Package evaluation of ConformalPrediction on Julia 1.12.0-DEV.1805 (a080deafdd*) started at 2025-03-25T02:16:45.471 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.12s ################################################################################ # Installation # Installing ConformalPrediction... Resolving package versions... Updating `~/.julia/environments/v1.12/Project.toml` [98bfc277] + ConformalPrediction v0.1.13 Updating `~/.julia/environments/v1.12/Manifest.toml` [47edcb42] + ADTypes v1.14.0 [621f4979] + AbstractFFTs v1.5.0 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.3.0 [66dad0bd] + AliasTables v1.1.3 [dce04be8] + ArgCheck v2.5.0 [4fba245c] + ArrayInterface v7.18.0 [a9b6321e] + Atomix v1.1.1 [fbb218c0] + BSON v0.3.9 [198e06fe] + BangBang v0.4.4 [9718e550] + Baselet v0.1.1 [fa961155] + CEnum v0.5.0 [324d7699] + CategoricalArrays v0.10.8 [af321ab8] + CategoricalDistributions v0.1.15 [082447d4] + ChainRules v1.72.3 [d360d2e6] + ChainRulesCore v1.25.1 ⌅ [3da002f7] + ColorTypes v0.11.5 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.16.0 [a33af91c] + CompositionsBase v0.1.2 [ed09eef8] + ComputationalResources v0.3.2 [98bfc277] + ConformalPrediction v0.1.13 [187b0558] + ConstructionBase v1.5.8 [6add18c4] + ContextVariablesX v0.1.3 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [244e2a9f] + DefineSingletons v0.1.2 [8bb1440f] + DelimitedFiles v1.9.1 [b429d917] + DensityInterface v0.4.0 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.6.48 [31c24e10] + Distributions v0.25.118 [ffbed154] + DocStringExtensions v0.9.3 [cc61a311] + FLoops v0.2.2 [b9860ae5] + FLoopsBase v0.1.1 [5789e2e9] + FileIO v1.17.0 [1a297f60] + FillArrays v1.13.0 [6a86dc24] + FiniteDiff v2.27.0 [53c48c17] + FixedPointNumbers v0.8.5 ⌅ [587475ba] + Flux v0.14.25 [f6369f11] + ForwardDiff v0.10.38 ⌅ [d9f16b24] + Functors v0.4.12 [0c68f7d7] + GPUArrays v11.2.2 [46192b85] + GPUArraysCore v0.2.0 [076d061b] + HashArrayMappedTries v0.2.0 [34004b35] + HypergeometricFunctions v0.3.28 [7869d1d1] + IRTools v0.4.14 [4846b161] + InferOpt v0.6.1 [22cec73e] + InitialValues v0.3.1 [3587e190] + InverseFunctions v0.1.17 [41ab1584] + InvertedIndices v1.3.1 [92d709cd] + IrrationalConstants v0.2.4 [42fd0dbc] + IterativeSolvers v0.9.4 [82899510] + IteratorInterfaceExtensions v1.0.0 [033835bb] + JLD2 v0.5.12 [692b3bcd] + JLLWrappers v1.7.0 [b14d175d] + JuliaVariables v0.2.4 [63c18a36] + KernelAbstractions v0.9.34 [929cbde3] + LLVM v9.2.0 [b964fa9f] + LaTeXStrings v1.4.0 ⌅ [92ad9a40] + LearnAPI v0.1.0 [d3d80556] + LineSearches v7.3.0 [7a12625a] + LinearMaps v3.11.4 [2ab3a3ac] + LogExpFunctions v0.3.29 [c2834f40] + MLCore v1.0.0 ⌃ [7e8f7934] + MLDataDevices v1.5.3 [a7f614a8] + MLJBase v1.7.0 [50ed68f4] + MLJEnsembles v0.4.3 ⌅ [094fc8d1] + MLJFlux v0.5.1 [6ee0df7b] + MLJLinearModels v0.10.0 [e80e1ace] + MLJModelInterface v1.11.0 [d8e11817] + MLStyle v0.4.17 [f1d291b0] + MLUtils v0.4.8 [1914dd2f] + MacroTools v0.5.15 [dbeba491] + Metalhead v0.9.5 [128add7d] + MicroCollections v0.2.0 [e1d29d7a] + Missings v1.2.0 [d41bc354] + NLSolversBase v7.9.0 [872c559c] + NNlib v0.9.29 [77ba4419] + NaNMath v1.1.2 [71a1bf82] + NameResolution v0.1.5 [0b1bfda6] + OneHotArrays v0.2.6 [429524aa] + Optim v1.11.0 ⌅ [3bd65402] + Optimisers v0.3.4 [bac558e1] + OrderedCollections v1.8.0 [90014a1f] + PDMats v0.11.32 [d96e819e] + Parameters v0.12.3 [570af359] + PartialFunctions v1.2.0 [85a6dd25] + PositiveFactorizations v0.2.4 [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [8162dcfd] + PrettyPrint v0.2.0 [08abe8d2] + PrettyTables v2.4.0 [33c8b6b6] + ProgressLogging v0.1.4 [92933f4c] + ProgressMeter v1.10.2 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [c1ae055f] + RealDot v0.1.0 [3cdcf5f2] + RecipesBase v1.3.4 [189a3867] + Reexport v1.2.2 [42d2dcc6] + Referenceables v0.1.3 [97f35ef4] + RequiredInterfaces v0.1.7 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.8.0 [321657f4] + ScientificTypes v3.1.0 [30f210dd] + ScientificTypesBase v3.0.0 [7e506255] + ScopedValues v1.3.0 [efcf1570] + Setfield v1.1.2 [605ecd9f] + ShowCases v0.1.0 [699a6c99] + SimpleTraits v0.9.4 [a2af1166] + SortingAlgorithms v1.2.1 [dc90abb0] + SparseInverseSubset v0.1.2 [276daf66] + SpecialFunctions v2.5.0 [171d559e] + SplittablesBase v0.1.15 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [c062fc1d] + StatisticalMeasuresBase v0.1.2 [64bff920] + StatisticalTraits v3.4.0 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.0 [2913bbd2] + StatsBase v0.34.4 [4c63d2b9] + StatsFuns v1.3.2 [892a3eda] + StringManipulation v0.4.1 [09ab397b] + StructArrays v0.7.0 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.0 [ac1d9e8a] + ThreadsX v0.1.12 [3bb67fe8] + TranscodingStreams v0.11.3 [28d57a85] + Transducers v0.4.84 [3a884ed6] + UnPack v1.0.2 [013be700] + UnsafeAtomics v0.3.0 ⌅ [e88e6eb3] + Zygote v0.6.75 [700de1a5] + ZygoteRules v0.2.7 [dad2f222] + LLVMExtra_jll v0.0.35+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [dc6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [4af54fe1] + LazyArtifacts v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.12.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.12.0 [f489334b] + StyledStrings v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.2.0+0 [deac9b47] + LibCURL_jll v8.6.0+0 [e37daf67] + LibGit2_jll v1.8.0+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.6+1 [14a3606d] + MozillaCACerts_jll v2024.11.26 [4536629a] + OpenBLAS_jll v0.3.28+3 [05823500] + OpenLibm_jll v0.8.1+3 [bea87d4a] + SuiteSparse_jll v7.8.0+1 [83775a58] + Zlib_jll v1.3.1+1 [8e850b90] + libblastrampoline_jll v5.11.2+0 [8e850ede] + nghttp2_jll v1.63.0+1 [3f19e933] + p7zip_jll v17.5.0+1 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 6.03s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 1340.6s ################################################################################ # Testing # Testing ConformalPrediction Test Could not use exact versions of packages in manifest. Re-resolving dependencies Updating `/tmp/jl_3hwX4h/Project.toml` [4c88cf16] ↑ Aqua v0.8.4 ⇒ v0.8.11 [5224ae11] ↑ CompatHelperLocal v0.1.26 ⇒ v0.1.27 [98bfc277] + ConformalPrediction v0.1.13 [e30172f5] ↑ Documenter v1.3.0 ⇒ v1.9.0 ⌅ [f6006082] ↑ EvoTrees v0.16.6 ⇒ v0.16.9 ⌅ [7acf609c] ↑ LightGBM v0.6.1 ⇒ v0.7.2 [add582a8] ↑ MLJ v0.19.5 ⇒ v0.20.7 [c6f25543] ↑ MLJDecisionTreeInterface v0.4.1 ⇒ v0.4.2 ⌅ [094fc8d1] ↑ MLJFlux v0.4.0 ⇒ v0.5.1 [e80e1ace] ↑ MLJModelInterface v1.9.5 ⇒ v1.11.0 [91a5bcdd] ↑ Plots v1.40.2 ⇒ v1.40.11 [bd7198b4] ↑ TaijaPlotting v1.0.7 ⇒ v1.3.0 [8dfed614] ~ Test ⇒ v1.11.0 Updating `/tmp/jl_3hwX4h/Manifest.toml` [47edcb42] + ADTypes v1.14.0 [da404889] ↑ ARFFFiles v1.4.1 ⇒ v1.5.0 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] ↑ Adapt v4.0.3 ⇒ v4.3.0 [66dad0bd] + AliasTables v1.1.3 [4c88cf16] ↑ Aqua v0.8.4 ⇒ v0.8.11 [dce04be8] ↑ ArgCheck v2.3.0 ⇒ v2.5.0 [ec485272] ↑ ArnoldiMethod v0.2.0 ⇒ v0.4.0 [4fba245c] ↑ ArrayInterface v7.9.0 ⇒ v7.18.0 [a9b6321e] ↑ Atomix v0.1.0 ⇒ v1.1.1 [a963bdd2] - AtomsBase v0.3.5 [ab4f0b2a] - BFloat16s v0.4.2 [198e06fe] ↑ BangBang v0.3.40 ⇒ v0.4.4 [6e4b80f9] - BenchmarkTools v1.5.0 [d1d4a3ce] ↑ BitFlags v0.1.8 ⇒ v0.1.9 [e1450e63] - BufferedStreams v1.2.1 [336ed68f] - CSV v0.10.13 [052768ef] - CUDA v5.2.0 [1af6417a] - CUDA_Runtime_Discovery v0.2.3 [49dc2e85] - Calculus v0.5.1 [af321ab8] ↑ CategoricalDistributions v0.1.14 ⇒ v0.1.15 ⌅ [8e462317] + CausalInference v0.18.0 [082447d4] ↑ ChainRules v1.63.0 ⇒ v1.72.3 [d360d2e6] ↑ ChainRulesCore v1.23.0 ⇒ v1.25.1 [46823bd8] - Chemfiles v0.10.41 [523fee87] - CodecBzip2 v0.8.2 [944b1d66] ↑ CodecZlib v0.7.4 ⇒ v0.7.8 [35d6a980] ↑ ColorSchemes v3.24.0 ⇒ v3.29.0 ⌅ [3da002f7] ↑ ColorTypes v0.11.4 ⇒ v0.11.5 [5ae59095] ↑ Colors v0.12.10 ⇒ v0.13.0 [bbf7d656] ↑ CommonSubexpressions v0.3.0 ⇒ v0.3.1 [34da2185] ↑ Compat v4.14.0 ⇒ v4.16.0 [5224ae11] ↑ CompatHelperLocal v0.1.26 ⇒ v0.1.27 [f0e56b4a] ↑ ConcurrentUtilities v2.4.1 ⇒ v2.5.0 [98bfc277] ↑ ConformalPrediction v0.1.6 ⇒ v0.1.13 [187b0558] ↑ ConstructionBase v1.5.5 ⇒ v1.5.8 [d38c429a] ↑ Contour v0.6.2 ⇒ v0.6.3 [2f13d31b] ↑ CounterfactualExplanations v0.1.31 ⇒ v1.4.5 [124859b0] - DataDeps v0.7.13 [a93c6f00] ↑ DataFrames v1.6.1 ⇒ v1.7.0 [864edb3b] ↑ DataStructures v0.18.18 ⇒ v0.18.22 [b429d917] + DensityInterface v0.4.0 [a0c0ee7d] + DifferentiationInterface v0.6.48 [b4f34e82] ↑ Distances v0.10.11 ⇒ v0.10.12 [31c24e10] ↑ Distributions v0.25.107 ⇒ v0.25.118 [e30172f5] ↑ Documenter v1.3.0 ⇒ v1.9.0 [fa6b7ba4] - DualNumbers v0.6.8 [f446124b] + EnergySamplers v1.0.3 ⌅ [f6006082] ↑ EvoTrees v0.16.6 ⇒ v0.16.9 [460bff9d] ↑ ExceptionUnwrapping v0.1.10 ⇒ v0.1.11 [e2ba6199] - ExprTools v0.1.10 [411431e0] ↑ Extents v0.1.2 ⇒ v0.1.5 [c87230d0] ↑ FFMPEG v0.4.1 ⇒ v0.4.2 [cc61a311] ↑ FLoops v0.2.1 ⇒ v0.2.2 [33837fe5] + FeatureSelection v0.2.2 [5789e2e9] ↑ FileIO v1.16.3 ⇒ v1.17.0 [48062228] ↑ FilePathsBase v0.9.21 ⇒ v0.9.24 [1a297f60] ↑ FillArrays v1.9.3 ⇒ v1.13.0 [6a86dc24] ↑ FiniteDiff v2.23.0 ⇒ v2.27.0 [53c48c17] ↑ FixedPointNumbers v0.8.4 ⇒ v0.8.5 ⌅ [587475ba] ↑ Flux v0.14.14 ⇒ v0.14.25 [1fa38f19] ↑ Format v1.3.6 ⇒ v1.3.7 [f6369f11] ↑ ForwardDiff v0.10.36 ⇒ v0.10.38 ⌅ [d9f16b24] ↑ Functors v0.4.8 ⇒ v0.4.12 [0c68f7d7] ↑ GPUArrays v10.0.2 ⇒ v11.2.2 [46192b85] ↑ GPUArraysCore v0.1.6 ⇒ v0.2.0 [61eb1bfa] - GPUCompiler v0.25.0 [28b8d3ca] ↑ GR v0.73.3 ⇒ v0.73.13 [92fee26a] - GZip v0.6.2 [68eda718] + GeoFormatTypes v0.4.4 [cf35fbd7] ↑ GeoInterface v1.3.3 ⇒ v1.4.1 [5c1252a2] ↑ GeometryBasics v0.4.10 ⇒ v0.5.5 [c27321d9] - Glob v1.3.1 [86223c79] ↑ Graphs v1.9.0 ⇒ v1.12.0 [f67ccb44] - HDF5 v0.17.1 [cd3eb016] ↑ HTTP v1.10.4 ⇒ v1.10.15 [076d061b] + HashArrayMappedTries v0.2.0 [34004b35] ↑ HypergeometricFunctions v0.3.23 ⇒ v0.3.28 [b5f81e59] ↑ IOCapture v0.2.4 ⇒ v0.2.5 [7869d1d1] ↑ IRTools v0.4.12 ⇒ v0.4.14 [c817782e] - ImageBase v0.1.7 [a09fc81d] - ImageCore v0.10.2 [4e3cecfd] - ImageShow v0.3.8 [4846b161] + InferOpt v0.6.1 [d25df0c9] ↑ Inflate v0.1.4 ⇒ v0.1.5 [842dd82b] ↑ InlineStrings v1.4.0 ⇒ v1.4.3 [7d512f48] - InternedStrings v0.7.0 [3587e190] + InverseFunctions v0.1.17 [41ab1584] ↑ InvertedIndices v1.3.0 ⇒ v1.3.1 [92d709cd] ↑ IrrationalConstants v0.2.2 ⇒ v0.2.4 [033835bb] ↑ JLD2 v0.4.46 ⇒ v0.5.12 [1019f520] ↑ JLFzf v0.1.7 ⇒ v0.1.10 [692b3bcd] ↑ JLLWrappers v1.5.0 ⇒ v1.7.0 [0f8b85d8] - JSON3 v1.14.0 [63c18a36] ↑ KernelAbstractions v0.9.18 ⇒ v0.9.34 [ec8451be] + KernelFunctions v0.10.65 [929cbde3] ↑ LLVM v6.6.1 ⇒ v9.2.0 [8b046642] - LLVMLoopInfo v1.0.0 [8ac3fa9e] + LRUCache v1.6.2 [b964fa9f] ↑ LaTeXStrings v1.3.1 ⇒ v1.4.0 [c52c1a26] ↑ LaplaceRedux v0.1.4 ⇒ v1.2.0 [23fbe1c1] ↑ Latexify v0.16.2 ⇒ v0.16.6 [0e77f7df] ↑ LazilyInitializedFields v1.2.2 ⇒ v1.3.0 [8cdb02fc] - LazyModules v0.3.1 ⌅ [92ad9a40] + LearnAPI v0.1.0 ⌅ [7acf609c] ↑ LightGBM v0.6.1 ⇒ v0.7.2 [d3d80556] ↑ LineSearches v7.2.0 ⇒ v7.3.0 [7a12625a] ↑ LinearMaps v3.11.2 ⇒ v3.11.4 [70f5e60a] + LinkedLists v0.1.1 [2ab3a3ac] ↑ LogExpFunctions v0.3.27 ⇒ v0.3.29 [aa2f6b4e] + LogarithmicNumbers v1.4.0 [e6f89c97] ↑ LoggingExtras v1.0.3 ⇒ v1.1.0 [30fc2ffe] - LossFunctions v0.11.1 [23992714] - MAT v0.10.6 [c2834f40] + MLCore v1.0.0 ⌃ [7e8f7934] + MLDataDevices v1.5.3 [eb30cadb] - MLDatasets v0.7.14 ⌅ [64a0f543] ↑ MLFlowClient v0.4.6 ⇒ v0.5.1 [add582a8] ↑ MLJ v0.19.5 ⇒ v0.20.7 [45f359ea] + MLJBalancing v0.1.5 [a7f614a8] ↑ MLJBase v0.21.14 ⇒ v1.7.0 [c6f25543] ↑ MLJDecisionTreeInterface v0.4.1 ⇒ v0.4.2 [50ed68f4] ↑ MLJEnsembles v0.3.3 ⇒ v0.4.3 [7b7b8358] ↑ MLJFlow v0.1.1 ⇒ v0.5.0 ⌅ [094fc8d1] ↑ MLJFlux v0.4.0 ⇒ v0.5.1 [614be32b] ↑ MLJIteration v0.5.1 ⇒ v0.6.3 [e80e1ace] ↑ MLJModelInterface v1.9.5 ⇒ v1.11.0 [d491faf4] ↑ MLJModels v0.16.16 ⇒ v0.17.9 [03970b2e] ↑ MLJTuning v0.7.4 ⇒ v0.8.8 [f1d291b0] ↑ MLUtils v0.4.4 ⇒ v0.4.8 [3da0fdf6] - MPIPreferences v0.1.10 [1914dd2f] ↑ MacroTools v0.5.13 ⇒ v0.5.15 [06eb3307] - ManifoldLearning v0.9.0 [dbb5928d] - MappedArrays v0.4.2 [b8f27783] - MathOptInterface v1.27.0 [6fafb56a] + Memoization v0.2.2 [626554b9] + MetaGraphs v0.8.0 [dbeba491] ↑ Metalhead v0.9.3 ⇒ v0.9.5 [128add7d] ↑ MicroCollections v0.1.4 ⇒ v0.2.0 [e1d29d7a] ↑ Missings v1.1.0 ⇒ v1.2.0 [e94cdb99] - MosaicViews v0.3.4 [6f286f6a] ↑ MultivariateStats v0.9.0 ⇒ v0.10.3 [d8a4904e] - MutableArithmetics v1.4.1 [d41bc354] ↑ NLSolversBase v7.8.3 ⇒ v7.9.0 [872c559c] ↑ NNlib v0.9.12 ⇒ v0.9.29 [15e1cf62] - NPZ v0.4.3 [5da4648a] - NVTX v0.3.4 [77ba4419] ↑ NaNMath v1.0.2 ⇒ v1.1.2 [b8a86587] ↑ NearestNeighbors v0.4.16 ⇒ v0.4.21 [46757867] ↑ NetworkLayout v0.4.6 ⇒ v0.4.9 [6fe1bfb0] ↑ OffsetArrays v1.13.0 ⇒ v1.16.0 [0b1bfda6] ↑ OneHotArrays v0.2.5 ⇒ v0.2.6 [8b6db2d4] ↑ OpenML v0.3.1 ⇒ v0.3.2 [4d8831e6] ↑ OpenSSL v1.4.2 ⇒ v1.4.3 [429524aa] ↑ Optim v1.9.2 ⇒ v1.11.0 ⌅ [3bd65402] ↑ Optimisers v0.3.2 ⇒ v0.3.4 [bac558e1] ↑ OrderedCollections v1.6.3 ⇒ v1.8.0 [90014a1f] ↑ PDMats v0.11.31 ⇒ v0.11.32 [5432bcbf] - PaddedViews v0.5.12 [7b2266bf] - PeriodicTable v1.2.1 [fbb45041] - Pickle v0.3.3 [b98c9c47] - Pipe v1.3.0 [ccf2f8ad] ↑ PlotThemes v3.1.0 ⇒ v3.3.0 [995b91a9] ↑ PlotUtils v1.4.1 ⇒ v1.4.3 [91a5bcdd] ↑ Plots v1.40.2 ⇒ v1.40.11 [08abe8d2] ↑ PrettyTables v2.3.1 ⇒ v2.4.0 [92933f4c] ↑ ProgressMeter v1.10.0 ⇒ v1.10.2 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] ↑ QuadGK v2.9.4 ⇒ v2.11.2 [74087812] - Random123 v1.7.0 [e6cf234a] - RandomNumbers v1.5.3 [42d2dcc6] + Referenceables v0.1.3 [97f35ef4] + RequiredInterfaces v0.1.7 [ae029012] ↑ Requires v1.3.0 ⇒ v1.3.1 [79098fc4] ↑ Rmath v0.7.1 ⇒ v0.8.0 [321657f4] ↑ ScientificTypes v3.0.2 ⇒ v3.1.0 [7e506255] + ScopedValues v1.3.0 [91c51154] ↑ SentinelArrays v1.4.1 ⇒ v1.4.8 [efcf1570] ↑ Setfield v1.1.1 ⇒ v1.1.2 [777ac1f9] ↑ SimpleBufferStream v1.1.0 ⇒ v1.2.0 [276daf66] ↑ SpecialFunctions v2.3.1 ⇒ v2.5.0 [860ef19b] ↑ StableRNGs v1.0.1 ⇒ v1.0.2 [cae243ae] - StackViews v0.1.1 [90137ffa] ↑ StaticArrays v1.9.3 ⇒ v1.9.13 [1e83bf80] ↑ StaticArraysCore v1.4.2 ⇒ v1.4.3 ⌅ [a19d573c] + StatisticalMeasures v0.1.7 [c062fc1d] + StatisticalMeasuresBase v0.1.2 [64bff920] ↑ StatisticalTraits v3.2.0 ⇒ v3.4.0 [10745b16] ↑ Statistics v1.10.0 ⇒ v1.11.1 [2913bbd2] ↑ StatsBase v0.33.21 ⇒ v0.34.4 [4c63d2b9] ↑ StatsFuns v1.3.1 ⇒ v1.3.2 [5e0ebb24] - Strided v1.2.3 [69024149] - StringEncodings v0.3.7 [892a3eda] ↑ StringManipulation v0.3.4 ⇒ v0.4.1 [09ab397b] ↑ StructArrays v0.6.18 ⇒ v0.7.0 [856f2bd8] - StructTypes v1.10.0 [bd369af6] ↑ Tables v1.11.1 ⇒ v1.12.0 [3eeacb1d] + TabularDisplay v1.3.0 [10284c91] + TaijaBase v1.2.3 [bd7198b4] ↑ TaijaPlotting v1.0.7 ⇒ v1.3.0 [ac1d9e8a] + ThreadsX v0.1.12 [a759f4b9] - TimerOutputs v0.5.23 [3bb67fe8] ↑ TranscodingStreams v0.10.5 ⇒ v0.11.3 [28d57a85] ↑ Transducers v0.4.80 ⇒ v0.4.84 [592b5752] + Trapz v2.0.3 [bc48ee85] ↑ Tullio v0.3.7 ⇒ v0.3.8 [9d95972d] - TupleTools v1.5.0 [1986cc42] ↑ Unitful v1.19.0 ⇒ v1.22.0 [a7773ee8] - UnitfulAtomic v1.0.0 [45397f5d] ↑ UnitfulLatexify v1.6.3 ⇒ v1.6.4 [013be700] ↑ UnsafeAtomics v0.2.1 ⇒ v0.3.0 [d80eeb9a] - UnsafeAtomicsLLVM v0.1.3 [ea10d353] - WeakRefStrings v1.4.2 [76eceee3] - WorkerUtilities v1.6.1 [a5390f91] - ZipFile v0.10.1 ⌅ [e88e6eb3] ↑ Zygote v0.6.69 ⇒ v0.6.75 [700de1a5] ↑ ZygoteRules v0.2.5 ⇒ v0.2.7 [02a925ec] - cuDNN v1.3.0 [6e34b625] ↑ Bzip2_jll v1.0.8+1 ⇒ v1.0.9+0 [4ee394cb] - CUDA_Driver_jll v0.7.0+1 [76a88914] - CUDA_Runtime_jll v0.11.1+0 [62b44479] - CUDNN_jll v8.9.4+0 [83423d85] ↑ Cairo_jll v1.18.0+1 ⇒ v1.18.4+0 [78a364fa] - Chemfiles_jll v0.10.4+0 [ee1fde0b] + Dbus_jll v1.14.10+0 [2702e6a9] ↑ EpollShim_jll v0.0.20230411+0 ⇒ v0.0.20230411+1 [2e619515] ↑ Expat_jll v2.5.0+0 ⇒ v2.6.5+0 [a3f928ae] ↑ Fontconfig_jll v2.13.93+0 ⇒ v2.15.0+0 [d7e528f0] ↑ FreeType2_jll v2.13.1+0 ⇒ v2.13.3+1 [559328eb] ↑ FriBidi_jll v1.0.10+0 ⇒ v1.0.16+0 [0656b61e] ↑ GLFW_jll v3.3.9+0 ⇒ v3.4.0+2 [d2c73de3] ↑ GR_jll v0.73.3+0 ⇒ v0.73.13+0 [f8c6e375] ↑ Git_jll v2.44.0+1 ⇒ v2.47.1+0 ⌃ [7746bdde] ↑ Glib_jll v2.80.0+0 ⇒ v2.82.4+0 [3b182d85] ↑ Graphite2_jll v1.3.14+0 ⇒ v1.3.14+1 [0234f1f7] - HDF5_jll v1.14.2+1 [2e76f6c2] ↑ HarfBuzz_jll v2.8.1+1 ⇒ v8.5.0+0 [e33a78d0] - Hwloc_jll v2.10.0+0 [aacddb02] ↑ JpegTurbo_jll v3.0.2+0 ⇒ v3.1.1+0 [9c1d0b0a] - JuliaNVTXCallbacks_jll v0.2.1+0 [c1c5ebd0] ↑ LAME_jll v3.100.1+0 ⇒ v3.100.2+0 [88015f11] ↑ LERC_jll v3.0.0+1 ⇒ v4.0.1+0 [dad2f222] ↑ LLVMExtra_jll v0.0.29+0 ⇒ v0.0.35+0 [1d63c593] ↑ LLVMOpenMP_jll v15.0.7+0 ⇒ v18.1.7+0 [dd4b983a] ↑ LZO_jll v2.10.1+0 ⇒ v2.10.3+0 ⌅ [e9f186c6] ↑ Libffi_jll v3.2.2+1 ⇒ v3.2.2+2 [d4300ac3] ↑ Libgcrypt_jll v1.8.7+0 ⇒ v1.11.0+0 [7e76a0d4] ↑ Libglvnd_jll v1.6.0+0 ⇒ v1.7.0+0 [7add5ba3] ↑ Libgpg_error_jll v1.42.0+0 ⇒ v1.51.1+0 [94ce4f54] ↑ Libiconv_jll v1.17.0+0 ⇒ v1.18.0+0 [4b2f31a3] ↑ Libmount_jll v2.39.3+0 ⇒ v2.40.3+0 [89763e89] ↑ Libtiff_jll v4.5.1+1 ⇒ v4.7.1+0 [38a345b3] ↑ Libuuid_jll v2.39.3+1 ⇒ v2.40.3+0 ⌅ [0e4427ef] + LightGBM_jll v3.3.5+1 [7cb0a576] - MPICH_jll v4.2.0+0 [f1f71cc9] - MPItrampoline_jll v5.3.2+0 [9237b28f] - MicrosoftMPI_jll v10.1.4+2 [e98f9f5b] - NVTX_jll v3.1.0+2 [fe0851c0] - OpenMPI_jll v5.0.2+0 [458c3c95] ↑ OpenSSL_jll v3.0.13+0 ⇒ v3.0.16+0 [efe28fd5] ↑ OpenSpecFun_jll v0.5.5+0 ⇒ v0.5.6+0 [91d4177d] ↑ Opus_jll v1.3.2+0 ⇒ v1.3.3+0 [32165bc3] - PMIx_jll v4.2.7+0 [36c8627f] + Pango_jll v1.56.1+0 [30392449] ↑ Pixman_jll v0.42.2+0 ⇒ v0.44.2+0 ⌅ [c0090381] ↑ Qt6Base_jll v6.5.3+1 ⇒ v6.7.1+1 ⌅ [629bc702] + Qt6Declarative_jll v6.7.1+2 ⌅ [ce943373] + Qt6ShaderTools_jll v6.7.1+1 ⌃ [e99dba38] + Qt6Wayland_jll v6.7.1+1 [f50d1b31] ↑ Rmath_jll v0.4.0+0 ⇒ v0.5.1+0 [a2964d1f] ↑ Wayland_jll v1.21.0+1 ⇒ v1.21.0+2 [2381bf8a] ↑ Wayland_protocols_jll v1.31.0+0 ⇒ v1.36.0+0 [02c8fc9c] ↑ XML2_jll v2.12.5+0 ⇒ v2.13.6+1 [aed1982a] ↑ XSLT_jll v1.1.34+0 ⇒ v1.1.42+0 [ffd25f8a] ↑ XZ_jll v5.6.1+0 ⇒ v5.6.4+1 [f67eecfb] ↑ Xorg_libICE_jll v1.0.10+1 ⇒ v1.1.1+0 [c834827a] ↑ Xorg_libSM_jll v1.2.3+0 ⇒ v1.2.4+0 [4f6342f7] ↑ Xorg_libX11_jll v1.8.6+0 ⇒ v1.8.6+3 [0c0b7dd1] ↑ Xorg_libXau_jll v1.0.11+0 ⇒ v1.0.12+0 [935fb764] ↑ Xorg_libXcursor_jll v1.2.0+4 ⇒ v1.2.3+0 [a3789734] ↑ Xorg_libXdmcp_jll v1.1.4+0 ⇒ v1.1.5+0 [1082639a] ↑ Xorg_libXext_jll v1.3.4+4 ⇒ v1.3.6+3 [d091e8ba] ↑ Xorg_libXfixes_jll v5.0.3+4 ⇒ v6.0.0+0 [a51aa0fd] ↑ Xorg_libXi_jll v1.7.10+4 ⇒ v1.8.2+0 [d1454406] ↑ Xorg_libXinerama_jll v1.1.4+4 ⇒ v1.1.5+0 [ec84b674] ↑ Xorg_libXrandr_jll v1.5.2+4 ⇒ v1.5.4+0 [ea2f1a96] ↑ Xorg_libXrender_jll v0.9.10+4 ⇒ v0.9.11+1 [14d82f49] ↑ Xorg_libpthread_stubs_jll v0.1.1+0 ⇒ v0.1.2+0 [c7cfdc94] ↑ Xorg_libxcb_jll v1.15.0+0 ⇒ v1.17.0+3 [cc61e674] ↑ Xorg_libxkbfile_jll v1.1.2+0 ⇒ v1.1.2+1 [35661453] ↑ Xorg_xkbcomp_jll v1.4.6+0 ⇒ v1.4.6+1 [c5fb5394] ↑ Xorg_xtrans_jll v1.5.0+0 ⇒ v1.5.1+0 [3161d3a3] ↑ Zstd_jll v1.5.5+0 ⇒ v1.5.7+1 [214eeab7] ↑ fzf_jll v0.43.0+0 ⇒ v0.56.3+0 [1a1c6b14] ↑ gperf_jll v3.1.1+0 ⇒ v3.1.1+1 [477f73a3] - libaec_jll v1.1.2+0 [a4ae2306] ↑ libaom_jll v3.4.0+0 ⇒ v3.11.0+0 [0ac62f75] ↑ libass_jll v0.15.1+0 ⇒ v0.15.2+0 [1183f4f0] + libdecor_jll v0.2.2+0 [1080aeaf] - libevent_jll v2.1.13+1 [f638f0a6] ↑ libfdk_aac_jll v2.0.2+0 ⇒ v2.0.3+0 [b53b4c65] ↑ libpng_jll v1.6.43+1 ⇒ v1.6.47+0 [f27f6e37] ↑ libvorbis_jll v1.3.7+1 ⇒ v1.3.7+2 [eb928a42] - prrte_jll v3.0.2+0 [d8fb68d0] ↑ xkbcommon_jll v1.4.1+1 ⇒ v1.4.1+2 [0dad84c5] ↑ ArgTools v1.1.1 ⇒ v1.1.2 [56f22d72] ~ Artifacts ⇒ v1.11.0 [2a0f44e3] ~ Base64 ⇒ v1.11.0 [ade2ca70] ~ Dates ⇒ v1.11.0 [8ba89e20] ~ Distributed ⇒ v1.11.0 [7b1f6079] ~ FileWatching ⇒ v1.11.0 [9fa8497b] ~ Future ⇒ v1.11.0 [b77e0a4c] ~ InteractiveUtils ⇒ v1.11.0 [dc6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [4af54fe1] ~ LazyArtifacts ⇒ v1.11.0 [76f85450] ~ LibGit2 ⇒ v1.11.0 [8f399da3] ~ Libdl ⇒ v1.11.0 [37e2e46d] ~ LinearAlgebra ⇒ v1.11.0 [56ddb016] ~ Logging ⇒ v1.11.0 [d6f4376e] ~ Markdown ⇒ v1.11.0 [a63ad114] ~ Mmap ⇒ v1.11.0 [44cfe95a] ↑ Pkg v1.10.0 ⇒ v1.12.0 [de0858da] ~ Printf ⇒ v1.11.0 [9abbd945] - Profile [3fa0cd96] ~ REPL ⇒ v1.11.0 [9a3f8284] ~ Random ⇒ v1.11.0 [9e88b42a] ~ Serialization ⇒ v1.11.0 [1a1011a3] ~ SharedArrays ⇒ v1.11.0 [6462fe0b] ~ Sockets ⇒ v1.11.0 [2f01184e] ↑ SparseArrays v1.10.0 ⇒ v1.12.0 [f489334b] + StyledStrings v1.11.0 [8dfed614] ~ Test ⇒ v1.11.0 [cf7118a7] ~ UUIDs ⇒ v1.11.0 [4ec0a83e] ~ Unicode ⇒ v1.11.0 [e66e0078] ↑ CompilerSupportLibraries_jll v1.1.0+0 ⇒ v1.2.0+0 [deac9b47] ↑ LibCURL_jll v8.4.0+0 ⇒ v8.6.0+0 [e37daf67] ↑ LibGit2_jll v1.6.4+0 ⇒ v1.8.0+0 [c8ffd9c3] ↑ MbedTLS_jll v2.28.2+1 ⇒ v2.28.6+1 [14a3606d] ↑ MozillaCACerts_jll v2023.1.10 ⇒ v2024.11.26 [4536629a] ↑ OpenBLAS_jll v0.3.23+4 ⇒ v0.3.28+3 [05823500] ↑ OpenLibm_jll v0.8.1+2 ⇒ v0.8.1+3 [efcefdf7] ↑ PCRE2_jll v10.42.0+1 ⇒ v10.44.0+0 [bea87d4a] ↑ SuiteSparse_jll v7.2.1+1 ⇒ v7.8.0+1 [83775a58] ↑ Zlib_jll v1.2.13+1 ⇒ v1.3.1+1 [8e850b90] ↑ libblastrampoline_jll v5.8.0+1 ⇒ v5.11.2+0 [8e850ede] ↑ nghttp2_jll v1.52.0+1 ⇒ v1.63.0+1 [3f19e933] ↑ p7zip_jll v17.4.0+2 ⇒ v17.5.0+1 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Test Successfully re-resolved Status `/tmp/jl_3hwX4h/Project.toml` [4c88cf16] Aqua v0.8.11 [5224ae11] CompatHelperLocal v0.1.27 [98bfc277] ConformalPrediction v0.1.13 [7806a523] DecisionTree v0.12.4 [e30172f5] Documenter v1.9.0 ⌅ [f6006082] EvoTrees v0.16.9 ⌅ [7acf609c] LightGBM v0.7.2 [add582a8] MLJ v0.20.7 [c6f25543] MLJDecisionTreeInterface v0.4.2 ⌅ [094fc8d1] MLJFlux v0.5.1 [6ee0df7b] MLJLinearModels v0.10.0 [e80e1ace] MLJModelInterface v1.11.0 [636a865e] NearestNeighborModels v0.2.3 [91a5bcdd] Plots v1.40.11 [bd7198b4] TaijaPlotting v1.3.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_3hwX4h/Manifest.toml` [47edcb42] ADTypes v1.14.0 [a4c015fc] ANSIColoredPrinters v0.0.1 [da404889] ARFFFiles v1.5.0 [621f4979] AbstractFFTs v1.5.0 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.3.0 [66dad0bd] AliasTables v1.1.3 [4c88cf16] Aqua v0.8.11 [dce04be8] ArgCheck v2.5.0 [ec485272] ArnoldiMethod v0.4.0 [7d9fca2a] Arpack v0.5.4 [4fba245c] ArrayInterface v7.18.0 [a9b6321e] Atomix v1.1.1 [fbb218c0] BSON v0.3.9 [198e06fe] BangBang v0.4.4 [9718e550] Baselet v0.1.1 [d1d4a3ce] BitFlags v0.1.9 [fa961155] CEnum v0.5.0 [324d7699] CategoricalArrays v0.10.8 [af321ab8] CategoricalDistributions v0.1.15 ⌅ [8e462317] CausalInference v0.18.0 [082447d4] ChainRules v1.72.3 [d360d2e6] ChainRulesCore v1.25.1 [944b1d66] CodecZlib v0.7.8 [35d6a980] ColorSchemes v3.29.0 ⌅ [3da002f7] ColorTypes v0.11.5 ⌃ [c3611d14] ColorVectorSpace v0.10.0 [5ae59095] Colors v0.13.0 [861a8166] Combinatorics v1.0.2 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.16.0 [5224ae11] CompatHelperLocal v0.1.27 [a33af91c] CompositionsBase v0.1.2 [ed09eef8] ComputationalResources v0.3.2 [f0e56b4a] ConcurrentUtilities v2.5.0 [98bfc277] ConformalPrediction v0.1.13 [187b0558] ConstructionBase v1.5.8 [6add18c4] ContextVariablesX v0.1.3 [d38c429a] Contour v0.6.3 [2f13d31b] CounterfactualExplanations v1.4.5 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [a93c6f00] DataFrames v1.7.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [7806a523] DecisionTree v0.12.4 [244e2a9f] DefineSingletons v0.1.2 [8bb1440f] DelimitedFiles v1.9.1 [b429d917] DensityInterface v0.4.0 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [a0c0ee7d] DifferentiationInterface v0.6.48 [b4f34e82] Distances v0.10.12 [31c24e10] Distributions v0.25.118 [ffbed154] DocStringExtensions v0.9.3 [e30172f5] Documenter v1.9.0 [792122b4] EarlyStopping v0.3.0 [f446124b] EnergySamplers v1.0.3 ⌅ [f6006082] EvoTrees v0.16.9 [460bff9d] ExceptionUnwrapping v0.1.11 [411431e0] Extents v0.1.5 [c87230d0] FFMPEG v0.4.2 [cc61a311] FLoops v0.2.2 [b9860ae5] FLoopsBase v0.1.1 [33837fe5] FeatureSelection v0.2.2 [5789e2e9] FileIO v1.17.0 [48062228] FilePathsBase v0.9.24 [1a297f60] FillArrays v1.13.0 [6a86dc24] FiniteDiff v2.27.0 [53c48c17] FixedPointNumbers v0.8.5 ⌅ [587475ba] Flux v0.14.25 [1fa38f19] Format v1.3.7 [f6369f11] ForwardDiff v0.10.38 ⌅ [d9f16b24] Functors v0.4.12 [0c68f7d7] GPUArrays v11.2.2 [46192b85] GPUArraysCore v0.2.0 [28b8d3ca] GR v0.73.13 [68eda718] GeoFormatTypes v0.4.4 [cf35fbd7] GeoInterface v1.4.1 [5c1252a2] GeometryBasics v0.5.5 [d7ba0133] Git v1.3.1 [86223c79] Graphs v1.12.0 [42e2da0e] Grisu v1.0.2 [cd3eb016] HTTP v1.10.15 [076d061b] HashArrayMappedTries v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [b5f81e59] IOCapture v0.2.5 [7869d1d1] IRTools v0.4.14 [4846b161] InferOpt v0.6.1 [d25df0c9] Inflate v0.1.5 [22cec73e] InitialValues v0.3.1 [842dd82b] InlineStrings v1.4.3 [3587e190] InverseFunctions v0.1.17 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [b3c1a2ee] IterationControl v0.5.4 [42fd0dbc] IterativeSolvers v0.9.4 [82899510] IteratorInterfaceExtensions v1.0.0 [033835bb] JLD2 v0.5.12 [1019f520] JLFzf v0.1.10 [692b3bcd] JLLWrappers v1.7.0 [682c06a0] JSON v0.21.4 [b14d175d] JuliaVariables v0.2.4 [63c18a36] KernelAbstractions v0.9.34 [ec8451be] KernelFunctions v0.10.65 [929cbde3] LLVM v9.2.0 [8ac3fa9e] LRUCache v1.6.2 [b964fa9f] LaTeXStrings v1.4.0 [c52c1a26] LaplaceRedux v1.2.0 [23fbe1c1] Latexify v0.16.6 [a5e1c1ea] LatinHypercubeSampling v1.9.0 [0e77f7df] LazilyInitializedFields v1.3.0 ⌅ [92ad9a40] LearnAPI v0.1.0 ⌅ [7acf609c] LightGBM v0.7.2 [d3d80556] LineSearches v7.3.0 [7a12625a] LinearMaps v3.11.4 [70f5e60a] LinkedLists v0.1.1 [2ab3a3ac] LogExpFunctions v0.3.29 [aa2f6b4e] LogarithmicNumbers v1.4.0 [e6f89c97] LoggingExtras v1.1.0 [c2834f40] MLCore v1.0.0 ⌃ [7e8f7934] MLDataDevices v1.5.3 ⌅ [64a0f543] MLFlowClient v0.5.1 [add582a8] MLJ v0.20.7 [45f359ea] MLJBalancing v0.1.5 [a7f614a8] MLJBase v1.7.0 [c6f25543] MLJDecisionTreeInterface v0.4.2 [50ed68f4] MLJEnsembles v0.4.3 [7b7b8358] MLJFlow v0.5.0 ⌅ [094fc8d1] MLJFlux v0.5.1 [614be32b] MLJIteration v0.6.3 [6ee0df7b] MLJLinearModels v0.10.0 [e80e1ace] MLJModelInterface v1.11.0 [d491faf4] MLJModels v0.17.9 [03970b2e] MLJTuning v0.8.8 [d8e11817] MLStyle v0.4.17 [f1d291b0] MLUtils v0.4.8 [1914dd2f] MacroTools v0.5.15 [d0879d2d] MarkdownAST v0.1.2 [739be429] MbedTLS v1.1.9 [442fdcdd] Measures v0.3.2 [6fafb56a] Memoization v0.2.2 [626554b9] MetaGraphs v0.8.0 [dbeba491] Metalhead v0.9.5 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [6f286f6a] MultivariateStats v0.10.3 [d41bc354] NLSolversBase v7.9.0 [872c559c] NNlib v0.9.29 [77ba4419] NaNMath v1.1.2 [71a1bf82] NameResolution v0.1.5 [c020b1a1] NaturalSort v1.0.0 [636a865e] NearestNeighborModels v0.2.3 [b8a86587] NearestNeighbors v0.4.21 [46757867] NetworkLayout v0.4.9 [6fe1bfb0] OffsetArrays v1.16.0 [0b1bfda6] OneHotArrays v0.2.6 [8b6db2d4] OpenML v0.3.2 [4d8831e6] OpenSSL v1.4.3 [429524aa] Optim v1.11.0 ⌅ [3bd65402] Optimisers v0.3.4 [bac558e1] OrderedCollections v1.8.0 [90014a1f] PDMats v0.11.32 [65ce6f38] PackageExtensionCompat v1.0.2 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.1 [570af359] PartialFunctions v1.2.0 [ccf2f8ad] PlotThemes v3.3.0 [995b91a9] PlotUtils v1.4.3 [91a5bcdd] Plots v1.40.11 [2dfb63ee] PooledArrays v1.4.3 [85a6dd25] PositiveFactorizations v0.2.4 [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [8162dcfd] PrettyPrint v0.2.0 [54e16d92] PrettyPrinting v0.4.2 [08abe8d2] PrettyTables v2.4.0 [33c8b6b6] ProgressLogging v0.1.4 [92933f4c] ProgressMeter v1.10.2 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [c1ae055f] RealDot v0.1.0 [3cdcf5f2] RecipesBase v1.3.4 [01d81517] RecipesPipeline v0.6.12 [189a3867] Reexport v1.2.2 [42d2dcc6] Referenceables v0.1.3 [2792f1a3] RegistryInstances v0.1.0 [05181044] RelocatableFolders v1.0.1 [97f35ef4] RequiredInterfaces v0.1.7 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.8.0 [321657f4] ScientificTypes v3.1.0 [30f210dd] ScientificTypesBase v3.0.0 [6e75b9c4] ScikitLearnBase v0.5.0 [7e506255] ScopedValues v1.3.0 [6c6a2e73] Scratch v1.2.1 [91c51154] SentinelArrays v1.4.8 [efcf1570] Setfield v1.1.2 [605ecd9f] ShowCases v0.1.0 [992d4aef] Showoff v1.0.3 [777ac1f9] SimpleBufferStream v1.2.0 [699a6c99] SimpleTraits v0.9.4 [a2af1166] SortingAlgorithms v1.2.1 [dc90abb0] SparseInverseSubset v0.1.2 [276daf66] SpecialFunctions v2.5.0 [171d559e] SplittablesBase v0.1.15 [860ef19b] StableRNGs v1.0.2 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 ⌅ [a19d573c] StatisticalMeasures v0.1.7 [c062fc1d] StatisticalMeasuresBase v0.1.2 [64bff920] StatisticalTraits v3.4.0 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.0 [2913bbd2] StatsBase v0.34.4 [4c63d2b9] StatsFuns v1.3.2 [892a3eda] StringManipulation v0.4.1 [09ab397b] StructArrays v0.7.0 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.0 [3eeacb1d] TabularDisplay v1.3.0 [10284c91] TaijaBase v1.2.3 [bd7198b4] TaijaPlotting v1.3.0 [62fd8b95] TensorCore v0.1.1 [ac1d9e8a] ThreadsX v0.1.12 [3bb67fe8] TranscodingStreams v0.11.3 [28d57a85] Transducers v0.4.84 [592b5752] Trapz v2.0.3 [bc48ee85] Tullio v0.3.8 [5c2747f8] URIs v1.5.1 [3a884ed6] UnPack v1.0.2 [1cfade01] UnicodeFun v0.4.1 [1986cc42] Unitful v1.22.0 [45397f5d] UnitfulLatexify v1.6.4 [013be700] UnsafeAtomics v0.3.0 [41fe7b60] Unzip v0.2.0 ⌅ [e88e6eb3] Zygote v0.6.75 [700de1a5] ZygoteRules v0.2.7 ⌅ [68821587] Arpack_jll v3.5.1+1 [6e34b625] Bzip2_jll v1.0.9+0 [83423d85] Cairo_jll v1.18.4+0 [ee1fde0b] Dbus_jll v1.14.10+0 [5ae413db] EarCut_jll v2.2.4+0 [2702e6a9] EpollShim_jll v0.0.20230411+1 [2e619515] Expat_jll v2.6.5+0 ⌅ [b22a6f82] FFMPEG_jll v4.4.4+1 [a3f928ae] Fontconfig_jll v2.15.0+0 [d7e528f0] FreeType2_jll v2.13.3+1 [559328eb] FriBidi_jll v1.0.16+0 [0656b61e] GLFW_jll v3.4.0+2 [d2c73de3] GR_jll v0.73.13+0 [78b55507] Gettext_jll v0.21.0+0 [f8c6e375] Git_jll v2.47.1+0 ⌃ [7746bdde] Glib_jll v2.82.4+0 [3b182d85] Graphite2_jll v1.3.14+1 [2e76f6c2] HarfBuzz_jll v8.5.0+0 [aacddb02] JpegTurbo_jll v3.1.1+0 [c1c5ebd0] LAME_jll v3.100.2+0 [88015f11] LERC_jll v4.0.1+0 [dad2f222] LLVMExtra_jll v0.0.35+0 [1d63c593] LLVMOpenMP_jll v18.1.7+0 [dd4b983a] LZO_jll v2.10.3+0 ⌅ [e9f186c6] Libffi_jll v3.2.2+2 [d4300ac3] Libgcrypt_jll v1.11.0+0 [7e76a0d4] Libglvnd_jll v1.7.0+0 [7add5ba3] Libgpg_error_jll v1.51.1+0 [94ce4f54] Libiconv_jll v1.18.0+0 [4b2f31a3] Libmount_jll v2.40.3+0 [89763e89] Libtiff_jll v4.7.1+0 [38a345b3] Libuuid_jll v2.40.3+0 ⌅ [0e4427ef] LightGBM_jll v3.3.5+1 [e7412a2a] Ogg_jll v1.3.5+1 [458c3c95] OpenSSL_jll v3.0.16+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [91d4177d] Opus_jll v1.3.3+0 [36c8627f] Pango_jll v1.56.1+0 [30392449] Pixman_jll v0.44.2+0 ⌅ [c0090381] Qt6Base_jll v6.7.1+1 ⌅ [629bc702] Qt6Declarative_jll v6.7.1+2 ⌅ [ce943373] Qt6ShaderTools_jll v6.7.1+1 ⌃ [e99dba38] Qt6Wayland_jll v6.7.1+1 [f50d1b31] Rmath_jll v0.5.1+0 [a44049a8] Vulkan_Loader_jll v1.3.243+0 [a2964d1f] Wayland_jll v1.21.0+2 [2381bf8a] Wayland_protocols_jll v1.36.0+0 [02c8fc9c] XML2_jll v2.13.6+1 [aed1982a] XSLT_jll v1.1.42+0 [ffd25f8a] XZ_jll v5.6.4+1 [f67eecfb] Xorg_libICE_jll v1.1.1+0 [c834827a] Xorg_libSM_jll v1.2.4+0 [4f6342f7] Xorg_libX11_jll v1.8.6+3 [0c0b7dd1] Xorg_libXau_jll v1.0.12+0 [935fb764] Xorg_libXcursor_jll v1.2.3+0 [a3789734] Xorg_libXdmcp_jll v1.1.5+0 [1082639a] Xorg_libXext_jll v1.3.6+3 [d091e8ba] Xorg_libXfixes_jll v6.0.0+0 [a51aa0fd] Xorg_libXi_jll v1.8.2+0 [d1454406] Xorg_libXinerama_jll v1.1.5+0 [ec84b674] Xorg_libXrandr_jll v1.5.4+0 [ea2f1a96] Xorg_libXrender_jll v0.9.11+1 [14d82f49] Xorg_libpthread_stubs_jll v0.1.2+0 [c7cfdc94] Xorg_libxcb_jll v1.17.0+3 [cc61e674] Xorg_libxkbfile_jll v1.1.2+1 [e920d4aa] Xorg_xcb_util_cursor_jll v0.1.4+0 [12413925] Xorg_xcb_util_image_jll v0.4.0+1 [2def613f] Xorg_xcb_util_jll v0.4.0+1 [975044d2] Xorg_xcb_util_keysyms_jll v0.4.0+1 [0d47668e] Xorg_xcb_util_renderutil_jll v0.3.9+1 [c22f9ab0] Xorg_xcb_util_wm_jll v0.4.1+1 [35661453] Xorg_xkbcomp_jll v1.4.6+1 [33bec58e] Xorg_xkeyboard_config_jll v2.39.0+0 [c5fb5394] Xorg_xtrans_jll v1.5.1+0 [3161d3a3] Zstd_jll v1.5.7+1 [35ca27e7] eudev_jll v3.2.9+0 [214eeab7] fzf_jll v0.56.3+0 [1a1c6b14] gperf_jll v3.1.1+1 [a4ae2306] libaom_jll v3.11.0+0 [0ac62f75] libass_jll v0.15.2+0 [1183f4f0] libdecor_jll v0.2.2+0 [2db6ffa8] libevdev_jll v1.11.0+0 [f638f0a6] libfdk_aac_jll v2.0.3+0 [36db933b] libinput_jll v1.18.0+0 [b53b4c65] libpng_jll v1.6.47+0 [f27f6e37] libvorbis_jll v1.3.7+2 [009596ad] mtdev_jll v1.1.6+0 ⌅ [1270edf5] x264_jll v2021.5.5+0 ⌅ [dfaa095f] x265_jll v3.5.0+0 [d8fb68d0] xkbcommon_jll v1.4.1+2 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [dc6e5ff7] JuliaSyntaxHighlighting v1.12.0 [4af54fe1] LazyArtifacts v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.12.0 [de0858da] Printf v1.11.0 [3fa0cd96] REPL v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [1a1011a3] SharedArrays v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.12.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.2.0+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.8.0+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+1 [14a3606d] MozillaCACerts_jll v2024.11.26 [4536629a] OpenBLAS_jll v0.3.28+3 [05823500] OpenLibm_jll v0.8.1+3 [efcefdf7] PCRE2_jll v10.44.0+0 [bea87d4a] SuiteSparse_jll v7.8.0+1 [83775a58] Zlib_jll v1.3.1+1 [8e850b90] libblastrampoline_jll v5.11.2+0 [8e850ede] nghttp2_jll v1.63.0+1 [3f19e933] p7zip_jll v17.5.0+1 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition _dummy_backedge() in module Memoization at /home/pkgeval/.julia/packages/Memoization/ON3Za/src/Memoization.jl:49 overwritten at /home/pkgeval/.julia/packages/Memoization/ON3Za/src/Memoization.jl:65. ┌ Warning: Unable to determine HTML(edit_link = ...) from remote HEAD branch, defaulting to "master". │ Calling `git remote` failed with an exception. Set JULIA_DEBUG=Documenter to see the error. │ Unless this is due to a configuration error, the relevant variable should be set explicitly. └ @ Documenter ~/.julia/packages/Documenter/QLA7E/src/utilities/utilities.jl:655 [ Info: SetupBuildDirectory: setting up build directory. [ Info: Doctest: running doctests. [ Info: Skipped ExpandTemplates step (doctest only). [ Info: Skipped CrossReferences step (doctest only). [ Info: Skipped CheckDocument step (doctest only). [ Info: Skipped Populate step (doctest only). [ Info: Skipped RenderDocument step (doctest only). Test Summary: | Pass Total Time Doctests: ConformalPrediction | 1 1 49.0s WARNING: using deprecated binding ColorTypes.RGB1 in Colors. , use XRGB instead. WARNING: using deprecated binding Colors.RGB1 in PlotUtils. , use ColorTypes.XRGB{T} where T<:Union{AbstractFloat, FixedPointNumbers.FixedPoint{T, f} where f where T<:Integer} instead. WARNING: PlotUtils.RGB1 is deprecated, use ColorTypes.XRGB{T} where T<:Union{AbstractFloat, FixedPointNumbers.FixedPoint{T, f} where f where T<:Integer} instead. likely near /home/pkgeval/.julia/packages/ConformalPrediction/bz1ka/test/aqua.jl:3 WARNING: using deprecated binding ColorTypes.RGB4 in Colors. , use RGBX instead. WARNING: using deprecated binding Colors.RGB4 in PlotUtils. , use ColorTypes.RGBX{T} where T<:Union{AbstractFloat, FixedPointNumbers.FixedPoint{T, f} where f where T<:Integer} instead. WARNING: PlotUtils.RGB4 is deprecated, use ColorTypes.RGBX{T} where T<:Union{AbstractFloat, FixedPointNumbers.FixedPoint{T, f} where f where T<:Integer} instead. likely near /home/pkgeval/.julia/packages/ConformalPrediction/bz1ka/test/aqua.jl:3 [ Info: For silent loading, specify `verbosity=0`. import NearestNeighborModels ✔ [ Info: Training machine(AdaptiveInductiveClassifier(model = KNNClassifier(K = 5, …), …), …). [ Info: Training machine(AdaptiveInductiveClassifier(model = KNNClassifier(K = 5, …), …), …). [ Info: Training machine(AdaptiveInductiveClassifier(model = KNNClassifier(K = 5, …), …), …). [ Info: Training machine(NaiveClassifier(model = KNNClassifier(K = 5, …), …), …). [ Info: Training machine(NaiveClassifier(model = KNNClassifier(K = 5, …), …), …). [ Info: Training machine(NaiveClassifier(model = KNNClassifier(K = 5, …), …), …). [ Info: Training machine(SimpleInductiveClassifier(model = KNNClassifier(K = 5, …), …), …). [ Info: Training machine(SimpleInductiveClassifier(model = KNNClassifier(K = 5, …), …), …). [ Info: Training machine(SimpleInductiveClassifier(model = KNNClassifier(K = 5, …), …), …). [ Info: For silent loading, specify `verbosity=0`. import EvoTrees ✔ ┌ Info: Training machine(AdaptiveInductiveClassifier(model = EvoTrees.EvoTreeClassifier{EvoTrees.MLogLoss} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary │ - rng: Random.MersenneTwister(123) └ , …), …). ┌ Info: Training machine(AdaptiveInductiveClassifier(model = EvoTrees.EvoTreeClassifier{EvoTrees.MLogLoss} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary │ - rng: Random.MersenneTwister(123, (0, 8016, 7014, 286)) └ , …), …). ┌ Info: Training machine(AdaptiveInductiveClassifier(model = EvoTrees.EvoTreeClassifier{EvoTrees.MLogLoss} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary │ - rng: Random.MersenneTwister(123, (0, 15030, 14028, 172)) └ , …), …). ┌ Info: Training machine(NaiveClassifier(model = EvoTrees.EvoTreeClassifier{EvoTrees.MLogLoss} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary │ - rng: Random.MersenneTwister(123, (0, 22044, 21042, 158)) └ , …), …). ┌ Info: Training machine(NaiveClassifier(model = EvoTrees.EvoTreeClassifier{EvoTrees.MLogLoss} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary │ - rng: Random.MersenneTwister(123, (0, 36072, 35070, 30)) └ , …), …). ┌ Info: Training machine(NaiveClassifier(model = EvoTrees.EvoTreeClassifier{EvoTrees.MLogLoss} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary │ - rng: Random.MersenneTwister(123, (0, 49098, 48096, 504)) └ , …), …). ┌ Info: Training machine(SimpleInductiveClassifier(model = EvoTrees.EvoTreeClassifier{EvoTrees.MLogLoss} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary │ - rng: Random.MersenneTwister(123, (0, 63126, 62124, 76)) └ , …), …). ┌ Info: Training machine(SimpleInductiveClassifier(model = EvoTrees.EvoTreeClassifier{EvoTrees.MLogLoss} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary │ - rng: Random.MersenneTwister(123, (0, 160320, 159318, 779)) └ , …), …). ┌ Info: Training machine(SimpleInductiveClassifier(model = EvoTrees.EvoTreeClassifier{EvoTrees.MLogLoss} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary │ - rng: Random.MersenneTwister(123, (0, 167334, 166332, 665)) └ , …), …). [ Info: For silent loading, specify `verbosity=0`. import MLJDecisionTreeInterface ✔ [ Info: Training machine(AdaptiveInductiveClassifier(model = RandomForestClassifier(max_depth = -1, …), …), …). [ Info: Training machine(AdaptiveInductiveClassifier(model = RandomForestClassifier(max_depth = -1, …), …), …). [ Info: Training machine(AdaptiveInductiveClassifier(model = RandomForestClassifier(max_depth = -1, …), …), …). [ Info: Training machine(NaiveClassifier(model = RandomForestClassifier(max_depth = -1, …), …), …). [ Info: Training machine(NaiveClassifier(model = RandomForestClassifier(max_depth = -1, …), …), …). [ Info: Training machine(NaiveClassifier(model = RandomForestClassifier(max_depth = -1, …), …), …). [ Info: Training machine(SimpleInductiveClassifier(model = RandomForestClassifier(max_depth = -1, …), …), …). [ Info: Training machine(SimpleInductiveClassifier(model = RandomForestClassifier(max_depth = -1, …), …), …). [ Info: Training machine(SimpleInductiveClassifier(model = RandomForestClassifier(max_depth = -1, …), …), …). [ Info: For silent loading, specify `verbosity=0`. import MLJLinearModels ✔ [ Info: Training machine(AdaptiveInductiveClassifier(model = LogisticClassifier(lambda = 2.220446049250313e-16, …), …), …). ┌ Info: Solver: MLJLinearModels.LBFGS{Optim.Options{Float64, Nothing}, @NamedTuple{}} │ optim_options: Optim.Options{Float64, Nothing} └ lbfgs_options: @NamedTuple{} NamedTuple() [ Info: Training machine(AdaptiveInductiveClassifier(model = LogisticClassifier(lambda = 2.220446049250313e-16, …), …), …). ┌ Info: Solver: MLJLinearModels.LBFGS{Optim.Options{Float64, Nothing}, @NamedTuple{}} │ optim_options: Optim.Options{Float64, Nothing} └ lbfgs_options: @NamedTuple{} NamedTuple() [ Info: Training machine(AdaptiveInductiveClassifier(model = LogisticClassifier(lambda = 2.220446049250313e-16, …), …), …). ┌ Info: Solver: MLJLinearModels.LBFGS{Optim.Options{Float64, Nothing}, @NamedTuple{}} │ optim_options: Optim.Options{Float64, Nothing} └ lbfgs_options: @NamedTuple{} NamedTuple() [ Info: Training machine(NaiveClassifier(model = LogisticClassifier(lambda = 2.220446049250313e-16, …), …), …). ┌ Info: Solver: MLJLinearModels.LBFGS{Optim.Options{Float64, Nothing}, @NamedTuple{}} │ optim_options: Optim.Options{Float64, Nothing} └ lbfgs_options: @NamedTuple{} NamedTuple() [ Info: Training machine(NaiveClassifier(model = LogisticClassifier(lambda = 2.220446049250313e-16, …), …), …). ┌ Info: Solver: MLJLinearModels.LBFGS{Optim.Options{Float64, Nothing}, @NamedTuple{}} │ optim_options: Optim.Options{Float64, Nothing} └ lbfgs_options: @NamedTuple{} NamedTuple() [ Info: Training machine(NaiveClassifier(model = LogisticClassifier(lambda = 2.220446049250313e-16, …), …), …). ┌ Info: Solver: MLJLinearModels.LBFGS{Optim.Options{Float64, Nothing}, @NamedTuple{}} │ optim_options: Optim.Options{Float64, Nothing} └ lbfgs_options: @NamedTuple{} NamedTuple() [ Info: Training machine(SimpleInductiveClassifier(model = LogisticClassifier(lambda = 2.220446049250313e-16, …), …), …). ┌ Info: Solver: MLJLinearModels.LBFGS{Optim.Options{Float64, Nothing}, @NamedTuple{}} │ optim_options: Optim.Options{Float64, Nothing} └ lbfgs_options: @NamedTuple{} NamedTuple() [ Info: Training machine(SimpleInductiveClassifier(model = LogisticClassifier(lambda = 2.220446049250313e-16, …), …), …). ┌ Info: Solver: MLJLinearModels.LBFGS{Optim.Options{Float64, Nothing}, @NamedTuple{}} │ optim_options: Optim.Options{Float64, Nothing} └ lbfgs_options: @NamedTuple{} NamedTuple() [ Info: Training machine(SimpleInductiveClassifier(model = LogisticClassifier(lambda = 2.220446049250313e-16, …), …), …). ┌ Info: Solver: MLJLinearModels.LBFGS{Optim.Options{Float64, Nothing}, @NamedTuple{}} │ optim_options: Optim.Options{Float64, Nothing} └ lbfgs_options: @NamedTuple{} NamedTuple() [ Info: For silent loading, specify `verbosity=0`. import MLJDecisionTreeInterface ✔ [ Info: Training machine(AdaptiveInductiveClassifier(model = DecisionTreeClassifier(max_depth = -1, …), …), …). [ Info: Training machine(AdaptiveInductiveClassifier(model = DecisionTreeClassifier(max_depth = -1, …), …), …). [ Info: Training machine(AdaptiveInductiveClassifier(model = DecisionTreeClassifier(max_depth = -1, …), …), …). [ Info: Training machine(NaiveClassifier(model = DecisionTreeClassifier(max_depth = -1, …), …), …). [ Info: Training machine(NaiveClassifier(model = DecisionTreeClassifier(max_depth = -1, …), …), …). [ Info: Training machine(NaiveClassifier(model = DecisionTreeClassifier(max_depth = -1, …), …), …). [ Info: Training machine(SimpleInductiveClassifier(model = DecisionTreeClassifier(max_depth = -1, …), …), …). [ Info: Training machine(SimpleInductiveClassifier(model = DecisionTreeClassifier(max_depth = -1, …), …), …). [ Info: Training machine(SimpleInductiveClassifier(model = DecisionTreeClassifier(max_depth = -1, …), …), …). [ Info: For silent loading, specify `verbosity=0`. import MLJLinearModels ✔ ┌ Warning: This test is skipped as the method is not suitable for Quantile Regression └ @ Main ~/.julia/packages/ConformalPrediction/bz1ka/test/regression.jl:80 [ Info: Training machine(CVPlusRegressor(model = RidgeRegressor(lambda = 1.0, …), …), …). [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. [ Info: Training machine(CVPlusRegressor(model = RidgeRegressor(lambda = 1.0, …), …), …). [ Info: Training machine(NaiveRegressor(model = RidgeRegressor(lambda = 1.0, …), …), …). ┌ Info: Solver: MLJLinearModels.Analytical │ iterative: Bool false └ max_inner: Int64 200 [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. [ Info: Training machine(NaiveRegressor(model = RidgeRegressor(lambda = 1.0, …), …), …). ┌ Info: Solver: MLJLinearModels.Analytical │ iterative: Bool false └ max_inner: Int64 200 [ Info: Training machine(JackknifePlusAbMinMaxRegressor(model = RidgeRegressor(lambda = 1.0, …), …), …). [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. [ Info: Training machine(JackknifePlusAbMinMaxRegressor(model = RidgeRegressor(lambda = 1.0, …), …), …). [ Info: Training machine(JackknifePlusAbRegressor(model = RidgeRegressor(lambda = 1.0, …), …), …). [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. [ Info: Training machine(JackknifePlusAbRegressor(model = RidgeRegressor(lambda = 1.0, …), …), …). [ Info: Training machine(JackknifePlusRegressor(model = RidgeRegressor(lambda = 1.0, …), …), …). [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. [ Info: Training machine(JackknifePlusRegressor(model = RidgeRegressor(lambda = 1.0, …), …), …). [ Info: Training machine(CVMinMaxRegressor(model = RidgeRegressor(lambda = 1.0, …), …), …). [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. [ Info: Training machine(CVMinMaxRegressor(model = RidgeRegressor(lambda = 1.0, …), …), …). [ Info: Training machine(JackknifeRegressor(model = RidgeRegressor(lambda = 1.0, …), …), …). ┌ Info: Solver: MLJLinearModels.Analytical │ iterative: Bool false └ max_inner: Int64 200 [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. [ Info: Training machine(JackknifeRegressor(model = RidgeRegressor(lambda = 1.0, …), …), …). ┌ Info: Solver: MLJLinearModels.Analytical │ iterative: Bool false └ max_inner: Int64 200 [ Info: Training machine(JackknifeMinMaxRegressor(model = RidgeRegressor(lambda = 1.0, …), …), …). [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. [ Info: Training machine(JackknifeMinMaxRegressor(model = RidgeRegressor(lambda = 1.0, …), …), …). [ Info: Training machine(TimeSeriesRegressorEnsembleBatch(model = RidgeRegressor(lambda = 1.0, …), …), …). [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. [ Info: Training machine(TimeSeriesRegressorEnsembleBatch(model = RidgeRegressor(lambda = 1.0, …), …), …). [ Info: Training machine(SimpleInductiveRegressor(model = RidgeRegressor(lambda = 1.0, …), …), …). ┌ Info: Solver: MLJLinearModels.Analytical │ iterative: Bool false └ max_inner: Int64 200 [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. [ Info: Training machine(SimpleInductiveRegressor(model = RidgeRegressor(lambda = 1.0, …), …), …). ┌ Info: Solver: MLJLinearModels.Analytical │ iterative: Bool false └ max_inner: Int64 200 [ Info: For silent loading, specify `verbosity=0`. import MLJLinearModels ✔ ┌ Warning: This test is skipped as the method is not suitable for Quantile Regression └ @ Main ~/.julia/packages/ConformalPrediction/bz1ka/test/regression.jl:80 [ Info: Training machine(CVPlusRegressor(model = LassoRegressor(lambda = 1.0, …), …), …). [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. [ Info: Training machine(CVPlusRegressor(model = LassoRegressor(lambda = 1.0, …), …), …). [ Info: Training machine(NaiveRegressor(model = LassoRegressor(lambda = 1.0, …), …), …). ┌ Info: Solver: MLJLinearModels.ProxGrad │ accel: Bool true │ max_iter: Int64 1000 │ tol: Float64 0.0001 │ max_inner: Int64 100 │ beta: Float64 0.8 └ gram: Bool false [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. [ Info: Training machine(NaiveRegressor(model = LassoRegressor(lambda = 1.0, …), …), …). ┌ Info: Solver: MLJLinearModels.ProxGrad │ accel: Bool true │ max_iter: Int64 1000 │ tol: Float64 0.0001 │ max_inner: Int64 100 │ beta: Float64 0.8 └ gram: Bool false [ Info: Training machine(JackknifePlusAbMinMaxRegressor(model = LassoRegressor(lambda = 1.0, …), …), …). [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. [ Info: Training machine(JackknifePlusAbMinMaxRegressor(model = LassoRegressor(lambda = 1.0, …), …), …). [ Info: Training machine(JackknifePlusAbRegressor(model = LassoRegressor(lambda = 1.0, …), …), …). [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. [ Info: Training machine(JackknifePlusAbRegressor(model = LassoRegressor(lambda = 1.0, …), …), …). [ Info: Training machine(JackknifePlusRegressor(model = LassoRegressor(lambda = 1.0, …), …), …). [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. [ Info: Training machine(JackknifePlusRegressor(model = LassoRegressor(lambda = 1.0, …), …), …). [ Info: Training machine(CVMinMaxRegressor(model = LassoRegressor(lambda = 1.0, …), …), …). [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. [ Info: Training machine(CVMinMaxRegressor(model = LassoRegressor(lambda = 1.0, …), …), …). [ Info: Training machine(JackknifeRegressor(model = LassoRegressor(lambda = 1.0, …), …), …). ┌ Info: Solver: MLJLinearModels.ProxGrad │ accel: Bool true │ max_iter: Int64 1000 │ tol: Float64 0.0001 │ max_inner: Int64 100 │ beta: Float64 0.8 └ gram: Bool false [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. [ Info: Training machine(JackknifeRegressor(model = LassoRegressor(lambda = 1.0, …), …), …). ┌ Info: Solver: MLJLinearModels.ProxGrad │ accel: Bool true │ max_iter: Int64 1000 │ tol: Float64 0.0001 │ max_inner: Int64 100 │ beta: Float64 0.8 └ gram: Bool false [ Info: Training machine(JackknifeMinMaxRegressor(model = LassoRegressor(lambda = 1.0, …), …), …). [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. [ Info: Training machine(JackknifeMinMaxRegressor(model = LassoRegressor(lambda = 1.0, …), …), …). [ Info: Training machine(TimeSeriesRegressorEnsembleBatch(model = LassoRegressor(lambda = 1.0, …), …), …). [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. [ Info: Training machine(TimeSeriesRegressorEnsembleBatch(model = LassoRegressor(lambda = 1.0, …), …), …). [ Info: Training machine(SimpleInductiveRegressor(model = LassoRegressor(lambda = 1.0, …), …), …). ┌ Info: Solver: MLJLinearModels.ProxGrad │ accel: Bool true │ max_iter: Int64 1000 │ tol: Float64 0.0001 │ max_inner: Int64 100 │ beta: Float64 0.8 └ gram: Bool false [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. [ Info: Training machine(SimpleInductiveRegressor(model = LassoRegressor(lambda = 1.0, …), …), …). ┌ Info: Solver: MLJLinearModels.ProxGrad │ accel: Bool true │ max_iter: Int64 1000 │ tol: Float64 0.0001 │ max_inner: Int64 100 │ beta: Float64 0.8 └ gram: Bool false [ Info: For silent loading, specify `verbosity=0`. import EvoTrees ✔ ┌ Warning: This test is skipped as the method is not suitable for Quantile Regression └ @ Main ~/.julia/packages/ConformalPrediction/bz1ka/test/regression.jl:80 ┌ Info: Training machine(CVPlusRegressor(model = EvoTrees.EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: Random.MersenneTwister(123) └ , …), …). [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. ┌ Info: Training machine(CVPlusRegressor(model = EvoTrees.EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: Random.MersenneTwister(123, (0, 43086, 42084, 916)) └ , …), …). ┌ Info: Training machine(NaiveRegressor(model = EvoTrees.EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: Random.MersenneTwister(123, (0, 84168, 83166, 435)) └ , …), …). [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. ┌ Info: Training machine(NaiveRegressor(model = EvoTrees.EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: Random.MersenneTwister(123, (0, 91182, 90180, 721)) └ , …), …). ┌ Info: Training machine(JackknifePlusAbMinMaxRegressor(model = EvoTrees.EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: Random.MersenneTwister(123, (0, 98196, 97194, 607)) └ , …), …). [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. ┌ Info: Training machine(JackknifePlusAbMinMaxRegressor(model = EvoTrees.EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: Random.MersenneTwister(123, (0, 233466, 232464, 341)) └ , …), …). ┌ Info: Training machine(JackknifePlusAbRegressor(model = EvoTrees.EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: Random.MersenneTwister(123, (0, 356712, 355710, 101)) └ , …), …). [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. ┌ Info: Training machine(JackknifePlusAbRegressor(model = EvoTrees.EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: Random.MersenneTwister(123, (0, 490980, 489978, 836)) └ , …), …). ┌ Info: Training machine(JackknifePlusRegressor(model = EvoTrees.EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: Random.MersenneTwister(123, (0, 614226, 613224, 593)) └ , …), …). [ Info: Multivariate input for regression with no input variable (`input_var`) specified: defaulting to first variable. ┌ Info: Training machine(JackknifePlusRegressor(model = EvoTrees.EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: Random.MersenneTwister(123, (0, 3973932, 3972930, 532)) └ , …), …). ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 234 running 1 of 1 signal (10): User defined signal 1 _setindex! at ./array.jl:991 [inlined] setindex! at ./array.jl:986 [inlined] _fill! at ./array.jl:333 [inlined] fill! at ./array.jl:329 [inlined] zeros at ./array.jl:596 [inlined] zeros at ./array.jl:592 [inlined] zeros at ./array.jl:590 [inlined] #TrainNode##4 at ./none (unknown line) [inlined] iterate at ./generator.jl:48 [inlined] collect at ./array.jl:790 TrainNode at /home/pkgeval/.julia/packages/EvoTrees/73o4j/src/structs.jl:21 unknown function (ip: 0x7d0419b84994) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 #init_core##0 at ./none (unknown line) iterate at ./generator.jl:48 [inlined] collect_to! at ./array.jl:848 collect_to_with_first! at ./array.jl:826 unknown function (ip: 0x7d0419b86d0b) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 collect at ./array.jl:800 init_core at /home/pkgeval/.julia/packages/EvoTrees/73o4j/src/init.jl:99 fit at /home/pkgeval/.julia/packages/EvoTrees/73o4j/src/MLJ.jl:7 fit at /home/pkgeval/.julia/packages/EvoTrees/73o4j/src/MLJ.jl:3 [inlined] fit at /home/pkgeval/.julia/packages/ConformalPrediction/bz1ka/src/conformal_models/transductive_regression.jl:197 unknown function (ip: 0x7d04189f8e3e) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] do_apply at /source/src/builtins.c:839 #fit_only!#56 at /home/pkgeval/.julia/packages/MLJBase/7nGJF/src/machines.jl:692 fit_only! at /home/pkgeval/.julia/packages/MLJBase/7nGJF/src/machines.jl:617 [inlined] #fit!#64 at /home/pkgeval/.julia/packages/MLJBase/7nGJF/src/machines.jl:789 [inlined] fit! at /home/pkgeval/.julia/packages/MLJBase/7nGJF/src/machines.jl:786 unknown function (ip: 0x7d04189ed626) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 macro expansion at /home/pkgeval/.julia/packages/ConformalPrediction/bz1ka/test/regression.jl:43 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] macro expansion at /home/pkgeval/.julia/packages/ConformalPrediction/bz1ka/test/regression.jl:39 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] macro expansion at /home/pkgeval/.julia/packages/ConformalPrediction/bz1ka/test/regression.jl:30 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] macro expansion at /home/pkgeval/.julia/packages/ConformalPrediction/bz1ka/test/regression.jl:26 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] top-level scope at /home/pkgeval/.julia/packages/ConformalPrediction/bz1ka/test/regression.jl:23 _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_invoke at /source/src/gf.c:3366 jl_toplevel_eval_flex at /source/src/toplevel.c:1059 jl_toplevel_eval_flex at /source/src/toplevel.c:1010 ijl_toplevel_eval at /source/src/toplevel.c:1082 ijl_toplevel_eval_in at /source/src/toplevel.c:1127 eval at ./boot.jl:485 include_string at ./loading.jl:2846 _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 _include at ./loading.jl:2906 include at ./Base.jl:301 IncludeInto at ./Base.jl:302 jfptr_IncludeInto_69051.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] do_call at /source/src/interpreter.c:125 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:687 eval_body at /source/src/interpreter.c:562 eval_body at /source/src/interpreter.c:562 jl_interpret_toplevel_thunk at /source/src/interpreter.c:896 jl_toplevel_eval_flex at /source/src/toplevel.c:1070 jl_toplevel_eval_flex at /source/src/toplevel.c:1010 ijl_toplevel_eval at /source/src/toplevel.c:1082 ijl_toplevel_eval_in at /source/src/toplevel.c:1127 eval at ./boot.jl:485 include_string at ./loading.jl:2846 _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 _include at ./loading.jl:2906 include at ./Base.jl:301 IncludeInto at ./Base.jl:302 jfptr_IncludeInto_69051.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] do_call at /source/src/interpreter.c:125 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:687 jl_interpret_toplevel_thunk at /source/src/interpreter.c:896 jl_toplevel_eval_flex at /source/src/toplevel.c:1070 jl_toplevel_eval_flex at /source/src/toplevel.c:1010 ijl_toplevel_eval at /source/src/toplevel.c:1082 ijl_toplevel_eval_in at /source/src/toplevel.c:1127 eval at ./boot.jl:485 exec_options at ./client.jl:295 _start at ./client.jl:558 jfptr__start_108457.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] true_main at /source/src/jlapi.c:922 jl_repl_entrypoint at /source/src/jlapi.c:1081 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7d0445d7c249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.12/Profile/src/Profile.jl:1353 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x00007d037ce5ecb0 Total snapshots: 1. Utilization: 100% ╎1 @Base/…adingconstructs.jl:177 (::Base.Threads.var"#threading_run##0#thread… ╎ 1 @Base/…dingconstructs.jl:243 #grow_tree!##0 ╎ 1 @Base/…dingconstructs.jl:276 (::EvoTrees.var"#grow_tree!##0#grow_tree!##… ╎ 1 @EvoTrees/src/fit.jl:95 macro expansion ╎ 1 @EvoTrees/…fit-utils.jl:319 update_gains!(node::EvoTrees.TrainNode{Sub… ╎ 1 @Base/broadcast.jl:897 materialize! ╎ ╎ 1 @Base/broadcast.jl:900 materialize! ╎ ╎ 1 @Base/broadcast.jl:942 copyto! ╎ ╎ 1 @Base/broadcast.jl:989 copyto! ╎ ╎ 1 @Base/simdloop.jl:77 macro expansion ╎ ╎ 1 @Base/broadcast.jl:990 macro expansion ╎ ╎ ╎ 1 @Base/…imensional.jl:743 setindex! ╎ ╎ ╎ 1 @Base/array.jl:997 setindex! ╎ ╎ ╎ 1 @Base/array.jl:1003 _setindex! ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:454 poptask at ./task.jl:1187 wait at ./task.jl:1199 #wait#551 at ./condition.jl:141 wait at ./condition.jl:136 [inlined] wait at ./process.jl:694 wait at ./process.jl:687 jfptr_wait_97191.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 subprocess_handler at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2377 unknown function (ip: 0x71ecc437f2a3) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 #201 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2317 withenv at ./env.jl:265 #186 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2138 with_temp_env at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:1996 #182 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2105 #mktempdir#21 at ./file.jl:899 unknown function (ip: 0x71ecc436f1ac) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 mktempdir at ./file.jl:895 mktempdir at ./file.jl:895 #sandbox#178 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2052 [inlined] sandbox at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2044 unknown function (ip: 0x71ecc436d901) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 #test#189 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2302 test at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2214 [inlined] #test#170 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:481 test at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:460 unknown function (ip: 0x71ecc436d531) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 #test#84 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:159 unknown function (ip: 0x71ecc4364168) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 test at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:148 #test#82 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:147 test at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:147 [inlined] #test#81 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:146 [inlined] test at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:146 unknown function (ip: 0x71ecc43625cf) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] do_call at /source/src/interpreter.c:125 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:687 eval_body at /source/src/interpreter.c:562 eval_body at /source/src/interpreter.c:562 jl_interpret_toplevel_thunk at /source/src/interpreter.c:896 jl_toplevel_eval_flex at /source/src/toplevel.c:1070 jl_toplevel_eval_flex at /source/src/toplevel.c:1010 ijl_toplevel_eval at /source/src/toplevel.c:1082 ijl_toplevel_eval_in at /source/src/toplevel.c:1127 eval at ./boot.jl:485 include_string at ./loading.jl:2846 _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 _include at ./loading.jl:2906 include at ./Base.jl:300 exec_options at ./client.jl:329 _start at ./client.jl:558 jfptr__start_108457.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] true_main at /source/src/jlapi.c:922 jl_repl_entrypoint at /source/src/jlapi.c:1081 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x71ecc61c8249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.12/Profile/src/Profile.jl:1353 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x000071ecb8000010 Total snapshots: 1. Utilization: 0% ╎1 @Base/client.jl:558 _start() ╎ 1 @Base/client.jl:329 exec_options(opts::Base.JLOptions) ╎ 1 @Base/Base.jl:300 include(mod::Module, _path::String) ╎ 1 @Base/loading.jl:2906 _include(mapexpr::Function, mod::Module, _path::S… ╎ 1 @Base/loading.jl:2846 include_string(mapexpr::typeof(identity), mod::M… ╎ 1 @Base/boot.jl:485 eval(m::Module, e::Any) ╎ ╎ 1 @Pkg/src/API.jl:146 kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(… ╎ ╎ 1 @Pkg/src/API.jl:146 #test#81 ╎ ╎ 1 @Pkg/src/API.jl:147 test ╎ ╎ 1 @Pkg/src/API.jl:147 test(pkgs::Vector{String}; kwargs::Base.Pairs… ╎ ╎ 1 @Pkg/src/API.jl:148 kwcall(::@NamedTuple{julia_args::Cmd}, ::typ… ╎ ╎ ╎ 1 @Pkg/src/API.jl:159 test(pkgs::Vector{Pkg.Types.PackageSpec}; i… ╎ ╎ ╎ 1 @Pkg/src/API.jl:460 kwcall(::@NamedTuple{julia_args::Cmd, io::… ╎ ╎ ╎ 1 @Pkg/src/API.jl:481 test(ctx::Pkg.Types.Context, pkgs::Vector… ╎ ╎ ╎ 1 @Pkg/…Operations.jl:2214 test ╎ ╎ ╎ 1 @Pkg/…perations.jl:2302 test(ctx::Pkg.Types.Context, pkgs::… ╎ ╎ ╎ ╎ 1 @Pkg/…perations.jl:2044 kwcall(::@NamedTuple{preferences::… ╎ ╎ ╎ ╎ 1 @Pkg/…perations.jl:2052 #sandbox#178 ╎ ╎ ╎ ╎ 1 @Base/file.jl:895 mktempdir(fn::Function) ╎ ╎ ╎ ╎ 1 @Base/file.jl:895 mktempdir(fn::Function, parent::Strin… ╎ ╎ ╎ ╎ 1 @Base/file.jl:899 mktempdir(fn::Pkg.Operations.var"#18… ╎ ╎ ╎ ╎ ╎ 1 @Pkg/…rations.jl:2105 (::Pkg.Operations.var"#182#183"… ╎ ╎ ╎ ╎ ╎ 1 @Pkg/…rations.jl:1996 with_temp_env(fn::Pkg.Operatio… ╎ ╎ ╎ ╎ ╎ 1 @Pkg/…ations.jl:2138 (::Pkg.Operations.var"#186#187… ╎ ╎ ╎ ╎ ╎ 1 @Base/env.jl:265 withenv(::Pkg.Operations.var"#201… ╎ ╎ ╎ ╎ ╎ 1 @Pkg/…tions.jl:2317 (::Pkg.Operations.var"#201#20… ╎ ╎ ╎ ╎ ╎ ╎ 1 @Pkg/…tions.jl:2377 subprocess_handler(cmd::Cmd,… ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…cess.jl:687 wait(x::Base.Process) ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…cess.jl:694 wait(x::Base.Process, syncd… ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ion.jl:136 wait ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ion.jl:141 wait(c::Base.GenericCondit… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…sk.jl:1199 wait() ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…sk.jl:1187 poptask(W::Base.Intrusiv… [1] signal 15: Terminated in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:454 [234] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/ConformalPrediction/bz1ka/test/regression.jl:22 poptask at ./task.jl:1187 popfirst! at ./task.jl:894 wait at ./task.jl:1199 trypoptask at ./task.jl:1167 #wait#551 at ./condition.jl:141 poptask at ./task.jl:1185 wait at ./condition.jl:136 [inlined] _trywait at ./asyncevent.jl:145 wait at ./task.jl:1199 profile_printing_listener at ./Base.jl:326 #wait#551 at ./condition.jl:141 #start_profile_listener##0 at ./Base.jl:346 wait at ./condition.jl:136 [inlined] _wait at ./task.jl:312 threading_run at ./threadingconstructs.jl:191 macro expansion at ./threadingconstructs.jl:213 [inlined] predict! at /home/pkgeval/.julia/packages/EvoTrees/73o4j/src/predict.jl:2 unknown function (ip: 0x7d04189826b2) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 #_predict#94 at /home/pkgeval/.julia/packages/EvoTrees/73o4j/src/predict.jl:103 _predict at /home/pkgeval/.julia/packages/EvoTrees/73o4j/src/predict.jl:90 [inlined] #predict#93 at /home/pkgeval/.julia/packages/EvoTrees/73o4j/src/predict.jl:87 predict at /home/pkgeval/.julia/packages/EvoTrees/73o4j/src/predict.jl:84 [inlined] predict at /home/pkgeval/.julia/packages/EvoTrees/73o4j/src/MLJ.jl:45 [inlined] #43 at ./none (unknown line) unknown function (ip: 0x7d04189f67d2) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 iterate at ./generator.jl:48 [inlined] collect_to! at ./array.jl:848 collect_to_with_first! at ./array.jl:826 unknown function (ip: 0x7d04189f6965) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 collect at ./array.jl:800 predict at /home/pkgeval/.julia/packages/ConformalPrediction/bz1ka/src/conformal_models/transductive_regression.jl:228 unknown function (ip: 0x7d04189f612d) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 macro expansion at /home/pkgeval/.julia/packages/TaijaPlotting/ZxgZe/src/ConformalPrediction/regression.jl:40 [inlined] apply_recipe at /home/pkgeval/.julia/packages/RecipesBase/BRe07/src/RecipesBase.jl:300 _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] do_apply at /source/src/builtins.c:839 _process_userrecipes! at /home/pkgeval/.julia/packages/RecipesPipeline/BGM3l/src/user_recipe.jl:38 recipe_pipeline! at /home/pkgeval/.julia/packages/RecipesPipeline/BGM3l/src/RecipesPipeline.jl:72 _plot! at /home/pkgeval/.julia/packages/Plots/3u4B6/src/plot.jl:223 #plot#147 at /home/pkgeval/.julia/packages/Plots/3u4B6/src/plot.jl:102 _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] do_apply at /source/src/builtins.c:839 plot at /home/pkgeval/.julia/packages/Plots/3u4B6/src/plot.jl:93 _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 macro expansion at /home/pkgeval/.julia/packages/ConformalPrediction/bz1ka/test/regression.jl:59 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] macro expansion at /home/pkgeval/.julia/packages/ConformalPrediction/bz1ka/test/regression.jl:49 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] macro expansion at /home/pkgeval/.julia/packages/ConformalPrediction/bz1ka/test/regression.jl:39 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] macro expansion at /home/pkgeval/.julia/packages/ConformalPrediction/bz1ka/test/regression.jl:30 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] macro expansion at /home/pkgeval/.julia/packages/ConformalPrediction/bz1ka/test/regression.jl:26 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] top-level scope at /home/pkgeval/.julia/packages/ConformalPrediction/bz1ka/test/regression.jl:23 _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_invoke at /source/src/gf.c:3366 jl_toplevel_eval_flex at /source/src/toplevel.c:1059 jl_toplevel_eval_flex at /source/src/toplevel.c:1010 ijl_toplevel_eval at /source/src/toplevel.c:1082 ijl_toplevel_eval_in at /source/src/toplevel.c:1127 jfptr_YY.start_profile_listenerYY.YY.0_111230.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] start_task at /source/src/task.c:1281 unknown function (ip: (nil)) at (unknown file) Allocations: 34335203 (Pool: 34333219; Big: 1984); GC: 35 eval at ./boot.jl:485 include_string at ./loading.jl:2846 _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 _include at ./loading.jl:2906 include at ./Base.jl:301 IncludeInto at ./Base.jl:302 jfptr_IncludeInto_69051.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] do_call at /source/src/interpreter.c:125 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:687 eval_body at /source/src/interpreter.c:562 eval_body at /source/src/interpreter.c:562 jl_interpret_toplevel_thunk at /source/src/interpreter.c:896 jl_toplevel_eval_flex at /source/src/toplevel.c:1070 jl_toplevel_eval_flex at /source/src/toplevel.c:1010 ijl_toplevel_eval at /source/src/toplevel.c:1082 ijl_toplevel_eval_in at /source/src/toplevel.c:1127 eval at ./boot.jl:485 include_string at ./loading.jl:2846 _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 _include at ./loading.jl:2906 include at ./Base.jl:301 IncludeInto at ./Base.jl:302 jfptr_IncludeInto_69051.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] do_call at /source/src/interpreter.c:125 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:687 jl_interpret_toplevel_thunk at /source/src/interpreter.c:896 jl_toplevel_eval_flex at /source/src/toplevel.c:1070 jl_toplevel_eval_flex at /source/src/toplevel.c:1010 ijl_toplevel_eval at /source/src/toplevel.c:1082 ijl_toplevel_eval_in at /source/src/toplevel.c:1127 eval at ./boot.jl:485 exec_options at ./client.jl:295 _start at ./client.jl:558 jfptr__start_108457.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] true_main at /source/src/jlapi.c:922 jl_repl_entrypoint at /source/src/jlapi.c:1081 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7d0445d7c249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) Allocations: 638170336 (Pool: 638163851; Big: 6485); GC: 201 PkgEval terminated after 2733.48s: test duration exceeded the time limit