Package evaluation of Optim on Julia 1.12.0-DEV.1805 (a080deafdd*) started at 2025-03-24T18:41:25.016 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.56s ################################################################################ # Installation # Installing Optim... Resolving package versions... Updating `~/.julia/environments/v1.12/Project.toml` [429524aa] + Optim v1.11.0 Updating `~/.julia/environments/v1.12/Manifest.toml` [47edcb42] + ADTypes v1.14.0 [79e6a3ab] + Adapt v4.3.0 [66dad0bd] + AliasTables v1.1.3 [4fba245c] + ArrayInterface v7.18.0 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.16.0 [187b0558] + ConstructionBase v1.5.8 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.6.48 [ffbed154] + DocStringExtensions v0.9.3 [1a297f60] + FillArrays v1.13.0 [6a86dc24] + FiniteDiff v2.27.0 [f6369f11] + ForwardDiff v0.10.38 [92d709cd] + IrrationalConstants v0.2.4 [692b3bcd] + JLLWrappers v1.7.0 [d3d80556] + LineSearches v7.3.0 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.15 [e1d29d7a] + Missings v1.2.0 [d41bc354] + NLSolversBase v7.9.0 [77ba4419] + NaNMath v1.1.2 [429524aa] + Optim v1.11.0 [bac558e1] + OrderedCollections v1.8.0 [d96e819e] + Parameters v0.12.3 [85a6dd25] + PositiveFactorizations v0.2.4 [21216c6a] + Preferences v1.4.3 [43287f4e] + PtrArrays v1.3.0 [ae029012] + Requires v1.3.1 [efcf1570] + Setfield v1.1.2 [a2af1166] + SortingAlgorithms v1.2.1 [276daf66] + SpecialFunctions v2.5.0 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.0 [2913bbd2] + StatsBase v0.34.4 [3a884ed6] + UnPack v1.0.2 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [dc6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.2.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.12.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.2.0+0 [e37daf67] + LibGit2_jll v1.8.0+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.6+1 [4536629a] + OpenBLAS_jll v0.3.28+3 [05823500] + OpenLibm_jll v0.8.1+3 [bea87d4a] + SuiteSparse_jll v7.8.0+1 [8e850b90] + libblastrampoline_jll v5.11.2+0 Installation completed after 4.2s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 23.18s ################################################################################ # Testing # Testing Optim Status `/tmp/jl_IQNTMl/Project.toml` [34da2185] Compat v4.16.0 [31c24e10] Distributions v0.25.118 [1a297f60] FillArrays v1.13.0 [f6369f11] ForwardDiff v0.10.38 [d3d80556] LineSearches v7.3.0 [b8f27783] MathOptInterface v1.38.0 [eff96d63] Measurements v2.12.0 [d41bc354] NLSolversBase v7.9.0 [77ba4419] NaNMath v1.1.2 [429524aa] Optim v1.11.0 [cec144fc] OptimTestProblems v2.0.3 [d96e819e] Parameters v0.12.3 [85a6dd25] PositiveFactorizations v0.2.4 [731186ca] RecursiveArrayTools v3.31.1 [860ef19b] StableRNGs v1.0.2 [2913bbd2] StatsBase v0.34.4 [37e2e46d] LinearAlgebra v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.12.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_IQNTMl/Manifest.toml` [47edcb42] ADTypes v1.14.0 [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.3.0 [66dad0bd] AliasTables v1.1.3 [4fba245c] ArrayInterface v7.18.0 [6e4b80f9] BenchmarkTools v1.6.0 [49dc2e85] Calculus v0.5.2 [523fee87] CodecBzip2 v0.8.5 [944b1d66] CodecZlib v0.7.8 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.16.0 [a33af91c] CompositionsBase v0.1.2 [187b0558] ConstructionBase v1.5.8 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [a0c0ee7d] DifferentiationInterface v0.6.48 [31c24e10] Distributions v0.25.118 [ffbed154] DocStringExtensions v0.9.3 [e2ba6199] ExprTools v0.1.10 [1a297f60] FillArrays v1.13.0 [6a86dc24] FiniteDiff v2.27.0 [f6369f11] ForwardDiff v0.10.38 [46192b85] GPUArraysCore v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.4 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.0 [682c06a0] JSON v0.21.4 [0f8b85d8] JSON3 v1.14.1 [d3d80556] LineSearches v7.3.0 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.15 [b8f27783] MathOptInterface v1.38.0 [eff96d63] Measurements v2.12.0 [e1d29d7a] Missings v1.2.0 [d8a4904e] MutableArithmetics v1.6.4 [d41bc354] NLSolversBase v7.9.0 [77ba4419] NaNMath v1.1.2 [429524aa] Optim v1.11.0 [cec144fc] OptimTestProblems v2.0.3 [bac558e1] OrderedCollections v1.8.0 [90014a1f] PDMats v0.11.32 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.1 [85a6dd25] PositiveFactorizations v0.2.4 [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [3cdcf5f2] RecipesBase v1.3.4 [731186ca] RecursiveArrayTools v3.31.1 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.8.0 [7e49a35a] RuntimeGeneratedFunctions v0.5.13 [efcf1570] Setfield v1.1.2 [a2af1166] SortingAlgorithms v1.2.1 [276daf66] SpecialFunctions v2.5.0 [860ef19b] StableRNGs v1.0.2 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.0 [2913bbd2] StatsBase v0.34.4 [4c63d2b9] StatsFuns v1.3.2 [856f2bd8] StructTypes v1.11.0 [2efcf032] SymbolicIndexingInterface v0.3.38 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.0 [3bb67fe8] TranscodingStreams v0.11.3 [3a884ed6] UnPack v1.0.2 [6e34b625] Bzip2_jll v1.0.9+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [dc6e5ff7] JuliaSyntaxHighlighting v1.12.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.2.0 [de0858da] Printf v1.11.0 [9abbd945] Profile v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.12.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.2.0+0 [e37daf67] LibGit2_jll v1.8.0+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+1 [4536629a] OpenBLAS_jll v0.3.28+3 [05823500] OpenLibm_jll v0.8.1+3 [bea87d4a] SuiteSparse_jll v7.8.0+1 [83775a58] Zlib_jll v1.3.1+1 [8e850b90] libblastrampoline_jll v5.11.2+0 Testing Running tests... ./special/bigfloat/initial_convergence.jl 38.132411 seconds (18.85 M allocations: 958.909 MiB, 1.06% gc time, 99.93% compilation time: 3% of which was recompilation) Test Summary: | Total Time special | 0 38.4s ./general/api.jl 33.316179 seconds (15.43 M allocations: 793.985 MiB, 1.37% gc time, 99.47% compilation time: 4% of which was recompilation) ./general/callables.jl 0.175767 seconds (106.83 k allocations: 5.029 MiB, 88.60% compilation time) ./general/callbacks.jl 12.055537 seconds (4.21 M allocations: 224.438 MiB, 0.41% gc time, 99.25% compilation time: <1% of which was recompilation) ./general/convergence.jl 0.653046 seconds (278.41 k allocations: 14.274 MiB, 93.61% compilation time: 38% of which was recompilation) ./general/default_solvers.jl 0.483392 seconds (463.11 k allocations: 23.882 MiB, 97.41% compilation time: 18% of which was recompilation) ./general/deprecate.jl 0.000306 seconds (104 allocations: 6.625 KiB) ./general/initial_convergence.jl 6.537387 seconds (2.30 M allocations: 119.286 MiB, 1.19% gc time, 99.73% compilation time: <1% of which was recompilation) ./general/objective_types.jl 12.064163 seconds (10.60 M allocations: 543.334 MiB, 1.25% gc time, 98.95% compilation time: 3% of which was recompilation) ./general/Optim.jl Skipping Optim.Optimizer 1.339084 seconds (502.29 k allocations: 27.004 MiB, 91.70% compilation time: <1% of which was recompilation) ./general/optimize.jl 3.837107 seconds (3.27 M allocations: 164.534 MiB, 0.98% gc time, 98.05% compilation time: 3% of which was recompilation) ./general/type_stability.jl 33.305917 seconds (14.06 M allocations: 722.028 MiB, 0.87% gc time, 99.86% compilation time: <1% of which was recompilation) ./general/types.jl 4.392147 seconds (1.73 M allocations: 92.174 MiB, 0.70% gc time, 99.14% compilation time: 12% of which was recompilation) ./general/counter.jl 21.886528 seconds (6.13 M allocations: 314.244 MiB, 0.32% gc time, 99.67% compilation time: <1% of which was recompilation) ./general/maximize.jl 4.739278 seconds (2.32 M allocations: 113.459 MiB, 1.52% gc time, 96.83% compilation time: 2% of which was recompilation) Test Summary: | Pass Total Time general | 2349 2349 2m14.8s ./univariate/optimize/interface.jl WARNING: Method definition (::Main.yObj)(Any) in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/test/univariate/optimize/interface.jl:9 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/test/univariate/optimize/interface.jl:14. 12.032797 seconds (6.06 M allocations: 312.482 MiB, 3.23% gc time, 99.89% compilation time: 7% of which was recompilation) ./univariate/optimize/optimize.jl 0.015229 seconds (5.92 k allocations: 232.906 KiB, 0.01% compilation time) ./univariate/solvers/golden_section.jl 0 6.754903e-01 0.000000e+00 6.283185e+00 1 -6.754903e-01 2.399963e+00 6.283185e+00 2 -9.961710e-01 3.883222e+00 6.283185e+00 2.869391 seconds (1.46 M allocations: 77.156 MiB, 2.13% gc time, 96.55% compilation time: <1% of which was recompilation) ./univariate/solvers/brent.jl 0 6.754903e-01 0.000000e+00 6.283185e+00 initial 1 -6.754903e-01 2.399963e+00 6.283185e+00 lower 2 -9.961710e-01 3.883222e+00 6.283185e+00 lower 2.918529 seconds (1.67 M allocations: 89.570 MiB, 96.07% compilation time) ./univariate/dual.jl 3.675256 seconds (3.88 M allocations: 189.595 MiB, 1.26% gc time, 99.67% compilation time) Test Summary: | Pass Total Time univariate | 56 56 21.5s ./multivariate/optimize/interface.jl 12.439839 seconds (4.82 M allocations: 249.664 MiB, 0.70% gc time, 98.81% compilation time: 5% of which was recompilation) ./multivariate/optimize/optimize.jl 7.996930 seconds (3.01 M allocations: 152.528 MiB, 0.54% gc time, 93.97% compilation time: <1% of which was recompilation) ./multivariate/optimize/inplace.jl 0.853089 seconds (284.33 k allocations: 14.489 MiB, 98.08% compilation time) ./multivariate/solvers/constrained/fminbox.jl 32.317254 seconds (18.02 M allocations: 956.304 MiB, 0.90% gc time, 98.33% compilation time: 3% of which was recompilation) ./multivariate/solvers/constrained/ipnewton/interface.jl 35.367052 seconds (14.71 M allocations: 740.613 MiB, 0.68% gc time, 99.88% compilation time: 2% of which was recompilation) ./multivariate/solvers/constrained/ipnewton/constraints.jl Iter Lagrangian value Function value Gradient norm |==constr.| μ 0 1.325355e+05 -1.131426e-16 8.836323e+04 1.325355e+05 2.72e-04 * c: [6.0] * time: 1.742842087273664e9 * g(x): [88357.23479296362, -66267.7444111528] * x: [12.0, 14.0] * gtilde(x): [88357.23474122555, -66267.74465259715] * h(x): [3.572390764231408e-5 0.019671531709867046; 0.019671531709867046 0.0002749782775992128] * α: 1.0 * bstate: BarrierStateVars{Float64}: slack_x: [7.0, 3.0, 9.0, 1.0] slack_c: Float64[] λx: [3.880355485284997e-5, 9.054162798998327e-5, 3.0180542663327756e-5, 0.0002716248839699498] λc: Float64[] λxE: Float64[] λcE: [-22089.248217532382] * bgrad: BarrierStateVars{Float64}: slack_x: [0.0, 0.0, 0.0, 0.0] slack_c: Float64[] λx: [0.0, 0.0, 0.0, 0.0] λc: Float64[] λxE: Float64[] λcE: [-6.0] |gx| = 110446.43458463406, |Hstepx + gx| = 0.0 |gE| = 6.0, |HstepλE + gE| = 4.822439976237547e-7 L0 = 132535.48788140537, L1 = -265071.0104107117, L2 = 265070.98919730965 α = 0.5345893752019844, value: (132535.48788140537, 28708.106124992642, -9168.657958215685), slope: (-265071.0104107117, -123366.36791592586, -123366.87591154999) 1 2.870811e+04 -1.351385e-02 4.112536e+04 2.870812e+04 2.72e-05 * c: [2.792463601897886] * time: 1.742842090296662e9 * g(x): [41122.539199239945, -30841.711823299735] * x: [11.947365900474471, 14.999] * gtilde(x): [41122.53914938217, -30841.712339447375] * h(x): [0.0009609917249249723 0.01003740594764946; 0.01003740594764946 0.5435018277008664] * α: 0.5345893752019844 * bstate: BarrierStateVars{Float64}: slack_x: [6.9473659004744714, 3.0526340995255286, 9.999, 0.0010000000000000009] slack_c: Float64[] λx: [3.909532487685986e-5, 8.895310230370721e-5, 2.6830502427698376e-5, 0.0005429781430559297] λc: Float64[] λxE: Float64[] λcE: [-10280.570603701372] * bgrad: BarrierStateVars{Float64}: slack_x: [3.5185571340610974e-5, 8.005505310704233e-5, 2.4113981935949704e-5, -0.026619510253939025] slack_c: Float64[] λx: [0.0, 0.0, 0.0, 5.551115123125783e-16] λc: Float64[] λxE: Float64[] λcE: [-2.792463601897886] |gx| = 51403.05872340371, |Hstepx + gx| = 0.0 |gE| = 2.792463601897886, |HstepλE + gE| = 8.828777797731391e-8 L0 = 28708.105745855242, L1 = -57416.67519353334, L2 = 57416.673811543704 α = 0.0030311605533831793, value: (28708.105745855242, 28534.330365267975, 28534.06658490219), slope: (-57416.67519353334, -57242.63077740227, -57242.63603676932) 2 2.853433e+04 -1.427745e-02 4.100078e+04 2.853434e+04 2.30e-04 * c: [2.783999196788521] * time: 1.742842090297028e9 * g(x): [40997.890180479895, -30748.22564305577] * x: [11.944389097184102, 14.997852397315963] * gtilde(x): [40997.890130861626, -30748.225616838263] * h(x): [0.001013181536545749 0.010048653607865754; 0.010048653607865754 0.0008059471382789342] * α: 0.0030311605533831793 * bstate: BarrierStateVars{Float64}: slack_x: [6.944389097184102, 3.0556109028158978, 9.997852397315963, 0.0021476026840380733] slack_c: Float64[] λx: [3.9005423302972634e-5, 8.862369917582548e-5, 2.6760488460467503e-5, 5.42978143055887e-7] λc: Float64[] λxE: Float64[] λcE: [-10249.40835266136] * bgrad: BarrierStateVars{Float64}: slack_x: [5.8321850641475e-6, 1.3231942413964042e-5, 3.718752616694407e-6, -0.10726691187101653] slack_c: Float64[] λx: [0.0, -4.440892098500626e-16, 0.0, 1.2754554357119474e-15] λc: Float64[] λxE: Float64[] λcE: [-2.783999196788521] 65.012761 seconds (20.19 M allocations: 1008.888 MiB, 0.47% gc time, 96.38% compilation time: 3% of which was recompilation) ./multivariate/solvers/constrained/ipnewton/counter.jl WARNING: Method definition fcounter() in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/test/general/counter.jl:7 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/test/multivariate/solvers/constrained/ipnewton/counter.jl:7. WARNING: Method definition fcounter(Bool) in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/test/general/counter.jl:7 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/test/multivariate/solvers/constrained/ipnewton/counter.jl:7. WARNING: Method definition gcounter() in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/test/general/counter.jl:17 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/test/multivariate/solvers/constrained/ipnewton/counter.jl:17. WARNING: Method definition gcounter(Bool) in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/test/general/counter.jl:17 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/test/multivariate/solvers/constrained/ipnewton/counter.jl:17. WARNING: Method definition hcounter() in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/test/general/counter.jl:27 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/test/multivariate/solvers/constrained/ipnewton/counter.jl:27. WARNING: Method definition hcounter(Bool) in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/test/general/counter.jl:27 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/test/multivariate/solvers/constrained/ipnewton/counter.jl:27. 0.391954 seconds (86.36 k allocations: 3.935 MiB, 92.79% compilation time: 21% of which was recompilation) ./multivariate/solvers/constrained/ipnewton/ipnewton_unconstrained.jl 10.372554 seconds (13.69 M allocations: 815.538 MiB, 6.51% gc time, 96.63% compilation time: 4% of which was recompilation) ./multivariate/solvers/constrained/samin.jl ================================================================================ SAMIN results ==> Normal convergence <== total number of objective function evaluations: 23151 Obj. value: 0.0000000000 parameter search width -3.77931 0.00000 -3.28319 0.00000 ================================================================================ 4.717383 seconds (2.95 M allocations: 145.371 MiB, 0.54% gc time, 99.41% compilation time: 4% of which was recompilation) ./multivariate/solvers/first_order/accelerated_gradient_descent.jl 6.367162 seconds (8.44 M allocations: 1.338 GiB, 3.74% gc time, 66.01% compilation time: 2% of which was recompilation) ./multivariate/solvers/first_order/adam_adamax.jl 11.216567 seconds (10.22 M allocations: 1.205 GiB, 1.67% gc time, 83.45% compilation time: 2% of which was recompilation) ./multivariate/solvers/first_order/bfgs.jl 16.675789 seconds (19.74 M allocations: 1.830 GiB, 1.96% gc time, 82.25% compilation time: <1% of which was recompilation) ./multivariate/solvers/first_order/cg.jl 15.632647 seconds (5.51 M allocations: 646.059 MiB, 0.82% gc time, 92.71% compilation time: <1% of which was recompilation) ./multivariate/solvers/first_order/gradient_descent.jl 30.388212 seconds (87.95 M allocations: 11.427 GiB, 5.37% gc time, 6.51% compilation time: 2% of which was recompilation) ./multivariate/solvers/first_order/l_bfgs.jl 3.770686 seconds (11.66 M allocations: 1.308 GiB, 6.07% gc time, 29.16% compilation time) ./multivariate/solvers/first_order/momentum_gradient_descent.jl 5.244092 seconds (8.86 M allocations: 1.833 GiB, 5.63% gc time, 25.41% compilation time: <1% of which was recompilation) ./multivariate/solvers/first_order/ngmres.jl ┌ Warning: Use caution. N-GMRES/O-ACCEL has only been tested with Gradient Descent and L-BFGS preconditioning. └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/first_order/ngmres.jl:210 51.376914 seconds (33.91 M allocations: 3.473 GiB, 1.23% gc time, 88.45% compilation time: 6% of which was recompilation) ./multivariate/solvers/second_order/newton.jl 62.246978 seconds (112.60 M allocations: 20.426 GiB, 5.51% gc time, 24.35% compilation time: <1% of which was recompilation) ./multivariate/solvers/second_order/newton_trust_region.jl ┌ Warning: Terminated early due to NaN in Hessian. └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/optimize/optimize.jl:102 51.107934 seconds (105.28 M allocations: 15.254 GiB, 4.95% gc time, 17.55% compilation time: 18% of which was recompilation) ./multivariate/solvers/second_order/krylov_trust_region.jl 0.924310 seconds (253.05 k allocations: 47.510 MiB, 3.95% gc time, 82.17% compilation time: 5% of which was recompilation) ./multivariate/solvers/zeroth_order/grid_search.jl 0.110744 seconds (23.01 k allocations: 1.085 MiB, 91.45% compilation time) ./multivariate/solvers/zeroth_order/nelder_mead.jl 2.377492 seconds (3.34 M allocations: 169.835 MiB, 99.40% compilation time: 4% of which was recompilation) ./multivariate/solvers/zeroth_order/particle_swarm.jl Iter Function value Gradient norm 0 1.000000e+00 NaN * time: 6.794929504394531e-5 * x: [0.0, 0.0] 1 1.000000e+00 NaN * time: 0.36211299896240234 * x: [0.0, 0.0] 2 1.000000e+00 NaN * time: 0.3621640205383301 * x: [0.0, 0.0] 3 1.000000e+00 NaN * time: 0.3622000217437744 * x: [0.0, 0.0] 4 6.083684e-01 NaN * time: 0.36223506927490234 * x: [0.23897368559260812, 0.07419856886452963] 5 6.083684e-01 NaN * time: 0.3622701168060303 * x: [0.23897368559260812, 0.07419856886452963] 6 6.083684e-01 NaN * time: 0.36230897903442383 * x: [0.23897368559260812, 0.07419856886452963] 7 6.083684e-01 NaN * time: 0.36234498023986816 * x: [0.23897368559260812, 0.07419856886452963] 8 6.083684e-01 NaN * time: 0.3623800277709961 * x: [0.23897368559260812, 0.07419856886452963] 9 6.083684e-01 NaN * time: 0.36241602897644043 * x: [0.23897368559260812, 0.07419856886452963] 10 6.083684e-01 NaN * time: 0.36245107650756836 * x: [0.23897368559260812, 0.07419856886452963] 11 6.083684e-01 NaN * time: 0.3624861240386963 * x: [0.23897368559260812, 0.07419856886452963] 12 6.083684e-01 NaN * time: 0.3625209331512451 * x: [0.23897368559260812, 0.07419856886452963] 13 6.083684e-01 NaN * time: 0.36255502700805664 * x: [0.23897368559260812, 0.07419856886452963] 14 5.598872e-01 NaN * time: 0.36258912086486816 * x: [0.253564013166804, 0.05907889338238893] 15 5.598872e-01 NaN * time: 0.3626260757446289 * x: [0.253564013166804, 0.05907889338238893] 16 5.598872e-01 NaN * time: 0.3626680374145508 * x: [0.253564013166804, 0.05907889338238893] 17 5.598872e-01 NaN * time: 0.36270594596862793 * x: [0.253564013166804, 0.05907889338238893] 18 5.562575e-01 NaN * time: 0.3627440929412842 * x: [0.2659891862047778, 0.057526912339148174] 19 5.562575e-01 NaN * time: 0.3627800941467285 * x: [0.2659891862047778, 0.057526912339148174] 20 5.533510e-01 NaN * time: 0.36281609535217285 * x: [0.2670868284516839, 0.058611643733057744] 21 5.521910e-01 NaN * time: 0.3628520965576172 * x: [0.2630373575877413, 0.059661278575635565] 22 5.521910e-01 NaN * time: 0.3629031181335449 * x: [0.2630373575877413, 0.059661278575635565] 23 5.509314e-01 NaN * time: 0.36293911933898926 * x: [0.2641301397188243, 0.06005549520957907] 24 5.504905e-01 NaN * time: 0.36297607421875 * x: [0.26525605202856156, 0.06004485388048433] 25 5.503370e-01 NaN * time: 0.3630099296569824 * x: [0.26570641695245645, 0.06004059734884643] 26 5.502792e-01 NaN * time: 0.36304402351379395 * x: [0.2658865629220144, 0.06003889473619127] 27 5.502473e-01 NaN * time: 0.36307811737060547 * x: [0.2659889322538237, 0.06003792721346364] 28 5.502348e-01 NaN * time: 0.3631119728088379 * x: [0.2660298799865474, 0.06003754020437259] 29 5.502294e-01 NaN * time: 0.3631479740142822 * x: [0.2660475257526359, 0.06003737342903631] 30 5.502270e-01 NaN * time: 0.36318492889404297 * x: [0.266055301584755, 0.06003729993735508] 31 5.502260e-01 NaN * time: 0.3632221221923828 * x: [0.26605860516754587, 0.06003726871422041] 32 5.502256e-01 NaN * time: 0.36325907707214355 * x: [0.26605992660066224, 0.06003725622496654] 33 5.502255e-01 NaN * time: 0.3632941246032715 * x: [0.2660604575300883, 0.06003725120699605] 34 5.502254e-01 NaN * time: 0.3633289337158203 * x: [0.26606078849386666, 0.06003724807895983] 35 5.502253e-01 NaN * time: 0.36336398124694824 * x: [0.2660609715714071, 0.060037246348640036] 36 5.502253e-01 NaN * time: 0.3634049892425537 * x: [0.266061051599646, 0.06003724559226956] 37 5.502253e-01 NaN * time: 0.36344099044799805 * x: [0.2660610951055206, 0.06003724518108272] 38 5.502253e-01 NaN * time: 0.363476037979126 * x: [0.26606111250787046, 0.06003724501660798] 39 5.502253e-01 NaN * time: 0.3635110855102539 * x: [0.2660611194688104, 0.06003724495081809] 40 5.502253e-01 NaN * time: 0.36354708671569824 * x: [0.2660611227835685, 0.06003724491948933] 41 5.502253e-01 NaN * time: 0.3635830879211426 * x: [0.2660611241094718, 0.060037244906957825] 42 5.502253e-01 NaN * time: 0.36364197731018066 * x: [0.26606112471488796, 0.06003724490123586] 43 5.502253e-01 NaN * time: 0.3636760711669922 * x: [0.2660611249593439, 0.06003724489892544] 44 5.502253e-01 NaN * time: 0.3637099266052246 * x: [0.26606112505956114, 0.06003724489797826] 45 5.502253e-01 NaN * time: 0.36374402046203613 * x: [0.2660611251075841, 0.06003724489752438] 46 5.502253e-01 NaN * time: 0.36377906799316406 * x: [0.2660611251276215, 0.060037244897335] 47 5.296367e-01 NaN * time: 0.363814115524292 * x: [0.27575462126357053, 0.06889546216845208] 48 5.049057e-01 NaN * time: 0.3638491630554199 * x: [0.29761073908755753, 0.0778227312087507] 49 4.966246e-01 NaN * time: 0.36389613151550293 * x: [0.30640220491445025, 0.08141366082064762] 50 4.795572e-01 NaN * time: 0.36393213272094727 * x: [0.3213270933119956, 0.08948148126520782] 51 4.642470e-01 NaN * time: 0.3639650344848633 * x: [0.32695399990497553, 0.0962894317885372] 52 4.536052e-01 NaN * time: 0.3640000820159912 * x: [0.33207548049696733, 0.1016242272530344] 53 4.280885e-01 NaN * time: 0.36403512954711914 * x: [0.35351483775850284, 0.11490030626603666] 54 4.280885e-01 NaN * time: 0.36406993865966797 * x: [0.35351483775850284, 0.11490030626603666] 55 4.171347e-01 NaN * time: 0.3641040325164795 * x: [0.35944694619790923, 0.12093986380739136] 56 4.133259e-01 NaN * time: 0.364138126373291 * x: [0.3597950473335863, 0.12356731958501871] 57 4.133259e-01 NaN * time: 0.36417293548583984 * x: [0.3597950473335863, 0.12356731958501871] 58 3.949335e-01 NaN * time: 0.36420702934265137 * x: [0.4417626919622754, 0.22401680572167604] 59 2.834557e-01 NaN * time: 0.3642411231994629 * x: [0.4676942727736627, 0.21976883907858658] 60 2.423223e-01 NaN * time: 0.3642749786376953 * x: [0.5077621826152934, 0.2573301058974752] 61 2.219864e-01 NaN * time: 0.36430907249450684 * x: [0.5305984921709426, 0.2855950696752941] 62 2.098095e-01 NaN * time: 0.36434292793273926 * x: [0.5425403862939883, 0.2966742281417494] 63 2.039162e-01 NaN * time: 0.3643779754638672 * x: [0.5500943771628155, 0.3064782299078919] 64 1.985164e-01 NaN * time: 0.3644130229949951 * x: [0.555003004784354, 0.3102510243228318] 65 1.962072e-01 NaN * time: 0.36444807052612305 * x: [0.5572674804294254, 0.31194380351503664] 66 1.953240e-01 NaN * time: 0.364483118057251 * x: [0.5581732706874539, 0.3126209151919186] 67 1.946499e-01 NaN * time: 0.3645179271697998 * x: [0.5588393595833947, 0.3128232280244901] 68 1.942705e-01 NaN * time: 0.36455202102661133 * x: [0.5592438623065801, 0.3129661526513027] 69 1.940057e-01 NaN * time: 0.36458516120910645 * x: [0.5595401440783568, 0.3129970500784035] 70 1.939019e-01 NaN * time: 0.36461901664733887 * x: [0.5596622119630894, 0.31300977979696587] 71 1.889618e-01 NaN * time: 0.3646571636199951 * x: [0.565303608729613, 0.31966246135699133] 72 1.889525e-01 NaN * time: 0.36469197273254395 * x: [0.5668117908095296, 0.31766938905410463] 73 1.889525e-01 NaN * time: 0.3647270202636719 * x: [0.5668117908095296, 0.31766938905410463] 74 1.878557e-01 NaN * time: 0.3647620677947998 * x: [0.5673851717863142, 0.3192799866228009] 75 1.876595e-01 NaN * time: 0.36479711532592773 * x: [0.5671158065061624, 0.3199747091239824] 76 1.874481e-01 NaN * time: 0.36483097076416016 * x: [0.5673152324325995, 0.32032349171694213] 77 1.873341e-01 NaN * time: 0.3648819923400879 * x: [0.5674394319338145, 0.32048596834266463] 78 1.872167e-01 NaN * time: 0.36491894721984863 * x: [0.5676119807337133, 0.3205793159553568] 79 1.871703e-01 NaN * time: 0.36495494842529297 * x: [0.5676811143535655, 0.3206167167276239] 80 1.870387e-01 NaN * time: 0.3649899959564209 * x: [0.5678034001240533, 0.3208362018715974] 81 1.869606e-01 NaN * time: 0.3650240898132324 * x: [0.5678939068204275, 0.32093852855781313] 82 1.868848e-01 NaN * time: 0.36505913734436035 * x: [0.5679524385696183, 0.32108772810038805] 83 1.868490e-01 NaN * time: 0.3650929927825928 * x: [0.5679779898217143, 0.32116384765169115] 84 1.868101e-01 NaN * time: 0.3651270866394043 * x: [0.56799336222626, 0.3212733522358808] 85 1.867619e-01 NaN * time: 0.3651621341705322 * x: [0.5680049479423687, 0.3214370986600422] 86 1.867314e-01 NaN * time: 0.36519694328308105 * x: [0.5680044364487561, 0.3215744782328977] 87 1.866999e-01 NaN * time: 0.3652310371398926 * x: [0.5680088357034672, 0.3217199287080749] 88 1.866824e-01 NaN * time: 0.3652639389038086 * x: [0.5680162549198307, 0.3217913355569622] 89 1.866751e-01 NaN * time: 0.3652970790863037 * x: [0.5680194583259065, 0.32182216699823224] 90 1.866652e-01 NaN * time: 0.36533093452453613 * x: [0.5680271747123854, 0.32185056034607373] 91 1.866597e-01 NaN * time: 0.36536407470703125 * x: [0.5680328178004581, 0.32186090919669047] 92 1.866575e-01 NaN * time: 0.36539793014526367 * x: [0.5680350750356872, 0.32186504873693716] 93 1.866514e-01 NaN * time: 0.3654320240020752 * x: [0.568041700985377, 0.3218750954334655] 94 1.866473e-01 NaN * time: 0.3654670715332031 * x: [0.5680467776115957, 0.3218788485089485] 95 1.758511e-01 NaN * time: 0.36550211906433105 * x: [0.5817925938376084, 0.34157071103687897] 96 1.737976e-01 NaN * time: 0.3655369281768799 * x: [0.5893585027306213, 0.3401523891778444] 97 1.737976e-01 NaN * time: 0.3655719757080078 * x: [0.5893585027306213, 0.3401523891778444] 98 1.721844e-01 NaN * time: 0.36560606956481934 * x: [0.5867325046478338, 0.3405208306644402] 99 1.717152e-01 NaN * time: 0.36564111709594727 * x: [0.5946960498912492, 0.34503558948823726] 100 1.717152e-01 NaN * time: 0.3656749725341797 * x: [0.5946960498912492, 0.34503558948823726] 101 1.688771e-01 NaN * time: 0.3657090663909912 * x: [0.5894306103070114, 0.34918886024929957] 102 1.648058e-01 NaN * time: 0.3657419681549072 * x: [0.594042080336518, 0.3526865176766907] 103 1.630557e-01 NaN * time: 0.36577701568603516 * x: [0.5963794553359115, 0.35445934434040466] 104 1.622656e-01 NaN * time: 0.3658120632171631 * x: [0.5975436675285278, 0.3553423632902209] 105 1.602818e-01 NaN * time: 0.3658461570739746 * x: [0.6004088833157377, 0.35802354572414424] 106 1.592090e-01 NaN * time: 0.36589908599853516 * x: [0.601817782358715, 0.3596156579617638] 107 1.514494e-01 NaN * time: 0.3659350872039795 * x: [0.6124039254988985, 0.3715475838500436] 108 1.514494e-01 NaN * time: 0.3659780025482178 * x: [0.6124039254988985, 0.3715475838500436] 109 1.509815e-01 NaN * time: 0.3660149574279785 * x: [0.6142629532406225, 0.37264095808506925] 110 1.461875e-01 NaN * time: 0.36605095863342285 * x: [0.6177816145933288, 0.3806710453058068] 111 1.436963e-01 NaN * time: 0.3660869598388672 * x: [0.6211423372915671, 0.3870950818117244] 112 1.412149e-01 NaN * time: 0.3661220073699951 * x: [0.6242921971239509, 0.38897549982083185] 113 1.398034e-01 NaN * time: 0.36615800857543945 * x: [0.6264487394432696, 0.3908166957954036] 114 1.393149e-01 NaN * time: 0.3661930561065674 * x: [0.628163381144548, 0.3913451476905688] 115 1.388722e-01 NaN * time: 0.3662290573120117 * x: [0.6290013082686043, 0.3921324642022297] 116 1.374045e-01 NaN * time: 0.36626696586608887 * x: [0.6301167813656036, 0.39947799640934833] 117 1.363537e-01 NaN * time: 0.3663020133972168 * x: [0.6309198546645557, 0.3969043610507785] 118 1.355868e-01 NaN * time: 0.3663361072540283 * x: [0.6317818581966196, 0.399296558158943] 119 1.353477e-01 NaN * time: 0.36637115478515625 * x: [0.6321801379867209, 0.4004018480176046] 120 1.352646e-01 NaN * time: 0.36640501022338867 * x: [0.6323576546657936, 0.400894485078281] 121 1.352075e-01 NaN * time: 0.3664400577545166 * x: [0.6330853104809114, 0.3983864519093105] 122 1.345883e-01 NaN * time: 0.36647510528564453 * x: [0.6341682650755306, 0.3994209430180072] 123 1.330400e-01 NaN * time: 0.36650896072387695 * x: [0.6362971719612097, 0.4021168979450032] 124 1.323026e-01 NaN * time: 0.3665461540222168 * x: [0.6363349985976471, 0.405631958070177] 125 1.306066e-01 NaN * time: 0.3665800094604492 * x: [0.6393513643790502, 0.4110922238419662] 126 1.294126e-01 NaN * time: 0.36661410331726074 * x: [0.6411148996609881, 0.4135064206485911] 127 1.257537e-01 NaN * time: 0.36664795875549316 * x: [0.6456880492205636, 0.4154409858978521] 128 1.251359e-01 NaN * time: 0.3666820526123047 * x: [0.6478390859738332, 0.4163509322922458] 129 1.251359e-01 NaN * time: 0.3667149543762207 * x: [0.6478390859738332, 0.4163509322922458] 130 1.249116e-01 NaN * time: 0.36675000190734863 * x: [0.647704727919202, 0.4166936262477547] 131 1.249116e-01 NaN * time: 0.36678409576416016 * x: [0.647704727919202, 0.4166936262477547] 132 1.249116e-01 NaN * time: 0.3668179512023926 * x: [0.647704727919202, 0.4166936262477547] 133 1.247520e-01 NaN * time: 0.3668529987335205 * x: [0.6481812084883266, 0.4170155820195496] 134 1.241956e-01 NaN * time: 0.36690592765808105 * x: [0.6479428638751269, 0.41824448084805815] 135 1.235191e-01 NaN * time: 0.3669431209564209 * x: [0.649111711249932, 0.4193547362247182] 136 1.231900e-01 NaN * time: 0.3669769763946533 * x: [0.6497047672094984, 0.4199180634665478] 137 1.229735e-01 NaN * time: 0.36701297760009766 * x: [0.6499266451216661, 0.42034995028994787] 138 1.226847e-01 NaN * time: 0.367048978805542 * x: [0.6499182980462319, 0.42126476949969077] 139 1.224789e-01 NaN * time: 0.3670830726623535 * x: [0.6504385193488286, 0.42138012839831795] 140 1.223344e-01 NaN * time: 0.36711692810058594 * x: [0.6505446244124002, 0.42174082049500616] 141 1.221827e-01 NaN * time: 0.3671541213989258 * x: [0.6507849107122544, 0.42199947266738363] 142 1.218506e-01 NaN * time: 0.3671870231628418 * x: [0.6524664939990099, 0.42243977672950883] 143 1.214806e-01 NaN * time: 0.3672211170196533 * x: [0.6528800573689073, 0.42310859550053714] 144 1.213238e-01 NaN * time: 0.36725497245788574 * x: [0.6530566472279412, 0.42339417836665133] 145 1.211511e-01 NaN * time: 0.3672909736633301 * x: [0.6530922315984384, 0.4236902687497053] 146 1.186678e-01 NaN * time: 0.367326021194458 * x: [0.655768955257221, 0.42871859869219214] 147 1.171937e-01 NaN * time: 0.36736106872558594 * x: [0.6585861865196144, 0.436246414236367] 148 1.159057e-01 NaN * time: 0.36739611625671387 * x: [0.660473457481829, 0.4387300062224945] 149 1.136739e-01 NaN * time: 0.3674311637878418 * x: [0.6636121288710082, 0.44265512286960046] 150 1.127152e-01 NaN * time: 0.3674650192260742 * x: [0.6659920657063041, 0.4469423281996782] 151 1.120031e-01 NaN * time: 0.36750006675720215 * x: [0.6669157389348541, 0.4480291971880874] 152 1.110886e-01 NaN * time: 0.36753416061401367 * x: [0.6676664039833954, 0.44831404484192794] 153 1.107452e-01 NaN * time: 0.367570161819458 * x: [0.6681659603028403, 0.44895844677247726] 154 1.103819e-01 NaN * time: 0.36760401725769043 * x: [0.6683399960820304, 0.4486366894171537] 155 1.102339e-01 NaN * time: 0.36763715744018555 * x: [0.668494348506971, 0.4487229791352571] 156 1.100763e-01 NaN * time: 0.3676719665527344 * x: [0.668706224170862, 0.4489588896454146] 157 1.098426e-01 NaN * time: 0.3677060604095459 * x: [0.6688740902040045, 0.4488005984486652] 158 1.096725e-01 NaN * time: 0.3677389621734619 * x: [0.6690649864186612, 0.44889118175493714] 159 1.089106e-01 NaN * time: 0.36777400970458984 * x: [0.6710283491094109, 0.4476556124106068] 160 1.087423e-01 NaN * time: 0.3678090572357178 * x: [0.6712396209084853, 0.44799569950905876] 161 1.087149e-01 NaN * time: 0.3678441047668457 * x: [0.6703142874233905, 0.44979231826065946] 162 1.085757e-01 NaN * time: 0.3678920269012451 * x: [0.6705180346285137, 0.44917846642360515] 163 1.082148e-01 NaN * time: 0.36792802810668945 * x: [0.6710797077811519, 0.44983616340579635] 164 1.078175e-01 NaN * time: 0.3679630756378174 * x: [0.6728880104110213, 0.4499230488142831] 165 1.073951e-01 NaN * time: 0.3679981231689453 * x: [0.6731273936867, 0.45075665167212836] 166 1.071836e-01 NaN * time: 0.36803293228149414 * x: [0.6735287071621949, 0.4511911939463724] 167 1.069377e-01 NaN * time: 0.3680689334869385 * x: [0.673562061920109, 0.45174694569389007] 168 1.068201e-01 NaN * time: 0.3681039810180664 * x: [0.6734846798630826, 0.4521400705095493] 169 1.067552e-01 NaN * time: 0.36813807487487793 * x: [0.6734952592158893, 0.45237181645411145] 170 1.067260e-01 NaN * time: 0.36817193031311035 * x: [0.6735006078927446, 0.45248898186041314] 171 1.066607e-01 NaN * time: 0.3682060241699219 * x: [0.6736162821230197, 0.45259953368668504] 172 1.061508e-01 NaN * time: 0.3682401180267334 * x: [0.6750992104374389, 0.45332940887565537] 173 1.059477e-01 NaN * time: 0.3682739734649658 * x: [0.675272528393549, 0.4537574508199643] 174 1.055788e-01 NaN * time: 0.36830902099609375 * x: [0.6765878441411083, 0.45463526809826077] 175 1.053918e-01 NaN * time: 0.3683509826660156 * x: [0.6770193347878665, 0.4550760547063693] 176 1.051407e-01 NaN * time: 0.3683900833129883 * x: [0.6772607629950238, 0.4555515496164254] 177 1.049624e-01 NaN * time: 0.3684239387512207 * x: [0.6768763902341469, 0.455808842268151] 178 1.048393e-01 NaN * time: 0.36845898628234863 * x: [0.677633752752142, 0.456155504260651] 179 1.046412e-01 NaN * time: 0.36849403381347656 * x: [0.6777059056368911, 0.4565145649654206] 180 1.045360e-01 NaN * time: 0.3685300350189209 * x: [0.6778386465740268, 0.4567300695087466] 181 1.044447e-01 NaN * time: 0.3685641288757324 * x: [0.6774690153525033, 0.45691863221461027] 182 1.043513e-01 NaN * time: 0.36859893798828125 * x: [0.6774853625143492, 0.45715442282309193] 183 1.042602e-01 NaN * time: 0.3686330318450928 * x: [0.6775159705499861, 0.45740226826202324] 184 1.041611e-01 NaN * time: 0.3686671257019043 * x: [0.677595789249307, 0.4576641812751176] 185 1.040102e-01 NaN * time: 0.3687019348144531 * x: [0.6777722386199084, 0.45803568218970364] 186 1.038435e-01 NaN * time: 0.36873602867126465 * x: [0.6779514163299796, 0.4584856707530812] 187 1.036845e-01 NaN * time: 0.36877012252807617 * x: [0.6781374417138782, 0.45892690098149386] 188 1.034319e-01 NaN * time: 0.3688061237335205 * x: [0.6785487244118302, 0.45942361452386254] 189 1.032346e-01 NaN * time: 0.36884307861328125 * x: [0.6788214443880555, 0.4599099384103055] 190 1.031091e-01 NaN * time: 0.36889100074768066 * x: [0.6790978412426104, 0.46002994415750154] 191 1.028762e-01 NaN * time: 0.3689260482788086 * x: [0.6793864770881783, 0.46065416725457076] 192 1.026166e-01 NaN * time: 0.36896300315856934 * x: [0.6798628925120445, 0.46107840012112145] 193 1.024724e-01 NaN * time: 0.36899805068969727 * x: [0.6800141653744529, 0.46151695572211365] 194 1.022895e-01 NaN * time: 0.3690340518951416 * x: [0.6803165294331845, 0.46187174621774785] 195 1.021189e-01 NaN * time: 0.36906909942626953 * x: [0.6805771531166962, 0.4622473368721821] 196 1.019122e-01 NaN * time: 0.36910510063171387 * x: [0.6808141309857731, 0.46293676563080005] 197 1.017494e-01 NaN * time: 0.3691401481628418 * x: [0.6810273536405591, 0.463557084442725] 198 1.016335e-01 NaN * time: 0.36917614936828613 * x: [0.6812326030250886, 0.46362082640234936] 199 1.014986e-01 NaN * time: 0.36921215057373047 * x: [0.6814262880231272, 0.4640346398023781] 200 1.014148e-01 NaN * time: 0.3692491054534912 * x: [0.6815627697130172, 0.4641738077926185] 201 1.013676e-01 NaN * time: 0.36928415298461914 * x: [0.6816414312646414, 0.4642420390460846] 202 1.013138e-01 NaN * time: 0.3693201541900635 * x: [0.6817396763404948, 0.4642773908663652] 203 1.012665e-01 NaN * time: 0.3693549633026123 * x: [0.681876035004222, 0.4641573121784457] 204 1.012271e-01 NaN * time: 0.36938905715942383 * x: [0.681979604244731, 0.46414704680888486] 205 1.011876e-01 NaN * time: 0.36942505836486816 * x: [0.6820618424711746, 0.4641938131491888] 206 1.010736e-01 NaN * time: 0.3694610595703125 * x: [0.6822386559291634, 0.4644427629517165] 207 1.009850e-01 NaN * time: 0.36949706077575684 * x: [0.6825099720491242, 0.46445958901132717] 208 1.009006e-01 NaN * time: 0.36953210830688477 * x: [0.6826796321517306, 0.46460809274063636] 209 1.007845e-01 NaN * time: 0.3695650100708008 * x: [0.682916107356998, 0.4648177578420418] 210 1.006824e-01 NaN * time: 0.3696000576019287 * x: [0.6831288777361672, 0.46500640562468826] 211 1.005704e-01 NaN * time: 0.36963796615600586 * x: [0.6832681645458064, 0.46526989475260355] 212 1.004918e-01 NaN * time: 0.3696730136871338 * x: [0.683250907930803, 0.46555978134983644] 213 1.004061e-01 NaN * time: 0.3697071075439453 * x: [0.6834384533557231, 0.46569223360715567] 214 1.003166e-01 NaN * time: 0.36974215507507324 * x: [0.683470270758086, 0.4660111038057437] 215 1.002130e-01 NaN * time: 0.36977696418762207 * x: [0.6836245865097491, 0.4662488534613893] 216 1.000903e-01 NaN * time: 0.3698129653930664 * x: [0.6837868882482795, 0.4665666228923774] 217 9.991243e-02 NaN * time: 0.36984896659851074 * x: [0.6840872343614753, 0.46691916479305007] 218 9.972944e-02 NaN * time: 0.36998414993286133 * x: [0.6843531144915938, 0.46735693021817165] 219 9.954772e-02 NaN * time: 0.37002015113830566 * x: [0.6845748904044201, 0.46790306556839945] 220 9.925078e-02 NaN * time: 0.3700549602508545 * x: [0.6849986036802898, 0.4687240542400149] 221 9.901356e-02 NaN * time: 0.3700900077819824 * x: [0.6853500710315091, 0.4694050588962924] 222 9.891752e-02 NaN * time: 0.37012505531311035 * x: [0.6854959342958026, 0.46968768418657625] 223 9.882414e-02 NaN * time: 0.3701610565185547 * x: [0.6856719551814573, 0.46967676577034223] 224 9.863618e-02 NaN * time: 0.3701961040496826 * x: [0.6859584982584629, 0.4701634095108753] 225 9.841044e-02 NaN * time: 0.37023115158081055 * x: [0.6865002794835426, 0.47014963078070526] 226 9.822759e-02 NaN * time: 0.3702659606933594 * x: [0.6869713905648686, 0.4703783191832195] 227 9.809233e-02 NaN * time: 0.3703010082244873 * x: [0.6872346764422691, 0.47064777984337924] 228 9.792587e-02 NaN * time: 0.37033605575561523 * x: [0.6876746702281232, 0.4709502754903578] 229 9.775572e-02 NaN * time: 0.37037110328674316 * x: [0.6877708555149129, 0.4713896058123552] 230 9.755066e-02 NaN * time: 0.3704071044921875 * x: [0.6882207259104467, 0.4717921193453349] 231 9.721205e-02 NaN * time: 0.37044215202331543 * x: [0.6885873013626805, 0.47262216589379963] 232 9.681647e-02 NaN * time: 0.37047600746154785 * x: [0.6891200783101196, 0.4735820736562261] 233 9.649455e-02 NaN * time: 0.37050914764404297 * x: [0.689564900678952, 0.47438351307059223] 234 9.589591e-02 NaN * time: 0.3705439567565918 * x: [0.6904422104822173, 0.4758744721757224] 235 9.514643e-02 NaN * time: 0.37057995796203613 * x: [0.691654636431111, 0.4775520713751528] 236 9.414057e-02 NaN * time: 0.37061405181884766 * x: [0.6932597250387877, 0.4798950820720251] 237 9.311344e-02 NaN * time: 0.3706481456756592 * x: [0.694951238188682, 0.4821911160348978] 238 9.229610e-02 NaN * time: 0.370682954788208 * x: [0.6965217734832491, 0.4837387662776573] 239 9.139788e-02 NaN * time: 0.37071800231933594 * x: [0.6976900296134736, 0.4865152732191357] 240 9.051136e-02 NaN * time: 0.37075114250183105 * x: [0.6991839782606127, 0.48839912795671514] 241 8.979366e-02 NaN * time: 0.3707849979400635 * x: [0.700916049546561, 0.4894327545348472] 242 8.927867e-02 NaN * time: 0.3708200454711914 * x: [0.70135294983011, 0.4909546259345275] 243 8.863664e-02 NaN * time: 0.37085604667663574 * x: [0.7023235857025607, 0.4927545261525088] 244 8.795107e-02 NaN * time: 0.3709080219268799 * x: [0.7034679144419497, 0.49531204589185474] 245 8.748978e-02 NaN * time: 0.3709421157836914 * x: [0.7044975329996267, 0.49761319388772013] 246 8.719972e-02 NaN * time: 0.3709831237792969 * x: [0.705423940191741, 0.49968366944159787] 247 8.636645e-02 NaN * time: 0.3710200786590576 * x: [0.7061438092392648, 0.4990263006587615] 248 8.607284e-02 NaN * time: 0.37105798721313477 * x: [0.7066345245057319, 0.4996411579769077] 249 8.606726e-02 NaN * time: 0.3710930347442627 * x: [0.7069508808208326, 0.4984030694789995] 250 8.588107e-02 NaN * time: 0.3711280822753906 * x: [0.7074842947931086, 0.4987574174754915] 251 8.581800e-02 NaN * time: 0.37116312980651855 * x: [0.7074401976973833, 0.49896577546620857] 252 8.567607e-02 NaN * time: 0.3711979389190674 * x: [0.7075384831010193, 0.4994176855984002] 253 8.558735e-02 NaN * time: 0.3712310791015625 * x: [0.7076172791274095, 0.49972376137697827] 254 8.554532e-02 NaN * time: 0.37126612663269043 * x: [0.7076571742902074, 0.499878730397299] 255 8.537846e-02 NaN * time: 0.37129998207092285 * x: [0.7079649311774517, 0.5002449423279718] 256 8.521248e-02 NaN * time: 0.3713350296020508 * x: [0.7081096972542853, 0.5017733288085455] 257 8.510647e-02 NaN * time: 0.3713700771331787 * x: [0.708343419878018, 0.5010953824800618] 258 8.489642e-02 NaN * time: 0.37140512466430664 * x: [0.7086813300158888, 0.5016828328883438] 259 8.466610e-02 NaN * time: 0.37143993377685547 * x: [0.7092439203835641, 0.5019000078159479] 260 8.455241e-02 NaN * time: 0.3714749813079834 * x: [0.7094144262966255, 0.5022084924434483] 261 8.443268e-02 NaN * time: 0.3715090751647949 * x: [0.7096733034928142, 0.50244001127432] 262 8.417914e-02 NaN * time: 0.37154197692871094 * x: [0.7099160455469413, 0.5045325101119149] 263 8.355969e-02 NaN * time: 0.37157511711120605 * x: [0.7109359182601168, 0.5055580657981542] 264 8.304714e-02 NaN * time: 0.3716089725494385 * x: [0.7118314499862978, 0.5064585876398778] 265 8.259062e-02 NaN * time: 0.37164306640625 * x: [0.7126359968996588, 0.5074958584445836] 266 8.216557e-02 NaN * time: 0.37167811393737793 * x: [0.7133582053059987, 0.5090231540086015] 267 8.149095e-02 NaN * time: 0.37171316146850586 * x: [0.7145613451069717, 0.510201368108015] 268 8.067226e-02 NaN * time: 0.3717470169067383 * x: [0.716076034096958, 0.5119938709125377] 269 7.978760e-02 NaN * time: 0.3717830181121826 * x: [0.717543568448071, 0.5151129426027895] 270 7.910050e-02 NaN * time: 0.37181901931762695 * x: [0.7189159859959265, 0.515879590384671] 271 7.862522e-02 NaN * time: 0.3718540668487549 * x: [0.7198698372418135, 0.5169784519239752] 272 7.816318e-02 NaN * time: 0.3719010353088379 * x: [0.7206456395564085, 0.5182151376904041] 273 7.789987e-02 NaN * time: 0.3719360828399658 * x: [0.7210910299670372, 0.5189251226581805] 274 7.764612e-02 NaN * time: 0.37196993827819824 * x: [0.7215841866759594, 0.51954026494576] 275 7.724317e-02 NaN * time: 0.37200307846069336 * x: [0.7223127635262221, 0.5205826183780137] 276 7.665141e-02 NaN * time: 0.3720381259918213 * x: [0.7232082895603991, 0.5224157435722022] 277 7.606994e-02 NaN * time: 0.3720719814300537 * x: [0.7242371288450244, 0.5240216806166517] 278 7.538774e-02 NaN * time: 0.37210607528686523 * x: [0.7256602041709781, 0.5254628254513203] 279 7.496930e-02 NaN * time: 0.37213897705078125 * x: [0.7263739126240215, 0.5286093448795517] 280 7.375812e-02 NaN * time: 0.3721740245819092 * x: [0.7284158066798291, 0.5306282895616077] 281 7.274635e-02 NaN * time: 0.3722109794616699 * x: [0.7302922694180787, 0.5331244607907987] 282 7.188887e-02 NaN * time: 0.37224507331848145 * x: [0.7321793805583743, 0.5348178306081854] 283 7.132206e-02 NaN * time: 0.37227892875671387 * x: [0.7336004983793293, 0.5362898943788998] 284 7.084339e-02 NaN * time: 0.3723149299621582 * x: [0.7352265539982858, 0.5378407194465751] 285 7.041899e-02 NaN * time: 0.3723490238189697 * x: [0.7356460658931075, 0.5388599831560436] 286 7.013487e-02 NaN * time: 0.37238311767578125 * x: [0.7357147664476353, 0.5395786037494766] 287 6.996453e-02 NaN * time: 0.3724179267883301 * x: [0.7359149681197962, 0.5400754421229176] 288 6.987572e-02 NaN * time: 0.3724539279937744 * x: [0.7359025834219456, 0.5404200069523171] 289 6.983483e-02 NaN * time: 0.37248802185058594 * x: [0.7359236394830889, 0.5405911007661554] 290 6.980934e-02 NaN * time: 0.37252306938171387 * x: [0.736606961432711, 0.5405078763445501] 291 6.977483e-02 NaN * time: 0.3725559711456299 * x: [0.7361879672882772, 0.5406383909937955] 292 6.976250e-02 NaN * time: 0.372589111328125 * x: [0.736324324331989, 0.5406319503500037] 293 6.843389e-02 NaN * time: 0.3726229667663574 * x: [0.7456024035416935, 0.5498272449886502] 294 6.843389e-02 NaN * time: 0.37265706062316895 * x: [0.7456024035416935, 0.5498272449886502] 295 6.843389e-02 NaN * time: 0.37268996238708496 * x: [0.7456024035416935, 0.5498272449886502] 296 6.843389e-02 NaN * time: 0.3727231025695801 * x: [0.7456024035416935, 0.5498272449886502] 297 6.843389e-02 NaN * time: 0.372758150100708 * x: [0.7456024035416935, 0.5498272449886502] 298 6.843389e-02 NaN * time: 0.37279295921325684 * x: [0.7456024035416935, 0.5498272449886502] 299 6.843389e-02 NaN * time: 0.37282800674438477 * x: [0.7456024035416935, 0.5498272449886502] 300 6.559667e-02 NaN * time: 0.3728759288787842 * x: [0.7444256949890838, 0.5525009556279428] Iter Function value Gradient norm 0 1.000000e+00 NaN * time: 6.389617919921875e-5 * x: [0.0, 0.0] 1 1.000000e+00 NaN * time: 0.0541529655456543 * x: [0.0, 0.0] 2 5.015982e-01 NaN * time: 0.05422496795654297 * x: [0.4848539607057712, 0.1864806069968562] 3 5.015982e-01 NaN * time: 0.05427098274230957 * x: [0.4848539607057712, 0.1864806069968562] 4 3.340541e-01 NaN * time: 0.05431199073791504 * x: [0.8075058719304893, 0.7065634499666376] 5 7.503458e-02 NaN * time: 0.054350852966308594 * x: [0.7965099453207382, 0.6527655889097546] 6 7.714480e-03 NaN * time: 0.05438685417175293 * x: [0.9276402474538046, 0.8654949290859205] 7 7.714480e-03 NaN * time: 0.05442404747009277 * x: [0.9276402474538046, 0.8654949290859205] 8 7.714480e-03 NaN * time: 0.054461002349853516 * x: [0.9276402474538046, 0.8654949290859205] 9 7.714480e-03 NaN * time: 0.05449986457824707 * x: [0.9276402474538046, 0.8654949290859205] 10 7.714480e-03 NaN * time: 0.054537057876586914 * x: [0.9276402474538046, 0.8654949290859205] 11 7.714480e-03 NaN * time: 0.05457496643066406 * x: [0.9276402474538046, 0.8654949290859205] 12 7.714480e-03 NaN * time: 0.05461287498474121 * x: [0.9276402474538046, 0.8654949290859205] 13 7.714480e-03 NaN * time: 0.05464887619018555 * x: [0.9276402474538046, 0.8654949290859205] 14 7.714480e-03 NaN * time: 0.05468606948852539 * x: [0.9276402474538046, 0.8654949290859205] 15 7.714480e-03 NaN * time: 0.054728031158447266 * x: [0.9276402474538046, 0.8654949290859205] 16 7.714480e-03 NaN * time: 0.054765939712524414 * x: [0.9276402474538046, 0.8654949290859205] 17 7.714480e-03 NaN * time: 0.05480194091796875 * x: [0.9276402474538046, 0.8654949290859205] 18 5.455560e-03 NaN * time: 0.05485200881958008 * x: [0.9261501931186452, 0.8576212949065058] 19 5.455560e-03 NaN * time: 0.05489087104797363 * x: [0.9261501931186452, 0.8576212949065058] 20 5.455560e-03 NaN * time: 0.05492901802062988 * x: [0.9261501931186452, 0.8576212949065058] 21 5.455560e-03 NaN * time: 0.054962873458862305 * x: [0.9261501931186452, 0.8576212949065058] 22 5.455560e-03 NaN * time: 0.055001020431518555 * x: [0.9261501931186452, 0.8576212949065058] 23 5.335527e-03 NaN * time: 0.0550389289855957 * x: [0.9269788066126184, 0.8591044463043894] 24 5.294727e-03 NaN * time: 0.05507493019104004 * x: [0.927347032407409, 0.8603759223700791] 25 5.294727e-03 NaN * time: 0.0551149845123291 * x: [0.927347032407409, 0.8603759223700791] 26 5.294727e-03 NaN * time: 0.05515599250793457 * x: [0.927347032407409, 0.8603759223700791] 27 5.249139e-03 NaN * time: 0.055194854736328125 * x: [0.9276546839080443, 0.8601521363442224] 28 5.249139e-03 NaN * time: 0.05523204803466797 * x: [0.9276546839080443, 0.8601521363442224] 29 5.249139e-03 NaN * time: 0.055268049240112305 * x: [0.9276546839080443, 0.8601521363442224] 30 5.245099e-03 NaN * time: 0.05530691146850586 * x: [0.927658615293744, 0.8602066635217287] 31 5.241215e-03 NaN * time: 0.05534696578979492 * x: [0.927710971971368, 0.860253797770869] 32 5.239599e-03 NaN * time: 0.05538606643676758 * x: [0.9277350485642819, 0.8602754727926686] 33 5.238936e-03 NaN * time: 0.05542397499084473 * x: [0.927745428997649, 0.8602848178075686] 34 5.238675e-03 NaN * time: 0.055464982986450195 * x: [0.9277495913099878, 0.8602885649411852] 35 5.238570e-03 NaN * time: 0.05550503730773926 * x: [0.9277512892933113, 0.8602900935555404] 36 5.238516e-03 NaN * time: 0.05554485321044922 * x: [0.9277521565794039, 0.8602908743323318] 37 5.238494e-03 NaN * time: 0.055583953857421875 * x: [0.9277525114934152, 0.860291193844688] 38 5.238484e-03 NaN * time: 0.05562400817871094 * x: [0.927752672779947, 0.8602913390433506] 39 5.238480e-03 NaN * time: 0.05566287040710449 * x: [0.9277527396052263, 0.8602913992029999] 40 5.238479e-03 NaN * time: 0.05570507049560547 * x: [0.927752766335338, 0.8602914232668596] 41 5.238478e-03 NaN * time: 0.05574488639831543 * x: [0.9277527771712536, 0.8602914330219237] 42 5.238478e-03 NaN * time: 0.05579996109008789 * x: [0.9277527818981897, 0.8602914372773615] 43 5.238478e-03 NaN * time: 0.05585885047912598 * x: [0.9277527838251938, 0.8602914390121524] 44 5.238477e-03 NaN * time: 0.05589699745178223 * x: [0.9277527845959954, 0.8602914397060688] 45 5.238477e-03 NaN * time: 0.05593299865722656 * x: [0.9277527850767515, 0.8602914401388708] 46 5.238477e-03 NaN * time: 0.0559689998626709 * x: [0.9277527855093155, 0.8602914405282878] 47 5.238477e-03 NaN * time: 0.05600786209106445 * x: [0.9277527857278762, 0.8602914407250477] 48 5.238477e-03 NaN * time: 0.056047916412353516 * x: [0.9277527858461839, 0.8602914408315545] 49 5.238477e-03 NaN * time: 0.05608701705932617 * x: [0.9277527859202883, 0.8602914408982671] 50 5.238477e-03 NaN * time: 0.05612993240356445 * x: [0.9277527859500425, 0.8602914409250535] 51 5.238477e-03 NaN * time: 0.05616903305053711 * x: [0.9277527859627406, 0.8602914409364849] 52 5.238477e-03 NaN * time: 0.05620384216308594 * x: [0.9277527859681889, 0.8602914409413898] 53 5.238477e-03 NaN * time: 0.05623793601989746 * x: [0.9277527859703683, 0.8602914409433517] 54 5.238477e-03 NaN * time: 0.0562748908996582 * x: [0.9277527859712407, 0.8602914409441371] 55 5.238477e-03 NaN * time: 0.05631399154663086 * x: [0.9277527859716913, 0.8602914409445428] 56 5.238477e-03 NaN * time: 0.05635404586791992 * x: [0.9277527859718716, 0.8602914409447051] 57 5.238477e-03 NaN * time: 0.05639290809631348 * x: [0.9277527859719437, 0.8602914409447701] 58 5.238477e-03 NaN * time: 0.05643486976623535 * x: [0.927752785971974, 0.8602914409447974] 59 5.238477e-03 NaN * time: 0.056474924087524414 * x: [0.92775278597199, 0.8602914409448118] 60 5.238477e-03 NaN * time: 0.05651688575744629 * x: [0.9277527859719974, 0.8602914409448185] 61 5.238477e-03 NaN * time: 0.05655789375305176 * x: [0.9277527859720008, 0.8602914409448216] 62 5.238477e-03 NaN * time: 0.05659890174865723 * x: [0.9277527859720022, 0.8602914409448228] 63 5.238477e-03 NaN * time: 0.05663490295410156 * x: [0.9277527859720027, 0.8602914409448232] 64 5.238477e-03 NaN * time: 0.056680917739868164 * x: [0.9277527859720031, 0.8602914409448235] 65 5.238477e-03 NaN * time: 0.0567169189453125 * x: [0.9277527859720032, 0.8602914409448236] 66 5.238477e-03 NaN * time: 0.056752920150756836 * x: [0.9277527859720033, 0.8602914409448237] 67 5.238477e-03 NaN * time: 0.05678892135620117 * x: [0.9277527859720033, 0.8602914409448237] 68 5.238477e-03 NaN * time: 0.05684494972229004 * x: [0.9277527859720033, 0.8602914409448237] 69 5.238477e-03 NaN * time: 0.05688285827636719 * x: [0.9277527859720033, 0.8602914409448237] 70 5.238477e-03 NaN * time: 0.05692291259765625 * x: [0.9277527859720033, 0.8602914409448237] 71 5.238477e-03 NaN * time: 0.05695986747741699 * x: [0.9277527859720033, 0.8602914409448237] 72 5.238477e-03 NaN * time: 0.05699491500854492 * x: [0.9277527859720033, 0.8602914409448237] 73 5.238477e-03 NaN * time: 0.05702805519104004 * x: [0.9277527859720033, 0.8602914409448237] 74 5.238477e-03 NaN * time: 0.057064056396484375 * x: [0.9277527859720033, 0.8602914409448237] 75 5.238477e-03 NaN * time: 0.05710196495056152 * x: [0.9277527859720033, 0.8602914409448237] 76 5.238477e-03 NaN * time: 0.057142019271850586 * x: [0.9277527859720033, 0.8602914409448237] 77 5.238477e-03 NaN * time: 0.05718207359313965 * x: [0.9277527859720033, 0.8602914409448237] 78 5.238477e-03 NaN * time: 0.0572199821472168 * x: [0.9277527859720033, 0.8602914409448237] 79 5.238477e-03 NaN * time: 0.05725598335266113 * x: [0.9277527859720033, 0.8602914409448237] 80 5.238477e-03 NaN * time: 0.05729198455810547 * x: [0.9277527859720033, 0.8602914409448237] 81 5.238477e-03 NaN * time: 0.0573270320892334 * x: [0.9277527859720033, 0.8602914409448237] 82 5.238477e-03 NaN * time: 0.05736398696899414 * x: [0.9277527859720033, 0.8602914409448237] 83 5.238477e-03 NaN * time: 0.05739998817443848 * x: [0.9277527859720033, 0.8602914409448237] 84 5.238477e-03 NaN * time: 0.05743885040283203 * x: [0.9277527859720033, 0.8602914409448237] 85 5.238477e-03 NaN * time: 0.05748295783996582 * x: [0.9277527859720033, 0.8602914409448237] 86 5.238477e-03 NaN * time: 0.05752205848693848 * x: [0.9277527859720033, 0.8602914409448237] 87 5.238477e-03 NaN * time: 0.05756092071533203 * x: [0.9277527859720033, 0.8602914409448237] 88 5.238477e-03 NaN * time: 0.05760002136230469 * x: [0.9277527859720033, 0.8602914409448237] 89 5.238477e-03 NaN * time: 0.057637929916381836 * x: [0.9277527859720033, 0.8602914409448237] 90 5.238477e-03 NaN * time: 0.05767393112182617 * x: [0.9277527859720033, 0.8602914409448237] 91 5.238477e-03 NaN * time: 0.057708024978637695 * x: [0.9277527859720033, 0.8602914409448237] 92 5.235535e-03 NaN * time: 0.05774402618408203 * x: [0.9277320845987334, 0.8603278795380576] 93 5.235535e-03 NaN * time: 0.05778002738952637 * x: [0.9277320845987334, 0.8603278795380576] 94 5.234721e-03 NaN * time: 0.0578310489654541 * x: [0.9277184139671135, 0.8603437546930732] 95 5.233285e-03 NaN * time: 0.057868003845214844 * x: [0.9277128698651057, 0.8603708938927044] 96 5.232788e-03 NaN * time: 0.05790400505065918 * x: [0.9277106522143316, 0.8603817496213664] 97 5.232600e-03 NaN * time: 0.057940006256103516 * x: [0.9277097506135528, 0.8603861630905794] 98 5.225035e-03 NaN * time: 0.05797886848449707 * x: [0.927737608255906, 0.8605186935064959] 99 5.225035e-03 NaN * time: 0.05801701545715332 * x: [0.927737608255906, 0.8605186935064959] 100 5.222471e-03 NaN * time: 0.05805706977844238 * x: [0.9277466469022484, 0.8605751289991079] 101 5.221812e-03 NaN * time: 0.058094024658203125 * x: [0.9277605868197146, 0.860558610683071] 102 5.221541e-03 NaN * time: 0.05813193321228027 * x: [0.9277719996748992, 0.8605450868477056] 103 5.221494e-03 NaN * time: 0.05817103385925293 * x: [0.9277797893054581, 0.86053585640716] 104 5.219385e-03 NaN * time: 0.05820894241333008 * x: [0.9277832179779945, 0.8605786787928998] 105 5.217095e-03 NaN * time: 0.05824899673461914 * x: [0.927806612811914, 0.8605968492883846] 106 5.215600e-03 NaN * time: 0.058287858963012695 * x: [0.9278226539764544, 0.8606093082743665] 107 5.212483e-03 NaN * time: 0.058328866958618164 * x: [0.9278437674514035, 0.8606499088486382] 108 5.211257e-03 NaN * time: 0.05836892127990723 * x: [0.9278600854655219, 0.860658071390351] 109 5.210725e-03 NaN * time: 0.05840897560119629 * x: [0.9278676159840455, 0.8606618382808023] 110 5.209985e-03 NaN * time: 0.05844593048095703 * x: [0.9278749179145854, 0.8606697791819004] 111 5.209027e-03 NaN * time: 0.05848503112792969 * x: [0.9278792146213866, 0.8606838134967786] 112 5.208625e-03 NaN * time: 0.05852389335632324 * x: [0.9278810259165123, 0.8606897297222295] 113 5.207971e-03 NaN * time: 0.0585629940032959 * x: [0.927884067746902, 0.8606993413070599] 114 5.207576e-03 NaN * time: 0.05860090255737305 * x: [0.9278845605523243, 0.8607063283236217] 115 5.207332e-03 NaN * time: 0.05864095687866211 * x: [0.9278843337371581, 0.8607112166478353] 116 5.206806e-03 NaN * time: 0.058680057525634766 * x: [0.9278852026424642, 0.8607207071687947] 117 5.206599e-03 NaN * time: 0.058717966079711914 * x: [0.9278855502073564, 0.8607245034074312] 118 5.206508e-03 NaN * time: 0.05875396728515625 * x: [0.927885656005421, 0.8607262423686541] 119 5.206316e-03 NaN * time: 0.05878901481628418 * x: [0.9278860359411033, 0.8607297675265382] 120 5.206231e-03 NaN * time: 0.05884385108947754 * x: [0.927886204633505, 0.8607313327055341] 121 5.206197e-03 NaN * time: 0.05888199806213379 * x: [0.9278862721104657, 0.8607319587771325] 122 5.206140e-03 NaN * time: 0.05892300605773926 * x: [0.9278863950111498, 0.8607329965369556] 123 5.206095e-03 NaN * time: 0.05896401405334473 * x: [0.9278864031161801, 0.8607339260687109] 124 5.206074e-03 NaN * time: 0.059007883071899414 * x: [0.9278864068190501, 0.8607343507352601] 125 5.206048e-03 NaN * time: 0.05904698371887207 * x: [0.9278864151812423, 0.8607348954481334] 126 5.206024e-03 NaN * time: 0.05908489227294922 * x: [0.9278863932211012, 0.8607354323461711] 127 5.206014e-03 NaN * time: 0.059126853942871094 * x: [0.9278863844370449, 0.8607356471053862] 128 5.206010e-03 NaN * time: 0.05917000770568848 * x: [0.9278863809234222, 0.8607357330090722] 129 5.206008e-03 NaN * time: 0.059211015701293945 * x: [0.927886379241277, 0.8607357741354236] 130 5.206003e-03 NaN * time: 0.05925107002258301 * x: [0.9278863800335528, 0.8607358853913983] 131 5.206000e-03 NaN * time: 0.05929088592529297 * x: [0.9278863873965766, 0.8607359447420939] 132 5.205998e-03 NaN * time: 0.05933189392089844 * x: [0.9278863915703404, 0.8607359783853076] 133 5.205995e-03 NaN * time: 0.05937385559082031 * x: [0.9278863922225357, 0.8607360335166043] 134 5.205994e-03 NaN * time: 0.059413909912109375 * x: [0.9278863925719284, 0.8607360605308843] 135 5.205992e-03 NaN * time: 0.05945301055908203 * x: [0.9278863914781545, 0.8607361071995043] 136 5.205990e-03 NaN * time: 0.059494972229003906 * x: [0.9278863906802536, 0.8607361412439613] 137 5.205989e-03 NaN * time: 0.05953693389892578 * x: [0.9278863894788829, 0.8607361658184868] 138 5.205988e-03 NaN * time: 0.05957293510437012 * x: [0.9278863881241008, 0.8607361995962417] 139 5.205987e-03 NaN * time: 0.05960988998413086 * x: [0.9278863873460224, 0.8607362189954841] 140 5.205986e-03 NaN * time: 0.05964803695678711 * x: [0.9278863866270185, 0.8607362272641265] 141 5.205986e-03 NaN * time: 0.05968594551086426 * x: [0.9278863863059993, 0.8607362334746915] 142 5.205986e-03 NaN * time: 0.05972599983215332 * x: [0.9278863865537771, 0.8607362367389204] 143 5.205986e-03 NaN * time: 0.059764862060546875 * x: [0.9278863863792498, 0.8607362401803156] 144 5.205986e-03 NaN * time: 0.05980396270751953 * x: [0.9278863862829627, 0.8607362425649934] 145 5.205985e-03 NaN * time: 0.05986905097961426 * x: [0.9278863863261229, 0.8607362447409647] 146 5.205985e-03 NaN * time: 0.059906959533691406 * x: [0.9278863863483101, 0.8607362458595647] 147 5.205985e-03 NaN * time: 0.059944868087768555 * x: [0.9278863863793598, 0.8607362467110984] 148 5.205985e-03 NaN * time: 0.059983015060424805 * x: [0.9278863863968616, 0.8607362471817432] 149 5.205985e-03 NaN * time: 0.06002187728881836 * x: [0.9278863863960227, 0.8607362474988665] 150 5.205985e-03 NaN * time: 0.06006002426147461 * x: [0.9278863864042397, 0.8607362477467123] 151 5.205985e-03 NaN * time: 0.06009697914123535 * x: [0.9278863864033664, 0.8607362479149807] 152 5.205985e-03 NaN * time: 0.060133934020996094 * x: [0.9278863864027418, 0.860736248052863] 153 5.205985e-03 NaN * time: 0.060170888900756836 * x: [0.9278863864004188, 0.8607362481224421] 154 5.205985e-03 NaN * time: 0.060211896896362305 * x: [0.9278863863993398, 0.860736248179307] 155 5.205985e-03 NaN * time: 0.060250043869018555 * x: [0.9278863863988539, 0.860736248204922] 156 5.205985e-03 NaN * time: 0.06028604507446289 * x: [0.9278863863980832, 0.8607362482257742] 157 5.205985e-03 NaN * time: 0.06032204627990723 * x: [0.9278863863980472, 0.8607362482580103] 158 5.205985e-03 NaN * time: 0.06035900115966797 * x: [0.9278863863980308, 0.860736248272707] 159 5.205985e-03 NaN * time: 0.06039595603942871 * x: [0.9278863863980222, 0.8607362482804154] 160 5.205985e-03 NaN * time: 0.06043195724487305 * x: [0.9278863863980182, 0.8607362482839742] 161 5.205985e-03 NaN * time: 0.06046700477600098 * x: [0.9278863863980166, 0.8607362482855103] 162 5.205985e-03 NaN * time: 0.060502052307128906 * x: [0.9278863863979511, 0.8607362482997756] 163 5.205985e-03 NaN * time: 0.06053900718688965 * x: [0.9278863863979413, 0.8607362483116471] 164 5.205985e-03 NaN * time: 0.060575008392333984 * x: [0.9278863863979371, 0.8607362483167771] 165 5.205985e-03 NaN * time: 0.06061196327209473 * x: [0.9278863863979468, 0.860736248334294] 166 5.205985e-03 NaN * time: 0.06064891815185547 * x: [0.9278863863979331, 0.8607362483511577] 167 5.205985e-03 NaN * time: 0.06068706512451172 * x: [0.9278863863979275, 0.8607362483579032] 168 5.205985e-03 NaN * time: 0.06072592735290527 * x: [0.9278863863979253, 0.8607362483606014] 169 5.205985e-03 NaN * time: 0.06076192855834961 * x: [0.9278863863979244, 0.8607362483616806] 170 5.205985e-03 NaN * time: 0.06079888343811035 * x: [0.9278863863979282, 0.8607362483629936] 171 5.205985e-03 NaN * time: 0.060855865478515625 * x: [0.9278863863979292, 0.8607362483640156] 172 5.205985e-03 NaN * time: 0.060894012451171875 * x: [0.9278863863979323, 0.8607362483645767] 173 5.205985e-03 NaN * time: 0.06093096733093262 * x: [0.9278863863979331, 0.8607362483649899] 174 5.205985e-03 NaN * time: 0.060968875885009766 * x: [0.9278863863979336, 0.8607362483653115] 175 5.205985e-03 NaN * time: 0.06101584434509277 * x: [0.9278863863979352, 0.8607362483654724] 176 5.205985e-03 NaN * time: 0.06105399131774902 * x: [0.9278863863979354, 0.8607362483655646] 177 3.702059e-03 NaN * time: 0.06109285354614258 * x: [0.9694082053274959, 0.9450117373617135] 178 3.702059e-03 NaN * time: 0.061131954193115234 * x: [0.9694082053274959, 0.9450117373617135] 179 3.702059e-03 NaN * time: 0.06116986274719238 * x: [0.9694082053274959, 0.9450117373617135] 180 3.702059e-03 NaN * time: 0.06120800971984863 * x: [0.9694082053274959, 0.9450117373617135] 181 1.172946e-03 NaN * time: 0.06124401092529297 * x: [0.9708661953196754, 0.9407807036045512] 182 1.172946e-03 NaN * time: 0.0612790584564209 * x: [0.9708661953196754, 0.9407807036045512] 183 8.539381e-04 NaN * time: 0.061315059661865234 * x: [0.9709454276116538, 0.9424224553885527] 184 8.539381e-04 NaN * time: 0.06134986877441406 * x: [0.9709454276116538, 0.9424224553885527] 185 8.539381e-04 NaN * time: 0.0613858699798584 * x: [0.9709454276116538, 0.9424224553885527] 186 8.539381e-04 NaN * time: 0.06142401695251465 * x: [0.9709454276116538, 0.9424224553885527] 187 8.539381e-04 NaN * time: 0.06146407127380371 * x: [0.9709454276116538, 0.9424224553885527] 188 8.539381e-04 NaN * time: 0.06150197982788086 * x: [0.9709454276116538, 0.9424224553885527] 189 8.539381e-04 NaN * time: 0.06154203414916992 * x: [0.9709454276116538, 0.9424224553885527] 190 8.539381e-04 NaN * time: 0.06158185005187988 * x: [0.9709454276116538, 0.9424224553885527] 191 8.539381e-04 NaN * time: 0.06162095069885254 * x: [0.9709454276116538, 0.9424224553885527] 192 8.539381e-04 NaN * time: 0.06165885925292969 * x: [0.9709454276116538, 0.9424224553885527] 193 8.539381e-04 NaN * time: 0.061699867248535156 * x: [0.9709454276116538, 0.9424224553885527] 194 8.539381e-04 NaN * time: 0.06174302101135254 * x: [0.9709454276116538, 0.9424224553885527] 195 8.539381e-04 NaN * time: 0.06178593635559082 * x: [0.9709454276116538, 0.9424224553885527] 196 8.459188e-04 NaN * time: 0.061846017837524414 * x: [0.9709424446631351, 0.942854821568732] 197 8.459188e-04 NaN * time: 0.06188488006591797 * x: [0.9709424446631351, 0.942854821568732] 198 8.443409e-04 NaN * time: 0.06192302703857422 * x: [0.9709454014590921, 0.9426935963012788] 199 8.443409e-04 NaN * time: 0.061959028244018555 * x: [0.9709454014590921, 0.9426935963012788] 200 8.443409e-04 NaN * time: 0.06199502944946289 * x: [0.9709454014590921, 0.9426935963012788] 201 8.443409e-04 NaN * time: 0.06203103065490723 * x: [0.9709454014590921, 0.9426935963012788] 202 8.443409e-04 NaN * time: 0.06206989288330078 * x: [0.9709454014590921, 0.9426935963012788] 203 8.443409e-04 NaN * time: 0.062109947204589844 * x: [0.9709454014590921, 0.9426935963012788] 204 8.443409e-04 NaN * time: 0.06214785575866699 * x: [0.9709454014590921, 0.9426935963012788] 205 8.443409e-04 NaN * time: 0.06218886375427246 * x: [0.9709454014590921, 0.9426935963012788] 206 4.081612e-04 NaN * time: 0.06222987174987793 * x: [0.9835648132570776, 0.9685746707863543] 207 4.081612e-04 NaN * time: 0.06227302551269531 * x: [0.9835648132570776, 0.9685746707863543] 208 4.081612e-04 NaN * time: 0.06231403350830078 * x: [0.9835648132570776, 0.9685746707863543] 209 2.244712e-04 NaN * time: 0.062352895736694336 * x: [0.9853155342538625, 0.9705494197470087] 210 2.244712e-04 NaN * time: 0.0623929500579834 * x: [0.9853155342538625, 0.9705494197470087] 211 2.244712e-04 NaN * time: 0.06243395805358887 * x: [0.9853155342538625, 0.9705494197470087] 212 2.244712e-04 NaN * time: 0.06247305870056152 * x: [0.9853155342538625, 0.9705494197470087] 213 2.244712e-04 NaN * time: 0.06251001358032227 * x: [0.9853155342538625, 0.9705494197470087] 214 2.244712e-04 NaN * time: 0.06254196166992188 * x: [0.9853155342538625, 0.9705494197470087] 215 2.244712e-04 NaN * time: 0.0625770092010498 * x: [0.9853155342538625, 0.9705494197470087] 216 2.244712e-04 NaN * time: 0.06261205673217773 * x: [0.9853155342538625, 0.9705494197470087] 217 2.244712e-04 NaN * time: 0.06265091896057129 * x: [0.9853155342538625, 0.9705494197470087] 218 2.244353e-04 NaN * time: 0.06269001960754395 * x: [0.9850808818733996, 0.9705205514210441] 219 2.213104e-04 NaN * time: 0.0627288818359375 * x: [0.9851267249416852, 0.9705056665230368] 220 2.206080e-04 NaN * time: 0.06276798248291016 * x: [0.985148266244536, 0.9704986722247084] 221 2.204570e-04 NaN * time: 0.06282496452331543 * x: [0.9851574861631949, 0.9704956785867604] 222 2.204150e-04 NaN * time: 0.06287193298339844 * x: [0.9851621113582386, 0.9704941768208651] 223 2.204033e-04 NaN * time: 0.0629110336303711 * x: [0.9851642475515222, 0.9704934832150413] 224 2.203997e-04 NaN * time: 0.06295084953308105 * x: [0.9851651638913924, 0.9704931856864067] 225 2.203985e-04 NaN * time: 0.06298494338989258 * x: [0.9851655481618272, 0.9704930609166991] 226 2.203980e-04 NaN * time: 0.06301689147949219 * x: [0.9851657276349474, 0.9704930026431325] 227 2.203977e-04 NaN * time: 0.0630488395690918 * x: [0.9851658127642059, 0.9704929750023054] 228 2.203976e-04 NaN * time: 0.06308293342590332 * x: [0.9851658554365574, 0.9704929611469151] 229 2.203976e-04 NaN * time: 0.06311702728271484 * x: [0.9851658726886912, 0.9704929555452776] 230 2.203975e-04 NaN * time: 0.06315183639526367 * x: [0.9851658802770185, 0.970492953081405] 231 2.203975e-04 NaN * time: 0.0631868839263916 * x: [0.9851658833810414, 0.9704929520735522] 232 2.203975e-04 NaN * time: 0.06322288513183594 * x: [0.9851658846263985, 0.9704929516691942] 233 2.203975e-04 NaN * time: 0.06325888633728027 * x: [0.9851658851284146, 0.9704929515061934] 234 2.203975e-04 NaN * time: 0.06329488754272461 * x: [0.98516588533062, 0.9704929514405388] 235 2.199373e-04 NaN * time: 0.06333184242248535 * x: [0.9851934347929734, 0.970522261253203] 236 2.199373e-04 NaN * time: 0.0633690357208252 * x: [0.9851934347929734, 0.970522261253203] 237 2.198096e-04 NaN * time: 0.06340503692626953 * x: [0.9851983108424694, 0.970530880458079] 238 2.195816e-04 NaN * time: 0.06344199180603027 * x: [0.9851908516471468, 0.9705489789827183] 239 2.193709e-04 NaN * time: 0.06347990036010742 * x: [0.9851904832470065, 0.9705781214738003] 240 2.192856e-04 NaN * time: 0.06351685523986816 * x: [0.9851986864548433, 0.9705709885248359] 241 2.190910e-04 NaN * time: 0.06355404853820801 * x: [0.9852033907467946, 0.9705868190418733] 242 2.190224e-04 NaN * time: 0.06359100341796875 * x: [0.9852040366998371, 0.9705950782011881] 243 2.189186e-04 NaN * time: 0.0636298656463623 * x: [0.9852075053020909, 0.970602096672802] 244 2.188771e-04 NaN * time: 0.06366705894470215 * x: [0.9852088927429924, 0.9706049040614475] 245 2.188596e-04 NaN * time: 0.06370401382446289 * x: [0.9852094775200548, 0.9706060873165205] 246 2.188518e-04 NaN * time: 0.06374096870422363 * x: [0.9852097392495354, 0.970606616907634] 247 2.188486e-04 NaN * time: 0.06377792358398438 * x: [0.9852098439413276, 0.9706068287440793] 248 2.188366e-04 NaN * time: 0.06383705139160156 * x: [0.9852102088228789, 0.970607746017477] 249 2.188292e-04 NaN * time: 0.0638740062713623 * x: [0.9852104881559722, 0.9706081598185943] 250 2.188262e-04 NaN * time: 0.06391096115112305 * x: [0.9852105998892096, 0.9706083253390412] 251 2.188221e-04 NaN * time: 0.06394791603088379 * x: [0.9852107238915764, 0.970608633077914] 252 2.188203e-04 NaN * time: 0.06398701667785645 * x: [0.9852107596862999, 0.9706088246929414] 253 2.188182e-04 NaN * time: 0.0640249252319336 * x: [0.9852108141374578, 0.9706090142997936] 254 2.188166e-04 NaN * time: 0.06406307220458984 * x: [0.9852108639181058, 0.9706091261798485] 255 2.188160e-04 NaN * time: 0.06409907341003418 * x: [0.9852108838308596, 0.9706091709329822] 256 2.143236e-04 NaN * time: 0.06413793563842773 * x: [0.985455231194953, 0.9709554809571382] 257 2.136292e-04 NaN * time: 0.06417584419250488 * x: [0.985714080918928, 0.9713233523139476] 258 2.133613e-04 NaN * time: 0.06421089172363281 * x: [0.9854270908572809, 0.9711661337069628] 259 2.133613e-04 NaN * time: 5.336483001708984 * x: [0.9854270908572809, 0.9711661337069628] 260 2.133124e-04 NaN * time: 5.336535930633545 * x: [0.9858523381789559, 0.9715421191662165] 261 2.085778e-04 NaN * time: 5.336575984954834 * x: [0.9855625220043306, 0.9713704990384734] 262 2.048045e-04 NaN * time: 5.3366148471832275 * x: [0.9857274264207321, 0.9715537651790765] 263 2.044371e-04 NaN * time: 5.3366539478302 * x: [0.9857933881872927, 0.9716270716353178] 264 1.990967e-04 NaN * time: 5.336690902709961 * x: [0.9860692186288267, 0.9721082261973596] 265 1.929925e-04 NaN * time: 5.336726903915405 * x: [0.9861886525097303, 0.9724184187425506] 266 1.906967e-04 NaN * time: 5.33676290512085 * x: [0.9862405429776826, 0.9725531881748382] 267 1.897762e-04 NaN * time: 5.3367979526519775 * x: [0.9862628459277696, 0.9726111131857346] 268 1.894192e-04 NaN * time: 5.3369410037994385 * x: [0.9862717671078044, 0.9726342831900932] 269 1.766495e-04 NaN * time: 5.336977958679199 * x: [0.9868096520440315, 0.9739565131839107] 270 1.766495e-04 NaN * time: 5.337013006210327 * x: [0.9868096520440315, 0.9739565131839107] 271 1.766495e-04 NaN * time: 5.337048053741455 * x: [0.9868096520440315, 0.9739565131839107] 272 1.705173e-04 NaN * time: 5.337084054946899 * x: [0.9869812207578161, 0.9742333553176723] 273 1.669086e-04 NaN * time: 5.337117910385132 * x: [0.987083587294471, 0.9743613675088317] 274 1.657031e-04 NaN * time: 5.33715295791626 * x: [0.987127505951417, 0.9744162890065414] 275 1.651566e-04 NaN * time: 5.337188005447388 * x: [0.9871503860275213, 0.9744449011758276] 276 1.648844e-04 NaN * time: 5.337225914001465 * x: [0.9871627585921579, 0.9744603734108094] 277 1.315562e-04 NaN * time: 5.337262868881226 * x: [0.9887507465395591, 0.9778518812416181] 278 1.315562e-04 NaN * time: 5.3372979164123535 * x: [0.9887507465395591, 0.9778518812416181] 279 1.315562e-04 NaN * time: 5.337334871292114 * x: [0.9887507465395591, 0.9778518812416181] 280 1.315562e-04 NaN * time: 5.337369918823242 * x: [0.9887507465395591, 0.9778518812416181] 281 1.315562e-04 NaN * time: 5.33740496635437 * x: [0.9887507465395591, 0.9778518812416181] 282 1.315562e-04 NaN * time: 5.337440013885498 * x: [0.9887507465395591, 0.9778518812416181] 283 1.315562e-04 NaN * time: 5.337477922439575 * x: [0.9887507465395591, 0.9778518812416181] 284 1.258209e-04 NaN * time: 5.337514877319336 * x: [0.988807779491059, 0.977666316485289] 285 1.258209e-04 NaN * time: 5.33755087852478 * x: [0.988807779491059, 0.977666316485289] 286 1.258209e-04 NaN * time: 5.337586879730225 * x: [0.988807779491059, 0.977666316485289] 287 1.258209e-04 NaN * time: 5.3376240730285645 * x: [0.988807779491059, 0.977666316485289] 288 1.258209e-04 NaN * time: 5.337661027908325 * x: [0.988807779491059, 0.977666316485289] 289 1.189834e-04 NaN * time: 5.3376970291137695 * x: [0.9890964518934962, 0.9782808020443354] 290 1.123973e-04 NaN * time: 5.33773398399353 * x: [0.9894634690847496, 0.9789205336713447] 291 1.101093e-04 NaN * time: 5.337772846221924 * x: [0.9896213417935641, 0.979195714690864] 292 1.092262e-04 NaN * time: 5.337830066680908 * x: [0.9896892659796008, 0.9793141103711811] 293 1.088466e-04 NaN * time: 5.337868928909302 * x: [0.9897200105845539, 0.979367699948501] 294 1.086703e-04 NaN * time: 5.3379058837890625 * x: [0.9897346435367965, 0.9793932060080787] 295 1.030332e-04 NaN * time: 5.337951898574829 * x: [0.98996486320446, 0.9801830484792879] 296 1.030332e-04 NaN * time: 5.338032007217407 * x: [0.98996486320446, 0.9801830484792879] 297 1.020773e-04 NaN * time: 5.338068962097168 * x: [0.9900229426355593, 0.980304662993923] 298 1.020773e-04 NaN * time: 5.338105916976929 * x: [0.9900229426355593, 0.980304662993923] 299 1.009793e-04 NaN * time: 5.338144063949585 * x: [0.9899520243902619, 0.9800182155442687] 300 1.009793e-04 NaN * time: 5.3381829261779785 * x: [0.9899520243902619, 0.9800182155442687] 8.535836 seconds (637.83 k allocations: 32.313 MiB, 37.65% compilation time) ./multivariate/solvers/zeroth_order/simulated_annealing.jl Iter Function value Gradient norm 1 1.000000e+00 NaN * time: 8.606910705566406e-5 * x: [0.0, 0.0] 2 1.000000e+00 NaN * time: 0.05508995056152344 * x: [0.0, 0.0] 3 1.000000e+00 NaN * time: 0.05513191223144531 * x: [0.0, 0.0] 4 1.000000e+00 NaN * time: 0.05516386032104492 * x: [0.0, 0.0] 5 1.000000e+00 NaN * time: 0.055194854736328125 * x: [0.0, 0.0] 6 1.000000e+00 NaN * time: 0.05522584915161133 * x: [0.0, 0.0] 7 1.000000e+00 NaN * time: 0.05525493621826172 * x: [0.0, 0.0] 8 1.000000e+00 NaN * time: 0.05528688430786133 * x: [0.0, 0.0] 9 1.000000e+00 NaN * time: 0.055316925048828125 * x: [0.0, 0.0] 10 1.000000e+00 NaN * time: 0.0553739070892334 * x: [0.0, 0.0] 11 1.000000e+00 NaN * time: 0.055403947830200195 * x: [0.0, 0.0] 0.243824 seconds (630.89 k allocations: 10.848 MiB, 61.22% compilation time: 13% of which was recompilation) ./multivariate/array.jl 131.943341 seconds (38.68 M allocations: 1.954 GiB, 0.58% gc time, 99.39% compilation time: <1% of which was recompilation) ./multivariate/extrapolate.jl 15.978344 seconds (5.60 M allocations: 324.444 MiB, 0.97% gc time, 98.73% compilation time: 5% of which was recompilation) ./multivariate/lsthrow.jl 7.863371 seconds (1.57 M allocations: 81.812 MiB, 1.16% gc time, 99.53% compilation time: 3% of which was recompilation) ./multivariate/precon.jl 23.185458 seconds (33.76 M allocations: 16.291 GiB, 15.49% gc time, 13.31% compilation time: 4% of which was recompilation) ./multivariate/manifolds.jl WARNING: Method definition (::Main.var"#fprod#fprod##0"{fmanif, n})(Any) in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/test/multivariate/manifolds.jl:35 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/test/multivariate/manifolds.jl:45. WARNING: Method definition (::Main.var"#gprod!#gprod!##0"{gmanif!, n})(Any, Any) in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/test/multivariate/manifolds.jl:36 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/test/multivariate/manifolds.jl:46. 115.799669 seconds (32.09 M allocations: 1.620 GiB, 0.47% gc time, 99.86% compilation time: <1% of which was recompilation) ./multivariate/complex.jl 27.166753 seconds (10.29 M allocations: 532.539 MiB, 0.69% gc time, 99.63% compilation time: 3% of which was recompilation) ./multivariate/fdtime.jl 36.341070 seconds (73.98 M allocations: 14.239 GiB, 7.37% gc time, 4.64% compilation time) ./multivariate/arbitrary_precision.jl ┌ Warning: Terminated early due to NaN in gradient. └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/optimize/optimize.jl:98 36.413897 seconds (20.18 M allocations: 1.076 GiB, 0.99% gc time, 95.54% compilation time: 6% of which was recompilation) ./multivariate/successive_f_tol.jl 0.296318 seconds (83.22 k allocations: 4.439 MiB, 94.29% compilation time: 29% of which was recompilation) ./multivariate/f_increase.jl 0.211644 seconds (23.87 k allocations: 1.148 MiB, 92.53% compilation time: 64% of which was recompilation) ./multivariate/measurements.jl 15.677762 seconds (6.96 M allocations: 373.082 MiB, 0.79% gc time, 88.96% compilation time: 5% of which was recompilation) Test Summary: | Pass Broken Total Time multivariate | 211970 73 212043 14m06.7s Literate examples ┌ Warning: Initial guess is not an interior point └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:116 Stacktrace: [1] initial_state(method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}, d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{typeof(con_c!), typeof(con_jacobian!), typeof(con_h!), Float64}, initial_x::Vector{Float64}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:117 [2] optimize @ ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/interior.jl:229 [inlined] [3] optimize(d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{typeof(con_c!), typeof(con_jacobian!), typeof(con_h!), Float64}, initial_x::Vector{Float64}, method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/interior.jl:229 [4] top-level scope @ ~/.julia/packages/Optim/HvjCd/docs/src/examples/ipnewton_basics.jl:172 [5] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [6] IncludeInto @ ./Base.jl:302 [inlined] [7] #438 @ ~/.julia/packages/Optim/HvjCd/test/examples.jl:11 [inlined] [8] cd(f::var"#438#439"{String, String}, dir::String) @ Base.Filesystem ./file.jl:112 [9] #436 @ ~/.julia/packages/Optim/HvjCd/test/examples.jl:10 [inlined] [10] mktempdir(fn::var"#436#437"{String, String}, parent::String; prefix::String) @ Base.Filesystem ./file.jl:899 [11] mktempdir(fn::Function, parent::String) @ Base.Filesystem ./file.jl:895 [12] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/examples.jl:2 [13] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [14] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/examples.jl:9 [inlined] [15] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [16] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/examples.jl:9 [inlined] [17] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [18] IncludeInto @ ./Base.jl:302 [inlined] [19] macro expansion @ ./timing.jl:611 [inlined] [20] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:343 [21] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [22] top-level scope @ none:6 [23] eval(m::Module, e::Any) @ Core ./boot.jl:485 [24] exec_options(opts::Base.JLOptions) @ Base ./client.jl:295 [25] _start() @ Base ./client.jl:558 parameter estimates:[2.836642512088644, 3.053452125511052, 0.37218117584627275] t-statsitics: [48.02654897758058, 45.515682746940136, 8.94427190999916] WARNING: Method definition con_c!(Any, Any) in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/docs/src/examples/ipnewton_basics.jl:139 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/docs/src/examples/rasch.jl:171. WARNING: Method definition con_jacobian!(Any, Any) in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/docs/src/examples/ipnewton_basics.jl:140 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/docs/src/examples/rasch.jl:172. WARNING: Method definition con_h!(Any, Any, Any) in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/docs/src/examples/ipnewton_basics.jl:145 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/docs/src/examples/rasch.jl:175. Test Summary: | Pass Total Time Literate examples | 20 20 42.6s 42.765978 seconds (17.63 M allocations: 896.058 MiB, 0.60% gc time, 97.10% compilation time: 19% of which was recompilation) Test Summary: | Pass Total Time show method for options | 1 1 0.4s ┌ Warning: Initial guess is not an interior point └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:116 Stacktrace: [1] initial_state(method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}, d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#c!##0"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#jacobian!##0"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#con_hessian!##0"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:117 [2] optimize(d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#c!##0"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#jacobian!##0"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#con_hessian!##0"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}, method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/interior.jl:229 [3] optimize!(model::OptimMOIExt.Optimizer{Float64}) @ OptimMOIExt ~/.julia/packages/Optim/HvjCd/ext/OptimMOIExt.jl:365 [4] optimize!(dest::OptimMOIExt.Optimizer{Float64}, src::MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}) @ MathOptInterface ~/.julia/packages/MathOptInterface/jGuEH/src/MathOptInterface.jl:122 [5] optimize!(m::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}) @ MathOptInterface.Utilities ~/.julia/packages/MathOptInterface/jGuEH/src/Utilities/cachingoptimizer.jl:327 [6] test_nonlinear_constraint_log(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jGuEH/src/Test/test_nonlinear.jl:1917 [7] macro expansion @ ~/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:270 [inlined] [8] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [9] runtests(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}; include::Vector{String}, exclude::Vector{String}, warn_unsupported::Bool, verbose::Bool, exclude_tests_after::VersionNumber) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:265 [10] test_MOI_Test() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:33 [11] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [inlined] [12] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [13] runtests() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [14] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:77 [15] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [16] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [17] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [18] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [inlined] [19] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [20] top-level scope @ none:6 [21] eval(m::Module, e::Any) @ Core ./boot.jl:485 [22] exec_options(opts::Base.JLOptions) @ Base ./client.jl:295 [23] _start() @ Base ./client.jl:558 test_nonlinear_constraint_log: Test Failed at /home/pkgeval/.julia/packages/MathOptInterface/jGuEH/src/Test/test_nonlinear.jl:1921 Expression: ≈(x_val, T(2), config) Evaluated: ≈(NaN, 2.0, MathOptInterface.Test.Config{Float64}(1.0e-6, 1.0e-6, MathOptInterface.LOCALLY_SOLVED, MathOptInterface.INFEASIBLE, Any[MathOptInterface.ConstraintBasisStatus, MathOptInterface.VariableBasisStatus, MathOptInterface.ConstraintName, MathOptInterface.VariableName, MathOptInterface.ObjectiveBound, MathOptInterface.DualObjectiveValue, MathOptInterface.SolverVersion, MathOptInterface.ConstraintDual])) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:679 [inlined] [2] test_nonlinear_constraint_log(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jGuEH/src/Test/test_nonlinear.jl:1921 [3] macro expansion @ ~/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:270 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [5] runtests(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}; include::Vector{String}, exclude::Vector{String}, warn_unsupported::Bool, verbose::Bool, exclude_tests_after::VersionNumber) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:265 test_nonlinear_constraint_log: Test Failed at /home/pkgeval/.julia/packages/MathOptInterface/jGuEH/src/Test/test_nonlinear.jl:1922 Expression: ≈(t_val, log(x_val), config) Evaluated: ≈(NaN, NaN, MathOptInterface.Test.Config{Float64}(1.0e-6, 1.0e-6, MathOptInterface.LOCALLY_SOLVED, MathOptInterface.INFEASIBLE, Any[MathOptInterface.ConstraintBasisStatus, MathOptInterface.VariableBasisStatus, MathOptInterface.ConstraintName, MathOptInterface.VariableName, MathOptInterface.ObjectiveBound, MathOptInterface.DualObjectiveValue, MathOptInterface.SolverVersion, MathOptInterface.ConstraintDual])) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:679 [inlined] [2] test_nonlinear_constraint_log(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jGuEH/src/Test/test_nonlinear.jl:1922 [3] macro expansion @ ~/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:270 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [5] runtests(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}; include::Vector{String}, exclude::Vector{String}, warn_unsupported::Bool, verbose::Bool, exclude_tests_after::VersionNumber) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:265 test_nonlinear_constraint_log: Test Failed at /home/pkgeval/.julia/packages/MathOptInterface/jGuEH/src/Test/test_nonlinear.jl:1923 Expression: ≈(MOI.get(model, MOI.ObjectiveValue()), t_val, config) Evaluated: ≈(NaN, NaN, MathOptInterface.Test.Config{Float64}(1.0e-6, 1.0e-6, MathOptInterface.LOCALLY_SOLVED, MathOptInterface.INFEASIBLE, Any[MathOptInterface.ConstraintBasisStatus, MathOptInterface.VariableBasisStatus, MathOptInterface.ConstraintName, MathOptInterface.VariableName, MathOptInterface.ObjectiveBound, MathOptInterface.DualObjectiveValue, MathOptInterface.SolverVersion, MathOptInterface.ConstraintDual])) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:679 [inlined] [2] test_nonlinear_constraint_log(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jGuEH/src/Test/test_nonlinear.jl:1923 [3] macro expansion @ ~/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:270 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [5] runtests(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}; include::Vector{String}, exclude::Vector{String}, warn_unsupported::Bool, verbose::Bool, exclude_tests_after::VersionNumber) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:265 ┌ Warning: Initial guess is not an interior point └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:116 Stacktrace: [1] initial_state(method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}, d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#c!##0"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#jacobian!##0"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#con_hessian!##0"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:117 [2] optimize(d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#c!##0"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#jacobian!##0"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#con_hessian!##0"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}, method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/interior.jl:229 [3] optimize!(model::OptimMOIExt.Optimizer{Float64}) @ OptimMOIExt ~/.julia/packages/Optim/HvjCd/ext/OptimMOIExt.jl:365 [4] optimize!(dest::OptimMOIExt.Optimizer{Float64}, src::MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}) @ MathOptInterface ~/.julia/packages/MathOptInterface/jGuEH/src/MathOptInterface.jl:122 [5] optimize!(m::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}) @ MathOptInterface.Utilities ~/.julia/packages/MathOptInterface/jGuEH/src/Utilities/cachingoptimizer.jl:327 [6] test_nonlinear_constraint_scalar_affine_function(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jGuEH/src/Test/test_nonlinear.jl:1997 [7] macro expansion @ ~/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:270 [inlined] [8] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [9] runtests(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}; include::Vector{String}, exclude::Vector{String}, warn_unsupported::Bool, verbose::Bool, exclude_tests_after::VersionNumber) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:265 [10] test_MOI_Test() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:33 [11] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [inlined] [12] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [13] runtests() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [14] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:77 [15] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [16] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [17] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [18] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [inlined] [19] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [20] top-level scope @ none:6 [21] eval(m::Module, e::Any) @ Core ./boot.jl:485 [22] exec_options(opts::Base.JLOptions) @ Base ./client.jl:295 [23] _start() @ Base ./client.jl:558 test_nonlinear_constraint_scalar_affine_function: Test Failed at /home/pkgeval/.julia/packages/MathOptInterface/jGuEH/src/Test/test_nonlinear.jl:1998 Expression: ≈(MOI.get(model, MOI.ObjectiveValue()), T(6), config) Evaluated: ≈(NaN, 6.0, MathOptInterface.Test.Config{Float64}(1.0e-6, 1.0e-6, MathOptInterface.LOCALLY_SOLVED, MathOptInterface.INFEASIBLE, Any[MathOptInterface.ConstraintBasisStatus, MathOptInterface.VariableBasisStatus, MathOptInterface.ConstraintName, MathOptInterface.VariableName, MathOptInterface.ObjectiveBound, MathOptInterface.DualObjectiveValue, MathOptInterface.SolverVersion, MathOptInterface.ConstraintDual])) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:679 [inlined] [2] test_nonlinear_constraint_scalar_affine_function(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jGuEH/src/Test/test_nonlinear.jl:1998 [3] macro expansion @ ~/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:270 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [5] runtests(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}; include::Vector{String}, exclude::Vector{String}, warn_unsupported::Bool, verbose::Bool, exclude_tests_after::VersionNumber) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:265 ┌ Warning: Initial guess is not an interior point └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:116 Stacktrace: [1] initial_state(method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}, d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#c!##0"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#jacobian!##0"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#con_hessian!##0"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:117 [2] optimize(d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#c!##0"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#jacobian!##0"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#con_hessian!##0"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}, method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/interior.jl:229 [3] optimize!(model::OptimMOIExt.Optimizer{Float64}) @ OptimMOIExt ~/.julia/packages/Optim/HvjCd/ext/OptimMOIExt.jl:365 [4] optimize!(dest::OptimMOIExt.Optimizer{Float64}, src::MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}) @ MathOptInterface ~/.julia/packages/MathOptInterface/jGuEH/src/MathOptInterface.jl:122 [5] optimize!(m::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}) @ MathOptInterface.Utilities ~/.julia/packages/MathOptInterface/jGuEH/src/Utilities/cachingoptimizer.jl:327 [6] test_nonlinear_quadratic_1(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jGuEH/src/Test/test_nonlinear.jl:2048 [7] macro expansion @ ~/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:270 [inlined] [8] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [9] runtests(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}; include::Vector{String}, exclude::Vector{String}, warn_unsupported::Bool, verbose::Bool, exclude_tests_after::VersionNumber) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:265 [10] test_MOI_Test() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:33 [11] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [inlined] [12] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [13] runtests() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [14] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:77 [15] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [16] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [17] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [18] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [inlined] [19] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [20] top-level scope @ none:6 [21] eval(m::Module, e::Any) @ Core ./boot.jl:485 [22] exec_options(opts::Base.JLOptions) @ Base ./client.jl:295 [23] _start() @ Base ./client.jl:558 ┌ Warning: Initial guess is not an interior point └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:116 Stacktrace: [1] initial_state(method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}, d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#c!##0"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#jacobian!##0"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#con_hessian!##0"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:117 [2] optimize(d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#c!##0"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#jacobian!##0"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#con_hessian!##0"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}, method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/interior.jl:229 [3] optimize!(model::OptimMOIExt.Optimizer{Float64}) @ OptimMOIExt ~/.julia/packages/Optim/HvjCd/ext/OptimMOIExt.jl:365 [4] optimize!(dest::OptimMOIExt.Optimizer{Float64}, src::MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}) @ MathOptInterface ~/.julia/packages/MathOptInterface/jGuEH/src/MathOptInterface.jl:122 [5] optimize!(m::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}) @ MathOptInterface.Utilities ~/.julia/packages/MathOptInterface/jGuEH/src/Utilities/cachingoptimizer.jl:327 [6] test_nonlinear_quadratic_2(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jGuEH/src/Test/test_nonlinear.jl:2099 [7] macro expansion @ ~/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:270 [inlined] [8] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [9] runtests(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}; include::Vector{String}, exclude::Vector{String}, warn_unsupported::Bool, verbose::Bool, exclude_tests_after::VersionNumber) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:265 [10] test_MOI_Test() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:33 [11] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [inlined] [12] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [13] runtests() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [14] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:77 [15] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [16] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [17] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [18] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [inlined] [19] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [20] top-level scope @ none:6 [21] eval(m::Module, e::Any) @ Core ./boot.jl:485 [22] exec_options(opts::Base.JLOptions) @ Base ./client.jl:295 [23] _start() @ Base ./client.jl:558 ┌ Warning: Initial guess is not an interior point └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:116 Stacktrace: [1] initial_state(method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}, d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#c!##0"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#jacobian!##0"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#con_hessian!##0"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:117 [2] optimize(d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#c!##0"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#jacobian!##0"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#con_hessian!##0"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}, method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/interior.jl:229 [3] optimize!(model::OptimMOIExt.Optimizer{Float64}) @ OptimMOIExt ~/.julia/packages/Optim/HvjCd/ext/OptimMOIExt.jl:365 [4] optimize!(dest::OptimMOIExt.Optimizer{Float64}, src::MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}) @ MathOptInterface ~/.julia/packages/MathOptInterface/jGuEH/src/MathOptInterface.jl:122 [5] optimize!(m::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}) @ MathOptInterface.Utilities ~/.julia/packages/MathOptInterface/jGuEH/src/Utilities/cachingoptimizer.jl:327 [6] test_nonlinear_quadratic_3(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jGuEH/src/Test/test_nonlinear.jl:2150 [7] macro expansion @ ~/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:270 [inlined] [8] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [9] runtests(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}; include::Vector{String}, exclude::Vector{String}, warn_unsupported::Bool, verbose::Bool, exclude_tests_after::VersionNumber) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:265 [10] test_MOI_Test() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:33 [11] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [inlined] [12] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [13] runtests() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [14] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:77 [15] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [16] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [17] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [18] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [inlined] [19] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [20] top-level scope @ none:6 [21] eval(m::Module, e::Any) @ Core ./boot.jl:485 [22] exec_options(opts::Base.JLOptions) @ Base ./client.jl:295 [23] _start() @ Base ./client.jl:558 ┌ Warning: Initial guess is not an interior point └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:116 Stacktrace: [1] initial_state(method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}, d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#c!##0"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#jacobian!##0"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#con_hessian!##0"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:117 [2] optimize(d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#c!##0"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#jacobian!##0"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#con_hessian!##0"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}, method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/interior.jl:229 [3] optimize!(model::OptimMOIExt.Optimizer{Float64}) @ OptimMOIExt ~/.julia/packages/Optim/HvjCd/ext/OptimMOIExt.jl:365 [4] optimize!(dest::OptimMOIExt.Optimizer{Float64}, src::MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}) @ MathOptInterface ~/.julia/packages/MathOptInterface/jGuEH/src/MathOptInterface.jl:122 [5] optimize!(m::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}) @ MathOptInterface.Utilities ~/.julia/packages/MathOptInterface/jGuEH/src/Utilities/cachingoptimizer.jl:327 [6] test_nonlinear_quadratic_4(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jGuEH/src/Test/test_nonlinear.jl:2200 [7] macro expansion @ ~/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:270 [inlined] [8] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [9] runtests(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}; include::Vector{String}, exclude::Vector{String}, warn_unsupported::Bool, verbose::Bool, exclude_tests_after::VersionNumber) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:265 [10] test_MOI_Test() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:33 [11] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [inlined] [12] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [13] runtests() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [14] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:77 [15] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [16] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [17] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [18] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [inlined] [19] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [20] top-level scope @ none:6 [21] eval(m::Module, e::Any) @ Core ./boot.jl:485 [22] exec_options(opts::Base.JLOptions) @ Base ./client.jl:295 [23] _start() @ Base ./client.jl:558 test_nonlinear_with_scalar_quadratic_function_with_off_diag: Error During Test at /home/pkgeval/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:264 Got exception outside of a @test No nonlinear objective. Stacktrace: [1] error(s::String) @ Base ./error.jl:44 [2] eval_objective_gradient(d::MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator, g::Vector{Float64}, x::Vector{Float64}) @ MathOptInterface.Nonlinear.ReverseAD ~/.julia/packages/MathOptInterface/jGuEH/src/Nonlinear/ReverseAD/mathoptinterface_api.jl:188 [3] eval_objective_gradient @ ~/.julia/packages/MathOptInterface/jGuEH/src/Nonlinear/evaluator.jl:162 [inlined] [4] (::OptimMOIExt.var"#g!#g!##0"{Float64, OptimMOIExt.Optimizer{Float64}, Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}})(G::Vector{Float64}, x::Vector{Float64}) @ OptimMOIExt ~/.julia/packages/Optim/HvjCd/ext/OptimMOIExt.jl:256 [5] (::NLSolversBase.var"#fg!#make_fdf##1"{OptimMOIExt.var"#f#f##0"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#g!#g!##0"{Float64, OptimMOIExt.Optimizer{Float64}, Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}})(gx::Vector{Float64}, x::Vector{Float64}) @ NLSolversBase ~/.julia/packages/NLSolversBase/TvzjC/src/objective_types/abstract.jl:13 [6] value_gradient!!(obj::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, x::Vector{Float64}) @ NLSolversBase ~/.julia/packages/NLSolversBase/TvzjC/src/interface.jl:82 [7] value_gradient!(obj::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, x::Vector{Float64}) @ NLSolversBase ~/.julia/packages/NLSolversBase/TvzjC/src/interface.jl:69 [8] initial_state(method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}, d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#c!##0"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#jacobian!##0"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#con_hessian!##0"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:125 [9] optimize(d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#c!##0"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#jacobian!##0"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#con_hessian!##0"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}, method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/interior.jl:229 [10] optimize!(model::OptimMOIExt.Optimizer{Float64}) @ OptimMOIExt ~/.julia/packages/Optim/HvjCd/ext/OptimMOIExt.jl:365 [11] optimize!(dest::OptimMOIExt.Optimizer{Float64}, src::MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}) @ MathOptInterface ~/.julia/packages/MathOptInterface/jGuEH/src/MathOptInterface.jl:122 [12] optimize!(m::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}) @ MathOptInterface.Utilities ~/.julia/packages/MathOptInterface/jGuEH/src/Utilities/cachingoptimizer.jl:327 [13] test_nonlinear_with_scalar_quadratic_function_with_off_diag(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jGuEH/src/Test/test_nonlinear.jl:1865 [14] macro expansion @ ~/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:270 [inlined] [15] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [16] runtests(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}; include::Vector{String}, exclude::Vector{String}, warn_unsupported::Bool, verbose::Bool, exclude_tests_after::VersionNumber) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:265 [17] test_MOI_Test() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:33 [18] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [inlined] [19] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [20] runtests() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [21] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:77 [22] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [23] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [24] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [25] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [inlined] [26] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [27] top-level scope @ none:6 [28] eval(m::Module, e::Any) @ Core ./boot.jl:485 [29] exec_options(opts::Base.JLOptions) @ Base ./client.jl:295 [30] _start() @ Base ./client.jl:558 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 11 running 1 of 1 signal (10): User defined signal 1 unknown function (ip: 0x7c6767e2d97a) at /lib/x86_64-linux-gnu/libc.so.6 malloc at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) operator new at /workspace/srcdir/gcc-13.2.0/libstdc++-v3/libsupc++/new_op.cc:50 _ZN12_GLOBAL__N_117ScheduleDAGRRList8ScheduleEv at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm16SelectionDAGISel17CodeGenAndEmitDAGEv at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm16SelectionDAGISel20SelectAllBasicBlocksERKNS_8FunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm16SelectionDAGISel20runOnMachineFunctionERNS_15MachineFunctionE.part.0 at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN12_GLOBAL__N_115X86DAGToDAGISel20runOnMachineFunctionERN4llvm15MachineFunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm19MachineFunctionPass13runOnFunctionERNS_8FunctionE.part.0 at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm13FPPassManager13runOnFunctionERNS_8FunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm13FPPassManager11runOnModuleERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm6legacy15PassManagerImpl3runERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm3orc14SimpleCompilerclERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) operator() at /source/src/jitlayers.cpp:1634 addModule at /source/src/jitlayers.cpp:2110 jl_compile_codeinst_now at /source/src/jitlayers.cpp:569 _jl_compile_codeinst at /source/src/jitlayers.cpp:758 [inlined] jl_compile_codeinst_impl at /source/src/jitlayers.cpp:902 jl_compile_method_internal at /source/src/gf.c:2890 _jl_invoke at /source/src/gf.c:3351 [inlined] ijl_apply_generic at /source/src/gf.c:3547 macro expansion at /home/pkgeval/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:270 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] #runtests#2 at /home/pkgeval/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:265 runtests at /home/pkgeval/.julia/packages/MathOptInterface/jGuEH/src/Test/Test.jl:222 unknown function (ip: 0x7c673fb3106d) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 test_MOI_Test at /home/pkgeval/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:33 unknown function (ip: 0x7c673fb2356f) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 macro expansion at /home/pkgeval/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] runtests at /home/pkgeval/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 unknown function (ip: 0x7c673fb2209f) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] do_call at /source/src/interpreter.c:125 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:687 jl_interpret_toplevel_thunk at /source/src/interpreter.c:896 jl_toplevel_eval_flex at /source/src/toplevel.c:1070 jl_toplevel_eval_flex at /source/src/toplevel.c:1010 ijl_toplevel_eval at /source/src/toplevel.c:1082 ijl_toplevel_eval_in at /source/src/toplevel.c:1127 eval at ./boot.jl:485 include_string at ./loading.jl:2846 _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 _include at ./loading.jl:2906 include at ./Base.jl:301 IncludeInto at ./Base.jl:302 jfptr_IncludeInto_69051.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] do_call at /source/src/interpreter.c:125 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:687 eval_body at /source/src/interpreter.c:562 eval_body at /source/src/interpreter.c:562 jl_interpret_toplevel_thunk at /source/src/interpreter.c:896 jl_toplevel_eval_flex at /source/src/toplevel.c:1070 jl_toplevel_eval_flex at /source/src/toplevel.c:1010 ijl_toplevel_eval at /source/src/toplevel.c:1082 ijl_toplevel_eval_in at /source/src/toplevel.c:1127 eval at ./boot.jl:485 include_string at ./loading.jl:2846 _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 _include at ./loading.jl:2906 include at ./Base.jl:301 IncludeInto at ./Base.jl:302 jfptr_IncludeInto_69051.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] do_call at /source/src/interpreter.c:125 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:687 jl_interpret_toplevel_thunk at /source/src/interpreter.c:896 jl_toplevel_eval_flex at /source/src/toplevel.c:1070 jl_toplevel_eval_flex at /source/src/toplevel.c:1010 ijl_toplevel_eval at /source/src/toplevel.c:1082 ijl_toplevel_eval_in at /source/src/toplevel.c:1127 eval at ./boot.jl:485 exec_options at ./client.jl:295 _start at ./client.jl:558 jfptr__start_108457.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] true_main at /source/src/jlapi.c:922 jl_repl_entrypoint at /source/src/jlapi.c:1081 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7c6767dbd249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point ============================================================== ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:454 poptask at ./task.jl:1187 wait at ./task.jl:1199 #wait#551 at ./condition.jl:141 wait at ./condition.jl:136 [inlined] wait at ./process.jl:694 wait at ./process.jl:687 jfptr_wait_97191.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 subprocess_handler at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2377 unknown function (ip: 0x7e6d59182b03) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 #201 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2317 withenv at ./env.jl:265 #186 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2138 with_temp_env at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:1996 #182 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2105 #mktempdir#21 at ./file.jl:899 unknown function (ip: 0x7e6d5916da1c) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 mktempdir at ./file.jl:895 mktempdir at ./file.jl:895 #sandbox#178 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2052 [inlined] sandbox at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2044 unknown function (ip: 0x7e6d5916c179) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 #test#189 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2302 test at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2214 [inlined] #test#170 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:481 test at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:460 unknown function (ip: 0x7e6d5916bdb1) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 #test#84 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:159 unknown function (ip: 0x7e6d59163638) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 test at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:148 #test#82 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:147 test at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:147 [inlined] #test#81 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:146 [inlined] test at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:146 unknown function (ip: 0x7e6d5916079f) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] do_call at /source/src/interpreter.c:125 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:687 eval_body at /source/src/interpreter.c:562 eval_body at /source/src/interpreter.c:562 jl_interpret_toplevel_thunk at /source/src/interpreter.c:896 jl_toplevel_eval_flex at /source/src/toplevel.c:1070 jl_toplevel_eval_flex at /source/src/toplevel.c:1010 ijl_toplevel_eval at /source/src/toplevel.c:1082 ijl_toplevel_eval_in at /source/src/toplevel.c:1127 eval at ./boot.jl:485 include_string at ./loading.jl:2846 _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 _include at ./loading.jl:2906 include at ./Base.jl:300 exec_options at ./client.jl:329 _start at ./client.jl:558 jfptr__start_108457.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] true_main at /source/src/jlapi.c:922 jl_repl_entrypoint at /source/src/jlapi.c:1081 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7e6d5b021249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.12/Profile/src/Profile.jl:1353 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x00007e6d4ce00010 Total snapshots: 1. Utilization: 0% ╎1 @Base/client.jl:558 _start() ╎ 1 @Base/client.jl:329 exec_options(opts::Base.JLOptions) ╎ 1 @Base/Base.jl:300 include(mod::Module, _path::String) ╎ 1 @Base/loading.jl:2906 _include(mapexpr::Function, mod::Module, _path::S… ╎ 1 @Base/loading.jl:2846 include_string(mapexpr::typeof(identity), mod::M… ╎ 1 @Base/boot.jl:485 eval(m::Module, e::Any) ╎ ╎ 1 @Pkg/src/API.jl:146 kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(… ╎ ╎ 1 @Pkg/src/API.jl:146 #test#81 ╎ ╎ 1 @Pkg/src/API.jl:147 test ╎ ╎ 1 @Pkg/src/API.jl:147 test(pkgs::Vector{String}; kwargs::Base.Pairs… ╎ ╎ 1 @Pkg/src/API.jl:148 kwcall(::@NamedTuple{julia_args::Cmd}, ::typ… ╎ ╎ ╎ 1 @Pkg/src/API.jl:159 test(pkgs::Vector{Pkg.Types.PackageSpec}; i… ╎ ╎ ╎ 1 @Pkg/src/API.jl:460 kwcall(::@NamedTuple{julia_args::Cmd, io::… ╎ ╎ ╎ 1 @Pkg/src/API.jl:481 test(ctx::Pkg.Types.Context, pkgs::Vector… ╎ ╎ ╎ 1 @Pkg/…Operations.jl:2214 test ╎ ╎ ╎ 1 @Pkg/…perations.jl:2302 test(ctx::Pkg.Types.Context, pkgs::… ╎ ╎ ╎ ╎ 1 @Pkg/…perations.jl:2044 kwcall(::@NamedTuple{preferences::… ╎ ╎ ╎ ╎ 1 @Pkg/…perations.jl:2052 #sandbox#178 ╎ ╎ ╎ ╎ 1 @Base/file.jl:895 mktempdir(fn::Function) ╎ ╎ ╎ ╎ 1 @Base/file.jl:895 mktempdir(fn::Function, parent::Strin… ╎ ╎ ╎ ╎ 1 @Base/file.jl:899 mktempdir(fn::Pkg.Operations.var"#18… ╎ ╎ ╎ ╎ ╎ 1 @Pkg/…rations.jl:2105 (::Pkg.Operations.var"#182#183"… ╎ ╎ ╎ ╎ ╎ 1 @Pkg/…rations.jl:1996 with_temp_env(fn::Pkg.Operatio… ╎ ╎ ╎ ╎ ╎ 1 @Pkg/…ations.jl:2138 (::Pkg.Operations.var"#186#187… ╎ ╎ ╎ ╎ ╎ 1 @Base/env.jl:265 withenv(::Pkg.Operations.var"#201… ╎ ╎ ╎ ╎ ╎ 1 @Pkg/…tions.jl:2317 (::Pkg.Operations.var"#201#20… ╎ ╎ ╎ ╎ ╎ ╎ 1 @Pkg/…tions.jl:2377 subprocess_handler(cmd::Cmd,… ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…cess.jl:687 wait(x::Base.Process) ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…cess.jl:694 wait(x::Base.Process, syncd… ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ion.jl:136 wait ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ion.jl:141 wait(c::Base.GenericCondit… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…sk.jl:1199 wait() ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…sk.jl:1187 poptask(W::Base.Intrusiv… ┌ Warning: Initial position cannot be on the boundary of the box. Moving elements to the interior. │ Element indices affected: [1] └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/fminbox.jl:314 ┌ Warning: Initial position cannot be on the boundary of the box. Moving elements to the interior. │ Element indices affected: [1] └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/fminbox.jl:314 [11] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:77 _ZZN12_GLOBAL__N_111DAGCombiner22visitINSERT_VECTOR_ELTEPN4llvm6SDNodeEENKUlRNS1_15SmallVectorImplINS1_7SDValueEEEE0_clES7_ at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) unknown function (ip: 0x7c6736dfd8ff) at (unknown file) unknown function (ip: 0x7c6736dfd7af) at (unknown file) unknown function (ip: (nil)) at (unknown file) unknown function (ip: (nil)) at (unknown file) Allocations: 1289574306 (Pool: 1289548520; Big: 25786); GC: 3868 PkgEval terminated after 2721.53s: test duration exceeded the time limit