Package evaluation of MatrixProductBP on Julia 1.11.4 (a71dd056e0*) started at 2025-04-08T21:44:50.388 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.33s ################################################################################ # Installation # Installing MatrixProductBP... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [3d39929c] + MatrixProductBP v0.9.0 Updating `~/.julia/environments/v1.11/Manifest.toml` [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.3.0 [66dad0bd] + AliasTables v1.1.3 [dce04be8] + ArgCheck v2.5.0 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.18.0 [198e06fe] + BangBang v0.4.4 [9718e550] + Baselet v0.1.1 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] + CPUSummary v0.2.6 [49dc2e85] + Calculus v0.5.2 [217fe2f1] + CavityTools v1.3.1 [d360d2e6] + ChainRulesCore v1.25.1 [fb6a15b2] + CloseOpenIntervals v0.1.13 [f70d9fcc] + CommonWorldInvalidations v1.0.0 [34da2185] + Compat v4.16.0 [a33af91c] + CompositionsBase v0.1.2 [187b0558] + ConstructionBase v1.5.8 [6add18c4] + ContextVariablesX v0.1.3 [adafc99b] + CpuId v0.3.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [244e2a9f] + DefineSingletons v0.1.2 [b552c78f] + DiffRules v1.15.1 [31c24e10] + Distributions v0.25.118 [ffbed154] + DocStringExtensions v0.9.4 [cc61a311] + FLoops v0.2.2 [b9860ae5] + FLoopsBase v0.1.1 [9aa1b823] + FastClosures v0.3.2 [1a297f60] + FillArrays v1.13.0 [9c68100b] + FoldsThreads v0.1.2 [069b7b12] + FunctionWrappers v1.1.3 ⌅ [46192b85] + GPUArraysCore v0.1.6 [86223c79] + Graphs v1.12.1 [f0d1745a] + HalfIntegers v1.6.0 [3e5b6fbb] + HostCPUFeatures v0.1.17 [34004b35] + HypergeometricFunctions v0.3.28 [615f187c] + IfElse v0.1.1 [8a731c18] + IndexedGraphs v0.6.1 [d25df0c9] + Inflate v0.1.5 [22cec73e] + InitialValues v0.3.1 [18e54dd8] + IntegerMathUtils v0.1.2 [3587e190] + InverseFunctions v0.1.17 [41ab1584] + InvertedIndices v1.3.1 [92d709cd] + IrrationalConstants v0.2.4 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.0 [b14d175d] + JuliaVariables v0.2.4 [2c470bb0] + Kronecker v0.5.5 ⌅ [0b1a1467] + KrylovKit v0.8.3 [8ac3fa9e] + LRUCache v1.6.2 [10f19ff3] + LayoutPointers v0.1.17 [50d2b5c4] + Lazy v0.15.1 [1fad7336] + LazyStack v0.1.3 [2ab3a3ac] + LogExpFunctions v0.3.29 [aa2f6b4e] + LogarithmicNumbers v1.4.0 [e6f89c97] + LoggingExtras v1.1.0 [bdcacae8] + LoopVectorization v0.12.172 ⌅ [33e6dc65] + MKL v0.7.0 [d8e11817] + MLStyle v0.4.17 ⌅ [bb1c41ca] + MPSKit v0.11.6 [1914dd2f] + MacroTools v0.5.15 [d125e4d3] + ManualMemory v0.1.8 [3d39929c] + MatrixProductBP v0.9.0 [eff96d63] + Measurements v2.12.0 [128add7d] + MicroCollections v0.2.0 [e1d29d7a] + Missings v1.2.0 [77ba4419] + NaNMath v1.1.3 [71a1bf82] + NameResolution v0.1.5 [356022a1] + NamedDims v1.2.2 [6fe1bfb0] + OffsetArrays v1.16.0 ⌅ [77e91f04] + OptimKit v0.3.1 [bac558e1] + OrderedCollections v1.8.0 [90014a1f] + PDMats v0.11.33 [65ce6f38] + PackageExtensionCompat v1.0.2 [1d0040c9] + PolyesterWeave v0.2.2 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [8162dcfd] + PrettyPrint v0.2.0 [27ebfcd6] + Primes v0.5.7 [92933f4c] + ProgressMeter v1.10.4 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [308eb6b3] + RationalRoots v0.2.1 [3cdcf5f2] + RecipesBase v1.3.4 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.8.0 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 [efcf1570] + Setfield v1.1.2 [699a6c99] + SimpleTraits v0.9.4 [a2af1166] + SortingAlgorithms v1.2.1 [276daf66] + SpecialFunctions v2.5.0 [171d559e] + SplittablesBase v0.1.15 [aedffcd0] + Static v1.2.0 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.0 [2913bbd2] + StatsBase v0.34.4 [4c63d2b9] + StatsFuns v1.4.0 [5e0ebb24] + Strided v2.3.0 [4db3bf67] + StridedViews v0.4.1 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.0 [02d47bb6] + TensorCast v0.4.8 ⌅ [07d1fe3e] + TensorKit v0.12.0 ⌃ [11fa318c] + TensorKitManifolds v0.6.2 ⌅ [6aa20fa7] + TensorOperations v4.0.6 [89893e69] + TensorTrains v0.12.1 [8290d209] + ThreadingUtilities v0.5.2 [d94bfb22] + TrackingHeaps v0.1.0 [28d57a85] + Transducers v0.4.84 [24ddb15e] + TransmuteDims v0.1.16 [bc48ee85] + Tullio v0.3.8 [9d95972d] + TupleTools v1.6.0 [3a884ed6] + UnPack v1.0.2 [41fe7b60] + Unzip v0.2.0 ⌅ [409d34a3] + VectorInterface v0.4.9 [3d5dd08c] + VectorizationBase v0.21.71 [9f57e263] + WignerSymbols v2.0.0 ⌅ [1d5cc7b8] + IntelOpenMP_jll v2024.2.1+0 ⌅ [856f044c] + MKL_jll v2024.2.0+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [1317d2d5] + oneTBB_jll v2022.0.0+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [4af54fe1] + LazyArtifacts v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.6.0+0 [e37daf67] + LibGit2_jll v1.7.2+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.6+0 [14a3606d] + MozillaCACerts_jll v2023.12.12 [4536629a] + OpenBLAS_jll v0.3.27+1 [05823500] + OpenLibm_jll v0.8.5+0 [bea87d4a] + SuiteSparse_jll v7.7.0+0 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.59.0+0 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 5.99s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 229.16s ################################################################################ # Testing # Testing MatrixProductBP Status `/tmp/jl_6XQGYB/Project.toml` [4c88cf16] Aqua v0.8.11 [31c24e10] Distributions v0.25.118 [86223c79] Graphs v1.12.1 [8a731c18] IndexedGraphs v0.6.1 [3d39929c] MatrixProductBP v0.9.0 [89893e69] TensorTrains v0.12.1 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_6XQGYB/Manifest.toml` [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.3.0 [66dad0bd] AliasTables v1.1.3 [4c88cf16] Aqua v0.8.11 [dce04be8] ArgCheck v2.5.0 [ec485272] ArnoldiMethod v0.4.0 [4fba245c] ArrayInterface v7.18.0 [198e06fe] BangBang v0.4.4 [9718e550] Baselet v0.1.1 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] CPUSummary v0.2.6 [49dc2e85] Calculus v0.5.2 [217fe2f1] CavityTools v1.3.1 [d360d2e6] ChainRulesCore v1.25.1 [fb6a15b2] CloseOpenIntervals v0.1.13 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.16.0 [a33af91c] CompositionsBase v0.1.2 [187b0558] ConstructionBase v1.5.8 [6add18c4] ContextVariablesX v0.1.3 [adafc99b] CpuId v0.3.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [b552c78f] DiffRules v1.15.1 [31c24e10] Distributions v0.25.118 [ffbed154] DocStringExtensions v0.9.4 [cc61a311] FLoops v0.2.2 [b9860ae5] FLoopsBase v0.1.1 [9aa1b823] FastClosures v0.3.2 [1a297f60] FillArrays v1.13.0 [9c68100b] FoldsThreads v0.1.2 [069b7b12] FunctionWrappers v1.1.3 ⌅ [46192b85] GPUArraysCore v0.1.6 [86223c79] Graphs v1.12.1 [f0d1745a] HalfIntegers v1.6.0 [3e5b6fbb] HostCPUFeatures v0.1.17 [34004b35] HypergeometricFunctions v0.3.28 [615f187c] IfElse v0.1.1 [8a731c18] IndexedGraphs v0.6.1 [d25df0c9] Inflate v0.1.5 [22cec73e] InitialValues v0.3.1 [18e54dd8] IntegerMathUtils v0.1.2 [3587e190] InverseFunctions v0.1.17 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.4 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.0 [b14d175d] JuliaVariables v0.2.4 [2c470bb0] Kronecker v0.5.5 ⌅ [0b1a1467] KrylovKit v0.8.3 [8ac3fa9e] LRUCache v1.6.2 [10f19ff3] LayoutPointers v0.1.17 [50d2b5c4] Lazy v0.15.1 [1fad7336] LazyStack v0.1.3 [2ab3a3ac] LogExpFunctions v0.3.29 [aa2f6b4e] LogarithmicNumbers v1.4.0 [e6f89c97] LoggingExtras v1.1.0 [bdcacae8] LoopVectorization v0.12.172 ⌅ [33e6dc65] MKL v0.7.0 [d8e11817] MLStyle v0.4.17 ⌅ [bb1c41ca] MPSKit v0.11.6 [1914dd2f] MacroTools v0.5.15 [d125e4d3] ManualMemory v0.1.8 [3d39929c] MatrixProductBP v0.9.0 [eff96d63] Measurements v2.12.0 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [77ba4419] NaNMath v1.1.3 [71a1bf82] NameResolution v0.1.5 [356022a1] NamedDims v1.2.2 [6fe1bfb0] OffsetArrays v1.16.0 ⌅ [77e91f04] OptimKit v0.3.1 [bac558e1] OrderedCollections v1.8.0 [90014a1f] PDMats v0.11.33 [65ce6f38] PackageExtensionCompat v1.0.2 [1d0040c9] PolyesterWeave v0.2.2 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [8162dcfd] PrettyPrint v0.2.0 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.10.4 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [308eb6b3] RationalRoots v0.2.1 [3cdcf5f2] RecipesBase v1.3.4 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.8.0 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 [efcf1570] Setfield v1.1.2 [699a6c99] SimpleTraits v0.9.4 [a2af1166] SortingAlgorithms v1.2.1 [276daf66] SpecialFunctions v2.5.0 [171d559e] SplittablesBase v0.1.15 [aedffcd0] Static v1.2.0 [0d7ed370] StaticArrayInterface v1.8.0 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.0 [2913bbd2] StatsBase v0.34.4 [4c63d2b9] StatsFuns v1.4.0 [5e0ebb24] Strided v2.3.0 [4db3bf67] StridedViews v0.4.1 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.0 [02d47bb6] TensorCast v0.4.8 ⌅ [07d1fe3e] TensorKit v0.12.0 ⌃ [11fa318c] TensorKitManifolds v0.6.2 ⌅ [6aa20fa7] TensorOperations v4.0.6 [89893e69] TensorTrains v0.12.1 [8290d209] ThreadingUtilities v0.5.2 [d94bfb22] TrackingHeaps v0.1.0 [28d57a85] Transducers v0.4.84 [24ddb15e] TransmuteDims v0.1.16 [bc48ee85] Tullio v0.3.8 [9d95972d] TupleTools v1.6.0 [3a884ed6] UnPack v1.0.2 [41fe7b60] Unzip v0.2.0 ⌅ [409d34a3] VectorInterface v0.4.9 [3d5dd08c] VectorizationBase v0.21.71 [9f57e263] WignerSymbols v2.0.0 ⌅ [1d5cc7b8] IntelOpenMP_jll v2024.2.1+0 ⌅ [856f044c] MKL_jll v2024.2.0+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [1317d2d5] oneTBB_jll v2022.0.0+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [4af54fe1] LazyArtifacts v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [1a1011a3] SharedArrays v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [05823500] OpenLibm_jll v0.8.5+0 [bea87d4a] SuiteSparse_jll v7.7.0+0 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... Test Summary: | Pass Total Time Aqua | 11 11 1m45.0s Running PopDyn: iter 2 Time: 0:00:00 it: 2/100 ε: 0.000135582281922/1.0e-15     Running PopDyn: iter 6 Time: 0:00:00 it: 6/100 ε: 0.0027857222089/1.0e-15     Running PopDyn: iter 9 Time: 0:00:00 it: 9/100 ε: 0.009709224802218/1.0e-15     Running PopDyn: iter 12 Time: 0:00:00 it: 12/100 ε: 0.013728915724167/1.0e-15     Running PopDyn: iter 15 Time: 0:00:00 it: 15/100 ε: 0.049178240521799/1.0e-15     Running PopDyn: iter 18 Time: 0:00:00 it: 18/100 ε: 0.064289084247457/1.0e-15     Running PopDyn: iter 21 Time: 0:00:01 it: 21/100 ε: 0.215486627083781/1.0e-15     Running PopDyn: iter 24 Time: 0:00:01 it: 24/100 ε: 0.271233503025629/1.0e-15     Running PopDyn: iter 27 Time: 0:00:01 it: 27/100 ε: 0.624488757203093/1.0e-15     Running PopDyn: iter 30 Time: 0:00:01 it: 30/100 ε: 0.433193178931371/1.0e-15     Running PopDyn: iter 33 Time: 0:00:01 it: 33/100 ε: 0.364790616767903/1.0e-15     Running PopDyn: iter 36 Time: 0:00:01 it: 36/100 ε: 0.07602447438241/1.0e-15     Running PopDyn: iter 39 Time: 0:00:01 it: 39/100 ε: 0.03301194980732/1.0e-15     Running PopDyn: iter 42 Time: 0:00:02 it: 42/100 ε: 0.00403610058043/1.0e-15     Running PopDyn: iter 45 Time: 0:00:02 it: 45/100 ε: 0.001590812765958/1.0e-15     Running PopDyn: iter 48 Time: 0:00:02 it: 48/100 ε: 0.000185170067022/1.0e-15     Running PopDyn: iter 51 Time: 0:00:02 it: 51/100 ε: 7.2373923341e-5/1.0e-15     Running PopDyn: iter 54 Time: 0:00:02 it: 54/100 ε: 8.397442356e-6/1.0e-15     Running PopDyn: iter 57 Time: 0:00:02 it: 57/100 ε: 3.274849908e-6/1.0e-15     Running PopDyn: iter 60 Time: 0:00:02 it: 60/100 ε: 3.79999367e-7/1.0e-15     Running PopDyn: iter 63 Time: 0:00:02 it: 63/100 ε: 1.48876248e-7/1.0e-15     Running PopDyn: iter 66 Time: 0:00:03 it: 66/100 ε: 1.7278887e-8/1.0e-15     Running PopDyn: iter 69 Time: 0:00:03 it: 69/100 ε: 6.737801e-9/1.0e-15     Running PopDyn: iter 72 Time: 0:00:03 it: 72/100 ε: 7.78515e-10/1.0e-15     Running PopDyn: iter 75 Time: 0:00:03 it: 75/100 ε: 3.05114e-10/1.0e-15     Running PopDyn: iter 78 Time: 0:00:03 it: 78/100 ε: 3.5409e-11/1.0e-15     Running PopDyn: iter 81 Time: 0:00:03 it: 81/100 ε: 1.3826e-11/1.0e-15     Running PopDyn: iter 84 Time: 0:00:03 it: 84/100 ε: 1.598e-12/1.0e-15     Running PopDyn: iter 87 Time: 0:00:03 it: 87/100 ε: 6.32e-13/1.0e-15     Running PopDyn: iter 90 Time: 0:00:04 it: 90/100 ε: 9.1e-14/1.0e-15     Running PopDyn: iter 93 Time: 0:00:04 it: 93/100 ε: 3.3e-14/1.0e-15     Running PopDyn: iter 96 Time: 0:00:04 it: 96/100 ε: 1.0e-15/1.0e-15  Test Summary: | Pass Total Time Equilibrium | 1 1 0.2s Running MPBP: iter 2 Time: 0:03:34 Δ: 0.49331867668762497 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 12 Time: 0:03:35 Δ: 0.005895222904047426 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 14 Time: 0:03:35 Δ: 0.002279822415556465 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 16 Time: 0:03:35 Δ: 0.001175055820304971 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 18 Time: 0:03:35 Δ: 0.0007534624752860708 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 20 Time: 0:03:36 Δ: 0.00012928886169305542 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 22 Time: 0:03:36 Δ: 0.00015162459785167393 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 24 Time: 0:03:36 Δ: 7.575588020181101e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 26 Time: 0:03:36 Δ: 2.7838475465946644e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 28 Time: 0:03:36 Δ: 2.1340373916878264e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 30 Time: 0:03:36 Δ: 5.134074810397848e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 32 Time: 0:03:37 Δ: 4.294573034080429e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 34 Time: 0:03:37 Δ: 2.3964953022037605e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 36 Time: 0:03:37 Δ: 6.086776094260671e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 38 Time: 0:03:37 Δ: 5.707849650704588e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 40 Time: 0:03:37 Δ: 2.0019238711199705e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 42 Time: 0:03:37 Δ: 1.1360508889168841e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 44 Time: 0:03:37 Δ: 7.169934068684825e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 46 Time: 0:03:38 Δ: 1.268482807681437e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 48 Time: 0:03:38 Δ: 1.5308611933662064e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 50 Time: 0:03:38 Δ: 6.9413135239670964e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 52 Time: 0:03:38 Δ: 2.7943998226476197e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 54 Time: 0:03:38 Δ: 2.0397492583867916e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 56 Time: 0:03:38 Δ: 4.4352521655355304e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 58 Time: 0:03:38 Δ: 4.304709921854055e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 60 Time: 0:03:39 Δ: 2.2299428970029567e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 62 Time: 0:03:39 Δ: 6.222644621800555e-11 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 64 Time: 0:03:39 Δ: 5.5189408598721457e-11 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 66 Time: 0:03:39 Δ: 1.7909229654833325e-11 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 68 Time: 0:03:39 Δ: 1.1421308343528835e-11 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 70 Time: 0:03:39 Δ: 6.756817327868703e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 72 Time: 0:03:39 Δ: 1.2883027977750316e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 74 Time: 0:03:40 Δ: 1.5218937221561646e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 76 Time: 0:03:40 Δ: 6.437073096776658e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 78 Time: 0:03:40 Δ: 2.831068712794149e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 80 Time: 0:03:40 Δ: 1.9317880628477724e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 82 Time: 0:03:40 Δ: 3.952393967665557e-14 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 84 Time: 0:03:40 Δ: 4.3076653355456074e-14 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 86 Time: 0:03:40 Δ: 1.887379141862766e-14 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 88 Time: 0:03:41 Δ: 6.217248937900877e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 90 Time: 0:03:41 Δ: 5.995204332975845e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 92 Time: 0:03:41 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 94 Time: 0:03:41 Δ: 3.552713678800501e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 96 Time: 0:03:41 Δ: 3.552713678800501e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 98 Time: 0:03:41 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 100 Time: 0:03:41 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 102 Time: 0:03:41 Δ: 1.1102230246251565e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 104 Time: 0:03:42 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 106 Time: 0:03:56 Δ: 0.48881301730495075 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 107 Time: 0:03:57 Δ: 0.526086405414449 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 108 Time: 0:03:57 Δ: 0.055257486032860736 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 109 Time: 0:03:57 Δ: 0.044943949630847024 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 110 Time: 0:03:57 Δ: 0.013056834336795387 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 111 Time: 0:03:57 Δ: 0.00970213997597047 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 112 Time: 0:03:58 Δ: 0.0020283160543952405 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 113 Time: 0:03:58 Δ: 0.0016775718997126265 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 114 Time: 0:03:58 Δ: 0.0003916353603963252 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 115 Time: 0:03:58 Δ: 0.0003506302811315809 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 116 Time: 0:03:59 Δ: 6.882256652440688e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 117 Time: 0:03:59 Δ: 6.112898798571464e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 118 Time: 0:03:59 Δ: 1.2951035046837589e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 119 Time: 0:03:59 Δ: 1.2519248070441691e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 120 Time: 0:03:59 Δ: 2.462926454338543e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 121 Time: 0:04:00 Δ: 2.23020803624685e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 122 Time: 0:04:00 Δ: 4.4618194405821043e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 123 Time: 0:04:00 Δ: 4.3988758990920473e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 124 Time: 0:04:00 Δ: 8.513967131307254e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 125 Time: 0:04:00 Δ: 7.963854620207655e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 126 Time: 0:04:01 Δ: 1.5516956164418616e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 127 Time: 0:04:01 Δ: 1.5274037368229187e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 128 Time: 0:04:01 Δ: 2.9347491103948187e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 129 Time: 0:04:01 Δ: 2.8276767594093144e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 130 Time: 0:04:01 Δ: 6.112599315599709e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 131 Time: 0:04:01 Δ: 5.283464776795199e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 132 Time: 0:04:02 Δ: 1.2120104919688401e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 133 Time: 0:04:02 Δ: 1.000204363776902e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 134 Time: 0:04:02 Δ: 2.5909052681072353e-11 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 135 Time: 0:04:02 Δ: 1.8523627076660887e-11 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 136 Time: 0:04:03 Δ: 5.192291041566932e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 137 Time: 0:04:03 Δ: 3.5162983635927958e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 138 Time: 0:04:03 Δ: 1.070699084948501e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 139 Time: 0:04:03 Δ: 6.52589093874667e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 140 Time: 0:04:04 Δ: 2.149391775674303e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 141 Time: 0:04:04 Δ: 1.2256862191861728e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 142 Time: 0:04:04 Δ: 4.196643033083092e-14 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 143 Time: 0:04:04 Δ: 2.2870594307278225e-14 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 144 Time: 0:04:04 Δ: 9.992007221626409e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 145 Time: 0:04:05 Δ: 5.10702591327572e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 146 Time: 0:04:05 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 147 Time: 0:04:05 Δ: 1.1102230246251565e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 148 Time: 0:04:06 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 149 Time: 0:04:06 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 150 Time: 0:04:06 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 151 Time: 0:04:06 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 152 Time: 0:04:07 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 153 Time: 0:04:07 Δ: 1.1102230246251565e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 154 Time: 0:04:07 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 155 Time: 0:04:07 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 156 Time: 0:04:08 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 157 Time: 0:04:08 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 158 Time: 0:04:08 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 159 Time: 0:04:08 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 160 Time: 0:04:09 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 161 Time: 0:04:09 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 162 Time: 0:04:09 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 163 Time: 0:04:10 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 164 Time: 0:04:10 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 165 Time: 0:04:10 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 166 Time: 0:04:10 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 167 Time: 0:04:10 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 168 Time: 0:04:10 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 169 Time: 0:04:11 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 170 Time: 0:04:11 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 171 Time: 0:04:11 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 172 Time: 0:04:11 Δ: 1.1102230246251565e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 173 Time: 0:04:12 Δ: 1.1102230246251565e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 174 Time: 0:04:12 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 175 Time: 0:04:12 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 176 Time: 0:04:12 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 177 Time: 0:04:13 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 178 Time: 0:04:13 Δ: 3.1086244689504383e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 179 Time: 0:04:13 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 180 Time: 0:04:13 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 181 Time: 0:04:14 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 182 Time: 0:04:14 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 183 Time: 0:04:14 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 184 Time: 0:04:14 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 185 Time: 0:04:15 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 186 Time: 0:04:15 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 187 Time: 0:04:15 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 188 Time: 0:04:15 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 189 Time: 0:04:16 Δ: 3.1086244689504383e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 190 Time: 0:04:16 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 191 Time: 0:04:16 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 192 Time: 0:04:16 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 193 Time: 0:04:17 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 194 Time: 0:04:17 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 195 Time: 0:04:17 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 196 Time: 0:04:17 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 197 Time: 0:04:18 Δ: 1.1102230246251565e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 198 Time: 0:04:18 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 199 Time: 0:04:18 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 200 Time: 0:04:18 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 201 Time: 0:04:19 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 202 Time: 0:04:19 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 203 Time: 0:04:19 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 204 Time: 0:04:19 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 205 Time: 0:04:20 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 206 Time: 0:04:20 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 207 Time: 0:04:20 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 208 Time: 0:04:20 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 209 Time: 0:04:21 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 210 Time: 0:04:21 Δ: 1.1102230246251565e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 211 Time: 0:04:21 Δ: 8.881784197001252e-16 trunc: ("SVD tolerance", "0.0")  Test Summary: | Pass Total Time Glauber infinite graph | 2 2 4m27.2s Running MPBP: iter 2 Time: 0:00:01 Δ: 0.3774257691257097 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 4 Time: 0:00:01 Δ: 0.00441828521102372 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 6 Time: 0:00:01 Δ: 1.1575138523456374e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 8 Time: 0:00:01 Δ: 3.7599977575908383e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 10 Time: 0:00:01 Δ: 3.0330713496340422e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 12 Time: 0:00:02 Δ: 1.61402002873956e-11 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 14 Time: 0:00:02 Δ: 3.872457909892546e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 16 Time: 0:00:02 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 18 Time: 0:00:02 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 20 Time: 0:00:02 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 22 Time: 0:00:04 Δ: 0.4814217511863872 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 24 Time: 0:00:04 Δ: 0.04579323968544169 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 25 Time: 0:00:04 Δ: 0.004817938416089795 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 26 Time: 0:00:04 Δ: 0.0004655584267223567 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 27 Time: 0:00:04 Δ: 1.4981102885336384e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 28 Time: 0:00:05 Δ: 4.1235162417940785e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 29 Time: 0:00:05 Δ: 6.650030333066326e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 30 Time: 0:00:05 Δ: 4.5314401564411355e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 31 Time: 0:00:05 Δ: 1.968098795046558e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 32 Time: 0:00:05 Δ: 6.826259557612957e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 33 Time: 0:00:05 Δ: 8.01581023779363e-11 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 34 Time: 0:00:06 Δ: 3.361311229355124e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 35 Time: 0:00:06 Δ: 4.4297898682543746e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 36 Time: 0:00:06 Δ: 1.0014211682118912e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 37 Time: 0:00:06 Δ: 8.215650382226158e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 38 Time: 0:00:06 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 39 Time: 0:00:06 Δ: 8.881784197001252e-16 trunc: ("SVD tolerance", "0.0")  Test Summary: | Pass Total Time Glauber infinite bipartite graph | 2 2 9.0s Computing joint probability 0%| | ETA: 9:31:17 Computing joint probability 100%|████████████████████████| Time: 0:00:02 Computing exact marginals 0%| | ETA: 1:36:31 Computing exact marginals 6%|█▌ | ETA: 0:00:05 Computing exact marginals 12%|███▏ | ETA: 0:00:03 Computing exact marginals 18%|████▊ | ETA: 0:00:02 Computing exact marginals 25%|██████▍ | ETA: 0:00:02 Computing exact marginals 31%|████████▏ | ETA: 0:00:02 Computing exact marginals 38%|█████████▉ | ETA: 0:00:01 Computing exact marginals 45%|███████████▋ | ETA: 0:00:01 Computing exact marginals 51%|█████████████▎ | ETA: 0:00:01 Computing exact marginals 57%|██████████████▊ | ETA: 0:00:01 Computing exact marginals 63%|████████████████▍ | ETA: 0:00:01 Computing exact marginals 69%|█████████████████▉ | ETA: 0:00:01 Computing exact marginals 75%|███████████████████▌ | ETA: 0:00:00 Computing exact marginals 81%|█████████████████████▏ | ETA: 0:00:00 Computing exact marginals 87%|██████████████████████▋ | ETA: 0:00:00 Computing exact marginals 94%|████████████████████████▍ | ETA: 0:00:00 Computing exact marginals 99%|██████████████████████████| ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:01 Computing exact marginals 6%|█▋ | ETA: 0:00:02 Computing exact marginals 13%|███▍ | ETA: 0:00:01 Computing exact marginals 20%|█████▏ | ETA: 0:00:01 Computing exact marginals 26%|██████▉ | ETA: 0:00:01 Computing exact marginals 33%|████████▌ | ETA: 0:00:01 Computing exact marginals 39%|██████████▏ | ETA: 0:00:01 Computing exact marginals 45%|███████████▊ | ETA: 0:00:01 Computing exact marginals 51%|█████████████▍ | ETA: 0:00:01 Computing exact marginals 57%|███████████████ | ETA: 0:00:01 Computing exact marginals 64%|████████████████▌ | ETA: 0:00:01 Computing exact marginals 70%|██████████████████▏ | ETA: 0:00:01 Computing exact marginals 76%|███████████████████▊ | ETA: 0:00:00 Computing exact marginals 82%|█████████████████████▍ | ETA: 0:00:00 Computing exact marginals 88%|███████████████████████ | ETA: 0:00:00 Computing exact marginals 95%|████████████████████████▋ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:01 Computing joint probability 36%|████████▋ | ETA: 0:00:00 Computing joint probability 72%|█████████████████▏ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 6%|█▋ | ETA: 0:00:01 Computing exact marginals 13%|███▍ | ETA: 0:00:01 Computing exact marginals 19%|█████ | ETA: 0:00:01 Computing exact marginals 26%|██████▋ | ETA: 0:00:01 Computing exact marginals 32%|████████▎ | ETA: 0:00:01 Computing exact marginals 38%|██████████ | ETA: 0:00:01 Computing exact marginals 45%|███████████▋ | ETA: 0:00:01 Computing exact marginals 51%|█████████████▎ | ETA: 0:00:01 Computing exact marginals 57%|██████████████▉ | ETA: 0:00:01 Computing exact marginals 64%|████████████████▌ | ETA: 0:00:01 Computing exact marginals 70%|██████████████████▎ | ETA: 0:00:00 Computing exact marginals 76%|███████████████████▉ | ETA: 0:00:00 Computing exact marginals 83%|█████████████████████▌ | ETA: 0:00:00 Computing exact marginals 89%|███████████████████████▎ | ETA: 0:00:00 Computing exact marginals 96%|█████████████████████████ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:01 Test Summary: | Pass Total Time Glauber ±J small tree | 13 13 2m24.0s Computing joint probability 0%| | ETA: 0:57:02 Computing joint probability 87%|████████████████████▉ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 21%|█████▌ | ETA: 0:00:00 Computing exact marginals 81%|█████████████████████▏ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 59%|███████████████▍ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 87%|████████████████████▊ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 53%|█████████████▊ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 86%|████████████████████▋ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact pair marginals 0%| | ETA: 1:06:35 Computing exact pair marginals 2%|▍ | ETA: 0:00:16 Computing exact pair marginals 4%|▉ | ETA: 0:00:10 Computing exact pair marginals 6%|█▍ | ETA: 0:00:08 Computing exact pair marginals 8%|█▊ | ETA: 0:00:07 Computing exact pair marginals 11%|██▎ | ETA: 0:00:06 Computing exact pair marginals 13%|██▋ | ETA: 0:00:06 Computing exact pair marginals 15%|███▏ | ETA: 0:00:06 Computing exact pair marginals 17%|███▌ | ETA: 0:00:05 Computing exact pair marginals 19%|████ | ETA: 0:00:05 Computing exact pair marginals 21%|████▍ | ETA: 0:00:05 Computing exact pair marginals 23%|████▉ | ETA: 0:00:05 Computing exact pair marginals 25%|█████▎ | ETA: 0:00:04 Computing exact pair marginals 27%|█████▊ | ETA: 0:00:04 Computing exact pair marginals 29%|██████▏ | ETA: 0:00:04 Computing exact pair marginals 31%|██████▋ | ETA: 0:00:04 Computing exact pair marginals 33%|███████ | ETA: 0:00:04 Computing exact pair marginals 36%|███████▌ | ETA: 0:00:04 Computing exact pair marginals 38%|███████▉ | ETA: 0:00:04 Computing exact pair marginals 40%|████████▍ | ETA: 0:00:03 Computing exact pair marginals 42%|████████▉ | ETA: 0:00:03 Computing exact pair marginals 44%|█████████▍ | ETA: 0:00:03 Computing exact pair marginals 47%|█████████▉ | ETA: 0:00:03 Computing exact pair marginals 49%|██████████▎ | ETA: 0:00:03 Computing exact pair marginals 51%|██████████▊ | ETA: 0:00:03 Computing exact pair marginals 53%|███████████▏ | ETA: 0:00:03 Computing exact pair marginals 55%|███████████▋ | ETA: 0:00:02 Computing exact pair marginals 58%|████████████▏ | ETA: 0:00:02 Computing exact pair marginals 60%|████████████▌ | ETA: 0:00:02 Computing exact pair marginals 62%|█████████████ | ETA: 0:00:02 Computing exact pair marginals 64%|█████████████▍ | ETA: 0:00:02 Computing exact pair marginals 66%|█████████████▉ | ETA: 0:00:02 Computing exact pair marginals 68%|██████████████▎ | ETA: 0:00:02 Computing exact pair marginals 70%|██████████████▊ | ETA: 0:00:02 Computing exact pair marginals 72%|███████████████▏ | ETA: 0:00:01 Computing exact pair marginals 74%|███████████████▋ | ETA: 0:00:01 Computing exact pair marginals 76%|████████████████ | ETA: 0:00:01 Computing exact pair marginals 78%|████████████████▌ | ETA: 0:00:01 Computing exact pair marginals 81%|████████████████▉ | ETA: 0:00:01 Computing exact pair marginals 83%|█████████████████▍ | ETA: 0:00:01 Computing exact pair marginals 85%|█████████████████▊ | ETA: 0:00:01 Computing exact pair marginals 87%|██████████████████▎ | ETA: 0:00:01 Computing exact pair marginals 89%|██████████████████▊ | ETA: 0:00:01 Computing exact pair marginals 91%|███████████████████▏ | ETA: 0:00:00 Computing exact pair marginals 93%|███████████████████▌ | ETA: 0:00:00 Computing exact pair marginals 95%|████████████████████ | ETA: 0:00:00 Computing exact pair marginals 97%|████████████████████▌| ETA: 0:00:00 Computing exact pair marginals 99%|█████████████████████| ETA: 0:00:00 Computing exact pair marginals 100%|█████████████████████| Time: 0:00:05 Computing joint probability 89%|█████████████████████▎ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact pair marginals 2%|▍ | ETA: 0:00:05 Computing exact pair marginals 4%|▉ | ETA: 0:00:05 Computing exact pair marginals 6%|█▎ | ETA: 0:00:05 Computing exact pair marginals 8%|█▊ | ETA: 0:00:05 Computing exact pair marginals 10%|██▏ | ETA: 0:00:04 Computing exact pair marginals 12%|██▋ | ETA: 0:00:04 Computing exact pair marginals 14%|███ | ETA: 0:00:04 Computing exact pair marginals 17%|███▌ | ETA: 0:00:04 Computing exact pair marginals 19%|███▉ | ETA: 0:00:04 Computing exact pair marginals 21%|████▍ | ETA: 0:00:04 Computing exact pair marginals 23%|████▊ | ETA: 0:00:04 Computing exact pair marginals 25%|█████▎ | ETA: 0:00:04 Computing exact pair marginals 27%|█████▋ | ETA: 0:00:04 Computing exact pair marginals 29%|██████▏ | ETA: 0:00:04 Computing exact pair marginals 31%|██████▌ | ETA: 0:00:03 Computing exact pair marginals 33%|███████ | ETA: 0:00:03 Computing exact pair marginals 35%|███████▍ | ETA: 0:00:03 Computing exact pair marginals 37%|███████▊ | ETA: 0:00:03 Computing exact pair marginals 39%|████████▎ | ETA: 0:00:03 Computing exact pair marginals 41%|████████▊ | ETA: 0:00:03 Computing exact pair marginals 44%|█████████▏ | ETA: 0:00:03 Computing exact pair marginals 46%|█████████▋ | ETA: 0:00:03 Computing exact pair marginals 48%|██████████▏ | ETA: 0:00:03 Computing exact pair marginals 51%|██████████▋ | ETA: 0:00:02 Computing exact pair marginals 53%|███████████▏ | ETA: 0:00:02 Computing exact pair marginals 55%|███████████▋ | ETA: 0:00:02 Computing exact pair marginals 58%|████████████▏ | ETA: 0:00:02 Computing exact pair marginals 60%|████████████▋ | ETA: 0:00:02 Computing exact pair marginals 62%|█████████████▏ | ETA: 0:00:02 Computing exact pair marginals 65%|█████████████▋ | ETA: 0:00:02 Computing exact pair marginals 67%|██████████████▏ | ETA: 0:00:02 Computing exact pair marginals 69%|██████████████▋ | ETA: 0:00:01 Computing exact pair marginals 72%|███████████████▏ | ETA: 0:00:01 Computing exact pair marginals 74%|███████████████▋ | ETA: 0:00:01 Computing exact pair marginals 76%|████████████████ | ETA: 0:00:01 Computing exact pair marginals 79%|████████████████▌ | ETA: 0:00:01 Computing exact pair marginals 81%|█████████████████ | ETA: 0:00:01 Computing exact pair marginals 83%|█████████████████▌ | ETA: 0:00:01 Computing exact pair marginals 86%|██████████████████ | ETA: 0:00:01 Computing exact pair marginals 88%|██████████████████▌ | ETA: 0:00:01 Computing exact pair marginals 91%|███████████████████ | ETA: 0:00:00 Computing exact pair marginals 93%|███████████████████▌ | ETA: 0:00:00 Computing exact pair marginals 95%|████████████████████ | ETA: 0:00:00 Computing exact pair marginals 98%|████████████████████▌| ETA: 0:00:00 Computing exact pair marginals 99%|█████████████████████| ETA: 0:00:00 Computing exact pair marginals 100%|█████████████████████| Time: 0:00:04 Computing joint probability 86%|████████████████████▋ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact pair marginals 2%|▌ | ETA: 0:00:07 Computing exact pair marginals 4%|▉ | ETA: 0:00:06 Computing exact pair marginals 6%|█▍ | ETA: 0:00:05 Computing exact pair marginals 8%|█▊ | ETA: 0:00:05 Computing exact pair marginals 10%|██▎ | ETA: 0:00:05 Computing exact pair marginals 13%|██▋ | ETA: 0:00:05 Computing exact pair marginals 15%|███▏ | ETA: 0:00:04 Computing exact pair marginals 17%|███▋ | ETA: 0:00:04 Computing exact pair marginals 19%|████ | ETA: 0:00:04 Computing exact pair marginals 21%|████▌ | ETA: 0:00:04 Computing exact pair marginals 24%|█████ | ETA: 0:00:04 Computing exact pair marginals 26%|█████▍ | ETA: 0:00:04 Computing exact pair marginals 28%|█████▉ | ETA: 0:00:04 Computing exact pair marginals 30%|██████▍ | ETA: 0:00:03 Computing exact pair marginals 33%|██████▉ | ETA: 0:00:03 Computing exact pair marginals 35%|███████▎ | ETA: 0:00:03 Computing exact pair marginals 37%|███████▊ | ETA: 0:00:03 Computing exact pair marginals 39%|████████▏ | ETA: 0:00:03 Computing exact pair marginals 41%|████████▋ | ETA: 0:00:03 Computing exact pair marginals 43%|█████████▏ | ETA: 0:00:03 Computing exact pair marginals 46%|█████████▋ | ETA: 0:00:03 Computing exact pair marginals 48%|██████████ | ETA: 0:00:03 Computing exact pair marginals 50%|██████████▌ | ETA: 0:00:02 Computing exact pair marginals 52%|███████████ | ETA: 0:00:02 Computing exact pair marginals 54%|███████████▍ | ETA: 0:00:02 Computing exact pair marginals 56%|███████████▊ | ETA: 0:00:02 Computing exact pair marginals 58%|████████████▎ | ETA: 0:00:02 Computing exact pair marginals 60%|████████████▋ | ETA: 0:00:02 Computing exact pair marginals 63%|█████████████▏ | ETA: 0:00:02 Computing exact pair marginals 65%|█████████████▋ | ETA: 0:00:02 Computing exact pair marginals 67%|██████████████▏ | ETA: 0:00:02 Computing exact pair marginals 70%|██████████████▋ | ETA: 0:00:01 Computing exact pair marginals 72%|███████████████▏ | ETA: 0:00:01 Computing exact pair marginals 74%|███████████████▌ | ETA: 0:00:01 Computing exact pair marginals 76%|████████████████ | ETA: 0:00:01 Computing exact pair marginals 79%|████████████████▌ | ETA: 0:00:01 Computing exact pair marginals 81%|█████████████████ | ETA: 0:00:01 Computing exact pair marginals 83%|█████████████████▍ | ETA: 0:00:01 Computing exact pair marginals 85%|█████████████████▉ | ETA: 0:00:01 Computing exact pair marginals 87%|██████████████████▎ | ETA: 0:00:01 Computing exact pair marginals 89%|██████████████████▋ | ETA: 0:00:01 Computing exact pair marginals 91%|███████████████████▏ | ETA: 0:00:00 Computing exact pair marginals 93%|███████████████████▋ | ETA: 0:00:00 Computing exact pair marginals 96%|████████████████████▏| ETA: 0:00:00 Computing exact pair marginals 98%|████████████████████▋| ETA: 0:00:00 Computing exact pair marginals 100%|█████████████████████| Time: 0:00:04 Computing joint probability 87%|████████████████████▊ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 63%|████████████████▎ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 39%|██████████▎ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 86%|████████████████████▋ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 60%|███████████████▋ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 88%|█████████████████████ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact pair marginals 2%|▍ | ETA: 0:00:05 Computing exact pair marginals 4%|▉ | ETA: 0:00:05 Computing exact pair marginals 6%|█▍ | ETA: 0:00:04 Computing exact pair marginals 8%|█▊ | ETA: 0:00:05 Computing exact pair marginals 11%|██▎ | ETA: 0:00:05 Computing exact pair marginals 13%|██▋ | ETA: 0:00:04 Computing exact pair marginals 15%|███▏ | ETA: 0:00:04 Computing exact pair marginals 17%|███▌ | ETA: 0:00:04 Computing exact pair marginals 19%|████ | ETA: 0:00:04 Computing exact pair marginals 21%|████▍ | ETA: 0:00:04 Computing exact pair marginals 23%|████▉ | ETA: 0:00:04 Computing exact pair marginals 25%|█████▍ | ETA: 0:00:04 Computing exact pair marginals 27%|█████▊ | ETA: 0:00:04 Computing exact pair marginals 30%|██████▎ | ETA: 0:00:04 Computing exact pair marginals 32%|██████▋ | ETA: 0:00:03 Computing exact pair marginals 34%|███████▏ | ETA: 0:00:03 Computing exact pair marginals 36%|███████▋ | ETA: 0:00:03 Computing exact pair marginals 38%|████████ | ETA: 0:00:03 Computing exact pair marginals 41%|████████▌ | ETA: 0:00:03 Computing exact pair marginals 43%|█████████ | ETA: 0:00:03 Computing exact pair marginals 45%|█████████▌ | ETA: 0:00:03 Computing exact pair marginals 47%|█████████▉ | ETA: 0:00:03 Computing exact pair marginals 49%|██████████▍ | ETA: 0:00:02 Computing exact pair marginals 51%|██████████▊ | ETA: 0:00:02 Computing exact pair marginals 54%|███████████▎ | ETA: 0:00:02 Computing exact pair marginals 56%|███████████▊ | ETA: 0:00:02 Computing exact pair marginals 58%|████████████▎ | ETA: 0:00:02 Computing exact pair marginals 60%|████████████▋ | ETA: 0:00:02 Computing exact pair marginals 62%|█████████████▏ | ETA: 0:00:02 Computing exact pair marginals 65%|█████████████▋ | ETA: 0:00:02 Computing exact pair marginals 67%|██████████████ | ETA: 0:00:02 Computing exact pair marginals 69%|██████████████▌ | ETA: 0:00:02 Computing exact pair marginals 71%|██████████████▉ | ETA: 0:00:01 Computing exact pair marginals 73%|███████████████▍ | ETA: 0:00:01 Computing exact pair marginals 75%|███████████████▉ | ETA: 0:00:01 Computing exact pair marginals 77%|████████████████▎ | ETA: 0:00:01 Computing exact pair marginals 80%|████████████████▊ | ETA: 0:00:01 Computing exact pair marginals 82%|█████████████████▏ | ETA: 0:00:01 Computing exact pair marginals 84%|█████████████████▋ | ETA: 0:00:01 Computing exact pair marginals 86%|██████████████████▏ | ETA: 0:00:01 Computing exact pair marginals 88%|██████████████████▌ | ETA: 0:00:01 Computing exact pair marginals 90%|███████████████████ | ETA: 0:00:00 Computing exact pair marginals 93%|███████████████████▍ | ETA: 0:00:00 Computing exact pair marginals 95%|███████████████████▉ | ETA: 0:00:00 Computing exact pair marginals 97%|████████████████████▍| ETA: 0:00:00 Computing exact pair marginals 99%|████████████████████▊| ETA: 0:00:00 Computing exact pair marginals 100%|█████████████████████| Time: 0:00:04 Computing joint probability 87%|████████████████████▉ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact pair marginals 2%|▍ | ETA: 0:00:06 Computing exact pair marginals 4%|▉ | ETA: 0:00:05 Computing exact pair marginals 6%|█▍ | ETA: 0:00:05 Computing exact pair marginals 8%|█▊ | ETA: 0:00:05 Computing exact pair marginals 10%|██▎ | ETA: 0:00:05 Computing exact pair marginals 13%|██▋ | ETA: 0:00:04 Computing exact pair marginals 15%|███▏ | ETA: 0:00:04 Computing exact pair marginals 17%|███▌ | ETA: 0:00:04 Computing exact pair marginals 19%|███▉ | ETA: 0:00:04 Computing exact pair marginals 21%|████▍ | ETA: 0:00:04 Computing exact pair marginals 23%|████▊ | ETA: 0:00:04 Computing exact pair marginals 25%|█████▏ | ETA: 0:00:04 Computing exact pair marginals 27%|█████▋ | ETA: 0:00:04 Computing exact pair marginals 29%|██████ | ETA: 0:00:04 Computing exact pair marginals 31%|██████▌ | ETA: 0:00:04 Computing exact pair marginals 33%|██████▉ | ETA: 0:00:03 Computing exact pair marginals 35%|███████▍ | ETA: 0:00:03 Computing exact pair marginals 37%|███████▊ | ETA: 0:00:03 Computing exact pair marginals 39%|████████▎ | ETA: 0:00:03 Computing exact pair marginals 41%|████████▊ | ETA: 0:00:03 Computing exact pair marginals 44%|█████████▏ | ETA: 0:00:03 Computing exact pair marginals 46%|█████████▋ | ETA: 0:00:03 Computing exact pair marginals 48%|██████████ | ETA: 0:00:03 Computing exact pair marginals 50%|██████████▌ | ETA: 0:00:03 Computing exact pair marginals 52%|██████████▉ | ETA: 0:00:02 Computing exact pair marginals 54%|███████████▍ | ETA: 0:00:02 Computing exact pair marginals 56%|███████████▉ | ETA: 0:00:02 Computing exact pair marginals 59%|████████████▎ | ETA: 0:00:02 Computing exact pair marginals 61%|████████████▊ | ETA: 0:00:02 Computing exact pair marginals 63%|█████████████▎ | ETA: 0:00:02 Computing exact pair marginals 65%|█████████████▋ | ETA: 0:00:02 Computing exact pair marginals 67%|██████████████▏ | ETA: 0:00:02 Computing exact pair marginals 69%|██████████████▌ | ETA: 0:00:02 Computing exact pair marginals 71%|███████████████ | ETA: 0:00:01 Computing exact pair marginals 73%|███████████████▍ | ETA: 0:00:01 Computing exact pair marginals 75%|███████████████▉ | ETA: 0:00:01 Computing exact pair marginals 78%|████████████████▎ | ETA: 0:00:01 Computing exact pair marginals 80%|████████████████▊ | ETA: 0:00:01 Computing exact pair marginals 82%|█████████████████▏ | ETA: 0:00:01 Computing exact pair marginals 84%|█████████████████▋ | ETA: 0:00:01 Computing exact pair marginals 86%|██████████████████▏ | ETA: 0:00:01 Computing exact pair marginals 88%|██████████████████▌ | ETA: 0:00:01 Computing exact pair marginals 90%|███████████████████ | ETA: 0:00:00 Computing exact pair marginals 92%|███████████████████▍ | ETA: 0:00:00 Computing exact pair marginals 94%|███████████████████▉ | ETA: 0:00:00 Computing exact pair marginals 96%|████████████████████▎| ETA: 0:00:00 Computing exact pair marginals 99%|████████████████████▊| ETA: 0:00:00 Computing exact pair marginals 100%|█████████████████████| Time: 0:00:04 Computing joint probability 88%|█████████████████████▏ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 62%|████████████████▏ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 60%|███████████████▊ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 88%|█████████████████████▏ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 61%|███████████████▉ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Test Summary: | Pass Total Time Glauber small tree | 20 20 2m05.9s Computing joint probability 0%|▏ | ETA: 0:00:30 Computing joint probability 100%|████████████████████████| Time: 0:00:00 WARNING: Method definition f(Any, Any) in module Main at /home/pkgeval/.julia/packages/MatrixProductBP/Hhmig/test/glauber_small_tree.jl:213 overwritten at /home/pkgeval/.julia/packages/MatrixProductBP/Hhmig/test/glauber_small_tree.jl:267. ┌ Warning: #= /home/pkgeval/.julia/packages/Tullio/2zyFP/src/macro.jl:1093 =#: │ `LoopVectorization.check_args` on your inputs failed; running fallback `@inbounds @fastmath` loop instead. │ Use `warn_check_args=false`, e.g. `@turbo warn_check_args=false ...`, to disable this warning. └ @ MatrixProductBP ~/.julia/packages/LoopVectorization/ImqiY/src/condense_loopset.jl:1166 ┌ Warning: Verbosity logging macros are deprecated as they are not compatible with juliac-compiled programs │ caller = withlevel at verbosity.jl:107 [inlined] └ @ Core ~/.julia/packages/LoggingExtras/cFgEq/src/verbosity.jl:107 ┌ Warning: Verbosity logging macros are deprecated as they are not compatible with juliac-compiled programs │ caller = ip:0x0 └ @ Core :-1 ┌ Warning: Verbosity logging macros are deprecated as they are not compatible with juliac-compiled programs │ caller = withlevel at verbosity.jl:107 [inlined] └ @ Core ~/.julia/packages/LoggingExtras/cFgEq/src/verbosity.jl:107 Running MPBP: iter 2 Time: 0:04:05 ( 2.05 m/it) Δ: 0.29520539024809445 trunc: VUMPS truncation to bond size m'=12     Running MPBP: iter 3 Time: 0:04:06 (82.11 s/it) Δ: 0.16966782956317883 trunc: VUMPS truncation to bond size m'=12     Running MPBP: iter 4 Time: 0:04:06 (61.73 s/it) Δ: 2.220446049250313e-16 trunc: VUMPS truncation to bond size m'=12  Test Summary: | Pass Total Time IntegerGlauber small tree | 17 17 5m47.2s Test Summary: | Pass Total Time MPEM1 | 1 1 14.9s Test Summary: | Pass Total Time MPEM2 | 1 1 7.5s Test Summary: | Pass Total Time MPEM3 | 1 1 6.9s Test Summary: | Pass Total Time periodic MPEM2 | 1 1 13.2s Test Summary: | Pass Total Time periodic MPEM3 | 1 1 12.4s Running MPBP: iter 2 Time: 0:00:12 Δ: 0.5140194933077997 trunc: ("SVD tolerance", "1.0e-6")  Test Summary: | Pass Total Time Message normaliz | 1 1 18.8s Computing joint probability 74%|█████████████████▊ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing joint probability 75%|██████████████████ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 48%|████████████▋ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 78%|██████████████████▉ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 58%|███████████████ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 70%|████████████████▊ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing joint probability 73%|█████████████████▋ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 49%|████████████▉ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 78%|██████████████████▋ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 53%|█████████████▉ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Test Summary: | Pass Total Time Pair observations | 6 6 9.8s Computing joint probability 58%|██████████████ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 56%|██████████████▌ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 31%|███████▉ | ETA: 0:00:00 Computing exact marginals 88%|███████████████████████ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 66%|███████████████▉ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 61%|███████████████▉ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Running MPBP: iter 2 Time: 0:00:10 Δ: 0.6359801216102365 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 3 Time: 0:00:10 Δ: 0.045291200895940964 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 4 Time: 0:00:11 Δ: 0.002425766931230866 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 5 Time: 0:00:11 Δ: 0.005235408476333525 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 6 Time: 0:00:12 Δ: 0.001137813143565758 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 7 Time: 0:00:12 Δ: 0.0009018724285019264 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 8 Time: 0:00:13 Δ: 0.0002354993525102156 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 9 Time: 0:00:13 Δ: 0.00013977570143519635 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 10 Time: 0:00:13 Δ: 5.314519573551557e-5 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 11 Time: 0:00:14 Δ: 2.253831449849919e-5 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 12 Time: 0:00:14 Δ: 1.1005506472594462e-5 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 13 Time: 0:00:15 Δ: 3.5783632341690463e-6 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 14 Time: 0:00:15 Δ: 2.219378463008681e-6 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 15 Time: 0:00:16 Δ: 5.466963572953176e-7 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 16 Time: 0:00:16 Δ: 4.3726982035252604e-7 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 17 Time: 0:00:17 Δ: 7.864211548636035e-8 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 18 Time: 0:00:17 Δ: 8.463489931109791e-8 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 19 Time: 0:00:18 Δ: 1.2140613403488487e-8 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 20 Time: 0:00:18 Δ: 1.612406030915281e-8 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 21 Time: 0:00:19 Δ: 2.3845594387950086e-9 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 22 Time: 0:00:19 Δ: 3.0271440909501734e-9 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 23 Time: 0:00:20 Δ: 4.604829850762826e-10 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 24 Time: 0:00:20 Δ: 5.603573161039321e-10 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 25 Time: 0:00:21 Δ: 8.756018132771715e-11 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 26 Time: 0:00:21 Δ: 1.0228728974936985e-10 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 27 Time: 0:00:22 Δ: 1.640931834856474e-11 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 28 Time: 0:00:22 Δ: 1.8407053659075245e-11 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 29 Time: 0:00:23 Δ: 3.0324631694611526e-12 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 30 Time: 0:00:23 Δ: 3.262945469373335e-12 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 31 Time: 0:00:24 Δ: 6.419309528382655e-13 trunc: ("SVD Matrix size", "10")   Running MPBP: iter 2 Time: 0:00:02 Δ: 0.5904118751349765 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 3 Time: 0:00:04 Δ: 0.005178918978646863 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 4 Time: 0:00:06 Δ: 0.001987087029540424 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 5 Time: 0:00:08 Δ: 0.000443854704519131 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 6 Time: 0:00:10 Δ: 6.198309943528102e-5 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 7 Time: 0:00:12 Δ: 1.0620554128148996e-5 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 8 Time: 0:00:14 Δ: 1.5024266093455196e-6 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 9 Time: 0:00:16 Δ: 5.712961437254194e-7 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 10 Time: 0:00:18 Δ: 1.526131268025921e-7 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 11 Time: 0:00:20 Δ: 2.1948395545479116e-8 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 12 Time: 0:00:22 Δ: 2.7474278407879638e-9 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 13 Time: 0:00:24 Δ: 7.453071493301877e-10 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 14 Time: 0:00:25 Δ: 2.5862134656051694e-10 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 15 Time: 0:00:27 Δ: 4.1731063049610384e-11 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 16 Time: 0:00:29 Δ: 5.202949182603334e-12 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 17 Time: 0:00:31 Δ: 9.212630658339549e-13 trunc: ("SVD Matrix size", "10")   Computing joint probability 66%|███████████████▉ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 56%|██████████████▋ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 51%|█████████████▎ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 67%|████████████████ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 50%|█████████████ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Test Summary: | Pass Total Time Periodic | 12 12 1m51.0s Marginals from Soft Margin 50%|████████████▌ | ETA: 0:00:03 Marginals from Soft Margin 100%|█████████████████████████| Time: 0:00:02 Pair marginals from Soft Margin 33%|██████▋ | ETA: 0:00:12 Pair marginals from Soft Margin 100%|████████████████████| Time: 0:00:06 Autocorrelations from Soft Margin 50%|█████████ | ETA: 0:00:04 Autocorrelations from Soft Margin 100%|██████████████████| Time: 0:00:03 sampling - Gillespie - reproducibility: Error During Test at /home/pkgeval/.julia/packages/MatrixProductBP/Hhmig/test/sampling.jl:40 Got exception outside of a @test UndefVarError: `ExponentialQueue` not defined in `MatrixProductBP` Stacktrace: [1] continuous_sis_sampler(sis::SIS{2, 4, Float64}, T::Int64, λ::Float64, ρ::Float64; α::Float64, nsamples::Int64, sites::Int64, Δt::Float64, discard_dead_epidemics::Bool, rng::MersenneTwister) @ MatrixProductBP ~/.julia/packages/MatrixProductBP/Hhmig/src/sampling.jl:276 [2] macro expansion @ ~/.julia/packages/MatrixProductBP/Hhmig/test/sampling.jl:41 [inlined] [3] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:1704 [inlined] [4] macro expansion @ ~/.julia/packages/MatrixProductBP/Hhmig/test/sampling.jl:41 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.11/Test/src/Test.jl:1704 [inlined] [6] top-level scope @ ~/.julia/packages/MatrixProductBP/Hhmig/test/sampling.jl:3 [7] include(fname::String) @ Main ./sysimg.jl:38 [8] top-level scope @ ~/.julia/packages/MatrixProductBP/Hhmig/test/runtests.jl:20 [9] include(fname::String) @ Main ./sysimg.jl:38 [10] top-level scope @ none:6 [11] eval @ ./boot.jl:430 [inlined] [12] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [13] _start() @ Base ./client.jl:531 Test Summary: | Pass Error Total Time Sampling | 6 1 7 38.6s sampling - SoftMargin | 3 3 0.7s sampling - Gillespie - reproducibility | 1 1 4.1s ERROR: LoadError: Some tests did not pass: 6 passed, 0 failed, 1 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/MatrixProductBP/Hhmig/test/sampling.jl:1 in expression starting at /home/pkgeval/.julia/packages/MatrixProductBP/Hhmig/test/runtests.jl:20 Testing failed after 1271.7s ERROR: LoadError: Package MatrixProductBP errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.11/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:2124 [3] test @ /opt/julia/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:2007 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:481 [5] test(pkgs::Vector{Pkg.Types.PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:159 [6] test @ /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:147 [inlined] [7] #test#74 @ /opt/julia/share/julia/stdlib/v1.11/Pkg/src/API.jl:146 [inlined] [8] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 1541.34s: package tests unexpectedly errored