Package evaluation of ClusteredLowRankSolver on Julia 1.11.4 (a71dd056e0*) started at 2025-04-08T12:10:09.690 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.35s ################################################################################ # Installation # Installing ClusteredLowRankSolver... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [cadeb640] + ClusteredLowRankSolver v1.0.15 Updating `~/.julia/environments/v1.11/Manifest.toml` [c3fe647b] + AbstractAlgebra v0.44.11 [fb37089c] + Arblib v1.3.0 ⌅ [0a1fb500] + BlockDiagonals v0.1.42 [d360d2e6] + ChainRulesCore v1.25.1 [cadeb640] + ClusteredLowRankSolver v1.0.15 [861a8166] + Combinatorics v1.0.2 [34da2185] + Compat v4.16.0 [ffbed154] + DocStringExtensions v0.9.4 [1a297f60] + FillArrays v1.13.0 [26cc04aa] + FiniteDifferences v0.12.32 [14197337] + GenericLinearAlgebra v0.3.15 [92d709cd] + IrrationalConstants v0.2.4 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.0 [0b1a1467] + KrylovKit v0.9.5 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.15 ⌅ [2edaba10] + Nemo v0.48.4 [65ce6f38] + PackageExtensionCompat v1.0.2 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [fb686558] + RandomExtensions v0.4.4 [708f8203] + Richardson v1.4.2 [af85af4c] + RowEchelon v0.2.1 [276daf66] + SpecialFunctions v2.5.0 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [409d34a3] + VectorInterface v0.5.0 [e134572f] + FLINT_jll v300.200.100+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [2f01184e] + SparseArrays v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [781609d7] + GMP_jll v6.3.0+0 [3a97d323] + MPFR_jll v4.2.1+0 [4536629a] + OpenBLAS_jll v0.3.27+1 [05823500] + OpenLibm_jll v0.8.5+0 [bea87d4a] + SuiteSparse_jll v7.7.0+0 [8e850b90] + libblastrampoline_jll v5.11.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 2.02s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 142.27s ################################################################################ # Testing # Testing ClusteredLowRankSolver Status `/tmp/jl_gZpYny/Project.toml` [c3fe647b] AbstractAlgebra v0.44.11 [cadeb640] ClusteredLowRankSolver v1.0.15 ⌅ [2edaba10] Nemo v0.48.4 [1fd47b50] QuadGK v2.11.2 [276daf66] SpecialFunctions v2.5.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_gZpYny/Manifest.toml` [c3fe647b] AbstractAlgebra v0.44.11 [fb37089c] Arblib v1.3.0 ⌅ [0a1fb500] BlockDiagonals v0.1.42 [d360d2e6] ChainRulesCore v1.25.1 [cadeb640] ClusteredLowRankSolver v1.0.15 [861a8166] Combinatorics v1.0.2 [34da2185] Compat v4.16.0 [864edb3b] DataStructures v0.18.22 [ffbed154] DocStringExtensions v0.9.4 [1a297f60] FillArrays v1.13.0 [26cc04aa] FiniteDifferences v0.12.32 [14197337] GenericLinearAlgebra v0.3.15 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.0 [0b1a1467] KrylovKit v0.9.5 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.15 ⌅ [2edaba10] Nemo v0.48.4 [bac558e1] OrderedCollections v1.8.0 [65ce6f38] PackageExtensionCompat v1.0.2 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [1fd47b50] QuadGK v2.11.2 [fb686558] RandomExtensions v0.4.4 [708f8203] Richardson v1.4.2 [af85af4c] RowEchelon v0.2.1 [276daf66] SpecialFunctions v2.5.0 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [409d34a3] VectorInterface v0.5.0 [e134572f] FLINT_jll v300.200.100+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [2f01184e] SparseArrays v1.11.0 [fa267f1f] TOML v1.0.3 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [781609d7] GMP_jll v6.3.0+0 [3a97d323] MPFR_jll v4.2.1+0 [4536629a] OpenBLAS_jll v0.3.27+1 [05823500] OpenLibm_jll v0.8.5+0 [bea87d4a] SuiteSparse_jll v7.7.0+0 [8e850b90] libblastrampoline_jll v5.11.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 21.6 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 1.95e+10 7.42e-01 7.10e-01 3.00e-01 2 23.8 3.995e+19 1.999e+11 -2.907e+09 1.03e+00 2.58e+09 2.58e-01 5.65e+09 7.46e-01 7.17e-01 3.00e-01 3 23.8 1.576e+19 3.079e+11 -4.779e+09 1.03e+00 6.53e+08 6.53e-02 1.60e+09 7.32e-01 7.31e-01 3.00e-01 4 23.8 6.100e+18 4.277e+11 -6.725e+09 1.03e+00 1.75e+08 1.75e-02 4.31e+08 7.20e-01 7.22e-01 3.00e-01 5 23.8 2.433e+18 5.963e+11 -9.362e+09 1.03e+00 4.92e+07 4.92e-03 1.20e+08 7.11e-01 7.14e-01 3.00e-01 6 23.8 9.953e+17 8.401e+11 -1.309e+10 1.03e+00 1.42e+07 1.42e-03 3.42e+07 7.07e-01 7.10e-01 3.00e-01 7 23.8 4.128e+17 1.191e+12 -1.842e+10 1.03e+00 4.16e+06 4.16e-04 9.93e+06 7.05e-01 7.07e-01 3.00e-01 8 23.8 1.725e+17 1.693e+12 -2.598e+10 1.03e+00 1.23e+06 1.23e-04 2.91e+06 7.04e-01 7.06e-01 3.00e-01 9 23.8 7.238e+16 2.410e+12 -3.671e+10 1.03e+00 3.64e+05 3.64e-05 8.56e+05 7.03e-01 7.05e-01 3.00e-01 10 23.8 3.044e+16 3.431e+12 -5.194e+10 1.03e+00 1.08e+05 1.08e-05 2.53e+05 7.03e-01 7.04e-01 3.00e-01 11 23.8 1.281e+16 4.886e+12 -7.353e+10 1.03e+00 3.20e+04 3.20e-06 7.48e+04 7.03e-01 7.04e-01 3.00e-01 12 23.9 5.398e+15 6.956e+12 -1.042e+11 1.03e+00 9.51e+03 9.51e-07 2.21e+04 7.03e-01 7.04e-01 3.00e-01 13 23.9 2.275e+15 9.899e+12 -1.476e+11 1.03e+00 2.82e+03 2.82e-07 6.55e+03 7.03e-01 7.04e-01 3.00e-01 14 23.9 9.587e+14 1.407e+13 -2.094e+11 1.03e+00 8.38e+02 8.38e-08 1.94e+03 7.04e-01 7.05e-01 3.00e-01 15 23.9 4.036e+14 1.993e+13 -2.971e+11 1.03e+00 2.48e+02 2.48e-08 5.71e+02 7.06e-01 7.09e-01 3.00e-01 16 23.9 1.692e+14 2.789e+13 -4.222e+11 1.03e+00 7.31e+01 7.31e-09 1.66e+02 7.12e-01 7.22e-01 3.00e-01 17 23.9 7.003e+13 3.756e+13 -6.021e+11 1.03e+00 2.10e+01 2.10e-09 4.62e+01 7.31e-01 7.65e-01 3.00e-01 18 23.9 2.773e+13 4.485e+13 -8.676e+11 1.04e+00 5.66e+00 5.66e-10 1.08e+01 7.79e-01 9.17e-01 3.00e-01 19 23.9 9.540e+12 3.941e+13 -1.292e+12 1.07e+00 1.25e+00 1.25e-10 8.99e-01 9.22e-01 1.00e+00 3.00e-01 20 23.9 2.995e+12 1.720e+13 -1.811e+12 1.24e+00 9.79e-02 9.79e-12 3.96e-52 1.00e+00 1.00e+00 3.00e-01 21 23.9 8.988e+11 4.388e+12 -1.903e+12 2.53e+00 9.35e-65 0.00e+00 1.36e-51 1.00e+00 1.00e+00 3.00e-01 22 23.9 2.696e+11 1.339e+12 -5.487e+11 2.39e+00 1.25e-65 2.37e-66 3.50e-52 8.90e-01 8.90e-01 1.00e-01 23 23.9 5.361e+10 2.688e+11 -1.065e+11 2.31e+00 5.05e-66 2.37e-66 6.52e-53 8.70e-01 8.70e-01 1.00e-01 24 23.9 1.161e+10 5.819e+10 -2.310e+10 2.32e+00 6.68e-67 4.45e-67 6.78e-54 8.52e-01 8.52e-01 1.00e-01 25 23.9 2.713e+09 1.355e+10 -5.443e+09 2.34e+00 2.63e-67 7.42e-68 1.03e-54 8.36e-01 8.36e-01 1.00e-01 26 23.9 6.711e+08 3.370e+09 -1.328e+09 2.30e+00 3.71e-68 4.64e-69 1.80e-55 8.30e-01 8.30e-01 1.00e-01 27 23.9 1.696e+08 8.422e+08 -3.452e+08 2.39e+00 1.51e-68 6.95e-69 3.01e-56 8.10e-01 8.10e-01 1.00e-01 28 23.9 4.599e+07 2.340e+08 -8.791e+07 2.20e+00 5.22e-69 4.35e-69 5.75e-57 8.18e-01 8.18e-01 1.00e-01 29 23.9 1.213e+07 5.873e+07 -2.619e+07 2.61e+00 1.17e-69 1.23e-69 1.05e-57 7.63e-01 7.63e-01 1.00e-01 30 24.0 3.798e+06 2.001e+07 -6.576e+06 1.98e+00 1.97e-70 3.62e-70 2.47e-58 8.24e-01 8.24e-01 1.00e-01 31 24.0 9.800e+05 4.616e+06 -2.245e+06 2.89e+00 4.88e-71 7.70e-71 4.35e-59 7.75e-01 7.75e-01 1.00e-01 32 24.0 2.963e+05 1.559e+06 -5.151e+05 1.99e+00 1.81e-71 1.58e-71 9.77e-60 8.39e-01 8.39e-01 1.00e-01 33 24.0 7.263e+04 3.436e+05 -1.649e+05 2.85e+00 8.26e-72 2.83e-73 1.58e-60 7.97e-01 7.97e-01 1.00e-01 34 24.0 2.051e+04 1.063e+05 -3.733e+04 2.08e+00 3.00e-72 9.90e-73 3.19e-61 8.41e-01 8.41e-01 1.00e-01 35 24.0 4.988e+03 2.366e+04 -1.125e+04 2.81e+00 1.03e-72 4.95e-73 5.08e-62 8.01e-01 8.01e-01 1.00e-01 36 24.0 1.393e+03 7.141e+03 -2.612e+03 2.15e+00 1.99e-73 1.24e-73 1.01e-62 8.38e-01 8.38e-01 1.00e-01 37 24.0 3.422e+02 1.603e+03 -7.929e+02 2.96e+00 4.32e-74 2.87e-74 1.64e-63 7.97e-01 7.97e-01 1.00e-01 38 24.0 9.665e+01 4.860e+02 -1.905e+02 2.29e+00 6.29e-75 1.38e-74 3.32e-64 8.39e-01 8.39e-01 1.00e-01 39 24.0 2.366e+01 1.051e+02 -6.048e+01 3.71e+00 3.28e-75 1.52e-75 5.34e-65 8.03e-01 8.03e-01 1.00e-01 40 24.0 6.562e+00 2.998e+01 -1.595e+01 3.28e+00 6.22e-76 3.63e-76 1.05e-65 8.57e-01 8.57e-01 1.00e-01 41 24.0 1.499e+00 4.629e+00 -5.866e+00 8.49e+00 1.38e-76 3.45e-77 1.50e-66 8.75e-01 8.75e-01 1.00e-01 42 24.0 3.183e-01 -4.666e-01 -2.695e+00 7.05e-01 4.32e-77 4.32e-77 1.87e-67 9.64e-01 9.64e-01 1.00e-01 43 24.0 4.224e-02 -1.900e+00 -2.195e+00 7.22e-02 1.73e-77 1.73e-77 6.81e-69 9.83e-01 9.83e-01 1.00e-01 44 24.0 4.861e-03 -2.089e+00 -2.123e+00 8.08e-03 1.73e-77 5.18e-77 1.14e-70 9.97e-01 9.97e-01 1.00e-01 45 24.0 5.004e-04 -2.110e+00 -2.114e+00 8.29e-04 8.64e-78 2.59e-77 3.73e-73 9.99e-01 9.99e-01 1.00e-01 46 24.0 5.050e-05 -2.113e+00 -2.113e+00 8.37e-05 8.64e-78 0.00e+00 6.08e-75 1.00e+00 1.00e+00 1.00e-01 47 24.0 5.060e-06 -2.113e+00 -2.113e+00 8.38e-06 8.64e-78 8.64e-78 2.90e-75 1.00e+00 1.00e+00 1.00e-01 48 24.0 5.060e-07 -2.113e+00 -2.113e+00 8.38e-07 8.64e-78 3.45e-77 1.15e-74 1.00e+00 1.00e+00 1.00e-01 49 24.0 5.061e-08 -2.113e+00 -2.113e+00 8.38e-08 8.64e-78 1.73e-77 9.67e-75 1.00e+00 1.00e+00 1.00e-01 50 24.0 5.062e-09 -2.113e+00 -2.113e+00 8.39e-09 8.64e-78 3.45e-77 2.25e-74 1.00e+00 1.00e+00 1.00e-01 51 24.0 5.063e-10 -2.113e+00 -2.113e+00 8.39e-10 8.64e-78 0.00e+00 3.34e-74 1.00e+00 1.00e+00 1.00e-01 52 24.0 5.063e-11 -2.113e+00 -2.113e+00 8.39e-11 1.73e-77 3.45e-77 1.37e-73 1.00e+00 1.00e+00 1.00e-01 53 24.1 5.064e-12 -2.113e+00 -2.113e+00 8.39e-12 8.64e-78 0.00e+00 1.01e-73 1.00e+00 1.00e+00 1.00e-01 54 24.1 5.064e-13 -2.113e+00 -2.113e+00 8.39e-13 1.73e-77 3.45e-77 5.94e-73 1.00e+00 1.00e+00 1.00e-01 55 24.1 5.065e-14 -2.113e+00 -2.113e+00 8.39e-14 8.64e-78 3.45e-77 5.67e-73 1.00e+00 1.00e+00 1.00e-01 56 24.1 5.065e-15 -2.113e+00 -2.113e+00 8.39e-15 8.64e-78 8.64e-78 2.33e-72 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 24.099788 seconds (983.20 k allocations: 45.741 MiB, 0.55% gc time, 98.75% compilation time: <1% of which was recompilation) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:-2.112913881423601868130301084816446037999668274895873299740497120278348550250887 Dual objective:-2.112913881423605414027986733655198760588222722086527408374050746343581313564144 Duality gap:8.391013275135812309011935690720160792213973976297538334692279047638357778875785e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.2 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 2.10e+11 7.15e-01 8.46e-01 3.00e-01 2 0.3 4.213e+19 -7.841e+09 2.996e+11 1.05e+00 2.85e+09 2.85e-01 3.23e+10 7.79e-01 1.00e+00 3.00e-01 3 0.4 1.478e+19 1.359e+09 5.379e+11 9.95e-01 6.29e+08 6.29e-02 3.09e-65 8.20e-01 1.00e+00 3.00e-01 4 0.4 4.264e+18 4.397e+08 8.578e+11 9.99e-01 1.13e+08 1.13e-02 2.31e-64 8.92e-01 1.00e+00 3.00e-01 5 0.5 7.344e+17 4.931e+07 1.370e+12 1.00e+00 1.22e+07 1.22e-03 3.59e-64 8.98e-01 1.00e+00 3.00e-01 6 0.5 1.198e+17 4.867e+06 2.189e+12 1.00e+00 1.24e+06 1.24e-04 5.50e-64 8.95e-01 1.00e+00 3.00e-01 7 0.6 2.010e+16 5.242e+05 3.499e+12 1.00e+00 1.30e+05 1.30e-05 1.05e-63 8.99e-01 1.00e+00 3.00e-01 8 0.6 3.262e+15 5.203e+04 5.596e+12 1.00e+00 1.32e+04 1.32e-06 2.03e-63 8.97e-01 1.00e+00 3.00e-01 9 0.7 5.394e+14 5.483e+03 8.950e+12 1.00e+00 1.37e+03 1.37e-07 3.35e-63 8.99e-01 1.00e+00 3.00e-01 10 0.8 8.742e+13 5.525e+02 1.430e+13 1.00e+00 1.38e+02 1.38e-08 4.25e-63 8.99e-01 1.00e+00 3.00e-01 11 0.8 1.453e+13 6.378e+01 2.266e+13 1.00e+00 1.40e+01 1.40e-09 6.50e-63 8.96e-01 1.00e+00 3.00e-01 12 0.8 2.995e+12 1.385e+01 3.308e+13 1.00e+00 1.45e+00 1.45e-10 1.07e-62 8.80e-01 1.00e+00 3.00e-01 13 0.9 1.001e+12 9.125e+00 2.897e+13 1.00e+00 1.74e-01 1.74e-11 1.35e-62 8.85e-01 1.00e+00 3.00e-01 14 0.9 3.229e+11 8.728e+00 1.226e+13 1.00e+00 2.01e-02 2.01e-12 1.09e-62 8.77e-01 1.00e+00 3.00e-01 15 1.0 9.802e+10 8.791e+00 3.989e+12 1.00e+00 2.47e-03 2.47e-13 2.64e-63 1.00e+00 1.00e+00 3.00e-01 16 1.0 2.964e+10 8.979e+00 1.245e+12 1.00e+00 5.18e-77 2.59e-77 5.31e-64 1.00e+00 1.00e+00 3.00e-01 17 1.0 8.892e+09 9.036e+00 3.735e+11 1.00e+00 5.18e-77 2.59e-77 3.32e-65 9.97e-01 9.97e-01 1.00e-01 18 1.1 9.112e+08 9.041e+00 3.827e+10 1.00e+00 5.18e-77 2.59e-77 4.75e-66 1.00e+00 1.00e+00 1.00e-01 19 1.1 9.114e+07 9.046e+00 3.828e+09 1.00e+00 8.64e-77 1.73e-77 2.13e-67 1.00e+00 1.00e+00 1.00e-01 20 1.2 9.115e+06 9.050e+00 3.828e+08 1.00e+00 3.45e-77 1.73e-77 1.46e-68 1.00e+00 1.00e+00 1.00e-01 21 1.2 9.116e+05 9.054e+00 3.829e+07 1.00e+00 3.45e-77 3.45e-77 8.69e-69 1.00e+00 1.00e+00 1.00e-01 22 1.2 9.117e+04 9.058e+00 3.829e+06 1.00e+00 3.67e-77 3.45e-77 5.43e-70 1.00e+00 1.00e+00 1.00e-01 23 1.3 9.118e+03 9.061e+00 3.829e+05 1.00e+00 5.18e-77 1.73e-77 3.57e-71 1.00e+00 1.00e+00 1.00e-01 24 1.3 9.119e+02 9.064e+00 3.831e+04 1.00e+00 5.18e-77 1.73e-77 3.06e-72 1.00e+00 1.00e+00 1.00e-01 25 1.4 9.150e+01 9.069e+00 3.852e+03 9.95e-01 5.18e-77 1.73e-77 4.24e-73 9.96e-01 9.96e-01 1.00e-01 26 1.4 9.449e+00 9.090e+00 4.060e+02 9.56e-01 5.18e-77 1.73e-77 3.14e-74 9.67e-01 9.67e-01 1.00e-01 27 1.4 1.226e+00 9.266e+00 6.076e+01 7.35e-01 3.45e-77 8.64e-78 3.59e-75 8.41e-01 8.41e-01 1.00e-01 28 1.5 2.984e-01 1.028e+01 2.281e+01 3.79e-01 8.64e-77 1.73e-77 2.66e-75 7.57e-01 7.57e-01 1.00e-01 29 1.5 9.520e-02 1.184e+01 1.584e+01 1.44e-01 5.18e-77 1.73e-77 4.71e-75 5.18e-01 5.18e-01 1.00e-01 30 1.6 5.085e-02 1.263e+01 1.477e+01 7.79e-02 6.91e-77 1.73e-77 8.77e-75 6.13e-01 6.13e-01 1.00e-01 31 1.6 2.281e-02 1.280e+01 1.376e+01 3.61e-02 6.69e-77 1.73e-77 8.31e-75 8.46e-01 8.46e-01 1.00e-01 32 1.7 5.435e-03 1.307e+01 1.330e+01 8.65e-03 5.18e-77 4.32e-77 1.52e-74 8.46e-01 8.46e-01 1.00e-01 33 1.7 1.296e-03 1.314e+01 1.319e+01 2.07e-03 9.73e-77 3.45e-77 6.54e-74 8.17e-01 8.17e-01 1.00e-01 34 1.7 3.428e-04 1.315e+01 1.317e+01 5.47e-04 6.91e-77 2.59e-77 2.03e-73 8.07e-01 8.07e-01 1.00e-01 35 1.8 9.373e-05 1.316e+01 1.316e+01 1.50e-04 5.68e-77 8.64e-78 1.14e-72 7.58e-01 7.58e-01 1.00e-01 36 1.8 2.978e-05 1.316e+01 1.316e+01 4.75e-05 6.51e-77 2.59e-77 1.28e-72 8.83e-01 8.83e-01 1.00e-01 37 1.9 6.117e-06 1.316e+01 1.316e+01 9.76e-06 7.06e-77 2.59e-77 1.96e-72 8.72e-01 8.72e-01 1.00e-01 38 1.9 1.315e-06 1.316e+01 1.316e+01 2.10e-06 5.18e-77 2.59e-77 4.55e-73 9.01e-01 9.01e-01 1.00e-01 39 1.9 2.487e-07 1.316e+01 1.316e+01 3.97e-07 4.97e-77 2.59e-77 1.07e-71 9.70e-01 9.70e-01 1.00e-01 40 2.0 3.166e-08 1.316e+01 1.316e+01 5.05e-08 3.45e-77 2.59e-77 2.45e-71 9.98e-01 9.98e-01 1.00e-01 41 2.0 3.233e-09 1.316e+01 1.316e+01 5.16e-09 6.91e-77 2.59e-77 1.67e-71 9.98e-01 9.98e-01 1.00e-01 42 2.1 3.293e-10 1.316e+01 1.316e+01 5.26e-10 5.21e-77 2.59e-77 2.90e-71 1.00e+00 1.00e+00 1.00e-01 43 2.1 3.302e-11 1.316e+01 1.316e+01 5.27e-11 6.91e-77 8.64e-78 2.61e-71 1.00e+00 1.00e+00 1.00e-01 44 2.2 3.303e-12 1.316e+01 1.316e+01 5.27e-12 6.91e-77 2.59e-77 2.30e-71 1.00e+00 1.00e+00 1.00e-01 45 2.2 3.304e-13 1.316e+01 1.316e+01 5.27e-13 3.45e-77 2.59e-77 2.99e-71 1.00e+00 1.00e+00 1.00e-01 46 2.2 3.304e-14 1.316e+01 1.316e+01 5.27e-14 7.51e-77 1.73e-77 2.39e-71 1.00e+00 1.00e+00 1.00e-01 47 2.3 3.304e-15 1.316e+01 1.316e+01 5.27e-15 5.83e-77 1.73e-77 1.98e-71 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 2.299707 seconds (6.56 M allocations: 403.207 MiB, 12.87% gc time, 7.97% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:13.15831434739029877964849401929677055643333702751201315198078227063083057301753 Dual objective:13.15831434739031265869097103675534960220463548086461621312468412573819308134595 Duality gap:5.273867955499214527926912781592516938640851222067268930117865790919702028546929e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 1.585e-02 1.585e-02 0.00e+00 1.00e+10 3.02e+20 8.43e+10 7.03e-01 7.57e-01 3.00e-01 2 0.1 4.190e+19 -2.320e+10 -2.620e+08 9.78e-01 2.97e+09 8.99e+19 2.04e+10 7.89e-01 7.78e-01 3.00e-01 3 0.2 1.306e+19 -4.643e+10 -1.742e+09 9.28e-01 6.28e+08 1.90e+19 4.53e+09 8.17e-01 7.43e-01 3.00e-01 4 0.3 3.686e+18 -7.438e+10 -1.494e+09 9.61e-01 1.15e+08 3.48e+18 1.17e+09 8.25e-01 8.15e-01 3.00e-01 5 0.3 9.725e+17 -1.038e+11 1.515e+08 1.00e+00 2.01e+07 6.09e+17 2.16e+08 7.94e-01 7.63e-01 3.00e-01 6 0.4 3.020e+17 -1.438e+11 3.329e+09 1.05e+00 4.16e+06 1.26e+17 5.11e+07 7.09e-01 7.99e-01 3.00e-01 7 0.5 1.203e+17 -1.906e+11 1.626e+10 1.19e+00 1.21e+06 3.65e+16 1.03e+07 7.49e-01 8.14e-01 3.00e-01 8 0.6 4.286e+16 -2.882e+11 3.009e+10 1.23e+00 3.03e+05 9.15e+15 1.92e+06 7.63e-01 8.17e-01 3.00e-01 9 0.7 1.468e+16 -4.788e+11 5.004e+10 1.23e+00 7.18e+04 2.17e+15 3.51e+05 7.82e-01 6.89e-01 3.00e-01 10 0.7 4.729e+15 -8.435e+11 8.455e+10 1.22e+00 1.57e+04 4.74e+14 1.09e+05 6.46e-01 6.36e-01 3.00e-01 11 0.8 2.321e+15 -1.155e+12 1.377e+11 1.27e+00 5.54e+03 1.67e+14 3.98e+04 6.72e-01 6.11e-01 3.00e-01 12 0.9 1.063e+15 -1.592e+12 1.951e+11 1.28e+00 1.81e+03 5.49e+13 1.55e+04 5.62e-01 9.01e-01 3.00e-01 13 0.9 6.779e+14 -2.021e+12 2.787e+11 1.32e+00 7.94e+02 2.40e+13 1.53e+03 8.24e-01 9.11e-01 3.00e-01 14 1.0 1.835e+14 -5.984e+12 4.300e+11 1.15e+00 1.40e+02 4.23e+12 1.36e+02 8.55e-01 1.00e+00 3.00e-01 15 1.1 4.247e+13 -1.546e+13 6.864e+11 1.09e+00 2.03e+01 6.13e+11 1.81e-48 8.97e-01 1.00e+00 3.00e-01 16 1.1 7.181e+12 -1.302e+13 1.093e+12 1.18e+00 2.08e+00 6.30e+10 1.76e-48 8.89e-01 1.00e+00 3.00e-01 17 1.2 1.329e+12 -3.359e+12 1.724e+12 3.11e+00 2.31e-01 6.99e+09 1.33e-48 8.33e-01 1.00e+00 3.00e-01 18 1.3 3.857e+11 -8.933e+11 2.306e+12 2.26e+00 3.86e-02 1.17e+09 2.67e-47 7.07e-01 1.00e+00 3.00e-01 19 1.3 1.766e+11 -3.434e+11 1.375e+12 1.67e+00 1.13e-02 3.42e+08 2.06e-47 8.44e-01 8.41e-01 3.00e-01 20 1.4 4.903e+10 -9.837e+10 7.115e+11 1.32e+00 1.77e-03 5.34e+07 2.20e-47 8.56e-01 1.00e+00 3.00e-01 21 1.5 1.622e+10 -2.672e+10 4.770e+11 1.12e+00 2.54e-04 7.67e+06 1.82e-48 7.71e-01 1.00e+00 3.00e-01 22 1.5 5.589e+09 -9.867e+09 1.839e+11 1.11e+00 5.81e-05 1.76e+06 1.22e-47 8.65e-01 8.10e-01 3.00e-01 23 1.6 2.102e+09 -2.786e+09 8.647e+10 1.07e+00 7.86e-06 2.38e+05 1.69e-47 7.54e-01 1.00e+00 3.00e-01 24 1.7 6.491e+08 -1.160e+09 2.539e+10 1.10e+00 1.93e-06 5.84e+04 3.89e-49 9.04e-01 9.19e-01 3.00e-01 25 1.7 2.210e+08 -2.876e+08 9.863e+09 1.06e+00 1.86e-07 5.62e+03 3.26e-48 9.41e-01 1.00e+00 3.00e-01 26 1.8 6.517e+07 -7.947e+07 3.067e+09 1.05e+00 1.11e-08 3.34e+02 4.93e-48 1.00e+00 1.00e+00 3.00e-01 27 1.9 1.954e+07 -1.955e+07 9.380e+08 1.04e+00 2.02e-63 3.27e-43 1.88e-47 1.00e+00 1.00e+00 3.00e-01 28 2.0 5.862e+06 -5.862e+06 2.814e+08 1.04e+00 1.44e-63 1.39e-43 1.15e-47 1.00e+00 1.00e+00 1.00e-01 29 2.0 5.873e+05 -5.873e+05 2.819e+07 1.04e+00 1.13e-63 4.85e-43 1.75e-49 1.00e+00 1.00e+00 1.00e-01 30 2.1 5.874e+04 -5.874e+04 2.819e+06 1.04e+00 1.02e-63 7.31e-44 1.20e-50 1.00e+00 1.00e+00 1.00e-01 31 2.2 5.874e+03 -5.874e+03 2.820e+05 1.04e+00 1.29e-63 2.90e-43 2.11e-51 1.00e+00 1.00e+00 1.00e-01 32 2.2 5.875e+02 -5.874e+02 2.820e+04 1.04e+00 1.62e-63 8.20e-44 1.14e-52 1.00e+00 1.00e+00 1.00e-01 33 2.3 5.876e+01 -5.866e+01 2.821e+03 1.04e+00 1.30e-63 1.09e-42 3.78e-54 1.00e+00 1.00e+00 1.00e-01 34 2.4 5.883e+00 -5.788e+00 2.825e+02 1.04e+00 1.74e-63 9.13e-44 1.11e-54 9.99e-01 9.99e-01 1.00e-01 35 2.4 5.954e-01 -4.995e-01 2.868e+01 1.04e+00 1.05e-63 7.68e-43 2.03e-55 9.88e-01 9.88e-01 1.00e-01 36 2.5 6.616e-02 3.259e-02 3.274e+00 9.80e-01 1.30e-63 4.21e-45 2.18e-55 9.22e-01 9.22e-01 1.00e-01 37 2.6 1.126e-02 1.068e-01 6.584e-01 5.52e-01 1.56e-63 7.32e-43 1.38e-55 8.48e-01 8.48e-01 1.00e-01 38 2.6 2.667e-03 1.882e-01 3.188e-01 1.31e-01 1.13e-63 8.48e-43 4.77e-56 8.38e-01 8.38e-01 1.00e-01 39 2.7 6.553e-04 2.394e-01 2.715e-01 3.21e-02 1.18e-63 8.22e-43 1.29e-56 8.06e-01 8.06e-01 1.00e-01 40 2.8 1.798e-04 2.495e-01 2.583e-01 8.81e-03 1.22e-63 9.21e-43 6.20e-57 8.23e-01 8.23e-01 1.00e-01 41 2.9 4.661e-05 2.526e-01 2.549e-01 2.28e-03 1.24e-63 8.31e-44 5.01e-56 7.89e-01 7.89e-01 1.00e-01 42 2.9 1.350e-05 2.534e-01 2.540e-01 6.61e-04 1.15e-63 1.19e-42 1.68e-55 7.75e-01 7.75e-01 1.00e-01 43 3.0 4.080e-06 2.536e-01 2.538e-01 2.00e-04 1.44e-63 8.79e-43 6.75e-55 7.61e-01 7.61e-01 1.00e-01 44 3.1 1.286e-06 2.537e-01 2.538e-01 6.30e-05 1.97e-63 1.46e-42 9.73e-55 9.61e-01 9.61e-01 1.00e-01 45 3.2 1.739e-07 2.537e-01 2.537e-01 8.52e-06 1.86e-63 1.63e-42 1.19e-54 9.60e-01 9.60e-01 1.00e-01 46 3.3 2.369e-08 2.537e-01 2.537e-01 1.16e-06 1.21e-63 2.59e-43 1.24e-54 9.77e-01 9.77e-01 1.00e-01 47 3.3 2.854e-09 2.537e-01 2.537e-01 1.40e-07 1.13e-63 7.90e-43 2.26e-54 9.93e-01 9.93e-01 1.00e-01 48 3.4 3.031e-10 2.537e-01 2.537e-01 1.49e-08 1.35e-63 1.67e-42 7.71e-55 9.99e-01 9.99e-01 1.00e-01 49 3.5 3.050e-11 2.537e-01 2.537e-01 1.49e-09 2.51e-63 1.38e-42 9.14e-55 1.00e+00 1.00e+00 1.00e-01 50 3.6 3.051e-12 2.537e-01 2.537e-01 1.49e-10 1.45e-63 1.28e-42 3.62e-55 1.00e+00 1.00e+00 1.00e-01 51 3.7 3.051e-13 2.537e-01 2.537e-01 1.49e-11 1.76e-63 1.48e-42 4.71e-55 1.00e+00 1.00e+00 1.00e-01 52 3.7 3.051e-14 2.537e-01 2.537e-01 1.50e-12 4.34e-63 2.20e-43 2.86e-54 1.00e+00 1.00e+00 1.00e-01 53 3.8 3.052e-15 2.537e-01 2.537e-01 1.50e-13 3.52e-63 1.50e-42 1.58e-54 1.00e+00 1.00e+00 1.00e-01 54 3.9 3.052e-16 2.537e-01 2.537e-01 1.50e-14 1.34e-63 2.05e-42 4.12e-55 1.00e+00 1.00e+00 1.00e-01 55 3.9 3.052e-17 2.537e-01 2.537e-01 1.50e-15 1.99e-63 1.27e-42 1.27e-54 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 3.930363 seconds (9.64 M allocations: 519.407 MiB, 6.96% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:0.2537404272210647350096389860956389778559606060058801469016865424026498649013874 Dual objective:0.2537404272210648845838399773555048449993882408230118746396959113580248518074421 Duality gap:1.495742009912598658671434276348171317277380093689553749869060546911792479166316e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.4 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 8.43e+10 6.32e-01 5.24e-01 3.00e-01 2 0.8 5.118e+19 7.190e+07 1.164e+10 9.88e-01 3.68e+09 3.68e-01 4.01e+10 6.36e-01 6.99e-01 3.00e-01 3 1.2 2.570e+19 6.028e+07 2.506e+10 9.95e-01 1.34e+09 1.34e-01 1.21e+10 7.82e-01 7.56e-01 3.00e-01 4 1.7 8.263e+18 1.502e+07 4.098e+10 9.99e-01 2.93e+08 2.93e-02 2.94e+09 8.07e-01 8.00e-01 3.00e-01 5 2.1 2.367e+18 3.547e+06 6.396e+10 1.00e+00 5.64e+07 5.64e-03 5.87e+08 8.04e-01 7.46e-01 3.00e-01 6 2.6 7.008e+17 8.038e+05 9.568e+10 1.00e+00 1.11e+07 1.11e-03 1.49e+08 8.14e-01 7.81e-01 3.00e-01 7 3.0 1.972e+17 1.837e+05 1.446e+11 1.00e+00 2.06e+06 2.06e-04 3.27e+07 7.79e-01 7.96e-01 3.00e-01 8 3.5 6.361e+16 4.687e+04 2.206e+11 1.00e+00 4.56e+05 4.56e-05 6.67e+06 7.28e-01 7.70e-01 3.00e-01 9 3.9 2.470e+16 1.204e+04 3.288e+11 1.00e+00 1.24e+05 1.24e-05 1.54e+06 7.29e-01 7.91e-01 3.00e-01 10 4.3 9.586e+15 3.109e+03 5.041e+11 1.00e+00 3.37e+04 3.37e-06 3.21e+05 7.58e-01 7.85e-01 3.00e-01 11 4.8 3.375e+15 7.627e+02 8.164e+11 1.00e+00 8.17e+03 8.17e-07 6.90e+04 6.24e-01 7.24e-01 3.00e-01 12 5.2 1.763e+15 3.251e+02 1.508e+12 1.00e+00 3.07e+03 3.07e-07 1.91e+04 5.66e-01 4.74e-01 3.00e-01 13 5.7 1.006e+15 3.029e+02 2.709e+12 1.00e+00 1.33e+03 1.33e-07 1.00e+04 6.70e-01 6.86e-01 3.00e-01 14 6.1 4.647e+14 3.925e+02 4.272e+12 1.00e+00 4.40e+02 4.40e-08 3.14e+03 5.67e-01 6.23e-01 3.00e-01 15 6.6 2.709e+14 6.587e+02 6.050e+12 1.00e+00 1.91e+02 1.91e-08 1.18e+03 4.25e-01 9.14e-01 3.00e-01 16 7.0 2.367e+14 6.300e+01 9.859e+12 1.00e+00 1.10e+02 1.10e-08 1.01e+02 7.83e-01 1.00e+00 3.00e-01 17 7.5 8.205e+13 7.894e+01 1.584e+13 1.00e+00 2.37e+01 2.37e-09 5.02e-58 8.13e-01 1.00e+00 3.00e-01 18 7.9 2.463e+13 1.886e+01 2.504e+13 1.00e+00 4.43e+00 4.43e-10 1.18e-57 8.84e-01 1.00e+00 3.00e-01 19 8.4 4.808e+12 2.447e+00 3.732e+13 1.00e+00 5.16e-01 5.16e-11 4.73e-57 8.88e-01 1.00e+00 3.00e-01 20 8.8 1.084e+12 3.495e-01 3.941e+13 1.00e+00 5.77e-02 5.77e-12 5.77e-57 8.56e-01 1.00e+00 3.00e-01 21 9.3 3.431e+11 1.295e-01 2.400e+13 1.00e+00 8.33e-03 8.33e-13 2.60e-57 8.25e-01 1.00e+00 3.00e-01 22 9.7 1.158e+11 9.545e-02 1.061e+13 1.00e+00 1.46e-03 1.46e-13 1.14e-57 8.40e-01 8.07e-01 3.00e-01 23 10.2 4.557e+10 8.306e-02 4.818e+12 1.00e+00 2.34e-04 2.34e-14 1.96e-58 7.20e-01 1.00e+00 3.00e-01 24 10.7 1.417e+10 8.217e-02 1.436e+12 1.00e+00 6.54e-05 6.54e-15 3.17e-60 8.96e-01 8.18e-01 3.00e-01 25 11.1 5.688e+09 7.650e-02 6.445e+11 1.00e+00 6.79e-06 6.79e-16 7.63e-59 9.34e-01 1.00e+00 3.00e-01 26 11.8 1.690e+09 7.658e-02 1.988e+11 1.00e+00 4.49e-07 4.49e-17 2.58e-59 1.00e+00 1.00e+00 3.00e-01 27 12.4 5.061e+08 7.648e-02 6.022e+10 1.00e+00 2.89e-74 2.51e-51 7.06e-59 1.00e+00 1.00e+00 3.00e-01 28 13.0 1.518e+08 7.648e-02 1.807e+10 1.00e+00 2.20e-74 2.25e-51 2.12e-58 1.00e+00 1.00e+00 1.00e-01 29 13.6 1.524e+07 7.648e-02 1.814e+09 1.00e+00 3.19e-74 5.01e-51 7.07e-60 1.00e+00 1.00e+00 1.00e-01 30 14.1 1.524e+06 7.649e-02 1.814e+08 1.00e+00 2.56e-74 3.18e-51 4.33e-61 1.00e+00 1.00e+00 1.00e-01 31 14.5 1.525e+05 7.649e-02 1.814e+07 1.00e+00 3.07e-74 3.76e-51 2.63e-62 1.00e+00 1.00e+00 1.00e-01 32 15.0 1.525e+04 7.649e-02 1.814e+06 1.00e+00 2.63e-74 6.34e-51 7.69e-64 1.00e+00 1.00e+00 1.00e-01 33 15.4 1.525e+03 7.649e-02 1.815e+05 1.00e+00 2.83e-74 4.58e-51 4.75e-64 1.00e+00 1.00e+00 1.00e-01 34 15.8 1.525e+02 7.649e-02 1.815e+04 1.00e+00 2.91e-74 6.52e-51 6.44e-65 1.00e+00 1.00e+00 1.00e-01 35 16.3 1.529e+01 7.653e-02 1.820e+03 1.00e+00 2.96e-74 4.21e-51 5.31e-66 9.97e-01 9.97e-01 1.00e-01 36 16.7 1.564e+00 7.692e-02 1.862e+02 9.99e-01 2.59e-74 6.77e-51 2.99e-67 9.76e-01 9.76e-01 1.00e-01 37 17.2 1.897e-01 8.062e-02 2.266e+01 9.93e-01 3.94e-74 5.79e-51 2.11e-68 8.77e-01 8.77e-01 1.00e-01 38 17.6 3.990e-02 1.073e-01 4.856e+00 9.57e-01 2.37e-74 2.92e-51 1.25e-68 9.21e-01 9.21e-01 1.00e-01 39 18.1 6.811e-03 1.612e-01 9.718e-01 7.15e-01 2.59e-74 3.40e-51 1.84e-68 8.71e-01 8.71e-01 1.00e-01 40 18.5 1.473e-03 2.059e-01 3.812e-01 1.75e-01 2.59e-74 2.56e-51 2.11e-68 8.63e-01 8.63e-01 1.00e-01 41 19.0 3.291e-04 2.437e-01 2.829e-01 3.92e-02 3.41e-74 5.13e-51 2.75e-69 8.93e-01 8.93e-01 1.00e-01 42 19.5 6.458e-05 2.517e-01 2.594e-01 7.69e-03 3.44e-74 7.33e-51 8.35e-70 8.48e-01 8.48e-01 1.00e-01 43 19.9 1.529e-05 2.532e-01 2.550e-01 1.82e-03 3.02e-74 4.05e-51 1.47e-67 8.38e-01 8.38e-01 1.00e-01 44 20.4 3.758e-06 2.536e-01 2.540e-01 4.47e-04 6.56e-74 9.98e-51 1.76e-67 8.60e-01 8.60e-01 1.00e-01 45 20.8 8.506e-07 2.537e-01 2.538e-01 1.01e-04 4.08e-74 8.87e-51 5.84e-67 9.32e-01 9.32e-01 1.00e-01 46 21.3 1.372e-07 2.537e-01 2.538e-01 1.63e-05 7.25e-74 3.03e-51 1.10e-66 9.60e-01 9.60e-01 1.00e-01 47 21.7 1.861e-08 2.537e-01 2.537e-01 2.21e-06 5.47e-74 8.87e-51 7.97e-67 9.53e-01 9.53e-01 1.00e-01 48 22.4 2.646e-09 2.537e-01 2.537e-01 3.15e-07 4.58e-74 9.80e-51 7.02e-67 9.65e-01 9.65e-01 1.00e-01 49 23.0 3.469e-10 2.537e-01 2.537e-01 4.13e-08 4.17e-74 1.07e-50 2.35e-66 9.73e-01 9.73e-01 1.00e-01 50 23.7 4.314e-11 2.537e-01 2.537e-01 5.13e-09 3.83e-74 4.66e-51 1.25e-65 9.75e-01 9.75e-01 1.00e-01 51 24.3 5.269e-12 2.537e-01 2.537e-01 6.27e-10 3.56e-74 1.14e-50 1.28e-64 9.79e-01 9.79e-01 1.00e-01 52 25.0 6.243e-13 2.537e-01 2.537e-01 7.43e-11 3.60e-74 3.45e-51 5.35e-64 9.96e-01 9.96e-01 1.00e-01 53 25.6 6.487e-14 2.537e-01 2.537e-01 7.72e-12 3.72e-74 6.64e-51 2.15e-63 1.00e+00 1.00e+00 1.00e-01 54 26.3 6.499e-15 2.537e-01 2.537e-01 7.73e-13 6.05e-74 1.12e-50 6.38e-62 1.00e+00 1.00e+00 1.00e-01 55 26.9 6.501e-16 2.537e-01 2.537e-01 7.74e-14 4.63e-74 2.83e-51 1.95e-62 1.00e+00 1.00e+00 1.00e-01 56 27.6 6.502e-17 2.537e-01 2.537e-01 7.74e-15 6.36e-74 7.38e-51 4.53e-61 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 27.625709 seconds (60.50 M allocations: 3.591 GiB, 5.33% gc time, 0.31% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:0.25374042722106456992657211226877094793183941146678626441613114315436457353340004987990954568 Dual objective:0.25374042722106534375151050385117750958675999320803310505128186810067853780137142593790186302 Duality gap:7.7382493839158240656165492058174124684063515072494631396426797137605799231733501432093926125e-16 [ Info: Creating the univariate constraint [ Info: Constructing trivariate constraint iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.3 1.000e+06 1.000e+00 5.001e+03 1.00e+00 1.00e+03 0.00e+00 3.99e+06 6.53e-01 5.28e-01 3.00e-01 2 0.5 5.015e+05 5.164e+02 3.088e+03 7.13e-01 3.47e+02 0.00e+00 1.88e+06 4.22e-01 6.07e-01 3.00e-01 3 0.7 3.499e+05 6.688e+02 8.065e+03 8.47e-01 2.00e+02 0.00e+00 7.40e+05 5.84e-01 4.21e-01 3.00e-01 4 0.9 2.030e+05 5.414e+02 1.758e+04 9.40e-01 8.32e+01 0.00e+00 4.29e+05 4.22e-01 9.53e-01 3.00e-01 5 1.1 1.588e+05 3.876e+02 6.630e+04 9.88e-01 4.81e+01 0.00e+00 2.00e+04 7.78e-01 1.00e+00 3.00e-01 6 1.4 5.705e+04 1.104e+02 1.123e+05 9.98e-01 1.07e+01 0.00e+00 6.75e-67 8.24e-01 1.00e+00 3.00e-01 7 1.6 1.728e+04 2.822e+01 1.690e+05 1.00e+00 1.88e+00 0.00e+00 1.29e-66 8.75e-01 1.00e+00 3.00e-01 8 1.9 4.993e+03 1.126e+01 1.883e+05 1.00e+00 2.35e-01 0.00e+00 1.72e-66 8.48e-01 9.86e-01 3.00e-01 9 2.1 1.681e+03 9.036e+00 9.790e+04 1.00e+00 3.57e-02 0.00e+00 3.43e-66 8.19e-01 1.00e+00 3.00e-01 10 2.3 5.450e+02 8.700e+00 3.672e+04 1.00e+00 6.44e-03 0.00e+00 1.55e-66 8.33e-01 1.00e+00 3.00e-01 11 2.5 1.723e+02 8.588e+00 1.271e+04 9.99e-01 1.08e-03 0.00e+00 4.56e-67 1.00e+00 1.00e+00 3.00e-01 12 2.7 5.146e+01 8.519e+00 4.074e+03 9.96e-01 1.71e-73 0.00e+00 2.09e-67 1.00e+00 1.00e+00 3.00e-01 13 2.8 1.544e+01 8.502e+00 1.228e+03 9.86e-01 1.43e-73 0.00e+00 1.44e-68 9.92e-01 9.92e-01 1.00e-01 14 3.0 1.654e+00 8.507e+00 1.392e+02 8.85e-01 2.65e-73 0.00e+00 1.42e-69 9.78e-01 9.78e-01 1.00e-01 15 3.2 1.981e-01 8.562e+00 2.421e+01 4.77e-01 7.90e-74 0.00e+00 1.85e-69 8.60e-01 8.60e-01 1.00e-01 16 3.4 4.484e-02 8.877e+00 1.242e+01 1.66e-01 7.19e-74 0.00e+00 2.15e-69 8.02e-01 8.02e-01 1.00e-01 17 3.6 1.245e-02 9.486e+00 1.047e+01 4.93e-02 4.08e-73 0.00e+00 6.52e-70 7.62e-01 7.62e-01 1.00e-01 18 3.8 3.917e-03 9.841e+00 1.015e+01 1.55e-02 1.93e-73 0.00e+00 1.50e-69 7.52e-01 7.52e-01 1.00e-01 19 4.0 1.267e-03 9.941e+00 1.004e+01 5.01e-03 8.24e-74 0.00e+00 4.68e-70 8.14e-01 8.14e-01 1.00e-01 20 4.2 3.392e-04 9.983e+00 1.001e+01 1.34e-03 2.06e-73 0.00e+00 8.10e-71 7.89e-01 7.89e-01 1.00e-01 21 4.3 9.835e-05 9.995e+00 1.000e+01 3.89e-04 4.20e-73 0.00e+00 5.61e-71 9.42e-01 9.42e-01 1.00e-01 22 4.6 1.496e-05 9.999e+00 1.000e+01 5.91e-05 5.11e-73 0.00e+00 1.08e-70 9.79e-01 9.79e-01 1.00e-01 23 4.8 1.780e-06 1.000e+01 1.000e+01 7.03e-06 2.42e-73 0.00e+00 1.15e-70 9.89e-01 9.89e-01 1.00e-01 24 5.0 1.951e-07 1.000e+01 1.000e+01 7.71e-07 3.02e-73 0.00e+00 1.68e-70 9.97e-01 9.97e-01 1.00e-01 25 5.3 2.009e-08 1.000e+01 1.000e+01 7.94e-08 2.82e-73 0.00e+00 5.25e-71 1.00e+00 1.00e+00 1.00e-01 26 5.5 2.016e-09 1.000e+01 1.000e+01 7.96e-09 1.59e-73 0.00e+00 1.93e-70 1.00e+00 1.00e+00 1.00e-01 27 5.8 2.017e-10 1.000e+01 1.000e+01 7.97e-10 2.72e-73 0.00e+00 6.67e-71 1.00e+00 1.00e+00 1.00e-01 28 6.0 2.017e-11 1.000e+01 1.000e+01 7.97e-11 3.25e-73 0.00e+00 4.22e-70 1.00e+00 1.00e+00 1.00e-01 29 6.3 2.018e-12 1.000e+01 1.000e+01 7.97e-12 2.54e-73 0.00e+00 2.19e-70 1.00e+00 1.00e+00 1.00e-01 30 6.5 2.018e-13 1.000e+01 1.000e+01 7.97e-13 3.65e-73 0.00e+00 1.26e-70 1.00e+00 1.00e+00 1.00e-01 31 6.8 2.018e-14 1.000e+01 1.000e+01 7.97e-14 4.05e-73 0.00e+00 7.69e-71 1.00e+00 1.00e+00 1.00e-01 32 7.0 2.018e-15 1.000e+01 1.000e+01 7.97e-15 2.70e-73 0.00e+00 2.07e-70 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 7.059533 seconds (15.09 M allocations: 895.470 MiB, 8.01% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:9.999999999999988697243853736595218298957810700120443173272589547678780659998527 Dual objective:10.00000000000000464220341723846752519823175399718663830422595325079076754311137 Duality gap:7.972479781750938808505735343516115726859340342859922828705798746438422613701998e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.0 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 2.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.0 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 0.00e+00 2.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.0 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 2.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.0 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 2.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.0 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 0.00e+00 2.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.1 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 2.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.1 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 2.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.1 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 2.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.1 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 0.00e+00 1.99e+02 1.00e+00 9.05e-01 3.00e-01 10 0.1 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 1.90e+01 1.00e+00 9.47e-01 3.00e-01 11 0.1 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e+00 3.00e-01 12 0.1 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 3.00e-01 13 0.1 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 14 0.1 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 15 0.1 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 16 0.1 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 17 0.1 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 18 0.1 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 19 0.1 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 20 0.1 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.1 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 22 0.1 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 4.91e-91 9.98e-01 9.98e-01 1.00e-01 23 0.1 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 0.00e+00 0.00e+00 9.78e-01 9.78e-01 1.00e-01 24 0.1 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 0.00e+00 1.47e-90 8.86e-01 8.86e-01 1.00e-01 25 0.1 2.642e-01 1.213e+00 6.845e-01 2.78e-01 0.00e+00 0.00e+00 4.91e-91 9.25e-01 9.25e-01 1.00e-01 26 0.1 4.423e-02 1.057e+00 9.685e-01 4.37e-02 9.82e-91 0.00e+00 9.82e-91 9.82e-01 9.82e-01 1.00e-01 27 0.1 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 0.00e+00 9.82e-91 9.90e-01 9.90e-01 1.00e-01 28 0.1 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 0.00e+00 1.47e-90 9.98e-01 9.98e-01 1.00e-01 29 0.1 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 30 0.1 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.1 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.1 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 33 0.1 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 34 0.1 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.1 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 36 0.1 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 37 0.1 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 38 0.1 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 0.00e+00 2.45e-90 1.00e+00 1.00e+00 1.00e-01 39 0.1 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.147161 seconds (39.88 k allocations: 3.457 MiB, 69.74% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279668 Dual objective:0.9999999999999994308276721633712720975914346046825898890655777243547660499609509826264801335 Duality gap:5.691723278366352070451840708486824389848583387797514538933756972301949865323277923806982379e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.0 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 1.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.0 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 8.43e-81 1.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.0 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 1.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.0 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 1.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.0 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 3.37e-80 1.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.0 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 1.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.0 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 1.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.0 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 1.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.1 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 2.70e-79 9.95e+01 1.00e+00 9.05e-01 3.00e-01 10 0.1 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 9.50e+00 1.00e+00 9.47e-01 3.00e-01 11 0.1 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 5.00e-01 1.00e+00 1.00e+00 3.00e-01 12 0.1 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 5.40e-79 0.00e+00 1.00e+00 1.00e+00 3.00e-01 13 0.1 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 14 0.1 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 1.35e-79 2.45e-91 1.00e+00 1.00e+00 1.00e-01 15 0.1 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 1.69e-80 1.23e-90 1.00e+00 1.00e+00 1.00e-01 16 0.1 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 17 0.1 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 2.64e-82 1.23e-90 1.00e+00 1.00e+00 1.00e-01 18 0.1 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 1.65e-83 9.82e-91 1.00e+00 1.00e+00 1.00e-01 19 0.1 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 1.03e-84 7.36e-91 1.00e+00 1.00e+00 1.00e-01 20 0.1 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.1 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 1.61e-86 4.91e-91 1.00e+00 1.00e+00 1.00e-01 22 0.1 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 7.36e-91 9.98e-01 9.98e-01 1.00e-01 23 0.1 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 1.10e-88 9.82e-91 9.78e-01 9.78e-01 1.00e-01 24 0.1 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 1.77e-89 4.91e-91 8.86e-01 8.86e-01 1.00e-01 25 0.1 2.642e-01 1.213e+00 6.845e-01 2.78e-01 9.82e-91 9.82e-91 1.47e-90 9.25e-01 9.25e-01 1.00e-01 26 0.1 4.423e-02 1.057e+00 9.685e-01 4.37e-02 4.91e-91 9.82e-91 1.47e-90 9.82e-01 9.82e-01 1.00e-01 27 0.1 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 9.82e-91 4.91e-91 9.90e-01 9.90e-01 1.00e-01 28 0.1 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 9.82e-91 2.45e-90 9.98e-01 9.98e-01 1.00e-01 29 0.1 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 1.96e-90 4.91e-91 1.00e+00 1.00e+00 1.00e-01 30 0.1 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.1 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 9.82e-91 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.1 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 33 0.1 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 34 0.1 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 9.82e-91 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.1 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 36 0.1 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 9.82e-91 4.91e-91 1.00e+00 1.00e+00 1.00e-01 37 0.1 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 38 0.1 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 1.96e-90 1.96e-90 1.00e+00 1.00e+00 1.00e-01 39 0.1 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 9.82e-91 1.58e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.136029 seconds (44.70 k allocations: 3.665 MiB, 68.71% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279658 Dual objective:0.99999999999999943082767216337127209759143460468258988906557772435476604996095098262648013301 Duality gap:5.6917232783663520704518407084868243898485833877975145389337569723019498653208233770743335244e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 1.000e+00 7.000e+10 1.00e+00 1.00e+10 0.00e+00 7.05e+10 6.66e-01 6.95e-01 3.00e-01 2 0.1 4.559e+19 1.338e+10 7.193e+10 6.86e-01 3.34e+09 0.00e+00 2.15e+10 7.05e-01 7.53e-01 3.00e-01 3 0.1 1.822e+19 2.640e+10 9.901e+10 5.79e-01 9.85e+08 0.00e+00 5.31e+09 6.16e-01 7.88e-01 3.00e-01 4 0.1 8.970e+18 3.260e+10 1.789e+11 6.92e-01 3.78e+08 0.00e+00 1.12e+09 7.73e-01 1.00e+00 3.00e-01 5 0.1 3.189e+18 1.238e+10 3.561e+11 9.33e-01 8.58e+07 0.00e+00 2.82e-142 8.40e-01 1.00e+00 3.00e-01 6 0.1 8.172e+17 2.052e+09 5.731e+11 9.93e-01 1.37e+07 0.00e+00 4.55e-141 8.95e-01 1.00e+00 3.00e-01 7 0.1 1.367e+17 2.121e+08 9.202e+11 1.00e+00 1.44e+06 0.00e+00 2.32e-141 8.90e-01 1.00e+00 3.00e-01 8 0.1 2.412e+16 2.361e+07 1.476e+12 1.00e+00 1.58e+05 0.00e+00 4.08e-141 8.97e-01 1.00e+00 3.00e-01 9 0.2 3.957e+15 2.403e+06 2.364e+12 1.00e+00 1.62e+04 0.00e+00 1.51e-141 8.94e-01 1.00e+00 3.00e-01 10 0.2 6.738e+14 2.573e+05 3.785e+12 1.00e+00 1.73e+03 0.00e+00 7.18e-141 8.99e-01 1.00e+00 3.00e-01 11 0.2 1.095e+14 2.604e+04 6.056e+12 1.00e+00 1.75e+02 0.00e+00 6.17e-141 8.99e-01 1.00e+00 3.00e-01 12 0.2 1.816e+13 2.738e+03 9.636e+12 1.00e+00 1.76e+01 0.00e+00 1.19e-140 9.13e-01 1.00e+00 3.00e-01 13 0.2 3.342e+12 3.449e+02 1.456e+13 1.00e+00 1.53e+00 0.00e+00 7.75e-141 1.00e+00 1.00e+00 3.00e-01 14 0.2 1.007e+12 1.188e+02 1.410e+13 1.00e+00 1.91e-152 0.00e+00 1.41e-140 1.00e+00 1.00e+00 3.00e-01 15 0.2 3.022e+11 1.198e+02 4.231e+12 1.00e+00 9.55e-153 0.00e+00 1.35e-141 9.99e-01 9.99e-01 1.00e-01 16 0.2 3.062e+10 1.199e+02 4.287e+11 1.00e+00 1.91e-152 0.00e+00 7.48e-142 1.00e+00 1.00e+00 1.00e-01 17 0.2 3.063e+09 1.200e+02 4.288e+10 1.00e+00 9.55e-153 0.00e+00 4.31e-143 1.00e+00 1.00e+00 1.00e-01 18 0.2 3.063e+08 1.201e+02 4.288e+09 1.00e+00 9.55e-153 0.00e+00 5.17e-144 1.00e+00 1.00e+00 1.00e-01 19 0.3 3.063e+07 1.202e+02 4.289e+08 1.00e+00 9.55e-153 0.00e+00 3.17e-145 1.00e+00 1.00e+00 1.00e-01 20 0.3 3.064e+06 1.202e+02 4.289e+07 1.00e+00 9.55e-153 0.00e+00 1.53e-146 1.00e+00 1.00e+00 1.00e-01 21 0.3 3.064e+05 1.203e+02 4.290e+06 1.00e+00 9.55e-153 0.00e+00 9.17e-147 1.00e+00 1.00e+00 1.00e-01 22 0.3 3.065e+04 1.203e+02 4.292e+05 9.99e-01 9.55e-153 0.00e+00 4.57e-148 1.00e+00 1.00e+00 1.00e-01 23 0.3 3.075e+03 1.204e+02 4.317e+04 9.94e-01 9.55e-153 0.00e+00 5.47e-149 9.97e-01 9.97e-01 1.00e-01 24 0.3 3.166e+02 1.211e+02 4.554e+03 9.48e-01 9.55e-153 0.00e+00 7.64e-150 9.70e-01 9.70e-01 1.00e-01 25 0.3 4.021e+01 1.274e+02 6.904e+02 6.88e-01 9.55e-153 0.00e+00 7.33e-151 8.70e-01 8.70e-01 1.00e-01 26 0.3 8.743e+00 1.689e+02 2.913e+02 2.66e-01 1.91e-152 0.00e+00 3.77e-150 9.15e-01 9.15e-01 1.00e-01 27 0.3 1.547e+00 2.316e+02 2.532e+02 4.47e-02 1.91e-152 0.00e+00 1.83e-151 9.82e-01 9.82e-01 1.00e-01 28 0.4 1.800e-01 2.389e+02 2.414e+02 5.25e-03 1.91e-152 0.00e+00 9.19e-151 9.89e-01 9.89e-01 1.00e-01 29 0.4 1.986e-02 2.399e+02 2.401e+02 5.79e-04 9.55e-153 0.00e+00 1.31e-150 9.97e-01 9.97e-01 1.00e-01 30 0.4 2.030e-03 2.400e+02 2.400e+02 5.92e-05 1.91e-152 0.00e+00 7.83e-151 1.00e+00 1.00e+00 1.00e-01 31 0.4 2.034e-04 2.400e+02 2.400e+02 5.93e-06 9.55e-153 0.00e+00 2.47e-150 1.00e+00 1.00e+00 1.00e-01 32 0.4 2.035e-05 2.400e+02 2.400e+02 5.93e-07 1.91e-152 0.00e+00 1.16e-150 1.00e+00 1.00e+00 1.00e-01 33 0.4 2.035e-06 2.400e+02 2.400e+02 5.94e-08 1.91e-152 0.00e+00 1.78e-150 1.00e+00 1.00e+00 1.00e-01 34 0.4 2.035e-07 2.400e+02 2.400e+02 5.94e-09 1.91e-152 0.00e+00 4.29e-151 1.00e+00 1.00e+00 1.00e-01 35 0.4 2.035e-08 2.400e+02 2.400e+02 5.94e-10 1.91e-152 0.00e+00 1.95e-151 1.00e+00 1.00e+00 1.00e-01 36 0.4 2.036e-09 2.400e+02 2.400e+02 5.94e-11 1.91e-152 0.00e+00 2.37e-151 1.00e+00 1.00e+00 1.00e-01 37 0.5 2.036e-10 2.400e+02 2.400e+02 5.94e-12 1.91e-152 0.00e+00 8.90e-151 1.00e+00 1.00e+00 1.00e-01 38 0.5 2.036e-11 2.400e+02 2.400e+02 5.94e-13 1.91e-152 0.00e+00 4.36e-151 1.00e+00 1.00e+00 1.00e-01 39 0.5 2.036e-12 2.400e+02 2.400e+02 5.94e-14 1.91e-152 0.00e+00 3.85e-151 1.00e+00 1.00e+00 1.00e-01 40 0.5 2.036e-13 2.400e+02 2.400e+02 5.94e-15 1.91e-152 0.00e+00 1.41e-150 1.00e+00 1.00e+00 1.00e-01 41 0.5 2.037e-14 2.400e+02 2.400e+02 5.94e-16 1.91e-152 0.00e+00 2.67e-150 1.00e+00 1.00e+00 1.00e-01 42 0.5 2.037e-15 2.400e+02 2.400e+02 5.94e-17 1.91e-152 0.00e+00 1.16e-149 1.00e+00 1.00e+00 1.00e-01 43 0.5 2.037e-16 2.400e+02 2.400e+02 5.94e-18 3.82e-152 0.00e+00 1.79e-149 1.00e+00 1.00e+00 1.00e-01 44 0.5 2.037e-17 2.400e+02 2.400e+02 5.94e-19 3.82e-152 0.00e+00 2.78e-149 1.00e+00 1.00e+00 1.00e-01 45 0.5 2.037e-18 2.400e+02 2.400e+02 5.94e-20 1.91e-152 0.00e+00 3.80e-149 1.00e+00 1.00e+00 1.00e-01 46 0.6 2.038e-19 2.400e+02 2.400e+02 5.94e-21 4.77e-153 0.00e+00 2.02e-148 1.00e+00 1.00e+00 1.00e-01 47 0.6 2.038e-20 2.400e+02 2.400e+02 5.94e-22 1.91e-152 0.00e+00 1.84e-148 1.00e+00 1.00e+00 1.00e-01 48 0.6 2.038e-21 2.400e+02 2.400e+02 5.94e-23 1.91e-152 0.00e+00 6.37e-148 1.00e+00 1.00e+00 1.00e-01 49 0.6 2.038e-22 2.400e+02 2.400e+02 5.94e-24 1.91e-152 0.00e+00 5.95e-148 1.00e+00 1.00e+00 1.00e-01 50 0.6 2.038e-23 2.400e+02 2.400e+02 5.95e-25 9.55e-153 0.00e+00 6.37e-149 1.00e+00 1.00e+00 1.00e-01 51 0.6 2.039e-24 2.400e+02 2.400e+02 5.95e-26 5.37e-153 0.00e+00 2.47e-147 1.00e+00 1.00e+00 1.00e-01 52 0.6 2.039e-25 2.400e+02 2.400e+02 5.95e-27 1.91e-152 0.00e+00 1.57e-146 1.00e+00 1.00e+00 1.00e-01 53 0.6 2.039e-26 2.400e+02 2.400e+02 5.95e-28 1.91e-152 0.00e+00 2.10e-146 1.00e+00 1.00e+00 1.00e-01 54 0.6 2.039e-27 2.400e+02 2.400e+02 5.95e-29 9.55e-153 0.00e+00 1.97e-146 1.00e+00 1.00e+00 1.00e-01 55 0.7 2.039e-28 2.400e+02 2.400e+02 5.95e-30 1.91e-152 0.00e+00 1.49e-146 1.00e+00 1.00e+00 1.00e-01 56 0.7 2.040e-29 2.400e+02 2.400e+02 5.95e-31 1.91e-152 0.00e+00 1.20e-145 1.00e+00 1.00e+00 1.00e-01 57 0.7 2.040e-30 2.400e+02 2.400e+02 5.95e-32 1.91e-152 0.00e+00 6.76e-146 1.00e+00 1.00e+00 1.00e-01 58 0.7 2.040e-31 2.400e+02 2.400e+02 5.95e-33 3.82e-152 0.00e+00 3.54e-145 1.00e+00 1.00e+00 1.00e-01 59 0.7 2.040e-32 2.400e+02 2.400e+02 5.95e-34 1.91e-152 0.00e+00 1.14e-144 1.00e+00 1.00e+00 1.00e-01 60 0.7 2.040e-33 2.400e+02 2.400e+02 5.95e-35 1.91e-152 0.00e+00 3.71e-144 1.00e+00 1.00e+00 1.00e-01 61 0.7 2.041e-34 2.400e+02 2.400e+02 5.95e-36 3.82e-152 0.00e+00 5.46e-145 1.00e+00 1.00e+00 1.00e-01 62 0.7 2.041e-35 2.400e+02 2.400e+02 5.95e-37 3.82e-152 0.00e+00 2.12e-144 1.00e+00 1.00e+00 1.00e-01 63 0.7 2.041e-36 2.400e+02 2.400e+02 5.95e-38 1.91e-152 0.00e+00 6.69e-144 1.00e+00 1.00e+00 1.00e-01 64 0.8 2.041e-37 2.400e+02 2.400e+02 5.95e-39 1.91e-152 0.00e+00 5.37e-143 1.00e+00 1.00e+00 1.00e-01 65 0.8 2.041e-38 2.400e+02 2.400e+02 5.95e-40 1.91e-152 0.00e+00 2.67e-143 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.765907 seconds (1.05 M allocations: 60.399 MiB, 42.22% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:239.999999999999999999999999999999999999985708523597682515192287366032500676055550602445402360512326674212551998965007258460705041850982991684738333052271537 Dual objective:240.000000000000000000000000000000000000014291476402317484807712633967499323944484635248378250083552067787405726462894473072924215182163301105243858209757646 Duality gap:5.95478183429895200321359748645805164352792350061997699400529032809452656205983594039403859531019589804491952826261774753007407250194497194512868048864255856e-41 ** Starting computation of basis transformations ** Block 3 of size 1 x 1 Block 6 of size 1 x 1 Block 1 of size 1 x 1 Block 4 of size 1 x 1 Block 0 of size 1 x 1 Block 0 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 2 of size 1 x 1 Block 5 of size 1 x 1 Block B of size 3 x 3 Block B has 2 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block A of size 4 x 4 Block A has 4 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 ** Finished computation of basis transformations (12.663017682s) ** ** Transforming the problem and the solution ** (6.529658792s) ** Projection the solution into the affine space ** Reducing the system from 7 columns to 7 columns Constructing the linear system... (10.681552806s) Preprocessing to get an integer system... (5.406e-5s) Finding the pivots of A using RREF mod p... (0.000379166 5.968e-5 s) Solving the system of size 7 x 7 using the pseudoinverse... 0.980040759s ** Finished projection into affine space (15.14030533s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.273593479) [ Info: Creating the univariate constraint [ Info: Constructing trivariate constraint iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.3 1.000e+06 1.000e+00 5.001e+03 1.00e+00 1.00e+03 0.00e+00 3.99e+06 6.53e-01 5.28e-01 3.00e-01 2 0.5 5.015e+05 5.164e+02 3.088e+03 7.13e-01 3.47e+02 0.00e+00 1.88e+06 4.22e-01 6.07e-01 3.00e-01 3 0.8 3.499e+05 6.688e+02 8.065e+03 8.47e-01 2.00e+02 0.00e+00 7.40e+05 5.84e-01 4.21e-01 3.00e-01 4 1.0 2.030e+05 5.414e+02 1.758e+04 9.40e-01 8.32e+01 0.00e+00 4.29e+05 4.22e-01 9.53e-01 3.00e-01 5 1.2 1.588e+05 3.876e+02 6.630e+04 9.88e-01 4.81e+01 0.00e+00 2.00e+04 7.78e-01 1.00e+00 3.00e-01 6 1.5 5.705e+04 1.104e+02 1.123e+05 9.98e-01 1.07e+01 0.00e+00 6.75e-67 8.24e-01 1.00e+00 3.00e-01 7 1.7 1.728e+04 2.822e+01 1.690e+05 1.00e+00 1.88e+00 0.00e+00 1.29e-66 8.75e-01 1.00e+00 3.00e-01 8 2.0 4.993e+03 1.126e+01 1.883e+05 1.00e+00 2.35e-01 0.00e+00 1.72e-66 8.48e-01 9.86e-01 3.00e-01 9 2.2 1.681e+03 9.036e+00 9.790e+04 1.00e+00 3.57e-02 0.00e+00 3.43e-66 8.19e-01 1.00e+00 3.00e-01 10 2.5 5.450e+02 8.700e+00 3.672e+04 1.00e+00 6.44e-03 0.00e+00 1.55e-66 8.33e-01 1.00e+00 3.00e-01 11 2.7 1.723e+02 8.588e+00 1.271e+04 9.99e-01 1.08e-03 0.00e+00 4.56e-67 1.00e+00 1.00e+00 3.00e-01 12 2.9 5.146e+01 8.519e+00 4.074e+03 9.96e-01 1.71e-73 0.00e+00 2.09e-67 1.00e+00 1.00e+00 3.00e-01 13 3.2 1.544e+01 8.502e+00 1.228e+03 9.86e-01 1.43e-73 0.00e+00 1.44e-68 9.92e-01 9.92e-01 1.00e-01 14 3.4 1.654e+00 8.507e+00 1.392e+02 8.85e-01 2.65e-73 0.00e+00 1.42e-69 9.78e-01 9.78e-01 1.00e-01 15 3.6 1.981e-01 8.562e+00 2.421e+01 4.77e-01 7.90e-74 0.00e+00 1.85e-69 8.60e-01 8.60e-01 1.00e-01 16 3.9 4.484e-02 8.877e+00 1.242e+01 1.66e-01 7.19e-74 0.00e+00 2.15e-69 8.02e-01 8.02e-01 1.00e-01 17 4.1 1.245e-02 9.486e+00 1.047e+01 4.93e-02 4.08e-73 0.00e+00 6.52e-70 7.62e-01 7.62e-01 1.00e-01 18 4.3 3.917e-03 9.841e+00 1.015e+01 1.55e-02 1.93e-73 0.00e+00 1.50e-69 7.52e-01 7.52e-01 1.00e-01 19 4.5 1.267e-03 9.941e+00 1.004e+01 5.01e-03 8.24e-74 0.00e+00 4.68e-70 8.14e-01 8.14e-01 1.00e-01 20 4.8 3.392e-04 9.983e+00 1.001e+01 1.34e-03 2.06e-73 0.00e+00 8.10e-71 7.89e-01 7.89e-01 1.00e-01 21 5.0 9.835e-05 9.995e+00 1.000e+01 3.89e-04 4.20e-73 0.00e+00 5.61e-71 9.42e-01 9.42e-01 1.00e-01 22 5.2 1.496e-05 9.999e+00 1.000e+01 5.91e-05 5.11e-73 0.00e+00 1.08e-70 9.79e-01 9.79e-01 1.00e-01 23 5.4 1.780e-06 1.000e+01 1.000e+01 7.03e-06 2.42e-73 0.00e+00 1.15e-70 9.89e-01 9.89e-01 1.00e-01 24 5.6 1.951e-07 1.000e+01 1.000e+01 7.71e-07 3.02e-73 0.00e+00 1.68e-70 9.97e-01 9.97e-01 1.00e-01 25 5.9 2.009e-08 1.000e+01 1.000e+01 7.94e-08 2.82e-73 0.00e+00 5.25e-71 1.00e+00 1.00e+00 1.00e-01 26 6.1 2.016e-09 1.000e+01 1.000e+01 7.96e-09 1.59e-73 0.00e+00 1.93e-70 1.00e+00 1.00e+00 1.00e-01 27 6.4 2.017e-10 1.000e+01 1.000e+01 7.97e-10 2.72e-73 0.00e+00 6.67e-71 1.00e+00 1.00e+00 1.00e-01 28 6.6 2.017e-11 1.000e+01 1.000e+01 7.97e-11 3.25e-73 0.00e+00 4.22e-70 1.00e+00 1.00e+00 1.00e-01 29 6.9 2.018e-12 1.000e+01 1.000e+01 7.97e-12 2.54e-73 0.00e+00 2.19e-70 1.00e+00 1.00e+00 1.00e-01 30 7.1 2.018e-13 1.000e+01 1.000e+01 7.97e-13 3.65e-73 0.00e+00 1.26e-70 1.00e+00 1.00e+00 1.00e-01 31 7.3 2.018e-14 1.000e+01 1.000e+01 7.97e-14 4.05e-73 0.00e+00 7.69e-71 1.00e+00 1.00e+00 1.00e-01 32 7.6 2.018e-15 1.000e+01 1.000e+01 7.97e-15 2.70e-73 0.00e+00 2.07e-70 1.00e+00 1.00e+00 1.00e-01 33 7.8 2.018e-16 1.000e+01 1.000e+01 7.97e-16 3.80e-73 0.00e+00 1.68e-70 1.00e+00 1.00e+00 1.00e-01 34 8.1 2.019e-17 1.000e+01 1.000e+01 7.97e-17 3.08e-73 0.00e+00 1.22e-70 1.00e+00 1.00e+00 1.00e-01 35 8.3 2.019e-18 1.000e+01 1.000e+01 7.97e-18 2.09e-73 0.00e+00 1.91e-70 1.00e+00 1.00e+00 1.00e-01 36 8.6 2.019e-19 1.000e+01 1.000e+01 7.97e-19 3.66e-73 0.00e+00 9.86e-70 1.00e+00 1.00e+00 1.00e-01 37 8.8 2.019e-20 1.000e+01 1.000e+01 7.98e-20 3.69e-73 0.00e+00 3.52e-70 1.00e+00 1.00e+00 1.00e-01 38 9.1 2.019e-21 1.000e+01 1.000e+01 7.98e-21 3.07e-73 0.00e+00 3.05e-69 1.00e+00 1.00e+00 1.00e-01 39 9.3 2.020e-22 1.000e+01 1.000e+01 7.98e-22 1.16e-73 0.00e+00 8.70e-69 1.00e+00 1.00e+00 1.00e-01 40 9.6 2.020e-23 1.000e+01 1.000e+01 7.98e-23 2.81e-73 0.00e+00 9.04e-69 1.00e+00 1.00e+00 1.00e-01 41 9.8 2.020e-24 1.000e+01 1.000e+01 7.98e-24 4.49e-73 0.00e+00 5.32e-68 1.00e+00 1.00e+00 1.00e-01 42 10.1 2.020e-25 1.000e+01 1.000e+01 7.98e-25 5.01e-73 0.00e+00 8.16e-68 1.00e+00 1.00e+00 1.00e-01 43 10.3 2.020e-26 1.000e+01 1.000e+01 7.98e-26 2.63e-73 0.00e+00 2.86e-68 1.00e+00 1.00e+00 1.00e-01 44 10.6 2.021e-27 1.000e+01 1.000e+01 7.98e-27 1.87e-73 0.00e+00 6.06e-68 1.00e+00 1.00e+00 1.00e-01 45 10.8 2.021e-28 1.000e+01 1.000e+01 7.98e-28 1.60e-73 0.00e+00 1.12e-67 1.00e+00 1.00e+00 1.00e-01 46 11.1 2.021e-29 1.000e+01 1.000e+01 7.98e-29 2.29e-73 0.00e+00 4.65e-67 1.00e+00 1.00e+00 1.00e-01 47 11.3 2.021e-30 1.000e+01 1.000e+01 7.98e-30 4.11e-73 0.00e+00 8.59e-67 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 11.309596 seconds (22.12 M allocations: 1.280 GiB, 8.26% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:9.999999999999999999999999999988680277134817819960449862546718572079473233955181 Dual objective:10.0000000000000000000000000000046491718910569668019580921915220823859584752432 Duality gap:7.984447378119573420754114822404418186404418995271067886260915658176174539279904e-31 ** Starting computation of basis transformations ** Block (:trivariatesos, 4, 3) of size 1 x 1 Block (:F, 4) of size 1 x 1 Block (:F, 4) has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block (:trivariatesos, 2, 2) of size 1 x 1 Block (:trivariatesos, 1, 2) of size 2 x 2 Block (:trivariatesos, 4, 1) of size 2 x 2 Block (:F, 3) of size 2 x 2 Block (:F, 3) has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block (:trivariatesos, 5, 3) of size 3 x 3 Block (:trivariatesos, 5, 3) has 2 kernel vectors. The maximum numerator and denominator are 1 and 2 After reduction, the maximum number of the basis transformation matrix is 2 Block (:trivariatesos, 3, 3) of size 3 x 3 Block (:trivariatesos, 3, 3) has 1 kernel vectors. The maximum numerator and denominator are 7 and 6 After reduction, the maximum number of the basis transformation matrix is 7 Block (:F, 2) of size 3 x 3 Block (:F, 2) has 1 kernel vectors. The maximum numerator and denominator are 1 and 2 After reduction, the maximum number of the basis transformation matrix is 2 Block (:trivariatesos, 5, 1) of size 4 x 4 Block (:trivariatesos, 5, 1) has 3 kernel vectors. The maximum numerator and denominator are 1 and 6 After reduction, the maximum number of the basis transformation matrix is 3 Block (:univariatesos, 2) of size 4 x 4 Block (:univariatesos, 2) has 1 kernel vectors. The maximum numerator and denominator are 22 and 27 After reduction, the maximum number of the basis transformation matrix is 27 Block (:F, 1) of size 4 x 4 Block (:trivariatesos, 3, 1) of size 4 x 4 Block (:trivariatesos, 3, 1) has 1 kernel vectors. The maximum numerator and denominator are 49 and 36 After reduction, the maximum number of the basis transformation matrix is 49 Block (:univariatesos, 1) of size 5 x 5 Block (:univariatesos, 1) has 2 kernel vectors. The maximum numerator and denominator are 35 and 81 After reduction, the maximum number of the basis transformation matrix is 81 Block (:F, 0) of size 5 x 5 Block (:F, 0) has 1 kernel vectors. The maximum numerator and denominator are 23 and 144 After reduction, the maximum number of the basis transformation matrix is 144 Block (:trivariatesos, 2, 3) of size 6 x 6 Block (:trivariatesos, 2, 3) has 2 kernel vectors. The maximum numerator and denominator are 13 and 36 After reduction, the maximum number of the basis transformation matrix is 36 Block (:trivariatesos, 2, 1) of size 7 x 7 Block (:trivariatesos, 2, 1) has 2 kernel vectors. The maximum numerator and denominator are 67 and 36 After reduction, the maximum number of the basis transformation matrix is 66 Block (:trivariatesos, 1, 1) of size 11 x 11 Block (:trivariatesos, 1, 1) has 3 kernel vectors. The maximum numerator and denominator are 49 and 432 After reduction, the maximum number of the basis transformation matrix is 432 Block (:trivariatesos, 1, 3) of size 11 x 11 Block (:trivariatesos, 1, 3) has 2 kernel vectors. The maximum numerator and denominator are 67 and 72 After reduction, the maximum number of the basis transformation matrix is 72 ** Finished computation of basis transformations (8.249426604s) ** ** Transforming the problem and the solution ** (2.29575117s) ** Projection the solution into the affine space ** Reducing the system from 161 columns to 161 columns Constructing the linear system... (3.767972712s) Preprocessing to get an integer system... (0.010679443s) Finding the pivots of A using RREF mod p... (0.033191637 0.00992176 s) Solving the system of size 50 x 52 using the pseudoinverse... 0.335835536s ** Finished projection into affine space (5.915890343s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.472069011) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 1.000e+00 1.900e+11 1.00e+00 1.00e+10 0.00e+00 2.18e+11 3.69e-01 5.95e-01 3.00e-01 2 0.1 6.494e+19 1.223e+10 1.739e+11 8.69e-01 6.31e+09 0.00e+00 8.84e+10 7.31e-01 6.03e-01 3.00e-01 3 0.2 2.817e+19 3.102e+10 2.208e+11 7.54e-01 1.70e+09 0.00e+00 3.51e+10 6.85e-01 7.10e-01 3.00e-01 4 0.2 1.230e+19 3.546e+10 3.600e+11 8.21e-01 5.34e+08 0.00e+00 1.02e+10 5.57e-01 1.00e+00 3.00e-01 5 0.2 8.216e+18 2.178e+10 8.065e+11 9.47e-01 2.37e+08 0.00e+00 1.15e-78 7.69e-01 1.00e+00 3.00e-01 6 0.3 3.035e+18 5.560e+09 1.290e+12 9.91e-01 5.47e+07 0.00e+00 1.45e-77 8.01e-01 1.00e+00 3.00e-01 7 0.3 9.665e+17 1.150e+09 2.064e+12 9.99e-01 1.09e+07 0.00e+00 3.89e-77 8.65e-01 1.00e+00 3.00e-01 8 0.3 2.092e+17 1.573e+08 3.302e+12 1.00e+00 1.47e+06 0.00e+00 2.32e-76 8.98e-01 1.00e+00 3.00e-01 9 0.4 3.428e+16 1.603e+07 5.284e+12 1.00e+00 1.51e+05 0.00e+00 1.86e-76 8.88e-01 1.00e+00 3.00e-01 10 0.4 6.127e+15 1.797e+06 8.453e+12 1.00e+00 1.68e+04 0.00e+00 3.26e-76 8.99e-01 1.00e+00 3.00e-01 11 0.4 9.935e+14 1.816e+05 1.352e+13 1.00e+00 1.71e+03 0.00e+00 3.68e-76 8.93e-01 1.00e+00 3.00e-01 12 0.5 1.699e+14 1.946e+04 2.163e+13 1.00e+00 1.82e+02 0.00e+00 2.34e-76 9.00e-01 1.00e+00 3.00e-01 13 0.5 2.794e+13 2.009e+03 3.442e+13 1.00e+00 1.82e+01 0.00e+00 9.34e-77 8.98e-01 1.00e+00 3.00e-01 14 0.6 5.597e+12 2.662e+02 5.231e+13 1.00e+00 1.86e+00 0.00e+00 2.47e-75 8.79e-01 1.00e+00 3.00e-01 15 0.6 2.030e+12 9.171e+01 5.562e+13 1.00e+00 2.25e-01 0.00e+00 1.06e-75 7.97e-01 1.00e+00 3.00e-01 16 0.6 7.056e+11 7.350e+01 2.417e+13 1.00e+00 4.58e-02 0.00e+00 6.63e-76 8.24e-01 1.00e+00 3.00e-01 17 0.7 2.136e+11 7.073e+01 7.703e+12 1.00e+00 8.06e-03 0.00e+00 9.67e-77 1.00e+00 1.00e+00 3.00e-01 18 0.7 6.305e+10 6.979e+01 2.396e+12 1.00e+00 6.28e-89 0.00e+00 1.97e-75 1.00e+00 1.00e+00 3.00e-01 19 0.7 1.891e+10 6.985e+01 7.188e+11 1.00e+00 3.14e-89 0.00e+00 4.07e-75 9.94e-01 9.94e-01 1.00e-01 20 0.8 1.996e+09 6.986e+01 7.583e+10 1.00e+00 6.28e-89 0.00e+00 3.48e-76 1.00e+00 1.00e+00 1.00e-01 21 0.8 2.003e+08 6.986e+01 7.613e+09 1.00e+00 3.14e-89 0.00e+00 2.08e-77 1.00e+00 1.00e+00 1.00e-01 22 0.8 2.005e+07 6.987e+01 7.619e+08 1.00e+00 3.14e-89 0.00e+00 9.55e-79 1.00e+00 1.00e+00 1.00e-01 23 0.9 2.005e+06 6.987e+01 7.619e+07 1.00e+00 6.28e-89 0.00e+00 6.61e-80 1.00e+00 1.00e+00 1.00e-01 24 0.9 2.005e+05 6.988e+01 7.620e+06 1.00e+00 6.28e-89 0.00e+00 2.36e-80 1.00e+00 1.00e+00 1.00e-01 25 1.0 2.006e+04 6.988e+01 7.622e+05 1.00e+00 6.28e-89 0.00e+00 8.70e-82 1.00e+00 1.00e+00 1.00e-01 26 1.0 2.008e+03 6.989e+01 7.636e+04 9.98e-01 6.28e-89 0.00e+00 1.11e-82 9.99e-01 9.99e-01 1.00e-01 27 1.0 2.026e+02 6.998e+01 7.769e+03 9.82e-01 1.26e-88 0.00e+00 1.94e-83 9.90e-01 9.90e-01 1.00e-01 28 1.1 2.205e+01 7.086e+01 9.089e+02 8.55e-01 3.14e-89 0.00e+00 9.59e-84 9.26e-01 9.26e-01 1.00e-01 29 1.1 3.667e+00 7.788e+01 2.172e+02 4.72e-01 1.26e-88 0.00e+00 1.51e-83 8.10e-01 8.10e-01 1.00e-01 30 1.2 9.926e-01 1.015e+02 1.392e+02 1.57e-01 1.26e-88 0.00e+00 6.69e-85 6.72e-01 6.72e-01 1.00e-01 31 1.2 3.920e-01 1.120e+02 1.269e+02 6.23e-02 6.28e-89 0.00e+00 3.66e-84 8.04e-01 8.04e-01 1.00e-01 32 1.3 1.082e-01 1.179e+02 1.220e+02 1.71e-02 1.26e-88 0.00e+00 1.53e-84 8.72e-01 8.72e-01 1.00e-01 33 1.3 2.331e-02 1.195e+02 1.204e+02 3.69e-03 6.28e-89 0.00e+00 4.37e-84 9.67e-01 9.67e-01 1.00e-01 34 1.4 3.027e-03 1.199e+02 1.201e+02 4.79e-04 6.28e-89 0.00e+00 2.65e-84 9.83e-01 9.83e-01 1.00e-01 35 1.4 3.478e-04 1.200e+02 1.200e+02 5.51e-05 6.28e-89 0.00e+00 2.95e-84 9.94e-01 9.94e-01 1.00e-01 36 1.4 3.681e-05 1.200e+02 1.200e+02 5.83e-06 6.28e-89 0.00e+00 1.79e-84 9.99e-01 9.99e-01 1.00e-01 37 1.5 3.725e-06 1.200e+02 1.200e+02 5.90e-07 6.28e-89 0.00e+00 3.71e-84 1.00e+00 1.00e+00 1.00e-01 38 1.5 3.731e-07 1.200e+02 1.200e+02 5.91e-08 6.28e-89 0.00e+00 4.78e-84 1.00e+00 1.00e+00 1.00e-01 39 1.5 3.732e-08 1.200e+02 1.200e+02 5.91e-09 6.28e-89 0.00e+00 3.39e-84 1.00e+00 1.00e+00 1.00e-01 40 1.6 3.733e-09 1.200e+02 1.200e+02 5.91e-10 6.28e-89 0.00e+00 6.47e-85 1.00e+00 1.00e+00 1.00e-01 41 1.6 3.733e-10 1.200e+02 1.200e+02 5.91e-11 6.28e-89 0.00e+00 2.90e-85 1.00e+00 1.00e+00 1.00e-01 42 1.6 3.733e-11 1.200e+02 1.200e+02 5.91e-12 6.28e-89 0.00e+00 2.03e-84 1.00e+00 1.00e+00 1.00e-01 43 1.7 3.734e-12 1.200e+02 1.200e+02 5.91e-13 1.26e-88 0.00e+00 2.97e-84 1.00e+00 1.00e+00 1.00e-01 44 1.7 3.734e-13 1.200e+02 1.200e+02 5.91e-14 6.28e-89 0.00e+00 6.42e-85 1.00e+00 1.00e+00 1.00e-01 45 1.7 3.735e-14 1.200e+02 1.200e+02 5.91e-15 6.28e-89 0.00e+00 2.39e-84 1.00e+00 1.00e+00 1.00e-01 46 1.8 3.735e-15 1.200e+02 1.200e+02 5.91e-16 6.28e-89 0.00e+00 1.80e-83 1.00e+00 1.00e+00 1.00e-01 47 1.8 3.735e-16 1.200e+02 1.200e+02 5.91e-17 3.14e-89 0.00e+00 2.97e-83 1.00e+00 1.00e+00 1.00e-01 48 1.8 3.736e-17 1.200e+02 1.200e+02 5.91e-18 3.14e-89 0.00e+00 4.65e-83 1.00e+00 1.00e+00 1.00e-01 49 1.9 3.736e-18 1.200e+02 1.200e+02 5.92e-19 6.28e-89 0.00e+00 7.06e-83 1.00e+00 1.00e+00 1.00e-01 50 1.9 3.736e-19 1.200e+02 1.200e+02 5.92e-20 6.28e-89 0.00e+00 2.03e-82 1.00e+00 1.00e+00 1.00e-01 51 1.9 3.737e-20 1.200e+02 1.200e+02 5.92e-21 6.28e-89 0.00e+00 3.43e-82 1.00e+00 1.00e+00 1.00e-01 52 2.0 3.737e-21 1.200e+02 1.200e+02 5.92e-22 6.28e-89 0.00e+00 7.92e-82 1.00e+00 1.00e+00 1.00e-01 53 2.0 3.737e-22 1.200e+02 1.200e+02 5.92e-23 6.28e-89 0.00e+00 2.43e-81 1.00e+00 1.00e+00 1.00e-01 54 2.0 3.738e-23 1.200e+02 1.200e+02 5.92e-24 6.28e-89 0.00e+00 7.36e-81 1.00e+00 1.00e+00 1.00e-01 55 2.1 3.738e-24 1.200e+02 1.200e+02 5.92e-25 3.14e-89 0.00e+00 5.75e-81 1.00e+00 1.00e+00 1.00e-01 56 2.1 3.739e-25 1.200e+02 1.200e+02 5.92e-26 1.89e-88 0.00e+00 2.55e-81 1.00e+00 1.00e+00 1.00e-01 57 2.1 3.739e-26 1.200e+02 1.200e+02 5.92e-27 1.26e-88 0.00e+00 3.25e-80 1.00e+00 1.00e+00 1.00e-01 58 2.2 3.739e-27 1.200e+02 1.200e+02 5.92e-28 3.14e-89 0.00e+00 3.48e-80 1.00e+00 1.00e+00 1.00e-01 59 2.2 3.740e-28 1.200e+02 1.200e+02 5.92e-29 1.89e-88 0.00e+00 1.43e-79 1.00e+00 1.00e+00 1.00e-01 60 2.2 3.740e-29 1.200e+02 1.200e+02 5.92e-30 1.89e-88 0.00e+00 6.57e-80 1.00e+00 1.00e+00 1.00e-01 61 2.3 3.740e-30 1.200e+02 1.200e+02 5.92e-31 1.26e-88 0.00e+00 4.09e-79 1.00e+00 1.00e+00 1.00e-01 62 2.3 3.741e-31 1.200e+02 1.200e+02 5.92e-32 6.28e-89 0.00e+00 9.93e-79 1.00e+00 1.00e+00 1.00e-01 63 2.3 3.741e-32 1.200e+02 1.200e+02 5.92e-33 6.28e-89 0.00e+00 9.77e-79 1.00e+00 1.00e+00 1.00e-01 64 2.4 3.742e-33 1.200e+02 1.200e+02 5.92e-34 6.28e-89 0.00e+00 6.08e-78 1.00e+00 1.00e+00 1.00e-01 65 2.4 3.742e-34 1.200e+02 1.200e+02 5.92e-35 3.14e-89 0.00e+00 6.70e-78 1.00e+00 1.00e+00 1.00e-01 66 2.5 3.742e-35 1.200e+02 1.200e+02 5.93e-36 6.28e-89 0.00e+00 8.35e-78 1.00e+00 1.00e+00 1.00e-01 67 2.5 3.743e-36 1.200e+02 1.200e+02 5.93e-37 1.89e-88 0.00e+00 6.91e-77 1.00e+00 1.00e+00 1.00e-01 68 2.5 3.743e-37 1.200e+02 1.200e+02 5.93e-38 6.28e-89 0.00e+00 5.88e-77 1.00e+00 1.00e+00 1.00e-01 69 2.6 3.743e-38 1.200e+02 1.200e+02 5.93e-39 1.26e-88 0.00e+00 1.11e-76 1.00e+00 1.00e+00 1.00e-01 70 2.6 3.744e-39 1.200e+02 1.200e+02 5.93e-40 1.26e-88 0.00e+00 1.07e-76 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 2.596039 seconds (7.96 M allocations: 461.584 MiB, 20.70% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:119.99999999999999999999999999999999999999176270714594204654988307382913652556875252209855424 Dual objective:120.00000000000000000000000000000000000000599075843931487523644867357880979958641927278612875 Duality gap:5.9283547055720119527356665623638641740278682792096665478492610725724725679553721889718260106e-41 ** Starting computation of basis transformations ** Block 14 of size 1 x 1 Block 3 of size 1 x 1 Block 17 of size 1 x 1 Block 6 of size 1 x 1 Block 9 of size 1 x 1 Block 12 of size 1 x 1 Block 12 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 1 of size 1 x 1 Block 15 of size 1 x 1 Block 4 of size 1 x 1 Block 18 of size 1 x 1 Block 0 of size 1 x 1 Block 0 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 7 of size 1 x 1 Block 10 of size 1 x 1 Block 13 of size 1 x 1 Block 2 of size 1 x 1 Block 16 of size 1 x 1 Block 5 of size 1 x 1 Block 8 of size 1 x 1 Block 11 of size 1 x 1 Block B of size 9 x 9 Block B has 6 kernel vectors. The maximum numerator and denominator are 18 and 2 After reduction, the maximum number of the basis transformation matrix is 10 Block A of size 10 x 10 Block A has 8 kernel vectors. The maximum numerator and denominator are 12 and 1 After reduction, the maximum number of the basis transformation matrix is 1 ** Finished computation of basis transformations (8.876584257s) ** ** Transforming the problem and the solution ** (3.371047684s) ** Projection the solution into the affine space ** Reducing the system from 26 columns to 26 columns Constructing the linear system... (3.255177896s) Computing an approximate solution in the extension field... (0.815151508s) Preprocessing to get an integer system... (0.005726062s) Finding the pivots of A using RREF mod p... (0.005119019 0.004438156 s) Solving the system of size 38 x 40 using the pseudoinverse... 0.025281017s ** Finished projection into affine space (6.137792922s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.282045376) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 1.000e+00 7.000e+10 1.00e+00 1.00e+10 0.00e+00 7.05e+10 6.66e-01 6.95e-01 3.00e-01 2 0.1 4.559e+19 1.338e+10 7.193e+10 6.86e-01 3.34e+09 0.00e+00 2.15e+10 7.05e-01 7.53e-01 3.00e-01 3 0.1 1.822e+19 2.640e+10 9.901e+10 5.79e-01 9.85e+08 0.00e+00 5.31e+09 6.16e-01 7.88e-01 3.00e-01 4 0.1 8.970e+18 3.260e+10 1.789e+11 6.92e-01 3.78e+08 0.00e+00 1.12e+09 7.73e-01 1.00e+00 3.00e-01 5 0.1 3.189e+18 1.238e+10 3.561e+11 9.33e-01 8.58e+07 0.00e+00 8.97e-143 8.40e-01 1.00e+00 3.00e-01 6 0.1 8.172e+17 2.052e+09 5.731e+11 9.93e-01 1.37e+07 0.00e+00 2.95e-141 8.95e-01 1.00e+00 3.00e-01 7 0.2 1.367e+17 2.121e+08 9.202e+11 1.00e+00 1.44e+06 0.00e+00 3.30e-141 8.90e-01 1.00e+00 3.00e-01 8 0.2 2.412e+16 2.361e+07 1.476e+12 1.00e+00 1.58e+05 0.00e+00 2.15e-141 8.97e-01 1.00e+00 3.00e-01 9 0.2 3.957e+15 2.403e+06 2.364e+12 1.00e+00 1.62e+04 0.00e+00 7.79e-142 8.94e-01 1.00e+00 3.00e-01 10 0.2 6.738e+14 2.573e+05 3.785e+12 1.00e+00 1.73e+03 0.00e+00 1.88e-140 8.99e-01 1.00e+00 3.00e-01 11 0.2 1.095e+14 2.604e+04 6.056e+12 1.00e+00 1.75e+02 0.00e+00 3.45e-140 8.99e-01 1.00e+00 3.00e-01 12 0.2 1.816e+13 2.738e+03 9.636e+12 1.00e+00 1.76e+01 0.00e+00 3.74e-140 9.13e-01 1.00e+00 3.00e-01 13 0.2 3.342e+12 3.449e+02 1.456e+13 1.00e+00 1.53e+00 0.00e+00 3.09e-140 1.00e+00 1.00e+00 3.00e-01 14 0.3 1.007e+12 1.188e+02 1.410e+13 1.00e+00 9.55e-153 0.00e+00 6.07e-140 1.00e+00 1.00e+00 3.00e-01 15 0.3 3.022e+11 1.198e+02 4.231e+12 1.00e+00 9.55e-153 0.00e+00 4.51e-142 9.99e-01 9.99e-01 1.00e-01 16 0.3 3.062e+10 1.199e+02 4.287e+11 1.00e+00 9.55e-153 0.00e+00 3.42e-142 1.00e+00 1.00e+00 1.00e-01 17 0.3 3.063e+09 1.200e+02 4.288e+10 1.00e+00 9.55e-153 0.00e+00 1.36e-143 1.00e+00 1.00e+00 1.00e-01 18 0.3 3.063e+08 1.201e+02 4.288e+09 1.00e+00 1.91e-152 0.00e+00 3.64e-144 1.00e+00 1.00e+00 1.00e-01 19 0.3 3.063e+07 1.202e+02 4.289e+08 1.00e+00 1.91e-152 0.00e+00 2.33e-145 1.00e+00 1.00e+00 1.00e-01 20 0.3 3.064e+06 1.202e+02 4.289e+07 1.00e+00 9.55e-153 0.00e+00 2.24e-146 1.00e+00 1.00e+00 1.00e-01 21 0.3 3.064e+05 1.203e+02 4.290e+06 1.00e+00 4.77e-153 0.00e+00 5.45e-147 1.00e+00 1.00e+00 1.00e-01 22 0.4 3.065e+04 1.203e+02 4.292e+05 9.99e-01 9.55e-153 0.00e+00 5.74e-148 1.00e+00 1.00e+00 1.00e-01 23 0.4 3.075e+03 1.204e+02 4.317e+04 9.94e-01 9.55e-153 0.00e+00 3.41e-149 9.97e-01 9.97e-01 1.00e-01 24 0.4 3.166e+02 1.211e+02 4.554e+03 9.48e-01 9.55e-153 0.00e+00 7.92e-150 9.70e-01 9.70e-01 1.00e-01 25 0.4 4.021e+01 1.274e+02 6.904e+02 6.88e-01 9.55e-153 0.00e+00 7.76e-151 8.70e-01 8.70e-01 1.00e-01 26 0.4 8.743e+00 1.689e+02 2.913e+02 2.66e-01 1.91e-152 0.00e+00 1.38e-151 9.15e-01 9.15e-01 1.00e-01 27 0.4 1.547e+00 2.316e+02 2.532e+02 4.47e-02 1.91e-152 0.00e+00 1.75e-150 9.82e-01 9.82e-01 1.00e-01 28 0.4 1.800e-01 2.389e+02 2.414e+02 5.25e-03 1.91e-152 0.00e+00 1.77e-150 9.89e-01 9.89e-01 1.00e-01 29 0.4 1.986e-02 2.399e+02 2.401e+02 5.79e-04 1.91e-152 0.00e+00 1.70e-151 9.97e-01 9.97e-01 1.00e-01 30 0.5 2.030e-03 2.400e+02 2.400e+02 5.92e-05 1.91e-152 0.00e+00 3.81e-151 1.00e+00 1.00e+00 1.00e-01 31 0.5 2.034e-04 2.400e+02 2.400e+02 5.93e-06 1.91e-152 0.00e+00 3.28e-151 1.00e+00 1.00e+00 1.00e-01 32 0.5 2.035e-05 2.400e+02 2.400e+02 5.93e-07 9.55e-153 0.00e+00 8.87e-151 1.00e+00 1.00e+00 1.00e-01 33 0.5 2.035e-06 2.400e+02 2.400e+02 5.93e-08 1.91e-152 0.00e+00 5.39e-151 1.00e+00 1.00e+00 1.00e-01 34 0.5 2.035e-07 2.400e+02 2.400e+02 5.94e-09 3.82e-152 0.00e+00 1.53e-151 1.00e+00 1.00e+00 1.00e-01 35 0.5 2.035e-08 2.400e+02 2.400e+02 5.94e-10 3.82e-152 0.00e+00 7.70e-151 1.00e+00 1.00e+00 1.00e-01 36 0.5 2.035e-09 2.400e+02 2.400e+02 5.94e-11 1.91e-152 0.00e+00 1.04e-150 1.00e+00 1.00e+00 1.00e-01 37 0.5 2.036e-10 2.400e+02 2.400e+02 5.94e-12 3.82e-152 0.00e+00 8.73e-151 1.00e+00 1.00e+00 1.00e-01 38 0.6 2.036e-11 2.400e+02 2.400e+02 5.94e-13 1.91e-152 0.00e+00 9.06e-151 1.00e+00 1.00e+00 1.00e-01 39 0.6 2.036e-12 2.400e+02 2.400e+02 5.94e-14 1.91e-152 0.00e+00 3.86e-151 1.00e+00 1.00e+00 1.00e-01 40 0.6 2.036e-13 2.400e+02 2.400e+02 5.94e-15 1.91e-152 0.00e+00 1.79e-150 1.00e+00 1.00e+00 1.00e-01 41 0.6 2.036e-14 2.400e+02 2.400e+02 5.94e-16 1.91e-152 0.00e+00 4.16e-150 1.00e+00 1.00e+00 1.00e-01 42 0.6 2.037e-15 2.400e+02 2.400e+02 5.94e-17 1.91e-152 0.00e+00 3.14e-151 1.00e+00 1.00e+00 1.00e-01 43 0.6 2.037e-16 2.400e+02 2.400e+02 5.94e-18 1.91e-152 0.00e+00 2.11e-150 1.00e+00 1.00e+00 1.00e-01 44 0.6 2.037e-17 2.400e+02 2.400e+02 5.94e-19 1.91e-152 0.00e+00 1.50e-149 1.00e+00 1.00e+00 1.00e-01 45 0.6 2.037e-18 2.400e+02 2.400e+02 5.94e-20 3.82e-152 0.00e+00 9.67e-150 1.00e+00 1.00e+00 1.00e-01 46 0.7 2.037e-19 2.400e+02 2.400e+02 5.94e-21 9.55e-153 0.00e+00 2.49e-148 1.00e+00 1.00e+00 1.00e-01 47 0.7 2.038e-20 2.400e+02 2.400e+02 5.94e-22 1.91e-152 0.00e+00 2.96e-148 1.00e+00 1.00e+00 1.00e-01 48 0.7 2.038e-21 2.400e+02 2.400e+02 5.94e-23 1.91e-152 0.00e+00 4.93e-148 1.00e+00 1.00e+00 1.00e-01 49 0.7 2.038e-22 2.400e+02 2.400e+02 5.94e-24 1.91e-152 0.00e+00 4.84e-148 1.00e+00 1.00e+00 1.00e-01 50 0.7 2.038e-23 2.400e+02 2.400e+02 5.95e-25 1.91e-152 0.00e+00 1.19e-147 1.00e+00 1.00e+00 1.00e-01 51 0.7 2.038e-24 2.400e+02 2.400e+02 5.95e-26 5.73e-152 0.00e+00 6.10e-147 1.00e+00 1.00e+00 1.00e-01 52 0.7 2.039e-25 2.400e+02 2.400e+02 5.95e-27 1.91e-152 0.00e+00 9.14e-148 1.00e+00 1.00e+00 1.00e-01 53 0.7 2.039e-26 2.400e+02 2.400e+02 5.95e-28 1.91e-152 0.00e+00 6.48e-147 1.00e+00 1.00e+00 1.00e-01 54 0.8 2.039e-27 2.400e+02 2.400e+02 5.95e-29 1.91e-152 0.00e+00 8.53e-147 1.00e+00 1.00e+00 1.00e-01 55 0.8 2.039e-28 2.400e+02 2.400e+02 5.95e-30 1.91e-152 0.00e+00 4.08e-146 1.00e+00 1.00e+00 1.00e-01 56 0.8 2.040e-29 2.400e+02 2.400e+02 5.95e-31 1.91e-152 0.00e+00 4.92e-147 1.00e+00 1.00e+00 1.00e-01 57 0.8 2.040e-30 2.400e+02 2.400e+02 5.95e-32 1.91e-152 0.00e+00 2.72e-145 1.00e+00 1.00e+00 1.00e-01 58 0.8 2.040e-31 2.400e+02 2.400e+02 5.95e-33 1.91e-152 0.00e+00 3.40e-145 1.00e+00 1.00e+00 1.00e-01 59 0.8 2.040e-32 2.400e+02 2.400e+02 5.95e-34 3.82e-152 0.00e+00 7.61e-145 1.00e+00 1.00e+00 1.00e-01 60 0.8 2.040e-33 2.400e+02 2.400e+02 5.95e-35 1.91e-152 0.00e+00 6.31e-145 1.00e+00 1.00e+00 1.00e-01 61 0.8 2.041e-34 2.400e+02 2.400e+02 5.95e-36 1.91e-152 0.00e+00 1.37e-144 1.00e+00 1.00e+00 1.00e-01 62 0.9 2.041e-35 2.400e+02 2.400e+02 5.95e-37 9.55e-153 0.00e+00 5.14e-144 1.00e+00 1.00e+00 1.00e-01 63 0.9 2.041e-36 2.400e+02 2.400e+02 5.95e-38 3.82e-152 0.00e+00 7.22e-144 1.00e+00 1.00e+00 1.00e-01 64 0.9 2.041e-37 2.400e+02 2.400e+02 5.95e-39 3.82e-152 0.00e+00 3.58e-143 1.00e+00 1.00e+00 1.00e-01 65 0.9 2.041e-38 2.400e+02 2.400e+02 5.95e-40 1.91e-152 0.00e+00 3.08e-143 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.893546 seconds (1.05 M allocations: 60.500 MiB, 43.16% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:239.999999999999999999999999999999999999985709081187036394589365774550978046266703949715172597217354340046938976020953143178280625396733772292906601591034903 Dual objective:240.000000000000000000000000000000000000014290918812963605410634225449021953733331285229027905272397306512924904803827822439314110120124490645545509542880629 Duality gap:5.9545495054015022544309272704258140555473615653865225114672846804137351630988910756148518966405025043325394311119604386342454301501822317349791436961005562e-41 [ Info: Empty constraint found and removed. [ Info: Empty constraint found and removed. [ Info: The coefficient for the PSD variable 1 has an empty decomposition in a constraint, so we remove it from that constraint. [ Info: The matrix variable 1 is not used in any constraint and will be removed. Test Summary: | Pass Total Time ClusteredLowRankSolver.jl | 36 36 8m40.9s Testing ClusteredLowRankSolver tests passed Testing completed after 540.03s PkgEval succeeded after 704.13s