Package evaluation of LaurentPolynomials on Julia 1.11.4 (a71dd056e0*) started at 2025-04-08T07:16:13.078 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.25s ################################################################################ # Installation # Installing LaurentPolynomials... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [10b2801c] + LaurentPolynomials v0.1.4 Updating `~/.julia/environments/v1.11/Manifest.toml` [10b2801c] + LaurentPolynomials v0.1.4 [56f22d72] + Artifacts v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [4536629a] + OpenBLAS_jll v0.3.27+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 Installation completed after 1.05s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 12.2s ################################################################################ # Testing # Testing LaurentPolynomials Status `/tmp/jl_CQFw6B/Project.toml` [10b2801c] LaurentPolynomials v0.1.4 [37e2e46d] LinearAlgebra v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_CQFw6B/Manifest.toml` [10b2801c] LaurentPolynomials v0.1.4 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [8dfed614] Test v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [4536629a] OpenBLAS_jll v0.3.27+1 [8e850b90] libblastrampoline_jll v5.11.0+0 Testing Running tests... LaurentPolynomials.jl Pol(:q) LaurentPolynomials.jl @Pol q LaurentPolynomials.jl Pol([1,2]) LaurentPolynomials.jl 2q+1 LaurentPolynomials.jl Pol() LaurentPolynomials.jl p=Pol([1,2,1],-1) LaurentPolynomials.jl q+2+q^-1 LaurentPolynomials.jl valuation(p),degree(p) LaurentPolynomials.jl p[0], p[1], p[-1], p[10] LaurentPolynomials.jl p[valuation(p):degree(p)] LaurentPolynomials.jl p[begin:end] LaurentPolynomials.jl coefficients(p) LaurentPolynomials.jl h=Pol([[1 1;0 1],[1 0; 0 1]]) LaurentPolynomials.jl h^3 LaurentPolynomials.jl Pol(1) LaurentPolynomials.jl convert(Pol{Int},1) LaurentPolynomials.jl scalar(Pol(1)) LaurentPolynomials.jl convert(Int,Pol(1)) LaurentPolynomials.jl Int(Pol(1)) LaurentPolynomials.jl scalar(q+1) LaurentPolynomials.jl derivative(p) LaurentPolynomials.jl p=(q+1)^2 LaurentPolynomials.jl p/2 LaurentPolynomials.jl p//2 LaurentPolynomials.jl p(1//2) LaurentPolynomials.jl p(0.5) LaurentPolynomials.jl Pol([1,2,3],[2.0,1.0,3.0]) LaurentPolynomials.jl divrem(q^3+1,2q+1) LaurentPolynomials.jl divrem(q^3+1,2q+1//1) LaurentPolynomials.jl pseudodiv(q^3+1,2q+1) LaurentPolynomials.jl (4q^2-2q+1)*(2q+1)+7 LaurentPolynomials.jl LinearAlgebra.exactdiv(q+1,2.0) LaurentPolynomials.jl a=1/(q+1) LaurentPolynomials.jl Pol(2/a) LaurentPolynomials.jl numerator(a) LaurentPolynomials.jl denominator(a) LaurentPolynomials.jl m=[q+1 q+2;q-2 q-3] LaurentPolynomials.jl n=inv(Frac.(m)) LaurentPolynomials.jl map(x->x(1),n) LaurentPolynomials.jl map(x->x(1;Rational=true),n) LaurentPolynomials.jl pseudodiv(q^2+1,2q+1) LaurentPolynomials.jl (2q+1)*(2q-1)+5 LaurentPolynomials.jl srgcd(4q+4,6q^2-6) LaurentPolynomials.jl gcd(2q+2,2q^2-2) LaurentPolynomials.jl gcd((2q+2)//1,(2q^2-2)//1) LaurentPolynomials.jl gcdx(q^3-1//1,q^2-1//1) LaurentPolynomials.jl powermod(q-1//1,3,q^2+q+1) LaurentPolynomials.jl p=Pol([1,1,1]) LaurentPolynomials.jl vals=p.(1:5) LaurentPolynomials.jl Pol(1:5,vals*1//1) LaurentPolynomials.jl Pol(1:5,vals*1.0) Test Summary: | Pass Total Time LaurentPolynomials.jl | 53 53 1m29.7s Testing LaurentPolynomials tests passed Testing completed after 94.69s PkgEval succeeded after 122.41s