9466547148439125 0.9341163745995957 0.9215780343552791 0.9090396941109624 0.8965013538666459 0.8839630136223292 0.8714246733780124 0.8588863331336958 0.8463479928893791 0.8338096526450625 0.8212713124007458 0.8087329721564291 0.7961946319121125 0.7836562916677958 0.7711179514234792 0.7585796111791624 0.7460412709348458 0.7335029306905292 0.7209645904462124 0.7084262502018959 0.687553947748029 0.6611095651423357 0.6346651825366422 0.6082207999309487 0.5817764173252553 0.5553320347195618 0.5288876521138686 0.502443269508175 0.47599888690248165 0.4495545042967881 0.4231101216910948 0.3966657390854014 0.370221356479708 0.3437769738740146 0.3173325912683211 0.29088820866262777 0.26444382605693423 0.23799944345124086 0.21155506084554732 0.18511067823985403 0.15866629563416068 0.13222191302846714 0.10577753042277381 0.07933314781708026 0.05288876521138693 0.026444382605693383 6.123233995736766e-17], nothing, nothing, "solid, ultra thick, green, mark=none", "\$g(x),~n=4\$", nothing, nothing, nothing, false)], "b) \$f(x) = \\cos(x)\$ over \$[- \\pi /3, \\pi/2 ]\$", "\$x\$", nothing, "\$f(x),~g(x)\$", nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, "at={(0.5,.05)}, anchor=south", nothing, nothing, nothing, nothing, nothing, nothing, "axis") Using N=1, ϵ=0.0, rel_error_tol=0.005 Axis(PGFPlots.Plots.Plot[PGFPlots.Plots.Linear(Real[-1.5707963267948966 -1.5390630676677268 -1.5073298085405573 -1.4755965494133876 -1.443863290286218 -1.4121300311590483 -1.3803967720318788 -1.348663512904709 -1.3169302537775396 -1.2851969946503699 -1.2534637355232003 -1.2217304763960306 -1.189997217268861 -1.1582639581416914 -1.1265306990145219 -1.0947974398873521 -1.0630641807601826 -1.0313309216330129 -0.9995976625058433 -0.9678644033786736 -0.936131144251504 -0.9043978851243344 -0.8726646259971648 -0.8409313668699951 -0.8091981077428255 -0.7774648486156559 -0.7457315894884863 -0.7139983303613167 -0.682265071234147 -0.6505318121069774 -0.6187985529798077 -0.5870652938526381 -0.5553320347254684 -0.5235987755982988 -0.49186551647112925 -0.46013225734395957 -0.42839899821678995 -0.39666573908962033 -0.3649324799624507 -0.3331992208352811 -0.30146596170811146 -0.26973270258094184 -0.23799944345377222 -0.20626618432660257 -0.17453292519943295 -0.14279966607226333 -0.11106640694509369 -0.07933314781792407 -0.04759988869075444 -0.015866629563584814 0.015866629563584814 0.04759988869075444 0.07933314781792407 0.11106640694509369 0.14279966607226333 0.17453292519943295 0.20626618432660257 0.23799944345377222 0.26973270258094184 0.30146596170811146 0.3331992208352811 0.3649324799624507 0.39666573908962033 0.42839899821678995 0.46013225734395957 0.49186551647112925 0.5235987755982988 0.5553320347254684 0.5870652938526381 0.6187985529798077 0.6505318121069774 0.682265071234147 0.7139983303613167 0.7457315894884863 0.7774648486156559 0.8091981077428255 0.8409313668699951 0.8726646259971648 0.9043978851243344 0.936131144251504 0.9678644033786736 0.9995976625058433 1.0313309216330129 1.0630641807601826 1.0947974398873521 1.1265306990145219 1.1582639581416914 1.189997217268861 1.2217304763960306 1.2534637355232003 1.2851969946503699 1.3169302537775396 1.348663512904709 1.3803967720318788 1.4121300311590483 1.443863290286218 1.4755965494133876 1.5073298085405573 1.5390630676677268 1.5707963267948966; -0.9171523356672744 -0.9119627958261791 -0.9064640454420515 -0.9006396946774484 -0.8944727447383962 -0.8879455997087871 -0.8810400841208581 -0.8737374669593465 -0.8660184928321752 -0.857863421069835 -0.8492520735370548 -0.8401638919516158 -0.8305780055037958 -0.8204733095531646 -0.8098285561443586 -0.7986224570269094 -0.786833799783009 -0.774441577558059 -0.7614251327489366 -0.7477643148313404 -0.7334396522980802 -0.718432538433136 -0.7027254303610717 -0.6863020604884362 -0.6691476590951106 -0.6512491864427922 -0.632595572350614 -0.6131779607520331 -0.5929899563026693 -0.5720278696681496 -0.5502909576988839 -0.5277816543117824 -0.5045057875656096 -0.4804727781564516 -0.45569581439246765 -0.43019199865202656 -0.40398246040411656 -0.37709243108944274 -0.34955127653572665 -0.321392483117054 -0.2926535945640816 -0.26337609718184857 -0.23360525221957293 -0.20338987523920404 -0.17278206351636377 -0.14183687374189782 -0.11061195353276 -0.07916713146226685 -0.047563971435735694 -0.01586529822333698 0.01586529822333698 0.047563971435735694 0.07916713146226685 0.11061195353276 0.14183687374189782 0.17278206351636377 0.20338987523920404 0.23360525221957293 0.26337609718184857 0.2926535945640816 0.321392483117054 0.34955127653572665 0.37709243108944274 0.40398246040411656 0.43019199865202656 0.45569581439246765 0.4804727781564516 0.5045057875656096 0.5277816543117824 0.5502909576988839 0.5720278696681496 0.5929899563026693 0.6131779607520331 0.632595572350614 0.6512491864427922 0.6691476590951106 0.6863020604884362 0.7027254303610717 0.718432538433136 0.7334396522980802 0.7477643148313404 0.7614251327489366 0.774441577558059 0.786833799783009 0.7986224570269094 0.8098285561443586 0.8204733095531646 0.8305780055037958 0.8401638919516158 0.8492520735370548 0.857863421069835 0.8660184928321752 0.8737374669593465 0.8810400841208581 0.8879455997087871 0.8944727447383962 0.9006396946774484 0.9064640454420515 0.9119627958261791 0.9171523356672744], nothing, nothing, "solid, ultra thick, black, mark=none", "\$f(x)\$", nothing, nothing, nothing, false), PGFPlots.Plots.Linear(Real[-1.5707963267948966 -1.5390630676677268 -1.5073298085405573 -1.4755965494133876 -1.443863290286218 -1.4121300311590483 -1.3803967720318788 -1.348663512904709 -1.3169302537775396 -1.2851969946503699 -1.2534637355232003 -1.2217304763960306 -1.189997217268861 -1.1582639581416914 -1.1265306990145219 -1.0947974398873521 -1.0630641807601826 -1.0313309216330129 -0.9995976625058433 -0.9678644033786736 -0.936131144251504 -0.9043978851243344 -0.8726646259971648 -0.8409313668699951 -0.8091981077428255 -0.7774648486156559 -0.7457315894884863 -0.7139983303613167 -0.682265071234147 -0.6505318121069774 -0.6187985529798077 -0.5870652938526381 -0.5553320347254684 -0.5235987755982988 -0.49186551647112925 -0.46013225734395957 -0.42839899821678995 -0.39666573908962033 -0.3649324799624507 -0.3331992208352811 -0.30146596170811146 -0.26973270258094184 -0.23799944345377222 -0.20626618432660257 -0.17453292519943295 -0.14279966607226333 -0.11106640694509369 -0.07933314781792407 -0.04759988869075444 -0.015866629563584814 0.015866629563584814 0.04759988869075444 0.07933314781792407 0.11106640694509369 0.14279966607226333 0.17453292519943295 0.20626618432660257 0.23799944345377222 0.26973270258094184 0.30146596170811146 0.3331992208352811 0.3649324799624507 0.39666573908962033 0.42839899821678995 0.46013225734395957 0.49186551647112925 0.5235987755982988 0.5553320347254684 0.5870652938526381 0.6187985529798077 0.6505318121069774 0.682265071234147 0.7139983303613167 0.7457315894884863 0.7774648486156559 0.8091981077428255 0.8409313668699951 0.8726646259971648 0.9043978851243344 0.936131144251504 0.9678644033786736 0.9995976625058433 1.0313309216330129 1.0630641807601826 1.0947974398873521 1.1265306990145219 1.1582639581416914 1.189997217268861 1.2217304763960306 1.2534637355232003 1.2851969946503699 1.3169302537775396 1.348663512904709 1.3803967720318788 1.4121300311590483 1.443863290286218 1.4755965494133876 1.5073298085405573 1.5390630676677268 1.5707963267948966; -0.9171523356672744 -0.906413384152864 -0.8956744326384536 -0.8849354811240433 -0.8741965296096329 -0.8634575780952225 -0.8527186265808121 -0.8419796750664017 -0.8312407235519915 -0.820501772037581 -0.8097628205231708 -0.7990238690087603 -0.78828491749435 -0.7775459659799396 -0.7668070144655293 -0.756068062951119 -0.7453291114367087 -0.7345901599222981 -0.7238512084078879 -0.7131122568934775 -0.7023733053790671 -0.6916343538646567 -0.6808954023502464 -0.6701564508358361 -0.6594174993214256 -0.6486785478070153 -0.6273365491443288 -0.6006413768403148 -0.5739462045363009 -0.5472510322322869 -0.5205558599282728 -0.49386068762425883 -0.4671655153202448 -0.44047034301623084 -0.41377517071221687 -0.38707999840820284 -0.3603848261041888 -0.33368965380017485 -0.3069944814961609 -0.2802993091921469 -0.25360413688813294 -0.22690896458411894 -0.20021379228010497 -0.17351861997609094 -0.14682344767207695 -0.12012827536806296 -0.09343310306404896 -0.06673793076003498 -0.04004275845602098 -0.013347586152006997 0.01586662956339088 0.047599888690172634 0.07933314781695439 0.11106640694373614 0.14279966607051792 0.17453292519729968 0.20626618432408142 0.23799944345086319 0.2697327025776449 0.3014659617044267 0.33319922083120845 0.3649324799579902 0.39666573908477193 0.4283989982115537 0.46013225733833546 0.4918655164651172 0.5235987755918989 0.5553320347186808 0.5870652938454625 0.6187985529722442 0.6505318120990261 0.6822650712258078 0.7139983303525895 0.7457315894793712 0.7774648486061531 0.7961864771659408 0.8012267212701629 0.8062669653743852 0.8113072094786076 0.8163474535828297 0.821387697687052 0.8264279417912741 0.8314681858954964 0.8365084299997188 0.8415486741039409 0.8465889182081632 0.8516291623123854 0.8566694064166076 0.8617096505208297 0.866749894625052 0.8717901387292744 0.8768303828334965 0.8818706269377188 0.8869108710419411 0.8919511151461633 0.8969913592503855 0.9020316033546077 0.90707184745883 0.9121120915630522 0.9171523356672744], nothing, nothing, "solid, ultra thick, blue, mark=none", "upper bound, \$n=2\$", nothing, nothing, nothing, false), PGFPlots.Plots.Linear(Real[-1.5707963267948966 -1.5390630676677268 -1.5073298085405573 -1.4755965494133876 -1.443863290286218 -1.4121300311590483 -1.3803967720318788 -1.348663512904709 -1.3169302537775396 -1.2851969946503699 -1.2534637355232003 -1.2217304763960306 -1.189997217268861 -1.1582639581416914 -1.1265306990145219 -1.0947974398873521 -1.0630641807601826 -1.0313309216330129 -0.9995976625058433 -0.9678644033786736 -0.936131144251504 -0.9043978851243344 -0.8726646259971648 -0.8409313668699951 -0.8091981077428255 -0.7774648486156559 -0.7457315894884863 -0.7139983303613167 -0.682265071234147 -0.6505318121069774 -0.6187985529798077 -0.5870652938526381 -0.5553320347254684 -0.5235987755982988 -0.49186551647112925 -0.46013225734395957 -0.42839899821678995 -0.39666573908962033 -0.3649324799624507 -0.3331992208352811 -0.30146596170811146 -0.26973270258094184 -0.23799944345377222 -0.20626618432660257 -0.17453292519943295 -0.14279966607226333 -0.11106640694509369 -0.07933314781792407 -0.04759988869075444 -0.015866629563584814 0.015866629563584814 0.04759988869075444 0.07933314781792407 0.11106640694509369 0.14279966607226333 0.17453292519943295 0.20626618432660257 0.23799944345377222 0.26973270258094184 0.30146596170811146 0.3331992208352811 0.3649324799624507 0.39666573908962033 0.42839899821678995 0.46013225734395957 0.49186551647112925 0.5235987755982988 0.5553320347254684 0.5870652938526381 0.6187985529798077 0.6505318121069774 0.682265071234147 0.7139983303613167 0.7457315894884863 0.7774648486156559 0.8091981077428255 0.8409313668699951 0.8726646259971648 0.9043978851243344 0.936131144251504 0.9678644033786736 0.9995976625058433 1.0313309216330129 1.0630641807601826 1.0947974398873521 1.1265306990145219 1.1582639581416914 1.189997217268861 1.2217304763960306 1.2534637355232003 1.2851969946503699 1.3169302537775396 1.348663512904709 1.3803967720318788 1.4121300311590483 1.443863290286218 1.4755965494133876 1.5073298085405573 1.5390630676677268 1.5707963267948966; -0.9171523356672744 -0.9121120915630522 -0.90707184745883 -0.9020316033546077 -0.8969913592503855 -0.8919511151461633 -0.8869108710419411 -0.8818706269377188 -0.8768303828334965 -0.8717901387292744 -0.866749894625052 -0.8617096505208297 -0.8566694064166076 -0.8516291623123854 -0.8465889182081632 -0.8415486741039409 -0.8365084299997188 -0.8314681858954964 -0.8264279417912741 -0.821387697687052 -0.8163474535828297 -0.8113072094786076 -0.8062669653743852 -0.8012267212701629 -0.7961864771659408 -0.7774648486061531 -0.7457315894793712 -0.7139983303525895 -0.6822650712258078 -0.6505318120990261 -0.6187985529722442 -0.5870652938454625 -0.5553320347186808 -0.5235987755918989 -0.4918655164651172 -0.46013225733833546 -0.4283989982115537 -0.39666573908477193 -0.3649324799579902 -0.33319922083120845 -0.3014659617044267 -0.2697327025776449 -0.23799944345086319 -0.20626618432408142 -0.17453292519729968 -0.14279966607051792 -0.11106640694373614 -0.07933314781695439 -0.047599888690172634 -0.01586662956339088 0.013347586152006997 0.04004275845602098 0.06673793076003498 0.09343310306404896 0.12012827536806296 0.14682344767207695 0.17351861997609094 0.20021379228010497 0.22690896458411894 0.25360413688813294 0.2802993091921469 0.3069944814961609 0.33368965380017485 0.3603848261041888 0.38707999840820284 0.41377517071221687 0.44047034301623084 0.4671655153202448 0.49386068762425883 0.5205558599282728 0.5472510322322869 0.5739462045363009 0.6006413768403148 0.6273365491443288 0.6486785478070153 0.6594174993214256 0.6701564508358361 0.6808954023502464 0.6916343538646567 0.7023733053790671 0.7131122568934775 0.7238512084078879 0.7345901599222981 0.7453291114367087 0.756068062951119 0.7668070144655293 0.7775459659799396 0.78828491749435 0.7990238690087603 0.8097628205231708 0.820501772037581 0.8312407235519915 0.8419796750664017 0.8527186265808121 0.8634575780952225 0.8741965296096329 0.8849354811240433 0.8956744326384536 0.906413384152864 0.9171523356672744], nothing, nothing, "solid, ultra thick, red, mark=none", "lower bound, \$n=2\$", nothing, nothing, nothing, false)], "\$f(x) = \\tanh(x)\$ over \$[-\\pi/2, \\pi/2]\$", "\$x\$", nothing, "\$f(x),~g(x)\$", nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, "at={(0.00,.95)}, anchor=north west", nothing, nothing, nothing, nothing, nothing, nothing, "axis") GroupPlot(Axis[Axis(PGFPlots.Plots.Plot[PGFPlots.Plots.Linear(Real[-1.0 -0.9696969696969697 -0.9393939393939394 -0.9090909090909091 -0.8787878787878788 -0.8484848484848485 -0.8181818181818182 -0.7878787878787878 -0.7575757575757576 -0.7272727272727273 -0.696969696969697 -0.6666666666666666 -0.6363636363636364 -0.6060606060606061 -0.5757575757575758 -0.5454545454545454 -0.5151515151515151 -0.48484848484848486 -0.45454545454545453 -0.42424242424242425 -0.3939393939393939 -0.36363636363636365 -0.3333333333333333 -0.30303030303030304 -0.2727272727272727 -0.24242424242424243 -0.21212121212121213 -0.18181818181818182 -0.15151515151515152 -0.12121212121212122 -0.09090909090909091 -0.06060606060606061 -0.030303030303030304 0.0 0.030303030303030304 0.06060606060606061 0.09090909090909091 0.12121212121212122 0.15151515151515152 0.18181818181818182 0.21212121212121213 0.24242424242424243 0.2727272727272727 0.30303030303030304 0.3333333333333333 0.36363636363636365 0.3939393939393939 0.42424242424242425 0.45454545454545453 0.48484848484848486 0.5151515151515151 0.5454545454545454 0.5757575757575758 0.6060606060606061 0.6363636363636364 0.6666666666666666 0.696969696969697 0.7272727272727273 0.7575757575757576 0.7878787878787878 0.8181818181818182 0.8484848484848485 0.8787878787878788 0.9090909090909091 0.9393939393939394 0.9696969696969697 1.0 1.0303030303030303 1.0606060606060606 1.0909090909090908 1.121212121212121 1.1515151515151516 1.1818181818181819 1.2121212121212122 1.2424242424242424 1.2727272727272727 1.303030303030303 1.3333333333333333 1.3636363636363635 1.393939393939394 1.4242424242424243 1.4545454545454546 1.4848484848484849 1.5151515151515151 1.5454545454545454 1.5757575757575757 1.606060606060606 1.6363636363636365 1.6666666666666667 1.696969696969697 1.7272727272727273 1.7575757575757576 1.7878787878787878 1.8181818181818181 1.8484848484848484 1.878787878787879 1.9090909090909092 1.9393939393939394 1.9696969696969697 2.0; 1.0 0.9403122130394859 0.8824609733700643 0.8264462809917354 0.7722681359044995 0.7199265381083564 0.6694214876033059 0.620752984389348 0.573921028466483 0.5289256198347108 0.4857667584940313 0.4444444444444444 0.4049586776859504 0.36730945821854916 0.33149678604224064 0.29752066115702475 0.26538108356290174 0.23507805325987147 0.20661157024793386 0.1799816345270891 0.155188246097337 0.1322314049586777 0.1111111111111111 0.09182736455463729 0.07438016528925619 0.05876951331496787 0.044995408631772274 0.03305785123966942 0.022956841138659322 0.014692378328741967 0.008264462809917356 0.0036730945821854917 0.0009182736455463729 0.0 0.0009182736455463729 0.0036730945821854917 0.008264462809917356 0.014692378328741967 0.022956841138659322 0.03305785123966942 0.044995408631772274 0.05876951331496787 0.07438016528925619 0.09182736455463729 0.1111111111111111 0.1322314049586777 0.155188246097337 0.1799816345270891 0.20661157024793386 0.23507805325987147 0.26538108356290174 0.29752066115702475 0.33149678604224064 0.36730945821854916 0.4049586776859504 0.4444444444444444 0.4857667584940313 0.5289256198347108 0.573921028466483 0.620752984389348 0.6694214876033059 0.7199265381083564 0.7722681359044995 0.8264462809917354 0.8824609733700643 0.9403122130394859 1.0 1.061524334251607 1.1248852157943066 1.190082644628099 1.2571166207529842 1.3259871441689626 1.3966942148760333 1.4692378328741966 1.5436179981634528 1.6198347107438016 1.6978879706152432 1.7777777777777777 1.8595041322314048 1.9430670339761251 2.028466483011938 2.115702479338843 2.204775022956841 2.295684113865932 2.3884297520661155 2.483011937557392 2.579430670339761 2.6776859504132235 2.777777777777778 2.8797061524334255 2.9834710743801653 3.089072543617998 3.1965105601469235 3.305785123966942 3.416896235078053 3.5298438934802574 3.6446280991735542 3.7612488521579435 3.879706152433425 4.0], nothing, nothing, "solid, ultra thick, black, mark=none", "\$f(x)\$", nothing, nothing, nothing, false), PGFPlots.Plots.Linear(Real[-1.0 -0.9696969696969697 -0.9393939393939394 -0.9090909090909091 -0.8787878787878788 -0.8484848484848485 -0.8181818181818182 -0.7878787878787878 -0.7575757575757576 -0.7272727272727273 -0.696969696969697 -0.6666666666666666 -0.6363636363636364 -0.6060606060606061 -0.5757575757575758 -0.5454545454545454 -0.5151515151515151 -0.48484848484848486 -0.45454545454545453 -0.42424242424242425 -0.3939393939393939 -0.36363636363636365 -0.3333333333333333 -0.30303030303030304 -0.2727272727272727 -0.24242424242424243 -0.21212121212121213 -0.18181818181818182 -0.15151515151515152 -0.12121212121212122 -0.09090909090909091 -0.06060606060606061 -0.030303030303030304 0.0 0.030303030303030304 0.06060606060606061 0.09090909090909091 0.12121212121212122 0.15151515151515152 0.18181818181818182 0.21212121212121213 0.24242424242424243 0.2727272727272727 0.30303030303030304 0.3333333333333333 0.36363636363636365 0.3939393939393939 0.42424242424242425 0.45454545454545453 0.48484848484848486 0.5151515151515151 0.5454545454545454 0.5757575757575758 0.6060606060606061 0.6363636363636364 0.6666666666666666 0.696969696969697 0.7272727272727273 0.7575757575757576 0.7878787878787878 0.8181818181818182 0.8484848484848485 0.8787878787878788 0.9090909090909091 0.9393939393939394 0.9696969696969697 1.0 1.0303030303030303 1.0606060606060606 1.0909090909090908 1.121212121212121 1.1515151515151516 1.1818181818181819 1.2121212121212122 1.2424242424242424 1.2727272727272727 1.303030303030303 1.3333333333333333 1.3636363636363635 1.393939393939394 1.4242424242424243 1.4545454545454546 1.4848484848484849 1.5151515151515151 1.5454545454545454 1.5757575757575757 1.606060606060606 1.6363636363636365 1.6666666666666667 1.696969696969697 1.7272727272727273 1.7575757575757576 1.7878787878787878 1.8181818181818181 1.8484848484848484 1.878787878787879 1.9090909090909092 1.9393939393939394 1.9696969696969697 2.0; 1.0 0.9848484848484849 0.9696969696969696 0.9545454545454546 0.9393939393939394 0.9242424242424243 0.9090909090909092 0.8939393939393939 0.8787878787878788 0.8636363636363635 0.8484848484848485 0.8333333333333333 0.8181818181818181 0.8030303030303029 0.7878787878787878 0.7727272727272727 0.7575757575757575 0.7424242424242424 0.7272727272727273 0.712121212121212 0.6969696969696969 0.6818181818181818 0.6666666666666666 0.6515151515151514 0.6363636363636364 0.6212121212121211 0.6060606060606061 0.5909090909090909 0.5757575757575757 0.5606060606060606 0.5454545454545454 0.5303030303030303 0.5151515151515151 0.5 0.48484848484848486 0.46969696969696967 0.4545454545454545 0.43939393939393934 0.42424242424242425 0.40909090909090906 0.3939393939393939 0.3787878787878788 0.36363636363636365 0.34848484848484845 0.3333333333333333 0.3181818181818182 0.30303030303030304 0.28787878787878785 0.27272727272727276 0.25757575757575757 0.28787878787878785 0.36363636363636354 0.4393939393939395 0.5151515151515151 0.5909090909090908 0.6666666666666665 0.7424242424242424 0.8181818181818181 0.8939393939393939 0.9696969696969695 1.0454545454545456 1.121212121212121 1.1969696969696968 1.2727272727272727 1.3484848484848484 1.4242424242424243 1.5 1.5757575757575755 1.6515151515151514 1.727272727272727 1.8030303030303025 1.878787878787879 1.9545454545454546 2.0303030303030303 2.106060606060606 2.1818181818181817 2.2575757575757573 2.333333333333333 2.4090909090909087 2.4848484848484853 2.5606060606060606 2.6363636363636362 2.712121212121212 2.7878787878787876 2.8636363636363633 2.9393939393939394 3.0151515151515147 3.090909090909091 3.1666666666666665 3.2424242424242427 3.318181818181818 3.3939393939393936 3.4696969696969697 3.545454545454545 3.6212121212121207 3.6969696969696972 3.772727272727273 3.848484848484848 3.9242424242424243 4.0], nothing, nothing, "solid, ultra thick, red, mark=none", "\$g(x),~n=2\$", nothing, nothing, nothing, false), PGFPlots.Plots.Linear(Real[-1.0 -0.9696969696969697 -0.9393939393939394 -0.9090909090909091 -0.8787878787878788 -0.8484848484848485 -0.8181818181818182 -0.7878787878787878 -0.7575757575757576 -0.7272727272727273 -0.696969696969697 -0.6666666666666666 -0.6363636363636364 -0.6060606060606061 -0.5757575757575758 -0.5454545454545454 -0.5151515151515151 -0.48484848484848486 -0.45454545454545453 -0.42424242424242425 -0.3939393939393939 -0.36363636363636365 -0.3333333333333333 -0.30303030303030304 -0.2727272727272727 -0.24242424242424243 -0.21212121212121213 -0.18181818181818182 -0.15151515151515152 -0.12121212121212122 -0.09090909090909091 -0.06060606060606061 -0.030303030303030304 0.0 0.030303030303030304 0.06060606060606061 0.09090909090909091 0.12121212121212122 0.15151515151515152 0.18181818181818182 0.21212121212121213 0.24242424242424243 0.2727272727272727 0.30303030303030304 0.3333333333333333 0.36363636363636365 0.3939393939393939 0.42424242424242425 0.45454545454545453 0.48484848484848486 0.5151515151515151 0.5454545454545454 0.5757575757575758 0.6060606060606061 0.6363636363636364 0.6666666666666666 0.696969696969697 0.7272727272727273 0.7575757575757576 0.7878787878787878 0.8181818181818182 0.8484848484848485 0.8787878787878788 0.9090909090909091 0.9393939393939394 0.9696969696969697 1.0 1.0303030303030303 1.0606060606060606 1.0909090909090908 1.121212121212121 1.1515151515151516 1.1818181818181819 1.2121212121212122 1.2424242424242424 1.2727272727272727 1.303030303030303 1.3333333333333333 1.3636363636363635 1.393939393939394 1.4242424242424243 1.4545454545454546 1.4848484848484849 1.5151515151515151 1.5454545454545454 1.5757575757575757 1.606060606060606 1.6363636363636365 1.6666666666666667 1.696969696969697 1.7272727272727273 1.7575757575757576 1.7878787878787878 1.8181818181818181 1.8484848484848484 1.878787878787879 1.9090909090909092 1.9393939393939394 1.9696969696969697 2.0; 1.0 0.9696969696969697 0.9393939393939394 0.9090909090909091 0.8787878787878788 0.8484848484848485 0.8181818181818182 0.7878787878787878 0.7575757575757576 0.7272727272727273 0.696969696969697 0.6666666666666666 0.6363636363636364 0.6060606060606061 0.5757575757575758 0.5454545454545454 0.5151515151515151 0.48484848484848486 0.45454545454545453 0.42424242424242425 0.3939393939393939 0.36363636363636365 0.3333333333333333 0.30303030303030304 0.2727272727272727 0.24242424242424243 0.21212121212121213 0.18181818181818182 0.15151515151515152 0.12121212121212122 0.09090909090909091 0.06060606060606061 0.030303030303030304 0.0 0.030303030303030304 0.06060606060606061 0.09090909090909091 0.12121212121212122 0.15151515151515152 0.18181818181818182 0.21212121212121213 0.24242424242424243 0.2727272727272727 0.30303030303030304 0.3333333333333333 0.36363636363636365 0.3939393939393939 0.42424242424242425 0.45454545454545453 0.48484848484848486 0.5151515151515151 0.5454545454545454 0.5757575757575758 0.6060606060606061 0.6363636363636364 0.6666666666666666 0.696969696969697 0.7272727272727273 0.7575757575757576 0.7878787878787878 0.8181818181818182 0.8484848484848485 0.8787878787878788 0.9090909090909091 0.9393939393939394 0.9696969696969697 1.0 1.0909090909090908 1.1818181818181817 1.2727272727272725 1.3636363636363633 1.4545454545454548 1.5454545454545456 1.6363636363636365 1.7272727272727273 1.8181818181818181 1.909090909090909 1.9999999999999998 2.090909090909091 2.181818181818182 2.272727272727273 2.3636363636363638 2.4545454545454546 2.5454545454545454 2.6363636363636362 2.727272727272727 2.818181818181818 2.909090909090909 3.0 3.090909090909091 3.1818181818181817 3.2727272727272725 3.3636363636363633 3.454545454545454 3.545454545454545 3.6363636363636367 3.7272727272727275 3.8181818181818183 3.909090909090909 4.0], nothing, nothing, "solid, ultra thick, blue, mark=none", "\$g(x),~n=3\$", nothing, nothing, nothing, false), PGFPlots.Plots.Linear(Real[-1.0 -0.9696969696969697 -0.9393939393939394 -0.9090909090909091 -0.8787878787878788 -0.8484848484848485 -0.8181818181818182 -0.7878787878787878 -0.7575757575757576 -0.7272727272727273 -0.696969696969697 -0.6666666666666666 -0.6363636363636364 -0.6060606060606061 -0.5757575757575758 -0.5454545454545454 -0.5151515151515151 -0.48484848484848486 -0.45454545454545453 -0.42424242424242425 -0.3939393939393939 -0.36363636363636365 -0.3333333333333333 -0.30303030303030304 -0.2727272727272727 -0.24242424242424243 -0.21212121212121213 -0.18181818181818182 -0.15151515151515152 -0.12121212121212122 -0.09090909090909091 -0.06060606060606061 -0.030303030303030304 0.0 0.030303030303030304 0.06060606060606061 0.09090909090909091 0.12121212121212122 0.15151515151515152 0.18181818181818182 0.21212121212121213 0.24242424242424243 0.2727272727272727 0.30303030303030304 0.3333333333333333 0.36363636363636365 0.3939393939393939 0.42424242424242425 0.45454545454545453 0.48484848484848486 0.5151515151515151 0.5454545454545454 0.5757575757575758 0.6060606060606061 0.6363636363636364 0.6666666666666666 0.696969696969697 0.7272727272727273 0.7575757575757576 0.7878787878787878 0.8181818181818182 0.8484848484848485 0.8787878787878788 0.9090909090909091 0.9393939393939394 0.9696969696969697 1.0 1.0303030303030303 1.0606060606060606 1.0909090909090908 1.121212121212121 1.1515151515151516 1.1818181818181819 1.2121212121212122 1.2424242424242424 1.2727272727272727 1.303030303030303 1.3333333333333333 1.3636363636363635 1.393939393939394 1.4242424242424243 1.4545454545454546 1.4848484848484849 1.5151515151515151 1.5454545454545454 1.5757575757575757 1.606060606060606 1.6363636363636365 1.6666666666666667 1.696969696969697 1.7272727272727273 1.7575757575757576 1.7878787878787878 1.8181818181818181 1.8484848484848484 1.878787878787879 1.9090909090909092 1.9393939393939394 1.9696969696969697 2.0; 1.0 0.962121212121212 0.9242424242424243 0.8863636363636362 0.8484848484848484 0.8106060606060607 0.7727272727272727 0.7348484848484849 0.6969696969696969 0.6590909090909091 0.6212121212121213 0.5833333333333333 0.5454545454545454 0.5075757575757576 0.4696969696969697 0.43181818181818177 0.39393939393939387 0.3560606060606061 0.3181818181818182 0.2803030303030303 0.24242424242424238 0.20454545454545453 0.16666666666666663 0.12878787878787878 0.09090909090909088 0.06439393939393939 0.07196969696969696 0.07954545454545454 0.08712121212121211 0.0946969696969697 0.10227272727272727 0.10984848484848483 0.11742424242424242 0.125 0.13257575757575757 0.14015151515151514 0.14772727272727273 0.15530303030303028 0.16287878787878785 0.17045454545454544 0.178030303030303 0.1856060606060606 0.19318181818181818 0.20075757575757572 0.20833333333333331 0.21590909090909088 0.22348484848484848 0.23106060606060608 0.23863636363636365 0.24621212121212122 0.2765151515151515 0.3295454545454545 0.3825757575757576 0.43560606060606066 0.4886363636363636 0.5416666666666665 0.5946969696969697 0.6477272727272727 0.7007575757575757 0.7537878787878787 0.8068181818181819 0.8598484848484849 0.9128787878787877 0.9659090909090908 1.018939393939394 1.071969696969697 1.1249999999999998 1.178030303030303 1.231060606060606 1.2840909090909087 1.337121212121212 1.3901515151515154 1.4431818181818183 1.496212121212121 1.5492424242424243 1.6363636363636362 1.7348484848484844 1.833333333333333 1.9318181818181814 2.0303030303030307 2.128787878787879 2.2272727272727275 2.3257575757575757 2.424242424242424 2.5227272727272725 2.621212121212121 2.7196969696969693 2.8181818181818183 2.9166666666666665 3.0151515151515156 3.1136363636363633 3.212121212121212 3.3106060606060606 3.4090909090909087 3.507575757575757 3.606060606060606 3.704545454545455 3.803030303030303 3.9015151515151514 4.0], nothing, nothing, "solid, ultra thick, green, mark=none", "\$g(x),~n=4\$", nothing, nothing, nothing, false)], "a) \$f(x) = x^2\$ over \$[-1,2]\$", "\$x\$", nothing, "\$f(x),~g(x)\$", nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, "at={(0.05,.95)}, anchor=north west", nothing, nothing, nothing, nothing, nothing, nothing, "axis"), Axis(PGFPlots.Plots.Plot[PGFPlots.Plots.Linear(Real[-1.0471975511965976 -1.020753168590623 -0.9943087859846482 -0.9678644033786735 -0.9414200207726989 -0.9149756381667242 -0.8885312555607495 -0.8620868729547748 -0.8356424903488001 -0.8091981077428254 -0.7827537251368507 -0.756309342530876 -0.7298649599249014 -0.7034205773189267 -0.676976194712952 -0.6505318121069773 -0.6240874295010026 -0.5976430468950279 -0.5711986642890532 -0.5447542816830785 -0.5183098990771039 -0.4918655164711292 -0.4654211338651545 -0.4389767512591798 -0.4125323686532051 -0.38608798604723044 -0.35964360344125573 -0.33319922083528103 -0.3067548382293063 -0.2803104556233317 -0.253866073017357 -0.22742169041138227 -0.2009773078054076 -0.1745329251994329 -0.14808854259345822 -0.12164415998748353 -0.09519977738150884 -0.06875539477553415 -0.04231101216955946 -0.01586662956358477 0.01057775304238992 0.03702213564836461 0.0634665182543393 0.08991090086031399 0.11635528346628868 0.14279966607226335 0.16924404867823806 0.19568843128421273 0.22213281389018744 0.2485771964961621 0.2750215791021368 0.3014659617081115 0.32791034431408617 0.35435472692006087 0.3807991095260356 0.4072434921320103 0.4336878747379849 0.4601322573439596 0.48657663994993433 0.513021022555909 0.5394654051618837 0.5659097877678584 0.5923541703738331 0.6187985529798078 0.6452429355857825 0.6716873181917571 0.6981317007977318 0.7245760834037065 0.7510204660096812 0.7774648486156559 0.8039092312216306 0.8303536138276053 0.85679799643358 0.8832423790395546 0.9096867616455293 0.936131144251504 0.9625755268574787 0.9890199094634534 1.0154642920694281 1.0419086746754027 1.0683530572813775 1.0947974398873521 1.121241822493327 1.1476862050993015 1.1741305877052761 1.200574970311251 1.2270193529172255 1.2534637355232003 1.279908118129175 1.3063525007351497 1.3327968833411243 1.3592412659470992 1.3856856485530737 1.4121300311590483 1.4385744137650232 1.4650187963709977 1.4914631789769726 1.5179075615829472 1.544351944188922 1.5707963267948966; 0.5000000000000001 0.5227240218713324 0.5450825213281317 0.5670598638627709 0.588640681497173 0.6098098835290953 0.6305526670845225 0.6508545274687936 0.6707012683092209 0.690079011482112 0.7089742068172501 0.7273736415730488 0.7452644496757548 0.7626341207162382 0.7794705086980789 0.7957618405308322 0.8114967242625343 0.8266641570456912 0.8412535328311812 0.8552546497846892 0.8686577174204886 0.8814533634475821 0.8936326403234123 0.9051870315105626 0.9161084574320696 0.9263892811211865 0.9360223135616424 0.9450008187146685 0.9533185182292703 0.9609695958324572 0.9679487013963562 0.9742509546793673 0.979871948738743 0.984807753012208 0.9890549160664629 0.9926104680106482 0.9954719225730846 0.9976372788398349 0.9991050226538718 0.9998741276738751 0.9999440560919151 0.999314759009523 0.9979866764718844 0.99596073716013 0.993238357741943 0.9898214418809327 0.9857123789054705 0.9809140421379164 0.975429786885407 0.9692634480936076 0.9624193376650706 0.9549022414440739 0.9467174158700503 0.9378705843019449 0.9283679330160726 0.918216106880274 0.9074222047073945 0.8959937742913359 0.8839388071291503 0.8712657328328699 0.8579834132349771 0.8441011361916385 0.829628609088036 0.8145759520503357 0.7989536908690412 0.7827727496386817 0.766044443118978 0.7487804688228326 0.7309928988366716 0.7126941713788629 0.693897082102109 0.6746147751459006 0.654860733945285 0.6346487718023762 0.613993022227202 0.5929079290546405 0.5714082363443572 0.549508978070806 0.5272254676105024 0.5045732870339213 0.4815682762095063 0.45822652172741046 0.4345643456507121 0.41059829410197507 0.3863451256931288 0.361821799806765 0.33704546473704183 0.3120334456984871 0.2868032327110903 0.261372468370149 0.23575893550942728 0.2099805447662483 0.18405532205722036 0.15800139597335003 0.13183698510336037 0.10558038529407703 0.07924995685678844 0.052864111728531414 0.02644130059727322 6.123233995736766e-17], nothing, nothing, "solid, ultra thick, black, mark=none", "\$f(x)\$", nothing, nothing, nothing, false), PGFPlots.Plots.Linear(Real[-1.0471975511965976 -1.020753168590623 -0.9943087859846482 -0.9678644033786735 -0.9414200207726989 -0.9149756381667242 -0.8885312555607495 -0.8620868729547748 -0.8356424903488001 -0.8091981077428254 -0.7827537251368507 -0.756309342530876 -0.7298649599249014 -0.7034205773189267 -0.676976194712952 -0.6505318121069773 -0.6240874295010026 -0.5976430468950279 -0.5711986642890532 -0.5447542816830785 -0.5183098990771039 -0.4918655164711292 -0.4654211338651545 -0.4389767512591798 -0.4125323686532051 -0.38608798604723044 -0.35964360344125573 -0.33319922083528103 -0.3067548382293063 -0.2803104556233317 -0.253866073017357 -0.22742169041138227 -0.2009773078054076 -0.1745329251994329 -0.14808854259345822 -0.12164415998748353 -0.09519977738150884 -0.06875539477553415 -0.04231101216955946 -0.01586662956358477 0.01057775304238992 0.03702213564836461 0.0634665182543393 0.08991090086031399 0.11635528346628868 0.14279966607226335 0.16924404867823806 0.19568843128421273 0.22213281389018744 0.2485771964961621 0.2750215791021368 0.3014659617081115 0.32791034431408617 0.35435472692006087 0.3807991095260356 0.4072434921320103 0.4336878747379849 0.4601322573439596 0.48657663994993433 0.513021022555909 0.5394654051618837 0.5659097877678584 0.5923541703738331 0.6187985529798078 0.6452429355857825 0.6716873181917571 0.6981317007977318 0.7245760834037065 0.7510204660096812 0.7774648486156559 0.8039092312216306 0.8303536138276053 0.85679799643358 0.8832423790395546 0.9096867616455293 0.936131144251504 0.9625755268574787 0.9890199094634534 1.0154642920694281 1.0419086746754027 1.0683530572813775 1.0947974398873521 1.121241822493327 1.1476862050993015 1.1741305877052761 1.200574970311251 1.2270193529172255 1.2534637355232003 1.279908118129175 1.3063525007351497 1.3327968833411243 1.3592412659470992 1.3856856485530737 1.4121300311590483 1.4385744137650232 1.4650187963709977 1.4914631789769726 1.5179075615829472 1.544351944188922 1.5707963267948966; 0.5000000000000001 0.5229015071239197 0.5458030142478395 0.5687045213717593 0.5916060284956789 0.6145075356195986 0.6374090427435183 0.660310549867438 0.6832120569913578 0.7061135641152774 0.7290150712391972 0.7519165783631168 0.7748180854870363 0.7977195926109562 0.8206210997348757 0.8435226068587955 0.8664241139827152 0.889325621106635 0.9122271282305547 0.9351286353544744 0.958030142478394 0.9809316496023137 1.0038331567262335 1.026734663850153 1.0496361709740727 1.0725376780979925 1.095439185221912 1.1183406923458319 1.1412421994697515 1.1641437065936713 1.1870452137175909 1.2099467208415107 1.2328482279654305 1.2557497350893503 1.2786512422132699 1.3015527493371895 1.324454256461109 1.3473557635850288 1.3702572707089484 1.3931587778328682 1.4160602849567878 1.4389617920807076 1.4618632992046274 1.4808854259188315 1.454441043313138 1.4279966607074448 1.4015522781017513 1.375107895496058 1.3486635128903643 1.322219130284671 1.2957747476789776 1.2693303650732843 1.2428859824675906 1.2164415998618974 1.189997217256204 1.1635528346505104 1.1371084520448171 1.1106640694391237 1.0842196868334302 1.057775304227737 1.0313309216220434 1.00488653901635 0.9784421564106566 0.9519977738049631 0.9255533911992697 0.8991090085935763 0.8726646259878829 0.8462202433821895 0.819775860776496 0.7933314781708026 0.7668870955651091 0.7404427129594158 0.7139983303537223 0.687553947748029 0.6611095651423355 0.6346651825366422 0.6082207999309487 0.5817764173252552 0.5553320347195618 0.5288876521138685 0.502443269508175 0.47599888690248165 0.44955450429678817 0.4231101216910948 0.3966657390854015 0.37022135647970794 0.34377697387401457 0.31733259126832103 0.29088820866262777 0.2644438260569342 0.23799944345124086 0.21155506084554732 0.185110678239854 0.15866629563416068 0.13222191302846711 0.10577753042277381 0.07933314781708024 0.05288876521138694 0.026444382605693383 6.123233995736766e-17], nothing, nothing, "solid, ultra thick, red, mark=none", "\$g(x),~n=2\$", nothing, nothing, nothing, false), PGFPlots.Plots.Linear(Real[-1.0471975511965976 -1.020753168590623 -0.9943087859846482 -0.9678644033786735 -0.9414200207726989 -0.9149756381667242 -0.8885312555607495 -0.8620868729547748 -0.8356424903488001 -0.8091981077428254 -0.7827537251368507 -0.756309342530876 -0.7298649599249014 -0.7034205773189267 -0.676976194712952 -0.6505318121069773 -0.6240874295010026 -0.5976430468950279 -0.5711986642890532 -0.5447542816830785 -0.5183098990771039 -0.4918655164711292 -0.4654211338651545 -0.4389767512591798 -0.4125323686532051 -0.38608798604723044 -0.35964360344125573 -0.33319922083528103 -0.3067548382293063 -0.2803104556233317 -0.253866073017357 -0.22742169041138227 -0.2009773078054076 -0.1745329251994329 -0.14808854259345822 -0.12164415998748353 -0.09519977738150884 -0.06875539477553415 -0.04231101216955946 -0.01586662956358477 0.01057775304238992 0.03702213564836461 0.0634665182543393 0.08991090086031399 0.11635528346628868 0.14279966607226335 0.16924404867823806 0.19568843128421273 0.22213281389018744 0.2485771964961621 0.2750215791021368 0.3014659617081115 0.32791034431408617 0.35435472692006087 0.3807991095260356 0.4072434921320103 0.4336878747379849 0.4601322573439596 0.48657663994993433 0.513021022555909 0.5394654051618837 0.5659097877678584 0.5923541703738331 0.6187985529798078 0.6452429355857825 0.6716873181917571 0.6981317007977318 0.7245760834037065 0.7510204660096812 0.7774648486156559 0.8039092312216306 0.8303536138276053 0.85679799643358 0.8832423790395546 0.9096867616455293 0.936131144251504 0.9625755268574787 0.9890199094634534 1.0154642920694281 1.0419086746754027 1.0683530572813775 1.0947974398873521 1.121241822493327 1.1476862050993015 1.1741305877052761 1.200574970311251 1.2270193529172255 1.2534637355232003 1.279908118129175 1.3063525007351497 1.3327968833411243 1.3592412659470992 1.3856856485530737 1.4121300311590483 1.4385744137650232 1.4650187963709977 1.4914631789769726 1.5179075615829472 1.544351944188922 1.5707963267948966; 0.5000000000000001 0.5229015071239197 0.5458030142478395 0.5687045213717592 0.5916060284956788 0.6145075356195986 0.6374090427435183 0.660310549867438 0.6832120569913577 0.7061135641152774 0.7290150712391971 0.7519165783631168 0.7748180854870363 0.7977195926109562 0.8206210997348757 0.8435226068587955 0.8664241139827152 0.8893256211066349 0.9122271282305546 0.9351286353544743 0.958030142478394 0.9809316496023137 1.0038331567262333 1.026734663850153 1.049636170974073 1.0504322286885024 1.047422161447471 1.0444120942064399 1.0414020269654085 1.0383919597243774 1.0353818924833462 1.0323718252423149 1.0293617580012837 1.0263516907602523 1.0233416235192212 1.02033155627819 1.0173214890371587 1.0143114217961275 1.0113013545550964 1.008291287314065 1.0052812200730337 1.0022711528320025 0.9992610855909712 0.9962510183499401 0.9932409511089089 0.9902308838678775 0.9872208166268464 0.984210749385815 0.9812006821447838 0.9781906149037527 0.9751805476627213 0.9721704804216902 0.9691604131806588 0.9661503459396277 0.9631402786985963 0.9601302114575653 0.957120144216534 0.9541100769755027 0.9511000097344715 0.9480899424934403 0.945079875252409 0.9420698080113779 0.9390597407703467 0.9360496735293153 0.9255533911992697 0.8991090085935765 0.872664625987883 0.8462202433821896 0.8197758607764962 0.7933314781708026 0.7668870955651093 0.7404427129594158 0.7139983303537224 0.6875539477480291 0.6611095651423355 0.6346651825366422 0.6082207999309487 0.5817764173252553 0.5553320347195619 0.5288876521138686 0.502443269508175 0.47599888690248165 0.44955450429678817 0.42311012169109485 0.3966657390854015 0.37022135647970794 0.3437769738740147 0.3173325912683211 0.29088820866262777 0.26444382605693423 0.23799944345124086 0.21155506084554734 0.185110678239854 0.15866629563416068 0.13222191302846714 0.1057775304227738 0.07933314781708026 0.052888765211386926 0.026444382605693387 6.123233995736766e-17], nothing, nothing, "solid, ultra thick, blue, mark=none", "\$g(x),~n=3\$", nothing, nothing, nothing, false), PGFPlots.Plots.Linear(Real[-1.0471975511965976 -1.020753168590623 -0.9943087859846482 -0.9678644033786735 -0.9414200207726989 -0.9149756381667242 -0.8885312555607495 -0.8620868729547748 -0.8356424903488001 -0.8091981077428254 -0.7827537251368507 -0.756309342530876 -0.7298649599249014 -0.7034205773189267 -0.676976194712952 -0.6505318121069773 -0.6240874295010026 -0.5976430468950279 -0.5711986642890532 -0.5447542816830785 -0.5183098990771039 -0.4918655164711292 -0.4654211338651545 -0.4389767512591798 -0.4125323686532051 -0.38608798604723044 -0.35964360344125573 -0.33319922083528103 -0.3067548382293063 -0.2803104556233317 -0.253866073017357 -0.22742169041138227 -0.2009773078054076 -0.1745329251994329 -0.14808854259345822 -0.12164415998748353 -0.09519977738150884 -0.06875539477553415 -0.04231101216955946 -0.01586662956358477 0.01057775304238992 0.03702213564836461 0.0634665182543393 0.08991090086031399 0.11635528346628868 0.14279966607226335 0.16924404867823806 0.19568843128421273 0.22213281389018744 0.2485771964961621 0.2750215791021368 0.3014659617081115 0.32791034431408617 0.35435472692006087 0.3807991095260356 0.4072434921320103 0.4336878747379849 0.4601322573439596 0.48657663994993433 0.513021022555909 0.5394654051618837 0.5659097877678584 0.5923541703738331 0.6187985529798078 0.6452429355857825 0.6716873181917571 0.6981317007977318 0.7245760834037065 0.7510204660096812 0.7774648486156559 0.8039092312216306 0.8303536138276053 0.85679799643358 0.8832423790395546 0.9096867616455293 0.936131144251504 0.9625755268574787 0.9890199094634534 1.0154642920694281 1.0419086746754027 1.0683530572813775 1.0947974398873521 1.121241822493327 1.1476862050993015 1.1741305877052761 1.200574970311251 1.2270193529172255 1.2534637355232003 1.279908118129175 1.3063525007351497 1.3327968833411243 1.3592412659470992 1.3856856485530737 1.4121300311590483 1.4385744137650232 1.4650187963709977 1.4914631789769726 1.5179075615829472 1.544351944188922 1.5707963267948966; 0.5000000000000001 0.5229015071239198 0.5458030142478396 0.5687045213717593 0.5916060284956789 0.6145075356195986 0.6374090427435183 0.660310549867438 0.6832120569913578 0.7061135641152775 0.7290150712391972 0.7519165783631169 0.7748180854870363 0.7977195926109562 0.820621099734876 0.8435226068587957 0.8664241139827153 0.8858825794639515 0.892201271034379 0.8985199626048064 0.9048386541752338 0.911157345745661 0.9174760373160885 0.9237947288865158 0.9301134204569432 0.9364321120273704 0.9427508035977978 0.9490694951682253 0.9553881867386527 0.96170687830908 0.9680255698795074 0.9743442614499348 0.9806629530203622 0.9869816445907895 0.9933003361612169 0.9996190277316442 1.0059377193020715 1.012256410872499 1.0185751024429264 1.0248937940133538 1.0312124855837812 1.0375311771542086 1.0438498687246358 1.0501685602950632 1.0564872518654906 1.0469614367984457 1.034423096554129 1.0218847563098123 1.0093464160654957 0.9968080758211791 0.9842697355768624 0.9717313953325457 0.9591930550882292 0.9466547148439125 0.9341163745995957 0.9215780343552791 0.9090396941109624 0.8965013538666459 0.8839630136223292 0.8714246733780124 0.8588863331336958 0.8463479928893791 0.8338096526450625 0.8212713124007458 0.8087329721564291 0.7961946319121125 0.7836562916677958 0.7711179514234792 0.7585796111791624 0.7460412709348458 0.7335029306905292 0.7209645904462124 0.7084262502018959 0.687553947748029 0.6611095651423357 0.6346651825366422 0.6082207999309487 0.5817764173252553 0.5553320347195618 0.5288876521138686 0.502443269508175 0.47599888690248165 0.4495545042967881 0.4231101216910948 0.3966657390854014 0.370221356479708 0.3437769738740146 0.3173325912683211 0.29088820866262777 0.26444382605693423 0.23799944345124086 0.21155506084554732 0.18511067823985403 0.15866629563416068 0.13222191302846714 0.10577753042277381 0.07933314781708026 0.05288876521138693 0.026444382605693383 6.123233995736766e-17], nothing, nothing, "solid, ultra thick, green, mark=none", "\$g(x),~n=4\$", nothing, nothing, nothing, false)], "b) \$f(x) = \\cos(x)\$ over \$[- \\pi /3, \\pi/2 ]\$", "\$x\$", nothing, "\$f(x),~g(x)\$", nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, "at={(0.5,.05)}, anchor=south", nothing, nothing, nothing, nothing, nothing, nothing, "axis"), Axis(PGFPlots.Plots.Plot[PGFPlots.Plots.Linear(Real[-1.5707963267948966 -1.5390630676677268 -1.5073298085405573 -1.4755965494133876 -1.443863290286218 -1.4121300311590483 -1.3803967720318788 -1.348663512904709 -1.3169302537775396 -1.2851969946503699 -1.2534637355232003 -1.2217304763960306 -1.189997217268861 -1.1582639581416914 -1.1265306990145219 -1.0947974398873521 -1.0630641807601826 -1.0313309216330129 -0.9995976625058433 -0.9678644033786736 -0.936131144251504 -0.9043978851243344 -0.8726646259971648 -0.8409313668699951 -0.8091981077428255 -0.7774648486156559 -0.7457315894884863 -0.7139983303613167 -0.682265071234147 -0.6505318121069774 -0.6187985529798077 -0.5870652938526381 -0.5553320347254684 -0.5235987755982988 -0.49186551647112925 -0.46013225734395957 -0.42839899821678995 -0.39666573908962033 -0.3649324799624507 -0.3331992208352811 -0.30146596170811146 -0.26973270258094184 -0.23799944345377222 -0.20626618432660257 -0.17453292519943295 -0.14279966607226333 -0.11106640694509369 -0.07933314781792407 -0.04759988869075444 -0.015866629563584814 0.015866629563584814 0.04759988869075444 0.07933314781792407 0.11106640694509369 0.14279966607226333 0.17453292519943295 0.20626618432660257 0.23799944345377222 0.26973270258094184 0.30146596170811146 0.3331992208352811 0.3649324799624507 0.39666573908962033 0.42839899821678995 0.46013225734395957 0.49186551647112925 0.5235987755982988 0.5553320347254684 0.5870652938526381 0.6187985529798077 0.6505318121069774 0.682265071234147 0.7139983303613167 0.7457315894884863 0.7774648486156559 0.8091981077428255 0.8409313668699951 0.8726646259971648 0.9043978851243344 0.936131144251504 0.9678644033786736 0.9995976625058433 1.0313309216330129 1.0630641807601826 1.0947974398873521 1.1265306990145219 1.1582639581416914 1.189997217268861 1.2217304763960306 1.2534637355232003 1.2851969946503699 1.3169302537775396 1.348663512904709 1.3803967720318788 1.4121300311590483 1.443863290286218 1.4755965494133876 1.5073298085405573 1.5390630676677268 1.5707963267948966; -0.9171523356672744 -0.9119627958261791 -0.9064640454420515 -0.9006396946774484 -0.8944727447383962 -0.8879455997087871 -0.8810400841208581 -0.8737374669593465 -0.8660184928321752 -0.857863421069835 -0.8492520735370548 -0.8401638919516158 -0.8305780055037958 -0.8204733095531646 -0.8098285561443586 -0.7986224570269094 -0.786833799783009 -0.774441577558059 -0.7614251327489366 -0.7477643148313404 -0.7334396522980802 -0.718432538433136 -0.7027254303610717 -0.6863020604884362 -0.6691476590951106 -0.6512491864427922 -0.632595572350614 -0.6131779607520331 -0.5929899563026693 -0.5720278696681496 -0.5502909576988839 -0.5277816543117824 -0.5045057875656096 -0.4804727781564516 -0.45569581439246765 -0.43019199865202656 -0.40398246040411656 -0.37709243108944274 -0.34955127653572665 -0.321392483117054 -0.2926535945640816 -0.26337609718184857 -0.23360525221957293 -0.20338987523920404 -0.17278206351636377 -0.14183687374189782 -0.11061195353276 -0.07916713146226685 -0.047563971435735694 -0.01586529822333698 0.01586529822333698 0.047563971435735694 0.07916713146226685 0.11061195353276 0.14183687374189782 0.17278206351636377 0.20338987523920404 0.23360525221957293 0.26337609718184857 0.2926535945640816 0.321392483117054 0.34955127653572665 0.37709243108944274 0.40398246040411656 0.43019199865202656 0.45569581439246765 0.4804727781564516 0.5045057875656096 0.5277816543117824 0.5502909576988839 0.5720278696681496 0.5929899563026693 0.6131779607520331 0.632595572350614 0.6512491864427922 0.6691476590951106 0.6863020604884362 0.7027254303610717 0.718432538433136 0.7334396522980802 0.7477643148313404 0.7614251327489366 0.774441577558059 0.786833799783009 0.7986224570269094 0.8098285561443586 0.8204733095531646 0.8305780055037958 0.8401638919516158 0.8492520735370548 0.857863421069835 0.8660184928321752 0.8737374669593465 0.8810400841208581 0.8879455997087871 0.8944727447383962 0.9006396946774484 0.9064640454420515 0.9119627958261791 0.9171523356672744], nothing, nothing, "solid, ultra thick, black, mark=none", "\$f(x)\$", nothing, nothing, nothing, false), PGFPlots.Plots.Linear(Real[-1.5707963267948966 -1.5390630676677268 -1.5073298085405573 -1.4755965494133876 -1.443863290286218 -1.4121300311590483 -1.3803967720318788 -1.348663512904709 -1.3169302537775396 -1.2851969946503699 -1.2534637355232003 -1.2217304763960306 -1.189997217268861 -1.1582639581416914 -1.1265306990145219 -1.0947974398873521 -1.0630641807601826 -1.0313309216330129 -0.9995976625058433 -0.9678644033786736 -0.936131144251504 -0.9043978851243344 -0.8726646259971648 -0.8409313668699951 -0.8091981077428255 -0.7774648486156559 -0.7457315894884863 -0.7139983303613167 -0.682265071234147 -0.6505318121069774 -0.6187985529798077 -0.5870652938526381 -0.5553320347254684 -0.5235987755982988 -0.49186551647112925 -0.46013225734395957 -0.42839899821678995 -0.39666573908962033 -0.3649324799624507 -0.3331992208352811 -0.30146596170811146 -0.26973270258094184 -0.23799944345377222 -0.20626618432660257 -0.17453292519943295 -0.14279966607226333 -0.11106640694509369 -0.07933314781792407 -0.04759988869075444 -0.015866629563584814 0.015866629563584814 0.04759988869075444 0.07933314781792407 0.11106640694509369 0.14279966607226333 0.17453292519943295 0.20626618432660257 0.23799944345377222 0.26973270258094184 0.30146596170811146 0.3331992208352811 0.3649324799624507 0.39666573908962033 0.42839899821678995 0.46013225734395957 0.49186551647112925 0.5235987755982988 0.5553320347254684 0.5870652938526381 0.6187985529798077 0.6505318121069774 0.682265071234147 0.7139983303613167 0.7457315894884863 0.7774648486156559 0.8091981077428255 0.8409313668699951 0.8726646259971648 0.9043978851243344 0.936131144251504 0.9678644033786736 0.9995976625058433 1.0313309216330129 1.0630641807601826 1.0947974398873521 1.1265306990145219 1.1582639581416914 1.189997217268861 1.2217304763960306 1.2534637355232003 1.2851969946503699 1.3169302537775396 1.348663512904709 1.3803967720318788 1.4121300311590483 1.443863290286218 1.4755965494133876 1.5073298085405573 1.5390630676677268 1.5707963267948966; -0.9171523356672744 -0.906413384152864 -0.8956744326384536 -0.8849354811240433 -0.8741965296096329 -0.8634575780952225 -0.8527186265808121 -0.8419796750664017 -0.8312407235519915 -0.820501772037581 -0.8097628205231708 -0.7990238690087603 -0.78828491749435 -0.7775459659799396 -0.7668070144655293 -0.756068062951119 -0.7453291114367087 -0.7345901599222981 -0.7238512084078879 -0.7131122568934775 -0.7023733053790671 -0.6916343538646567 -0.6808954023502464 -0.6701564508358361 -0.6594174993214256 -0.6486785478070153 -0.6273365491443288 -0.6006413768403148 -0.5739462045363009 -0.5472510322322869 -0.5205558599282728 -0.49386068762425883 -0.4671655153202448 -0.44047034301623084 -0.41377517071221687 -0.38707999840820284 -0.3603848261041888 -0.33368965380017485 -0.3069944814961609 -0.2802993091921469 -0.25360413688813294 -0.22690896458411894 -0.20021379228010497 -0.17351861997609094 -0.14682344767207695 -0.12012827536806296 -0.09343310306404896 -0.06673793076003498 -0.04004275845602098 -0.013347586152006997 0.01586662956339088 0.047599888690172634 0.07933314781695439 0.11106640694373614 0.14279966607051792 0.17453292519729968 0.20626618432408142 0.23799944345086319 0.2697327025776449 0.3014659617044267 0.33319922083120845 0.3649324799579902 0.39666573908477193 0.4283989982115537 0.46013225733833546 0.4918655164651172 0.5235987755918989 0.5553320347186808 0.5870652938454625 0.6187985529722442 0.6505318120990261 0.6822650712258078 0.7139983303525895 0.7457315894793712 0.7774648486061531 0.7961864771659408 0.8012267212701629 0.8062669653743852 0.8113072094786076 0.8163474535828297 0.821387697687052 0.8264279417912741 0.8314681858954964 0.8365084299997188 0.8415486741039409 0.8465889182081632 0.8516291623123854 0.8566694064166076 0.8617096505208297 0.866749894625052 0.8717901387292744 0.8768303828334965 0.8818706269377188 0.8869108710419411 0.8919511151461633 0.8969913592503855 0.9020316033546077 0.90707184745883 0.9121120915630522 0.9171523356672744], nothing, nothing, "solid, ultra thick, blue, mark=none", "upper bound, \$n=2\$", nothing, nothing, nothing, false), PGFPlots.Plots.Linear(Real[-1.5707963267948966 -1.5390630676677268 -1.5073298085405573 -1.4755965494133876 -1.443863290286218 -1.4121300311590483 -1.3803967720318788 -1.348663512904709 -1.3169302537775396 -1.2851969946503699 -1.2534637355232003 -1.2217304763960306 -1.189997217268861 -1.1582639581416914 -1.1265306990145219 -1.0947974398873521 -1.0630641807601826 -1.0313309216330129 -0.9995976625058433 -0.9678644033786736 -0.936131144251504 -0.9043978851243344 -0.8726646259971648 -0.8409313668699951 -0.8091981077428255 -0.7774648486156559 -0.7457315894884863 -0.7139983303613167 -0.682265071234147 -0.6505318121069774 -0.6187985529798077 -0.5870652938526381 -0.5553320347254684 -0.5235987755982988 -0.49186551647112925 -0.46013225734395957 -0.42839899821678995 -0.39666573908962033 -0.3649324799624507 -0.3331992208352811 -0.30146596170811146 -0.26973270258094184 -0.23799944345377222 -0.20626618432660257 -0.17453292519943295 -0.14279966607226333 -0.11106640694509369 -0.07933314781792407 -0.04759988869075444 -0.015866629563584814 0.015866629563584814 0.04759988869075444 0.07933314781792407 0.11106640694509369 0.14279966607226333 0.17453292519943295 0.20626618432660257 0.23799944345377222 0.26973270258094184 0.30146596170811146 0.3331992208352811 0.3649324799624507 0.39666573908962033 0.42839899821678995 0.46013225734395957 0.49186551647112925 0.5235987755982988 0.5553320347254684 0.5870652938526381 0.6187985529798077 0.6505318121069774 0.682265071234147 0.7139983303613167 0.7457315894884863 0.7774648486156559 0.8091981077428255 0.8409313668699951 0.8726646259971648 0.9043978851243344 0.936131144251504 0.9678644033786736 0.9995976625058433 1.0313309216330129 1.0630641807601826 1.0947974398873521 1.1265306990145219 1.1582639581416914 1.189997217268861 1.2217304763960306 1.2534637355232003 1.2851969946503699 1.3169302537775396 1.348663512904709 1.3803967720318788 1.4121300311590483 1.443863290286218 1.4755965494133876 1.5073298085405573 1.5390630676677268 1.5707963267948966; -0.9171523356672744 -0.9121120915630522 -0.90707184745883 -0.9020316033546077 -0.8969913592503855 -0.8919511151461633 -0.8869108710419411 -0.8818706269377188 -0.8768303828334965 -0.8717901387292744 -0.866749894625052 -0.8617096505208297 -0.8566694064166076 -0.8516291623123854 -0.8465889182081632 -0.8415486741039409 -0.8365084299997188 -0.8314681858954964 -0.8264279417912741 -0.821387697687052 -0.8163474535828297 -0.8113072094786076 -0.8062669653743852 -0.8012267212701629 -0.7961864771659408 -0.7774648486061531 -0.7457315894793712 -0.7139983303525895 -0.6822650712258078 -0.6505318120990261 -0.6187985529722442 -0.5870652938454625 -0.5553320347186808 -0.5235987755918989 -0.4918655164651172 -0.46013225733833546 -0.4283989982115537 -0.39666573908477193 -0.3649324799579902 -0.33319922083120845 -0.3014659617044267 -0.2697327025776449 -0.23799944345086319 -0.20626618432408142 -0.17453292519729968 -0.14279966607051792 -0.11106640694373614 -0.07933314781695439 -0.047599888690172634 -0.01586662956339088 0.013347586152006997 0.04004275845602098 0.06673793076003498 0.09343310306404896 0.12012827536806296 0.14682344767207695 0.17351861997609094 0.20021379228010497 0.22690896458411894 0.25360413688813294 0.2802993091921469 0.3069944814961609 0.33368965380017485 0.3603848261041888 0.38707999840820284 0.41377517071221687 0.44047034301623084 0.4671655153202448 0.49386068762425883 0.5205558599282728 0.5472510322322869 0.5739462045363009 0.6006413768403148 0.6273365491443288 0.6486785478070153 0.6594174993214256 0.6701564508358361 0.6808954023502464 0.6916343538646567 0.7023733053790671 0.7131122568934775 0.7238512084078879 0.7345901599222981 0.7453291114367087 0.756068062951119 0.7668070144655293 0.7775459659799396 0.78828491749435 0.7990238690087603 0.8097628205231708 0.820501772037581 0.8312407235519915 0.8419796750664017 0.8527186265808121 0.8634575780952225 0.8741965296096329 0.8849354811240433 0.8956744326384536 0.906413384152864 0.9171523356672744], nothing, nothing, "solid, ultra thick, red, mark=none", "lower bound, \$n=2\$", nothing, nothing, nothing, false)], "\$f(x) = \\tanh(x)\$ over \$[-\\pi/2, \\pi/2]\$", "\$x\$", nothing, "\$f(x),~g(x)\$", nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, "at={(0.00,.95)}, anchor=north west", nothing, nothing, nothing, nothing, nothing, nothing, "axis")], (2, 2), nothing, "horizontal sep=2cm, vertical sep=1.75cm") Test Summary: | Total Time test methods notebook | 0 1m10.3s Testing OVERT tests passed Testing completed after 419.58s PkgEval succeeded after 1947.93s