Package evaluation of ExtendableFEMBase on Julia 1.11.4 (a71dd056e0*) started at 2025-04-08T17:26:14.292 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 6.86s ################################################################################ # Installation # Installing ExtendableFEMBase... Resolving package versions... Installed ExtendableFEMBase ─ v1.0.0 Updating `~/.julia/environments/v1.11/Project.toml` [12fb9182] + ExtendableFEMBase v1.0.0 Updating `~/.julia/environments/v1.11/Manifest.toml` [1520ce14] + AbstractTrees v0.4.5 [79e6a3ab] + Adapt v4.3.0 [66dad0bd] + AliasTables v1.1.3 [ec485272] + ArnoldiMethod v0.4.0 [e2ed5e7c] + Bijections v0.1.9 [944b1d66] + CodecZlib v0.7.8 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.16.0 [187b0558] + ConstructionBase v1.5.8 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [ffbed154] + DocStringExtensions v0.9.4 [fdbdab4c] + ElasticArrays v1.2.12 [12fb9182] + ExtendableFEMBase v1.0.0 [cfc395e8] + ExtendableGrids v1.12.0 [95c220a8] + ExtendableSparse v1.7.1 [1a297f60] + FillArrays v1.13.0 ⌅ [f6369f11] + ForwardDiff v0.10.38 [86223c79] + Graphs v1.12.1 [34004b35] + HypergeometricFunctions v0.3.28 [88f59080] + ILUZero v0.2.0 [d25df0c9] + Inflate v0.1.5 [92d709cd] + IrrationalConstants v0.2.4 [692b3bcd] + JLLWrappers v1.7.0 [9c8b4983] + LightXML v0.9.1 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.15 [c03570c3] + Memoize v0.4.4 [e1d29d7a] + Missings v1.2.0 [77ba4419] + NaNMath v1.1.3 [6fe1bfb0] + OffsetArrays v1.16.0 [bac558e1] + OrderedCollections v1.8.0 [f27b6e38] + Polynomials v4.0.19 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [3cdcf5f2] + RecipesBase v1.3.4 [ae029012] + Requires v1.3.1 [efcf1570] + Setfield v1.1.2 [699a6c99] + SimpleTraits v0.9.4 [a2af1166] + SortingAlgorithms v1.2.1 [e56a9233] + Sparspak v0.3.9 [276daf66] + SpecialFunctions v2.5.0 [a25cea48] + SpecialPolynomials v0.5.0 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.0 [2913bbd2] + StatsBase v0.34.4 [3bb67fe8] + TranscodingStreams v0.11.3 [4004b06d] + VTKBase v1.0.1 [64499a7a] + WriteVTK v1.21.1 [94ce4f54] + Libiconv_jll v1.18.0+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [02c8fc9c] + XML2_jll v2.13.6+1 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [4536629a] + OpenBLAS_jll v0.3.27+1 [05823500] + OpenLibm_jll v0.8.5+0 [bea87d4a] + SuiteSparse_jll v7.7.0+0 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 6.12s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 205.69s ################################################################################ # Testing # Testing ExtendableFEMBase Status `/tmp/jl_TgUC0r/Project.toml` [4c88cf16] Aqua v0.8.11 [3bbe58f8] ExampleJuggler v2.2.1 [7d51a73a] ExplicitImports v1.11.2 [12fb9182] ExtendableFEMBase v1.0.0 [cfc395e8] ExtendableGrids v1.12.0 [95c220a8] ExtendableSparse v1.7.1 [5eed8a63] GridVisualize v1.11.0 [b8865327] UnicodePlots v3.7.2 [2f01184e] SparseArrays v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_TgUC0r/Manifest.toml` [1520ce14] AbstractTrees v0.4.5 [79e6a3ab] Adapt v4.3.0 [66dad0bd] AliasTables v1.1.3 [4c88cf16] Aqua v0.8.11 [ec485272] ArnoldiMethod v0.4.0 [13072b0f] AxisAlgorithms v1.1.0 [e2ed5e7c] Bijections v0.1.9 [d360d2e6] ChainRulesCore v1.25.1 [944b1d66] CodecZlib v0.7.8 [35d6a980] ColorSchemes v3.29.0 [3da002f7] ColorTypes v0.12.1 [c3611d14] ColorVectorSpace v0.11.0 [5ae59095] Colors v0.13.0 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.16.0 [187b0558] ConstructionBase v1.5.8 [d38c429a] Contour v0.6.3 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.22 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [ffbed154] DocStringExtensions v0.9.4 [fdbdab4c] ElasticArrays v1.2.12 [3bbe58f8] ExampleJuggler v2.2.1 [7d51a73a] ExplicitImports v1.11.2 [12fb9182] ExtendableFEMBase v1.0.0 [cfc395e8] ExtendableGrids v1.12.0 [95c220a8] ExtendableSparse v1.7.1 [411431e0] Extents v0.1.5 [1a297f60] FillArrays v1.13.0 [53c48c17] FixedPointNumbers v0.8.5 ⌅ [f6369f11] ForwardDiff v0.10.38 [68eda718] GeoFormatTypes v0.4.4 [cf35fbd7] GeoInterface v1.4.1 [5c1252a2] GeometryBasics v0.5.7 [86223c79] Graphs v1.12.1 [5eed8a63] GridVisualize v1.11.0 [5573ae12] GridVisualizeTools v3.0.0 [34004b35] HypergeometricFunctions v0.3.28 [ac1192a8] HypertextLiteral v0.9.5 [88f59080] ILUZero v0.2.0 [b5f81e59] IOCapture v0.2.5 [d25df0c9] Inflate v0.1.5 [a98d9a8b] Interpolations v0.15.1 [8197267c] IntervalSets v0.7.10 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.0 [682c06a0] JSON v0.21.4 ⌅ [70703baa] JuliaSyntax v0.4.10 [9c8b4983] LightXML v0.9.1 [98b081ad] Literate v2.20.1 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.15 [299715c1] MarchingCubes v0.1.11 [c03570c3] Memoize v0.4.4 [e1d29d7a] Missings v1.2.0 [77ba4419] NaNMath v1.1.3 [510215fc] Observables v0.5.5 [6fe1bfb0] OffsetArrays v1.16.0 [bac558e1] OrderedCollections v1.8.0 [69de0a69] Parsers v2.8.1 [f27b6e38] Polynomials v4.0.19 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [c84ed2f1] Ratios v0.4.5 [3cdcf5f2] RecipesBase v1.3.4 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.1 [efcf1570] Setfield v1.1.2 [699a6c99] SimpleTraits v0.9.4 [a2af1166] SortingAlgorithms v1.2.1 [e56a9233] Sparspak v0.3.9 [276daf66] SpecialFunctions v2.5.0 [a25cea48] SpecialPolynomials v0.5.0 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.0 [2913bbd2] StatsBase v0.34.4 [62fd8b95] TensorCore v0.1.1 [3bb67fe8] TranscodingStreams v0.11.3 [410a4b4d] Tricks v0.1.10 [b8865327] UnicodePlots v3.7.2 [4004b06d] VTKBase v1.0.1 [efce3f68] WoodburyMatrices v1.0.0 [64499a7a] WriteVTK v1.21.1 [5ae413db] EarCut_jll v2.2.4+0 [94ce4f54] Libiconv_jll v1.18.0+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [02c8fc9c] XML2_jll v2.13.6+1 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [3fa0cd96] REPL v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [1a1011a3] SharedArrays v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.11.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [05823500] OpenLibm_jll v0.8.5+0 [bea87d4a] SuiteSparse_jll v7.7.0+0 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Precompiling ExampleJuggler... 2887.9 ms ✓ Literate 5733.0 ms ✓ ExampleJuggler 2 dependencies successfully precompiled in 9 seconds. 39 already precompiled. Test Summary: | Pass Total Time Aqua.jl | 11 11 2m05.9s Test Summary: | Pass Total Time ExplicitImports | 2 2 1m10.8s Test Summary: | Pass Total Time UndocumentedNames | 1 1 0.3s ======================= Testing FEMatrix&VEctor ======================= C = FEMatrix information ==================== block | ndofsX | ndofsY | name (FETypeX, FETypeY) [1,1] | 441 | 121 | [1,1] (H1Pk{1,1,2}, H1Pk{1,1,1}) [1,2] | 441 | 121 | [1,2] (H1Pk{1,1,2}, H1Pk{1,1,1}) [2,1] | 441 | 121 | [2,1] (H1Pk{1,1,2}, H1Pk{1,1,1}) [2,2] | 441 | 121 | [2,2] (H1Pk{1,1,2}, H1Pk{1,1,1}) nnzvals = 106644 Test Summary: | Pass Total Time FEMatrixVector | 10 10 15.3s [ Info: Set startroot=/home/pkgeval/.julia/packages/ExtendableFEMBase/KQ69s/test Precompiling GridVisualize... 4072.5 ms ✓ Interpolations 14121.0 ms ✓ GridVisualize 2 dependencies successfully precompiled in 20 seconds. 105 already precompiled. Precompiling PolynomialsChainRulesCoreExt... 2599.0 ms ✓ Polynomials → PolynomialsChainRulesCoreExt 1 dependency successfully precompiled in 3 seconds. 24 already precompiled. Precompiling IntervalSetsExt... 5830.4 ms ✓ UnicodePlots → IntervalSetsExt 1 dependency successfully precompiled in 6 seconds. 49 already precompiled. [ Info: testing Example200_LowLevelPoisson.jl [ Info: ndofs = 16129 ┌ Warning: 53007760 allocations during ITEMTYPE_CELL volume calculation └ @ ExtendableGrids ~/.julia/packages/ExtendableGrids/poOVa/src/derived.jl:999 [ Info: allocations in 1st assembly: 8113280 [ Info: allocations in 2nd assembly: 0 Test Summary: | Pass Total Time module examples | 1 1 1m04.6s ============================ Testing Interpolations in 1D ============================ [ Info: Testing vertex values of H1Pk{1,1,1} on Edge1D [ Info: Testing vertex values of H1Pk{1,1,2} on Edge1D [ Info: Testing vertex values of H1Pk{1,1,3} on Edge1D [ Info: Testing vertex values of H1Pk{1,1,4} on Edge1D [ Info: Testing vertex values of H1Pk{1,1,5} on Edge1D [ Info: Testing vertex values of H1Pk{1,1,6} on Edge1D [ Info: Testing vertex values of H1Pk{1,2,1} on Triangle2D [ Info: Testing vertex values of H1Pk{1,2,2} on Triangle2D [ Info: Testing vertex values of H1Pk{1,2,3} on Triangle2D [ Info: Testing vertex values of H1Pk{1,2,4} on Triangle2D [ Info: Testing vertex values of H1Pk{1,2,5} on Triangle2D [ Info: Testing vertex values of H1Q1{1} on Parallelogram2D [ Info: Testing vertex values of H1Q2{1,2} on Parallelogram2D [ Info: Testing vertex values of H1P1{1} on Tetrahedron3D [ Info: Testing vertex values of H1P2{1,3} on Tetrahedron3D [ Info: Testing vertex values of H1P3{1,3} on Tetrahedron3D [ Info: Testing vertex values of H1Q1{1} on Parallelepiped3D Test Summary: | Pass Total Time FEBasis | 17 17 21.6s ============================ Testing Operator Evaluations ============================ ┌ Warning: 14963776 allocations during ITEMTYPE_CELL volume calculation └ @ ExtendableGrids ~/.julia/packages/ExtendableGrids/poOVa/src/derived.jl:999 EG = Triangle2D | operator = Curl2 | error = 1.6653345369377348e-16 EG = Triangle2D | operator = Laplacian | error = 1.7763568394002505e-15 EG = Triangle2D | operator = Hessian | error = 1.824282583346435e-15 EG = Triangle2D | operator = SymmetricHessian{1} | error = 1.807312143953211e-15 EG = Triangle2D | operator = SymmetricHessian{√2} | error = 1.807312143953211e-15 EG = Tetrahedron3D | operator = Curl3 | error = 4.996003610813204e-16 EG = Tetrahedron3D | operator = Laplacian | error = 9.930136612989092e-16 EG = Tetrahedron3D | operator = Hessian | error = 1.831026719408895e-15 EG = Tetrahedron3D | operator = SymmetricHessian{1} | error = 1.472877282518059e-15 EG = Tetrahedron3D | operator = SymmetricHessian{√2} | error = 2.1181705310112556e-15 Test Summary: | Pass Total Time Operators | 2 2 1m40.7s ============================= Testing QuadratureRules in 1D ============================= EG = Edge1D | order = 1 (midpoint rule, 1 points) | error = 0.0 EG = Edge1D | order = 2 (Simpson's rule, 3 points) | error = 0.0 EG = Edge1D | order = 3 (generic Gauss rule of order 3, 2 points) | error = -2.220446049250313e-16 EG = Edge1D | order = 4 (generic Gauss rule of order 4, 3 points) | error = -4.440892098500626e-16 EG = Edge1D | order = 5 (generic Gauss rule of order 5, 3 points) | error = -4.440892098500626e-16 EG = Edge1D | order = 6 (generic Gauss rule of order 6, 4 points) | error = 4.440892098500626e-16 EG = Edge1D | order = 7 (generic Gauss rule of order 7, 4 points) | error = -2.220446049250313e-16 EG = Edge1D | order = 8 (generic Gauss rule of order 8, 5 points) | error = -2.220446049250313e-16 EG = Edge1D | order = 9 (generic Gauss rule of order 9, 5 points) | error = -4.440892098500626e-16 EG = Edge1D | order = 10 (generic Gauss rule of order 10, 6 points) | error = 0.0 EG = Edge1D | order = 11 (generic Gauss rule of order 11, 6 points) | error = 2.220446049250313e-16 EG = Edge1D | order = 12 (generic Gauss rule of order 12, 7 points) | error = 2.220446049250313e-16 EG = Edge1D | order = 13 (generic Gauss rule of order 13, 7 points) | error = 0.0 EG = Edge1D | order = 14 (generic Gauss rule of order 14, 8 points) | error = -2.220446049250313e-16 EG = Edge1D | order = 15 (generic Gauss rule of order 15, 8 points) | error = 0.0 EG = Edge1D | order = 16 (generic Gauss rule of order 16, 9 points) | error = 4.440892098500626e-16 EG = Edge1D | order = 17 (generic Gauss rule of order 17, 9 points) | error = -2.220446049250313e-16 EG = Edge1D | order = 18 (generic Gauss rule of order 18, 10 points) | error = 2.220446049250313e-16 EG = Edge1D | order = 19 (generic Gauss rule of order 19, 10 points) | error = -2.220446049250313e-16 EG = Edge1D | order = 20 (generic Gauss rule of order 20, 11 points) | error = -1.1102230246251565e-15 ============================= Testing QuadratureRules in 2D ============================= EG = Triangle2D | order = 1 (midpoint rule, 1 points) | error = [0.0, -2.7755575615628914e-17] EG = Triangle2D | order = 2 (face midpoints rule, 3 points) | error = [-6.661338147750939e-16, 5.551115123125783e-17] EG = Triangle2D | order = 3 (generic Stroud rule of order 3, 4 points) | error = [2.220446049250313e-16, 1.1102230246251565e-16] EG = Triangle2D | order = 4 (generic Stroud rule of order 4, 9 points) | error = [-6.661338147750939e-16, 2.220446049250313e-16] EG = Triangle2D | order = 5 (generic Stroud rule of order 5, 9 points) | error = [-1.7763568394002505e-15, 1.1102230246251565e-16] EG = Triangle2D | order = 6 (generic Stroud rule of order 6, 16 points) | error = [1.7763568394002505e-15, 3.3306690738754696e-16] EG = Triangle2D | order = 7 (generic Stroud rule of order 7, 16 points) | error = [4.440892098500626e-16, 5.551115123125783e-16] EG = Triangle2D | order = 8 (symmetric rule order 8, 16 points) | error = [4.440892098500626e-16, 4.440892098500626e-16] EG = Triangle2D | order = 9 (generic Stroud rule of order 9, 25 points) | error = [0.0, 4.440892098500626e-16] EG = Triangle2D | order = 10 (generic Stroud rule of order 10, 36 points) | error = [0.0, 0.0] EG = Triangle2D | order = 11 (generic Stroud rule of order 11, 36 points) | error = [2.220446049250313e-15, -4.440892098500626e-16] EG = Triangle2D | order = 12 (symmetric rule order 14, 46 points) | error = [-1.7763568394002505e-15, -1.1102230246251565e-16] EG = Triangle2D | order = 13 (symmetric rule order 14, 46 points) | error = [0.0, -1.1102230246251565e-16] EG = Triangle2D | order = 14 (symmetric rule order 14, 46 points) | error = [-8.881784197001252e-16, 5.551115123125783e-16] EG = Triangle2D | order = 15 (generic Stroud rule of order 15, 64 points) | error = [6.661338147750939e-16, 9.992007221626409e-16] EG = Triangle2D | order = 16 (generic Stroud rule of order 16, 81 points) | error = [-4.440892098500626e-16, 1.7763568394002505e-15] EG = Triangle2D | order = 17 (generic Stroud rule of order 17, 81 points) | error = [6.661338147750939e-16, 5.551115123125783e-16] EG = Triangle2D | order = 18 (generic Stroud rule of order 18, 100 points) | error = [1.5543122344752192e-15, -2.220446049250313e-16] EG = Triangle2D | order = 19 (generic Stroud rule of order 19, 100 points) | error = [2.886579864025407e-15, 1.4432899320127035e-15] EG = Triangle2D | order = 20 (generic Stroud rule of order 20, 121 points) | error = [-2.6645352591003757e-15, -1.7763568394002505e-15] EG = Parallelogram2D | order = 1 (midpoint rule, 1 points) | error = [0.0, 0.0] EG = Parallelogram2D | order = 2 (generic Gauss tensor rule of order 2, 4 points) | error = [-1.1102230246251565e-15, 1.6653345369377348e-16] EG = Parallelogram2D | order = 3 (generic Gauss tensor rule of order 3, 4 points) | error = [-6.661338147750939e-16, 2.220446049250313e-16] EG = Parallelogram2D | order = 4 (generic Gauss tensor rule of order 4, 9 points) | error = [-8.881784197001252e-16, 3.3306690738754696e-16] EG = Parallelogram2D | order = 5 (generic Gauss tensor rule of order 5, 9 points) | error = [-6.661338147750939e-16, 1.1102230246251565e-16] EG = Parallelogram2D | order = 6 (generic Gauss tensor rule of order 6, 16 points) | error = [-4.440892098500626e-16, -2.220446049250313e-16] EG = Parallelogram2D | order = 7 (generic Gauss tensor rule of order 7, 16 points) | error = [0.0, -4.440892098500626e-16] EG = Parallelogram2D | order = 8 (generic Gauss tensor rule of order 8, 25 points) | error = [0.0, -3.3306690738754696e-16] EG = Parallelogram2D | order = 9 (generic Gauss tensor rule of order 9, 25 points) | error = [-1.5543122344752192e-15, -1.1102230246251565e-16] EG = Parallelogram2D | order = 10 (generic Gauss tensor rule of order 10, 36 points) | error = [-2.220446049250313e-16, -5.551115123125783e-16] EG = Parallelogram2D | order = 11 (generic Gauss tensor rule of order 11, 36 points) | error = [-2.220446049250313e-16, -5.551115123125783e-16] EG = Parallelogram2D | order = 12 (generic Gauss tensor rule of order 12, 49 points) | error = [0.0, 0.0] EG = Parallelogram2D | order = 13 (generic Gauss tensor rule of order 13, 49 points) | error = [-2.220446049250313e-16, -8.881784197001252e-16] EG = Parallelogram2D | order = 14 (generic Gauss tensor rule of order 14, 64 points) | error = [-1.1102230246251565e-15, -2.220446049250313e-16] EG = Parallelogram2D | order = 15 (generic Gauss tensor rule of order 15, 64 points) | error = [-1.5543122344752192e-15, 2.220446049250313e-16] EG = Parallelogram2D | order = 16 (generic Gauss tensor rule of order 16, 81 points) | error = [-2.220446049250313e-16, -4.440892098500626e-16] EG = Parallelogram2D | order = 17 (generic Gauss tensor rule of order 17, 81 points) | error = [-6.661338147750939e-16, -7.771561172376096e-16] EG = Parallelogram2D | order = 18 (generic Gauss tensor rule of order 18, 100 points) | error = [0.0, 3.3306690738754696e-16] EG = Parallelogram2D | order = 19 (generic Gauss tensor rule of order 19, 100 points) | error = [-6.661338147750939e-16, 8.881784197001252e-16] EG = Parallelogram2D | order = 20 (generic Gauss tensor rule of order 20, 121 points) | error = [-4.884981308350689e-15, 3.3306690738754696e-16] ============================= Testing QuadratureRules in 3D ============================= EG = Parallelepiped3D | order = 1 (midpoint rule, 1 points) | error = [0.0, 0.0, 0.0] EG = Parallelepiped3D | order = 2 (generic Gauss tensor rule of order 2, 8 points) | error = [1.1102230246251565e-16, -1.1102230246251565e-15, 1.6653345369377348e-16] EG = Parallelepiped3D | order = 3 (generic Gauss tensor rule of order 3, 8 points) | error = [3.3306690738754696e-16, -8.881784197001252e-16, 3.885780586188048e-16] EG = Parallelepiped3D | order = 4 (generic Gauss tensor rule of order 4, 27 points) | error = [1.3322676295501878e-15, -6.661338147750939e-16, 2.220446049250313e-16] EG = Parallelepiped3D | order = 5 (generic Gauss tensor rule of order 5, 27 points) | error = [8.881784197001252e-16, -4.440892098500626e-16, 6.661338147750939e-16] EG = Parallelepiped3D | order = 6 (generic Gauss tensor rule of order 6, 64 points) | error = [1.3322676295501878e-15, -4.440892098500626e-16, 5.551115123125783e-16] EG = Parallelepiped3D | order = 7 (generic Gauss tensor rule of order 7, 64 points) | error = [-2.220446049250313e-16, 8.881784197001252e-16, -3.3306690738754696e-16] EG = Parallelepiped3D | order = 8 (generic Gauss tensor rule of order 8, 125 points) | error = [9.992007221626409e-16, 2.220446049250313e-16, 5.551115123125783e-16] EG = Parallelepiped3D | order = 9 (generic Gauss tensor rule of order 9, 125 points) | error = [-2.886579864025407e-15, -2.6645352591003757e-15, 7.771561172376096e-16] EG = Parallelepiped3D | order = 10 (generic Gauss tensor rule of order 10, 216 points) | error = [-1.7763568394002505e-15, 6.661338147750939e-16, -7.771561172376096e-16] EG = Parallelepiped3D | order = 11 (generic Gauss tensor rule of order 11, 216 points) | error = [1.2212453270876722e-15, 0.0, 1.2212453270876722e-15] EG = Parallelepiped3D | order = 12 (generic Gauss tensor rule of order 12, 343 points) | error = [2.4424906541753444e-15, -6.661338147750939e-16, -1.1102230246251565e-16] EG = Tetrahedron3D | order = 1 (midpoint rule, 1 points) | error = [5.551115123125783e-17, 8.881784197001252e-16, 1.734723475976807e-17] EG = Tetrahedron3D | order = 2 (order 2 rule, 4 points) | error = [5.551115123125783e-16, 0.0, 5.551115123125783e-17] EG = Tetrahedron3D | order = 3 (order 3 rule, 5 points) | error = [-7.771561172376096e-16, 8.881784197001252e-16, 2.220446049250313e-16] EG = Tetrahedron3D | order = 4 (order 4 rule, 11 points) | error = [8.881784197001252e-16, 4.440892098500626e-16, 1.1102230246251565e-16] EG = Tetrahedron3D | order = 5 (symmetric rule order 8, 46 points) | error = [-2.886579864025407e-15, -3.774758283725532e-15, 0.0] EG = Tetrahedron3D | order = 6 (symmetric rule order 8, 46 points) | error = [0.0, 1.7763568394002505e-15, -2.1094237467877974e-15] EG = Tetrahedron3D | order = 7 (symmetric rule order 8, 46 points) | error = [1.6653345369377348e-15, -3.552713678800501e-15, 1.9984014443252818e-15] EG = Tetrahedron3D | order = 8 (symmetric rule order 8, 46 points) | error = [1.1102230246251565e-15, -4.440892098500626e-16, -1.3322676295501878e-15] Test Summary: | Pass Total Time QuadratureRules | 80 80 47.3s ============================ Testing Interpolations in 1D ============================ FEType = L2P0{1} ON_CELLS | ndofs = 6 | order = 0 | error = 0.0 FEType = L2P0{1} broken ON_CELLS | ndofs = 6 | order = 0 | error = 0.0 FEType = H1P1{1} ON_CELLS | ndofs = 7 | order = 1 | error = 0.0 FEType = H1P1{1} broken ON_CELLS | ndofs = 12 | order = 1 | error = 0.0 FEType = H1P2{1,1} ON_CELLS | ndofs = 13 | order = 2 | error = 8.881784197001252e-16 FEType = H1P2{1,1} broken ON_CELLS | ndofs = 18 | order = 2 | error = 8.881784197001252e-16 FEType = H1P3{1,1} ON_CELLS | ndofs = 19 | order = 3 | error = 2.886579864025407e-15 FEType = H1P3{1,1} broken ON_CELLS | ndofs = 24 | order = 3 | error = 2.886579864025407e-15 FEType = H1Pk{1,1,3} ON_CELLS | ndofs = 19 | order = 3 | error = 1.9984014443252818e-15 FEType = H1Pk{1,1,3} broken ON_CELLS | ndofs = 24 | order = 3 | error = 1.9984014443252818e-15 FEType = H1Pk{1,1,4} ON_CELLS | ndofs = 25 | order = 4 | error = 5.773159728050814e-15 FEType = H1Pk{1,1,4} broken ON_CELLS | ndofs = 30 | order = 4 | error = 5.773159728050814e-15 FEType = H1Pk{1,1,5} ON_CELLS | ndofs = 31 | order = 5 | error = 1.0658141036401503e-14 FEType = H1Pk{1,1,5} broken ON_CELLS | ndofs = 36 | order = 5 | error = 1.0658141036401503e-14 ============================ Testing Interpolations in 2D ============================ FEType = HCURLN0{2} ON_CELLS | ndofs = 9 | order = 0 | error = 0.0 FEType = HCURLN0{2} broken ON_CELLS | ndofs = 12 | order = 0 | error = 0.0 FEType = HCURLN1{2} ON_CELLS | ndofs = 26 | order = 1 | error = 2.886579864025407e-15 FEType = HCURLN1{2} broken ON_CELLS | ndofs = 32 | order = 1 | error = 2.886579864025407e-15 FEType = HDIVRT0{2} ON_CELLS | ndofs = 9 | order = 0 | error = 2.220446049250313e-16 FEType = HDIVRT0{2} broken ON_CELLS | ndofs = 12 | order = 0 | error = 2.220446049250313e-16 FEType = HDIVRTk{2, 0} ON_CELLS | ndofs = 9 | order = 0 | error = 2.220446049250313e-16 FEType = HDIVRTk{2, 0} broken ON_CELLS | ndofs = 12 | order = 0 | error = 2.220446049250313e-16 FEType = HDIVBDM1{2} ON_CELLS | ndofs = 18 | order = 1 | error = 1.887379141862766e-15 FEType = HDIVBDM1{2} broken ON_CELLS | ndofs = 24 | order = 1 | error = 1.887379141862766e-15 FEType = HDIVRT1{2} ON_CELLS | ndofs = 26 | order = 1 | error = 1.887379141862766e-15 FEType = HDIVRT1{2} broken ON_CELLS | ndofs = 32 | order = 1 | error = 1.887379141862766e-15 FEType = HDIVRTk{2, 1} ON_CELLS | ndofs = 26 | order = 1 | error = 1.887379141862766e-15 FEType = HDIVRTk{2, 1} broken ON_CELLS | ndofs = 32 | order = 1 | error = 1.887379141862766e-15 FEType = HDIVBDM2{2} ON_CELLS | ndofs = 39 | order = 2 | error = 8.43769498715119e-15 FEType = HDIVBDM2{2} broken ON_CELLS | ndofs = 48 | order = 2 | error = 8.43769498715119e-15 FEType = HDIVRTk{2, 2} ON_CELLS | ndofs = 51 | order = 2 | error = 2.6867397195928788e-14 FEType = HDIVRTk{2, 2} broken ON_CELLS | ndofs = 60 | order = 2 | error = 2.6867397195928788e-14 FEType = HDIVRTk{2, 3} ON_CELLS | ndofs = 84 | order = 3 | error = 1.3433698597964394e-13 FEType = HDIVRTk{2, 3} broken ON_CELLS | ndofs = 96 | order = 3 | error = 1.3433698597964394e-13 FEType = HDIVRTk{2, 4} ON_CELLS | ndofs = 125 | order = 4 | error = 2.871036741680655e-13 FEType = HDIVRTk{2, 4} broken ON_CELLS | ndofs = 140 | order = 4 | error = 2.871036741680655e-13 FEType = L2P0{2} ON_CELLS | ndofs = 8 | order = 0 | error = 0.0 FEType = L2P0{2} broken ON_CELLS | ndofs = 8 | order = 0 | error = 0.0 FEType = H1P1{2} ON_CELLS | ndofs = 12 | order = 1 | error = 0.0 FEType = H1P1{2} broken ON_CELLS | ndofs = 24 | order = 1 | error = 0.0 FEType = H1Q1{2} ON_CELLS | ndofs = 12 | order = 1 | error = 0.0 FEType = H1Q1{2} broken ON_CELLS | ndofs = 24 | order = 1 | error = 0.0 FEType = H1CR{2} ON_CELLS | ndofs = 18 | order = 1 | error = 4.440892098500626e-16 FEType = H1CR{2} broken ON_CELLS | ndofs = 24 | order = 1 | error = 4.440892098500626e-16 FEType = H1MINI{2,2} ON_CELLS | ndofs = 20 | order = 1 | error = 0.0 FEType = H1MINI{2,2} broken ON_CELLS | ndofs = 32 | order = 1 | error = 0.0 FEType = H1P1TEB{2} ON_CELLS | ndofs = 21 | order = 1 | error = 0.0 FEType = H1P1TEB{2} broken ON_CELLS | ndofs = 36 | order = 1 | error = 0.0 FEType = H1BR{2} ON_CELLS | ndofs = 21 | order = 1 | error = 0.0 FEType = H1BR{2} broken ON_CELLS | ndofs = 36 | order = 1 | error = 0.0 FEType = H1P2{2,2} ON_CELLS | ndofs = 30 | order = 2 | error = 3.3306690738754696e-15 FEType = H1P2{2,2} broken ON_CELLS | ndofs = 48 | order = 2 | error = 3.3306690738754696e-15 FEType = H1P2B{2,2} ON_CELLS | ndofs = 38 | order = 2 | error = 3.3306690738754696e-15 FEType = H1P2B{2,2} broken ON_CELLS | ndofs = 56 | order = 2 | error = 3.3306690738754696e-15 FEType = H1Q2{2,2} ON_CELLS | ndofs = 30 | order = 2 | error = 3.3306690738754696e-15 FEType = H1Q2{2,2} broken ON_CELLS | ndofs = 48 | order = 2 | error = 3.3306690738754696e-15 FEType = H1P3{2,2} ON_CELLS | ndofs = 56 | order = 3 | error = 7.771561172376096e-15 FEType = H1P3{2,2} broken ON_CELLS | ndofs = 80 | order = 3 | error = 7.771561172376096e-15 FEType = H1Pk{2,2,3} ON_CELLS | ndofs = 56 | order = 3 | error = 7.549516567451064e-15 FEType = H1Pk{2,2,3} broken ON_CELLS | ndofs = 80 | order = 3 | error = 7.549516567451064e-15 FEType = H1Pk{2,2,4} ON_CELLS | ndofs = 90 | order = 4 | error = 1.9984014443252818e-14 FEType = H1Pk{2,2,4} broken ON_CELLS | ndofs = 120 | order = 4 | error = 1.9984014443252818e-14 FEType = H1Pk{2,2,5} ON_CELLS | ndofs = 132 | order = 5 | error = 4.951594689828198e-14 FEType = H1Pk{2,2,5} broken ON_CELLS | ndofs = 168 | order = 5 | error = 4.951594689828198e-14 FEType = HCURLN0{2} ON_CELLS | ndofs = 12 | order = 0 | error = 0.0 FEType = HCURLN0{2} broken ON_CELLS | ndofs = 16 | order = 0 | error = 0.0 ┌ Warning: HCURLN1{2} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: HCURLN1{2} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 FEType = HDIVRT0{2} ON_CELLS | ndofs = 12 | order = 0 | error = 0.0 FEType = HDIVRT0{2} broken ON_CELLS | ndofs = 16 | order = 0 | error = 0.0 ┌ Warning: HDIVRTk{2, 0} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: HDIVRTk{2, 0} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 FEType = HDIVBDM1{2} ON_CELLS | ndofs = 24 | order = 1 | error = 3.552713678800501e-15 FEType = HDIVBDM1{2} broken ON_CELLS | ndofs = 32 | order = 1 | error = 3.552713678800501e-15 ┌ Warning: HDIVRT1{2} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: HDIVRT1{2} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: HDIVRTk{2, 1} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: HDIVRTk{2, 1} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: HDIVBDM2{2} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: HDIVBDM2{2} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: HDIVRTk{2, 2} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: HDIVRTk{2, 2} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: HDIVRTk{2, 3} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: HDIVRTk{2, 3} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: HDIVRTk{2, 4} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: HDIVRTk{2, 4} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 FEType = L2P0{2} ON_CELLS | ndofs = 8 | order = 0 | error = 0.0 FEType = L2P0{2} broken ON_CELLS | ndofs = 8 | order = 0 | error = 0.0 ┌ Warning: H1P1{2} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: H1P1{2} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 FEType = H1Q1{2} ON_CELLS | ndofs = 18 | order = 1 | error = 0.0 FEType = H1Q1{2} broken ON_CELLS | ndofs = 32 | order = 1 | error = 0.0 FEType = H1CR{2} ON_CELLS | ndofs = 24 | order = 1 | error = 0.0 FEType = H1CR{2} broken ON_CELLS | ndofs = 32 | order = 1 | error = 0.0 FEType = H1MINI{2,2} ON_CELLS | ndofs = 26 | order = 1 | error = 0.0 FEType = H1MINI{2,2} broken ON_CELLS | ndofs = 40 | order = 1 | error = 0.0 ┌ Warning: H1P1TEB{2} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: H1P1TEB{2} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 FEType = H1BR{2} ON_CELLS | ndofs = 30 | order = 1 | error = 0.0 FEType = H1BR{2} broken ON_CELLS | ndofs = 48 | order = 1 | error = 0.0 ┌ Warning: H1P2{2,2} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: H1P2{2,2} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: H1P2B{2,2} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: H1P2B{2,2} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 FEType = H1Q2{2,2} ON_CELLS | ndofs = 50 | order = 2 | error = 6.661338147750939e-15 FEType = H1Q2{2,2} broken ON_CELLS | ndofs = 72 | order = 2 | error = 6.661338147750939e-15 ┌ Warning: H1P3{2,2} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: H1P3{2,2} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: H1Pk{2,2,3} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: H1Pk{2,2,3} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: H1Pk{2,2,4} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: H1Pk{2,2,4} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: H1Pk{2,2,5} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ┌ Warning: H1Pk{2,2,5} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:138 ============================ Testing Interpolations in 3D ============================ FEType = HCURLN0{3} ON_CELLS | ndofs = 25 | order = 0 | error = 0.0 FEType = HCURLN0{3} broken ON_CELLS | ndofs = 48 | order = 0 | error = 0.0 FEType = HDIVRT0{3} ON_CELLS | ndofs = 24 | order = 0 | error = 0.0 FEType = HDIVRT0{3} broken ON_CELLS | ndofs = 32 | order = 0 | error = 0.0 FEType = HDIVBDM1{3} ON_CELLS | ndofs = 72 | order = 1 | error = 4.218847493575595e-15 FEType = HDIVBDM1{3} broken ON_CELLS | ndofs = 96 | order = 1 | error = 4.218847493575595e-15 FEType = HDIVRT1{3} ON_CELLS | ndofs = 96 | order = 1 | error = 4.218847493575595e-15 FEType = HDIVRT1{3} broken ON_CELLS | ndofs = 120 | order = 1 | error = 4.218847493575595e-15 FEType = L2P0{3} ON_CELLS | ndofs = 24 | order = 0 | error = 0.0 FEType = L2P0{3} broken ON_CELLS | ndofs = 24 | order = 0 | error = 0.0 FEType = H1P1{3} ON_CELLS | ndofs = 30 | order = 1 | error = 0.0 FEType = H1P1{3} broken ON_CELLS | ndofs = 96 | order = 1 | error = 0.0 FEType = H1Q1{3} ON_CELLS | ndofs = 30 | order = 1 | error = 0.0 FEType = H1Q1{3} broken ON_CELLS | ndofs = 96 | order = 1 | error = 0.0 FEType = H1CR{3} ON_CELLS | ndofs = 72 | order = 1 | error = 1.5543122344752192e-15 FEType = H1CR{3} broken ON_CELLS | ndofs = 96 | order = 1 | error = 1.5543122344752192e-15 FEType = H1MINI{3,3} ON_CELLS | ndofs = 54 | order = 1┌ Warning: no quadrature rule with order 9 available, will take order 8 instead └ @ ExtendableFEMBase ~/.julia/packages/ExtendableFEMBase/KQ69s/src/quadrature.jl:381 | error = 0.0 FEType = H1MINI{3,3} broken ON_CELLS | ndofs = 120 | order = 1┌ Warning: no quadrature rule with order 9 available, will take order 8 instead └ @ ExtendableFEMBase ~/.julia/packages/ExtendableFEMBase/KQ69s/src/quadrature.jl:381 | error = 0.0 FEType = H1P1TEB{3} ON_CELLS | ndofs = 55 | order = 1 | error = 0.0 FEType = H1P1TEB{3} broken ON_CELLS | ndofs = 144 | order = 1 | error = 0.0 FEType = H1BR{3} ON_CELLS | ndofs = 54 | order = 1 | error = 0.0 FEType = H1BR{3} broken ON_CELLS | ndofs = 128 | order = 1 | error = 0.0 FEType = H1P2{3,3} ON_CELLS | ndofs = 105 | order = 2 | error = 5.773159728050814e-15 FEType = H1P2{3,3} broken ON_CELLS | ndofs = 240 | order = 2 | error = 5.773159728050814e-15 FEType = H1P3{3,3} ON_CELLS | ndofs = 252 | order = 3 | error = 1.4405143744511406e-14 FEType = H1P3{3,3} broken ON_CELLS | ndofs = 480 | order = 3 | error = 1.4405143744511406e-14 ┌ Warning: HCURLN0{3} (broken = false) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:152 ┌ Warning: HCURLN0{3} (broken = true) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:152 FEType = HDIVRT0{3} ON_CELLS | ndofs = 36 | order = 0 | error = 0.0 FEType = HDIVRT0{3} broken ON_CELLS | ndofs = 48 | order = 0 | error = 0.0 ┌ Warning: HDIVBDM1{3} (broken = false) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:152 ┌ Warning: HDIVBDM1{3} (broken = true) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:152 ┌ Warning: HDIVRT1{3} (broken = false) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:152 ┌ Warning: HDIVRT1{3} (broken = true) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:152 FEType = L2P0{3} ON_CELLS | ndofs = 24 | order = 0 | error = 0.0 FEType = L2P0{3} broken ON_CELLS | ndofs = 24 | order = 0 | error = 0.0 ┌ Warning: H1P1{3} (broken = false) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:152 ┌ Warning: H1P1{3} (broken = true) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:152 FEType = H1Q1{3} ON_CELLS | ndofs = 81 | order = 1 | error = 0.0 FEType = H1Q1{3} broken ON_CELLS | ndofs = 192 | order = 1 | error = 0.0 ┌ Warning: H1CR{3} (broken = false) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:152 ┌ Warning: H1CR{3} (broken = true) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:152 ┌ Warning: H1MINI{3,3} (broken = false) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:152 ┌ Warning: H1MINI{3,3} (broken = true) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:152 ┌ Warning: H1P1TEB{3} (broken = false) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:152 ┌ Warning: H1P1TEB{3} (broken = true) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:152 ┌ Warning: H1BR{3} (broken = false) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:152 ┌ Warning: H1BR{3} (broken = true) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:152 ┌ Warning: H1P2{3,3} (broken = false) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:152 ┌ Warning: H1P2{3,3} (broken = true) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:152 ┌ Warning: H1P3{3,3} (broken = false) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:152 ┌ Warning: H1P3{3,3} (broken = true) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/ExtendableFEMBase/KQ69s/test/test_interpolators.jl:152 Test Summary: | Pass Total Time Interpolations | 114 114 9m55.4s ========================= Testing SegmentIntegrator ========================= error1 without kernel = 0.0 (result = [0.09375, 0.0]) error2 without kernel = 0.0 (result = [0.08333333333333333, 0.0]) (xgrid[Coordinates], xgrid[CellNodes]) = ([0.0 1.0 1.0 0.0 0.5; 0.0 0.0 1.0 1.0 0.5], Int32[1 2 3 4; 2 3 4 1; 5 5 5 5]) error with kernel = 3.1031676915590914e-17 (result = [0.13541666666666663, -0.12499999999999999]) Test Summary: | Pass Total Time SegmentIntegrator | 2 2 16.7s ====================== Testing PointEvaluator ====================== Test Summary: | Pass Total Time PointEvaluator | 4 4 5.8s Testing ExtendableFEMBase tests passed Testing completed after 1205.79s PkgEval succeeded after 1437.07s