Package evaluation of IterativeLQR on Julia 1.11.4 (a71dd056e0*) started at 2025-04-08T18:36:52.867 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.37s ################################################################################ # Installation # Installing IterativeLQR... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [605048dd] + IterativeLQR v0.2.3 Updating `~/.julia/environments/v1.11/Manifest.toml` ⌅ [47edcb42] + ADTypes v0.2.7 ⌅ [c3fe647b] + AbstractAlgebra v0.27.10 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 ⌅ [79e6a3ab] + Adapt v3.7.2 [66dad0bd] + AliasTables v1.1.3 [dce04be8] + ArgCheck v2.5.0 ⌃ [4fba245c] + ArrayInterface v7.7.1 [30b0a656] + ArrayInterfaceCore v0.1.29 ⌅ [15f4f7f2] + AutoHashEquals v0.2.0 [198e06fe] + BangBang v0.4.4 [9718e550] + Baselet v0.1.1 [e2ed5e7c] + Bijections v0.1.9 [d360d2e6] + ChainRulesCore v1.25.1 [861a8166] + Combinatorics v1.0.2 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.16.0 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 ⌅ [187b0558] + ConstructionBase v1.5.6 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [244e2a9f] + DefineSingletons v0.1.2 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [31c24e10] + Distributions v0.25.118 [ffbed154] + DocStringExtensions v0.9.4 ⌅ [5b8099bc] + DomainSets v0.5.14 ⌅ [7c1d4256] + DynamicPolynomials v0.4.6 [4e289a0a] + EnumX v1.0.5 [e2ba6199] + ExprTools v0.1.10 [5789e2e9] + FileIO v1.17.0 [1a297f60] + FillArrays v1.13.0 [59287772] + Formatting v0.4.3 ⌅ [f6369f11] + ForwardDiff v0.10.38 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 ⌅ [46192b85] + GPUArraysCore v0.1.5 ⌅ [0b43b601] + Groebner v0.2.11 ⌅ [d5909c97] + GroupsCore v0.4.2 [34004b35] + HypergeometricFunctions v0.3.28 [615f187c] + IfElse v0.1.1 [22cec73e] + InitialValues v0.3.1 [18e54dd8] + IntegerMathUtils v0.1.2 [8197267c] + IntervalSets v0.7.10 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.4 [605048dd] + IterativeLQR v0.2.3 [82899510] + IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] + JLD2 v0.4.54 [692b3bcd] + JLLWrappers v1.7.0 [b964fa9f] + LaTeXStrings v1.4.0 ⌃ [2ee39098] + LabelledArrays v1.15.1 ⌅ [984bce1d] + LambertW v0.4.6 ⌅ [23fbe1c1] + Latexify v0.15.21 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.15 ⌅ [e9d8d322] + Metatheory v1.3.5 [128add7d] + MicroCollections v0.2.0 [e1d29d7a] + Missings v1.2.0 ⌅ [102ac46a] + MultivariatePolynomials v0.4.7 [d8a4904e] + MutableArithmetics v1.6.4 [77ba4419] + NaNMath v1.1.3 [bac558e1] + OrderedCollections v1.8.0 [90014a1f] + PDMats v0.11.33 [d96e819e] + Parameters v0.12.3 ⌃ [d236fae5] + PreallocationTools v0.4.24 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [27ebfcd6] + Primes v0.5.7 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [fb686558] + RandomExtensions v0.4.4 [3cdcf5f2] + RecipesBase v1.3.4 ⌅ [731186ca] + RecursiveArrayTools v2.38.10 [189a3867] + Reexport v1.2.2 [42d2dcc6] + Referenceables v0.1.3 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.8.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.13 ⌅ [0bca4576] + SciMLBase v1.98.1 [c0aeaf25] + SciMLOperators v0.3.13 [6c6a2e73] + Scratch v1.2.1 [efcf1570] + Setfield v1.1.2 [66db9d55] + SnoopPrecompile v1.0.3 [a2af1166] + SortingAlgorithms v1.2.1 [276daf66] + SpecialFunctions v2.5.0 [171d559e] + SplittablesBase v0.1.15 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.0 [2913bbd2] + StatsBase v0.34.4 [4c63d2b9] + StatsFuns v1.4.0 ⌅ [2efcf032] + SymbolicIndexingInterface v0.2.2 ⌅ [d1185830] + SymbolicUtils v0.19.11 ⌅ [0c5d862f] + Symbolics v4.14.0 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.0 ⌅ [8ea1fca8] + TermInterface v0.2.3 [ac1d9e8a] + ThreadsX v0.1.12 [a759f4b9] + TimerOutputs v0.5.28 [3bb67fe8] + TranscodingStreams v0.11.3 [28d57a85] + Transducers v0.4.84 [a2a6695c] + TreeViews v0.3.0 [781d530d] + TruncatedStacktraces v1.4.0 [3a884ed6] + UnPack v1.0.2 [700de1a5] + ZygoteRules v0.2.7 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.6.0+0 [e37daf67] + LibGit2_jll v1.7.2+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.6+0 [14a3606d] + MozillaCACerts_jll v2023.12.12 [4536629a] + OpenBLAS_jll v0.3.27+1 [05823500] + OpenLibm_jll v0.8.5+0 [bea87d4a] + SuiteSparse_jll v7.7.0+0 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.59.0+0 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 6.43s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 157.79s ################################################################################ # Testing # Testing IterativeLQR Status `/tmp/jl_3SKHWK/Project.toml` [6e4b80f9] BenchmarkTools v1.6.0 ⌅ [f6369f11] ForwardDiff v0.10.38 [605048dd] IterativeLQR v0.2.3 ⌅ [0c5d862f] Symbolics v4.14.0 [37e2e46d] LinearAlgebra v1.11.0 [2f01184e] SparseArrays v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_3SKHWK/Manifest.toml` ⌅ [47edcb42] ADTypes v0.2.7 ⌅ [c3fe647b] AbstractAlgebra v0.27.10 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.42 ⌅ [79e6a3ab] Adapt v3.7.2 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.5.0 ⌃ [4fba245c] ArrayInterface v7.7.1 [30b0a656] ArrayInterfaceCore v0.1.29 ⌅ [15f4f7f2] AutoHashEquals v0.2.0 [198e06fe] BangBang v0.4.4 [9718e550] Baselet v0.1.1 [6e4b80f9] BenchmarkTools v1.6.0 [e2ed5e7c] Bijections v0.1.9 [d360d2e6] ChainRulesCore v1.25.1 [861a8166] Combinatorics v1.0.2 [38540f10] CommonSolve v0.2.4 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.16.0 [b152e2b5] CompositeTypes v0.1.4 [a33af91c] CompositionsBase v0.1.2 ⌅ [187b0558] ConstructionBase v1.5.6 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [31c24e10] Distributions v0.25.118 [ffbed154] DocStringExtensions v0.9.4 ⌅ [5b8099bc] DomainSets v0.5.14 ⌅ [7c1d4256] DynamicPolynomials v0.4.6 [4e289a0a] EnumX v1.0.5 [e2ba6199] ExprTools v0.1.10 [5789e2e9] FileIO v1.17.0 [1a297f60] FillArrays v1.13.0 [59287772] Formatting v0.4.3 ⌅ [f6369f11] ForwardDiff v0.10.38 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 ⌅ [46192b85] GPUArraysCore v0.1.5 ⌅ [0b43b601] Groebner v0.2.11 ⌅ [d5909c97] GroupsCore v0.4.2 [34004b35] HypergeometricFunctions v0.3.28 [615f187c] IfElse v0.1.1 [22cec73e] InitialValues v0.3.1 [18e54dd8] IntegerMathUtils v0.1.2 [8197267c] IntervalSets v0.7.10 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.4 [605048dd] IterativeLQR v0.2.3 [82899510] IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] JLD2 v0.4.54 [692b3bcd] JLLWrappers v1.7.0 [682c06a0] JSON v0.21.4 [b964fa9f] LaTeXStrings v1.4.0 ⌃ [2ee39098] LabelledArrays v1.15.1 ⌅ [984bce1d] LambertW v0.4.6 ⌅ [23fbe1c1] Latexify v0.15.21 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.15 ⌅ [e9d8d322] Metatheory v1.3.5 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 ⌅ [102ac46a] MultivariatePolynomials v0.4.7 [d8a4904e] MutableArithmetics v1.6.4 [77ba4419] NaNMath v1.1.3 [bac558e1] OrderedCollections v1.8.0 [90014a1f] PDMats v0.11.33 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.1 ⌃ [d236fae5] PreallocationTools v0.4.24 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [27ebfcd6] Primes v0.5.7 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [fb686558] RandomExtensions v0.4.4 [3cdcf5f2] RecipesBase v1.3.4 ⌅ [731186ca] RecursiveArrayTools v2.38.10 [189a3867] Reexport v1.2.2 [42d2dcc6] Referenceables v0.1.3 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.8.0 [7e49a35a] RuntimeGeneratedFunctions v0.5.13 ⌅ [0bca4576] SciMLBase v1.98.1 [c0aeaf25] SciMLOperators v0.3.13 [6c6a2e73] Scratch v1.2.1 [efcf1570] Setfield v1.1.2 [66db9d55] SnoopPrecompile v1.0.3 [a2af1166] SortingAlgorithms v1.2.1 [276daf66] SpecialFunctions v2.5.0 [171d559e] SplittablesBase v0.1.15 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.0 [2913bbd2] StatsBase v0.34.4 [4c63d2b9] StatsFuns v1.4.0 ⌅ [2efcf032] SymbolicIndexingInterface v0.2.2 ⌅ [d1185830] SymbolicUtils v0.19.11 ⌅ [0c5d862f] Symbolics v4.14.0 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.0 ⌅ [8ea1fca8] TermInterface v0.2.3 [ac1d9e8a] ThreadsX v0.1.12 [a759f4b9] TimerOutputs v0.5.28 [3bb67fe8] TranscodingStreams v0.11.3 [28d57a85] Transducers v0.4.84 [a2a6695c] TreeViews v0.3.0 [781d530d] TruncatedStacktraces v1.4.0 [3a884ed6] UnPack v1.0.2 [700de1a5] ZygoteRules v0.2.7 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [9abbd945] Profile v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [05823500] OpenLibm_jll v0.8.5+0 [bea87d4a] SuiteSparse_jll v7.7.0+0 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... Precompiling Symbolics... 2992.9 ms ? DomainSets 13102.1 ms ? SciMLBase Info Given Symbolics was explicitly requested, output will be shown live  WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 5388.0 ms ? Symbolics WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. Precompiling DomainSets... Info Given DomainSets was explicitly requested, output will be shown live  WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 2925.2 ms ? DomainSets WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. WARNING: Wrapping `Vararg` directly in UnionAll is deprecated (wrap the tuple instead). You may need to write `f(x::Vararg{T})` rather than `f(x::Vararg{<:T})` or `f(x::Vararg{T}) where T` instead of `f(x::Vararg{T} where T)`. Precompiling SciMLBase... Info Given SciMLBase was explicitly requested, output will be shown live  WARNING: Method definition islinear(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/2UPBq/src/interface.jl:311 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:7. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 5546.4 ms ? SciMLBase WARNING: Method definition islinear(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/2UPBq/src/interface.jl:311 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:7. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. WARNING: Method definition islinear(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/2UPBq/src/interface.jl:311 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:7. WARNING: Method definition isconstant(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/2UPBq/src/interface.jl:254 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:8. Precompiling Groebner... 17361.3 ms ✓ AbstractAlgebra 4070.1 ms ✓ Groebner 2 dependencies successfully precompiled in 22 seconds. 27 already precompiled. WARNING: Code.get_symbolify is deprecated, use get_rewrites instead. likely near /home/pkgeval/.julia/packages/Symbolics/UrqtQ/src/build_function.jl:130 Precompiling Distributions... 4282.5 ms ✓ StatsBase 9491.5 ms ✓ Distributions 2 dependencies successfully precompiled in 17 seconds. 44 already precompiled. Precompiling StatsFunsChainRulesCoreExt... 4021.2 ms ✓ StatsFuns → StatsFunsChainRulesCoreExt 1 dependency successfully precompiled in 4 seconds. 24 already precompiled. Precompiling DistributionsTestExt... 4480.4 ms ✓ Distributions → DistributionsTestExt 1 dependency successfully precompiled in 6 seconds. 48 already precompiled. Precompiling DistributionsChainRulesCoreExt... 4757.8 ms ✓ Distributions → DistributionsChainRulesCoreExt 1 dependency successfully precompiled in 7 seconds. 51 already precompiled. Precompiling Latexify... 5095.3 ms ✓ Latexify 1 dependency successfully precompiled in 5 seconds. 12 already precompiled. Precompiling IterativeLQR... 2761.3 ms ? DomainSets 52428.8 ms ✓ JLD2 5606.6 ms ? SciMLBase 3419.1 ms ? Symbolics Info Given IterativeLQR was explicitly requested, output will be shown live  ┌ Warning: Module Symbolics with build ID ffffffff-ffff-ffff-0026-74b05c7720e1 is missing from the cache. │ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. └ @ Base loading.jl:2541 1813.8 ms ? IterativeLQR 1 dependency successfully precompiled in 70 seconds. 180 already precompiled. 3 dependencies precompiled but different versions are currently loaded. Restart julia to access the new versions. Otherwise, loading dependents of these packages may trigger further precompilation to work with the unexpected versions. 4 dependencies failed but may be precompilable after restarting julia 4 dependencies had output during precompilation: ┌ DomainSets │ WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ ┌ Symbolics │ ┌ Warning: Module DomainSets with build ID ffffffff-ffff-ffff-0026-74b28ab6b65c is missing from the cache. │ │ This may mean DomainSets [5b8099bc-c8ec-5219-889f-1d9e522a28bf] does not support precompilation but is imported by a module that does. │ └ @ Base loading.jl:2541 └ ┌ SciMLBase │ WARNING: Method definition islinear(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/2UPBq/src/interface.jl:311 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:7. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ ┌ IterativeLQR │ [Output was shown above] └ ┌ Warning: Module Symbolics with build ID ffffffff-ffff-ffff-0026-74b05c7720e1 is missing from the cache. │ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. └ @ Base loading.jl:2541 Test Summary: | Pass Total Time Objective | 7 7 39.8s Test Summary: | Pass Total Time Dynamics | 4 4 21.8s Test Summary: | Pass Total Time Constraints | 12 12 17.9s ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University al iter: 1 ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University iter: 1 cost: 10.54682648623237 gradient_norm: 8.028631888435646 max_violation: 3.0967266032323857 step_size: 1.0 iter: 2 cost: 6.283854572876318 gradient_norm: 3.874151831918916 max_violation: 3.1018382983991675 step_size: 1.0 iter: 3 cost: 5.5034360079727325 gradient_norm: 2.545914755437806 max_violation: 3.103559578594187 step_size: 1.0 iter: 4 cost: 5.230765354111986 gradient_norm: 1.8949328573279447 max_violation: 3.104426573757621 step_size: 1.0 iter: 5 cost: 5.104612063478836 gradient_norm: 1.508826555608815 max_violation: 3.104947035907145 step_size: 1.0 iter: 6 cost: 5.0360940142621775 gradient_norm: 1.2533507418042562 max_violation: 3.1052935758231754 step_size: 1.0 iter: 7 cost: 4.994781877274352 gradient_norm: 1.0718307030226544 max_violation: 3.1055406748119365 step_size: 1.0 iter: 8 cost: 4.967969132045348 gradient_norm: 0.9362237858023326 max_violation: 3.1057256610813515 step_size: 1.0 iter: 9 cost: 4.949586412036247 gradient_norm: 0.8310704316922631 max_violation: 3.105869283432563 step_size: 1.0 iter: 10 cost: 4.93643727421675 gradient_norm: 0.7471497983852965 max_violation: 3.10598398736082 step_size: 1.0 iter: 11 cost: 4.926708302005588 gradient_norm: 0.6786216752678218 max_violation: 3.106077687156816 step_size: 1.0 iter: 12 cost: 4.919308534666738 gradient_norm: 0.6216075016814018 max_violation: 3.1061556542832474 step_size: 1.0 iter: 13 cost: 4.913549704640419 gradient_norm: 0.5734306615628703 max_violation: 3.1062215346197584 step_size: 1.0 iter: 14 cost: 4.908980192033163 gradient_norm: 0.5321844186722456 max_violation: 3.1062779297175154 step_size: 1.0 iter: 15 cost: 4.905293696514258 gradient_norm: 0.49647371047043515 max_violation: 3.106326745437867 step_size: 1.0 iter: 16 cost: 4.902276533160484 gradient_norm: 0.46525431867732936 max_violation: 3.106369409743548 step_size: 1.0 iter: 17 cost: 4.899775952175936 gradient_norm: 0.4377291095297264 max_violation: 3.1064070135382593 step_size: 1.0 iter: 18 cost: 4.897680416724848 gradient_norm: 0.41327903852364556 max_violation: 3.106440404498041 step_size: 1.0 iter: 19 cost: 4.8959069452623964 gradient_norm: 0.39141605013308556 max_violation: 3.1064702512273623 step_size: 1.0 iter: 20 cost: 4.894392767651698 gradient_norm: 0.37175017398147536 max_violation: 3.1064970881366776 step_size: 1.0 iter: 21 cost: 4.893089693165397 gradient_norm: 0.3539660644091072 max_violation: 3.106521347475037 step_size: 1.0 iter: 22 cost: 4.891960227900104 gradient_norm: 0.3378059659649762 max_violation: 3.106543382610046 step_size: 1.0 iter: 23 cost: 4.890974847043578 gradient_norm: 0.32305714111967826 max_violation: 3.1065634852227566 step_size: 1.0 al iter: 2 iter: 1 cost: 56.261938628866716 gradient_norm: 6.708261207747756 max_violation: 2.937828053572713 step_size: 1.0 iter: 2 cost: 55.78656205655477 gradient_norm: 3.1690680403755436 max_violation: 2.9406999513451515 step_size: 1.0 iter: 3 cost: 55.69936237932821 gradient_norm: 2.073111571034761 max_violation: 2.9414885185778497 step_size: 1.0 iter: 4 cost: 55.66882946930279 gradient_norm: 1.5400892221494296 max_violation: 2.941841821051938 step_size: 1.0 iter: 5 cost: 55.65468036600446 gradient_norm: 1.2250378782895757 max_violation: 2.94203754071886 step_size: 1.0 iter: 6 cost: 55.64698525507858 gradient_norm: 1.0169874938687533 max_violation: 2.942159930707853 step_size: 1.0 iter: 7 cost: 55.642340251172065 gradient_norm: 0.8693517802059745 max_violation: 2.9422427478257154 step_size: 1.0 iter: 8 cost: 55.63932246577092 gradient_norm: 0.7591560625912059 max_violation: 2.942301992653568 step_size: 1.0 iter: 9 cost: 55.63725161370361 gradient_norm: 0.6737625475706333 max_violation: 2.9423461655398695 step_size: 1.0 iter: 10 cost: 55.6357691239876 gradient_norm: 0.6056453002541344 max_violation: 2.9423801727912484 step_size: 1.0 iter: 11 cost: 55.63467141786024 gradient_norm: 0.5500432644329454 max_violation: 2.9424070310919275 step_size: 1.0 iter: 12 cost: 55.63383593692134 gradient_norm: 0.5037974857647729 max_violation: 2.9424286901507783 step_size: 1.0 al iter: 3 iter: 1 cost: 477.6948661404254 gradient_norm: 138.06972952714167 max_violation: 2.2688821497169016 step_size: 1.0 iter: 2 cost: 404.006165919896 gradient_norm: 155.91952792911312 max_violation: 1.7673926308498427 step_size: 1.0 iter: 3 cost: 343.0575167999306 gradient_norm: 110.11436204994894 max_violation: 1.552852511215224 step_size: 1.0 iter: 4 cost: 311.6213777056514 gradient_norm: 89.99162890164311 max_violation: 1.3961595499622503 step_size: 1.0 iter: 5 cost: 295.62645357442324 gradient_norm: 81.18249445041343 max_violation: 1.3030939209816896 step_size: 1.0 iter: 6 cost: 280.2274618744333 gradient_norm: 74.18595801308247 max_violation: 1.2025475843933644 step_size: 1.0 iter: 7 cost: 267.78734360825626 gradient_norm: 67.23614985332891 max_violation: 1.11343224317879 step_size: 1.0 iter: 8 cost: 258.1650427771281 gradient_norm: 71.18139014744554 max_violation: 1.0426933371754794 step_size: 1.0 iter: 9 cost: 250.7285795900208 gradient_norm: 74.18304485830025 max_violation: 0.9880238051753025 step_size: 1.0 iter: 10 cost: 244.70489810269615 gradient_norm: 77.14691084988337 max_violation: 0.9443559683813301 step_size: 1.0 iter: 11 cost: 239.79692444061556 gradient_norm: 76.98469587925925 max_violation: 0.9078244009819274 step_size: 1.0 iter: 12 cost: 236.13220157649545 gradient_norm: 72.43038094037927 max_violation: 0.8772586249597643 step_size: 1.0 iter: 13 cost: 233.36234409332937 gradient_norm: 66.34797107151897 max_violation: 0.852145162833156 step_size: 1.0 iter: 14 cost: 231.1222974017635 gradient_norm: 60.497659559188 max_violation: 0.8313875218878852 step_size: 1.0 iter: 15 cost: 229.25931344770686 gradient_norm: 55.291944113976754 max_violation: 0.813953691445966 step_size: 1.0 iter: 16 cost: 227.6920490423055 gradient_norm: 64.58274472079783 max_violation: 0.7990784919284613 step_size: 1.0 iter: 17 cost: 226.36152340426534 gradient_norm: 74.76140871340701 max_violation: 0.7862117814979861 step_size: 1.0 iter: 18 cost: 225.22134563014504 gradient_norm: 81.8684457739062 max_violation: 0.7749523910873304 step_size: 1.0 iter: 19 cost: 224.23483491682865 gradient_norm: 86.69230805383822 max_violation: 0.7650012719391963 step_size: 1.0 iter: 20 cost: 223.37314799221517 gradient_norm: 89.82821462645016 max_violation: 0.7561306795676499 step_size: 1.0 iter: 21 cost: 222.6136915769529 gradient_norm: 91.71587840773505 max_violation: 0.7481638759987073 step_size: 1.0 iter: 22 cost: 221.93878503886367 gradient_norm: 92.6787666215412 max_violation: 0.7409614875961261 step_size: 1.0 iter: 23 cost: 221.33456669381187 gradient_norm: 92.95555862628609 max_violation: 0.734412099160417 step_size: 1.0 iter: 24 cost: 220.79011603817602 gradient_norm: 92.72342654071426 max_violation: 0.7284255917477385 step_size: 1.0 iter: 25 cost: 220.29675936163375 gradient_norm: 92.11478025144876 max_violation: 0.7229283000230269 step_size: 1.0 iter: 26 cost: 219.8475296554264 gradient_norm: 91.22921751858459 max_violation: 0.7178594134307485 step_size: 1.0 iter: 27 cost: 219.43675508293856 gradient_norm: 90.14207293903627 max_violation: 0.7131682577010419 step_size: 1.0 iter: 28 cost: 219.05975183435268 gradient_norm: 88.91058213673683 max_violation: 0.7088122197002917 step_size: 1.0 iter: 29 cost: 218.71259849809545 gradient_norm: 87.57837233236404 max_violation: 0.7047551529715532 step_size: 1.0 iter: 30 cost: 218.39197149136058 gradient_norm: 86.17876839971774 max_violation: 0.7009661462817816 step_size: 1.0 iter: 31 cost: 218.0950246361267 gradient_norm: 84.73725031750784 max_violation: 0.6974185670471895 step_size: 1.0 iter: 32 cost: 217.81929990817238 gradient_norm: 83.27329485996154 max_violation: 0.6940893128666734 step_size: 1.0 iter: 33 cost: 217.56265998856128 gradient_norm: 81.80176533546849 max_violation: 0.6909582207284406 step_size: 1.0 iter: 34 cost: 217.32323612603173 gradient_norm: 80.33396644711472 max_violation: 0.6880075960909608 step_size: 1.0 iter: 35 cost: 217.09938691887336 gradient_norm: 78.87844911660433 max_violation: 0.6852218336868878 step_size: 1.0 iter: 36 cost: 216.88966506692572 gradient_norm: 77.44162743771473 max_violation: 0.6825871091260929 step_size: 1.0 iter: 37 cost: 216.69279009862873 gradient_norm: 76.02825369844216 max_violation: 0.6800911257055353 step_size: 1.0 iter: 38 cost: 216.5076256982574 gradient_norm: 74.64178564496662 max_violation: 0.6777229047317817 step_size: 1.0 iter: 39 cost: 216.33316066062815 gradient_norm: 73.28467154909369 max_violation: 0.6754726105054005 step_size: 1.0 iter: 40 cost: 216.1684927641123 gradient_norm: 71.95857229223877 max_violation: 0.6733314031970115 step_size: 1.0 iter: 41 cost: 216.0128150292299 gradient_norm: 70.66453497486671 max_violation: 0.6712913143779384 step_size: 1.0 iter: 42 cost: 215.86540395158593 gradient_norm: 69.40312905656202 max_violation: 0.66934514110917 step_size: 1.0 iter: 43 cost: 215.72560938432784 gradient_norm: 68.17455341224873 max_violation: 0.6674863553504986 step_size: 1.0 iter: 44 cost: 215.59284580875607 gradient_norm: 66.97872072192406 max_violation: 0.6657090261047469 step_size: 1.0 iter: 45 cost: 215.46658477976828 gradient_norm: 65.81532412743593 max_violation: 0.6640077522147787 step_size: 1.0 iter: 46 cost: 215.3463483700782 gradient_norm: 64.68388996471211 max_violation: 0.6623776041220397 step_size: 1.0 iter: 47 cost: 215.2317034667261 gradient_norm: 63.58381952486156 max_violation: 0.6608140732030163 step_size: 1.0 iter: 48 cost: 215.1222567971938 gradient_norm: 62.5144221431751 max_violation: 0.6593130275439156 step_size: 1.0 iter: 49 cost: 215.01765058186788 gradient_norm: 61.47494141339405 max_violation: 0.6578706732092012 step_size: 1.0 iter: 50 cost: 214.91755872558556 gradient_norm: 60.46457593751884 max_violation: 0.6564835202170398 step_size: 1.0 iter: 51 cost: 214.82168347427296 gradient_norm: 59.482495721919705 max_violation: 0.6551483525627027 step_size: 1.0 iter: 52 cost: 214.72975247374848 gradient_norm: 58.52785509763914 max_violation: 0.6538622017354254 step_size: 1.0 iter: 53 cost: 214.64151617703754 gradient_norm: 57.59980286085836 max_violation: 0.6526223232602151 step_size: 1.0 iter: 54 cost: 214.55674555434356 gradient_norm: 56.69749018731524 max_violation: 0.6514261758671358 step_size: 1.0 iter: 55 cost: 214.47523006639486 gradient_norm: 55.820076762171006 max_violation: 0.65027140294958 step_size: 1.0 iter: 56 cost: 214.3967758674444 gradient_norm: 54.966735478575295 max_violation: 0.6491558160222732 step_size: 1.0 iter: 57 cost: 214.32120420891994 gradient_norm: 54.13665598813364 max_violation: 0.6480773799310171 step_size: 1.0 iter: 58 cost: 214.2483500187185 gradient_norm: 53.32904733076652 max_violation: 0.6470341996008426 step_size: 1.0 iter: 59 cost: 214.17806063455265 gradient_norm: 52.54313982715858 max_violation: 0.6460245081385749 step_size: 1.0 iter: 60 cost: 214.11019467266166 gradient_norm: 51.77818638150853 max_violation: 0.6450466561305861 step_size: 1.0 iter: 61 cost: 214.04462101568785 gradient_norm: 51.033463313987056 max_violation: 0.6440991019976741 step_size: 1.0 iter: 62 cost: 213.98121790564545 gradient_norm: 50.308270819244576 max_violation: 0.6431804032869195 step_size: 1.0 iter: 63 cost: 213.9198721297338 gradient_norm: 49.60193312919499 max_violation: 0.6422892087958281 step_size: 1.0 iter: 64 cost: 213.86047828832008 gradient_norm: 48.91379844316912 max_violation: 0.6414242514372064 step_size: 1.0 iter: 65 cost: 213.8029381357674 gradient_norm: 48.243238676830146 max_violation: 0.6405843417646291 step_size: 1.0 iter: 66 cost: 213.74715998594348 gradient_norm: 47.58964907117031 max_violation: 0.6397683620880517 step_size: 1.0 iter: 67 cost: 213.69305817526794 gradient_norm: 46.95244769529226 max_violation: 0.6389752611177189 step_size: 1.0 iter: 68 cost: 213.6405525770092 gradient_norm: 46.331074870014625 max_violation: 0.6382040490816796 step_size: 1.0 iter: 69 cost: 213.58956816131817 gradient_norm: 45.7249925343957 max_violation: 0.6374537932687439 step_size: 1.0 iter: 70 cost: 213.54003459612875 gradient_norm: 45.13368357261186 max_violation: 0.6367236139541634 step_size: 1.0 iter: 71 cost: 213.49188588463443 gradient_norm: 44.556651115509844 max_violation: 0.63601268067017 step_size: 1.0 iter: 72 cost: 213.44506003554906 gradient_norm: 43.99341782820387 max_violation: 0.6353202087877579 step_size: 1.0 iter: 73 cost: 213.39949876279343 gradient_norm: 43.443525192594464 max_violation: 0.6346454563797859 step_size: 1.0 iter: 74 cost: 213.35514721163017 gradient_norm: 42.90653279208684 max_violation: 0.6339877213386966 step_size: 1.0 iter: 75 cost: 213.31195370860692 gradient_norm: 42.38201760403855 max_violation: 0.6333463387250555 step_size: 1.0 iter: 76 cost: 213.26986953295386 gradient_norm: 41.869573304242095 max_violation: 0.6327206783255828 step_size: 1.0 iter: 77 cost: 213.22884870734887 gradient_norm: 41.368809586742614 max_violation: 0.6321101424016295 step_size: 1.0 iter: 78 cost: 213.1888478061783 gradient_norm: 40.87935150160862 max_violation: 0.6315141636109218 step_size: 1.0 iter: 79 cost: 213.1498257796331 gradient_norm: 40.40083881213768 max_violation: 0.6309322030872604 step_size: 1.0 iter: 80 cost: 213.11174379214577 gradient_norm: 39.93292537313308 max_violation: 0.6303637486642653 step_size: 1.0 iter: 81 cost: 213.0745650738376 gradient_norm: 39.475278530656254 max_violation: 0.6298083132307659 step_size: 1.0 iter: 82 cost: 213.03825478378062 gradient_norm: 39.02757854403114 max_violation: 0.6292654332065384 step_size: 1.0 iter: 83 cost: 213.002779883996 gradient_norm: 38.58951802999099 max_violation: 0.6287346671282461 step_size: 1.0 iter: 84 cost: 212.96810902323165 gradient_norm: 38.16080142911718 max_violation: 0.6282155943364023 step_size: 1.0 iter: 85 cost: 212.93421242964376 gradient_norm: 37.7411444941736 max_violation: 0.6277078137550052 step_size: 1.0 iter: 86 cost: 212.90106181160496 gradient_norm: 37.33027380004726 max_violation: 0.627210942756308 step_size: 1.0 iter: 87 cost: 212.868630265931 gradient_norm: 36.92792627468909 max_violation: 0.6267246161038904 step_size: 1.0 iter: 88 cost: 212.83689219288988 gradient_norm: 36.5338487506813 max_violation: 0.6262484849677521 step_size: 1.0 iter: 89 cost: 212.805823217416 gradient_norm: 36.147797536563274 max_violation: 0.6257822160058106 step_size: 1.0 iter: 90 cost: 212.77540011601033 gradient_norm: 35.769538007463424 max_violation: 0.6253254905066012 step_size: 1.0 iter: 91 cost: 212.7456007488529 gradient_norm: 35.39884421424141 max_violation: 0.6248780035884933 step_size: 1.0 iter: 92 cost: 212.7164039966976 gradient_norm: 35.03549851044836 max_violation: 0.6244394634511026 step_size: 1.0 iter: 93 cost: 212.68778970216337 gradient_norm: 34.679291196324925 max_violation: 0.6240095906749805 step_size: 1.0 iter: 94 cost: 212.65973861506635 gradient_norm: 34.33002017932205 max_violation: 0.6235881175659861 step_size: 1.0 iter: 95 cost: 212.6322323414718 gradient_norm: 33.987490650226675 max_violation: 0.6231747875410383 step_size: 1.0 iter: 96 cost: 212.60525329617232 gradient_norm: 33.65151477438357 max_violation: 0.6227693545522333 step_size: 1.0 iter: 97 cost: 212.57878465832738 gradient_norm: 33.321911397094865 max_violation: 0.6223715825465708 step_size: 1.0 iter: 98 cost: 212.55281033001683 gradient_norm: 32.998505762948646 max_violation: 0.6219812449587225 step_size: 1.0 iter: 99 cost: 212.52731489749138 gradient_norm: 32.681129247970595 max_violation: 0.6215981242345214 step_size: 1.0 iter: 100 cost: 212.50228359490978 gradient_norm: 32.369619104317316 max_violation: 0.6212220113830198 step_size: 1.0 al iter: 4 iter: 1 cost: 448.0305661132808 gradient_norm: 249.15626197940708 max_violation: 0.36796260357650645 step_size: 1.0 iter: 2 cost: 418.3490451035606 gradient_norm: 480.9649266791061 max_violation: 0.3536435629580965 step_size: 0.125 iter: 3 cost: 393.44181830733544 gradient_norm: 1601.4418903064843 max_violation: 0.3408481267158696 step_size: 0.25 iter: 4 cost: 380.97706419436923 gradient_norm: 3680.9315860430415 max_violation: 0.3403180838044584 step_size: 0.5 iter: 5 cost: 356.3798112837904 gradient_norm: 4640.975342288081 max_violation: 0.3058605484250019 step_size: 1.0 iter: 6 cost: 329.1126807547404 gradient_norm: 3795.598367502106 max_violation: 0.2766950364235914 step_size: 1.0 iter: 7 cost: 313.23620791301533 gradient_norm: 3202.0284096464597 max_violation: 0.25638750346111827 step_size: 1.0 iter: 8 cost: 302.786998895236 gradient_norm: 2761.5008971654624 max_violation: 0.2404848932660193 step_size: 1.0 iter: 9 cost: 295.4461629973424 gradient_norm: 2424.2643875045105 max_violation: 0.23192931720931753 step_size: 1.0 iter: 10 cost: 290.0541037618712 gradient_norm: 2159.096093867948 max_violation: 0.22961425016670178 step_size: 1.0 iter: 11 cost: 285.9582865660993 gradient_norm: 1945.6601609276086 max_violation: 0.2278253726143058 step_size: 1.0 iter: 12 cost: 282.7623007793318 gradient_norm: 1770.3900084892277 max_violation: 0.22635869122710073 step_size: 1.0 iter: 13 cost: 280.21211218367915 gradient_norm: 1623.9875078147968 max_violation: 0.22510962082394226 step_size: 1.0 iter: 14 cost: 278.13820797189385 gradient_norm: 1499.9066114467294 max_violation: 0.22401851029360254 step_size: 1.0 iter: 15 cost: 276.42373153111646 gradient_norm: 1393.422240512592 max_violation: 0.22304821484413706 step_size: 1.0 iter: 16 cost: 274.9858994261254 gradient_norm: 1301.045846499512 max_violation: 0.22217390822603633 step_size: 1.0 iter: 17 cost: 273.76467747346214 gradient_norm: 1220.1493050305166 max_violation: 0.22137803530416766 step_size: 1.0 iter: 18 cost: 272.71562950712007 gradient_norm: 1148.716768902944 max_violation: 0.22064761460848636 step_size: 1.0 iter: 19 cost: 271.80526321713506 gradient_norm: 1085.177027342275 max_violation: 0.21997269847357348 step_size: 1.0 iter: 20 cost: 271.007921231526 gradient_norm: 1028.2877425375516 max_violation: 0.21934544208469475 step_size: 1.0 iter: 21 cost: 270.3036562671749 gradient_norm: 977.053886318998 max_violation: 0.2187595119013177 step_size: 1.0 iter: 22 cost: 269.6767488683622 gradient_norm: 930.6692086117625 max_violation: 0.21820969316313255 step_size: 1.0 iter: 23 cost: 269.1146541458387 gradient_norm: 888.473524958816 max_violation: 0.2176916195949934 step_size: 1.0 iter: 24 cost: 268.6072406448435 gradient_norm: 849.9210680965883 max_violation: 0.2172015812098902 step_size: 1.0 iter: 25 cost: 268.1462317231057 gradient_norm: 814.5567081860834 max_violation: 0.21673638388338912 step_size: 1.0 iter: 26 cost: 267.7247896342366 gradient_norm: 781.9978560189834 max_violation: 0.21629324444843956 step_size: 1.0 iter: 27 cost: 267.3372017555596 gradient_norm: 751.9205296461688 max_violation: 0.21586971102485197 step_size: 1.0 iter: 28 cost: 266.97864110642087 gradient_norm: 724.0485121208953 max_violation: 0.21546360199399528 step_size: 1.0 iter: 29 cost: 266.6449819067159 gradient_norm: 698.1448334130048 max_violation: 0.21507295943720273 step_size: 1.0 iter: 30 cost: 266.3326569265211 gradient_norm: 674.0050212506075 max_violation: 0.21469601450972498 step_size: 1.0 iter: 31 cost: 266.03854771209535 gradient_norm: 651.4517145190127 max_violation: 0.21433116340067215 step_size: 1.0 iter: 32 cost: 265.7599020017712 gradient_norm: 630.3303386495943 max_violation: 0.21397695334251088 step_size: 1.0 iter: 33 cost: 265.49427503680795 gradient_norm: 610.5056178771299 max_violation: 0.2136320785495993 step_size: 1.0 iter: 34 cost: 265.2394930239047 gradient_norm: 591.8587524030507 max_violation: 0.21329538582664354 step_size: 1.0 iter: 35 cost: 264.99363745763964 gradient_norm: 574.2851244809442 max_violation: 0.21296588866567223 step_size: 1.0 iter: 36 cost: 264.7550479613541 gradient_norm: 557.6924200176617 max_violation: 0.2126427868022156 step_size: 1.0 iter: 37 cost: 264.5223385581895 gradient_norm: 541.9990656489729 max_violation: 0.21232548567545928 step_size: 1.0 iter: 38 cost: 264.29441843625824 gradient_norm: 527.1328913546031 max_violation: 0.2120136079950532 step_size: 1.0 iter: 39 cost: 264.07050516707295 gradient_norm: 513.029943016973 max_violation: 0.2117069892944845 step_size: 1.0 iter: 40 cost: 263.8501186050973 gradient_norm: 499.6333933743436 max_violation: 0.21140565240292153 step_size: 1.0 iter: 41 cost: 263.63304894799717 gradient_norm: 486.8925319171785 max_violation: 0.2111097619944151 step_size: 1.0 iter: 42 cost: 263.4193012497017 gradient_norm: 474.7618440915689 max_violation: 0.2108195671769817 step_size: 1.0 iter: 43 cost: 263.20902675748874 gradient_norm: 463.2002049825472 max_violation: 0.21053534384156736 step_size: 1.0 iter: 44 cost: 263.00245464917464 gradient_norm: 452.1702077504715 max_violation: 0.2102573473132967 step_size: 1.0 iter: 45 cost: 262.7998352318744 gradient_norm: 441.63762939314364 max_violation: 0.20998578099626553 step_size: 1.0 iter: 46 cost: 262.6013999817368 gradient_norm: 431.57101818269507 max_violation: 0.20972078124199633 step_size: 1.0 iter: 47 cost: 262.40733835081926 gradient_norm: 421.9413768434242 max_violation: 0.20946241502524243 step_size: 1.0 iter: 48 cost: 262.2177879902651 gradient_norm: 412.7219144225693 max_violation: 0.20921068579280355 step_size: 1.0 iter: 49 cost: 262.0328340554809 gradient_norm: 403.8878445185186 max_violation: 0.2089655433543265 step_size: 1.0 iter: 50 cost: 261.85251373266595 gradient_norm: 395.41621406386264 max_violation: 0.20872689489487328 step_size: 1.0 iter: 51 cost: 261.6768231616829 gradient_norm: 387.28575267824493 max_violation: 0.2084946153991054 step_size: 1.0 iter: 52 cost: 261.5057249634451 gradient_norm: 379.4767368023614 max_violation: 0.20826855668424127 step_size: 1.0 iter: 53 cost: 261.339155378528 gradient_norm: 371.9708654495583 max_violation: 0.20804855480716355 step_size: 1.0 iter: 54 cost: 261.17703055596365 gradient_norm: 364.75114587952686 max_violation: 0.2078344359155011 step_size: 1.0 iter: 55 cost: 261.0192518482183 gradient_norm: 357.8017882421984 max_violation: 0.20762602074578096 step_size: 1.0 iter: 56 cost: 260.86571013769577 gradient_norm: 351.1081085659755 max_violation: 0.20742312800826124 step_size: 1.0 iter: 57 cost: 260.71628929806667 gradient_norm: 344.6564395803182 max_violation: 0.20722557688658405 step_size: 1.0 iter: 58 cost: 260.5708689199544 gradient_norm: 338.43404890271535 max_violation: 0.2070331888492527 step_size: 1.0 iter: 59 cost: 260.42932642989933 gradient_norm: 332.4290641058624 max_violation: 0.20684578893429606 step_size: 1.0 iter: 60 cost: 260.29153871873245 gradient_norm: 326.63040418266786 max_violation: 0.20666320663498805 step_size: 1.0 iter: 61 cost: 260.1573833784622 gradient_norm: 321.0277169244247 max_violation: 0.20648527648604276 step_size: 1.0 iter: 62 cost: 260.02673962958136 gradient_norm: 315.6113217348238 max_violation: 0.20631183842645884 step_size: 1.0 iter: 63 cost: 259.89948900515094 gradient_norm: 310.37215742431647 max_violation: 0.206142737997014 step_size: 1.0 iter: 64 cost: 259.77551584470865 gradient_norm: 305.3017345512366 max_violation: 0.2059778264162877 step_size: 1.0 iter: 65 cost: 259.65470764008916 gradient_norm: 300.39209190493153 max_violation: 0.20581696056825471 step_size: 1.0 iter: 66 cost: 259.53695526634766 gradient_norm: 295.63575675341383 max_violation: 0.20566000292635067 step_size: 1.0 iter: 67 cost: 259.42215312389646 gradient_norm: 291.0257085110477 max_violation: 0.20550682143269317 step_size: 1.0 iter: 68 cost: 259.3101992123448 gradient_norm: 286.5553455113179 max_violation: 0.2053572893464164 step_size: 1.0 iter: 69 cost: 259.2009951521029 gradient_norm: 282.2184545935908 max_violation: 0.205211285071635 step_size: 1.0 iter: 70 cost: 259.094446166345 gradient_norm: 278.00918324571677 max_violation: 0.20506869197278643 step_size: 1.0 iter: 71 cost: 258.99046103318045 gradient_norm: 273.9220140637895 max_violation: 0.2049293981831637 step_size: 1.0 iter: 72 cost: 258.88895201576076 gradient_norm: 269.95174131676464 max_violation: 0.20479329641092292 step_size: 1.0 iter: 73 cost: 258.7898347763406 gradient_norm: 266.0934494201681 max_violation: 0.20466028374562706 step_size: 1.0 iter: 74 cost: 258.6930282790279 gradient_norm: 262.3424931470957 max_violation: 0.20453026146766362 step_size: 1.0 iter: 75 cost: 258.59845468488885 gradient_norm: 258.69447941870305 max_violation: 0.2044031348620532 step_size: 1.0 iter: 76 cost: 258.5060392422649 gradient_norm: 255.14525052865403 max_violation: 0.20427881303781303 step_size: 1.0 iter: 77 cost: 258.415710174532 gradient_norm: 251.6908686798632 max_violation: 0.2041572087535637 step_size: 1.0 iter: 78 cost: 258.3273985669955 gradient_norm: 248.32760171186757 max_violation: 0.20403823824986445 step_size: 1.0 iter: 79 cost: 258.2410382542355 gradient_norm: 245.05190991772065 max_violation: 0.20392182108849344 step_size: 1.0 iter: 80 cost: 258.15656570889615 gradient_norm: 241.86043385437068 max_violation: 0.2038078799987697 step_size: 1.0 iter: 81 cost: 258.07391993264935 gradient_norm: 238.74998306287083 max_violation: 0.20369634073089404 step_size: 1.0 iter: 82 cost: 257.993042349889 gradient_norm: 235.71752561901695 max_violation: 0.20358713191618483 step_size: 1.0 iter: 83 cost: 257.9138767045367 gradient_norm: 232.76017844583257 max_violation: 0.2034801849340533 step_size: 1.0 iter: 84 cost: 257.83636896022557 gradient_norm: 229.87519832466572 max_violation: 0.20337543378549716 step_size: 1.0 iter: 85 cost: 257.7604672040341 gradient_norm: 227.059973547341 max_violation: 0.20327281497286798 step_size: 1.0 iter: 86 cost: 257.6861215538627 gradient_norm: 224.31201615382494 max_violation: 0.20317226738567618 step_size: 1.0 iter: 87 cost: 257.61328406949417 gradient_norm: 221.62895471503802 max_violation: 0.20307373219216895 step_size: 1.0 iter: 88 cost: 257.5419086673176 gradient_norm: 219.00852760945816 max_violation: 0.20297715273636063 step_size: 1.0 iter: 89 cost: 257.4719510386937 gradient_norm: 216.44857676004477 max_violation: 0.20288247444036145 step_size: 1.0 iter: 90 cost: 257.4033685718685 gradient_norm: 213.94704179302502 max_violation: 0.20278964471160643 step_size: 1.0 iter: 91 cost: 257.33612027736734 gradient_norm: 211.5019545864128 max_violation: 0.20269861285485158 step_size: 1.0 iter: 92 cost: 257.2701667167519 gradient_norm: 209.1114341786366 max_violation: 0.20260932998859849 step_size: 1.0 iter: 93 cost: 257.2054699346447 gradient_norm: 206.77368200941527 max_violation: 0.20252174896577735 step_size: 1.0 iter: 94 cost: 257.14199339388136 gradient_norm: 204.48697746747342 max_violation: 0.202435824298425 step_size: 1.0 iter: 95 cost: 257.0797019136924 gradient_norm: 202.24967372484093 max_violation: 0.202351512086151 step_size: 1.0 iter: 96 cost: 257.01856161077257 gradient_norm: 200.06019383302788 max_violation: 0.20226876994817733 step_size: 1.0 iter: 97 cost: 256.9585398431272 gradient_norm: 197.91702706531942 max_violation: 0.202187556958783 step_size: 1.0 iter: 98 cost: 256.8996051565625 gradient_norm: 195.81872548418735 max_violation: 0.20210783358593787 step_size: 1.0 iter: 99 cost: 256.8417272337107 gradient_norm: 193.7639007205724 max_violation: 0.20202956163296681 step_size: 1.0 iter: 100 cost: 256.7848768454611 gradient_norm: 191.75122094992116 max_violation: 0.20195270418306688 step_size: 1.0 al iter: 5 iter: 1 cost: 573.5752213085607 gradient_norm: 28669.370753743257 max_violation: 0.15216415513501813 step_size: 0.5 iter: 2 cost: 532.8716847207413 gradient_norm: 25691.51777913296 max_violation: 0.1479982113062056 step_size: 0.25 iter: 3 cost: 438.9394295427571 gradient_norm: 19535.221986395143 max_violation: 0.13538442712783297 step_size: 1.0 iter: 4 cost: 367.39063132227693 gradient_norm: 14340.075407433498 max_violation: 0.10223892546851132 step_size: 1.0 iter: 5 cost: 334.0460669380294 gradient_norm: 11274.897667295263 max_violation: 0.08324191268295641 step_size: 1.0 iter: 6 cost: 314.68401000724816 gradient_norm: 9268.868785127826 max_violation: 0.06970623365553777 step_size: 1.0 iter: 7 cost: 302.6578368030238 gradient_norm: 7864.455769198675 max_violation: 0.059871829670989474 step_size: 1.0 iter: 8 cost: 294.68407306666217 gradient_norm: 6827.691275644897 max_violation: 0.05243381765936611 step_size: 1.0 iter: 9 cost: 289.121857094459 gradient_norm: 6031.382812963718 max_violation: 0.046621512596054626 step_size: 1.0 iter: 10 cost: 285.08284449210964 gradient_norm: 5400.776077542315 max_violation: 0.04195859315795114 step_size: 1.0 iter: 11 cost: 282.05314961337837 gradient_norm: 4889.134966217728 max_violation: 0.03813678466706255 step_size: 1.0 iter: 12 cost: 279.7189562539858 gradient_norm: 4465.762928295298 max_violation: 0.03494838975822523 step_size: 1.0 iter: 13 cost: 277.87985695282583 gradient_norm: 4109.674386872123 max_violation: 0.032248603161051215 step_size: 1.0 iter: 14 cost: 276.40298422825776 gradient_norm: 3806.0397912172307 max_violation: 0.02993348381023553 step_size: 1.0 iter: 15 cost: 275.19740516061495 gradient_norm: 3544.084425114399 max_violation: 0.02792653767744574 step_size: 1.0 iter: 16 cost: 274.1991658456026 gradient_norm: 3315.7922481494793 max_violation: 0.02617024328282025 step_size: 1.0 iter: 17 cost: 273.3622101953912 gradient_norm: 3115.076760898273 max_violation: 0.0246205260393747 step_size: 1.0 iter: 18 cost: 272.65267693867014 gradient_norm: 2937.233795555282 max_violation: 0.023243053254449364 step_size: 1.0 iter: 19 cost: 272.04521115523045 gradient_norm: 2778.570440845689 max_violation: 0.02201068790712546 step_size: 1.0 iter: 20 cost: 271.5205160285576 gradient_norm: 2636.147352341962 max_violation: 0.020901700105724286 step_size: 1.0 iter: 21 cost: 271.0636899320127 gradient_norm: 2507.5960015033634 max_violation: 0.019898486022765893 step_size: 1.0 iter: 22 cost: 270.6630734343591 gradient_norm: 2390.9866227676134 max_violation: 0.018986634128144053 step_size: 1.0 iter: 23 cost: 270.30943492166085 gradient_norm: 2284.7311809811135 max_violation: 0.01815423375189118 step_size: 1.0 iter: 24 cost: 269.9953856794574 gradient_norm: 2187.51098631754 max_violation: 0.017391355723839985 step_size: 1.0 iter: 25 cost: 269.7149533444318 gradient_norm: 2098.2219516400282 max_violation: 0.016689657164114968 step_size: 1.0 iter: 26 cost: 269.46326649945996 gradient_norm: 2015.9326732168072 max_violation: 0.01604207715603556 step_size: 1.0 iter: 27 cost: 269.23631846773145 gradient_norm: 1939.8519631935167 max_violation: 0.015442599837497184 step_size: 1.0 iter: 28 cost: 269.0307883379665 gradient_norm: 1869.3034384279388 max_violation: 0.014886068118803553 step_size: 1.0 iter: 29 cost: 268.8439038829246 gradient_norm: 1803.7054396689957 max_violation: 0.014368035847726057 step_size: 1.0 iter: 30 cost: 268.6733355107415 gradient_norm: 1742.555021103767 max_violation: 0.013884649477108546 step_size: 1.0 iter: 31 cost: 268.51711345950304 gradient_norm: 1685.415079548294 max_violation: 0.013432552591646996 step_size: 1.0 iter: 32 cost: 268.3735625798575 gradient_norm: 1631.9039279300762 max_violation: 0.013008808305022712 step_size: 1.0 iter: 33 cost: 268.2412505544148 gradient_norm: 1581.6867883455673 max_violation: 0.012610835745416882 step_size: 1.0 iter: 34 cost: 268.11894647430887 gradient_norm: 1534.4688047819884 max_violation: 0.012236357734281 step_size: 1.0 iter: 35 cost: 268.0055874662671 gradient_norm: 1489.9892680654332 max_violation: 0.011883357423847496 step_size: 1.0 iter: 36 cost: 267.90025162642183 gradient_norm: 1448.0168146737233 max_violation: 0.011550042154317874 step_size: 1.0 iter: 37 cost: 267.8021359313527 gradient_norm: 1408.3454130930882 max_violation: 0.01123481316660968 step_size: 1.0 iter: 38 cost: 267.7105381045178 gradient_norm: 1370.790991087305 max_violation: 0.010936240093576188 step_size: 1.0 iter: 39 cost: 267.62484164665545 gradient_norm: 1335.188587621202 max_violation: 0.010653039373058504 step_size: 1.0 iter: 40 cost: 267.5445034128153 gradient_norm: 1301.3899366459257 max_violation: 0.010384055897088795 step_size: 1.0 iter: 41 cost: 267.46904325117487 gradient_norm: 1269.2614082630512 max_violation: 0.010128247345277286 step_size: 1.0 iter: 42 cost: 267.39803532041776 gradient_norm: 1238.6822471125763 max_violation: 0.00988467075550159 step_size: 1.0 iter: 43 cost: 267.3311007808902 gradient_norm: 1209.5430590918425 max_violation: 0.009652470967741578 step_size: 1.0 iter: 44 cost: 267.2679016157803 gradient_norm: 1181.7445065576474 max_violation: 0.009430870643602374 step_size: 1.0 iter: 45 cost: 267.20813538621064 gradient_norm: 1155.1961792115299 max_violation: 0.009219161616124127 step_size: 1.0 iter: 46 cost: 267.15153076175824 gradient_norm: 1129.8156137399224 max_violation: 0.009016697368011362 step_size: 1.0 iter: 47 cost: 267.09784369754146 gradient_norm: 1105.5274397985643 max_violation: 0.008822886469875502 step_size: 1.0 iter: 48 cost: 267.04685415271626 gradient_norm: 1082.2626337804318 max_violation: 0.008637186838833077 step_size: 1.0 iter: 49 cost: 266.9983632641218 gradient_norm: 1059.9578648163974 max_violation: 0.00845910070017819 step_size: 1.0 iter: 50 cost: 266.9521909039869 gradient_norm: 1038.5549199779184 max_violation: 0.008288170153708085 step_size: 1.0 iter: 51 cost: 266.90817356292877 gradient_norm: 1018.000197731549 max_violation: 0.00812397326182357 step_size: 1.0 iter: 52 cost: 266.8661625094003 gradient_norm: 998.244260352663 max_violation: 0.007966120589014247 step_size: 1.0 iter: 53 cost: 266.8260221848938 gradient_norm: 979.2414374787347 max_violation: 0.007814252133357624 step_size: 1.0 iter: 54 cost: 266.787628800804 gradient_norm: 960.9494740731919 max_violation: 0.007668034598871332 step_size: 1.0 iter: 55 cost: 266.75086910837877 gradient_norm: 943.3292171530485 max_violation: 0.007527158965770053 step_size: 1.0 iter: 56 cost: 266.7156393176092 gradient_norm: 926.3443363448515 max_violation: 0.007391338320968832 step_size: 1.0 iter: 57 cost: 266.6818441447028 gradient_norm: 909.9610741194349 max_violation: 0.007260305917181964 step_size: 1.0 iter: 58 cost: 266.64939597083793 gradient_norm: 894.1480220646773 max_violation: 0.007133813432788516 step_size: 1.0 iter: 59 cost: 266.61821409750496 gradient_norm: 878.8759201166791 max_violation: 0.007011629408910092 step_size: 1.0 iter: 60 cost: 266.5882240858685 gradient_norm: 864.1174760061948 max_violation: 0.006893537842663444 step_size: 1.0 iter: 61 cost: 266.55935716943765 gradient_norm: 849.8472026295359 max_violation: 0.006779336919059631 step_size: 1.0 iter: 62 cost: 266.5315497308125 gradient_norm: 836.0412712655235 max_violation: 0.006668837865548172 step_size: 1.0 iter: 63 cost: 266.504742834598 gradient_norm: 822.6773788921173 max_violation: 0.00656186391581437 step_size: 1.0 iter: 64 cost: 266.4788818096422 gradient_norm: 809.7346280300715 max_violation: 0.006458249370725921 step_size: 1.0 iter: 65 cost: 266.4539158746913 gradient_norm: 797.1934177679514 max_violation: 0.006357838746055222 step_size: 1.0 iter: 66 cost: 266.4297978023571 gradient_norm: 785.0353447726209 max_violation: 0.00626048599776885 step_size: 1.0 iter: 67 cost: 266.40648361691296 gradient_norm: 773.2431132166112 max_violation: 0.006166053816643258 step_size: 1.0 iter: 68 cost: 266.38393232208637 gradient_norm: 761.8004527226551 max_violation: 0.006074412985238586 step_size: 1.0 iter: 69 cost: 266.3621056554483 gradient_norm: 750.6920434987401 max_violation: 0.005985441790866464 step_size: 1.0 iter: 70 cost: 266.34096786644125 gradient_norm: 739.9034479257683 max_violation: 0.0058990254888364735 step_size: 1.0 iter: 71 cost: 266.3204855154718 gradient_norm: 729.4210479741647 max_violation: 0.005815055811128733 step_size: 1.0 iter: 72 cost: 266.30062729178724 gradient_norm: 719.2319878739253 max_violation: 0.005733430516082216 step_size: 1.0 iter: 73 cost: 266.2813638481363 gradient_norm: 709.3241215249022 max_violation: 0.005654052975064827 step_size: 1.0 iter: 74 cost: 266.2626676504557 gradient_norm: 699.6859642024144 max_violation: 0.005576831792716952 step_size: 1.0 iter: 75 cost: 266.2445128410336 gradient_norm: 690.3066481556389 max_violation: 0.005501680457618341 step_size: 1.0 iter: 76 cost: 266.22687511376176 gradient_norm: 681.1758817371809 max_violation: 0.00542851702057634 step_size: 1.0 iter: 77 cost: 266.2097316002649 gradient_norm: 672.2839117227751 max_violation: 0.005357263797877931 step_size: 1.0 iter: 78 cost: 266.19306076583223 gradient_norm: 663.6214885740477 max_violation: 0.005287847097595333 step_size: 1.0 iter: 79 cost: 266.17684231417644 gradient_norm: 655.1798343327266 max_violation: 0.0052201969665004455 step_size: 1.0 iter: 80 cost: 266.16105710017985 gradient_norm: 646.950612957454 max_violation: 0.00515424695613953 step_size: 1.0 iter: 81 cost: 266.1456870498493 gradient_norm: 638.9259028559127 max_violation: 0.005089933906112121 step_size: 1.0 iter: 82 cost: 266.1307150868137 gradient_norm: 631.0981714528042 max_violation: 0.005027197743341261 step_size: 1.0 iter: 83 cost: 266.1161250647433 gradient_norm: 623.4602516035209 max_violation: 0.004965981295826483 step_size: 1.0 iter: 84 cost: 266.1019017051488 gradient_norm: 616.0053196970812 max_violation: 0.0049062301196673985 step_size: 1.0 iter: 85 cost: 266.08803054007575 gradient_norm: 608.7268753266248 max_violation: 0.004847892338410209 step_size: 1.0 iter: 86 cost: 266.07449785924223 gradient_norm: 601.61872236771 max_violation: 0.004790918493456142 step_size: 1.0 iter: 87 cost: 266.0612906612432 gradient_norm: 594.6749513951693 max_violation: 0.004735261405011015 step_size: 1.0 iter: 88 cost: 266.0483966084481 gradient_norm: 587.8899232883078 max_violation: 0.004680876042375326 step_size: 1.0 iter: 89 cost: 266.03580398527333 gradient_norm: 581.258253942784 max_violation: 0.004627719402951702 step_size: 1.0 iter: 90 cost: 266.0235016595587 gradient_norm: 574.774800031275 max_violation: 0.004575750399513745 step_size: 1.0 iter: 91 cost: 266.01147904675383 gradient_norm: 568.4346456852456 max_violation: 0.004524929754735174 step_size: 1.0 iter: 92 cost: 265.9997260767095 gradient_norm: 562.2330900620839 max_violation: 0.004475219902686733 step_size: 1.0 iter: 93 cost: 265.98823316283483 gradient_norm: 556.1656357149776 max_violation: 0.004426584896678354 step_size: 1.0 iter: 94 cost: 265.976991173443 gradient_norm: 550.227977712347 max_violation: 0.004378990323008036 step_size: 1.0 iter: 95 cost: 265.96599140509625 gradient_norm: 544.4159934476072 max_violation: 0.004332403220150272 step_size: 1.0 iter: 96 cost: 265.95522555779786 gradient_norm: 538.7257330859906 max_violation: 0.004286792002987649 step_size: 1.0 iter: 97 cost: 265.94468571187764 gradient_norm: 533.1534106067787 max_violation: 0.004242126391738599 step_size: 1.0 iter: 98 cost: 265.93436430644766 gradient_norm: 527.6953954054547 max_violation: 0.0041983773453039275 step_size: 1.0 iter: 99 cost: 265.924254119294 gradient_norm: 522.3482043928672 max_violation: 0.004155516998548214 step_size: 1.0 iter: 100 cost: 265.9143482481054 gradient_norm: 517.1084945835091 max_violation: 0.004113518603445554 step_size: 1.0 Test Summary: | Pass Total Time Solve: acrobot | 1 1 6m01.4s ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University al iter: 1 ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University iter: 1 cost: 261.2537798738653 gradient_norm: 885.6763002794513 max_violation: 1.1807656674637883 step_size: 1.0 iter: 2 cost: 69.99469960068207 gradient_norm: 376.08357134305186 max_violation: 0.766429330514935 step_size: 1.0 iter: 3 cost: 34.54977364243712 gradient_norm: 193.82532155965612 max_violation: 0.5197983639867401 step_size: 1.0 iter: 4 cost: 22.539037764763805 gradient_norm: 111.7024513072441 max_violation: 0.4196158004810382 step_size: 1.0 iter: 5 cost: 17.035664625358486 gradient_norm: 69.14467761180012 max_violation: 0.37323467952446965 step_size: 1.0 iter: 6 cost: 14.062954292496705 gradient_norm: 45.607762506571646 max_violation: 0.34188493819304266 step_size: 1.0 iter: 7 cost: 12.272616098482587 gradient_norm: 31.744197515746393 max_violation: 0.3195794259745215 step_size: 1.0 iter: 8 cost: 11.110324366994146 gradient_norm: 28.481409161315987 max_violation: 0.30283107541267995 step_size: 1.0 iter: 9 cost: 10.312569004061332 gradient_norm: 25.725116998667954 max_violation: 0.28976177042682494 step_size: 1.0 iter: 10 cost: 9.740976036112503 gradient_norm: 24.387263942641127 max_violation: 0.27926490324135944 step_size: 1.0 iter: 11 cost: 9.317182750501477 gradient_norm: 23.27948171916522 max_violation: 0.270642534988605 step_size: 1.0 iter: 12 cost: 8.99409364960746 gradient_norm: 22.133658624582665 max_violation: 0.2634309744732146 step_size: 1.0 iter: 13 cost: 8.742010825607291 gradient_norm: 21.003710960323513 max_violation: 0.25730926409585564 step_size: 1.0 iter: 14 cost: 8.541448500865746 gradient_norm: 19.918615937273927 max_violation: 0.2520477436399142 step_size: 1.0 iter: 15 cost: 8.379187541400649 gradient_norm: 18.892634093629162 max_violation: 0.24747750308208794 step_size: 1.0 iter: 16 cost: 8.246001295724474 gradient_norm: 17.931443843477687 max_violation: 0.243471404916475 step_size: 1.0 iter: 17 cost: 8.135289721002943 gradient_norm: 17.035806102872616 max_violation: 0.2399318426078958 step_size: 1.0 iter: 18 cost: 8.042229513640368 gradient_norm: 16.203750801407285 max_violation: 0.23678258854916034 step_size: 1.0 iter: 19 cost: 7.963228813262942 gradient_norm: 15.431879152844623 max_violation: 0.23396321467267356 step_size: 1.0 iter: 20 cost: 7.895567773780683 gradient_norm: 14.71613518888006 max_violation: 0.2314251818556059 step_size: 1.0 iter: 21 cost: 7.837155934003607 gradient_norm: 14.05225742418412 max_violation: 0.2291290411089797 step_size: 1.0 iter: 22 cost: 7.786364917793634 gradient_norm: 13.436037151680694 max_violation: 0.22704239307714413 step_size: 1.0 iter: 23 cost: 7.741910858273423 gradient_norm: 12.86345977297741 max_violation: 0.22513837563732508 step_size: 1.0 iter: 24 cost: 7.702770335780684 gradient_norm: 12.330775619639935 max_violation: 0.223394526194177 step_size: 1.0 iter: 25 cost: 7.668119333509148 gradient_norm: 11.834528666306948 max_violation: 0.22179191431193956 step_size: 1.0 iter: 26 cost: 7.637288274827675 gradient_norm: 11.37156056170258 max_violation: 0.2203144723692816 step_size: 1.0 iter: 27 cost: 7.609728473089355 gradient_norm: 10.939000679422454 max_violation: 0.21894847327438605 step_size: 1.0 iter: 28 cost: 7.5849867970528555 gradient_norm: 10.534248743252592 max_violation: 0.21768211877573584 step_size: 1.0 iter: 29 cost: 7.562686328832223 gradient_norm: 10.154954010172425 max_violation: 0.21650521190799044 step_size: 1.0 iter: 30 cost: 7.542511446200534 gradient_norm: 9.798993394781991 max_violation: 0.2154088941268837 step_size: 1.0 iter: 31 cost: 7.5241962083383624 gradient_norm: 9.464449922833648 max_violation: 0.21438543266983068 step_size: 1.0 iter: 32 cost: 7.507515233952561 gradient_norm: 9.149592283243631 max_violation: 0.21342804726960818 step_size: 1.0 iter: 33 cost: 7.492276478169418 gradient_norm: 8.852855866270925 max_violation: 0.21253076796176984 step_size: 1.0 iter: 34 cost: 7.478315469141725 gradient_norm: 8.572825443102449 max_violation: 0.2116883176538611 step_size: 1.0 iter: 35 cost: 7.465490676384057 gradient_norm: 8.308219503864 max_violation: 0.21089601456018237 step_size: 1.0 iter: 36 cost: 7.453679763543525 gradient_norm: 8.057876191788143 max_violation: 0.21014969068297518 step_size: 1.0 iter: 37 cost: 7.442776537525081 gradient_norm: 7.820740728824099 max_violation: 0.20944562333843297 step_size: 1.0 iter: 38 cost: 7.432688449752018 gradient_norm: 7.595854208610376 max_violation: 0.2087804773531028 step_size: 1.0 iter: 39 cost: 7.423334538118871 gradient_norm: 7.382343627146472 max_violation: 0.2081512560379437 step_size: 1.0 iter: 40 cost: 7.414643722894794 gradient_norm: 7.179413023837764 max_violation: 0.20755525942109987 step_size: 1.0 iter: 41 cost: 7.406553388595878 gradient_norm: 6.986335612818852 max_violation: 0.20699004851539815 step_size: 1.0 iter: 42 cost: 7.399008198200706 gradient_norm: 6.802446793745567 max_violation: 0.20645341462638545 step_size: 1.0 iter: 43 cost: 7.391959097146254 gradient_norm: 6.627137941422962 max_violation: 0.2059433528896557 step_size: 1.0 iter: 44 cost: 7.385362473123337 gradient_norm: 6.45985088395812 max_violation: 0.20545803937275675 step_size: 1.0 iter: 45 cost: 7.379179444392276 gradient_norm: 6.300072989008616 max_violation: 0.2049958111936343 step_size: 1.0 iter: 46 cost: 7.373375254601611 gradient_norm: 6.147332786703153 max_violation: 0.2045551492013793 step_size: 1.0 iter: 47 cost: 7.367918756251549 gradient_norm: 6.001196066353447 max_violation: 0.2041346628427032 step_size: 1.0 iter: 48 cost: 7.362781968245788 gradient_norm: 5.861262391436014 max_violation: 0.20373307689846154 step_size: 1.0 iter: 49 cost: 7.357939695613454 gradient_norm: 5.727161984084324 max_violation: 0.20334921982621523 step_size: 1.0 iter: 50 cost: 7.353369201599009 gradient_norm: 5.598552936261505 max_violation: 0.2029820134865652 step_size: 1.0 iter: 51 cost: 7.349049924024784 gradient_norm: 5.475118710010506 max_violation: 0.20263046406533292 step_size: 1.0 iter: 52 cost: 7.34496322921335 gradient_norm: 5.35656589373689 max_violation: 0.20229365403219823 step_size: 1.0 iter: 53 cost: 7.341092197882067 gradient_norm: 5.242622185541038 max_violation: 0.2019707350005815 step_size: 1.0 iter: 54 cost: 7.337421438340977 gradient_norm: 5.133034578164165 max_violation: 0.20166092137318348 step_size: 1.0 iter: 55 cost: 7.333936923079356 gradient_norm: 5.0275677230832505 max_violation: 0.2013634846738297 step_size: 1.0 iter: 56 cost: 7.330625845447401 gradient_norm: 4.926002454107622 max_violation: 0.20107774848119497 step_size: 1.0 iter: 57 cost: 7.327476493652688 gradient_norm: 4.828134453115053 max_violation: 0.20080308389097912 step_size: 1.0 iter: 58 cost: 7.324478139716949 gradient_norm: 4.733773042605958 max_violation: 0.2005389054433122 step_size: 1.0 iter: 59 cost: 7.321620941393538 gradient_norm: 4.64274009160189 max_violation: 0.20028466746088736 step_size: 1.0 iter: 60 cost: 7.318895855341548 gradient_norm: 4.554869022929657 max_violation: 0.20003986075024294 step_size: 1.0 iter: 61 cost: 7.316294560101643 gradient_norm: 4.47000391137999 max_violation: 0.19980400962503886 step_size: 1.0 iter: 62 cost: 7.313809387626099 gradient_norm: 4.387998663338512 max_violation: 0.1995766692150367 step_size: 1.0 iter: 63 cost: 7.3114332622926375 gradient_norm: 4.318891416810995 max_violation: 0.19935742302960957 step_size: 1.0 iter: 64 cost: 7.309159646479266 gradient_norm: 4.2614430161156545 max_violation: 0.19914588074805462 step_size: 1.0 iter: 65 cost: 7.306982491904377 gradient_norm: 4.205440961225905 max_violation: 0.19894167621241277 step_size: 1.0 iter: 66 cost: 7.304896196042877 gradient_norm: 4.150833848380019 max_violation: 0.1987444656016777 step_size: 1.0 iter: 67 cost: 7.302895563020863 gradient_norm: 4.09757253229489 max_violation: 0.19855392576839925 step_size: 1.0 iter: 68 cost: 7.300975768469271 gradient_norm: 4.0456100154202375 max_violation: 0.19836975272122537 step_size: 1.0 iter: 69 cost: 7.299132327884227 gradient_norm: 3.994901342440709 max_violation: 0.19819166023870682 step_size: 1.0 iter: 70 cost: 7.297361068098634 gradient_norm: 3.945403499836873 max_violation: 0.1980193786011526 step_size: 1.0 iter: 71 cost: 7.295658101519613 gradient_norm: 3.8970753204244346 max_violation: 0.1978526534292424 step_size: 1.0 iter: 72 cost: 7.294019802828746 gradient_norm: 3.8498773926640872 max_violation: 0.19769124461888232 step_size: 1.0 iter: 73 cost: 7.292442787879104 gradient_norm: 3.803771974568054 max_violation: 0.19753492536320216 step_size: 1.0 iter: 74 cost: 7.290923894554755 gradient_norm: 3.7587229120288264 max_violation: 0.19738348125356087 step_size: 1.0 iter: 75 cost: 7.289460165386733 gradient_norm: 3.714695561357109 max_violation: 0.1972367094521399 step_size: 1.0 iter: 76 cost: 7.28804883174277 gradient_norm: 3.671656715862188 max_violation: 0.19709441792968274 step_size: 1.0 iter: 77 cost: 7.286687299430009 gradient_norm: 3.62957453626189 max_violation: 0.1969564247623623 step_size: 1.0 iter: 78 cost: 7.285373135567649 gradient_norm: 3.588418484737847 max_violation: 0.19682255748258193 step_size: 1.0 iter: 79 cost: 7.284104056602718 gradient_norm: 3.548159262458899 max_violation: 0.19669265247897094 step_size: 1.0 iter: 80 cost: 7.282877917356494 gradient_norm: 3.508768750404913 max_violation: 0.19656655444127047 step_size: 1.0 iter: 81 cost: 7.281692701001064 gradient_norm: 3.470219953278031 max_violation: 0.19644411584615984 step_size: 1.0 iter: 82 cost: 7.28054650987663 gradient_norm: 3.432486946391343 max_violation: 0.19632519648074798 step_size: 1.0 iter: 83 cost: 7.2794375570698175 gradient_norm: 3.3955448253297504 max_violation: 0.19620966300036713 step_size: 1.0 iter: 84 cost: 7.2783641586813435 gradient_norm: 3.3593696582735255 max_violation: 0.19609738851796976 step_size: 1.0 iter: 85 cost: 7.277324726719402 gradient_norm: 3.323938440791899 max_violation: 0.1959882522223797 step_size: 1.0 iter: 86 cost: 7.276317762561029 gradient_norm: 3.2892290530176655 max_violation: 0.19588213902326235 step_size: 1.0 iter: 87 cost: 7.275341850930356 gradient_norm: 3.25522021904111 max_violation: 0.19577893922049228 step_size: 1.0 al iter: 2 iter: 1 cost: 7.269944849743791 gradient_norm: 0.48354130657668726 max_violation: 0.0481756108564424 step_size: 1.0 iter: 2 cost: 7.253994869618226 gradient_norm: 0.13733625988558718 max_violation: 0.0017963190921093108 step_size: 1.0 iter: 3 cost: 7.252163371769252 gradient_norm: 0.12093728810343407 max_violation: 0.001811038634711104 step_size: 1.0 iter: 4 cost: 7.251086984969248 gradient_norm: 0.114766263279237 max_violation: 0.0018202529338060547 step_size: 1.0 iter: 5 cost: 7.250360358028719 gradient_norm: 0.1096676429055452 max_violation: 0.0018264790512261264 step_size: 1.0 Test Summary: | Pass Total Time Solve: car | 3 3 38.8s Testing IterativeLQR tests passed Testing completed after 764.38s PkgEval succeeded after 954.72s