Package evaluation of BundleMethod on Julia 1.11.4 (a71dd056e0*) started at 2025-04-08T12:30:51.141 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.33s ################################################################################ # Installation # Installing BundleMethod... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [e8a6717a] + BundleMethod v0.4.0 Updating `~/.julia/environments/v1.11/Manifest.toml` [6e4b80f9] + BenchmarkTools v1.6.0 [e8a6717a] + BundleMethod v0.4.0 [523fee87] + CodecBzip2 v0.8.5 [944b1d66] + CodecZlib v0.7.8 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.16.0 [864edb3b] + DataStructures v0.18.22 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [ffbed154] + DocStringExtensions v0.9.4 [f6369f11] + ForwardDiff v1.0.1 [92d709cd] + IrrationalConstants v0.2.4 [692b3bcd] + JLLWrappers v1.7.0 [682c06a0] + JSON v0.21.4 [0f8b85d8] + JSON3 v1.14.2 [4076af6c] + JuMP v1.25.0 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.15 [b8f27783] + MathOptInterface v1.38.1 [d8a4904e] + MutableArithmetics v1.6.4 [77ba4419] + NaNMath v1.1.3 [bac558e1] + OrderedCollections v1.8.0 [69de0a69] + Parsers v2.8.1 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [276daf66] + SpecialFunctions v2.5.0 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [856f2bd8] + StructTypes v1.11.0 [3bb67fe8] + TranscodingStreams v0.11.3 [6e34b625] + Bzip2_jll v1.0.9+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [de0858da] + Printf v1.11.0 [9abbd945] + Profile v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [2f01184e] + SparseArrays v1.11.0 [fa267f1f] + TOML v1.0.3 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [4536629a] + OpenBLAS_jll v0.3.27+1 [05823500] + OpenLibm_jll v0.8.5+0 [bea87d4a] + SuiteSparse_jll v7.7.0+0 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.61s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 33.19s ################################################################################ # Testing # Testing BundleMethod Status `/tmp/jl_PoIcDS/Project.toml` [e8a6717a] BundleMethod v0.4.0 [b6b21f68] Ipopt v1.8.0 [4076af6c] JuMP v1.25.0 [37e2e46d] LinearAlgebra v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_PoIcDS/Manifest.toml` [6e4b80f9] BenchmarkTools v1.6.0 [e8a6717a] BundleMethod v0.4.0 [523fee87] CodecBzip2 v0.8.5 [944b1d66] CodecZlib v0.7.8 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.16.0 [864edb3b] DataStructures v0.18.22 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [ffbed154] DocStringExtensions v0.9.4 [f6369f11] ForwardDiff v1.0.1 [b6b21f68] Ipopt v1.8.0 [92d709cd] IrrationalConstants v0.2.4 [692b3bcd] JLLWrappers v1.7.0 [682c06a0] JSON v0.21.4 [0f8b85d8] JSON3 v1.14.2 [4076af6c] JuMP v1.25.0 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.15 [b8f27783] MathOptInterface v1.38.1 [d8a4904e] MutableArithmetics v1.6.4 [77ba4419] NaNMath v1.1.3 [bac558e1] OrderedCollections v1.8.0 [69de0a69] Parsers v2.8.1 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [276daf66] SpecialFunctions v2.5.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [856f2bd8] StructTypes v1.11.0 [3bb67fe8] TranscodingStreams v0.11.3 [ae81ac8f] ASL_jll v0.1.3+0 [6e34b625] Bzip2_jll v1.0.9+0 [e33a78d0] Hwloc_jll v2.12.0+0 [9cc047cb] Ipopt_jll v300.1400.1700+0 [d00139f3] METIS_jll v5.1.3+0 [d7ed1dd3] MUMPS_seq_jll v500.700.301+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 ⌅ [319450e9] SPRAL_jll v2024.5.8+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [9abbd945] Profile v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [2f01184e] SparseArrays v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [05823500] OpenLibm_jll v0.8.5+0 [bea87d4a] SuiteSparse_jll v7.7.0+0 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Precompiling Ipopt... 1234.5 ms ✓ ASL_jll 1040.8 ms ✓ METIS_jll 1219.8 ms ✓ MUMPS_seq_jll 1352.0 ms ✓ SPRAL_jll 1304.6 ms ✓ Ipopt_jll 39706.4 ms ✓ Ipopt 6 dependencies successfully precompiled in 47 seconds. 66 already precompiled. Test Summary: | Pass Total Time Abstract Method | 5 5 19.4s ****************************************************************************** This program contains Ipopt, a library for large-scale nonlinear optimization. Ipopt is released as open source code under the Eclipse Public License (EPL). For more information visit https://github.com/coin-or/Ipopt ****************************************************************************** Iter 1: ncols 5, nrows 1, fx0 +1.457283e+02, fy +1.457283e+02, m -2.968399e+02, v -4.425682e+02, u 1.000000e-02, i +0, master time 1.5s, eval time 1.0s, time 40.3s Iter 2: ncols 5, nrows 2, fx0 +1.457283e+02, fy +1.683700e+02, m -1.981114e+02, v -3.438397e+02, u 1.000000e-02, i -1, master time 1.5s, eval time 1.0s, time 43.6s Iter 3: ncols 5, nrows 3, fx0 +1.457283e+02, fy +1.507960e+02, m -1.192030e+02, v -2.649314e+02, u 1.000000e-02, i -2, master time 1.6s, eval time 1.0s, time 43.6s Iter 4: ncols 5, nrows 4, fx0 +5.525069e+01, fy +5.525069e+01, m -9.318634e+01, v -1.484370e+02, u 1.000000e-02, i +1, master time 1.6s, eval time 1.0s, time 45.2s Iter 5: ncols 5, nrows 5, fx0 +5.525069e+01, fy +8.126737e+01, m -2.619152e+01, v -8.144222e+01, u 1.000000e-02, i -1, master time 1.6s, eval time 1.0s, time 45.2s Iter 6: ncols 5, nrows 6, fx0 +5.525069e+01, fy +6.103533e+01, m -2.023475e+01, v -7.548544e+01, u 1.000000e-02, i -2, master time 1.6s, eval time 1.0s, time 45.2s Iter 7: ncols 5, nrows 7, fx0 +4.518539e+01, fy +4.518539e+01, m -1.833436e+01, v -6.351976e+01, u 1.000000e-02, i +1, master time 1.6s, eval time 1.0s, time 45.2s Iter 8: ncols 5, nrows 8, fx0 +3.073075e+01, fy +3.073075e+01, m +5.838501e+00, v -2.489224e+01, u 1.000000e-02, i +2, master time 1.6s, eval time 1.0s, time 45.2s Iter 9: ncols 5, nrows 9, fx0 +3.037105e+01, fy +3.037105e+01, m +1.125628e+01, v -1.911478e+01, u 1.000000e-02, i +3, master time 1.6s, eval time 1.0s, time 45.3s Iter 10: ncols 5, nrows 10, fx0 +3.037105e+01, fy +3.578883e+01, m +1.342552e+01, v -1.694554e+01, u 1.000000e-02, i -1, master time 1.6s, eval time 1.0s, time 45.3s Iter 11: ncols 5, nrows 11, fx0 +2.569179e+01, fy +2.569179e+01, m +1.720000e+01, v -8.491790e+00, u 1.000000e-02, i +1, master time 1.6s, eval time 1.0s, time 45.3s Iter 12: ncols 5, nrows 12, fx0 +2.569179e+01, fy +2.639971e+01, m +1.882693e+01, v -6.864860e+00, u 1.000000e-02, i -1, master time 1.6s, eval time 1.0s, time 45.3s Iter 13: ncols 5, nrows 13, fx0 +2.569179e+01, fy +2.572671e+01, m +2.072371e+01, v -4.968078e+00, u 1.000000e-02, i -2, master time 1.6s, eval time 1.0s, time 45.3s Iter 14: ncols 5, nrows 14, fx0 +2.417361e+01, fy +2.417361e+01, m +2.085860e+01, v -3.315006e+00, u 1.000000e-02, i +1, master time 1.6s, eval time 1.0s, time 45.3s Removed 1 inactive cuts. Iter 15: ncols 5, nrows 14, fx0 +2.417361e+01, fy +2.430849e+01, m +2.225936e+01, v -1.914242e+00, u 1.000000e-02, i -1, master time 1.6s, eval time 1.0s, time 46.4s Removed 1 inactive cuts. Iter 16: ncols 5, nrows 14, fx0 +2.398431e+01, fy +2.398431e+01, m +2.250737e+01, v -1.476936e+00, u 1.000000e-02, i +1, master time 1.6s, eval time 1.0s, time 46.4s Removed 1 inactive cuts. Iter 17: ncols 5, nrows 14, fx0 +2.380108e+01, fy +2.380108e+01, m +2.252047e+01, v -1.280614e+00, u 1.000000e-02, i +2, master time 1.6s, eval time 1.0s, time 46.4s Removed 1 inactive cuts. Iter 18: ncols 5, nrows 14, fx0 +2.349075e+01, fy +2.349075e+01, m +2.303921e+01, v -4.515433e-01, u 1.000000e-02, i +3, master time 1.6s, eval time 1.0s, time 46.4s Removed 1 inactive cuts. Iter 19: ncols 5, nrows 14, fx0 +2.349075e+01, fy +2.352435e+01, m +2.308979e+01, v -4.009616e-01, u 1.000000e-02, i -1, master time 1.6s, eval time 1.0s, time 46.4s Removed 1 inactive cuts. Iter 20: ncols 5, nrows 14, fx0 +2.349075e+01, fy +2.357493e+01, m +2.316077e+01, v -3.299752e-01, u 1.000000e-02, i -2, master time 1.6s, eval time 1.0s, time 46.4s Removed 1 inactive cuts. Iter 21: ncols 5, nrows 14, fx0 +2.340334e+01, fy +2.340334e+01, m +2.322948e+01, v -1.738604e-01, u 1.000000e-02, i +1, master time 1.6s, eval time 1.0s, time 46.4s Removed 1 inactive cuts. Iter 22: ncols 5, nrows 14, fx0 +2.340334e+01, fy +2.341141e+01, m +2.328272e+01, v -1.206203e-01, u 1.000000e-02, i -1, master time 1.6s, eval time 1.0s, time 46.4s Iter 23: ncols 5, nrows 15, fx0 +2.340334e+01, fy +2.341917e+01, m +2.330169e+01, v -1.016523e-01, u 1.000000e-02, i -2, master time 1.7s, eval time 1.0s, time 46.4s Removed 2 inactive cuts. Iter 24: ncols 5, nrows 14, fx0 +2.336992e+01, fy +2.336992e+01, m +2.331429e+01, v -5.562378e-02, u 1.000000e-02, i +1, master time 1.7s, eval time 1.0s, time 46.4s Removed 1 inactive cuts. Iter 25: ncols 5, nrows 14, fx0 +2.336992e+01, fy +2.338251e+01, m +2.333326e+01, v -3.665596e-02, u 1.000000e-02, i -1, master time 1.7s, eval time 1.0s, time 46.4s Removed 1 inactive cuts. Iter 26: ncols 5, nrows 14, fx0 +2.336992e+01, fy +2.340148e+01, m +2.333815e+01, v -3.176828e-02, u 1.000000e-02, i -2, master time 1.7s, eval time 1.0s, time 46.4s Removed 1 inactive cuts. Iter 27: ncols 5, nrows 14, fx0 +2.336373e+01, fy +2.336373e+01, m +2.334362e+01, v -2.011444e-02, u 1.000000e-02, i +1, master time 1.7s, eval time 1.0s, time 46.4s Iter 28: ncols 5, nrows 15, fx0 +2.336373e+01, fy +2.336707e+01, m +2.334597e+01, v -1.776475e-02, u 1.000000e-02, i -1, master time 1.7s, eval time 1.0s, time 46.4s Removed 2 inactive cuts. Iter 29: ncols 5, nrows 14, fx0 +2.336373e+01, fy +2.337022e+01, m +2.334957e+01, v -1.416167e-02, u 1.000000e-02, i -2, master time 1.7s, eval time 1.0s, time 46.4s Removed 1 inactive cuts. Iter 30: ncols 5, nrows 14, fx0 +2.335865e+01, fy +2.335865e+01, m +2.335494e+01, v -3.706547e-03, u 1.000000e-02, i +1, master time 1.7s, eval time 1.0s, time 46.4s Removed 1 inactive cuts. Iter 31: ncols 5, nrows 14, fx0 +2.335865e+01, fy +2.337515e+01, m +2.335525e+01, v -3.402609e-03, u 1.000000e-02, i -1, master time 1.7s, eval time 1.0s, time 46.5s Iter 32: ncols 5, nrows 15, fx0 +2.335865e+01, fy +2.336264e+01, m +2.335587e+01, v -2.778974e-03, u 1.000000e-02, i -2, master time 1.7s, eval time 1.0s, time 46.5s Removed 1 inactive cuts. Iter 33: ncols 5, nrows 15, fx0 +2.335865e+01, fy +2.336325e+01, m +2.335618e+01, v -2.475252e-03, u 1.000000e-02, i -3, master time 1.7s, eval time 1.0s, time 46.5s Removed 2 inactive cuts. Iter 34: ncols 5, nrows 14, fx0 +2.335865e+01, fy +2.335906e+01, m +2.335679e+01, v -1.856519e-03, u 1.000000e-02, i -4, master time 1.7s, eval time 1.0s, time 46.5s Iter 35: ncols 5, nrows 15, fx0 +2.335865e+01, fy +2.336445e+01, m +2.335710e+01, v -1.548647e-03, u 1.000000e-02, i -5, master time 1.7s, eval time 1.0s, time 46.5s Removed 1 inactive cuts. Iter 36: ncols 5, nrows 15, fx0 +2.335865e+01, fy +2.335971e+01, m +2.335719e+01, v -1.458950e-03, u 1.000000e-02, i -6, master time 1.7s, eval time 1.0s, time 46.5s Removed 2 inactive cuts. Iter 37: ncols 5, nrows 14, fx0 +2.335865e+01, fy +2.336065e+01, m +2.335728e+01, v -1.374056e-03, u 1.000000e-02, i -7, master time 1.7s, eval time 1.0s, time 46.5s Removed 1 inactive cuts. Iter 38: ncols 5, nrows 14, fx0 +2.335844e+01, fy +2.335844e+01, m +2.335736e+01, v -1.079349e-03, u 1.000000e-02, i +1, master time 1.7s, eval time 1.0s, time 46.5s Removed 1 inactive cuts. Iter 39: ncols 5, nrows 14, fx0 +2.335844e+01, fy +2.335864e+01, m +2.335748e+01, v -9.670499e-04, u 1.000000e-02, i -1, master time 1.7s, eval time 1.0s, time 46.5s Removed 1 inactive cuts. Iter 40: ncols 5, nrows 14, fx0 +2.335827e+01, fy +2.335827e+01, m +2.335776e+01, v -5.097901e-04, u 1.000000e-02, i +1, master time 1.7s, eval time 1.0s, time 46.5s Iter 41: ncols 5, nrows 15, fx0 +2.335818e+01, fy +2.335818e+01, m +2.335794e+01, v -2.344304e-04, u 1.000000e-02, i +2, master time 1.8s, eval time 1.0s, time 46.5s TERMINATION: Optimal: v = -0.00023443035852627834 This is Ipopt version 3.14.17, running with linear solver MUMPS 5.7.3. Number of nonzeros in equality constraint Jacobian...: 0 Number of nonzeros in inequality constraint Jacobian.: 0 Number of nonzeros in Lagrangian Hessian.............: 3 Total number of variables............................: 3 variables with only lower bounds: 0 variables with lower and upper bounds: 3 variables with only upper bounds: 0 Total number of equality constraints.................: 0 Total number of inequality constraints...............: 0 inequality constraints with only lower bounds: 0 inequality constraints with lower and upper bounds: 0 inequality constraints with only upper bounds: 0 iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 0 1.4572834e+02 0.00e+00 1.00e+02 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0 1 2.3379082e+01 0.00e+00 4.76e-01 -1.0 6.55e-01 - 6.37e-01 1.00e+00f 1 2 2.3358149e+01 0.00e+00 1.42e-14 -1.7 8.25e-03 - 1.00e+00 1.00e+00f 1 3 2.3358106e+01 0.00e+00 8.89e-15 -3.8 4.35e-04 - 1.00e+00 1.00e+00f 1 4 2.3358106e+01 0.00e+00 2.98e-15 -5.7 3.02e-06 - 1.00e+00 1.00e+00f 1 5 2.3358106e+01 0.00e+00 2.21e-15 -8.6 2.90e-08 - 1.00e+00 1.00e+00f 1 Number of Iterations....: 5 (scaled) (unscaled) Objective...............: 1.1354371057754163e+01 2.3358105656051656e+01 Dual infeasibility......: 2.2068297506049195e-15 4.5398694667764046e-15 Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00 Variable bound violation: 0.0000000000000000e+00 0.0000000000000000e+00 Complementarity.........: 2.5060622996968816e-09 5.1554478604952198e-09 Overall NLP error.......: 2.5060622996968816e-09 5.1554478604952198e-09 Number of objective function evaluations = 6 Number of objective gradient evaluations = 6 Number of equality constraint evaluations = 0 Number of inequality constraint evaluations = 0 Number of equality constraint Jacobian evaluations = 0 Number of inequality constraint Jacobian evaluations = 0 Number of Lagrangian Hessian evaluations = 1 Total seconds in IPOPT = 0.003 EXIT: Optimal Solution Found. BM.get_objective_value(pm) = 23.35817834707627 BM.get_solution(pm) = [0.21164907308721426, 0.6635689994049342, 0.5517293550149439] Iter 1: ncols 5, nrows 1, fx0 +1.457283e+02, fy +1.457283e+02, m -2.968399e+02, v -4.425682e+02, u 1.000000e-02, i +0, master time 0.0s, eval time 0.0s, time 0.0s Iter 2: ncols 5, nrows 2, fx0 +1.457283e+02, fy +1.683700e+02, m -1.981114e+02, v -3.438397e+02, u 1.000000e-02, i -1, master time 0.0s, eval time 0.0s, time 0.0s Iter 3: ncols 5, nrows 3, fx0 +1.457283e+02, fy +1.507960e+02, m -1.192030e+02, v -2.649314e+02, u 1.000000e-02, i -2, master time 0.0s, eval time 0.0s, time 0.0s TERMINATION: Maximum number of iterations reached. Test Summary: | Pass Total Time Proximal Method | 4 4 55.0s WARNING: Method definition evaluate_f(Any) in module Main at /home/pkgeval/.julia/packages/BundleMethod/SjpJs/examples/simple.jl:31 overwritten at /home/pkgeval/.julia/packages/BundleMethod/SjpJs/examples/tr_simple.jl:29. Iter 1: ncols 5, nrows 1, Δ 1.000000e+01, fx0 +1.457283e+00, m -2.968399e+00, fy +1.457283e+00, linerr +0.000000e+00, master time 0.0s, eval time 0.0s, time 2.8s Iter 2: ncols 5, nrows 2, Δ 1.000000e+01, fx0 +1.457283e+00, m -1.981114e+00, fy +1.683700e+00, linerr +4.652099e+00, master time 0.0s, eval time 0.0s, time 4.7s Iter 3: ncols 5, nrows 3, Δ 1.000000e+01, fx0 +1.457283e+00, m -1.192030e+00, fy +1.507960e+00, linerr +3.489074e+00, master time 0.0s, eval time 0.0s, time 4.7s Iter 4: ncols 5, nrows 3, Δ 1.000000e+01, fx0 +5.525069e-01, m -1.192030e+00, fy +5.525069e-01, linerr +3.489074e+00, master time 0.0s, eval time 0.0s, time 4.7s Iter 5: ncols 5, nrows 4, Δ 1.000000e+01, fx0 +5.525069e-01, m -9.318634e-01, fy +5.525069e-01, linerr +0.000000e+00, master time 0.0s, eval time 0.0s, time 4.7s Iter 6: ncols 5, nrows 5, Δ 1.000000e+01, fx0 +5.525069e-01, m -2.619152e-01, fy +8.126737e-01, linerr +1.744537e+00, master time 0.0s, eval time 0.0s, time 4.7s Iter 7: ncols 5, nrows 6, Δ 1.000000e+01, fx0 +5.525069e-01, m -2.023475e-01, fy +6.103533e-01, linerr +8.722685e-01, master time 0.0s, eval time 0.0s, time 4.7s Iter 8: ncols 5, nrows 6, Δ 1.000000e+01, fx0 +4.518539e-01, m -2.023475e-01, fy +4.518539e-01, linerr +8.722685e-01, master time 0.0s, eval time 0.0s, time 4.7s Iter 9: ncols 5, nrows 7, Δ 1.000000e+01, fx0 +4.518539e-01, m -1.833436e-01, fy +4.518539e-01, linerr +0.000000e+00, master time 0.0s, eval time 0.0s, time 4.7s Iter 10: ncols 5, nrows 7, Δ 1.000000e+01, fx0 +3.073075e-01, m -1.833436e-01, fy +3.073075e-01, linerr +0.000000e+00, master time 0.0s, eval time 0.0s, time 4.7s Iter 11: ncols 5, nrows 8, Δ 1.000000e+01, fx0 +3.073075e-01, m +5.838495e-02, fy +3.073075e-01, linerr +0.000000e+00, master time 0.1s, eval time 0.0s, time 4.8s Iter 12: ncols 5, nrows 8, Δ 1.000000e+01, fx0 +3.037105e-01, m +5.838495e-02, fy +3.037105e-01, linerr +0.000000e+00, master time 0.1s, eval time 0.0s, time 4.8s Iter 13: ncols 5, nrows 9, Δ 1.000000e+01, fx0 +3.037105e-01, m +1.125628e-01, fy +3.037105e-01, linerr +0.000000e+00, master time 0.1s, eval time 0.0s, time 4.8s Iter 14: ncols 5, nrows 10, Δ 1.000000e+01, fx0 +3.037105e-01, m +1.342551e-01, fy +3.578884e-01, linerr +2.453256e-01, master time 0.1s, eval time 0.0s, time 4.8s Iter 15: ncols 5, nrows 10, Δ 1.000000e+01, fx0 +2.569180e-01, m +1.342551e-01, fy +2.569180e-01, linerr +2.453256e-01, master time 0.1s, eval time 0.0s, time 4.8s Iter 16: ncols 5, nrows 11, Δ 1.000000e+01, fx0 +2.569180e-01, m +1.720000e-01, fy +2.569180e-01, linerr +0.000000e+00, master time 0.1s, eval time 0.0s, time 4.8s Iter 17: ncols 5, nrows 12, Δ 1.000000e+01, fx0 +2.569180e-01, m +1.882693e-01, fy +2.639971e-01, linerr +9.199707e-02, master time 0.1s, eval time 0.0s, time 4.8s Iter 18: ncols 5, nrows 13, Δ 1.000000e+01, fx0 +2.569180e-01, m +2.072371e-01, fy +2.572671e-01, linerr +6.899779e-02, master time 0.1s, eval time 0.0s, time 4.8s Iter 19: ncols 5, nrows 13, Δ 1.000000e+01, fx0 +2.417360e-01, m +2.072371e-01, fy +2.417360e-01, linerr +6.899779e-02, master time 0.1s, eval time 0.0s, time 4.8s Iter 20: ncols 5, nrows 14, Δ 1.000000e+01, fx0 +2.417360e-01, m +2.085861e-01, fy +2.417360e-01, linerr +0.000000e+00, master time 0.1s, eval time 0.0s, time 4.8s Iter 21: ncols 5, nrows 15, Δ 1.000000e+01, fx0 +2.417360e-01, m +2.225936e-01, fy +2.430850e-01, linerr +3.449889e-02, master time 0.1s, eval time 0.0s, time 4.8s Iter 22: ncols 5, nrows 15, Δ 1.000000e+01, fx0 +2.398430e-01, m +2.225936e-01, fy +2.398430e-01, linerr +3.449889e-02, master time 0.1s, eval time 0.0s, time 4.8s Iter 23: ncols 5, nrows 16, Δ 1.000000e+01, fx0 +2.398430e-01, m +2.250738e-01, fy +2.398430e-01, linerr +0.000000e+00, master time 0.1s, eval time 0.0s, time 4.8s Iter 24: ncols 5, nrows 16, Δ 1.000000e+01, fx0 +2.380106e-01, m +2.250738e-01, fy +2.380106e-01, linerr +0.000000e+00, master time 0.1s, eval time 0.0s, time 4.8s Iter 25: ncols 5, nrows 17, Δ 1.000000e+01, fx0 +2.380106e-01, m +2.252047e-01, fy +2.380106e-01, linerr +0.000000e+00, master time 0.1s, eval time 0.0s, time 4.8s Iter 26: ncols 5, nrows 17, Δ 1.000000e+01, fx0 +2.349078e-01, m +2.252047e-01, fy +2.349078e-01, linerr +0.000000e+00, master time 0.1s, eval time 0.0s, time 4.8s Iter 27: ncols 5, nrows 18, Δ 1.000000e+01, fx0 +2.349078e-01, m +2.303918e-01, fy +2.349078e-01, linerr +0.000000e+00, master time 0.1s, eval time 0.0s, time 4.8s Iter 28: ncols 5, nrows 19, Δ 1.000000e+01, fx0 +2.349078e-01, m +2.308979e-01, fy +2.352432e-01, linerr +4.851329e-03, master time 0.1s, eval time 0.0s, time 4.8s Iter 29: ncols 5, nrows 20, Δ 1.000000e+01, fx0 +2.349078e-01, m +2.316077e-01, fy +2.357488e-01, linerr +4.850959e-03, master time 0.2s, eval time 0.0s, time 4.9s Iter 30: ncols 5, nrows 20, Δ 1.000000e+01, fx0 +2.340336e-01, m +2.316077e-01, fy +2.340336e-01, linerr +4.850959e-03, master time 0.2s, eval time 0.0s, time 4.9s Iter 31: ncols 5, nrows 21, Δ 1.000000e+01, fx0 +2.340336e-01, m +2.322948e-01, fy +2.340336e-01, linerr +0.000000e+00, master time 0.2s, eval time 0.0s, time 4.9s Iter 32: ncols 5, nrows 22, Δ 1.000000e+01, fx0 +2.340336e-01, m +2.328274e-01, fy +2.341137e-01, linerr +1.818931e-03, master time 0.2s, eval time 0.0s, time 4.9s Iter 33: ncols 5, nrows 23, Δ 1.000000e+01, fx0 +2.340336e-01, m +2.330171e-01, fy +2.341921e-01, linerr +1.364656e-03, master time 0.2s, eval time 0.0s, time 4.9s Iter 34: ncols 5, nrows 23, Δ 1.000000e+01, fx0 +2.336992e-01, m +2.330171e-01, fy +2.336992e-01, linerr +1.364656e-03, master time 0.2s, eval time 0.0s, time 4.9s Iter 35: ncols 5, nrows 24, Δ 1.000000e+01, fx0 +2.336992e-01, m +2.331429e-01, fy +2.336992e-01, linerr +0.000000e+00, master time 0.2s, eval time 0.0s, time 4.9s Iter 36: ncols 5, nrows 25, Δ 1.000000e+01, fx0 +2.336992e-01, m +2.333323e-01, fy +2.338250e-01, linerr +6.821689e-04, master time 0.2s, eval time 0.0s, time 4.9s Iter 37: ncols 5, nrows 26, Δ 1.000000e+01, fx0 +2.336992e-01, m +2.333815e-01, fy +2.340140e-01, linerr +6.816718e-04, master time 0.2s, eval time 0.0s, time 4.9s Iter 38: ncols 5, nrows 26, Δ 1.000000e+01, fx0 +2.336372e-01, m +2.333815e-01, fy +2.336372e-01, linerr +6.816718e-04, master time 0.2s, eval time 0.0s, time 4.9s Iter 39: ncols 5, nrows 27, Δ 1.000000e+01, fx0 +2.336372e-01, m +2.334361e-01, fy +2.336372e-01, linerr +0.000000e+00, master time 0.2s, eval time 0.0s, time 4.9s Iter 40: ncols 5, nrows 28, Δ 1.000000e+01, fx0 +2.336372e-01, m +2.334600e-01, fy +2.336706e-01, linerr +2.344929e-04, master time 0.2s, eval time 0.0s, time 4.9s Iter 41: ncols 5, nrows 29, Δ 1.000000e+01, fx0 +2.336372e-01, m +2.334958e-01, fy +2.337024e-01, linerr +2.423923e-04, master time 0.2s, eval time 0.0s, time 5.0s Iter 42: ncols 5, nrows 29, Δ 1.000000e+01, fx0 +2.335866e-01, m +2.334958e-01, fy +2.335866e-01, linerr +2.423923e-04, master time 0.3s, eval time 0.0s, time 5.0s Iter 43: ncols 5, nrows 30, Δ 1.000000e+01, fx0 +2.335866e-01, m +2.335492e-01, fy +2.335866e-01, linerr +0.000000e+00, master time 0.3s, eval time 0.0s, time 5.0s Iter 44: ncols 5, nrows 31, Δ 2.500000e+00, fx0 +2.335866e-01, m +2.335523e-01, fy +2.337511e-01, linerr +2.018801e-04, master time 0.3s, eval time 0.0s, time 5.0s Iter 45: ncols 5, nrows 32, Δ 2.500000e+00, fx0 +2.335866e-01, m +2.335587e-01, fy +2.336262e-01, linerr +7.387918e-05, master time 0.3s, eval time 0.0s, time 5.0s Iter 46: ncols 5, nrows 33, Δ 2.500000e+00, fx0 +2.335866e-01, m +2.335617e-01, fy +2.336323e-01, linerr +7.363040e-05, master time 0.3s, eval time 0.0s, time 5.0s Iter 47: ncols 5, nrows 34, Δ 2.500000e+00, fx0 +2.335866e-01, m +2.335679e-01, fy +2.335905e-01, linerr +2.883357e-05, master time 0.3s, eval time 0.0s, time 5.0s Iter 48: ncols 5, nrows 35, Δ 8.081964e-01, fx0 +2.335866e-01, m +2.335710e-01, fy +2.336443e-01, linerr +7.639897e-05, master time 0.3s, eval time 0.0s, time 5.0s Iter 49: ncols 5, nrows 36, Δ 8.081964e-01, fx0 +2.335866e-01, m +2.335720e-01, fy +2.335969e-01, linerr +2.596274e-05, master time 0.3s, eval time 0.0s, time 5.0s Iter 50: ncols 5, nrows 37, Δ 8.081964e-01, fx0 +2.335866e-01, m +2.335728e-01, fy +2.336064e-01, linerr +3.441802e-05, master time 0.3s, eval time 0.0s, time 5.1s Iter 51: ncols 5, nrows 37, Δ 8.081964e-01, fx0 +2.335844e-01, m +2.335728e-01, fy +2.335844e-01, linerr +3.441802e-05, master time 0.4s, eval time 0.0s, time 5.1s TERMINATION: Optimal This is Ipopt version 3.14.17, running with linear solver MUMPS 5.7.3. Number of nonzeros in equality constraint Jacobian...: 0 Number of nonzeros in inequality constraint Jacobian.: 0 Number of nonzeros in Lagrangian Hessian.............: 3 Total number of variables............................: 3 variables with only lower bounds: 0 variables with lower and upper bounds: 3 variables with only upper bounds: 0 Total number of equality constraints.................: 0 Total number of inequality constraints...............: 0 inequality constraints with only lower bounds: 0 inequality constraints with lower and upper bounds: 0 inequality constraints with only upper bounds: 0 iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 0 1.4572834e+00 0.00e+00 2.06e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0 1 4.2166735e-01 0.00e+00 1.94e-01 -1.0 4.03e-01 - 7.60e-01 1.00e+00f 1 2 2.4597284e-01 0.00e+00 8.33e-17 -1.7 1.90e-01 - 1.00e+00 1.00e+00f 1 3 2.3388484e-01 0.00e+00 4.86e-17 -2.5 5.80e-02 - 1.00e+00 1.00e+00f 1 4 2.3358157e-01 0.00e+00 2.65e-16 -3.8 1.19e-02 - 1.00e+00 1.00e+00f 1 5 2.3358106e-01 0.00e+00 9.44e-17 -5.7 5.49e-04 - 1.00e+00 1.00e+00f 1 6 2.3358106e-01 0.00e+00 2.72e-16 -8.6 2.35e-06 - 1.00e+00 1.00e+00f 1 Number of Iterations....: 6 (scaled) (unscaled) Objective...............: 2.3358105656051692e-01 2.3358105656051692e-01 Dual infeasibility......: 2.7228064671902617e-16 2.7228064671902617e-16 Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00 Variable bound violation: 0.0000000000000000e+00 0.0000000000000000e+00 Complementarity.........: 2.5256013241372482e-09 2.5256013241372482e-09 Overall NLP error.......: 2.5256013241372482e-09 2.5256013241372482e-09 Number of objective function evaluations = 7 Number of objective gradient evaluations = 7 Number of equality constraint evaluations = 0 Number of inequality constraint evaluations = 0 Number of equality constraint Jacobian evaluations = 0 Number of inequality constraint Jacobian evaluations = 0 Number of Lagrangian Hessian evaluations = 1 Total seconds in IPOPT = 0.003 EXIT: Optimal Solution Found. BM.get_objective_value(pm) = 0.23358438619430305 BM.get_solution(pm) = [0.21303210733493966, 0.6641221023270363, 0.5523749252631402] Test Summary: | Pass Total Time Trust Region Method | 4 4 5.6s Testing BundleMethod tests passed Testing completed after 157.03s PkgEval succeeded after 211.76s