Package evaluation of BifurcationKit on Julia 1.11.4 (a71dd056e0*) started at 2025-04-08T16:20:39.026 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.68s ################################################################################ # Installation # Installing BifurcationKit... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [0f109fa4] + BifurcationKit v0.4.11 Updating `~/.julia/environments/v1.11/Manifest.toml` [47edcb42] + ADTypes v1.14.0 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.3.0 [ec485272] + ArnoldiMethod v0.4.0 ⌅ [7d9fca2a] + Arpack v0.5.3 [4fba245c] + ArrayInterface v7.18.0 [4c555306] + ArrayLayouts v1.11.1 [0f109fa4] + BifurcationKit v0.4.11 [8e7c35d0] + BlockArrays v1.5.0 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.16.0 [a33af91c] + CompositionsBase v0.1.2 [187b0558] + ConstructionBase v1.5.8 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [ffbed154] + DocStringExtensions v0.9.4 [4e289a0a] + EnumX v1.0.5 [e2ba6199] + ExprTools v0.1.10 [55351af7] + ExproniconLite v0.10.14 [442a2c76] + FastGaussQuadrature v1.0.2 [1a297f60] + FillArrays v1.13.0 [f6369f11] + ForwardDiff v1.0.1 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.4 [42fd0dbc] + IterativeSolvers v0.9.4 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.0 [ae98c720] + Jieko v0.2.1 [ba0b0d4f] + Krylov v0.9.10 [0b1a1467] + KrylovKit v0.9.5 [7a12625a] + LinearMaps v3.11.4 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.15 [2e0e35c7] + Moshi v0.3.5 [77ba4419] + NaNMath v1.1.3 [bac558e1] + OrderedCollections v1.8.0 [65ce6f38] + PackageExtensionCompat v1.0.2 [d96e819e] + Parameters v0.12.3 [d236fae5] + PreallocationTools v0.4.26 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.31.2 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [7e49a35a] + RuntimeGeneratedFunctions v0.5.13 [0bca4576] + SciMLBase v2.82.1 [c0aeaf25] + SciMLOperators v0.3.13 [53ae85a6] + SciMLStructures v1.7.0 [276daf66] + SpecialFunctions v2.5.0 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 ⌅ [09ab397b] + StructArrays v0.6.21 [2efcf032] + SymbolicIndexingInterface v0.3.38 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.0 [3a884ed6] + UnPack v1.0.2 [409d34a3] + VectorInterface v0.5.0 ⌅ [68821587] + Arpack_jll v3.5.1+1 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.6.0+0 [e37daf67] + LibGit2_jll v1.7.2+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.6+0 [14a3606d] + MozillaCACerts_jll v2023.12.12 [4536629a] + OpenBLAS_jll v0.3.27+1 [05823500] + OpenLibm_jll v0.8.5+0 [bea87d4a] + SuiteSparse_jll v7.7.0+0 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.59.0+0 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.43s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Warning: Could not use exact versions of packages in manifest, re-resolving └ @ TestEnv ~/.julia/packages/TestEnv/tgnBf/src/julia-1.11/activate_set.jl:63 Precompiling package dependencies... Precompilation completed after 900.21s ################################################################################ # Testing # Testing BifurcationKit ┌ Warning: Could not use exact versions of packages in manifest, re-resolving └ @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:1920 Status `/tmp/jl_UmA3E8/Project.toml` [c29ec348] AbstractDifferentiation v0.6.2 [7d9f7c33] Accessors v0.1.42 [ec485272] ArnoldiMethod v0.4.0 ⌅ [7d9fca2a] Arpack v0.5.3 [0f109fa4] BifurcationKit v0.4.11 [8e7c35d0] BlockArrays v1.5.0 [b0b7db55] ComponentArrays v0.15.26 [864edb3b] DataStructures v0.18.22 [ffbed154] DocStringExtensions v0.9.4 [442a2c76] FastGaussQuadrature v1.0.2 ⌅ [f6369f11] ForwardDiff v0.10.38 [42fd0dbc] IterativeSolvers v0.9.4 [ba0b0d4f] Krylov v0.9.10 [0b1a1467] KrylovKit v0.9.5 [7a12625a] LinearMaps v3.11.4 [1dea7af3] OrdinaryDiffEq v6.93.0 [d96e819e] Parameters v0.12.3 [d236fae5] PreallocationTools v0.4.26 [731186ca] RecursiveArrayTools v3.31.2 [189a3867] Reexport v1.2.2 [0bca4576] SciMLBase v2.82.1 [1ed8b502] SciMLSensitivity v7.76.0 ⌅ [09ab397b] StructArrays v0.6.21 ⌃ [e88e6eb3] Zygote v0.6.76 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_UmA3E8/Manifest.toml` [47edcb42] ADTypes v1.14.0 [c29ec348] AbstractDifferentiation v0.6.2 [621f4979] AbstractFFTs v1.5.0 [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.3.0 [66dad0bd] AliasTables v1.1.3 [ec485272] ArnoldiMethod v0.4.0 ⌅ [7d9fca2a] Arpack v0.5.3 [4fba245c] ArrayInterface v7.18.0 [4c555306] ArrayLayouts v1.11.1 [a9b6321e] Atomix v1.1.1 [0f109fa4] BifurcationKit v0.4.11 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] BlockArrays v1.5.0 [70df07ce] BracketingNonlinearSolve v1.1.3 [fa961155] CEnum v0.5.0 [2a0fbf3d] CPUSummary v0.2.6 [7057c7e9] Cassette v0.3.14 [082447d4] ChainRules v1.72.3 [d360d2e6] ChainRulesCore v1.25.1 [fb6a15b2] CloseOpenIntervals v0.1.13 [38540f10] CommonSolve v0.2.4 [bbf7d656] CommonSubexpressions v0.3.1 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.16.0 [b0b7db55] ComponentArrays v0.15.26 [a33af91c] CompositionsBase v0.1.2 [2569d6c7] ConcreteStructs v0.2.3 [187b0558] ConstructionBase v1.5.8 [adafc99b] CpuId v0.3.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [2b5f629d] DiffEqBase v6.167.2 [459566f4] DiffEqCallbacks v4.4.0 [77a26b50] DiffEqNoiseProcess v5.24.1 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [a0c0ee7d] DifferentiationInterface v0.6.50 [31c24e10] Distributions v0.25.118 [ffbed154] DocStringExtensions v0.9.4 [4e289a0a] EnumX v1.0.5 [7da242da] Enzyme v0.13.35 [f151be2c] EnzymeCore v0.8.8 [d4d017d3] ExponentialUtilities v1.27.0 [e2ba6199] ExprTools v0.1.10 [55351af7] ExproniconLite v0.10.14 [7034ab61] FastBroadcast v0.3.5 [9aa1b823] FastClosures v0.3.2 [442a2c76] FastGaussQuadrature v1.0.2 [a4df4552] FastPower v1.1.2 [1a297f60] FillArrays v1.13.0 [6a86dc24] FiniteDiff v2.27.0 ⌅ [f6369f11] ForwardDiff v0.10.38 [f62d2435] FunctionProperties v0.1.2 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 [d9f16b24] Functors v0.5.2 [0c68f7d7] GPUArrays v11.2.2 [46192b85] GPUArraysCore v0.2.0 [61eb1bfa] GPUCompiler v1.3.2 [c145ed77] GenericSchur v0.5.4 [86223c79] Graphs v1.12.1 [076d061b] HashArrayMappedTries v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [7869d1d1] IRTools v0.4.14 [615f187c] IfElse v0.1.1 [d25df0c9] Inflate v0.1.5 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.4 [42fd0dbc] IterativeSolvers v0.9.4 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.0 [ae98c720] Jieko v0.2.1 [63c18a36] KernelAbstractions v0.9.34 [ba0b0d4f] Krylov v0.9.10 [0b1a1467] KrylovKit v0.9.5 [929cbde3] LLVM v9.2.0 [10f19ff3] LayoutPointers v0.1.17 [5078a376] LazyArrays v2.6.1 [87fe0de2] LineSearch v0.1.4 [d3d80556] LineSearches v7.3.0 [7a12625a] LinearMaps v3.11.4 [7ed4a6bd] LinearSolve v3.7.2 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.15 [d125e4d3] ManualMemory v0.1.8 [bb5d69b7] MaybeInplace v0.1.4 [e1d29d7a] Missings v1.2.0 [2e0e35c7] Moshi v0.3.5 [46d2c3a1] MuladdMacro v0.2.4 [d41bc354] NLSolversBase v7.9.1 [872c559c] NNlib v0.9.30 [77ba4419] NaNMath v1.1.3 [8913a72c] NonlinearSolve v4.5.1 [be0214bd] NonlinearSolveBase v1.5.2 [5959db7a] NonlinearSolveFirstOrder v1.3.1 [9a2c21bd] NonlinearSolveQuasiNewton v1.2.1 [26075421] NonlinearSolveSpectralMethods v1.1.1 [d8793406] ObjectFile v0.4.4 [429524aa] Optim v1.12.0 [3bd65402] Optimisers v0.4.6 [bac558e1] OrderedCollections v1.8.0 [1dea7af3] OrdinaryDiffEq v6.93.0 [89bda076] OrdinaryDiffEqAdamsBashforthMoulton v1.2.0 [6ad6398a] OrdinaryDiffEqBDF v1.4.0 [bbf590c4] OrdinaryDiffEqCore v1.22.0 [50262376] OrdinaryDiffEqDefault v1.3.0 [4302a76b] OrdinaryDiffEqDifferentiation v1.6.0 [9286f039] OrdinaryDiffEqExplicitRK v1.1.0 [e0540318] OrdinaryDiffEqExponentialRK v1.4.0 [becaefa8] OrdinaryDiffEqExtrapolation v1.5.0 [5960d6e9] OrdinaryDiffEqFIRK v1.10.0 [101fe9f7] OrdinaryDiffEqFeagin v1.1.0 [d3585ca7] OrdinaryDiffEqFunctionMap v1.1.1 [d28bc4f8] OrdinaryDiffEqHighOrderRK v1.1.0 [9f002381] OrdinaryDiffEqIMEXMultistep v1.3.0 [521117fe] OrdinaryDiffEqLinear v1.1.0 [1344f307] OrdinaryDiffEqLowOrderRK v1.2.0 [b0944070] OrdinaryDiffEqLowStorageRK v1.3.0 [127b3ac7] OrdinaryDiffEqNonlinearSolve v1.6.0 [c9986a66] OrdinaryDiffEqNordsieck v1.1.0 [5dd0a6cf] OrdinaryDiffEqPDIRK v1.3.0 [5b33eab2] OrdinaryDiffEqPRK v1.1.0 [04162be5] OrdinaryDiffEqQPRK v1.1.0 [af6ede74] OrdinaryDiffEqRKN v1.1.0 [43230ef6] OrdinaryDiffEqRosenbrock v1.9.0 [2d112036] OrdinaryDiffEqSDIRK v1.3.0 [669c94d9] OrdinaryDiffEqSSPRK v1.2.1 [e3e12d00] OrdinaryDiffEqStabilizedIRK v1.3.0 [358294b1] OrdinaryDiffEqStabilizedRK v1.1.0 [fa646aed] OrdinaryDiffEqSymplecticRK v1.3.0 [b1df2697] OrdinaryDiffEqTsit5 v1.1.0 [79d7bb75] OrdinaryDiffEqVerner v1.1.1 [90014a1f] PDMats v0.11.33 [65ce6f38] PackageExtensionCompat v1.0.2 [d96e819e] Parameters v0.12.3 [e409e4f3] PoissonRandom v0.4.4 [f517fe37] Polyester v0.7.16 [1d0040c9] PolyesterWeave v0.2.2 [85a6dd25] PositiveFactorizations v0.2.4 [d236fae5] PreallocationTools v0.4.26 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [74087812] Random123 v1.7.0 [e6cf234a] RandomNumbers v1.6.0 [c1ae055f] RealDot v0.1.0 [3cdcf5f2] RecipesBase v1.3.4 [731186ca] RecursiveArrayTools v3.31.2 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.1 [ae5879a3] ResettableStacks v1.1.1 [37e2e3b7] ReverseDiff v1.16.1 [79098fc4] Rmath v0.8.0 [7e49a35a] RuntimeGeneratedFunctions v0.5.13 [94e857df] SIMDTypes v0.1.0 [0bca4576] SciMLBase v2.82.1 [19f34311] SciMLJacobianOperators v0.1.2 [c0aeaf25] SciMLOperators v0.3.13 [1ed8b502] SciMLSensitivity v7.76.0 [53ae85a6] SciMLStructures v1.7.0 [7e506255] ScopedValues v1.3.0 [6c6a2e73] Scratch v1.2.1 [efcf1570] Setfield v1.1.2 [727e6d20] SimpleNonlinearSolve v2.2.1 [699a6c99] SimpleTraits v0.9.4 [ce78b400] SimpleUnPack v1.1.0 [a2af1166] SortingAlgorithms v1.2.1 ⌃ [47a9eef4] SparseDiffTools v2.23.1 [dc90abb0] SparseInverseSubset v0.1.2 [0a514795] SparseMatrixColorings v0.4.16 [276daf66] SpecialFunctions v2.5.0 [aedffcd0] Static v1.2.0 [0d7ed370] StaticArrayInterface v1.8.0 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.0 [2913bbd2] StatsBase v0.34.4 [4c63d2b9] StatsFuns v1.4.0 [7792a7ef] StrideArraysCore v0.5.7 ⌅ [09ab397b] StructArrays v0.6.21 [53d494c1] StructIO v0.3.1 [2efcf032] SymbolicIndexingInterface v0.3.38 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.0 [8290d209] ThreadingUtilities v0.5.2 [a759f4b9] TimerOutputs v0.5.28 [9f7883ad] Tracker v0.2.38 [781d530d] TruncatedStacktraces v1.4.0 [3a884ed6] UnPack v1.0.2 [013be700] UnsafeAtomics v0.3.0 [409d34a3] VectorInterface v0.5.0 [19fa3120] VertexSafeGraphs v0.2.0 ⌃ [e88e6eb3] Zygote v0.6.76 [700de1a5] ZygoteRules v0.2.7 ⌅ [68821587] Arpack_jll v3.5.1+1 [7cc45869] Enzyme_jll v0.0.173+0 [1d5cc7b8] IntelOpenMP_jll v2025.0.4+0 [dad2f222] LLVMExtra_jll v0.0.35+0 [856f044c] MKL_jll v2025.0.1+1 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [1317d2d5] oneTBB_jll v2022.0.0+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [4af54fe1] LazyArtifacts v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [1a1011a3] SharedArrays v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [05823500] OpenLibm_jll v0.8.5+0 [bea87d4a] SuiteSparse_jll v7.7.0+0 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... --> There are 1 threads Precompiling BifurcationKit... Info Given BifurcationKit was explicitly requested, output will be shown live  WARNING: using LinearMaps.LinearMap in module BifurcationKit conflicts with an existing identifier. 45551.8 ms ✓ BifurcationKit 1 dependency successfully precompiled in 47 seconds. 130 already precompiled. 1 dependency had output during precompilation: ┌ BifurcationKit │ [Output was shown above] └ Problem wrap of ┌─ Bifurcation Problem with uType Vector{Float64} ├─ Inplace: false ├─ Dimension: 2 ├─ Symmetric: false └─ Parameter: pProblem wrap for curve of PD of periodic orbits. Based on the formulation: ┌─ Bifurcation Problem with uType Vector{Float64} ├─ Inplace: false ├─ Dimension: 2 ├─ Symmetric: false └─ Parameter: p0.5646233715268737 0.06020599588929931 │ 1 │ │ 1 │ GMRES: system of size 100 pass k ‖rₖ‖ hₖ₊₁.ₖ timer 0 0 5.9e+00 ✗ ✗ ✗ ✗ 1.49s 1 2 1.1e+00 3.5e-01 2.89s 1 4 7.9e-02 2.5e-01 3.75s 1 6 5.6e-03 2.7e-01 3.75s 1 8 4.2e-04 2.8e-01 3.75s 1 10 3.2e-05 2.6e-01 3.75s 1 12 2.4e-06 2.6e-01 3.75s 1 14 1.6e-07 2.5e-01 3.75s 1 16 1.1e-08 2.6e-01 3.75s 0.190664 seconds (142.70 k allocations: 7.345 MiB, 99.95% compilation time) 0.162787 seconds (36.29 k allocations: 1.858 MiB, 99.58% compilation time) 0.000008 seconds (21 allocations: 2.828 KiB) eigs: 1.032138 seconds (152.00 k allocations: 8.627 MiB, 97.85% compilation time) ┌ Warning: Shift-Invert strategy not implemented for maps └ @ BifurcationKit ~/.julia/packages/BifurcationKit/A2f17/src/EigSolver.jl:223 ┌ Warning: The zero eigenvalue is not that small λ = 0.0004456099444045391 │ This can alter the computation of the normal form. │ You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/A2f17/src/NormalForms.jl:82 ┌─ Deflated Problem with uType Vector{Float64} ├─ Symmetric: false ├─ jacobian: nothing ├─ Parameter p └─ deflation operator: ┌─ Deflation operator with 1 root(s) ├─ eltype = Float64 ├─ power = 2 ├─ α = 1.0 ├─ dist = dot └─ autodiff = false WARNING: Method definition F4def(Any, Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/test/test_newton.jl:64 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/test/test_newton.jl:153. | 1 │ 1.0000e+00 │ ( 1, 1) | │ 1 │ │ ( 1, 1) │ 5.182794 seconds (3.54 M allocations: 178.344 MiB, 1.14% gc time, 99.97% compilation time) ┌ Warning: Unrecognized keyword arguments found. Future versions will error. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/A2f17/src/Continuation.jl:55 Unrecognized keyword arguments: (:essai,) 9.979753 seconds (2.79 M allocations: 145.789 MiB, 0.61% gc time, 99.99% compilation time) ┌─ Bifurcation Problem with uType Vector{Float64} ├─ Inplace: false ├─ Dimension: 1 ├─ Symmetric: false └─ Parameter: p 7.565914 seconds (2.14 M allocations: 108.459 MiB, 99.98% compilation time) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ────────────────── AutoSwitch ────────────────── ━━━━━━━━━━━━━━━━━━ INITIAL GUESS ━━━━━━━━━━━━━━━━━━ ──▶ convergence of initial guess = OK ──▶ parameter = -1.5, initial step ━━━━━━━━━━━━━━━━━━ INITIAL TANGENT ━━━━━━━━━━━━━━━━━━ ──▶ convergence of the initial guess = OK ──▶ parameter = -1.4999333333333333, initial step (bis) Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 0 Step size = 1.0000e-02 Parameter p = -1.5000e+00 ⟶ -1.4859e+00 [guess] Parameter p = -1.4859e+00 ⟶ -1.4859e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 1 Step size = 1.3200e-02 Parameter p = -1.4859e+00 ⟶ -1.4672e+00 [guess] Parameter p = -1.4672e+00 ⟶ -1.4672e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 2 Step size = 1.7424e-02 Parameter p = -1.4672e+00 ⟶ -1.4425e+00 [guess] Parameter p = -1.4425e+00 ⟶ -1.4425e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 3 Step size = 2.3000e-02 Parameter p = -1.4425e+00 ⟶ -1.4100e+00 [guess] Parameter p = -1.4100e+00 ⟶ -1.4100e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 4 Step size = 3.0360e-02 Parameter p = -1.4100e+00 ⟶ -1.3671e+00 [guess] Parameter p = -1.3671e+00 ⟶ -1.3671e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 5 Step size = 4.0075e-02 Parameter p = -1.3671e+00 ⟶ -1.3104e+00 [guess] Parameter p = -1.3104e+00 ⟶ -1.3104e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 6 Step size = 4.7288e-02 Parameter p = -1.3104e+00 ⟶ -1.2435e+00 [guess] Parameter p = -1.2435e+00 ⟶ -1.2435e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 7 Step size = 5.1000e-02 Parameter p = -1.2435e+00 ⟶ -1.1714e+00 [guess] Parameter p = -1.1714e+00 ⟶ -1.1714e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 8 Step size = 5.1000e-02 Parameter p = -1.1714e+00 ⟶ -1.0993e+00 [guess] Parameter p = -1.0993e+00 ⟶ -1.0993e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 9 Step size = 5.1000e-02 Parameter p = -1.0993e+00 ⟶ -1.0272e+00 [guess] Parameter p = -1.0272e+00 ⟶ -1.0272e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 10 Step size = 5.1000e-02 Parameter p = -1.0272e+00 ⟶ -9.5505e-01 [guess] Parameter p = -9.5505e-01 ⟶ -9.5505e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 11 Step size = 5.1000e-02 Parameter p = -9.5505e-01 ⟶ -8.8293e-01 [guess] Parameter p = -8.8293e-01 ⟶ -8.8293e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 12 Step size = 5.1000e-02 Parameter p = -8.8293e-01 ⟶ -8.1081e-01 [guess] Parameter p = -8.1081e-01 ⟶ -8.1081e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 13 Step size = 5.1000e-02 Parameter p = -8.1081e-01 ⟶ -7.3870e-01 [guess] Parameter p = -7.3870e-01 ⟶ -7.3870e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 14 Step size = 5.1000e-02 Parameter p = -7.3870e-01 ⟶ -6.6658e-01 [guess] Parameter p = -6.6658e-01 ⟶ -6.6658e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 15 Step size = 5.1000e-02 Parameter p = -6.6658e-01 ⟶ -5.9448e-01 [guess] Parameter p = -5.9448e-01 ⟶ -5.9448e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 16 Step size = 5.1000e-02 Parameter p = -5.9448e-01 ⟶ -5.2238e-01 [guess] Parameter p = -5.2238e-01 ⟶ -5.2238e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 17 Step size = 5.1000e-02 Parameter p = -5.2238e-01 ⟶ -4.5030e-01 [guess] Parameter p = -4.5030e-01 ⟶ -4.5030e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 18 Step size = 5.1000e-02 Parameter p = -4.5030e-01 ⟶ -3.7827e-01 [guess] Parameter p = -3.7827e-01 ⟶ -3.7827e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 19 Step size = 5.1000e-02 Parameter p = -3.7827e-01 ⟶ -3.0632e-01 [guess] Parameter p = -3.0632e-01 ⟶ -3.0632e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 20 Step size = 5.1000e-02 Parameter p = -3.0632e-01 ⟶ -2.3460e-01 [guess] Parameter p = -2.3460e-01 ⟶ -2.3460e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 21 Step size = 5.1000e-02 Parameter p = -2.3460e-01 ⟶ -1.6366e-01 [guess] Parameter p = -1.6366e-01 ⟶ -1.6366e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 22 Step size = 5.1000e-02 Parameter p = -1.6366e-01 ⟶ -9.6358e-02 [guess] Parameter p = -9.6358e-02 ⟶ -9.6358e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 23 Step size = 5.1000e-02 Parameter p = -9.6358e-02 ⟶ -5.1902e-02 [guess] Parameter p = -9.6358e-02 ⟶ -6.6989e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 24 Step size = 5.1000e-02 Parameter p = -6.6989e-02 ⟶ -5.2693e-02 [guess] Parameter p = -6.6989e-02 ⟶ -6.0828e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 25 Step size = 5.1000e-02 Parameter p = -6.0828e-02 ⟶ -6.1182e-02 [guess] Parameter p = -6.0828e-02 ⟶ -6.5523e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 26 Step size = 5.1000e-02 Parameter p = -6.5523e-02 ⟶ -7.3919e-02 [guess] Parameter p = -6.5523e-02 ⟶ -7.6829e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 27 Step size = 5.1000e-02 Parameter p = -7.6829e-02 ⟶ -9.0753e-02 [guess] Parameter p = -7.6829e-02 ⟶ -9.3007e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 28 Step size = 5.1000e-02 Parameter p = -9.3007e-02 ⟶ -1.1128e-01 [guess] Parameter p = -9.3007e-02 ⟶ -1.1317e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 29 Step size = 5.1000e-02 Parameter p = -1.1317e-01 ⟶ -1.3511e-01 [guess] Parameter p = -1.1317e-01 ⟶ -1.3677e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 30 Step size = 5.1000e-02 Parameter p = -1.3677e-01 ⟶ -1.6194e-01 [guess] Parameter p = -1.3677e-01 ⟶ -1.6342e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 31 Step size = 5.1000e-02 Parameter p = -1.6342e-01 ⟶ -1.9149e-01 [guess] Parameter p = -1.6342e-01 ⟶ -1.9283e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 32 Step size = 5.1000e-02 Parameter p = -1.9283e-01 ⟶ -2.2352e-01 [guess] Parameter p = -1.9283e-01 ⟶ -2.2474e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 33 Step size = 5.1000e-02 Parameter p = -2.2474e-01 ⟶ -2.5782e-01 [guess] Parameter p = -2.2474e-01 ⟶ -2.5894e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 34 Step size = 5.1000e-02 Parameter p = -2.5894e-01 ⟶ -2.9422e-01 [guess] Parameter p = -2.5894e-01 ⟶ -2.9525e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 35 Step size = 5.1000e-02 Parameter p = -2.9525e-01 ⟶ -3.3254e-01 [guess] Parameter p = -2.9525e-01 ⟶ -3.3349e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 36 Step size = 5.1000e-02 Parameter p = -3.3349e-01 ⟶ -3.7264e-01 [guess] Parameter p = -3.3349e-01 ⟶ -3.7351e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 37 Step size = 5.1000e-02 Parameter p = -3.7351e-01 ⟶ -4.1437e-01 [guess] Parameter p = -3.7351e-01 ⟶ -4.1517e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 38 Step size = 5.1000e-02 Parameter p = -4.1517e-01 ⟶ -4.5761e-01 [guess] Parameter p = -4.1517e-01 ⟶ -4.5835e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 39 Step size = 5.1000e-02 Parameter p = -4.5835e-01 ⟶ -5.0224e-01 [guess] Parameter p = -4.5835e-01 ⟶ -5.0293e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 40 Step size = 5.1000e-02 Parameter p = -5.0293e-01 ⟶ -5.4817e-01 [guess] Parameter p = -5.0293e-01 ⟶ -5.4881e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 41 Step size = 5.1000e-02 Parameter p = -5.4881e-01 ⟶ -5.9530e-01 [guess] Parameter p = -5.9530e-01 ⟶ -5.9530e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 42 Step size = 5.1000e-02 Parameter p = -5.9530e-01 ⟶ -6.4294e-01 [guess] Parameter p = -6.4294e-01 ⟶ -6.4294e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 43 Step size = 5.1000e-02 Parameter p = -6.4294e-01 ⟶ -6.9164e-01 [guess] Parameter p = -6.9164e-01 ⟶ -6.9164e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 44 Step size = 5.1000e-02 Parameter p = -6.9164e-01 ⟶ -7.4133e-01 [guess] Parameter p = -7.4133e-01 ⟶ -7.4133e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 45 Step size = 5.1000e-02 Parameter p = -7.4133e-01 ⟶ -7.9194e-01 [guess] Parameter p = -7.9194e-01 ⟶ -7.9194e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 46 Step size = 5.1000e-02 Parameter p = -7.9194e-01 ⟶ -8.4343e-01 [guess] Parameter p = -8.4343e-01 ⟶ -8.4343e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 47 Step size = 5.1000e-02 Parameter p = -8.4343e-01 ⟶ -8.9571e-01 [guess] Parameter p = -8.9571e-01 ⟶ -8.9571e-01 Predictor: Bordered 9.516430 seconds (2.87 M allocations: 146.509 MiB, 0.54% gc time, 99.91% compilation time) 7.771978 seconds (2.10 M allocations: 105.314 MiB, 0.91% gc time, 99.98% compilation time) ┌ Warning: Assignment to `br0` in soft scope is ambiguous because a global variable by the same name exists: `br0` will be treated as a new local. Disambiguate by using `local br0` to suppress this warning or `global br0` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/A2f17/test/simple_continuation.jl:171 ┌─ Curve type: EquilibriumCont ├─ Number of points: 89 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at -1.5, ends at -3.0 ├─ Algo: PALC └─ Special points: - # 1, bp at p ≈ -0.06090827 ∈ (-0.06090827, -0.06089831), |δp|=1e-05, [converged], δ = ( 1, 0), step = 30 - # 2, endpoint at p ≈ -3.00000000, step = 88 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ────────────────── Multiple ────────────────── ━━━━━━━━━━━━━━━━━━ INITIAL GUESS ━━━━━━━━━━━━━━━━━━ ──▶ convergence of initial guess = OK ──▶ parameter = -1.5, initial step ━━━━━━━━━━━━━━━━━━ INITIAL TANGENT ━━━━━━━━━━━━━━━━━━ ──▶ convergence of the initial guess = OK ──▶ parameter = -1.4999, initial step (bis) Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 0 Step size = 1.5000e-02 Parameter p = -1.5000e+00 ⟶ -1.4788e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.195, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.5000e+00 ⟶ -1.4788e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 dsnew = 0.0225 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 1 Step size = 2.2500e-02 Parameter p = -1.4788e+00 ⟶ -1.4470e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.2925, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.4788e+00 ⟶ -1.4470e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 dsnew = 0.03375 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 2 Step size = 3.3750e-02 Parameter p = -1.4470e+00 ⟶ -1.3992e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.4470e+00 ⟶ -1.3992e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 3 Step size = 3.3750e-02 Parameter p = -1.3992e+00 ⟶ -1.3515e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3992e+00 ⟶ -1.3515e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 4 Step size = 3.3750e-02 Parameter p = -1.3515e+00 ⟶ -1.3038e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3515e+00 ⟶ -1.3038e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 5 Step size = 3.3750e-02 Parameter p = -1.3038e+00 ⟶ -1.2561e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3038e+00 ⟶ -1.2561e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 6 Step size = 3.3750e-02 Parameter p = -1.2561e+00 ⟶ -1.2083e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2561e+00 ⟶ -1.2083e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 7 Step size = 3.3750e-02 Parameter p = -1.2083e+00 ⟶ -1.1606e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2083e+00 ⟶ -1.1606e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 8 Step size = 3.3750e-02 Parameter p = -1.1606e+00 ⟶ -1.1129e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1606e+00 ⟶ -1.1129e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 9 Step size = 3.3750e-02 Parameter p = -1.1129e+00 ⟶ -1.0651e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1129e+00 ⟶ -1.0651e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 10 Step size = 3.3750e-02 Parameter p = -1.0651e+00 ⟶ -1.0174e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0651e+00 ⟶ -1.0174e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 11 Step size = 3.3750e-02 Parameter p = -1.0174e+00 ⟶ -9.6968e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0174e+00 ⟶ -9.6968e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 12 Step size = 3.3750e-02 Parameter p = -9.6968e-01 ⟶ -9.2196e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.6968e-01 ⟶ -9.2196e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 13 Step size = 3.3750e-02 Parameter p = -9.2196e-01 ⟶ -8.7423e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.2196e-01 ⟶ -8.7423e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 14 Step size = 3.3750e-02 Parameter p = -8.7423e-01 ⟶ -8.2650e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.7423e-01 ⟶ -8.2651e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 15 Step size = 3.3750e-02 Parameter p = -8.2651e-01 ⟶ -7.7878e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.2651e-01 ⟶ -7.7878e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 16 Step size = 3.3750e-02 Parameter p = -7.7878e-01 ⟶ -7.3106e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.7878e-01 ⟶ -7.3106e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 17 Step size = 3.3750e-02 Parameter p = -7.3106e-01 ⟶ -6.8334e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.3106e-01 ⟶ -6.8334e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 18 Step size = 3.3750e-02 Parameter p = -6.8334e-01 ⟶ -6.3562e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.8334e-01 ⟶ -6.3562e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 19 Step size = 3.3750e-02 Parameter p = -6.3562e-01 ⟶ -5.8790e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.3562e-01 ⟶ -5.8791e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 20 Step size = 3.3750e-02 Parameter p = -5.8791e-01 ⟶ -5.4020e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -5.8791e-01 ⟶ -5.4020e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 21 Step size = 3.3750e-02 Parameter p = -5.4020e-01 ⟶ -4.9250e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -5.4020e-01 ⟶ -4.9250e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 22 Step size = 3.3750e-02 Parameter p = -4.9250e-01 ⟶ -4.4481e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -4.9250e-01 ⟶ -4.4482e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 23 Step size = 3.3750e-02 Parameter p = -4.4482e-01 ⟶ -3.9714e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -4.4482e-01 ⟶ -3.9717e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 24 Step size = 3.3750e-02 Parameter p = -3.9717e-01 ⟶ -3.4951e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.9717e-01 ⟶ -3.4956e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 25 Step size = 3.3750e-02 Parameter p = -3.4956e-01 ⟶ -3.0195e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.4956e-01 ⟶ -3.0203e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 26 Step size = 3.3750e-02 Parameter p = -3.0203e-01 ⟶ -2.5451e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.0203e-01 ⟶ -2.5467e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 27 Step size = 3.3750e-02 Parameter p = -2.5467e-01 ⟶ -2.0735e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.5467e-01 ⟶ -2.0771e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 28 Step size = 3.3750e-02 Parameter p = -2.0771e-01 ⟶ -1.6083e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.0771e-01 ⟶ -1.6179e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 29 Step size = 3.3750e-02 Parameter p = -1.6179e-01 ⟶ -1.1613e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor ├─ i = 13, s(i) = 0.43875000000000003, converged = [ NO] └─ i = 12, s(i) = 0.405, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.6179e-01 ⟶ -1.1904e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 30 Step size = 3.3750e-02 Parameter p = -1.1904e-01 ⟶ -7.7200e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor ├─ i = 13, s(i) = 0.43875000000000003, converged = [ NO] ├─ i = 12, s(i) = 0.405, converged = [ NO] └─ i = 11, s(i) = 0.37125, converged = [YES] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -1.1904e-01 ⟶ -8.5672e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 31 Step size = 3.3750e-02 Parameter p = -8.5672e-02 ⟶ -5.4366e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor ├─ i = 13, s(i) = 0.43875000000000003, converged = [ NO] ├─ i = 12, s(i) = 0.405, converged = [ NO] └─ i = 11, s(i) = 0.37125, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.5672e-02 ⟶ -6.7992e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 32 Step size = 3.3750e-02 Parameter p = -6.7992e-02 ⟶ -5.1454e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.7992e-02 ⟶ -6.1556e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 33 Step size = 3.3750e-02 Parameter p = -6.1556e-02 ⟶ -5.5277e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.1556e-02 ⟶ -6.1281e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ──▶ Bifurcation detected before p = -0.06128105033038877 Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.21937500000000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.10968750000000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.054843750000000004, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.027421875000000002, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.013710937500000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0068554687500000005, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0034277343750000002, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0017138671875000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0008569335937500001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.00042846679687500003, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.00021423339843750001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.00010711669921875001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -5.3558349609375004e-5, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -2.6779174804687502e-5, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.3389587402343751e-5, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -6.6947937011718754e-6, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -3.3473968505859377e-6, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.6736984252929689e-6, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -8.368492126464844e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -4.184246063232422e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -2.092123031616211e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.0460615158081055e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -5.230307579040528e-8, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -2.615153789520264e-8, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.307576894760132e-8, converged = [YES] Predictor: Secant Predictor: Secant Predictor: Secant ──> bp Bifurcation point at p ≈ -0.06496328859565723, δn_unstable = 1, δn_imag = 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 34 Step size = 3.3750e-02 Parameter p = -6.4963e-02 ⟶ -7.5203e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.4963e-02 ⟶ -7.1589e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 35 Step size = 3.3750e-02 Parameter p = -7.1589e-02 ⟶ -7.8194e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.1589e-02 ⟶ -8.0562e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 36 Step size = 3.3750e-02 Parameter p = -8.0562e-02 ⟶ -8.9523e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.0562e-02 ⟶ -9.1534e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 37 Step size = 3.3750e-02 Parameter p = -9.1534e-02 ⟶ -1.0250e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.1534e-02 ⟶ -1.0427e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 38 Step size = 3.3750e-02 Parameter p = -1.0427e-01 ⟶ -1.1699e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0427e-01 ⟶ -1.1859e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 39 Step size = 3.3750e-02 Parameter p = -1.1859e-01 ⟶ -1.3291e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1859e-01 ⟶ -1.3438e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 40 Step size = 3.3750e-02 Parameter p = -1.3438e-01 ⟶ -1.5015e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3438e-01 ⟶ -1.5151e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 41 Step size = 3.3750e-02 Parameter p = -1.5151e-01 ⟶ -1.6863e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.5151e-01 ⟶ -1.6990e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 42 Step size = 3.3750e-02 Parameter p = -1.6990e-01 ⟶ -1.8828e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.6990e-01 ⟶ -1.8947e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 43 Step size = 3.3750e-02 Parameter p = -1.8947e-01 ⟶ -2.0903e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.8947e-01 ⟶ -2.1014e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 44 Step size = 3.3750e-02 Parameter p = -2.1014e-01 ⟶ -2.3081e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.1014e-01 ⟶ -2.3186e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 45 Step size = 3.3750e-02 Parameter p = -2.3186e-01 ⟶ -2.5357e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.3186e-01 ⟶ -2.5457e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 46 Step size = 3.3750e-02 Parameter p = -2.5457e-01 ⟶ -2.7726e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.5457e-01 ⟶ -2.7820e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 47 Step size = 3.3750e-02 Parameter p = -2.7820e-01 ⟶ -3.0183e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.7820e-01 ⟶ -3.0271e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 48 Step size = 3.3750e-02 Parameter p = -3.0271e-01 ⟶ -3.2722e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.0271e-01 ⟶ -3.2806e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ┌ Error: --> Decrease ds └ @ BifurcationKit ~/.julia/packages/BifurcationKit/A2f17/src/continuation/Multiple.jl:139 ┌ Error: --> Decrease ds └ @ BifurcationKit ~/.julia/packages/BifurcationKit/A2f17/src/continuation/Multiple.jl:139 ┌ Warning: Assignment to `brbd` in soft scope is ambiguous because a global variable by the same name exists: `brbd` will be treated as a new local. Disambiguate by using `local brbd` to suppress this warning or `global brbd` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/A2f17/test/simple_continuation.jl:329 ┌ Error: Initial continuation parameter p = -3.2 must be within bounds [p_min, p_max] = [-3.0, -2.0] └ @ BifurcationKit ~/.julia/packages/BifurcationKit/A2f17/src/Continuation.jl:330 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ────────────────── PALC ────────────────── ━━━━━━━━━━━━━━━━━━ INITIAL GUESS ━━━━━━━━━━━━━━━━━━ ──▶ convergence of initial guess = OK ──▶ parameter = -1.5, initial step ━━━━━━━━━━━━━━━━━━ INITIAL TANGENT ━━━━━━━━━━━━━━━━━━ ──▶ convergence of the initial guess = OK ──▶ parameter = -1.4999933333333333, initial step (bis) Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 0 Step size = 1.0000e-03 Parameter p = -1.5000e+00 ⟶ -1.4986e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.5000e+00 ⟶ -1.4986e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 1 Step size = 1.4608e-03 Parameter p = -1.4986e+00 ⟶ -1.4965e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4986e+00 ⟶ -1.4965e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 2 Step size = 2.1339e-03 Parameter p = -1.4965e+00 ⟶ -1.4935e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4965e+00 ⟶ -1.4935e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 3 Step size = 3.1173e-03 Parameter p = -1.4935e+00 ⟶ -1.4891e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4935e+00 ⟶ -1.4891e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 4 Step size = 4.5537e-03 Parameter p = -1.4891e+00 ⟶ -1.4827e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4891e+00 ⟶ -1.4827e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 5 Step size = 6.6520e-03 Parameter p = -1.4827e+00 ⟶ -1.4732e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4827e+00 ⟶ -1.4732e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 6 Step size = 9.7173e-03 Parameter p = -1.4732e+00 ⟶ -1.4595e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4732e+00 ⟶ -1.4595e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 7 Step size = 1.4195e-02 Parameter p = -1.4595e+00 ⟶ -1.4394e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4595e+00 ⟶ -1.4394e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 8 Step size = 2.0736e-02 Parameter p = -1.4394e+00 ⟶ -1.4101e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4394e+00 ⟶ -1.4101e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 9 Step size = 3.0291e-02 Parameter p = -1.4101e+00 ⟶ -1.3673e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4101e+00 ⟶ -1.3673e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 10 Step size = 4.4249e-02 Parameter p = -1.3673e+00 ⟶ -1.3047e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3673e+00 ⟶ -1.3047e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 11 Step size = 5.1000e-02 Parameter p = -1.3047e+00 ⟶ -1.2326e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3047e+00 ⟶ -1.2326e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 12 Step size = 5.1000e-02 Parameter p = -1.2326e+00 ⟶ -1.1604e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2326e+00 ⟶ -1.1604e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 13 Step size = 5.1000e-02 Parameter p = -1.1604e+00 ⟶ -1.0883e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1604e+00 ⟶ -1.0883e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 14 Step size = 5.1000e-02 Parameter p = -1.0883e+00 ⟶ -1.0162e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0883e+00 ⟶ -1.0162e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 15 Step size = 5.1000e-02 Parameter p = -1.0162e+00 ⟶ -9.4408e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0162e+00 ⟶ -9.4408e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 16 Step size = 5.1000e-02 Parameter p = -9.4408e-01 ⟶ -8.7196e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.4408e-01 ⟶ -8.7196e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 17 Step size = 5.1000e-02 Parameter p = -8.7196e-01 ⟶ -7.9984e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.7196e-01 ⟶ -7.9984e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 18 Step size = 5.1000e-02 Parameter p = -7.9984e-01 ⟶ -7.2772e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.9984e-01 ⟶ -7.2773e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 19 Step size = 5.1000e-02 Parameter p = -7.2773e-01 ⟶ -6.5561e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.2773e-01 ⟶ -6.5562e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 20 Step size = 5.1000e-02 Parameter p = -6.5562e-01 ⟶ -5.8351e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.5562e-01 ⟶ -5.8352e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 21 Step size = 5.1000e-02 Parameter p = -5.8352e-01 ⟶ -5.1142e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -5.8352e-01 ⟶ -5.1143e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 22 Step size = 5.1000e-02 Parameter p = -5.1143e-01 ⟶ -4.3934e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -5.1143e-01 ⟶ -4.3937e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 23 Step size = 5.1000e-02 Parameter p = -4.3937e-01 ⟶ -3.6732e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -4.3937e-01 ⟶ -3.6737e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 24 Step size = 5.1000e-02 Parameter p = -3.6737e-01 ⟶ -2.9539e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.6737e-01 ⟶ -2.9552e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 25 Step size = 5.1000e-02 Parameter p = -2.9552e-01 ⟶ -2.2370e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -2.9552e-01 ⟶ -2.2410e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 26 Step size = 5.1000e-02 Parameter p = -2.2410e-01 ⟶ -1.5279e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -2.2410e-01 ⟶ -1.5429e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 27 Step size = 5.1000e-02 Parameter p = -1.5429e-01 ⟶ -8.5126e-02 [guess] ──▶ Step Converged in 4 Nonlinear Iteration(s) Parameter p = -1.5429e-01 ⟶ -9.3033e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 28 Step size = 5.1000e-02 Parameter p = -9.3033e-02 ⟶ -3.5896e-02 [guess] ──▶ Step Converged in 4 Nonlinear Iteration(s) Parameter p = -9.3033e-02 ⟶ -6.4183e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 29 Step size = 5.1000e-02 Parameter p = -6.4183e-02 ⟶ -3.9912e-02 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -6.4183e-02 ⟶ -6.1291e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ──▶ Bifurcation detected before p = -0.0612908522750683 ┌─── Entering [Locate-Bifurcation], state.n_unstable = (2, 0) ├─── [Bisection] initial ds = 0.051 ├─── [Bisection] state.ds = -0.051 ├─── 0 - [Bisection] (n1, n_current, n2) = (0, 2, 2), ds = -0.0255 p = -0.0612908522750683, #reverse = 0 ├─── bifurcation ∈ (-0.06418257359763878, -0.0612908522750683), precision = 2.892E-03 ├─── 2 Eigenvalues closest to ℜ = 0: 2-element Vector{ComplexF64}: 0.011015084493654244 + 0.0im 0.011015084493654355 + 0.0im Predictor: Secant ├─── 1 - [Bisection] (n1, n_current, n2) = (0, 0, 2), ds = 0.01275 p = -0.06102065204612017, #reverse = 1 ├─── bifurcation ∈ (-0.0612908522750683, -0.06102065204612017), precision = -2.702E-04 ├─── 2 Eigenvalues closest to ℜ = 0: 2-element Vector{ComplexF64}: -0.00682553599602289 + 0.0im -0.0068255359960178105 + 0.0im Predictor: Secant ├─── 2 - [Bisection] (n1, n_current, n2) = (0, 2, 2), ds = -0.006375 p = -0.06083954839238358, #reverse = 2 ├─── bifurcation ∈ (-0.06102065204612017, -0.06083954839238358), precision = 1.811E-04 ├─── 2 Eigenvalues closest to ℜ = 0: 2-element Vector{ComplexF64}: 0.0020769073856158893 + 0.0im 0.002076907385616472 + 0.0im ────> Found at p = -0.06083954839238358, δn = 2, δim = 0 from p = -0.0612908522750683 ────> Found at p = -0.06083954839238358 ∈ (-0.06102065204612017, -0.06083954839238358), δn = 2, δim = 0 from p = -0.0612908522750683 ──────────────────────────────────────── ┌─── Stopping reason: ├───── isnothing(next) = false ├───── |ds| < dsmin_bisection = false ├───── step >= max_bisection_steps = false ├───── n_inversion >= n_inversion = true └───── biflocated = false ────> Leaving [Loc-Bif] ──> nd Bifurcation point at p ≈ -0.06083954839238358, δn_unstable = 2, δn_imag = 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 30 Step size = 5.1000e-02 Parameter p = -6.0840e-02 ⟶ -6.0115e-02 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.0840e-02 ⟶ -6.5737e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 31 Step size = 5.1000e-02 Parameter p = -6.5737e-02 ⟶ -7.0620e-02 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -6.5737e-02 ⟶ -7.7229e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 32 Step size = 5.1000e-02 Parameter p = -7.7229e-02 ⟶ -8.8673e-02 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -7.7229e-02 ⟶ -9.3566e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 33 Step size = 5.1000e-02 Parameter p = -9.3566e-02 ⟶ -1.0986e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -9.3566e-02 ⟶ -1.1387e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 34 Step size = 5.1000e-02 Parameter p = -1.1387e-01 ⟶ -1.3414e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -1.1387e-01 ⟶ -1.3759e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 35 Step size = 5.1000e-02 Parameter p = -1.3759e-01 ⟶ -1.6129e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -1.3759e-01 ⟶ -1.6436e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 36 Step size = 5.1000e-02 Parameter p = -1.6436e-01 ⟶ -1.9110e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -1.6436e-01 ⟶ -1.9387e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 37 Step size = 5.1000e-02 Parameter p = -1.9387e-01 ⟶ -2.2336e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -1.9387e-01 ⟶ -2.2589e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 38 Step size = 5.1000e-02 Parameter p = -2.2589e-01 ⟶ -2.5787e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -2.2589e-01 ⟶ -2.6018e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 39 Step size = 5.1000e-02 Parameter p = -2.6018e-01 ⟶ -2.9446e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -2.6018e-01 ⟶ -2.9658e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 40 Step size = 5.1000e-02 Parameter p = -2.9658e-01 ⟶ -3.3295e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -2.9658e-01 ⟶ -3.3490e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 41 Step size = 5.1000e-02 Parameter p = -3.3490e-01 ⟶ -3.7320e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -3.3490e-01 ⟶ -3.7499e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 42 Step size = 5.1000e-02 Parameter p = -3.7499e-01 ⟶ -4.1507e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -3.7499e-01 ⟶ -4.1672e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 43 Step size = 5.1000e-02 Parameter p = -4.1672e-01 ⟶ -4.5844e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -4.1672e-01 ⟶ -4.5997e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 44 Step size = 5.1000e-02 Parameter p = -4.5997e-01 ⟶ -5.0320e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -4.5997e-01 ⟶ -5.0461e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 45 Step size = 5.1000e-02 Parameter p = -5.0461e-01 ⟶ -5.4924e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -5.0461e-01 ⟶ -5.5054e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 46 Step size = 5.1000e-02 Parameter p = -5.5054e-01 ⟶ -5.9646e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -5.5054e-01 ⟶ -5.9767e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 47 Step size = 5.1000e-02 Parameter p = -5.9767e-01 ⟶ -6.4480e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -5.9767e-01 ⟶ -6.4592e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 48 Step size = 5.1000e-02 Parameter p = -6.4592e-01 ⟶ -6.9415e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -6.4592e-01 ⟶ -6.9520e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 49 Step size = 5.1000e-02 Parameter p = -6.9520e-01 ⟶ -7.4447e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -6.9520e-01 ⟶ -7.4544e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 50 Step size = 5.1000e-02 Parameter p = -7.4544e-01 ⟶ -7.9567e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -7.4544e-01 ⟶ -7.9657e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 51 Step size = 5.1000e-02 Parameter p = -7.9657e-01 ⟶ -8.4770e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -7.9657e-01 ⟶ -8.4855e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 52 Step size = 5.1000e-02 Parameter p = -8.4855e-01 ⟶ -9.0051e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.4855e-01 ⟶ -9.0130e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 53 Step size = 5.1000e-02 Parameter p = -9.0130e-01 ⟶ -9.5405e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.0130e-01 ⟶ -9.5478e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 54 Step size = 5.1000e-02 Parameter p = -9.5478e-01 ⟶ -1.0083e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.5478e-01 ⟶ -1.0090e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 55 Step size = 5.1000e-02 Parameter p = -1.0090e+00 ⟶ -1.0631e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0090e+00 ⟶ -1.0638e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 56 Step size = 5.1000e-02 Parameter p = -1.0638e+00 ⟶ -1.1186e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0638e+00 ⟶ -1.1192e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 57 Step size = 5.1000e-02 Parameter p = -1.1192e+00 ⟶ -1.1746e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1192e+00 ⟶ -1.1752e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 58 Step size = 5.1000e-02 Parameter p = -1.1752e+00 ⟶ -1.2311e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1752e+00 ⟶ -1.2317e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 59 Step size = 5.1000e-02 Parameter p = -1.2317e+00 ⟶ -1.2882e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2317e+00 ⟶ -1.2887e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 60 Step size = 5.1000e-02 Parameter p = -1.2887e+00 ⟶ -1.3457e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2887e+00 ⟶ -1.3462e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 61 Step size = 5.1000e-02 Parameter p = -1.3462e+00 ⟶ -1.4037e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3462e+00 ⟶ -1.4041e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 62 Step size = 5.1000e-02 Parameter p = -1.4041e+00 ⟶ -1.4621e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.4041e+00 ⟶ -1.4625e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 63 Step size = 5.1000e-02 Parameter p = -1.4625e+00 ⟶ -1.5209e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.4625e+00 ⟶ -1.5213e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 64 Step size = 5.1000e-02 Parameter p = -1.5213e+00 ⟶ -1.5801e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.5213e+00 ⟶ -1.5804e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 65 Step size = 5.1000e-02 Parameter p = -1.5804e+00 ⟶ -1.6396e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.5804e+00 ⟶ -1.6400e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 66 Step size = 5.1000e-02 Parameter p = -1.6400e+00 ⟶ -1.6995e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.6400e+00 ⟶ -1.6998e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 67 Step size = 5.1000e-02 Parameter p = -1.6998e+00 ⟶ -1.7597e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.6998e+00 ⟶ -1.7600e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 68 Step size = 5.1000e-02 Parameter p = -1.7600e+00 ⟶ -1.8202e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.7600e+00 ⟶ -1.8205e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 69 Step size = 5.1000e-02 Parameter p = -1.8205e+00 ⟶ -1.8810e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.8205e+00 ⟶ -1.8813e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 70 Step size = 5.1000e-02 Parameter p = -1.8813e+00 ⟶ -1.9421e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.8813e+00 ⟶ -1.9424e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 71 Step size = 5.1000e-02 Parameter p = -1.9424e+00 ⟶ -2.0035e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.9424e+00 ⟶ -2.0038e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 72 Step size = 5.1000e-02 Parameter p = -2.0038e+00 ⟶ -2.0651e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.0038e+00 ⟶ -2.0654e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 73 Step size = 5.1000e-02 Parameter p = -2.0654e+00 ⟶ -2.1270e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.0654e+00 ⟶ -2.1273e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 74 Step size = 5.1000e-02 Parameter p = -2.1273e+00 ⟶ -2.1891e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.1273e+00 ⟶ -2.1894e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 75 Step size = 5.1000e-02 Parameter p = -2.1894e+00 ⟶ -2.2515e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.1894e+00 ⟶ -2.2517e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 76 Step size = 5.1000e-02 Parameter p = -2.2517e+00 ⟶ -2.3140e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.2517e+00 ⟶ -2.3143e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 77 Step size = 5.1000e-02 Parameter p = -2.3143e+00 ⟶ -2.3768e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.3143e+00 ⟶ -2.3770e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 78 Step size = 5.1000e-02 Parameter p = -2.3770e+00 ⟶ -2.4398e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.3770e+00 ⟶ -2.4400e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 79 Step size = 5.1000e-02 Parameter p = -2.4400e+00 ⟶ -2.5029e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.4400e+00 ⟶ -2.5031e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 80 Step size = 5.1000e-02 Parameter p = -2.5031e+00 ⟶ -2.5663e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.5031e+00 ⟶ -2.5665e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 81 Step size = 5.1000e-02 Parameter p = -2.5665e+00 ⟶ -2.6298e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.5665e+00 ⟶ -2.6300e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 82 Step size = 5.1000e-02 Parameter p = -2.6300e+00 ⟶ -2.6935e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.6300e+00 ⟶ -2.6937e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 83 Step size = 5.1000e-02 Parameter p = -2.6937e+00 ⟶ -2.7574e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.6937e+00 ⟶ -2.7575e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 84 Step size = 5.1000e-02 Parameter p = -2.7575e+00 ⟶ -2.8214e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.7575e+00 ⟶ -2.8215e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 85 Step size = 5.1000e-02 Parameter p = -2.8215e+00 ⟶ -2.8856e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.8215e+00 ⟶ -2.8857e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 86 Step size = 5.1000e-02 Parameter p = -2.8857e+00 ⟶ -2.9499e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.8857e+00 ⟶ -2.9500e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 87 Step size = 5.1000e-02 Parameter p = -2.9500e+00 ⟶ -3.0000e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -3.0000e+00 ⟶ -3.0000e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ┌─ Entry in detect_loop, rtol = 0.001 ├─ bp type = nd, ||δx|| = 0.24416479616388265, |δp| = 1.3891604516076164 └─ Loop detected = false ┌─ Continuation algorithm: deflated continuation ├─ max_branches: 100 ├─ seek every: 1 ├─ deflated newton iterations: 5 ├─ jacobian (def. newton): BifurcationKit.DeflatedProblemCustomLS{Nothing}(nothing) └─ deflation operator: ┌─ Deflation operator with 1 root(s) ├─ eltype = Float64 ├─ power = 2 ├─ α = 0.001 ├─ dist = dot └─ autodiff = false Deflated continuation result, # branches = 3 Branch #1: ┌─ Curve type: EquilibriumCont ├─ Number of points: 801 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at 0.5, ends at -0.30000000000000066 ├─ Algo: PALC Branch #2: ┌─ Curve type: EquilibriumCont ├─ Number of points: 240 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at -0.061000000000000484, ends at -0.30000000000000066 ├─ Algo: PALC Branch #3: ┌─ Curve type: EquilibriumCont ├─ Number of points: 239 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at -0.062000000000000485, ends at -0.30000000000000066 ├─ Algo: PALC WARNING: Method definition Ftb(Any, Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/test/test_bif_detection.jl:52 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/test/test_bif_detection.jl:113. ┌─ Curve type: EquilibriumCont ├─ Number of points: 134 ├─ Type of vectors: Vector{Float64} ├─ Parameter p1 starts at -3.0, ends at 4.0 ├─ Algo: PALC └─ Special points: - # 1, bp at p1 ≈ -1.13286415 ∈ (-1.13286415, -1.13286415), |δp|=6e-10, [converged], δ = ( 1, 0), step = 36 - # 2, bp at p1 ≈ -2.32505847 ∈ (-2.32505847, -2.32505842), |δp|=5e-08, [converged], δ = (-1, 0), step = 49 - # 3, hopf at p1 ≈ -0.95381648 ∈ (-0.95385638, -0.95381648), |δp|=4e-05, [converged], δ = ( 2, 2), step = 63 - # 4, hopf at p1 ≈ +0.95387028 ∈ (+0.95385033, +0.95387028), |δp|=2e-05, [converged], δ = (-2, -2), step = 83 - # 5, bp at p1 ≈ +2.32505862 ∈ (+2.32505862, +2.32505862), |δp|=9e-11, [converged], δ = ( 1, 0), step = 97 - # 6, bp at p1 ≈ +1.13286415 ∈ (+1.13286415, +1.13286415), |δp|=5e-09, [converged], δ = (-1, 0), step = 110 - # 7, endpoint at p1 ≈ +4.00000000, step = 133 WARNING: Method definition F0_simple(Any, Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/test/simple_continuation.jl:10 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/test/plots-utils.jl:8. ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538 │ This can alter the computation of the normal form. │ You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/A2f17/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538 │ This can alter the computation of the normal form. │ You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/A2f17/src/NormalForms.jl:82 Transcritical bifurcation point at μ ≈ 0.0005310637271224761 Normal form (aδμ + b1⋅x⋅δμ + b2⋅x²/2 + b3⋅x³/6) ┌─ a = 7.187319746485116e-14 ├─ b1 = 3.2300000000172466 ├─ b2 = -2.239999999999969 └─ b3 = 1.4040000000000001 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538 │ This can alter the computation of the normal form. │ You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/A2f17/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538 │ This can alter the computation of the normal form. │ You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/A2f17/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538 │ This can alter the computation of the normal form. │ You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/A2f17/src/NormalForms.jl:82 ──> For μ = 0.0005310637271224761 ──> There are 1 unstable eigenvalues ──> Eigenvalues for continuation step 1 ┌ Warning: The zero eigenvalue is not that small λ = -0.0003113124461297639 │ This can alter the computation of the normal form. │ You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/A2f17/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538 │ This can alter the computation of the normal form. │ You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/A2f17/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538 │ This can alter the computation of the normal form. │ You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/A2f17/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538 │ This can alter the computation of the normal form. │ You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/A2f17/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538 │ This can alter the computation of the normal form. │ You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/A2f17/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538 │ This can alter the computation of the normal form. │ You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/A2f17/src/NormalForms.jl:82 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ┌─ Normal form Computation for 1d kernel ├─ analyse bifurcation at p = 0.0005310640141772467 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153367657925067 │ This can alter the computation of the normal form. │ You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/A2f17/src/NormalForms.jl:82 ├─ smallest eigenvalue at bifurcation = 0.0017153367657925067 ┌── left eigenvalues = 2-element Vector{ComplexF64}: 0.0017153367657925067 + 0.0im -1.0 + 0.0im ├── right eigenvalue = 0.0017153367657925067 └── left eigenvalue = 0.0017153367657925067 + 0.0im ┌── Normal form: aδμ + b1⋅x⋅δμ + b2⋅x²/2 + b3⋅x³/6 ├─── a = 2.6829124780323384e-12 ├─── b1 = 3.2300000000172466 ├─── b2/2 = -5.830973868649681e-13 └─── b3/6 = -0.234 SuperCritical - Pitchfork bifurcation point at μ ≈ 0.0005310640141772467 Normal form x ─▶ x + a⋅δp + x⋅(b1⋅δp + b3⋅x²/6) ┌─ a = 2.6829124780323384e-12 ├─ b1 = 3.2300000000172466 ├─ b2 = -1.1661947737299363e-12 └─ b3 = -1.4040000000000001 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153367657925067 │ This can alter the computation of the normal form. │ You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/A2f17/src/NormalForms.jl:82 ┌─ Curve type: EquilibriumCont from Pitchfork bifurcation point. ├─ Number of points: 20 ├─ Type of vectors: Vector{Float64} ├─ Parameter μ starts at 0.0005310640141772467, ends at 0.006333544892751135 ├─ Algo: PALC └─ Special points: - # 1, bp at μ ≈ +0.00000029 ∈ (+0.00000029, +0.00053106), |δp|=5e-04, [ guess], δ = (-1, 0), step = 1 - # 2, endpoint at μ ≈ +0.00721756, step = 20 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ───▶ Automatic computation of bifurcation diagram ──────────────────────────────────────────────────────────────────────────────── ──▶ New branch, level = 2, dim(Kernel) = 1, code = (0,), from bp #1 at p = 4.531578045579016e-6, type = bp ┌ Warning: The zero eigenvalue is not that small λ = 1.4636997087220223e-5 │ This can alter the computation of the normal form. │ You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/A2f17/src/NormalForms.jl:82 ────▶ From Pitchfork - # 1, bp at p ≈ +0.00000453 ∈ (-0.00000410, +0.00000453), |δp|=9e-06, [converged], δ = ( 1, 0), step = 6 ┌ Warning: The zero eigenvalue is not that small λ = 1.4636997087220223e-5 │ This can alter the computation of the normal form. │ You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/A2f17/src/NormalForms.jl:82 ┌ Info: │ autodiff = true └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.9671624963863654e-17, -1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 -2.34146e-12 2.34146e-12 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 3.97801e-18 -8.91189e-19 -8.91189e-19 6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: 3.4841e-19 9.32786e-20 9.32786e-20 6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 -0.0513304 -0.0513304 0.0273946 [:, :, 2] = -0.0513304 0.0273946 0.0273946 0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0187349 0.00358594 0.00358594 0.0162978 [:, :, 2] = 0.00358594 0.0162978 0.0162978 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.9671624963863654e-17, -1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 -2.34146e-12 2.34146e-12 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 3.97801e-18 -8.91189e-19 -8.91189e-19 6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: 3.4841e-19 9.32786e-20 9.32786e-20 6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 -0.0513304 -0.0513304 0.0273946 [:, :, 2] = -0.0513304 0.0273946 0.0273946 0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0187349 0.00358594 0.00358594 0.0162978 [:, :, 2] = 0.00358594 0.0162978 0.0162978 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.9671624963863654e-17, -1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 -2.34146e-12 2.34146e-12 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 3.97801e-18 -8.91189e-19 -8.91189e-19 6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: 3.4841e-19 9.32786e-20 9.32786e-20 6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 -0.0513304 -0.0513304 0.0273946 [:, :, 2] = -0.0513304 0.0273946 0.0273946 0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0187349 0.00358594 0.00358594 0.0162978 [:, :, 2] = 0.00358594 0.0162978 0.0162978 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.9671624963863654e-17, -1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 -2.34146e-12 2.34146e-12 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 3.97801e-18 -8.91189e-19 -8.91189e-19 6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: 3.4841e-19 9.32786e-20 9.32786e-20 6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 -0.0513304 -0.0513304 0.0273946 [:, :, 2] = -0.0513304 0.0273946 0.0273946 0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0187349 0.00358594 0.00358594 0.0162978 [:, :, 2] = 0.00358594 0.0162978 0.0162978 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──> (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.9671624963863654e-17, -1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 -2.34146e-12 2.34146e-12 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 3.97801e-18 -8.91189e-19 -8.91189e-19 6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: 3.4841e-19 9.32786e-20 9.32786e-20 6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 -0.0513304 -0.0513304 0.0273946 [:, :, 2] = -0.0513304 0.0273946 0.0273946 0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0187349 0.00358594 0.00358594 0.0162978 [:, :, 2] = 0.00358594 0.0162978 0.0162978 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──> (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.9671624963863654e-17, -1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 -2.34146e-12 2.34146e-12 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 3.97801e-18 -8.91189e-19 -8.91189e-19 6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: 3.4841e-19 9.32786e-20 9.32786e-20 6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 -0.0513304 -0.0513304 0.0273946 [:, :, 2] = -0.0513304 0.0273946 0.0273946 0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0187349 0.00358594 0.00358594 0.0162978 [:, :, 2] = 0.00358594 0.0162978 0.0162978 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──> (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.9671624963863654e-17, -1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 -2.34146e-12 2.34146e-12 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 3.97801e-18 -8.91189e-19 -8.91189e-19 6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: 3.4841e-19 9.32786e-20 9.32786e-20 6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 -0.0513304 -0.0513304 0.0273946 [:, :, 2] = -0.0513304 0.0273946 0.0273946 0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0187349 0.00358594 0.00358594 0.0162978 [:, :, 2] = 0.00358594 0.0162978 0.0162978 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──> (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.9671624963863654e-17, -1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 -2.34146e-12 2.34146e-12 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 3.97801e-18 -8.91189e-19 -8.91189e-19 6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: 3.4841e-19 9.32786e-20 9.32786e-20 6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 -0.0513304 -0.0513304 0.0273946 [:, :, 2] = -0.0513304 0.0273946 0.0273946 0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0187349 0.00358594 0.00358594 0.0162978 [:, :, 2] = 0.00358594 0.0162978 0.0162978 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.9671624963863654e-17, 1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 2.34146e-12 -2.34146e-12 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -3.97801e-18 8.91189e-19 8.91189e-19 -6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: -3.4841e-19 -9.32786e-20 -9.32786e-20 -6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 0.0513304 0.0513304 -0.0273946 [:, :, 2] = 0.0513304 -0.0273946 -0.0273946 -0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0187349 -0.00358594 -0.00358594 -0.0162978 [:, :, 2] = -0.00358594 -0.0162978 -0.0162978 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.9671624963863654e-17, 1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 2.34146e-12 -2.34146e-12 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -3.97801e-18 8.91189e-19 8.91189e-19 -6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: -3.4841e-19 -9.32786e-20 -9.32786e-20 -6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 0.0513304 0.0513304 -0.0273946 [:, :, 2] = 0.0513304 -0.0273946 -0.0273946 -0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0187349 -0.00358594 -0.00358594 -0.0162978 [:, :, 2] = -0.00358594 -0.0162978 -0.0162978 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.9671624963863654e-17, 1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 2.34146e-12 -2.34146e-12 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -3.97801e-18 8.91189e-19 8.91189e-19 -6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: -3.4841e-19 -9.32786e-20 -9.32786e-20 -6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 0.0513304 0.0513304 -0.0273946 [:, :, 2] = 0.0513304 -0.0273946 -0.0273946 -0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0187349 -0.00358594 -0.00358594 -0.0162978 [:, :, 2] = -0.00358594 -0.0162978 -0.0162978 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.9671624963863654e-17, 1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 2.34146e-12 -2.34146e-12 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -3.97801e-18 8.91189e-19 8.91189e-19 -6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: -3.4841e-19 -9.32786e-20 -9.32786e-20 -6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 0.0513304 0.0513304 -0.0273946 [:, :, 2] = 0.0513304 -0.0273946 -0.0273946 -0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0187349 -0.00358594 -0.00358594 -0.0162978 [:, :, 2] = -0.00358594 -0.0162978 -0.0162978 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──> (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.9671624963863654e-17, 1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 2.34146e-12 -2.34146e-12 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -3.97801e-18 8.91189e-19 8.91189e-19 -6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: -3.4841e-19 -9.32786e-20 -9.32786e-20 -6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 0.0513304 0.0513304 -0.0273946 [:, :, 2] = 0.0513304 -0.0273946 -0.0273946 -0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0187349 -0.00358594 -0.00358594 -0.0162978 [:, :, 2] = -0.00358594 -0.0162978 -0.0162978 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──> (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.9671624963863654e-17, 1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 2.34146e-12 -2.34146e-12 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -3.97801e-18 8.91189e-19 8.91189e-19 -6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: -3.4841e-19 -9.32786e-20 -9.32786e-20 -6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 0.0513304 0.0513304 -0.0273946 [:, :, 2] = 0.0513304 -0.0273946 -0.0273946 -0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0187349 -0.00358594 -0.00358594 -0.0162978 [:, :, 2] = -0.00358594 -0.0162978 -0.0162978 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──> (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.9671624963863654e-17, 1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 2.34146e-12 -2.34146e-12 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -3.97801e-18 8.91189e-19 8.91189e-19 -6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: -3.4841e-19 -9.32786e-20 -9.32786e-20 -6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 0.0513304 0.0513304 -0.0273946 [:, :, 2] = 0.0513304 -0.0273946 -0.0273946 -0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0187349 -0.00358594 -0.00358594 -0.0162978 [:, :, 2] = -0.00358594 -0.0162978 -0.0162978 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──> (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.9671624963863654e-17, 1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 2.34146e-12 -2.34146e-12 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -3.97801e-18 8.91189e-19 8.91189e-19 -6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: -3.4841e-19 -9.32786e-20 -9.32786e-20 -6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 0.0513304 0.0513304 -0.0273946 [:, :, 2] = 0.0513304 -0.0273946 -0.0273946 -0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0187349 -0.00358594 -0.00358594 -0.0162978 [:, :, 2] = -0.00358594 -0.0162978 -0.0162978 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). [Bifurcation diagram] ┌─ From 0-th bifurcation point. ├─ Children number: 4 └─ Root (recursion level 1) ┌─ Curve type: EquilibriumCont ├─ Number of points: 76 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at -0.2, ends at 0.3 ├─ Algo: PALC └─ Special points: - # 1, bp at p ≈ +0.00000281 ∈ (-0.00000065, +0.00000281), |δp|=3e-06, [converged], δ = ( 1, 0), step = 31 - # 2, bp at p ≈ +0.15000005 ∈ (+0.14999995, +0.15000005), |δp|=1e-07, [converged], δ = (-1, 0), step = 53 - # 3, endpoint at p ≈ +0.30000000, step = 75 ──▶ BS from Non simple branch point ──▶ we find 2 (resp. 2) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ Looking for solutions after the bifurcation point... ──▶ Looking for solutions before the bifurcation point... ──▶ we find 2 (resp. 2) roots after (resp. before) the bifurcation point. ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ BS from Non simple branch point ──▶ we find 2 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ Looking for solutions after the bifurcation point... ──▶ Looking for solutions before the bifurcation point... ──▶ we find 2 (resp. 2) roots after (resp. before) the bifurcation point. ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ┌ Warning: The predictor is nothing. Probably a Fold point. See │ Fold bifurcation point at μ ≈ -0.0030821885658202913 │ Normal form (aδμ + b1⋅x⋅δμ + b2⋅x²/2 + b3⋅x³/6) │ ┌─ a = 0.035626433862583816 │ ├─ b1 = 0.9999999999975046 │ ├─ b2 = -0.1737357728688115 │ └─ b3 = -14.60000000000199 └ @ BifurcationKit ~/.julia/packages/BifurcationKit/A2f17/src/bifdiagram/BranchSwitching.jl:136 ──▶ BS from Non simple branch point ──▶ we find 4 (resp. 4) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ Looking for solutions after the bifurcation point... ──▶ Looking for solutions before the bifurcation point... ──▶ we find 4 (resp. 4) roots after (resp. before) the bifurcation point. ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ┌ Warning: Assignment to `opts_br` in soft scope is ambiguous because a global variable by the same name exists: `opts_br` will be treated as a new local. Disambiguate by using `local opts_br` to suppress this warning or `global opts_br` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/A2f17/test/testNF.jl:276 ┌ Warning: Assignment to `br` in soft scope is ambiguous because a global variable by the same name exists: `br` will be treated as a new local. Disambiguate by using `local br` to suppress this warning or `global br` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/A2f17/test/testNF.jl:278 ┌ Warning: Assignment to `nf` in soft scope is ambiguous because a global variable by the same name exists: `nf` will be treated as a new local. Disambiguate by using `local nf` to suppress this warning or `global nf` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/A2f17/test/testNF.jl:284 SuperCritical - Hopf bifurcation point at r ≈ 0.0025304832720493943. Frequency ω ≈ 1.0 Period of the periodic orbit ≈ 6.283185307179586 Normal form z⋅(iω + a⋅δp + b⋅|z|²): ┌─ a = 0.9999999999898201 + 0.0im └─ b = -2.2460000000000004 + 0.2640000000000001im SuperCritical - Hopf bifurcation point at r ≈ 0.0025304832720493943. Frequency ω ≈ 1.0 Period of the periodic orbit ≈ 6.283185307179586 Normal form z⋅(iω + a⋅δp + b⋅|z|²): ┌─ a = 0.9999999999898201 + 0.0im └─ b = -2.2460000000000004 + 0.2640000000000001im SuperCritical - Hopf bifurcation point at r ≈ 0.0025304832720493943. Frequency ω ≈ 1.0 Period of the periodic orbit ≈ 6.283185307179586 Normal form z⋅(iω + a⋅δp + b⋅|z|²): ┌─ a = 0.9999999999898201 + 0.0im └─ b = -2.2460000000000004 + 0.2640000000000001im SuperCritical - Hopf bifurcation point at r ≈ 0.0025304832720493943. Frequency ω ≈ 1.0 Period of the periodic orbit ≈ 6.283185307179586 Normal form z⋅(iω + a⋅δp + b⋅|z|²): ┌─ a = 0.9999999999898201 + 0.0im └─ b = -2.2460000000000004 + 0.2640000000000001im Cusp bifurcation point at (:β1, :β2) ≈ (-0.0009964248359162387, -0.027191805077964384). Normal form: p1 + p2⋅A + c⋅A³ Normal form coefficient: c = 3.0 ┌ Warning: Assignment to `par` in soft scope is ambiguous because a global variable by the same name exists: `par` will be treated as a new local. Disambiguate by using `local par` to suppress this warning or `global par` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/A2f17/test/testNF.jl:327 ┌ Warning: Assignment to `prob` in soft scope is ambiguous because a global variable by the same name exists: `prob` will be treated as a new local. Disambiguate by using `local prob` to suppress this warning or `global prob` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/A2f17/test/testNF.jl:328 ┌ Warning: Assignment to `opt_newton` in soft scope is ambiguous because a global variable by the same name exists: `opt_newton` will be treated as a new local. Disambiguate by using `local opt_newton` to suppress this warning or `global opt_newton` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/A2f17/test/testNF.jl:329 ┌ Warning: Assignment to `opts_br` in soft scope is ambiguous because a global variable by the same name exists: `opts_br` will be treated as a new local. Disambiguate by using `local opts_br` to suppress this warning or `global opts_br` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/A2f17/test/testNF.jl:330 ┌ Warning: Assignment to `br` in soft scope is ambiguous because a global variable by the same name exists: `br` will be treated as a new local. Disambiguate by using `local br` to suppress this warning or `global br` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/A2f17/test/testNF.jl:332 ┌ Warning: Assignment to `sn_codim2` in soft scope is ambiguous because a global variable by the same name exists: `sn_codim2` will be treated as a new local. Disambiguate by using `local sn_codim2` to suppress this warning or `global sn_codim2` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/A2f17/test/testNF.jl:334 Bogdanov-Takens bifurcation point at (:β1, :β2) ≈ (-9.760068997667074e-17, 5.392241293895394e-8). Normal form (B, p1 + p2⋅B + b⋅A⋅B + a⋅A²) Normal form coefficients: a = 1.0000000000000029 b = -1.0 You can call various predictors: - predictor(::BogdanovTakens, ::Val{:HopfCurve}, ds) - predictor(::BogdanovTakens, ::Val{:FoldCurve}, ds) - predictor(::BogdanovTakens, ::Val{:HomoclinicCurve}, ds) - # 1, bt at p ≈ +0.00000005 ∈ (-0.00000000, +0.00000005), |δp|=5e-08, [converged], δ = ( 0, 0), step = 8 ┌─────────────────────────────────────────────────────┐ │ Newton step residual linear iterations │ ├─────────────┬──────────────────────┬────────────────┤ │ 0 │ 5.3922e-08 │ 0 │ │ 1 │ 1.5220e-22 │ 1 │ └─────────────┴──────────────────────┴────────────────┘ ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 235 running 1 of 1 signal (10): User defined signal 1 _ZN4llvm9MCContext29recordELFMergeableSectionInfoENS_9StringRefEjjj at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZN4llvm9MCContext13getELFSectionERKNS_5TwineEjjjPKNS_11MCSymbolELFEbjS6_ at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZN4llvm16MCObjectFileInfo23initELFMCObjectFileInfoERKNS_6TripleEb at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZN4llvm16MCObjectFileInfo20initMCObjectFileInfoERNS_9MCContextEbb at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZN4llvm24TargetLoweringObjectFile10InitializeERNS_9MCContextERKNS_13TargetMachineE at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZN4llvm27TargetLoweringObjectFileELF10InitializeERNS_9MCContextERKNS_13TargetMachineE at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZN4llvm10AsmPrinter16doInitializationERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZN4llvm13FPPassManager16doInitializationERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZN4llvm6legacy15PassManagerImpl3runERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZN4llvm3orc14SimpleCompilerclERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) operator() at /source/src/jitlayers.cpp:1388 _ZN4llvm3orc14IRCompileLayer4emitESt10unique_ptrINS0_29MaterializationResponsibilityESt14default_deleteIS3_EENS0_16ThreadSafeModuleE at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZN4llvm3orc16IRTransformLayer4emitESt10unique_ptrINS0_29MaterializationResponsibilityESt14default_deleteIS3_EENS0_16ThreadSafeModuleE at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZN4llvm3orc16IRTransformLayer4emitESt10unique_ptrINS0_29MaterializationResponsibilityESt14default_deleteIS3_EENS0_16ThreadSafeModuleE at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZN4llvm3orc16IRTransformLayer4emitESt10unique_ptrINS0_29MaterializationResponsibilityESt14default_deleteIS3_EENS0_16ThreadSafeModuleE at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZN4llvm3orc16IRTransformLayer4emitESt10unique_ptrINS0_29MaterializationResponsibilityESt14default_deleteIS3_EENS0_16ThreadSafeModuleE at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZN4llvm3orc31BasicIRLayerMaterializationUnit11materializeESt10unique_ptrINS0_29MaterializationResponsibilityESt14default_deleteIS3_EE at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZN4llvm3orc19MaterializationTask3runEv at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZN4llvm6detail18UniqueFunctionBaseIvJSt10unique_ptrINS_3orc4TaskESt14default_deleteIS4_EEEE8CallImplIPFvS7_EEEvPvRS7_ at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZN4llvm3orc16ExecutionSession22dispatchOutstandingMUsEv at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZN4llvm3orc16ExecutionSession17OL_completeLookupESt10unique_ptrINS0_21InProgressLookupStateESt14default_deleteIS3_EESt10shared_ptrINS0_23AsynchronousSymbolQueryEESt8functionIFvRKNS_8DenseMapIPNS0_8JITDylibENS_8DenseSetINS0_15SymbolStringPtrENS_12DenseMapInfoISF_vEEEENSG_ISD_vEENS_6detail12DenseMapPairISD_SI_EEEEEE at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZN4llvm3orc25InProgressFullLookupState8completeESt10unique_ptrINS0_21InProgressLookupStateESt14default_deleteIS3_EE at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZN4llvm3orc16ExecutionSession19OL_applyQueryPhase1ESt10unique_ptrINS0_21InProgressLookupStateESt14default_deleteIS3_EENS_5ErrorE at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZN4llvm3orc16ExecutionSession6lookupENS0_10LookupKindERKSt6vectorISt4pairIPNS0_8JITDylibENS0_19JITDylibLookupFlagsEESaIS8_EENS0_15SymbolLookupSetENS0_11SymbolStateENS_15unique_functionIFvNS_8ExpectedINS_8DenseMapINS0_15SymbolStringPtrENS_18JITEvaluatedSymbolENS_12DenseMapInfoISI_vEENS_6detail12DenseMapPairISI_SJ_EEEEEEEEESt8functionIFvRKNSH_IS6_NS_8DenseSetISI_SL_EENSK_IS6_vEENSN_IS6_SV_EEEEEE at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZN4llvm3orc16ExecutionSession6lookupERKSt6vectorISt4pairIPNS0_8JITDylibENS0_19JITDylibLookupFlagsEESaIS7_EENS0_15SymbolLookupSetENS0_10LookupKindENS0_11SymbolStateESt8functionIFvRKNS_8DenseMapIS5_NS_8DenseSetINS0_15SymbolStringPtrENS_12DenseMapInfoISI_vEEEENSJ_IS5_vEENS_6detail12DenseMapPairIS5_SL_EEEEEE at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) addModule at /source/src/jitlayers.cpp:1875 jl_add_to_ee at /source/src/jitlayers.cpp:2306 _jl_compile_codeinst at /source/src/jitlayers.cpp:277 jl_generate_fptr_impl at /source/src/jitlayers.cpp:536 jl_compile_method_internal at /source/src/gf.c:2536 [inlined] jl_compile_method_internal at /source/src/gf.c:2423 _jl_invoke at /source/src/gf.c:2940 [inlined] ijl_apply_generic at /source/src/gf.c:3125 test_bt_gh at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/src/codim2/MinAugHopf.jl:511 call_composed at ./operators.jl:1054 [inlined] call_composed at ./operators.jl:1053 [inlined] #_#113 at ./operators.jl:1050 [inlined] ComposedFunction at ./operators.jl:1050 [inlined] AbstractEvent at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/src/events/Event.jl:6 [inlined] PairOfEvents at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/src/events/Event.jl:222 [inlined] update_event! at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/src/Continuation.jl:305 unknown function (ip: 0x766ab8b3c666) _jl_invoke at /source/src/gf.c:2948 [inlined] ijl_apply_generic at /source/src/gf.c:3125 #iterate_from_two_points#388 at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/src/Continuation.jl:410 iterate_from_two_points at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/src/Continuation.jl:374 [inlined] #iterate#387 at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/src/Continuation.jl:368 iterate at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/src/Continuation.jl:318 [inlined] continuation at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/src/Continuation.jl:560 #continuation#390 at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/src/Continuation.jl:630 continuation at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/src/Continuation.jl:608 unknown function (ip: 0x766ab8cdab92) _jl_invoke at /source/src/gf.c:2948 [inlined] ijl_apply_generic at /source/src/gf.c:3125 #continuation_hopf#528 at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/src/codim2/MinAugHopf.jl:574 continuation_hopf at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/src/codim2/MinAugHopf.jl:346 unknown function (ip: 0x766ab8ccf75e) _jl_invoke at /source/src/gf.c:2948 [inlined] ijl_apply_generic at /source/src/gf.c:3125 #continuation_hopf#543 at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/src/codim2/MinAugHopf.jl:646 continuation_hopf at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/src/codim2/MinAugHopf.jl:588 [inlined] #continuation#487 at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/src/codim2/codim2.jl:235 [inlined] continuation at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/src/codim2/codim2.jl:220 unknown function (ip: 0x766ab8ccc915) _jl_invoke at /source/src/gf.c:2948 [inlined] ijl_apply_generic at /source/src/gf.c:3125 top-level scope at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/test/testNF.jl:343 _jl_invoke at /source/src/gf.c:2948 [inlined] ijl_invoke at /source/src/gf.c:2955 jl_toplevel_eval_flex at /source/src/toplevel.c:934 jl_toplevel_eval_flex at /source/src/toplevel.c:886 ijl_toplevel_eval_in at /source/src/toplevel.c:994 eval at ./boot.jl:430 [inlined] include_string at ./loading.jl:2734 _jl_invoke at /source/src/gf.c:2948 [inlined] ijl_apply_generic at /source/src/gf.c:3125 _include at ./loading.jl:2794 include at ./sysimg.jl:38 unknown function (ip: 0x766ad94ca082) _jl_invoke at /source/src/gf.c:2948 [inlined] ijl_apply_generic at /source/src/gf.c:3125 jl_apply at /source/src/julia.h:2157 [inlined] do_call at /source/src/interpreter.c:126 eval_value at /source/src/interpreter.c:223 eval_stmt_value at /source/src/interpreter.c:174 [inlined] eval_body at /source/src/interpreter.c:670 eval_body at /source/src/interpreter.c:539 eval_body at /source/src/interpreter.c:539 eval_body at /source/src/interpreter.c:539 eval_body at /source/src/interpreter.c:539 jl_interpret_toplevel_thunk at /source/src/interpreter.c:824 jl_toplevel_eval_flex at /source/src/toplevel.c:943 jl_toplevel_eval_flex at /source/src/toplevel.c:886 ijl_toplevel_eval_in at /source/src/toplevel.c:994 eval at ./boot.jl:430 [inlined] include_string at ./loading.jl:2734 _jl_invoke at /source/src/gf.c:2948 [inlined] ijl_apply_generic at /source/src/gf.c:3125 _include at ./loading.jl:2794 include at ./sysimg.jl:38 unknown function (ip: 0x766ad94ca082) _jl_invoke at /source/src/gf.c:2948 [inlined] ijl_apply_generic at /source/src/gf.c:3125 jl_apply at /source/src/julia.h:2157 [inlined] do_call at /source/src/interpreter.c:126 eval_value at /source/src/interpreter.c:223 eval_stmt_value at /source/src/interpreter.c:174 [inlined] eval_body at /source/src/interpreter.c:670 jl_interpret_toplevel_thunk at /source/src/interpreter.c:824 jl_toplevel_eval_flex at /source/src/toplevel.c:943 jl_toplevel_eval_flex at /source/src/toplevel.c:886 ijl_toplevel_eval_in at /source/src/toplevel.c:994 eval at ./boot.jl:430 [inlined] exec_options at ./client.jl:296 _start at ./client.jl:531 jfptr__start_73523.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2948 [inlined] ijl_apply_generic at /source/src/gf.c:3125 jl_apply at /source/src/julia.h:2157 [inlined] true_main at /source/src/jlapi.c:900 jl_repl_entrypoint at /source/src/jlapi.c:1059 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x766ada7d4249) __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) unknown function (ip: (nil)) ============================================================== Profile collected. A report will print at the next yield point ============================================================== ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:522 poptask at ./task.jl:1012 wait at ./task.jl:1021 #wait#731 at ./condition.jl:130 wait at ./condition.jl:125 [inlined] wait at ./process.jl:694 wait at ./process.jl:687 unknown function (ip: 0x79313dd3c872) _jl_invoke at /source/src/gf.c:2948 [inlined] ijl_apply_generic at /source/src/gf.c:3125 subprocess_handler at /source/usr/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:2142 #131 at /source/usr/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:2082 withenv at ./env.jl:265 #118 at /source/usr/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:1931 with_temp_env at /source/usr/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:1789 #116 at /source/usr/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:1898 #mktempdir#28 at ./file.jl:819 unknown function (ip: 0x79313dd25b4d) _jl_invoke at /source/src/gf.c:2948 [inlined] ijl_apply_generic at /source/src/gf.c:3125 mktempdir at ./file.jl:815 mktempdir at ./file.jl:815 [inlined] #sandbox#115 at /source/usr/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:1845 [inlined] sandbox at /source/usr/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:1837 unknown function (ip: 0x79313dd1a10a) _jl_invoke at /source/src/gf.c:2948 [inlined] ijl_apply_generic at /source/src/gf.c:3125 #test#128 at /source/usr/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:2063 test at /source/usr/share/julia/stdlib/v1.11/Pkg/src/Operations.jl:2007 [inlined] #test#146 at /source/usr/share/julia/stdlib/v1.11/Pkg/src/API.jl:481 test at /source/usr/share/julia/stdlib/v1.11/Pkg/src/API.jl:460 unknown function (ip: 0x79313dd19e0d) _jl_invoke at /source/src/gf.c:2948 [inlined] ijl_apply_generic at /source/src/gf.c:3125 #test#77 at /source/usr/share/julia/stdlib/v1.11/Pkg/src/API.jl:159 unknown function (ip: 0x79313dd197fd) _jl_invoke at /source/src/gf.c:2948 [inlined] ijl_apply_generic at /source/src/gf.c:3125 test at /source/usr/share/julia/stdlib/v1.11/Pkg/src/API.jl:148 #test#75 at /source/usr/share/julia/stdlib/v1.11/Pkg/src/API.jl:147 [inlined] test at /source/usr/share/julia/stdlib/v1.11/Pkg/src/API.jl:147 [inlined] #test#74 at /source/usr/share/julia/stdlib/v1.11/Pkg/src/API.jl:146 [inlined] test at /source/usr/share/julia/stdlib/v1.11/Pkg/src/API.jl:146 unknown function (ip: 0x79313dd15ca6) _jl_invoke at /source/src/gf.c:2948 [inlined] ijl_apply_generic at /source/src/gf.c:3125 jl_apply at /source/src/julia.h:2157 [inlined] do_call at /source/src/interpreter.c:126 eval_value at /source/src/interpreter.c:223 eval_stmt_value at /source/src/interpreter.c:174 [inlined] eval_body at /source/src/interpreter.c:670 eval_body at /source/src/interpreter.c:539 eval_body at /source/src/interpreter.c:539 jl_interpret_toplevel_thunk at /source/src/interpreter.c:824 jl_toplevel_eval_flex at /source/src/toplevel.c:943 jl_toplevel_eval_flex at /source/src/toplevel.c:886 ijl_toplevel_eval_in at /source/src/toplevel.c:994 eval at ./boot.jl:430 [inlined] include_string at ./loading.jl:2734 _jl_invoke at /source/src/gf.c:2948 [inlined] ijl_apply_generic at /source/src/gf.c:3125 _include at ./loading.jl:2794 include at ./Base.jl:557 jfptr_include_46977.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2948 [inlined] ijl_apply_generic at /source/src/gf.c:3125 exec_options at ./client.jl:323 _start at ./client.jl:531 jfptr__start_73523.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2948 [inlined] ijl_apply_generic at /source/src/gf.c:3125 jl_apply at /source/src/julia.h:2157 [inlined] true_main at /source/src/jlapi.c:900 jl_repl_entrypoint at /source/src/jlapi.c:1059 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x79313efb6249) __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) unknown function (ip: (nil)) ============================================================== Profile collected. A report will print at the next yield point ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.11/Profile/src/Profile.jl:1240 Overhead ╎ [+additional indent] Count File:Line; Function ========================================================= Thread 1 Task 0x0000793131a00010 Total snapshots: 27. Utilization: 0% ╎27 @Base/client.jl:531; _start() ╎ 27 @Base/client.jl:323; exec_options(opts::Base.JLOptions) ╎ 27 @Base/Base.jl:557; include(mod::Module, _path::String) ╎ 27 @Base/loading.jl:2794; _include(mapexpr::Function, mod::Module, _path:… ╎ 27 @Base/loading.jl:2734; include_string(mapexpr::typeof(identity), mod:… ╎ 27 @Base/boot.jl:430; eval ╎ ╎ 27 @Pkg/src/API.jl:146; kwcall(::@NamedTuple{julia_args::Cmd}, ::typeo… ╎ ╎ 27 @Pkg/src/API.jl:146; #test#74 ╎ ╎ 27 @Pkg/src/API.jl:147; test ╎ ╎ 27 @Pkg/src/API.jl:147; #test#75 ╎ ╎ 27 @Pkg/src/API.jl:148; kwcall(::@NamedTuple{julia_args::Cmd}, ::t… ╎ ╎ ╎ 27 @Pkg/src/API.jl:159; test(pkgs::Vector{Pkg.Types.PackageSpec};… ╎ ╎ ╎ 27 @Pkg/src/API.jl:460; kwcall(::@NamedTuple{julia_args::Cmd, io… ╎ ╎ ╎ 27 @Pkg/src/API.jl:481; test(ctx::Pkg.Types.Context, pkgs::Vect… ╎ ╎ ╎ 27 …src/Operations.jl:2007; test ╎ ╎ ╎ 27 …src/Operations.jl:2063; test(ctx::Pkg.Types.Context, pkgs… ╎ ╎ ╎ ╎ 27 …rc/Operations.jl:1837; kwcall(::@NamedTuple{preferences:… ╎ ╎ ╎ ╎ 27 …rc/Operations.jl:1845; #sandbox#115 ╎ ╎ ╎ ╎ 27 @Base/file.jl:815; mktempdir ╎ ╎ ╎ ╎ 27 @Base/file.jl:815; mktempdir(fn::Function, parent::Str… ╎ ╎ ╎ ╎ 27 @Base/file.jl:819; mktempdir(fn::Pkg.Operations.var"#… ╎ ╎ ╎ ╎ ╎ 27 …/Operations.jl:1898; (::Pkg.Operations.var"#116#121… ╎ ╎ ╎ ╎ ╎ 27 …/Operations.jl:1789; with_temp_env(fn::Pkg.Operati… ╎ ╎ ╎ ╎ ╎ 27 …Operations.jl:1931; (::Pkg.Operations.var"#118#12… ╎ ╎ ╎ ╎ ╎ 27 @Base/env.jl:265; withenv(::Pkg.Operations.var"#1… ╎ ╎ ╎ ╎ ╎ 27 …Operations.jl:2082; (::Pkg.Operations.var"#131#… ╎ ╎ ╎ ╎ ╎ ╎ 27 …perations.jl:2142; subprocess_handler(cmd::Cmd… ╎ ╎ ╎ ╎ ╎ ╎ 27 …e/process.jl:687; wait(x::Base.Process) ╎ ╎ ╎ ╎ ╎ ╎ 27 …e/process.jl:694; wait(x::Base.Process, sync… ╎ ╎ ╎ ╎ ╎ ╎ 27 …ondition.jl:125; wait ╎ ╎ ╎ ╎ ╎ ╎ 27 …ondition.jl:130; wait(c::Base.GenericCondi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 27 …ase/task.jl:1021; wait() 26╎ ╎ ╎ ╎ ╎ ╎ ╎ 27 …ase/task.jl:1012; poptask(W::Base.Intrus… [235] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/BifurcationKit/A2f17/test/testNF.jl:326 _ZL29prepareICWorklistFromFunctionRN4llvm8FunctionERKNS_10DataLayoutEPKNS_17TargetLibraryInfoERNS_19InstructionWorklistE at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZL31combineInstructionsOverFunctionRN4llvm8FunctionERNS_19InstructionWorklistEPNS_9AAResultsERNS_15AssumptionCacheERNS_17TargetLibraryInfoERNS_19TargetTransformInfoERNS_13DominatorTreeERNS_25OptimizationRemarkEmitterEPNS_18BlockFrequencyInfoEPNS_18ProfileSummaryInfoEjPNS_8LoopInfoE at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) _ZN4llvm15InstCombinePass3runERNS_8FunctionERNS_15AnalysisManagerIS1_JEEE at /opt/julia/bin/../lib/julia/libLLVM-16jl.so (unknown line) PkgEval terminated after 2723.12s: test duration exceeded the time limit