Package evaluation of BifurcationKit on Julia 1.12.0-DEV.1805 (a080deafdd*) started at 2025-03-24T19:57:30.869 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.35s ################################################################################ # Installation # Installing BifurcationKit... Resolving package versions... Updating `~/.julia/environments/v1.12/Project.toml` [0f109fa4] + BifurcationKit v0.4.10 Updating `~/.julia/environments/v1.12/Manifest.toml` [47edcb42] + ADTypes v1.14.0 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.3.0 [ec485272] + ArnoldiMethod v0.4.0 ⌅ [7d9fca2a] + Arpack v0.5.3 [4fba245c] + ArrayInterface v7.18.0 [4c555306] + ArrayLayouts v1.11.1 [0f109fa4] + BifurcationKit v0.4.10 [8e7c35d0] + BlockArrays v1.5.0 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.16.0 [a33af91c] + CompositionsBase v0.1.2 [187b0558] + ConstructionBase v1.5.8 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [ffbed154] + DocStringExtensions v0.9.3 [4e289a0a] + EnumX v1.0.4 [e2ba6199] + ExprTools v0.1.10 [55351af7] + ExproniconLite v0.10.14 [442a2c76] + FastGaussQuadrature v1.0.2 [1a297f60] + FillArrays v1.13.0 [f6369f11] + ForwardDiff v0.10.38 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.4 [42fd0dbc] + IterativeSolvers v0.9.4 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.0 [ae98c720] + Jieko v0.2.1 [ba0b0d4f] + Krylov v0.9.10 ⌅ [0b1a1467] + KrylovKit v0.8.3 [7a12625a] + LinearMaps v3.11.4 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.15 [2e0e35c7] + Moshi v0.3.5 [77ba4419] + NaNMath v1.1.2 [bac558e1] + OrderedCollections v1.8.0 [65ce6f38] + PackageExtensionCompat v1.0.2 [d96e819e] + Parameters v0.12.3 [d236fae5] + PreallocationTools v0.4.25 [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.31.1 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [7e49a35a] + RuntimeGeneratedFunctions v0.5.13 [0bca4576] + SciMLBase v2.79.0 [c0aeaf25] + SciMLOperators v0.3.13 [53ae85a6] + SciMLStructures v1.7.0 [276daf66] + SpecialFunctions v2.5.0 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 ⌅ [09ab397b] + StructArrays v0.6.21 [2efcf032] + SymbolicIndexingInterface v0.3.38 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.0 [3a884ed6] + UnPack v1.0.2 ⌅ [409d34a3] + VectorInterface v0.4.9 ⌅ [68821587] + Arpack_jll v3.5.1+1 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [dc6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.12.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.12.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.2.0+0 [deac9b47] + LibCURL_jll v8.6.0+0 [e37daf67] + LibGit2_jll v1.8.0+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.6+1 [14a3606d] + MozillaCACerts_jll v2024.11.26 [4536629a] + OpenBLAS_jll v0.3.28+3 [05823500] + OpenLibm_jll v0.8.1+3 [bea87d4a] + SuiteSparse_jll v7.8.0+1 [83775a58] + Zlib_jll v1.3.1+1 [8e850b90] + libblastrampoline_jll v5.11.2+0 [8e850ede] + nghttp2_jll v1.63.0+1 [3f19e933] + p7zip_jll v17.5.0+1 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.44s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... ERROR: LoadError: The following 1 direct dependency failed to precompile: SciMLSensitivity Failed to precompile SciMLSensitivity [1ed8b502-d754-442c-8d5d-10ac956f44a1] to "/home/pkgeval/.julia/compiled/v1.12/SciMLSensitivity/jl_wlUvuB". ERROR: LoadError: UndefVarError: `collectinvokes!` not defined in `Compiler` Stacktrace: [1] getproperty @ ./Base_compiler.jl:47 [inlined] [2] ci_cache_populate(interp::GPUCompiler.GPUInterpreter, cache::Compiler.WorldView{Compiler.InternalCodeCache}, mi::Core.MethodInstance, min_world::UInt64, max_world::UInt64) @ GPUCompiler ~/.julia/packages/GPUCompiler/OGnEB/src/jlgen.jl:504 [3] compile_method_instance(job::GPUCompiler.CompilerJob) @ GPUCompiler ~/.julia/packages/GPUCompiler/OGnEB/src/jlgen.jl:597 [4] irgen(job::GPUCompiler.CompilerJob) @ GPUCompiler ~/.julia/packages/GPUCompiler/OGnEB/src/irgen.jl:4 [5] emit_llvm(job::GPUCompiler.CompilerJob; toplevel::Bool, libraries::Bool, optimize::Bool, cleanup::Bool, validate::Bool, only_entry::Bool) @ GPUCompiler ~/.julia/packages/GPUCompiler/OGnEB/src/driver.jl:171 [6] emit_llvm @ ~/.julia/packages/GPUCompiler/OGnEB/src/driver.jl:159 [inlined] [7] #codegen#110 @ ~/.julia/packages/GPUCompiler/OGnEB/src/driver.jl:100 [inlined] [8] codegen @ ~/.julia/packages/GPUCompiler/OGnEB/src/driver.jl:82 [inlined] [9] compile(target::Symbol, job::GPUCompiler.CompilerJob; kwargs::@Kwargs{libraries::Bool}) @ GPUCompiler ~/.julia/packages/GPUCompiler/OGnEB/src/driver.jl:79 [10] compile @ ~/.julia/packages/GPUCompiler/OGnEB/src/driver.jl:74 [inlined] [11] #184 @ ~/.julia/packages/GPUCompiler/OGnEB/src/precompile.jl:35 [inlined] [12] JuliaContext(f::GPUCompiler.var"#184#185"{GPUCompiler.CompilerJob{GPUCompiler.NativeCompilerTarget, GPUCompiler.var"##455".DummyCompilerParams}}; kwargs::@Kwargs{}) @ GPUCompiler ~/.julia/packages/GPUCompiler/OGnEB/src/driver.jl:34 [13] JuliaContext(f::Function) @ GPUCompiler ~/.julia/packages/GPUCompiler/OGnEB/src/driver.jl:25 [14] macro expansion @ ~/.julia/packages/GPUCompiler/OGnEB/src/precompile.jl:32 [inlined] [15] macro expansion @ ~/.julia/packages/PrecompileTools/L8A3n/src/workloads.jl:78 [inlined] [16] macro expansion @ ~/.julia/packages/GPUCompiler/OGnEB/src/precompile.jl:25 [inlined] [17] macro expansion @ ~/.julia/packages/PrecompileTools/L8A3n/src/workloads.jl:140 [inlined] [18] top-level scope @ ~/.julia/packages/GPUCompiler/OGnEB/src/precompile.jl:139 [19] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [20] top-level scope @ ~/.julia/packages/GPUCompiler/OGnEB/src/GPUCompiler.jl:51 [21] include(mod::Module, _path::String) @ Base ./Base.jl:300 [22] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::String) @ Base ./loading.jl:2995 [23] top-level scope @ stdin:6 [24] eval(m::Module, e::Any) @ Core ./boot.jl:485 [25] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String) @ Base ./loading.jl:2846 [26] include_string @ ./loading.jl:2856 [inlined] [27] exec_options(opts::Base.JLOptions) @ Base ./client.jl:327 [28] _start() @ Base ./client.jl:558 in expression starting at /home/pkgeval/.julia/packages/GPUCompiler/OGnEB/src/precompile.jl:3 in expression starting at /home/pkgeval/.julia/packages/GPUCompiler/OGnEB/src/GPUCompiler.jl:1 in expression starting at stdin:6 ERROR: LoadError: Failed to precompile GPUCompiler [61eb1bfa-7361-4325-ad38-22787b887f55] to "/home/pkgeval/.julia/compiled/v1.12/GPUCompiler/jl_OkDMfE". Stacktrace: [1] error(s::String) @ Base ./error.jl:44 [2] compilecache(pkg::Base.PkgId, path::String, internal_stderr::IO, internal_stdout::IO, keep_loaded_modules::Bool; flags::Cmd, cacheflags::Base.CacheFlags, reasons::Dict{String, Int64}, loadable_exts::Nothing) @ Base ./loading.jl:3279 [3] (::Base.var"#__require_prelocked##0#__require_prelocked##1"{Base.PkgId})() @ Base ./loading.jl:2673 [4] mkpidlock(f::Base.var"#__require_prelocked##0#__require_prelocked##1"{Base.PkgId}, at::String, pid::Int32; kwopts::@Kwargs{stale_age::Int64, wait::Bool}) @ FileWatching.Pidfile /opt/julia/share/julia/stdlib/v1.12/FileWatching/src/pidfile.jl:93 [5] #mkpidlock#7 @ /opt/julia/share/julia/stdlib/v1.12/FileWatching/src/pidfile.jl:88 [inlined] [6] trymkpidlock(::Function, ::Vararg{Any}; kwargs::@Kwargs{stale_age::Int64}) @ FileWatching.Pidfile /opt/julia/share/julia/stdlib/v1.12/FileWatching/src/pidfile.jl:114 [7] #invokelatest#1 @ ./essentials.jl:1058 [inlined] [8] invokelatest @ ./essentials.jl:1052 [inlined] [9] maybe_cachefile_lock(f::Base.var"#__require_prelocked##0#__require_prelocked##1"{Base.PkgId}, pkg::Base.PkgId, srcpath::String; stale_age::Int64) @ Base ./loading.jl:3850 [10] maybe_cachefile_lock @ ./loading.jl:3847 [inlined] [11] __require_prelocked(pkg::Base.PkgId, env::String) @ Base ./loading.jl:2659 [12] _require_prelocked(uuidkey::Base.PkgId, env::String) @ Base ./loading.jl:2484 [13] macro expansion @ ./loading.jl:2412 [inlined] [14] macro expansion @ ./lock.jl:294 [inlined] [15] __require(into::Module, mod::Symbol) @ Base ./loading.jl:2369 [16] #invoke_in_world#2 @ ./essentials.jl:1091 [inlined] [17] invoke_in_world @ ./essentials.jl:1087 [inlined] [18] require(into::Module, mod::Symbol) @ Base ./loading.jl:2361 [19] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [20] top-level scope @ ~/.julia/packages/Enzyme/owyQj/src/Enzyme.jl:124 [21] include(mod::Module, _path::String) @ Base ./Base.jl:300 [22] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::String) @ Base ./loading.jl:2995 [23] top-level scope @ stdin:6 [24] eval(m::Module, e::Any) @ Core ./boot.jl:485 [25] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String) @ Base ./loading.jl:2846 [26] include_string @ ./loading.jl:2856 [inlined] [27] exec_options(opts::Base.JLOptions) @ Base ./client.jl:327 [28] _start() @ Base ./client.jl:558 in expression starting at /home/pkgeval/.julia/packages/Enzyme/owyQj/src/typetree.jl:6 in expression starting at /home/pkgeval/.julia/packages/Enzyme/owyQj/src/Enzyme.jl:1 in expression starting at stdin:6 ERROR: LoadError: Failed to precompile Enzyme [7da242da-08ed-463a-9acd-ee780be4f1d9] to "/home/pkgeval/.julia/compiled/v1.12/Enzyme/jl_d5JL7a". Stacktrace: [1] error(s::String) @ Base ./error.jl:44 [2] compilecache(pkg::Base.PkgId, path::String, internal_stderr::IO, internal_stdout::IO, keep_loaded_modules::Bool; flags::Cmd, cacheflags::Base.CacheFlags, reasons::Dict{String, Int64}, loadable_exts::Nothing) @ Base ./loading.jl:3279 [3] (::Base.var"#__require_prelocked##0#__require_prelocked##1"{Base.PkgId})() @ Base ./loading.jl:2673 [4] mkpidlock(f::Base.var"#__require_prelocked##0#__require_prelocked##1"{Base.PkgId}, at::String, pid::Int32; kwopts::@Kwargs{stale_age::Int64, wait::Bool}) @ FileWatching.Pidfile /opt/julia/share/julia/stdlib/v1.12/FileWatching/src/pidfile.jl:93 [5] #mkpidlock#7 @ /opt/julia/share/julia/stdlib/v1.12/FileWatching/src/pidfile.jl:88 [inlined] [6] trymkpidlock(::Function, ::Vararg{Any}; kwargs::@Kwargs{stale_age::Int64}) @ FileWatching.Pidfile /opt/julia/share/julia/stdlib/v1.12/FileWatching/src/pidfile.jl:114 [7] #invokelatest#1 @ ./essentials.jl:1058 [inlined] [8] invokelatest @ ./essentials.jl:1052 [inlined] [9] maybe_cachefile_lock(f::Base.var"#__require_prelocked##0#__require_prelocked##1"{Base.PkgId}, pkg::Base.PkgId, srcpath::String; stale_age::Int64) @ Base ./loading.jl:3850 [10] maybe_cachefile_lock @ ./loading.jl:3847 [inlined] [11] __require_prelocked(pkg::Base.PkgId, env::String) @ Base ./loading.jl:2659 [12] _require_prelocked(uuidkey::Base.PkgId, env::String) @ Base ./loading.jl:2484 [13] macro expansion @ ./loading.jl:2412 [inlined] [14] macro expansion @ ./lock.jl:294 [inlined] [15] __require(into::Module, mod::Symbol) @ Base ./loading.jl:2369 [16] #invoke_in_world#2 @ ./essentials.jl:1091 [inlined] [17] invoke_in_world @ ./essentials.jl:1087 [inlined] [18] require(into::Module, mod::Symbol) @ Base ./loading.jl:2361 [19] top-level scope @ ~/.julia/packages/SciMLSensitivity/AjuEJ/src/SciMLSensitivity.jl:44 [20] include(mod::Module, _path::String) @ Base ./Base.jl:300 [21] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing) @ Base ./loading.jl:2995 [22] top-level scope @ stdin:6 [23] eval(m::Module, e::Any) @ Core ./boot.jl:485 [24] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String) @ Base ./loading.jl:2846 [25] include_string @ ./loading.jl:2856 [inlined] [26] exec_options(opts::Base.JLOptions) @ Base ./client.jl:327 [27] _start() @ Base ./client.jl:558 in expression starting at /home/pkgeval/.julia/packages/SciMLSensitivity/AjuEJ/src/SciMLSensitivity.jl:1 in expression starting at stdin: in expression starting at /PkgEval.jl/scripts/precompile.jl:37 Precompilation failed after 1309.38s ################################################################################ # Testing # Testing BifurcationKit Status `/tmp/jl_izxFtc/Project.toml` [c29ec348] AbstractDifferentiation v0.6.2 [7d9f7c33] Accessors v0.1.42 [ec485272] ArnoldiMethod v0.4.0 ⌅ [7d9fca2a] Arpack v0.5.3 [0f109fa4] BifurcationKit v0.4.10 [8e7c35d0] BlockArrays v1.5.0 [b0b7db55] ComponentArrays v0.15.25 [864edb3b] DataStructures v0.18.22 [ffbed154] DocStringExtensions v0.9.3 [442a2c76] FastGaussQuadrature v1.0.2 [f6369f11] ForwardDiff v0.10.38 [42fd0dbc] IterativeSolvers v0.9.4 [ba0b0d4f] Krylov v0.9.10 ⌅ [0b1a1467] KrylovKit v0.8.3 [7a12625a] LinearMaps v3.11.4 [1dea7af3] OrdinaryDiffEq v6.93.0 [d96e819e] Parameters v0.12.3 [d236fae5] PreallocationTools v0.4.25 [731186ca] RecursiveArrayTools v3.31.1 [189a3867] Reexport v1.2.2 [0bca4576] SciMLBase v2.79.0 [1ed8b502] SciMLSensitivity v7.75.0 ⌅ [09ab397b] StructArrays v0.6.21 ⌃ [e88e6eb3] Zygote v0.6.75 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.12.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_izxFtc/Manifest.toml` [47edcb42] ADTypes v1.14.0 [c29ec348] AbstractDifferentiation v0.6.2 [621f4979] AbstractFFTs v1.5.0 [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.3.0 [66dad0bd] AliasTables v1.1.3 [ec485272] ArnoldiMethod v0.4.0 ⌅ [7d9fca2a] Arpack v0.5.3 [4fba245c] ArrayInterface v7.18.0 [4c555306] ArrayLayouts v1.11.1 [a9b6321e] Atomix v1.1.1 [0f109fa4] BifurcationKit v0.4.10 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] BlockArrays v1.5.0 [70df07ce] BracketingNonlinearSolve v1.1.1 [fa961155] CEnum v0.5.0 [2a0fbf3d] CPUSummary v0.2.6 [7057c7e9] Cassette v0.3.14 [082447d4] ChainRules v1.72.3 [d360d2e6] ChainRulesCore v1.25.1 [fb6a15b2] CloseOpenIntervals v0.1.13 [38540f10] CommonSolve v0.2.4 [bbf7d656] CommonSubexpressions v0.3.1 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.16.0 [b0b7db55] ComponentArrays v0.15.25 [a33af91c] CompositionsBase v0.1.2 [2569d6c7] ConcreteStructs v0.2.3 [187b0558] ConstructionBase v1.5.8 [adafc99b] CpuId v0.3.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [2b5f629d] DiffEqBase v6.167.0 [459566f4] DiffEqCallbacks v4.3.0 [77a26b50] DiffEqNoiseProcess v5.24.1 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [a0c0ee7d] DifferentiationInterface v0.6.48 [31c24e10] Distributions v0.25.118 [ffbed154] DocStringExtensions v0.9.3 [4e289a0a] EnumX v1.0.4 [7da242da] Enzyme v0.13.34 [f151be2c] EnzymeCore v0.8.8 [d4d017d3] ExponentialUtilities v1.27.0 [e2ba6199] ExprTools v0.1.10 [55351af7] ExproniconLite v0.10.14 [7034ab61] FastBroadcast v0.3.5 [9aa1b823] FastClosures v0.3.2 [442a2c76] FastGaussQuadrature v1.0.2 [a4df4552] FastPower v1.1.1 [1a297f60] FillArrays v1.13.0 [6a86dc24] FiniteDiff v2.27.0 [f6369f11] ForwardDiff v0.10.38 [f62d2435] FunctionProperties v0.1.2 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 [d9f16b24] Functors v0.5.2 [0c68f7d7] GPUArrays v11.2.2 [46192b85] GPUArraysCore v0.2.0 [61eb1bfa] GPUCompiler v1.2.0 [c145ed77] GenericSchur v0.5.4 [86223c79] Graphs v1.12.0 [076d061b] HashArrayMappedTries v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [7869d1d1] IRTools v0.4.14 [615f187c] IfElse v0.1.1 [d25df0c9] Inflate v0.1.5 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.4 [42fd0dbc] IterativeSolvers v0.9.4 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.0 [ae98c720] Jieko v0.2.1 [63c18a36] KernelAbstractions v0.9.34 [ba0b0d4f] Krylov v0.9.10 ⌅ [0b1a1467] KrylovKit v0.8.3 [929cbde3] LLVM v9.2.0 [10f19ff3] LayoutPointers v0.1.17 [5078a376] LazyArrays v2.6.1 [87fe0de2] LineSearch v0.1.4 [d3d80556] LineSearches v7.3.0 [7a12625a] LinearMaps v3.11.4 [7ed4a6bd] LinearSolve v3.7.0 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.15 [d125e4d3] ManualMemory v0.1.8 [bb5d69b7] MaybeInplace v0.1.4 [e1d29d7a] Missings v1.2.0 [2e0e35c7] Moshi v0.3.5 [46d2c3a1] MuladdMacro v0.2.4 [d41bc354] NLSolversBase v7.9.0 [872c559c] NNlib v0.9.29 [77ba4419] NaNMath v1.1.2 [8913a72c] NonlinearSolve v4.5.0 [be0214bd] NonlinearSolveBase v1.5.0 [5959db7a] NonlinearSolveFirstOrder v1.3.0 [9a2c21bd] NonlinearSolveQuasiNewton v1.2.0 [26075421] NonlinearSolveSpectralMethods v1.1.0 [d8793406] ObjectFile v0.4.4 [429524aa] Optim v1.11.0 [3bd65402] Optimisers v0.4.5 [bac558e1] OrderedCollections v1.8.0 [1dea7af3] OrdinaryDiffEq v6.93.0 [89bda076] OrdinaryDiffEqAdamsBashforthMoulton v1.2.0 [6ad6398a] OrdinaryDiffEqBDF v1.3.0 [bbf590c4] OrdinaryDiffEqCore v1.20.0 [50262376] OrdinaryDiffEqDefault v1.3.0 [4302a76b] OrdinaryDiffEqDifferentiation v1.4.0 [9286f039] OrdinaryDiffEqExplicitRK v1.1.0 [e0540318] OrdinaryDiffEqExponentialRK v1.4.0 [becaefa8] OrdinaryDiffEqExtrapolation v1.5.0 [5960d6e9] OrdinaryDiffEqFIRK v1.9.0 [101fe9f7] OrdinaryDiffEqFeagin v1.1.0 [d3585ca7] OrdinaryDiffEqFunctionMap v1.1.1 [d28bc4f8] OrdinaryDiffEqHighOrderRK v1.1.0 [9f002381] OrdinaryDiffEqIMEXMultistep v1.3.0 [521117fe] OrdinaryDiffEqLinear v1.1.0 [1344f307] OrdinaryDiffEqLowOrderRK v1.2.0 [b0944070] OrdinaryDiffEqLowStorageRK v1.3.0 [127b3ac7] OrdinaryDiffEqNonlinearSolve v1.5.0 [c9986a66] OrdinaryDiffEqNordsieck v1.1.0 [5dd0a6cf] OrdinaryDiffEqPDIRK v1.3.0 [5b33eab2] OrdinaryDiffEqPRK v1.1.0 [04162be5] OrdinaryDiffEqQPRK v1.1.0 [af6ede74] OrdinaryDiffEqRKN v1.1.0 [43230ef6] OrdinaryDiffEqRosenbrock v1.8.0 [2d112036] OrdinaryDiffEqSDIRK v1.3.0 [669c94d9] OrdinaryDiffEqSSPRK v1.2.1 [e3e12d00] OrdinaryDiffEqStabilizedIRK v1.3.0 [358294b1] OrdinaryDiffEqStabilizedRK v1.1.0 [fa646aed] OrdinaryDiffEqSymplecticRK v1.3.0 [b1df2697] OrdinaryDiffEqTsit5 v1.1.0 [79d7bb75] OrdinaryDiffEqVerner v1.1.1 [90014a1f] PDMats v0.11.32 [65ce6f38] PackageExtensionCompat v1.0.2 [d96e819e] Parameters v0.12.3 [e409e4f3] PoissonRandom v0.4.4 [f517fe37] Polyester v0.7.16 [1d0040c9] PolyesterWeave v0.2.2 [85a6dd25] PositiveFactorizations v0.2.4 [d236fae5] PreallocationTools v0.4.25 [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [74087812] Random123 v1.7.0 [e6cf234a] RandomNumbers v1.6.0 [c1ae055f] RealDot v0.1.0 [3cdcf5f2] RecipesBase v1.3.4 [731186ca] RecursiveArrayTools v3.31.1 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.1 [ae5879a3] ResettableStacks v1.1.1 [37e2e3b7] ReverseDiff v1.15.3 [79098fc4] Rmath v0.8.0 [7e49a35a] RuntimeGeneratedFunctions v0.5.13 [94e857df] SIMDTypes v0.1.0 [0bca4576] SciMLBase v2.79.0 [19f34311] SciMLJacobianOperators v0.1.1 [c0aeaf25] SciMLOperators v0.3.13 [1ed8b502] SciMLSensitivity v7.75.0 [53ae85a6] SciMLStructures v1.7.0 [7e506255] ScopedValues v1.3.0 [6c6a2e73] Scratch v1.2.1 [efcf1570] Setfield v1.1.2 [727e6d20] SimpleNonlinearSolve v2.2.0 [699a6c99] SimpleTraits v0.9.4 [ce78b400] SimpleUnPack v1.1.0 [a2af1166] SortingAlgorithms v1.2.1 ⌃ [47a9eef4] SparseDiffTools v2.23.1 [dc90abb0] SparseInverseSubset v0.1.2 [0a514795] SparseMatrixColorings v0.4.14 [276daf66] SpecialFunctions v2.5.0 [aedffcd0] Static v1.2.0 [0d7ed370] StaticArrayInterface v1.8.0 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.0 [2913bbd2] StatsBase v0.34.4 [4c63d2b9] StatsFuns v1.3.2 [7792a7ef] StrideArraysCore v0.5.7 ⌅ [09ab397b] StructArrays v0.6.21 [53d494c1] StructIO v0.3.1 [2efcf032] SymbolicIndexingInterface v0.3.38 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.0 [8290d209] ThreadingUtilities v0.5.2 [a759f4b9] TimerOutputs v0.5.28 [9f7883ad] Tracker v0.2.37 [781d530d] TruncatedStacktraces v1.4.0 [3a884ed6] UnPack v1.0.2 [013be700] UnsafeAtomics v0.3.0 ⌅ [409d34a3] VectorInterface v0.4.9 [19fa3120] VertexSafeGraphs v0.2.0 ⌃ [e88e6eb3] Zygote v0.6.75 [700de1a5] ZygoteRules v0.2.7 ⌅ [68821587] Arpack_jll v3.5.1+1 [7cc45869] Enzyme_jll v0.0.173+0 [1d5cc7b8] IntelOpenMP_jll v2025.0.4+0 [dad2f222] LLVMExtra_jll v0.0.35+0 [856f044c] MKL_jll v2025.0.1+1 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [1317d2d5] oneTBB_jll v2022.0.0+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [dc6e5ff7] JuliaSyntaxHighlighting v1.12.0 [4af54fe1] LazyArtifacts v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.12.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [1a1011a3] SharedArrays v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.12.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.2.0+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.8.0+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+1 [14a3606d] MozillaCACerts_jll v2024.11.26 [4536629a] OpenBLAS_jll v0.3.28+3 [05823500] OpenLibm_jll v0.8.1+3 [bea87d4a] SuiteSparse_jll v7.8.0+1 [83775a58] Zlib_jll v1.3.1+1 [8e850b90] libblastrampoline_jll v5.11.2+0 [8e850ede] nghttp2_jll v1.63.0+1 [3f19e933] p7zip_jll v17.5.0+1 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... --> There are 1 threads Problem wrap of ┌─ Bifurcation Problem with uType Vector{Float64} ├─ Inplace: false ├─ Dimension: 2 ├─ Symmetric: false └─ Parameter: pProblem wrap for curve of PD of periodic orbits. Based on the formulation: ┌─ Bifurcation Problem with uType Vector{Float64} ├─ Inplace: false ├─ Dimension: 2 ├─ Symmetric: false └─ Parameter: p0.5274253610175453 0.2745769439524486 │ 1 │ │ 1 │ GMRES: system of size 100 pass k ‖rₖ‖ hₖ₊₁.ₖ timer 0 0 5.8e+00 ✗ ✗ ✗ ✗ 0.00s 1 2 9.5e-01 3.1e-01 0.00s 1 4 6.5e-02 2.7e-01 0.00s 1 6 4.9e-03 2.8e-01 0.00s 1 8 4.1e-04 2.8e-01 0.00s 1 10 2.6e-05 2.6e-01 0.00s 1 12 1.9e-06 2.4e-01 0.00s 1 14 1.2e-07 2.4e-01 0.00s 1 16 7.0e-09 2.5e-01 0.00s Linear Solvers: Error During Test at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/test/runtests.jl:8 Got exception outside of a @test LoadError: MethodError: no method matching iterate(::BorderedArray{Vector{Float64}, Float64}) The function `iterate` exists, but no method is defined for this combination of argument types. Closest candidates are: iterate(!Matched::Cmd) @ Base process.jl:716 iterate(!Matched::Cmd, !Matched::Any) @ Base process.jl:721 iterate(!Matched::KrylovKit.SplitRange) @ KrylovKit ~/.julia/packages/KrylovKit/xccMN/src/KrylovKit.jl:87 ... Stacktrace: [1] isempty(itr::BorderedArray{Vector{Float64}, Float64}) @ Base ./essentials.jl:1129 [2] norm(itr::BorderedArray{Vector{Float64}, Float64}) @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.12/LinearAlgebra/src/generic.jl:691 [3] linsolve(f::BifurcationKit.MatrixFreeBLSmap{Matrix{Float64}, Vector{Float64}, Vector{Float64}, Float64, Float64, typeof(dot)}, b::BorderedArray{Vector{Float64}, Float64}, x₀::BorderedArray{Vector{Float64}, Float64}, a₀::Int64, a₁::Int64; kwargs::@Kwargs{rtol::Float64, verbosity::Int64, krylovdim::Int64, maxiter::Int64, atol::Float64, issymmetric::Bool, ishermitian::Bool, isposdef::Bool}) @ KrylovKit ~/.julia/packages/KrylovKit/xccMN/src/linsolve/linsolve.jl:113 [4] linsolve(f::BifurcationKit.MatrixFreeBLSmap{Matrix{Float64}, Vector{Float64}, Vector{Float64}, Float64, Float64, typeof(dot)}, b::BorderedArray{Vector{Float64}, Float64}, a₀::Int64, a₁::Int64; kwargs::@Kwargs{rtol::Float64, verbosity::Int64, krylovdim::Int64, maxiter::Int64, atol::Float64, issymmetric::Bool, ishermitian::Bool, isposdef::Bool}) @ KrylovKit ~/.julia/packages/KrylovKit/xccMN/src/linsolve/linsolve.jl:104 [5] (::GMRESKrylovKit{Float64, Nothing})(J::BifurcationKit.MatrixFreeBLSmap{Matrix{Float64}, Vector{Float64}, Vector{Float64}, Float64, Float64, typeof(dot)}, rhs::BorderedArray{Vector{Float64}, Float64}; a₀::Int64, a₁::Int64, kwargs::@Kwargs{}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/LinearSolver.jl:250 [6] (::GMRESKrylovKit{Float64, Nothing})(J::BifurcationKit.MatrixFreeBLSmap{Matrix{Float64}, Vector{Float64}, Vector{Float64}, Float64, Float64, typeof(dot)}, rhs::BorderedArray{Vector{Float64}, Float64}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/LinearSolver.jl:248 [7] (::MatrixFreeBLS{GMRESKrylovKit{Float64, Nothing}})(J::Matrix{Float64}, dR::Vector{Float64}, dzu::Vector{Float64}, dzp::Float64, R::Vector{Float64}, n::Float64, ξu::Int64, ξp::Int64; shift::Float64, dotp::Function, applyξu!::Nothing) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/LinearBorderSolver.jl:409 [8] MatrixFreeBLS @ ~/.julia/packages/BifurcationKit/DXZuX/src/LinearBorderSolver.jl:398 [inlined] [9] top-level scope @ ~/.julia/packages/BifurcationKit/DXZuX/test/test_linear.jl:178 [10] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [11] top-level scope @ ~/.julia/packages/BifurcationKit/DXZuX/test/runtests.jl:8 [12] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [13] macro expansion @ ~/.julia/packages/BifurcationKit/DXZuX/test/runtests.jl:9 [inlined] [14] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [15] macro expansion @ ~/.julia/packages/BifurcationKit/DXZuX/test/runtests.jl:11 [inlined] [16] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [17] top-level scope @ none:6 [18] eval(m::Module, e::Any) @ Core ./boot.jl:485 [19] exec_options(opts::Base.JLOptions) @ Base ./client.jl:295 [20] _start() @ Base ./client.jl:558 in expression starting at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/test/test_linear.jl:147 ┌ Warning: The zero eigenvalue is not that small λ = 0.0004456099444045391, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/NormalForms.jl:82 ┌─ Deflated Problem with uType Vector{Float64} ├─ Symmetric: false ├─ jacobian: nothing ├─ Parameter p └─ deflation operator: ┌─ Deflation operator with 1 root(s) ├─ eltype = Float64 ├─ power = 2 ├─ α = 1.0 ├─ dist = dot └─ autodiff = false WARNING: Method definition F4def(Any, Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/test/test_newton.jl:64 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/test/test_newton.jl:153. | 1 │ 1.0000e+00 │ ( 1, 1) | │ 1 │ │ ( 1, 1) │ 5.079936 seconds (3.07 M allocations: 154.178 MiB, 2.16% gc time, 99.97% compilation time) ┌ Warning: Unrecognized keyword arguments found. Future versions will error. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/Continuation.jl:55 Unrecognized keyword arguments: (:essai,) 7.329973 seconds (2.71 M allocations: 138.731 MiB, 0.97% gc time, 99.98% compilation time: <1% of which was recompilation) ┌─ Bifurcation Problem with uType Vector{Float64} ├─ Inplace: false ├─ Dimension: 1 ├─ Symmetric: false └─ Parameter: p 6.258866 seconds (2.01 M allocations: 101.685 MiB, 99.98% compilation time) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ────────────────── AutoSwitch ────────────────── ━━━━━━━━━━━━━━━━━━ INITIAL GUESS ━━━━━━━━━━━━━━━━━━ ──▶ convergence of initial guess = OK ──▶ parameter = -1.5, initial step ━━━━━━━━━━━━━━━━━━ INITIAL TANGENT ━━━━━━━━━━━━━━━━━━ ──▶ convergence of the initial guess = OK ──▶ parameter = -1.4999333333333333, initial step (bis) Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 0 Step size = 1.0000e-02 Parameter p = -1.5000e+00 ⟶ -1.4859e+00 [guess] Parameter p = -1.4859e+00 ⟶ -1.4859e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 1 Step size = 1.3200e-02 Parameter p = -1.4859e+00 ⟶ -1.4672e+00 [guess] Parameter p = -1.4672e+00 ⟶ -1.4672e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 2 Step size = 1.7424e-02 Parameter p = -1.4672e+00 ⟶ -1.4425e+00 [guess] Parameter p = -1.4425e+00 ⟶ -1.4425e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 3 Step size = 2.3000e-02 Parameter p = -1.4425e+00 ⟶ -1.4100e+00 [guess] Parameter p = -1.4100e+00 ⟶ -1.4100e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 4 Step size = 3.0360e-02 Parameter p = -1.4100e+00 ⟶ -1.3671e+00 [guess] Parameter p = -1.3671e+00 ⟶ -1.3671e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 5 Step size = 4.0075e-02 Parameter p = -1.3671e+00 ⟶ -1.3104e+00 [guess] Parameter p = -1.3104e+00 ⟶ -1.3104e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 6 Step size = 4.7288e-02 Parameter p = -1.3104e+00 ⟶ -1.2435e+00 [guess] Parameter p = -1.2435e+00 ⟶ -1.2435e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 7 Step size = 5.1000e-02 Parameter p = -1.2435e+00 ⟶ -1.1714e+00 [guess] Parameter p = -1.1714e+00 ⟶ -1.1714e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 8 Step size = 5.1000e-02 Parameter p = -1.1714e+00 ⟶ -1.0993e+00 [guess] Parameter p = -1.0993e+00 ⟶ -1.0993e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 9 Step size = 5.1000e-02 Parameter p = -1.0993e+00 ⟶ -1.0272e+00 [guess] Parameter p = -1.0272e+00 ⟶ -1.0272e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 10 Step size = 5.1000e-02 Parameter p = -1.0272e+00 ⟶ -9.5505e-01 [guess] Parameter p = -9.5505e-01 ⟶ -9.5505e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 11 Step size = 5.1000e-02 Parameter p = -9.5505e-01 ⟶ -8.8293e-01 [guess] Parameter p = -8.8293e-01 ⟶ -8.8293e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 12 Step size = 5.1000e-02 Parameter p = -8.8293e-01 ⟶ -8.1081e-01 [guess] Parameter p = -8.1081e-01 ⟶ -8.1081e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 13 Step size = 5.1000e-02 Parameter p = -8.1081e-01 ⟶ -7.3870e-01 [guess] Parameter p = -7.3870e-01 ⟶ -7.3870e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 14 Step size = 5.1000e-02 Parameter p = -7.3870e-01 ⟶ -6.6658e-01 [guess] Parameter p = -6.6658e-01 ⟶ -6.6658e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 15 Step size = 5.1000e-02 Parameter p = -6.6658e-01 ⟶ -5.9448e-01 [guess] Parameter p = -5.9448e-01 ⟶ -5.9448e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 16 Step size = 5.1000e-02 Parameter p = -5.9448e-01 ⟶ -5.2238e-01 [guess] Parameter p = -5.2238e-01 ⟶ -5.2238e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 17 Step size = 5.1000e-02 Parameter p = -5.2238e-01 ⟶ -4.5030e-01 [guess] Parameter p = -4.5030e-01 ⟶ -4.5030e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 18 Step size = 5.1000e-02 Parameter p = -4.5030e-01 ⟶ -3.7827e-01 [guess] Parameter p = -3.7827e-01 ⟶ -3.7827e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 19 Step size = 5.1000e-02 Parameter p = -3.7827e-01 ⟶ -3.0632e-01 [guess] Parameter p = -3.0632e-01 ⟶ -3.0632e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 20 Step size = 5.1000e-02 Parameter p = -3.0632e-01 ⟶ -2.3460e-01 [guess] Parameter p = -2.3460e-01 ⟶ -2.3460e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 21 Step size = 5.1000e-02 Parameter p = -2.3460e-01 ⟶ -1.6366e-01 [guess] Parameter p = -1.6366e-01 ⟶ -1.6366e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 22 Step size = 5.1000e-02 Parameter p = -1.6366e-01 ⟶ -9.6358e-02 [guess] Parameter p = -9.6358e-02 ⟶ -9.6358e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 23 Step size = 5.1000e-02 Parameter p = -9.6358e-02 ⟶ -5.1902e-02 [guess] Parameter p = -9.6358e-02 ⟶ -6.6989e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 24 Step size = 5.1000e-02 Parameter p = -6.6989e-02 ⟶ -5.2693e-02 [guess] Parameter p = -6.6989e-02 ⟶ -6.0828e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 25 Step size = 5.1000e-02 Parameter p = -6.0828e-02 ⟶ -6.1182e-02 [guess] Parameter p = -6.0828e-02 ⟶ -6.5523e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 26 Step size = 5.1000e-02 Parameter p = -6.5523e-02 ⟶ -7.3919e-02 [guess] Parameter p = -6.5523e-02 ⟶ -7.6829e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 27 Step size = 5.1000e-02 Parameter p = -7.6829e-02 ⟶ -9.0753e-02 [guess] Parameter p = -7.6829e-02 ⟶ -9.3007e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 28 Step size = 5.1000e-02 Parameter p = -9.3007e-02 ⟶ -1.1128e-01 [guess] Parameter p = -9.3007e-02 ⟶ -1.1317e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 29 Step size = 5.1000e-02 Parameter p = -1.1317e-01 ⟶ -1.3511e-01 [guess] Parameter p = -1.1317e-01 ⟶ -1.3677e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 30 Step size = 5.1000e-02 Parameter p = -1.3677e-01 ⟶ -1.6194e-01 [guess] Parameter p = -1.3677e-01 ⟶ -1.6342e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 31 Step size = 5.1000e-02 Parameter p = -1.6342e-01 ⟶ -1.9149e-01 [guess] Parameter p = -1.6342e-01 ⟶ -1.9283e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 32 Step size = 5.1000e-02 Parameter p = -1.9283e-01 ⟶ -2.2352e-01 [guess] Parameter p = -1.9283e-01 ⟶ -2.2474e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 33 Step size = 5.1000e-02 Parameter p = -2.2474e-01 ⟶ -2.5782e-01 [guess] Parameter p = -2.2474e-01 ⟶ -2.5894e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 34 Step size = 5.1000e-02 Parameter p = -2.5894e-01 ⟶ -2.9422e-01 [guess] Parameter p = -2.5894e-01 ⟶ -2.9525e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 35 Step size = 5.1000e-02 Parameter p = -2.9525e-01 ⟶ -3.3254e-01 [guess] Parameter p = -2.9525e-01 ⟶ -3.3349e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 36 Step size = 5.1000e-02 Parameter p = -3.3349e-01 ⟶ -3.7264e-01 [guess] Parameter p = -3.3349e-01 ⟶ -3.7351e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 37 Step size = 5.1000e-02 Parameter p = -3.7351e-01 ⟶ -4.1437e-01 [guess] Parameter p = -3.7351e-01 ⟶ -4.1517e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 38 Step size = 5.1000e-02 Parameter p = -4.1517e-01 ⟶ -4.5761e-01 [guess] Parameter p = -4.1517e-01 ⟶ -4.5835e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 39 Step size = 5.1000e-02 Parameter p = -4.5835e-01 ⟶ -5.0224e-01 [guess] Parameter p = -4.5835e-01 ⟶ -5.0293e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 40 Step size = 5.1000e-02 Parameter p = -5.0293e-01 ⟶ -5.4817e-01 [guess] Parameter p = -5.0293e-01 ⟶ -5.4881e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 41 Step size = 5.1000e-02 Parameter p = -5.4881e-01 ⟶ -5.9530e-01 [guess] Parameter p = -5.9530e-01 ⟶ -5.9530e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 42 Step size = 5.1000e-02 Parameter p = -5.9530e-01 ⟶ -6.4294e-01 [guess] Parameter p = -6.4294e-01 ⟶ -6.4294e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 43 Step size = 5.1000e-02 Parameter p = -6.4294e-01 ⟶ -6.9164e-01 [guess] Parameter p = -6.9164e-01 ⟶ -6.9164e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 44 Step size = 5.1000e-02 Parameter p = -6.9164e-01 ⟶ -7.4133e-01 [guess] Parameter p = -7.4133e-01 ⟶ -7.4133e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 45 Step size = 5.1000e-02 Parameter p = -7.4133e-01 ⟶ -7.9194e-01 [guess] Parameter p = -7.9194e-01 ⟶ -7.9194e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 46 Step size = 5.1000e-02 Parameter p = -7.9194e-01 ⟶ -8.4343e-01 [guess] Parameter p = -8.4343e-01 ⟶ -8.4343e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 47 Step size = 5.1000e-02 Parameter p = -8.4343e-01 ⟶ -8.9571e-01 [guess] Parameter p = -8.9571e-01 ⟶ -8.9571e-01 Predictor: Bordered 8.164733 seconds (2.60 M allocations: 131.431 MiB, 0.96% gc time, 99.93% compilation time: <1% of which was recompilation) 6.345818 seconds (1.97 M allocations: 97.910 MiB, 99.98% compilation time) ┌ Warning: Assignment to `br0` in soft scope is ambiguous because a global variable by the same name exists: `br0` will be treated as a new local. Disambiguate by using `local br0` to suppress this warning or `global br0` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/DXZuX/test/simple_continuation.jl:171 ┌─ Curve type: EquilibriumCont ├─ Number of points: 89 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at -1.5, ends at -3.0 ├─ Algo: PALC └─ Special points: - # 1, bp at p ≈ -0.06090827 ∈ (-0.06090827, -0.06089831), |δp|=1e-05, [converged], δ = ( 1, 0), step = 30 - # 2, endpoint at p ≈ -3.00000000, step = 88 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ────────────────── Multiple ────────────────── ━━━━━━━━━━━━━━━━━━ INITIAL GUESS ━━━━━━━━━━━━━━━━━━ ──▶ convergence of initial guess = OK ──▶ parameter = -1.5, initial step ━━━━━━━━━━━━━━━━━━ INITIAL TANGENT ━━━━━━━━━━━━━━━━━━ ──▶ convergence of the initial guess = OK ──▶ parameter = -1.4999, initial step (bis) Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 0 Step size = 1.5000e-02 Parameter p = -1.5000e+00 ⟶ -1.4788e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.195, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.5000e+00 ⟶ -1.4788e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 dsnew = 0.0225 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 1 Step size = 2.2500e-02 Parameter p = -1.4788e+00 ⟶ -1.4470e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.2925, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.4788e+00 ⟶ -1.4470e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 dsnew = 0.03375 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 2 Step size = 3.3750e-02 Parameter p = -1.4470e+00 ⟶ -1.3992e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.4470e+00 ⟶ -1.3992e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 3 Step size = 3.3750e-02 Parameter p = -1.3992e+00 ⟶ -1.3515e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3992e+00 ⟶ -1.3515e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 4 Step size = 3.3750e-02 Parameter p = -1.3515e+00 ⟶ -1.3038e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3515e+00 ⟶ -1.3038e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 5 Step size = 3.3750e-02 Parameter p = -1.3038e+00 ⟶ -1.2561e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3038e+00 ⟶ -1.2561e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 6 Step size = 3.3750e-02 Parameter p = -1.2561e+00 ⟶ -1.2083e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2561e+00 ⟶ -1.2083e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 7 Step size = 3.3750e-02 Parameter p = -1.2083e+00 ⟶ -1.1606e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2083e+00 ⟶ -1.1606e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 8 Step size = 3.3750e-02 Parameter p = -1.1606e+00 ⟶ -1.1129e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1606e+00 ⟶ -1.1129e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 9 Step size = 3.3750e-02 Parameter p = -1.1129e+00 ⟶ -1.0651e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1129e+00 ⟶ -1.0651e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 10 Step size = 3.3750e-02 Parameter p = -1.0651e+00 ⟶ -1.0174e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0651e+00 ⟶ -1.0174e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 11 Step size = 3.3750e-02 Parameter p = -1.0174e+00 ⟶ -9.6968e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0174e+00 ⟶ -9.6968e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 12 Step size = 3.3750e-02 Parameter p = -9.6968e-01 ⟶ -9.2196e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.6968e-01 ⟶ -9.2196e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 13 Step size = 3.3750e-02 Parameter p = -9.2196e-01 ⟶ -8.7423e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.2196e-01 ⟶ -8.7423e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 14 Step size = 3.3750e-02 Parameter p = -8.7423e-01 ⟶ -8.2650e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.7423e-01 ⟶ -8.2651e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 15 Step size = 3.3750e-02 Parameter p = -8.2651e-01 ⟶ -7.7878e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.2651e-01 ⟶ -7.7878e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 16 Step size = 3.3750e-02 Parameter p = -7.7878e-01 ⟶ -7.3106e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.7878e-01 ⟶ -7.3106e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 17 Step size = 3.3750e-02 Parameter p = -7.3106e-01 ⟶ -6.8334e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.3106e-01 ⟶ -6.8334e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 18 Step size = 3.3750e-02 Parameter p = -6.8334e-01 ⟶ -6.3562e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.8334e-01 ⟶ -6.3562e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 19 Step size = 3.3750e-02 Parameter p = -6.3562e-01 ⟶ -5.8790e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.3562e-01 ⟶ -5.8791e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 20 Step size = 3.3750e-02 Parameter p = -5.8791e-01 ⟶ -5.4020e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -5.8791e-01 ⟶ -5.4020e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 21 Step size = 3.3750e-02 Parameter p = -5.4020e-01 ⟶ -4.9250e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -5.4020e-01 ⟶ -4.9250e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 22 Step size = 3.3750e-02 Parameter p = -4.9250e-01 ⟶ -4.4481e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -4.9250e-01 ⟶ -4.4482e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 23 Step size = 3.3750e-02 Parameter p = -4.4482e-01 ⟶ -3.9714e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -4.4482e-01 ⟶ -3.9717e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 24 Step size = 3.3750e-02 Parameter p = -3.9717e-01 ⟶ -3.4951e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.9717e-01 ⟶ -3.4956e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 25 Step size = 3.3750e-02 Parameter p = -3.4956e-01 ⟶ -3.0195e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.4956e-01 ⟶ -3.0203e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 26 Step size = 3.3750e-02 Parameter p = -3.0203e-01 ⟶ -2.5451e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.0203e-01 ⟶ -2.5467e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 27 Step size = 3.3750e-02 Parameter p = -2.5467e-01 ⟶ -2.0735e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.5467e-01 ⟶ -2.0771e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 28 Step size = 3.3750e-02 Parameter p = -2.0771e-01 ⟶ -1.6083e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.0771e-01 ⟶ -1.6179e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 29 Step size = 3.3750e-02 Parameter p = -1.6179e-01 ⟶ -1.1613e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor ├─ i = 13, s(i) = 0.43875000000000003, converged = [ NO] └─ i = 12, s(i) = 0.405, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.6179e-01 ⟶ -1.1904e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 30 Step size = 3.3750e-02 Parameter p = -1.1904e-01 ⟶ -7.7200e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor ├─ i = 13, s(i) = 0.43875000000000003, converged = [ NO] ├─ i = 12, s(i) = 0.405, converged = [ NO] └─ i = 11, s(i) = 0.37125, converged = [YES] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -1.1904e-01 ⟶ -8.5672e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 31 Step size = 3.3750e-02 Parameter p = -8.5672e-02 ⟶ -5.4366e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor ├─ i = 13, s(i) = 0.43875000000000003, converged = [ NO] ├─ i = 12, s(i) = 0.405, converged = [ NO] └─ i = 11, s(i) = 0.37125, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.5672e-02 ⟶ -6.7992e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 32 Step size = 3.3750e-02 Parameter p = -6.7992e-02 ⟶ -5.1454e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.7992e-02 ⟶ -6.1556e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 33 Step size = 3.3750e-02 Parameter p = -6.1556e-02 ⟶ -5.5277e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.1556e-02 ⟶ -6.1281e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ──▶ Bifurcation detected before p = -0.06128105033038877 Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.21937500000000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.10968750000000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.054843750000000004, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.027421875000000002, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.013710937500000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0068554687500000005, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0034277343750000002, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0017138671875000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0008569335937500001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.00042846679687500003, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.00021423339843750001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.00010711669921875001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -5.3558349609375004e-5, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -2.6779174804687502e-5, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.3389587402343751e-5, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -6.6947937011718754e-6, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -3.3473968505859377e-6, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.6736984252929689e-6, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -8.368492126464844e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -4.184246063232422e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -2.092123031616211e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.0460615158081055e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -5.230307579040528e-8, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -2.615153789520264e-8, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.307576894760132e-8, converged = [YES] Predictor: Secant Predictor: Secant Predictor: Secant ──> bp Bifurcation point at p ≈ -0.06496328859565723, δn_unstable = 1, δn_imag = 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 34 Step size = 3.3750e-02 Parameter p = -6.4963e-02 ⟶ -7.5203e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.4963e-02 ⟶ -7.1589e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 35 Step size = 3.3750e-02 Parameter p = -7.1589e-02 ⟶ -7.8194e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.1589e-02 ⟶ -8.0562e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 36 Step size = 3.3750e-02 Parameter p = -8.0562e-02 ⟶ -8.9523e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.0562e-02 ⟶ -9.1534e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 37 Step size = 3.3750e-02 Parameter p = -9.1534e-02 ⟶ -1.0250e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.1534e-02 ⟶ -1.0427e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 38 Step size = 3.3750e-02 Parameter p = -1.0427e-01 ⟶ -1.1699e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0427e-01 ⟶ -1.1859e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 39 Step size = 3.3750e-02 Parameter p = -1.1859e-01 ⟶ -1.3291e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1859e-01 ⟶ -1.3438e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 40 Step size = 3.3750e-02 Parameter p = -1.3438e-01 ⟶ -1.5015e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3438e-01 ⟶ -1.5151e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 41 Step size = 3.3750e-02 Parameter p = -1.5151e-01 ⟶ -1.6863e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.5151e-01 ⟶ -1.6990e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 42 Step size = 3.3750e-02 Parameter p = -1.6990e-01 ⟶ -1.8828e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.6990e-01 ⟶ -1.8947e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 43 Step size = 3.3750e-02 Parameter p = -1.8947e-01 ⟶ -2.0903e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.8947e-01 ⟶ -2.1014e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 44 Step size = 3.3750e-02 Parameter p = -2.1014e-01 ⟶ -2.3081e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.1014e-01 ⟶ -2.3186e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 45 Step size = 3.3750e-02 Parameter p = -2.3186e-01 ⟶ -2.5357e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.3186e-01 ⟶ -2.5457e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 46 Step size = 3.3750e-02 Parameter p = -2.5457e-01 ⟶ -2.7726e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.5457e-01 ⟶ -2.7820e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 47 Step size = 3.3750e-02 Parameter p = -2.7820e-01 ⟶ -3.0183e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.7820e-01 ⟶ -3.0271e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 48 Step size = 3.3750e-02 Parameter p = -3.0271e-01 ⟶ -3.2722e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.0271e-01 ⟶ -3.2806e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ┌ Error: --> Decrease ds └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/continuation/Multiple.jl:139 ┌ Error: --> Decrease ds └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/continuation/Multiple.jl:139 Continuation: Error During Test at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/test/runtests.jl:22 Got exception outside of a @test LoadError: MethodError: no method matching iterate(::BorderedArray{Vector{Float64}, Float64}) The function `iterate` exists, but no method is defined for this combination of argument types. Closest candidates are: iterate(!Matched::Cmd) @ Base process.jl:716 iterate(!Matched::Cmd, !Matched::Any) @ Base process.jl:721 iterate(!Matched::KrylovKit.SplitRange) @ KrylovKit ~/.julia/packages/KrylovKit/xccMN/src/KrylovKit.jl:87 ... Stacktrace: [1] isempty(itr::BorderedArray{Vector{Float64}, Float64}) @ Base ./essentials.jl:1129 [2] norm(itr::BorderedArray{Vector{Float64}, Float64}) @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.12/LinearAlgebra/src/generic.jl:691 [3] newton_moore_penrose(iter::ContIterable{BifurcationKit.EquilibriumCont, BifurcationProblem{BifFunction{typeof(F_simple), BifurcationKit.var"#128#129"{typeof(F_simple)}, BifurcationKit.var"#136#137", Nothing, typeof(Jac_simple), Nothing, BifurcationKit.var"#134#135"{typeof(Jac_simple)}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, Float64, typeof(identity), typeof(BifurcationKit.plot_default), var"#76#77", typeof(BifurcationKit.save_solution_default)}, MoorePenrose{PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}, Float64, DefaultLS, DefaultEig{typeof(real)}, typeof(norm), typeof(BifurcationKit.finalise_default), typeof(BifurcationKit.cb_default), Nothing}, state::ContState{BorderedArray{Vector{Float64}, Float64}, Float64, Vector{ComplexF64}, Matrix{ComplexF64}, Tuple{Nothing, Nothing}}, dotθ::BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}; normN::typeof(norm), callback::typeof(BifurcationKit.cb_default), kwargs::@Kwargs{iterationC::Int64, z0::BorderedArray{Vector{Float64}, Float64}}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/continuation/MoorePenrose.jl:172 [4] newton_moore_penrose @ ~/.julia/packages/BifurcationKit/DXZuX/src/continuation/MoorePenrose.jl:121 [inlined] [5] corrector!(state::ContState{BorderedArray{Vector{Float64}, Float64}, Float64, Vector{ComplexF64}, Matrix{ComplexF64}, Tuple{Nothing, Nothing}}, it::ContIterable{BifurcationKit.EquilibriumCont, BifurcationProblem{BifFunction{typeof(F_simple), BifurcationKit.var"#128#129"{typeof(F_simple)}, BifurcationKit.var"#136#137", Nothing, typeof(Jac_simple), Nothing, BifurcationKit.var"#134#135"{typeof(Jac_simple)}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, Float64, typeof(identity), typeof(BifurcationKit.plot_default), var"#76#77", typeof(BifurcationKit.save_solution_default)}, MoorePenrose{PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}, Float64, DefaultLS, DefaultEig{typeof(real)}, typeof(norm), typeof(BifurcationKit.finalise_default), typeof(BifurcationKit.cb_default), Nothing}, algo::MoorePenrose{PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}; kwargs::@Kwargs{iterationC::Int64, z0::BorderedArray{Vector{Float64}, Float64}}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/continuation/MoorePenrose.jl:108 [6] corrector! @ ~/.julia/packages/BifurcationKit/DXZuX/src/continuation/MoorePenrose.jl:100 [inlined] [7] corrector! @ ~/.julia/packages/BifurcationKit/DXZuX/src/continuation/Contbase.jl:22 [inlined] [8] iterate(it::ContIterable{BifurcationKit.EquilibriumCont, BifurcationProblem{BifFunction{typeof(F_simple), BifurcationKit.var"#128#129"{typeof(F_simple)}, BifurcationKit.var"#136#137", Nothing, typeof(Jac_simple), Nothing, BifurcationKit.var"#134#135"{typeof(Jac_simple)}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, Float64, typeof(identity), typeof(BifurcationKit.plot_default), var"#76#77", typeof(BifurcationKit.save_solution_default)}, MoorePenrose{PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}, Float64, DefaultLS, DefaultEig{typeof(real)}, typeof(norm), typeof(BifurcationKit.finalise_default), typeof(BifurcationKit.cb_default), Nothing}, state::ContState{BorderedArray{Vector{Float64}, Float64}, Float64, Vector{ComplexF64}, Matrix{ComplexF64}, Tuple{Nothing, Nothing}}; _verbosity::UInt8) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/Continuation.jl:429 [9] iterate @ ~/.julia/packages/BifurcationKit/DXZuX/src/Continuation.jl:414 [inlined] [10] continuation!(it::ContIterable{BifurcationKit.EquilibriumCont, BifurcationProblem{BifFunction{typeof(F_simple), BifurcationKit.var"#128#129"{typeof(F_simple)}, BifurcationKit.var"#136#137", Nothing, typeof(Jac_simple), Nothing, BifurcationKit.var"#134#135"{typeof(Jac_simple)}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, Float64, typeof(identity), typeof(BifurcationKit.plot_default), var"#76#77", typeof(BifurcationKit.save_solution_default)}, MoorePenrose{PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}, Float64, DefaultLS, DefaultEig{typeof(real)}, typeof(norm), typeof(BifurcationKit.finalise_default), typeof(BifurcationKit.cb_default), Nothing}, state::ContState{BorderedArray{Vector{Float64}, Float64}, Float64, Vector{ComplexF64}, Matrix{ComplexF64}, Tuple{Nothing, Nothing}}, contRes::ContResult{BifurcationKit.EquilibriumCont, @NamedTuple{x::Float64, param::Float64, itnewton::Int64, itlinear::Int64, ds::Float64, n_unstable::Int64, n_imag::Int64, stable::Bool, step::Int64}, Vector{ComplexF64}, Matrix{ComplexF64}, SpecialPoint{Float64, @NamedTuple{x::Float64}, Vector{Float64}, Vector{Float64}}, Vector{@NamedTuple{x::Vector{Float64}, p::Float64, step::Int64}}, ContinuationPar{Float64, DefaultLS, DefaultEig{typeof(real)}}, BifurcationProblem{BifFunction{typeof(F_simple), BifurcationKit.var"#128#129"{typeof(F_simple)}, BifurcationKit.var"#136#137", Nothing, typeof(Jac_simple), Nothing, BifurcationKit.var"#134#135"{typeof(Jac_simple)}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, Float64, typeof(identity), typeof(BifurcationKit.plot_default), var"#76#77", typeof(BifurcationKit.save_solution_default)}, MoorePenrose{PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/Continuation.jl:541 [11] continuation(it::ContIterable{BifurcationKit.EquilibriumCont, BifurcationProblem{BifFunction{typeof(F_simple), BifurcationKit.var"#128#129"{typeof(F_simple)}, BifurcationKit.var"#136#137", Nothing, typeof(Jac_simple), Nothing, BifurcationKit.var"#134#135"{typeof(Jac_simple)}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, Float64, typeof(identity), typeof(BifurcationKit.plot_default), var"#76#77", typeof(BifurcationKit.save_solution_default)}, MoorePenrose{PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}, Float64, DefaultLS, DefaultEig{typeof(real)}, typeof(norm), typeof(BifurcationKit.finalise_default), typeof(BifurcationKit.cb_default), Nothing}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/Continuation.jl:567 [12] continuation(prob::BifurcationProblem{BifFunction{typeof(F_simple), BifurcationKit.var"#128#129"{typeof(F_simple)}, BifurcationKit.var"#136#137", Nothing, typeof(Jac_simple), Nothing, BifurcationKit.var"#134#135"{typeof(Jac_simple)}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, Float64, typeof(identity), typeof(BifurcationKit.plot_default), var"#76#77", typeof(BifurcationKit.save_solution_default)}, alg::MoorePenrose{PALC{Secant, MatrixBLS{Nothing}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}, contparams::ContinuationPar{Float64, DefaultLS, DefaultEig{typeof(real)}}; linear_algo::Nothing, bothside::Bool, kwargs::@Kwargs{verbosity::Int64}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/Continuation.jl:638 [13] top-level scope @ ~/.julia/packages/BifurcationKit/DXZuX/test/simple_continuation.jl:306 [14] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [15] top-level scope @ ~/.julia/packages/BifurcationKit/DXZuX/test/runtests.jl:8 [16] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [17] macro expansion @ ~/.julia/packages/BifurcationKit/DXZuX/test/runtests.jl:23 [inlined] [18] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [19] macro expansion @ ~/.julia/packages/BifurcationKit/DXZuX/test/runtests.jl:23 [inlined] [20] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [21] top-level scope @ none:6 [22] eval(m::Module, e::Any) @ Core ./boot.jl:485 [23] exec_options(opts::Base.JLOptions) @ Base ./client.jl:295 [24] _start() @ Base ./client.jl:558 in expression starting at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/test/simple_continuation.jl:306 WARNING: Method definition F0_simple(Any, Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/test/simple_continuation.jl:10 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/test/plots-utils.jl:8. ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/NormalForms.jl:82 Transcritical bifurcation point at μ ≈ 0.0005310637271224761 Normal form (aδμ + b1⋅x⋅δμ + b2⋅x²/2 + b3⋅x³/6) ┌─ a = 7.187319746485116e-14 ├─ b1 = 3.2300000000172466 ├─ b2 = -2.239999999999969 └─ b3 = 1.4040000000000001 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/NormalForms.jl:82 ──> For μ = 0.0005310637271224761 ──> There are 1 unstable eigenvalues ──> Eigenvalues for continuation step 1 ┌ Warning: The zero eigenvalue is not that small λ = -1.6659630598410682e-5, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153358385557538, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = -1.0360835240788607e-5, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/NormalForms.jl:82 ┌ Warning: The zero eigenvalue is not that small λ = -1.0360835240788607e-5, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/NormalForms.jl:82 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ┌─ Normal form Computation for 1d kernel ├─ analyse bifurcation at p = 0.0005310640141772467 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153367657925067, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/NormalForms.jl:82 ├─ smallest eigenvalue at bifurcation = 0.0017153367657925067 ┌── left eigenvalues = 2-element Vector{ComplexF64}: 0.0017153367657925067 + 0.0im -1.0 + 0.0im ├── right eigenvalue = 0.0017153367657925067 └── left eigenvalue = 0.0017153367657925067 + 0.0im ┌── Normal form: aδμ + b1⋅x⋅δμ + b2⋅x²/2 + b3⋅x³/6 ├─── a = 2.6829124780323384e-12 ├─── b1 = 3.2300000000172466 ├─── b2/2 = -5.830973868649681e-13 └─── b3/6 = -0.234 SuperCritical - Pitchfork bifurcation point at μ ≈ 0.0005310640141772467 Normal form x ─▶ x + a⋅δp + x⋅(b1⋅δp + b3⋅x²/6) ┌─ a = 2.6829124780323384e-12 ├─ b1 = 3.2300000000172466 ├─ b2 = -1.1661947737299363e-12 └─ b3 = -1.4040000000000001 ┌ Warning: The zero eigenvalue is not that small λ = 0.0017153367657925067, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/NormalForms.jl:82 ┌─ Curve type: EquilibriumCont from Pitchfork bifurcation point. ├─ Number of points: 20 ├─ Type of vectors: Vector{Float64} ├─ Parameter μ starts at 0.0005310640141772467, ends at 0.006252611589119285 ├─ Algo: PALC └─ Special points: - # 1, bp at μ ≈ +0.00000029 ∈ (+0.00000029, +0.00053106), |δp|=5e-04, [ guess], δ = (-1, 0), step = 1 - # 2, endpoint at μ ≈ +0.00713116, step = 20 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ───▶ Automatic computation of bifurcation diagram ──────────────────────────────────────────────────────────────────────────────── ──▶ New branch, level = 2, dim(Kernel) = 1, code = (0,), from bp #1 at p = 4.531578045579016e-6, type = bp ┌ Warning: The zero eigenvalue is not that small λ = 1.4636997087220223e-5, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/NormalForms.jl:82 ────▶ From Pitchfork - # 1, bp at p ≈ +0.00000453 ∈ (-0.00000410, +0.00000453), |δp|=9e-06, [converged], δ = ( 1, 0), step = 6 ┌ Warning: The zero eigenvalue is not that small λ = 1.4636997087220223e-5, this can alter the computation of the normal form. You can either refine the point using Newton or use a more precise bisection by increasing `n_inversion` └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/NormalForms.jl:82 ┌ Info: │ autodiff = true └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.9671624963863654e-17, -1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 -2.34146e-12 2.34146e-12 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 3.97801e-18 -8.91189e-19 -8.91189e-19 6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: 3.4841e-19 9.32786e-20 9.32786e-20 6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 -0.0513304 -0.0513304 0.0273946 [:, :, 2] = -0.0513304 0.0273946 0.0273946 0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0187349 0.00358594 0.00358594 0.0162978 [:, :, 2] = 0.00358594 0.0162978 0.0162978 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.9671624963863654e-17, -1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 -2.34146e-12 2.34146e-12 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 3.97801e-18 -8.91189e-19 -8.91189e-19 6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: 3.4841e-19 9.32786e-20 9.32786e-20 6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 -0.0513304 -0.0513304 0.0273946 [:, :, 2] = -0.0513304 0.0273946 0.0273946 0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0187349 0.00358594 0.00358594 0.0162978 [:, :, 2] = 0.00358594 0.0162978 0.0162978 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.9671624963863654e-17, -1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 -2.34146e-12 2.34146e-12 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 3.97801e-18 -8.91189e-19 -8.91189e-19 6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: 3.4841e-19 9.32786e-20 9.32786e-20 6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 -0.0513304 -0.0513304 0.0273946 [:, :, 2] = -0.0513304 0.0273946 0.0273946 0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0187349 0.00358594 0.00358594 0.0162978 [:, :, 2] = 0.00358594 0.0162978 0.0162978 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.9671624963863654e-17, -1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 -2.34146e-12 2.34146e-12 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 3.97801e-18 -8.91189e-19 -8.91189e-19 6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: 3.4841e-19 9.32786e-20 9.32786e-20 6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 -0.0513304 -0.0513304 0.0273946 [:, :, 2] = -0.0513304 0.0273946 0.0273946 0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0187349 0.00358594 0.00358594 0.0162978 [:, :, 2] = 0.00358594 0.0162978 0.0162978 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──> (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.9671624963863654e-17, -1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 -2.34146e-12 2.34146e-12 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 3.97801e-18 -8.91189e-19 -8.91189e-19 6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: 3.4841e-19 9.32786e-20 9.32786e-20 6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 -0.0513304 -0.0513304 0.0273946 [:, :, 2] = -0.0513304 0.0273946 0.0273946 0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0187349 0.00358594 0.00358594 0.0162978 [:, :, 2] = 0.00358594 0.0162978 0.0162978 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──> (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.9671624963863654e-17, -1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 -2.34146e-12 2.34146e-12 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 3.97801e-18 -8.91189e-19 -8.91189e-19 6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: 3.4841e-19 9.32786e-20 9.32786e-20 6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 -0.0513304 -0.0513304 0.0273946 [:, :, 2] = -0.0513304 0.0273946 0.0273946 0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0187349 0.00358594 0.00358594 0.0162978 [:, :, 2] = 0.00358594 0.0162978 0.0162978 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──> (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.9671624963863654e-17, -1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 -2.34146e-12 2.34146e-12 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 3.97801e-18 -8.91189e-19 -8.91189e-19 6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: 3.4841e-19 9.32786e-20 9.32786e-20 6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 -0.0513304 -0.0513304 0.0273946 [:, :, 2] = -0.0513304 0.0273946 0.0273946 0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0187349 0.00358594 0.00358594 0.0162978 [:, :, 2] = 0.00358594 0.0162978 0.0162978 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──> (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.9671624963863654e-17, -1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 -2.34146e-12 2.34146e-12 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 3.97801e-18 -8.91189e-19 -8.91189e-19 6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: 3.4841e-19 9.32786e-20 9.32786e-20 6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 -0.0513304 -0.0513304 0.0273946 [:, :, 2] = -0.0513304 0.0273946 0.0273946 0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0187349 0.00358594 0.00358594 0.0162978 [:, :, 2] = 0.00358594 0.0162978 0.0162978 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.9671624963863654e-17, 1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 2.34146e-12 -2.34146e-12 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -3.97801e-18 8.91189e-19 8.91189e-19 -6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: -3.4841e-19 -9.32786e-20 -9.32786e-20 -6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 0.0513304 0.0513304 -0.0273946 [:, :, 2] = 0.0513304 -0.0273946 -0.0273946 -0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0187349 -0.00358594 -0.00358594 -0.0162978 [:, :, 2] = -0.00358594 -0.0162978 -0.0162978 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.9671624963863654e-17, 1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 2.34146e-12 -2.34146e-12 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -3.97801e-18 8.91189e-19 8.91189e-19 -6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: -3.4841e-19 -9.32786e-20 -9.32786e-20 -6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 0.0513304 0.0513304 -0.0273946 [:, :, 2] = 0.0513304 -0.0273946 -0.0273946 -0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0187349 -0.00358594 -0.00358594 -0.0162978 [:, :, 2] = -0.00358594 -0.0162978 -0.0162978 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.9671624963863654e-17, 1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 2.34146e-12 -2.34146e-12 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -3.97801e-18 8.91189e-19 8.91189e-19 -6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: -3.4841e-19 -9.32786e-20 -9.32786e-20 -6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 0.0513304 0.0513304 -0.0273946 [:, :, 2] = 0.0513304 -0.0273946 -0.0273946 -0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0187349 -0.00358594 -0.00358594 -0.0162978 [:, :, 2] = -0.00358594 -0.0162978 -0.0162978 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.9671624963863654e-17, 1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 2.34146e-12 -2.34146e-12 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -3.97801e-18 8.91189e-19 8.91189e-19 -6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: -3.4841e-19 -9.32786e-20 -9.32786e-20 -6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 0.0513304 0.0513304 -0.0273946 [:, :, 2] = 0.0513304 -0.0273946 -0.0273946 -0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0187349 -0.00358594 -0.00358594 -0.0162978 [:, :, 2] = -0.00358594 -0.0162978 -0.0162978 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──> (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.9671624963863654e-17, 1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 2.34146e-12 -2.34146e-12 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -3.97801e-18 8.91189e-19 8.91189e-19 -6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: -3.4841e-19 -9.32786e-20 -9.32786e-20 -6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 0.0513304 0.0513304 -0.0273946 [:, :, 2] = 0.0513304 -0.0273946 -0.0273946 -0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0187349 -0.00358594 -0.00358594 -0.0162978 [:, :, 2] = -0.00358594 -0.0162978 -0.0162978 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──> (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.9671624963863654e-17, 1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 2.34146e-12 -2.34146e-12 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -3.97801e-18 8.91189e-19 8.91189e-19 -6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: -3.4841e-19 -9.32786e-20 -9.32786e-20 -6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 0.0513304 0.0513304 -0.0273946 [:, :, 2] = 0.0513304 -0.0273946 -0.0273946 -0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0187349 -0.00358594 -0.00358594 -0.0162978 [:, :, 2] = -0.00358594 -0.0162978 -0.0162978 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──> (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.9671624963863654e-17, 1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 2.34146e-12 -2.34146e-12 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -3.97801e-18 8.91189e-19 8.91189e-19 -6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: -3.4841e-19 -9.32786e-20 -9.32786e-20 -6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 0.0513304 0.0513304 -0.0273946 [:, :, 2] = 0.0513304 -0.0273946 -0.0273946 -0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0187349 -0.00358594 -0.00358594 -0.0162978 [:, :, 2] = -0.00358594 -0.0162978 -0.0162978 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──> Normal form Computation for a 2-d kernel ──> analyse bifurcation at p = 0.0010834908999244664 ──> smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──> (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──> VP[1] paired with VP★[1] ──> VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──> Gram matrix = 2×2 Matrix{Float64}: 1.0 -5.55112e-17 5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.9671624963863654e-17, 1.833915129799917e-18] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 2.34146e-12 -2.34146e-12 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -3.97801e-18 8.91189e-19 8.91189e-19 -6.47628e-19 ──▶ component 2 2×2 Matrix{Float64}: -3.4841e-19 -9.32786e-20 -9.32786e-20 -6.76782e-19 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 0.0513304 0.0513304 -0.0273946 [:, :, 2] = 0.0513304 -0.0273946 -0.0273946 -0.0863631 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0187349 -0.00358594 -0.00358594 -0.0162978 [:, :, 2] = -0.00358594 -0.0162978 -0.0162978 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). [Bifurcation diagram] ┌─ From 0-th bifurcation point. ├─ Children number: 4 └─ Root (recursion level 1) ┌─ Curve type: EquilibriumCont ├─ Number of points: 76 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at -0.2, ends at 0.3 ├─ Algo: PALC └─ Special points: - # 1, bp at p ≈ +0.00000281 ∈ (-0.00000065, +0.00000281), |δp|=3e-06, [converged], δ = ( 1, 0), step = 31 - # 2, bp at p ≈ +0.15000005 ∈ (+0.14999995, +0.15000005), |δp|=1e-07, [converged], δ = (-1, 0), step = 53 - # 3, endpoint at p ≈ +0.30000000, step = 75 ──▶ BS from Non simple branch point ──▶ we find 2 (resp. 2) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ Looking for solutions after the bifurcation point... ──▶ Looking for solutions before the bifurcation point... ──▶ we find 2 (resp. 2) roots after (resp. before) the bifurcation point. ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ BS from Non simple branch point ──▶ we find 2 (resp. 3) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ Looking for solutions after the bifurcation point... ──▶ Looking for solutions before the bifurcation point... ──▶ we find 3 (resp. 2) roots after (resp. before) the bifurcation point. ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ┌ Warning: The predictor is nothing. Probably a Fold point. See │ Fold bifurcation point at μ ≈ -0.003082174378365946 │ Normal form (aδμ + b1⋅x⋅δμ + b2⋅x²/2 + b3⋅x³/6) │ ┌─ a = -0.03560697322785571 │ ├─ b1 = 0.9999999999913178 │ ├─ b2 = 0.17345164760377568 │ └─ b3 = -14.600000000002872 └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/bifdiagram/BranchSwitching.jl:136 ──▶ BS from Non simple branch point ──▶ we find 4 (resp. 4) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ Looking for solutions after the bifurcation point... ──▶ Looking for solutions before the bifurcation point... ──▶ we find 3 (resp. 4) roots after (resp. before) the bifurcation point. ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ┌ Warning: The predictor is nothing. Probably a Fold point. See │ Fold bifurcation point at μ ≈ -0.0030822206667883516 │ Normal form (aδμ + b1⋅x⋅δμ + b2⋅x²/2 + b3⋅x³/6) │ ┌─ a = 0.03560214124538554 │ ├─ b1 = 0.9999999999849833 │ ├─ b2 = -0.17338110068163848 │ └─ b3 = -14.600000000000001 └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/bifdiagram/BranchSwitching.jl:136 ──▶ BS from Non simple branch point ──▶ we find 4 (resp. 4) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ Looking for solutions after the bifurcation point... ──▶ Looking for solutions before the bifurcation point... ──▶ we find 4 (resp. 4) roots after (resp. before) the bifurcation point. ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ┌ Warning: Assignment to `opts_br` in soft scope is ambiguous because a global variable by the same name exists: `opts_br` will be treated as a new local. Disambiguate by using `local opts_br` to suppress this warning or `global opts_br` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/DXZuX/test/testNF.jl:278 ┌ Warning: Assignment to `br` in soft scope is ambiguous because a global variable by the same name exists: `br` will be treated as a new local. Disambiguate by using `local br` to suppress this warning or `global br` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/DXZuX/test/testNF.jl:280 ┌ Warning: Assignment to `nf` in soft scope is ambiguous because a global variable by the same name exists: `nf` will be treated as a new local. Disambiguate by using `local nf` to suppress this warning or `global nf` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/DXZuX/test/testNF.jl:286 SuperCritical - Hopf bifurcation point at r ≈ 0.0025304832720493943. Frequency ω ≈ 1.0 Period of the periodic orbit ≈ 6.283185307179586 Normal form z⋅(iω + a⋅δp + b⋅|z|²): ┌─ a = 0.9999999999898201 + 0.0im └─ b = -2.2460000000000004 + 0.2640000000000001im SuperCritical - Hopf bifurcation point at r ≈ 0.0025304832720493943. Frequency ω ≈ 1.0 Period of the periodic orbit ≈ 6.283185307179586 Normal form z⋅(iω + a⋅δp + b⋅|z|²): ┌─ a = 0.9999999999898201 + 0.0im └─ b = -2.2460000000000004 + 0.2640000000000001im SuperCritical - Hopf bifurcation point at r ≈ 0.0025304832720493943. Frequency ω ≈ 1.0 Period of the periodic orbit ≈ 6.283185307179586 Normal form z⋅(iω + a⋅δp + b⋅|z|²): ┌─ a = 0.9999999999898201 + 0.0im └─ b = -2.2460000000000004 + 0.2640000000000001im SuperCritical - Hopf bifurcation point at r ≈ 0.0025304832720493943. Frequency ω ≈ 1.0 Period of the periodic orbit ≈ 6.283185307179586 Normal form z⋅(iω + a⋅δp + b⋅|z|²): ┌─ a = 0.9999999999898201 + 0.0im └─ b = -2.2460000000000004 + 0.2640000000000001im Normal forms: Error During Test at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/test/runtests.jl:32 Got exception outside of a @test LoadError: MethodError: no method matching iterate(::BorderedArray{Vector{Float64}, Float64}) The function `iterate` exists, but no method is defined for this combination of argument types. Closest candidates are: iterate(!Matched::Cmd) @ Base process.jl:716 iterate(!Matched::Cmd, !Matched::Any) @ Base process.jl:721 iterate(!Matched::KrylovKit.SplitRange) @ KrylovKit ~/.julia/packages/KrylovKit/xccMN/src/KrylovKit.jl:87 ... Stacktrace: [1] isempty(itr::BorderedArray{Vector{Float64}, Float64}) @ Base ./essentials.jl:1129 [2] norm(itr::BorderedArray{Vector{Float64}, Float64}) @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.12/LinearAlgebra/src/generic.jl:691 [3] _newton(prob::BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#553#554"{BifurcationKit.var"#555#556"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}}}}, x0::BorderedArray{Vector{Float64}, Float64}, p0::@NamedTuple{β1::Float64, β2::Float64, c::Float64}, options::NewtonPar{Float64, FoldLinearSolverMinAug, BifurcationKit.FoldEig{BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#553#554"{BifurcationKit.var"#555#556"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}}}}, DefaultEig{typeof(real)}}}; normN::typeof(norm), callback::typeof(BifurcationKit.cb_default), kwargs::@Kwargs{iterationC::Int64, p::Float64}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/Newton.jl:78 [4] solve(prob::BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#553#554"{BifurcationKit.var"#555#556"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}}}}, ::Newton, options::NewtonPar{Float64, FoldLinearSolverMinAug, BifurcationKit.FoldEig{BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#553#554"{BifurcationKit.var"#555#556"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}}}}, DefaultEig{typeof(real)}}}; kwargs::@Kwargs{normN::typeof(norm), callback::typeof(BifurcationKit.cb_default), iterationC::Int64, p::Float64}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/Newton.jl:150 [5] iterate(it::ContIterable{BifurcationKit.FoldCont, BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#553#554"{BifurcationKit.var"#555#556"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}}}}, PALC{Secant, BorderingBLS{FoldLinearSolverMinAug, Float64}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, Float64, FoldLinearSolverMinAug, BifurcationKit.FoldEig{BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#553#554"{BifurcationKit.var"#555#556"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}}}}, DefaultEig{typeof(real)}}, typeof(norm), BifurcationKit.var"#update_minaug_fold#547"{BifurcationKit.var"#update_minaug_fold#541#548"{Float64, Int64, typeof(norm), @Kwargs{}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, PropertyLens{:β2}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}}}, typeof(BifurcationKit.cb_default), PairOfEvents{ContinuousEvent{ComposedFunction{typeof(BifurcationKit.convert_to_tuple_eve), BifurcationKit.var"#test_bt_cp#549"{Float64, typeof(norm), @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, PropertyLens{:β2}}}, Tuple{String, String}, Int64, typeof(BifurcationKit.default_finalise_event!), Nothing}, DiscreteEvent{ComposedFunction{typeof(BifurcationKit.convert_to_tuple_eve), BifurcationKit.var"#test_zh#550"}, Tuple{String}, typeof(BifurcationKit.default_finalise_event!), Nothing}}}; _verbosity::UInt8) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/Continuation.jl:338 [6] iterate(it::ContIterable{BifurcationKit.FoldCont, BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#553#554"{BifurcationKit.var"#555#556"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}}}}, PALC{Secant, BorderingBLS{FoldLinearSolverMinAug, Float64}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, Float64, FoldLinearSolverMinAug, BifurcationKit.FoldEig{BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#553#554"{BifurcationKit.var"#555#556"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}}}}, DefaultEig{typeof(real)}}, typeof(norm), BifurcationKit.var"#update_minaug_fold#547"{BifurcationKit.var"#update_minaug_fold#541#548"{Float64, Int64, typeof(norm), @Kwargs{}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, PropertyLens{:β2}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}}}, typeof(BifurcationKit.cb_default), PairOfEvents{ContinuousEvent{ComposedFunction{typeof(BifurcationKit.convert_to_tuple_eve), BifurcationKit.var"#test_bt_cp#549"{Float64, typeof(norm), @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, PropertyLens{:β2}}}, Tuple{String, String}, Int64, typeof(BifurcationKit.default_finalise_event!), Nothing}, DiscreteEvent{ComposedFunction{typeof(BifurcationKit.convert_to_tuple_eve), BifurcationKit.var"#test_zh#550"}, Tuple{String}, typeof(BifurcationKit.default_finalise_event!), Nothing}}}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/Continuation.jl:318 [7] continuation(it::ContIterable{BifurcationKit.FoldCont, BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#553#554"{BifurcationKit.var"#555#556"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}}}}, PALC{Secant, BorderingBLS{FoldLinearSolverMinAug, Float64}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, Float64, FoldLinearSolverMinAug, BifurcationKit.FoldEig{BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#553#554"{BifurcationKit.var"#555#556"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}}}}, DefaultEig{typeof(real)}}, typeof(norm), BifurcationKit.var"#update_minaug_fold#547"{BifurcationKit.var"#update_minaug_fold#541#548"{Float64, Int64, typeof(norm), @Kwargs{}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, PropertyLens{:β2}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}}}, typeof(BifurcationKit.cb_default), PairOfEvents{ContinuousEvent{ComposedFunction{typeof(BifurcationKit.convert_to_tuple_eve), BifurcationKit.var"#test_bt_cp#549"{Float64, typeof(norm), @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, PropertyLens{:β2}}}, Tuple{String, String}, Int64, typeof(BifurcationKit.default_finalise_event!), Nothing}, DiscreteEvent{ComposedFunction{typeof(BifurcationKit.convert_to_tuple_eve), BifurcationKit.var"#test_zh#550"}, Tuple{String}, typeof(BifurcationKit.default_finalise_event!), Nothing}}}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/Continuation.jl:560 [8] continuation(prob::BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#553#554"{BifurcationKit.var"#555#556"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}}}}, alg::PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, contparams::ContinuationPar{Float64, FoldLinearSolverMinAug, BifurcationKit.FoldEig{BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#553#554"{BifurcationKit.var"#555#556"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}}}}, DefaultEig{typeof(real)}}}; linear_algo::BorderingBLS{FoldLinearSolverMinAug, Float64}, bothside::Bool, kwargs::@Kwargs{kind::BifurcationKit.FoldCont, normC::typeof(norm), finalise_solution::BifurcationKit.var"#update_minaug_fold#547"{BifurcationKit.var"#update_minaug_fold#541#548"{Float64, Int64, typeof(norm), @Kwargs{}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, PropertyLens{:β2}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}}}}, event::PairOfEvents{ContinuousEvent{ComposedFunction{typeof(BifurcationKit.convert_to_tuple_eve), BifurcationKit.var"#test_bt_cp#549"{Float64, typeof(norm), @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, PropertyLens{:β2}}}, Tuple{String, String}, Int64, typeof(BifurcationKit.default_finalise_event!), Nothing}, DiscreteEvent{ComposedFunction{typeof(BifurcationKit.convert_to_tuple_eve), BifurcationKit.var"#test_zh#550"}, Tuple{String}, typeof(BifurcationKit.default_finalise_event!), Nothing}}}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/Continuation.jl:638 [9] continuation_fold(prob::BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, alg::PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, foldpointguess::BorderedArray{Vector{Float64}, Float64}, par::@NamedTuple{β1::Float64, β2::Float64, c::Float64}, lens1::PropertyLens{:β1}, lens2::PropertyLens{:β2}, eigenvec::SubArray{Float64, 1, Vector{Float64}, Tuple{UnitRange{Int64}}, true}, eigenvec_ad::SubArray{Float64, 1, Vector{Float64}, Tuple{UnitRange{Int64}}, true}, options_cont::ContinuationPar{Float64, DefaultLS, DefaultEig{typeof(real)}}; update_minaug_every_step::Int64, normC::typeof(norm), bdlinsolver::MatrixBLS{Nothing}, bdlinsolver_adjoint::MatrixBLS{Nothing}, jacobian_ma::Symbol, compute_eigen_elements::Bool, usehessian::Bool, kind::BifurcationKit.FoldCont, record_from_solution::Nothing, kwargs::@Kwargs{}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/codim2/MinAugFold.jl:527 [10] continuation_fold(prob::BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, br::ContResult{BifurcationKit.EquilibriumCont, @NamedTuple{x::Float64, param::Float64, itnewton::Int64, itlinear::Int64, ds::Float64, n_unstable::Int64, n_imag::Int64, stable::Bool, step::Int64}, Vector{ComplexF64}, Matrix{ComplexF64}, SpecialPoint{Float64, @NamedTuple{x::Float64}, Vector{Float64}, Vector{Float64}}, Vector{@NamedTuple{x::Vector{Float64}, p::Float64, step::Int64}}, ContinuationPar{Float64, DefaultLS, DefaultEig{typeof(real)}}, BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#128#129"{typeof(Fcusp)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}}, ind_fold::Int64, lens2::PropertyLens{:β2}, options_cont::ContinuationPar{Float64, DefaultLS, DefaultEig{typeof(real)}}; alg::PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, normC::typeof(norm), nev::Int64, start_with_eigen::Bool, bdlinsolver::MatrixBLS{Nothing}, bdlinsolver_adjoint::MatrixBLS{Nothing}, kwargs::@Kwargs{compute_eigen_elements::Bool, update_minaug_every_step::Int64, jacobian_ma::Symbol}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/codim2/MinAugFold.jl:603 [11] continuation_fold @ ~/.julia/packages/BifurcationKit/DXZuX/src/codim2/MinAugFold.jl:541 [inlined] [12] #continuation#531 @ ~/.julia/packages/BifurcationKit/DXZuX/src/codim2/codim2.jl:254 [inlined] [13] top-level scope @ ~/.julia/packages/BifurcationKit/DXZuX/test/testNF.jl:308 [14] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [15] top-level scope @ ~/.julia/packages/BifurcationKit/DXZuX/test/runtests.jl:8 [16] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [17] macro expansion @ ~/.julia/packages/BifurcationKit/DXZuX/test/runtests.jl:33 [inlined] [18] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [19] macro expansion @ ~/.julia/packages/BifurcationKit/DXZuX/test/runtests.jl:33 [inlined] [20] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [21] top-level scope @ none:6 [22] eval(m::Module, e::Any) @ Core ./boot.jl:485 [23] exec_options(opts::Base.JLOptions) @ Base ./client.jl:295 [24] _start() @ Base ./client.jl:558 in expression starting at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/test/testNF.jl:308 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ────────────────── PALC ────────────────── ━━━━━━━━━━━━━━━━━━ INITIAL GUESS ━━━━━━━━━━━━━━━━━━ ──▶ convergence of initial guess = OK ──▶ parameter = -3.0, initial step ━━━━━━━━━━━━━━━━━━ INITIAL TANGENT ━━━━━━━━━━━━━━━━━━ ──▶ convergence of the initial guess = OK ──▶ parameter = -2.9999933333333333, initial step (bis) Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 0 Step size = 1.0000e-03 Parameter p1 = -3.0000e+00 ⟶ -2.9986e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -3.0000e+00 ⟶ -2.9986e+00 Predictor: Secant ──▶ Event values: (-1.0,) ──▶ (-0.9986180397827904,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 1 Step size = 1.3200e-03 Parameter p1 = -2.9986e+00 ⟶ -2.9968e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -2.9986e+00 ⟶ -2.9968e+00 Predictor: Secant ──▶ Event values: (-0.9986180397827904,) ──▶ (-0.9967938908852547,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 2 Step size = 1.7424e-03 Parameter p1 = -2.9968e+00 ⟶ -2.9944e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -2.9968e+00 ⟶ -2.9944e+00 Predictor: Secant ──▶ Event values: (-0.9967938908852547,) ──▶ (-0.9943860817140209,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 3 Step size = 2.3000e-03 Parameter p1 = -2.9944e+00 ⟶ -2.9912e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -2.9944e+00 ⟶ -2.9912e+00 Predictor: Secant ──▶ Event values: (-0.9943860817140209,) ──▶ (-0.9912078912990223,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 4 Step size = 3.0360e-03 Parameter p1 = -2.9912e+00 ⟶ -2.9870e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -2.9912e+00 ⟶ -2.9870e+00 Predictor: Secant ──▶ Event values: (-0.9912078912990223,) ──▶ (-0.9870128857077405,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 5 Step size = 4.0075e-03 Parameter p1 = -2.9870e+00 ⟶ -2.9815e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -2.9870e+00 ⟶ -2.9815e+00 Predictor: Secant ──▶ Event values: (-0.9870128857077405,) ──▶ (-0.9814758384373605,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 6 Step size = 5.2899e-03 Parameter p1 = -2.9815e+00 ⟶ -2.9742e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -2.9815e+00 ⟶ -2.9742e+00 Predictor: Secant ──▶ Event values: (-0.9814758384373605,) ──▶ (-0.9741675672042343,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 7 Step size = 6.9826e-03 Parameter p1 = -2.9742e+00 ⟶ -2.9645e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -2.9742e+00 ⟶ -2.9645e+00 Predictor: Secant ──▶ Event values: (-0.9741675672042343,) ──▶ (-0.96452175753054,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 8 Step size = 9.2170e-03 Parameter p1 = -2.9645e+00 ⟶ -2.9518e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.9645e+00 ⟶ -2.9518e+00 Predictor: Secant ──▶ Event values: (-0.96452175753054,) ──▶ (-0.9517912400484199,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 9 Step size = 1.0876e-02 Parameter p1 = -2.9518e+00 ⟶ -2.9368e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.9518e+00 ⟶ -2.9368e+00 Predictor: Secant ──▶ Event values: (-0.9517912400484199,) ──▶ (-0.9367721236855182,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 10 Step size = 1.2834e-02 Parameter p1 = -2.9368e+00 ⟶ -2.9190e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.9368e+00 ⟶ -2.9191e+00 Predictor: Secant ──▶ Event values: (-0.9367721236855182,) ──▶ (-0.9190536628212209,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 11 Step size = 1.5144e-02 Parameter p1 = -2.9191e+00 ⟶ -2.8981e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.9191e+00 ⟶ -2.8982e+00 Predictor: Secant ──▶ Event values: (-0.9190536628212209,) ──▶ (-0.8981516940574208,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 12 Step size = 1.7870e-02 Parameter p1 = -2.8982e+00 ⟶ -2.8735e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.8982e+00 ⟶ -2.8735e+00 Predictor: Secant ──▶ Event values: (-0.8981516940574208,) ──▶ (-0.8734956562166514,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 13 Step size = 2.1086e-02 Parameter p1 = -2.8735e+00 ⟶ -2.8444e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.8735e+00 ⟶ -2.8444e+00 Predictor: Secant ──▶ Event values: (-0.8734956562166514,) ──▶ (-0.8444133892830563,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 14 Step size = 2.4882e-02 Parameter p1 = -2.8444e+00 ⟶ -2.8101e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.8444e+00 ⟶ -2.8101e+00 Predictor: Secant ──▶ Event values: (-0.8444133892830563,) ──▶ (-0.8101133767613113,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 15 Step size = 2.9361e-02 Parameter p1 = -2.8101e+00 ⟶ -2.7696e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.8101e+00 ⟶ -2.7697e+00 Predictor: Secant ──▶ Event values: (-0.8101133767613113,) ──▶ (-0.7696640758044886,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 16 Step size = 3.4646e-02 Parameter p1 = -2.7697e+00 ⟶ -2.7219e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.7697e+00 ⟶ -2.7220e+00 Predictor: Secant ──▶ Event values: (-0.7696640758044886,) ──▶ (-0.7219699866515135,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 17 Step size = 4.0882e-02 Parameter p1 = -2.7220e+00 ⟶ -2.6657e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.7220e+00 ⟶ -2.6657e+00 Predictor: Secant ──▶ Event values: (-0.7219699866515135,) ──▶ (-0.665744179332389,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 18 Step size = 4.8240e-02 Parameter p1 = -2.6657e+00 ⟶ -2.5994e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.6657e+00 ⟶ -2.5995e+00 Predictor: Secant ──▶ Event values: (-0.665744179332389,) ──▶ (-0.5994771888264152,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 19 Step size = 5.6924e-02 Parameter p1 = -2.5995e+00 ⟶ -2.5213e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.5995e+00 ⟶ -2.5214e+00 Predictor: Secant ──▶ Event values: (-0.5994771888264152,) ──▶ (-0.5214026576247006,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 20 Step size = 6.7170e-02 Parameter p1 = -2.5214e+00 ⟶ -2.4293e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.5214e+00 ⟶ -2.4295e+00 Predictor: Secant ──▶ Event values: (-0.5214026576247006,) ──▶ (-0.42946118865407445,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 21 Step size = 7.9261e-02 Parameter p1 = -2.4295e+00 ⟶ -2.3210e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.4295e+00 ⟶ -2.3213e+00 Predictor: Secant ──▶ Event values: (-0.42946118865407445,) ──▶ (-0.3212664214828238,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 22 Step size = 9.3528e-02 Parameter p1 = -2.3213e+00 ⟶ -2.1936e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.3213e+00 ⟶ -2.1941e+00 Predictor: Secant ──▶ Event values: (-0.3212664214828238,) ──▶ (-0.19408367690357897,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 23 Step size = 1.0000e-01 Parameter p1 = -2.1941e+00 ⟶ -2.0581e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.1941e+00 ⟶ -2.0588e+00 Predictor: Secant ──▶ Event values: (-0.19408367690357897,) ──▶ (-0.05881845865952107,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 24 Step size = 1.0000e-01 Parameter p1 = -2.0588e+00 ⟶ -1.9236e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.0588e+00 ⟶ -1.9245e+00 Predictor: Secant ──▶ Event values: (-0.05881845865952107,) ──▶ (0.07549051070721369,) ──▶ Event detected before p = -1.9245094892927863 ────> Entering [Event], indicator of 2 last events = (1, 0) ────> [Bisection] initial ds = 0.1 ────> [Bisection] state.ds = -0.1 ──> eve (initial) (-0.05881845865952107,) ──> (0.07549051070721369,) ────> eve (current) (0.07549051070721369,) ──> (0.07549051070721369,) ────> 0 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -0.05, p = -1.9245094892927863, #reverse = 0 ────> event ∈ (-2.058818458659521, -1.9245094892927863), precision = 1.343E-01 Predictor: Secant ────> eve (current) (0.07549051070721369,) ──> (0.008492072644623372,) ────> 1 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -0.025, p = -1.9915079273553766, #reverse = 0 ────> event ∈ (-2.058818458659521, -1.9915079273553766), precision = 6.731E-02 Predictor: Secant ────> eve (current) (0.008492072644623372,) ──> (-0.025114103463261817,) ────> 2 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.0125, p = -2.025114103463262, #reverse = 1 ────> event ∈ (-2.025114103463262, -1.9915079273553766), precision = 3.361E-02 Predictor: Secant ────> eve (current) (-0.025114103463261817,) ──> (-0.008303466162076223,) ────> 3 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.00625, p = -2.0083034661620762, #reverse = 1 ────> event ∈ (-2.0083034661620762, -1.9915079273553766), precision = 1.680E-02 Predictor: Secant ────> eve (current) (-0.008303466162076223,) ──> (9.56526144793024e-5,) ────> 4 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -0.003125, p = -1.9999043473855207, #reverse = 2 ────> event ∈ (-2.0083034661620762, -1.9999043473855207), precision = 8.399E-03 Predictor: Secant ────> eve (current) (9.56526144793024e-5,) ──> (-0.004103370599878975,) ────> 5 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.0015625, p = -2.004103370599879, #reverse = 3 ────> event ∈ (-2.004103370599879, -1.9999043473855207), precision = 4.199E-03 Predictor: Secant ────> eve (current) (-0.004103370599878975,) ──> (-0.0020037272833750563,) ────> 6 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.00078125, p = -2.002003727283375, #reverse = 3 ────> event ∈ (-2.002003727283375, -1.9999043473855207), precision = 2.099E-03 Predictor: Secant ────> eve (current) (-0.0020037272833750563,) ──> (-0.0009540044314153562,) ────> 7 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.000390625, p = -2.0009540044314154, #reverse = 3 ────> event ∈ (-2.0009540044314154, -1.9999043473855207), precision = 1.050E-03 Predictor: Secant ────> eve (current) (-0.0009540044314153562,) ──> (-0.00042916779351820367,) ────> 8 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.0001953125, p = -2.000429167793518, #reverse = 3 ────> event ∈ (-2.000429167793518, -1.9999043473855207), precision = 5.248E-04 Predictor: Secant ────> eve (current) (-0.00042916779351820367,) ──> (-0.00016675567748913878,) ────> 9 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 9.765625e-5, p = -2.000166755677489, #reverse = 3 ────> event ∈ (-2.000166755677489, -1.9999043473855207), precision = 2.624E-04 Predictor: Secant ────> eve (current) (-0.00016675567748913878,) ──> (-3.5551170945780086e-5,) ────> 10 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 4.8828125e-5, p = -2.000035551170946, #reverse = 3 ────> event ∈ (-2.000035551170946, -1.9999043473855207), precision = 1.312E-04 Predictor: Secant ────> eve (current) (-3.5551170945780086e-5,) ──> (3.005069436556873e-5,) ────> 11 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -2.44140625e-5, p = -1.9999699493056344, #reverse = 4 ────> event ∈ (-2.000035551170946, -1.9999699493056344), precision = 6.560E-05 Predictor: Secant ────> eve (current) (3.005069436556873e-5,) ──> (-2.75020595363884e-6,) ────> 12 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 1.220703125e-5, p = -2.0000027502059536, #reverse = 5 ────> event ∈ (-2.0000027502059536, -1.9999699493056344), precision = 3.280E-05 Predictor: Secant ────> eve (current) (-2.75020595363884e-6,) ──> (1.3650244205853923e-5,) ────> 13 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -6.103515625e-6, p = -1.9999863497557941, #reverse = 6 ────> event ∈ (-2.0000027502059536, -1.9999863497557941), precision = 1.640E-05 Predictor: Secant ────> eve (current) (1.3650244205853923e-5,) ──> (5.450019125996519e-6,) ────> 14 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -3.0517578125e-6, p = -1.999994549980874, #reverse = 6 ────> event ∈ (-2.0000027502059536, -1.999994549980874), precision = 8.200E-06 Predictor: Secant ────> eve (current) (5.450019125996519e-6,) ──> (1.3499065860678172e-6,) ────> 15 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -1.52587890625e-6, p = -1.999998650093414, #reverse = 6 ────> event ∈ (-2.0000027502059536, -1.999998650093414), precision = 4.100E-06 Predictor: Secant ────> eve (current) (1.3499065860678172e-6,) ──> (-7.001496840075561e-7,) ────> 16 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 7.62939453125e-7, p = -2.000000700149684, #reverse = 7 ────> event ∈ (-2.000000700149684, -1.999998650093414), precision = 2.050E-06 Predictor: Secant ────> eve (current) (-7.001496840075561e-7,) ──> (3.248784510301306e-7,) ────> 17 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -3.814697265625e-7, p = -1.999999675121549, #reverse = 8 ────> event ∈ (-2.000000700149684, -1.999999675121549), precision = 1.025E-06 ────> Found at p = -1.999999675121549 ∈ (-2.000000700149684, -1.999999675121549), δn = 1, from p = -1.9245094892927863 ──────────────────────────────────────── ────> Stopping reason: ──────> isnothing(next) = false ──────> |ds| < dsmin_bisection = false ──────> step >= max_bisection_steps = false ──────> n_inversion >= n_inversion = true ──────> eventlocated = false ────> Leaving [Loc-Bif] !! Continuous user point at p ≈ -1.999999675121549 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 25 Step size = 1.0000e-01 Parameter p1 = -2.0000e+00 ⟶ -1.8656e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.0000e+00 ⟶ -1.8662e+00 Predictor: Secant ──▶ Event values: (3.248784510301306e-7,) ──▶ (0.13376907259808446,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 26 Step size = 1.0000e-01 Parameter p1 = -1.8662e+00 ⟶ -1.7325e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.8662e+00 ⟶ -1.7339e+00 Predictor: Secant ──▶ Event values: (0.13376907259808446,) ──▶ (0.2661007198163412,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 27 Step size = 1.0000e-01 Parameter p1 = -1.7339e+00 ⟶ -1.6016e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.7339e+00 ⟶ -1.6037e+00 Predictor: Secant ──▶ Event values: (0.2661007198163412,) ──▶ (0.39634082668118786,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 28 Step size = 1.0000e-01 Parameter p1 = -1.6037e+00 ⟶ -1.4735e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.6037e+00 ⟶ -1.4766e+00 Predictor: Secant ──▶ Event values: (0.39634082668118786,) ──▶ (0.5233942744616238,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 29 Step size = 1.0000e-01 Parameter p1 = -1.4766e+00 ⟶ -1.3498e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.4766e+00 ⟶ -1.3549e+00 Predictor: Secant ──▶ Event values: (0.5233942744616238,) ──▶ (0.645113120545397,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 30 Step size = 1.0000e-01 Parameter p1 = -1.3549e+00 ⟶ -1.2336e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.3549e+00 ⟶ -1.2434e+00 Predictor: Secant ──▶ Event values: (0.645113120545397,) ──▶ (0.7565581496409486,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 31 Step size = 1.0000e-01 Parameter p1 = -1.2434e+00 ⟶ -1.1330e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.2434e+00 ⟶ -1.1565e+00 Predictor: Secant ──▶ Event values: (0.7565581496409486,) ──▶ (0.843533165755711,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 32 Step size = 1.0000e-01 Parameter p1 = -1.1565e+00 ⟶ -1.0725e+00 [guess] ──▶ Step Converged in 4 Nonlinear Iteration(s) Parameter p1 = -1.1565e+00 ⟶ -1.1401e+00 Predictor: Secant ──▶ Event values: (0.843533165755711,) ──▶ (0.859856445339866,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 33 Step size = 1.0000e-01 Parameter p1 = -1.1401e+00 ⟶ -1.1261e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.1401e+00 ⟶ -1.2170e+00 Predictor: Secant ──▶ Event values: (0.859856445339866,) ──▶ (0.7830454777064411,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 34 Step size = 1.0000e-01 Parameter p1 = -1.2170e+00 ⟶ -1.2814e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.2170e+00 ⟶ -1.3157e+00 Predictor: Secant ──▶ Event values: (0.7830454777064411,) ──▶ (0.6843239057500137,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 35 Step size = 1.0000e-01 Parameter p1 = -1.3157e+00 ⟶ -1.4109e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.3157e+00 ⟶ -1.4228e+00 Predictor: Secant ──▶ Event values: (0.6843239057500137,) ──▶ (0.5771656121054785,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 36 Step size = 1.0000e-01 Parameter p1 = -1.4228e+00 ⟶ -1.5293e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -1.4228e+00 ⟶ -1.5348e+00 Predictor: Secant ──▶ Event values: (0.5771656121054785,) ──▶ (0.46516753224958163,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 37 Step size = 1.0000e-01 Parameter p1 = -1.5348e+00 ⟶ -1.6466e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -1.5348e+00 ⟶ -1.6493e+00 Predictor: Secant ──▶ Event values: (0.46516753224958163,) ──▶ (0.3506902873778335,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 38 Step size = 1.0000e-01 Parameter p1 = -1.6493e+00 ⟶ -1.7637e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -1.6493e+00 ⟶ -1.7647e+00 Predictor: Secant ──▶ Event values: (0.3506902873778335,) ──▶ (0.23529609391134554,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 39 Step size = 1.0000e-01 Parameter p1 = -1.7647e+00 ⟶ -1.8801e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -1.7647e+00 ⟶ -1.8797e+00 Predictor: Secant ──▶ Event values: (0.23529609391134554,) ──▶ (0.12028173206190695,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 40 Step size = 1.0000e-01 Parameter p1 = -1.8797e+00 ⟶ -1.9947e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -1.8797e+00 ⟶ -1.9929e+00 Predictor: Secant ──▶ Event values: (0.12028173206190695,) ──▶ (0.007072528817887669,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 41 Step size = 1.0000e-01 Parameter p1 = -1.9929e+00 ⟶ -2.1061e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.9929e+00 ⟶ -2.1023e+00 Predictor: Secant ──▶ Event values: (0.007072528817887669,) ──▶ (-0.10226139090966058,) ──▶ Event detected before p = -2.1022613909096606 ────> Entering [Event], indicator of 2 last events = (0, 1) ────> [Bisection] initial ds = 0.1 ────> [Bisection] state.ds = -0.1 ──> eve (initial) (0.007072528817887669,) ──> (-0.10226139090966058,) ────> eve (current) (-0.10226139090966058,) ──> (-0.10226139090966058,) ────> 0 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -0.05, p = -2.1022613909096606, #reverse = 0 ────> event ∈ (-2.1022613909096606, -1.9929274711821123), precision = 1.093E-01 Predictor: Secant ────> eve (current) (-0.10226139090966058,) ──> (-0.04833608289578972,) ────> 1 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -0.025, p = -2.0483360828957897, #reverse = 0 ────> event ∈ (-2.0483360828957897, -1.9929274711821123), precision = 5.541E-02 Predictor: Secant ────> eve (current) (-0.04833608289578972,) ──> (-0.020830735714093773,) ────> 2 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -0.0125, p = -2.0208307357140938, #reverse = 0 ────> event ∈ (-2.0208307357140938, -1.9929274711821123), precision = 2.790E-02 Predictor: Secant ────> eve (current) (-0.020830735714093773,) ──> (-0.0069715838769197624,) ────> 3 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -0.00625, p = -2.0069715838769198, #reverse = 0 ────> event ∈ (-2.0069715838769198, -1.9929274711821123), precision = 1.404E-02 Predictor: Secant ────> eve (current) (-0.0069715838769197624,) ──> (-1.7439125403306832e-5,) ────> 4 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -0.003125, p = -2.0000174391254033, #reverse = 0 ────> event ∈ (-2.0000174391254033, -1.9929274711821123), precision = 7.090E-03 Predictor: Secant ────> eve (current) (-1.7439125403306832e-5,) ──> (0.003465515391908758,) ────> 5 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 0.0015625, p = -1.9965344846080912, #reverse = 1 ────> event ∈ (-2.0000174391254033, -1.9965344846080912), precision = 3.483E-03 Predictor: Secant ────> eve (current) (0.003465515391908758,) ──> (0.0017235585119625974,) ────> 6 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 0.00078125, p = -1.9982764414880374, #reverse = 1 ────> event ∈ (-2.0000174391254033, -1.9982764414880374), precision = 1.741E-03 Predictor: Secant ────> eve (current) (0.0017235585119625974,) ──> (0.0008529423156780069,) ────> 7 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 0.000390625, p = -1.999147057684322, #reverse = 1 ────> event ∈ (-2.0000174391254033, -1.999147057684322), precision = 8.704E-04 Predictor: Secant ────> eve (current) (0.0008529423156780069,) ──> (0.00041772541266538177,) ────> 8 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 0.0001953125, p = -1.9995822745873346, #reverse = 1 ────> event ∈ (-2.0000174391254033, -1.9995822745873346), precision = 4.352E-04 Predictor: Secant ────> eve (current) (0.00041772541266538177,) ──> (0.0002001398248798747,) ────> 9 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 9.765625e-5, p = -1.9997998601751201, #reverse = 1 ────> event ∈ (-2.0000174391254033, -1.9997998601751201), precision = 2.176E-04 Predictor: Secant ────> eve (current) (0.0002001398248798747,) ──> (9.135275504923435e-5,) ────> 10 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 4.8828125e-5, p = -1.9999086472449508, #reverse = 1 ────> event ∈ (-2.0000174391254033, -1.9999086472449508), precision = 1.088E-04 Predictor: Secant ────> eve (current) (9.135275504923435e-5,) ──> (3.696065216596267e-5,) ────> 11 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 2.44140625e-5, p = -1.999963039347834, #reverse = 1 ────> event ∈ (-2.0000174391254033, -1.999963039347834), precision = 5.440E-05 Predictor: Secant ────> eve (current) (3.696065216596267e-5,) ──> (9.764958859515005e-6,) ────> 12 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 1.220703125e-5, p = -1.9999902350411405, #reverse = 1 ────> event ∈ (-2.0000174391254033, -1.9999902350411405), precision = 2.720E-05 Predictor: Secant ────> eve (current) (9.764958859515005e-6,) ──> (-3.832798244118862e-6,) ────> 13 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -6.103515625e-6, p = -2.000003832798244, #reverse = 2 ────> event ∈ (-2.000003832798244, -1.9999902350411405), precision = 1.360E-05 Predictor: Secant ────> eve (current) (-3.832798244118862e-6,) ──> (2.9660803073650044e-6,) ────> 14 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 3.0517578125e-6, p = -1.9999970339196926, #reverse = 3 ────> event ∈ (-2.000003832798244, -1.9999970339196926), precision = 6.799E-06 Predictor: Secant ────> eve (current) (2.9660803073650044e-6,) ──> (-4.333589682659067e-7,) ────> 15 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -1.52587890625e-6, p = -2.0000004333589683, #reverse = 4 ────> event ∈ (-2.0000004333589683, -1.9999970339196926), precision = 3.399E-06 Predictor: Secant ────> eve (current) (-4.333589682659067e-7,) ──> (1.2663606696605711e-6,) ────> 16 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 7.62939453125e-7, p = -1.9999987336393303, #reverse = 5 ────> event ∈ (-2.0000004333589683, -1.9999987336393303), precision = 1.700E-06 Predictor: Secant ────> eve (current) (1.2663606696605711e-6,) ──> (4.165008506973322e-7,) ────> 17 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 3.814697265625e-7, p = -1.9999995834991493, #reverse = 5 ────> event ∈ (-2.0000004333589683, -1.9999995834991493), precision = 8.499E-07 Predictor: Secant ────> eve (current) (4.165008506973322e-7,) ──> (-8.429058784287236e-9,) ────> 18 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -1.9073486328125e-7, p = -2.000000008429059, #reverse = 6 ────> event ∈ (-2.000000008429059, -1.9999995834991493), precision = 4.249E-07 Predictor: Secant ────> eve (current) (-8.429058784287236e-9,) ──> (2.040358959565225e-7,) ────> 19 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 9.5367431640625e-8, p = -1.999999795964104, #reverse = 7 ────> event ∈ (-2.000000008429059, -1.999999795964104), precision = 2.125E-07 Predictor: Secant ────> eve (current) (2.040358959565225e-7,) ──> (9.780341869713993e-8,) ────> 20 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 4.76837158203125e-8, p = -1.9999999021965813, #reverse = 7 ────> event ∈ (-2.000000008429059, -1.9999999021965813), precision = 1.062E-07 Predictor: Secant ────> eve (current) (9.780341869713993e-8,) ──> (4.468717995642635e-8,) ────> 21 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 2.384185791015625e-8, p = -1.99999995531282, #reverse = 7 ────> event ∈ (-2.000000008429059, -1.99999995531282), precision = 5.312E-08 Predictor: Secant ────> eve (current) (4.468717995642635e-8,) ──> (1.812906069709186e-8,) ────> 22 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 1.1920928955078126e-8, p = -1.9999999818709393, #reverse = 7 ────> event ∈ (-2.000000008429059, -1.9999999818709393), precision = 2.656E-08 Predictor: Secant ────> eve (current) (1.812906069709186e-8,) ──> (4.850001067424614e-9,) ────> 23 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 5.960464477539063e-9, p = -1.999999995149999, #reverse = 7 ────> event ∈ (-2.000000008429059, -1.999999995149999), precision = 1.328E-08 Predictor: Secant ────> eve (current) (4.850001067424614e-9,) ──> (-1.7895289694536132e-9,) ────> 24 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -2.9802322387695314e-9, p = -2.000000001789529, #reverse = 8 ────> event ∈ (-2.000000001789529, -1.999999995149999), precision = 6.640E-09 ────> Found at p = -2.000000001789529 ∈ (-2.000000001789529, -1.999999995149999), δn = 1, from p = -2.1022613909096606 ──────────────────────────────────────── ────> Stopping reason: ──────> isnothing(next) = false ──────> |ds| < dsmin_bisection = false ──────> step >= max_bisection_steps = false ──────> n_inversion >= n_inversion = true ──────> eventlocated = false ────> Leaving [Loc-Bif] !! Continuous user point at p ≈ -2.000000001789529 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 42 Step size = 1.0000e-01 Parameter p1 = -2.0000e+00 ⟶ -2.1114e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.0000e+00 ⟶ -2.1089e+00 Predictor: Secant ──▶ Event values: (-1.7895289694536132e-9,) ──▶ (-0.10890835885567185,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 43 Step size = 1.0000e-01 Parameter p1 = -2.1089e+00 ⟶ -2.2178e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.1089e+00 ⟶ -2.2098e+00 Predictor: Secant ──▶ Event values: (-0.10890835885567185,) ──▶ (-0.20978632802030273,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 44 Step size = 1.0000e-01 Parameter p1 = -2.2098e+00 ⟶ -2.3103e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.2098e+00 ⟶ -2.2925e+00 Predictor: Secant ──▶ Event values: (-0.20978632802030273,) ──▶ (-0.2924701488272867,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 45 Step size = 1.0000e-01 Parameter p1 = -2.2925e+00 ⟶ -2.3738e+00 [guess] ──▶ Step Converged in 4 Nonlinear Iteration(s) Parameter p1 = -2.2925e+00 ⟶ -2.3234e+00 Predictor: Secant ──▶ Event values: (-0.2924701488272867,) ──▶ (-0.3233667252269701,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 46 Step size = 1.0000e-01 Parameter p1 = -2.3234e+00 ⟶ -2.3516e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.3234e+00 ⟶ -2.2370e+00 Predictor: Secant ──▶ Event values: (-0.3233667252269701,) ──▶ (-0.23703871354801942,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 47 Step size = 1.0000e-01 Parameter p1 = -2.2370e+00 ⟶ -2.1710e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.2370e+00 ⟶ -2.1183e+00 Predictor: Secant ──▶ Event values: (-0.23703871354801942,) ──▶ (-0.11833171560464839,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 48 Step size = 1.0000e-01 Parameter p1 = -2.1183e+00 ⟶ -2.0095e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.1183e+00 ⟶ -1.9961e+00 Predictor: Secant ──▶ Event values: (-0.11833171560464839,) ──▶ (0.003928127321359609,) ──▶ Event detected before p = -1.9960718726786404 ────> Entering [Event], indicator of 2 last events = (1, 0) ────> [Bisection] initial ds = 0.1 ────> [Bisection] state.ds = -0.1 ──> eve (initial) (-0.11833171560464839,) ──> (0.003928127321359609,) ────> eve (current) (0.003928127321359609,) ──> (0.003928127321359609,) ────> 0 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -0.05, p = -1.9960718726786404, #reverse = 0 ────> event ∈ (-2.1183317156046484, -1.9960718726786404), precision = 1.223E-01 Predictor: Secant ────> eve (current) (0.003928127321359609,) ──> (-0.05726063351211952,) ────> 1 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.025, p = -2.0572606335121195, #reverse = 1 ────> event ∈ (-2.0572606335121195, -1.9960718726786404), precision = 6.119E-02 Predictor: Secant ────> eve (current) (-0.05726063351211952,) ──> (-0.026850515268071806,) ────> 2 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.0125, p = -2.026850515268072, #reverse = 1 ────> event ∈ (-2.026850515268072, -1.9960718726786404), precision = 3.078E-02 Predictor: Secant ────> eve (current) (-0.026850515268071806,) ──> (-0.011511713646775945,) ────> 3 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.00625, p = -2.011511713646776, #reverse = 1 ────> event ∈ (-2.011511713646776, -1.9960718726786404), precision = 1.544E-02 Predictor: Secant ────> eve (current) (-0.011511713646775945,) ──> (-0.0038138853701057407,) ────> 4 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.003125, p = -2.0038138853701057, #reverse = 1 ────> event ∈ (-2.0038138853701057, -1.9960718726786404), precision = 7.742E-03 Predictor: Secant ────> eve (current) (-0.0038138853701057407,) ──> (4.189180612179655e-5,) ────> 5 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -0.0015625, p = -1.9999581081938782, #reverse = 2 ────> event ∈ (-2.0038138853701057, -1.9999581081938782), precision = 3.856E-03 Predictor: Secant ────> eve (current) (4.189180612179655e-5,) ──> (-0.0018865490239239335,) ────> 6 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.00078125, p = -2.001886549023924, #reverse = 3 ────> event ∈ (-2.001886549023924, -1.9999581081938782), precision = 1.928E-03 Predictor: Secant ────> eve (current) (-0.0018865490239239335,) ──> (-0.0009224706948671724,) ────> 7 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.000390625, p = -2.000922470694867, #reverse = 3 ────> event ∈ (-2.000922470694867, -1.9999581081938782), precision = 9.644E-04 Predictor: Secant ────> eve (current) (-0.0009224706948671724,) ──> (-0.0004403250183258045,) ────> 8 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.0001953125, p = -2.000440325018326, #reverse = 3 ────> event ∈ (-2.000440325018326, -1.9999581081938782), precision = 4.822E-04 Predictor: Secant ────> eve (current) (-0.0004403250183258045,) ──> (-0.00019922567926533574,) ────> 9 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 9.765625e-5, p = -2.0001992256792653, #reverse = 3 ────> event ∈ (-2.0001992256792653, -1.9999581081938782), precision = 2.411E-04 Predictor: Secant ────> eve (current) (-0.00019922567926533574,) ──> (-7.866939260958716e-5,) ────> 10 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 4.8828125e-5, p = -2.0000786693926096, #reverse = 3 ────> event ∈ (-2.0000786693926096, -1.9999581081938782), precision = 1.206E-04 Predictor: Secant ────> eve (current) (-7.866939260958716e-5,) ──> (-1.8389596001977537e-5,) ────> 11 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 2.44140625e-5, p = -2.000018389596002, #reverse = 3 ────> event ∈ (-2.000018389596002, -1.9999581081938782), precision = 6.028E-05 Predictor: Secant ────> eve (current) (-1.8389596001977537e-5,) ──> (1.175071549641693e-5,) ────> 12 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -1.220703125e-5, p = -1.9999882492845036, #reverse = 4 ────> event ∈ (-2.000018389596002, -1.9999882492845036), precision = 3.014E-05 Predictor: Secant ────> eve (current) (1.175071549641693e-5,) ──> (-3.319474676022338e-6,) ────> 13 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 6.103515625e-6, p = -2.000003319474676, #reverse = 5 ────> event ∈ (-2.000003319474676, -1.9999882492845036), precision = 1.507E-05 Predictor: Secant ────> eve (current) (-3.319474676022338e-6,) ──> (4.215620410086274e-6,) ────> 14 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -3.0517578125e-6, p = -1.99999578437959, #reverse = 6 ────> event ∈ (-2.000003319474676, -1.99999578437959), precision = 7.535E-06 Predictor: Secant ────> eve (current) (4.215620410086274e-6,) ──> (4.480728670319678e-7,) ────> 15 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -1.52587890625e-6, p = -1.999999551927133, #reverse = 6 ────> event ∈ (-2.000003319474676, -1.999999551927133), precision = 3.768E-06 Predictor: Secant ────> eve (current) (4.480728670319678e-7,) ──> (-1.4357009043841629e-6,) ────> 16 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 7.62939453125e-7, p = -2.0000014357009044, #reverse = 7 ────> event ∈ (-2.0000014357009044, -1.999999551927133), precision = 1.884E-06 Predictor: Secant ────> eve (current) (-1.4357009043841629e-6,) ──> (-4.938140185650752e-7,) ────> 17 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 3.814697265625e-7, p = -2.0000004938140186, #reverse = 7 ────> event ∈ (-2.0000004938140186, -1.999999551927133), precision = 9.419E-07 Predictor: Secant ────> eve (current) (-4.938140185650752e-7,) ──> (-2.287057565553141e-8,) ────> 18 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 1.9073486328125e-7, p = -2.0000000228705757, #reverse = 7 ────> event ∈ (-2.0000000228705757, -1.999999551927133), precision = 4.709E-07 Predictor: Secant ────> eve (current) (-2.287057565553141e-8,) ──> (2.126011457992405e-7,) ────> 19 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -9.5367431640625e-8, p = -1.9999997873988542, #reverse = 8 ────> event ∈ (-2.0000000228705757, -1.9999997873988542), precision = 2.355E-07 ────> Found at p = -1.9999997873988542 ∈ (-2.0000000228705757, -1.9999997873988542), δn = 1, from p = -1.9960718726786404 ──────────────────────────────────────── ────> Stopping reason: ──────> isnothing(next) = false ──────> |ds| < dsmin_bisection = false ──────> step >= max_bisection_steps = false ──────> n_inversion >= n_inversion = true ──────> eventlocated = false ────> Leaving [Loc-Bif] !! Continuous user point at p ≈ -1.9999997873988542 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 49 Step size = 1.0000e-01 Parameter p1 = -2.0000e+00 ⟶ -1.8765e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.0000e+00 ⟶ -1.8746e+00 Predictor: Secant ──▶ Event values: (2.126011457992405e-7,) ──▶ (0.12541454498532234,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 50 Step size = 1.0000e-01 Parameter p1 = -1.8746e+00 ⟶ -1.7493e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.8746e+00 ⟶ -1.7468e+00 Predictor: Secant ──▶ Event values: (0.12541454498532234,) ──▶ (0.2532050055403856,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 51 Step size = 1.0000e-01 Parameter p1 = -1.7468e+00 ⟶ -1.6193e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.7468e+00 ⟶ -1.6185e+00 Predictor: Secant ──▶ Event values: (0.2532050055403856,) ──▶ (0.3815317944448464,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 52 Step size = 1.0000e-01 Parameter p1 = -1.6185e+00 ⟶ -1.4904e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.6185e+00 ⟶ -1.4909e+00 Predictor: Secant ──▶ Event values: (0.3815317944448464,) ──▶ (0.5091366130302286,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 53 Step size = 1.0000e-01 Parameter p1 = -1.4909e+00 ⟶ -1.3635e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.4909e+00 ⟶ -1.3656e+00 Predictor: Secant ──▶ Event values: (0.5091366130302286,) ──▶ (0.6343913554035898,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 54 Step size = 1.0000e-01 Parameter p1 = -1.3656e+00 ⟶ -1.2408e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.3656e+00 ⟶ -1.2455e+00 Predictor: Secant ──▶ Event values: (0.6343913554035898,) ──▶ (0.7544753094687404,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 55 Step size = 1.0000e-01 Parameter p1 = -1.2455e+00 ⟶ -1.1263e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.2455e+00 ⟶ -1.1364e+00 Predictor: Secant ──▶ Event values: (0.7544753094687404,) ──▶ (0.8635986779685172,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 56 Step size = 1.0000e-01 Parameter p1 = -1.1364e+00 ⟶ -1.0290e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.1364e+00 ⟶ -1.0494e+00 Predictor: Secant ──▶ Event values: (0.8635986779685172,) ──▶ (0.9506084141369897,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 57 Step size = 1.0000e-01 Parameter p1 = -1.0494e+00 ⟶ -9.6554e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.0494e+00 ⟶ -9.9309e-01 Predictor: Secant ──▶ Event values: (0.9506084141369897,) ──▶ (1.0069144000262225,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 58 Step size = 1.0000e-01 Parameter p1 = -9.9309e-01 ⟶ -9.3932e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -9.9309e-01 ⟶ -9.5230e-01 Predictor: Secant ──▶ Event values: (1.0069144000262225,) ──▶ (1.0477009623370268,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 59 Step size = 1.0000e-01 Parameter p1 = -9.5230e-01 ⟶ -9.1236e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -9.5230e-01 ⟶ -9.0310e-01 Predictor: Secant ──▶ Event values: (1.0477009623370268,) ──▶ (1.0969013178742912,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 60 Step size = 1.0000e-01 Parameter p1 = -9.0310e-01 ⟶ -8.5462e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -9.0310e-01 ⟶ -8.3422e-01 Predictor: Secant ──▶ Event values: (1.0969013178742912,) ──▶ (1.1657841705131626,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 61 Step size = 1.0000e-01 Parameter p1 = -8.3422e-01 ⟶ -7.6674e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -8.3422e-01 ⟶ -7.4772e-01 Predictor: Secant ──▶ Event values: (1.1657841705131626,) ──▶ (1.2522822772796536,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 62 Step size = 1.0000e-01 Parameter p1 = -7.4772e-01 ⟶ -6.6271e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -7.4772e-01 ⟶ -6.4971e-01 Predictor: Secant ──▶ Event values: (1.2522822772796536,) ──▶ (1.3502929305611229,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 63 Step size = 1.0000e-01 Parameter p1 = -6.4971e-01 ⟶ -5.5267e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -6.4971e-01 ⟶ -5.4462e-01 Predictor: Secant ──▶ Event values: (1.3502929305611229,) ──▶ (1.4553817482413955,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 64 Step size = 1.0000e-01 Parameter p1 = -5.4462e-01 ⟶ -4.4005e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -5.4462e-01 ⟶ -4.3511e-01 Predictor: Secant ──▶ Event values: (1.4553817482413955,) ──▶ (1.5648883530692472,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 65 Step size = 1.0000e-01 Parameter p1 = -4.3511e-01 ⟶ -3.2587e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -4.3511e-01 ⟶ -3.2282e-01 Predictor: Secant ──▶ Event values: (1.5648883530692472,) ──▶ (1.677183275755629,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 66 Step size = 1.0000e-01 Parameter p1 = -3.2282e-01 ⟶ -2.1065e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -3.2282e-01 ⟶ -2.0879e-01 Predictor: Secant ──▶ Event values: (1.677183275755629,) ──▶ (1.7912091849513005,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 67 Step size = 1.0000e-01 Parameter p1 = -2.0879e-01 ⟶ -9.4823e-02 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.0879e-01 ⟶ -9.3776e-02 Predictor: Secant ──▶ Event values: (1.7912091849513005,) ──▶ (1.9062244542808213,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 68 Step size = 1.0000e-01 Parameter p1 = -9.3776e-02 ⟶ 2.1219e-02 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -9.3776e-02 ⟶ 2.1652e-02 Predictor: Secant ──▶ Event values: (1.9062244542808213,) ──▶ (2.0216517793398854,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 69 Step size = 1.0000e-01 Parameter p1 = 2.1652e-02 ⟶ 1.3708e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 2.1652e-02 ⟶ 1.3698e-01 Predictor: Secant ──▶ Event values: (2.0216517793398854,) ──▶ (2.1369780139096477,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 70 Step size = 1.0000e-01 Parameter p1 = 1.3698e-01 ⟶ 2.5230e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 1.3698e-01 ⟶ 2.5167e-01 Predictor: Secant ──▶ Event values: (2.1369780139096477,) ──▶ (2.2516729746800506,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 71 Step size = 1.0000e-01 Parameter p1 = 2.5167e-01 ⟶ 3.6636e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 2.5167e-01 ⟶ 3.6510e-01 Predictor: Secant ──▶ Event values: (2.2516729746800506,) ──▶ (2.3651026972002307,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 72 Step size = 1.0000e-01 Parameter p1 = 3.6510e-01 ⟶ 4.7850e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.6510e-01 ⟶ 4.7641e-01 Predictor: Secant ──▶ Event values: (2.3651026972002307,) ──▶ (2.476410232124028,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 73 Step size = 1.0000e-01 Parameter p1 = 4.7641e-01 ⟶ 5.8764e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 4.7641e-01 ⟶ 5.8432e-01 Predictor: Secant ──▶ Event values: (2.476410232124028,) ──▶ (2.5843244502911666,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 74 Step size = 1.0000e-01 Parameter p1 = 5.8432e-01 ⟶ 6.9207e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 5.8432e-01 ⟶ 6.8684e-01 Predictor: Secant ──▶ Event values: (2.5843244502911666,) ──▶ (2.686836588721522,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 75 Step size = 1.0000e-01 Parameter p1 = 6.8684e-01 ⟶ 7.8903e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 6.8684e-01 ⟶ 7.8070e-01 Predictor: Secant ──▶ Event values: (2.686836588721522,) ──▶ (2.7806968185807444,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 76 Step size = 1.0000e-01 Parameter p1 = 7.8070e-01 ⟶ 8.7396e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 7.8070e-01 ⟶ 8.6100e-01 Predictor: Secant ──▶ Event values: (2.7806968185807444,) ──▶ (2.8609966965979323,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 77 Step size = 1.0000e-01 Parameter p1 = 8.6100e-01 ⟶ 9.4031e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 8.6100e-01 ⟶ 9.2260e-01 Predictor: Secant ──▶ Event values: (2.8609966965979323,) ──▶ (2.922600575438644,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 78 Step size = 1.0000e-01 Parameter p1 = 9.2260e-01 ⟶ 9.8302e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 9.2260e-01 ⟶ 9.6691e-01 Predictor: Secant ──▶ Event values: (2.922600575438644,) ──▶ (2.9669107068862424,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 79 Step size = 1.0000e-01 Parameter p1 = 9.6691e-01 ⟶ 1.0104e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 9.6691e-01 ⟶ 1.0094e+00 Predictor: Secant ──▶ Event values: (2.9669107068862424,) ──▶ (3.0094192948188434,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 80 Step size = 1.0000e-01 Parameter p1 = 1.0094e+00 ⟶ 1.0513e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.0094e+00 ⟶ 1.0744e+00 Predictor: Secant ──▶ Event values: (3.0094192948188434,) ──▶ (3.0744445773076166,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 81 Step size = 1.0000e-01 Parameter p1 = 1.0744e+00 ⟶ 1.1376e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.0744e+00 ⟶ 1.1722e+00 Predictor: Secant ──▶ Event values: (3.0744445773076166,) ──▶ (3.172207127378895,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 82 Step size = 1.0000e-01 Parameter p1 = 1.1722e+00 ⟶ 1.2654e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.1722e+00 ⟶ 1.2882e+00 Predictor: Secant ──▶ Event values: (3.172207127378895,) ──▶ (3.2882375375531687,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 83 Step size = 1.0000e-01 Parameter p1 = 1.2882e+00 ⟶ 1.4009e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.2882e+00 ⟶ 1.4115e+00 Predictor: Secant ──▶ Event values: (3.2882375375531687,) ──▶ (3.4115204155053718,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 84 Step size = 1.0000e-01 Parameter p1 = 1.4115e+00 ⟶ 1.5333e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.4115e+00 ⟶ 1.5382e+00 Predictor: Secant ──▶ Event values: (3.4115204155053718,) ──▶ (3.5381942223448575,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 85 Step size = 1.0000e-01 Parameter p1 = 1.5382e+00 ⟶ 1.6642e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.5382e+00 ⟶ 1.6663e+00 Predictor: Secant ──▶ Event values: (3.5381942223448575,) ──▶ (3.6663317571389515,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 86 Step size = 1.0000e-01 Parameter p1 = 1.6663e+00 ⟶ 1.7941e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.6663e+00 ⟶ 1.7946e+00 Predictor: Secant ──▶ Event values: (3.6663317571389515,) ──▶ (3.7946030314208166,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 87 Step size = 1.0000e-01 Parameter p1 = 1.7946e+00 ⟶ 1.9226e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.7946e+00 ⟶ 1.9217e+00 Predictor: Secant ──▶ Event values: (3.7946030314208166,) ──▶ (3.921744385288159,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 88 Step size = 1.0000e-01 Parameter p1 = 1.9217e+00 ⟶ 2.0486e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.9217e+00 ⟶ 2.0460e+00 Predictor: Secant ──▶ Event values: (3.921744385288159,) ──▶ (4.046023593531713,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 89 Step size = 1.0000e-01 Parameter p1 = 2.0460e+00 ⟶ 2.1699e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.0460e+00 ⟶ 2.1641e+00 Predictor: Secant ──▶ Event values: (4.046023593531713,) ──▶ (4.164129866974651,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 90 Step size = 1.0000e-01 Parameter p1 = 2.1641e+00 ⟶ 2.2815e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.1641e+00 ⟶ 2.2674e+00 Predictor: Secant ──▶ Event values: (4.164129866974651,) ──▶ (4.267444993331688,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 91 Step size = 1.0000e-01 Parameter p1 = 2.2674e+00 ⟶ 2.3687e+00 [guess] ──▶ Step Converged in 4 Nonlinear Iteration(s) Parameter p1 = 2.2674e+00 ⟶ 2.3248e+00 Predictor: Secant ──▶ Event values: (4.267444993331688,) ──▶ (4.32483080528498,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 92 Step size = 1.0000e-01 Parameter p1 = 2.3248e+00 ⟶ 2.3768e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.3248e+00 ⟶ 2.2685e+00 Predictor: Secant ──▶ Event values: (4.32483080528498,) ──▶ (4.268512666749669,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 93 Step size = 1.0000e-01 Parameter p1 = 2.2685e+00 ⟶ 2.2254e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.2685e+00 ⟶ 2.1710e+00 Predictor: Secant ──▶ Event values: (4.268512666749669,) ──▶ (4.1709751610279655,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 94 Step size = 1.0000e-01 Parameter p1 = 2.1710e+00 ⟶ 2.0807e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.1710e+00 ⟶ 2.0653e+00 Predictor: Secant ──▶ Event values: (4.1709751610279655,) ──▶ (4.065300427118338,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 95 Step size = 1.0000e-01 Parameter p1 = 2.0653e+00 ⟶ 1.9607e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.0653e+00 ⟶ 1.9541e+00 Predictor: Secant ──▶ Event values: (4.065300427118338,) ──▶ (3.9541233264145603,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 96 Step size = 1.0000e-01 Parameter p1 = 1.9541e+00 ⟶ 1.8432e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 1.9541e+00 ⟶ 1.8400e+00 Predictor: Secant ──▶ Event values: (3.9541233264145603,) ──▶ (3.84003868168836,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 97 Step size = 1.0000e-01 Parameter p1 = 1.8400e+00 ⟶ 1.7260e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 1.8400e+00 ⟶ 1.7247e+00 Predictor: Secant ──▶ Event values: (3.84003868168836,) ──▶ (3.72473172076223,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 98 Step size = 1.0000e-01 Parameter p1 = 1.7247e+00 ⟶ 1.6094e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 1.7247e+00 ⟶ 1.6095e+00 Predictor: Secant ──▶ Event values: (3.72473172076223,) ──▶ (3.609522573980209,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 99 Step size = 1.0000e-01 Parameter p1 = 1.6095e+00 ⟶ 1.4943e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 1.6095e+00 ⟶ 1.4958e+00 Predictor: Secant ──▶ Event values: (3.609522573980209,) ──▶ (3.495772482037899,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 100 Step size = 1.0000e-01 Parameter p1 = 1.4958e+00 ⟶ 1.3820e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 1.4958e+00 ⟶ 1.3853e+00 Predictor: Secant ──▶ Event values: (3.495772482037899,) ──▶ (3.385337399046192,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 101 Step size = 1.0000e-01 Parameter p1 = 1.3853e+00 ⟶ 1.2750e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.3853e+00 ⟶ 1.2815e+00 Predictor: Secant ──▶ Event values: (3.385337399046192,) ──▶ (3.281465701189963,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 102 Step size = 1.0000e-01 Parameter p1 = 1.2815e+00 ⟶ 1.1779e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.2815e+00 ⟶ 1.1914e+00 Predictor: Secant ──▶ Event values: (3.281465701189963,) ──▶ (3.1913640781766954,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 103 Step size = 1.0000e-01 Parameter p1 = 1.1914e+00 ⟶ 1.1022e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.1914e+00 ⟶ 1.1356e+00 Predictor: Secant ──▶ Event values: (3.1913640781766954,) ──▶ (3.135597978397435,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 104 Step size = 1.0000e-01 Parameter p1 = 1.1356e+00 ⟶ 1.0823e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.1356e+00 ⟶ 1.1702e+00 Predictor: Secant ──▶ Event values: (3.135597978397435,) ──▶ (3.1701783862625046,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 105 Step size = 1.0000e-01 Parameter p1 = 1.1702e+00 ⟶ 1.1988e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.1702e+00 ⟶ 1.2776e+00 Predictor: Secant ──▶ Event values: (3.1701783862625046,) ──▶ (3.2776372880167233,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 106 Step size = 1.0000e-01 Parameter p1 = 1.2776e+00 ⟶ 1.3709e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.2776e+00 ⟶ 1.3957e+00 Predictor: Secant ──▶ Event values: (3.2776372880167233,) ──▶ (3.3957484980259682,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 107 Step size = 1.0000e-01 Parameter p1 = 1.3957e+00 ⟶ 1.5107e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.3957e+00 ⟶ 1.5202e+00 Predictor: Secant ──▶ Event values: (3.3957484980259682,) ──▶ (3.5201631136735507,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 108 Step size = 1.0000e-01 Parameter p1 = 1.5202e+00 ⟶ 1.6438e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.5202e+00 ⟶ 1.6487e+00 Predictor: Secant ──▶ Event values: (3.5201631136735507,) ──▶ (3.6486658661718128,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 109 Step size = 1.0000e-01 Parameter p1 = 1.6487e+00 ⟶ 1.7768e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.6487e+00 ⟶ 1.7798e+00 Predictor: Secant ──▶ Event values: (3.6486658661718128,) ──▶ (3.7798009519623803,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 110 Step size = 1.0000e-01 Parameter p1 = 1.7798e+00 ⟶ 1.9108e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.7798e+00 ⟶ 1.9127e+00 Predictor: Secant ──▶ Event values: (3.7798009519623803,) ──▶ (3.9127359396364834,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 111 Step size = 1.0000e-01 Parameter p1 = 1.9127e+00 ⟶ 2.0456e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.9127e+00 ⟶ 2.0470e+00 Predictor: Secant ──▶ Event values: (3.9127359396364834,) ──▶ (4.04696714728299,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 112 Step size = 1.0000e-01 Parameter p1 = 2.0470e+00 ⟶ 2.1811e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.0470e+00 ⟶ 2.1822e+00 Predictor: Secant ──▶ Event values: (4.04696714728299,) ──▶ (4.182171043239362,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 113 Step size = 1.0000e-01 Parameter p1 = 2.1822e+00 ⟶ 2.3173e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.1822e+00 ⟶ 2.3181e+00 Predictor: Secant ──▶ Event values: (4.182171043239362,) ──▶ (4.318129123462045,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 114 Step size = 1.0000e-01 Parameter p1 = 2.3181e+00 ⟶ 2.4541e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 2.3181e+00 ⟶ 2.4547e+00 Predictor: Secant ──▶ Event values: (4.318129123462045,) ──▶ (4.454687608927973,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 115 Step size = 1.0000e-01 Parameter p1 = 2.4547e+00 ⟶ 2.5912e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 2.4547e+00 ⟶ 2.5917e+00 Predictor: Secant ──▶ Event values: (4.454687608927973,) ──▶ (4.5917345298399415,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 116 Step size = 1.0000e-01 Parameter p1 = 2.5917e+00 ⟶ 2.7288e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 2.5917e+00 ⟶ 2.7292e+00 Predictor: Secant ──▶ Event values: (4.5917345298399415,) ──▶ (4.72918601439873,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 117 Step size = 1.0000e-01 Parameter p1 = 2.7292e+00 ⟶ 2.8666e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 2.7292e+00 ⟶ 2.8670e+00 Predictor: Secant ──▶ Event values: (4.72918601439873,) ──▶ (4.866977717877386,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 118 Step size = 1.0000e-01 Parameter p1 = 2.8670e+00 ⟶ 3.0048e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 2.8670e+00 ⟶ 3.0051e+00 Predictor: Secant ──▶ Event values: (4.866977717877386,) ──▶ (5.005059259802331,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 119 Step size = 1.0000e-01 Parameter p1 = 3.0051e+00 ⟶ 3.1431e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.0051e+00 ⟶ 3.1434e+00 Predictor: Secant ──▶ Event values: (5.005059259802331,) ──▶ (5.143390494716593,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 120 Step size = 1.0000e-01 Parameter p1 = 3.1434e+00 ⟶ 3.2817e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.1434e+00 ⟶ 3.2819e+00 Predictor: Secant ──▶ Event values: (5.143390494716593,) ──▶ (5.281938940897032,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 121 Step size = 1.0000e-01 Parameter p1 = 3.2819e+00 ⟶ 3.4205e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.2819e+00 ⟶ 3.4207e+00 Predictor: Secant ──▶ Event values: (5.281938940897032,) ──▶ (5.42067796338077,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 122 Step size = 1.0000e-01 Parameter p1 = 3.4207e+00 ⟶ 3.5594e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.4207e+00 ⟶ 3.5596e+00 Predictor: Secant ──▶ Event values: (5.42067796338077,) ──▶ (5.5595854619459635,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 123 Step size = 1.0000e-01 Parameter p1 = 3.5596e+00 ⟶ 3.6985e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.5596e+00 ⟶ 3.6986e+00 Predictor: Secant ──▶ Event values: (5.5595854619459635,) ──▶ (5.698642905380923,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 124 Step size = 1.0000e-01 Parameter p1 = 3.6986e+00 ⟶ 3.8377e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.6986e+00 ⟶ 3.8378e+00 Predictor: Secant ──▶ Event values: (5.698642905380923,) ──▶ (5.837834608389984,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 125 Step size = 1.0000e-01 Parameter p1 = 3.8378e+00 ⟶ 3.9770e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.8378e+00 ⟶ 3.9771e+00 Predictor: Secant ──▶ Event values: (5.837834608389984,) ──▶ (5.977147181812193,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 126 Step size = 1.0000e-01 Parameter p1 = 3.9771e+00 ⟶ 4.0000e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 4.0000e+00 ⟶ 4.0000e+00 Predictor: Secant ──▶ Event values: (5.977147181812193,) ──▶ (6.0,) ┌ Warning: More than one event in `SetOfEvents` was detected. We take the first in the list to save data in the branch. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/events/EventDetection.jl:383 ┌ Warning: More than one event in `SetOfEvents` was detected. We take the first in the list to save data in the branch. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/events/EventDetection.jl:383 ┌ Warning: More than one event in `SetOfEvents` was detected. We take the first in the list to save data in the branch. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/events/EventDetection.jl:383 ┌ Warning: More than one event in `SetOfEvents` was detected. We take the first in the list to save data in the branch. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/events/EventDetection.jl:383 ┌ Warning: More than one event in `SetOfEvents` was detected. We take the first in the list to save data in the branch. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/events/EventDetection.jl:383 ┌─ Deflation operator with 1 root(s) ├─ eltype = Float64 ├─ power = 2 ├─ α = 1.0 ├─ dist = dot └─ autodiff = false Fold Codim 2: Error During Test at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/test/runtests.jl:41 Got exception outside of a @test LoadError: MethodError: no method matching iterate(::BorderedArray{Vector{Float64}, Float64}) The function `iterate` exists, but no method is defined for this combination of argument types. Closest candidates are: iterate(!Matched::Cmd) @ Base process.jl:716 iterate(!Matched::Cmd, !Matched::Any) @ Base process.jl:721 iterate(!Matched::KrylovKit.SplitRange) @ KrylovKit ~/.julia/packages/KrylovKit/xccMN/src/KrylovKit.jl:87 ... Stacktrace: [1] isempty(itr::BorderedArray{Vector{Float64}, Float64}) @ Base ./essentials.jl:1129 [2] norm(itr::BorderedArray{Vector{Float64}, Float64}) @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.12/LinearAlgebra/src/generic.jl:691 [3] _newton(prob::BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(F_chan), BifurcationKit.var"#128#129"{typeof(F_chan)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64}, PropertyLens{:α}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{DefaultLS}, UniformScaling{Bool}}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{α::Float64, β::Float64}, Nothing, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default)}, x0::BorderedArray{Vector{Float64}, Float64}, p0::@NamedTuple{α::Float64, β::Float64}, options::NewtonPar{Float64, FoldLinearSolverMinAug, DefaultEig{typeof(real)}}; normN::typeof(norm), callback::typeof(BifurcationKit.cb_default), kwargs::@Kwargs{}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/Newton.jl:78 [4] solve(prob::BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(F_chan), BifurcationKit.var"#128#129"{typeof(F_chan)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64}, PropertyLens{:α}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{DefaultLS}, UniformScaling{Bool}}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{α::Float64, β::Float64}, Nothing, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default)}, ::Newton, options::NewtonPar{Float64, FoldLinearSolverMinAug, DefaultEig{typeof(real)}}; kwargs::@Kwargs{normN::typeof(norm)}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/Newton.jl:150 [5] newton_fold(prob::BifurcationProblem{BifFunction{typeof(F_chan), BifurcationKit.var"#128#129"{typeof(F_chan)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64}, PropertyLens{:α}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, foldpointguess::BorderedArray{Vector{Float64}, Float64}, par::@NamedTuple{α::Float64, β::Float64}, eigenvec::Vector{Float64}, eigenvec_ad::Vector{Float64}, options::NewtonPar{Float64, DefaultLS, DefaultEig{typeof(real)}}; normN::Function, bdlinsolver::MatrixBLS{Nothing}, usehessian::Bool, kwargs::@Kwargs{}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/codim2/MinAugFold.jl:252 [6] newton_fold(br::ContResult{BifurcationKit.EquilibriumCont, @NamedTuple{x::Float64, param::Float64, itnewton::Int64, itlinear::Int64, ds::Float64, n_unstable::Int64, n_imag::Int64, stable::Bool, step::Int64}, Vector{ComplexF64}, Matrix{ComplexF64}, SpecialPoint{Float64, @NamedTuple{x::Float64}, Vector{Float64}, Vector{Float64}}, Vector{@NamedTuple{x::Vector{Float64}, p::Float64, step::Int64}}, ContinuationPar{Float64, DefaultLS, DefaultEig{typeof(real)}}, BifurcationProblem{BifFunction{typeof(F_chan), BifurcationKit.var"#128#129"{typeof(F_chan)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64}, PropertyLens{:α}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}}, ind_fold::Int64; prob::BifurcationProblem{BifFunction{typeof(F_chan), BifurcationKit.var"#128#129"{typeof(F_chan)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64}, PropertyLens{:α}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, normN::typeof(norm), options::NewtonPar{Float64, DefaultLS, DefaultEig{typeof(real)}}, nev::Int64, start_with_eigen::Bool, bdlinsolver::MatrixBLS{Nothing}, kwargs::@Kwargs{}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/codim2/MinAugFold.jl:288 [7] newton(br::ContResult{BifurcationKit.EquilibriumCont, @NamedTuple{x::Float64, param::Float64, itnewton::Int64, itlinear::Int64, ds::Float64, n_unstable::Int64, n_imag::Int64, stable::Bool, step::Int64}, Vector{ComplexF64}, Matrix{ComplexF64}, SpecialPoint{Float64, @NamedTuple{x::Float64}, Vector{Float64}, Vector{Float64}}, Vector{@NamedTuple{x::Vector{Float64}, p::Float64, step::Int64}}, ContinuationPar{Float64, DefaultLS, DefaultEig{typeof(real)}}, BifurcationProblem{BifFunction{typeof(F_chan), BifurcationKit.var"#128#129"{typeof(F_chan)}, BifurcationKit.var"#136#137", Nothing, BifurcationKit.var"#130#131", Nothing, BifurcationKit.var"#134#135"{BifurcationKit.var"#130#131"}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64}, PropertyLens{:α}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default)}, PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}}, ind_bif::Int64; normN::Function, options::NewtonPar{Float64, DefaultLS, DefaultEig{typeof(real)}}, start_with_eigen::Bool, lens2::typeof(identity), kwargs::@Kwargs{}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/codim2/codim2.jl:199 [8] top-level scope @ ~/.julia/packages/BifurcationKit/DXZuX/test/testJacobianFoldDeflation.jl:52 [9] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [10] top-level scope @ ~/.julia/packages/BifurcationKit/DXZuX/test/runtests.jl:8 [11] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [12] macro expansion @ ~/.julia/packages/BifurcationKit/DXZuX/test/runtests.jl:42 [inlined] [13] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [14] macro expansion @ ~/.julia/packages/BifurcationKit/DXZuX/test/runtests.jl:43 [inlined] [15] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [16] top-level scope @ none:6 [17] eval(m::Module, e::Any) @ Core ./boot.jl:485 [18] exec_options(opts::Base.JLOptions) @ Base ./client.jl:295 [19] _start() @ Base ./client.jl:558 in expression starting at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/test/testJacobianFoldDeflation.jl:52 Hopf Codim 2: Error During Test at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/test/runtests.jl:47 Got exception outside of a @test LoadError: MethodError: no method matching iterate(::BorderedArray{Vector{Float64}, Vector{Float64}}) The function `iterate` exists, but no method is defined for this combination of argument types. Closest candidates are: iterate(!Matched::Cmd) @ Base process.jl:716 iterate(!Matched::Cmd, !Matched::Any) @ Base process.jl:721 iterate(!Matched::KrylovKit.SplitRange) @ KrylovKit ~/.julia/packages/KrylovKit/xccMN/src/KrylovKit.jl:87 ... Stacktrace: [1] isempty(itr::BorderedArray{Vector{Float64}, Vector{Float64}}) @ Base ./essentials.jl:1129 [2] norm(itr::BorderedArray{Vector{Float64}, Vector{Float64}}) @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.12/LinearAlgebra/src/generic.jl:691 [3] _newton(prob::BifurcationKit.HopfMAProblem{HopfProblemMinimallyAugmented{BifurcationProblem{BifFunction{BifurcationKit.var"#126#127"{typeof(Fbru!), PropertyLens{:l}}, typeof(Fbru!), BifurcationKit.var"#136#137", Nothing, typeof(Jbru_ana), Nothing, BifurcationKit.var"#134#135"{typeof(Jbru_ana)}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64, D1::Float64, D2::Float64, l::Float64}, PropertyLens{:l}, typeof(BifurcationKit.plot_default), var"#183#184", typeof(BifurcationKit.save_solution_default)}, Vector{ComplexF64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{DefaultLS}, UniformScaling{Bool}}, Nothing, BorderedArray{Vector{Float64}, Vector{Float64}}, @NamedTuple{α::Float64, β::Float64, D1::Float64, D2::Float64, l::Float64}, Nothing, typeof(BifurcationKit.plot_default), var"#183#184"}, x0::BorderedArray{Vector{Float64}, Vector{Float64}}, p0::@NamedTuple{α::Float64, β::Float64, D1::Float64, D2::Float64, l::Float64}, options::NewtonPar{Float64, HopfLinearSolverMinAug, DefaultEig{typeof(real)}}; normN::typeof(norm), callback::typeof(BifurcationKit.cb_default), kwargs::@Kwargs{}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/Newton.jl:78 [4] solve(prob::BifurcationKit.HopfMAProblem{HopfProblemMinimallyAugmented{BifurcationProblem{BifFunction{BifurcationKit.var"#126#127"{typeof(Fbru!), PropertyLens{:l}}, typeof(Fbru!), BifurcationKit.var"#136#137", Nothing, typeof(Jbru_ana), Nothing, BifurcationKit.var"#134#135"{typeof(Jbru_ana)}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64, D1::Float64, D2::Float64, l::Float64}, PropertyLens{:l}, typeof(BifurcationKit.plot_default), var"#183#184", typeof(BifurcationKit.save_solution_default)}, Vector{ComplexF64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{DefaultLS}, UniformScaling{Bool}}, Nothing, BorderedArray{Vector{Float64}, Vector{Float64}}, @NamedTuple{α::Float64, β::Float64, D1::Float64, D2::Float64, l::Float64}, Nothing, typeof(BifurcationKit.plot_default), var"#183#184"}, ::Newton, options::NewtonPar{Float64, HopfLinearSolverMinAug, DefaultEig{typeof(real)}}; kwargs::@Kwargs{normN::typeof(norm)}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/Newton.jl:150 [5] newton_hopf(prob::BifurcationProblem{BifFunction{BifurcationKit.var"#126#127"{typeof(Fbru!), PropertyLens{:l}}, typeof(Fbru!), BifurcationKit.var"#136#137", Nothing, typeof(Jbru_ana), Nothing, BifurcationKit.var"#134#135"{typeof(Jbru_ana)}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64, D1::Float64, D2::Float64, l::Float64}, PropertyLens{:l}, typeof(BifurcationKit.plot_default), var"#183#184", typeof(BifurcationKit.save_solution_default)}, hopfpointguess::BorderedArray{Vector{Float64}, Vector{Float64}}, par::@NamedTuple{α::Float64, β::Float64, D1::Float64, D2::Float64, l::Float64}, eigenvec::Vector{ComplexF64}, eigenvec_ad::Vector{ComplexF64}, options::NewtonPar{Float64, DefaultLS, DefaultEig{typeof(real)}}; normN::Function, bdlinsolver::MatrixBLS{Nothing}, usehessian::Bool, kwargs::@Kwargs{}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/codim2/MinAugHopf.jl:269 [6] newton_hopf(br::ContResult{BifurcationKit.EquilibriumCont, @NamedTuple{x::Float64, param::Float64, itnewton::Int64, itlinear::Int64, ds::Float64, n_unstable::Int64, n_imag::Int64, stable::Bool, step::Int64}, Vector{ComplexF64}, Matrix{ComplexF64}, SpecialPoint{Float64, @NamedTuple{x::Float64}, Vector{Float64}, Vector{Float64}}, Vector{@NamedTuple{x::Vector{Float64}, p::Float64, step::Int64}}, ContinuationPar{Float64, DefaultLS, DefaultEig{typeof(real)}}, BifurcationProblem{BifFunction{BifurcationKit.var"#126#127"{typeof(Fbru!), PropertyLens{:l}}, typeof(Fbru!), BifurcationKit.var"#136#137", Nothing, typeof(Jbru_ana), Nothing, BifurcationKit.var"#134#135"{typeof(Jbru_ana)}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64, D1::Float64, D2::Float64, l::Float64}, PropertyLens{:l}, typeof(BifurcationKit.plot_default), var"#183#184", typeof(BifurcationKit.save_solution_default)}, PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}}, ind_hopf::Int64; prob::BifurcationProblem{BifFunction{BifurcationKit.var"#126#127"{typeof(Fbru!), PropertyLens{:l}}, typeof(Fbru!), BifurcationKit.var"#136#137", Nothing, typeof(Jbru_ana), Nothing, BifurcationKit.var"#134#135"{typeof(Jbru_ana)}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64, D1::Float64, D2::Float64, l::Float64}, PropertyLens{:l}, typeof(BifurcationKit.plot_default), var"#183#184", typeof(BifurcationKit.save_solution_default)}, normN::typeof(norm), options::NewtonPar{Float64, DefaultLS, DefaultEig{typeof(real)}}, verbose::Bool, nev::Int64, start_with_eigen::Bool, kwargs::@Kwargs{}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/codim2/MinAugHopf.jl:306 [7] newton(br::ContResult{BifurcationKit.EquilibriumCont, @NamedTuple{x::Float64, param::Float64, itnewton::Int64, itlinear::Int64, ds::Float64, n_unstable::Int64, n_imag::Int64, stable::Bool, step::Int64}, Vector{ComplexF64}, Matrix{ComplexF64}, SpecialPoint{Float64, @NamedTuple{x::Float64}, Vector{Float64}, Vector{Float64}}, Vector{@NamedTuple{x::Vector{Float64}, p::Float64, step::Int64}}, ContinuationPar{Float64, DefaultLS, DefaultEig{typeof(real)}}, BifurcationProblem{BifFunction{BifurcationKit.var"#126#127"{typeof(Fbru!), PropertyLens{:l}}, typeof(Fbru!), BifurcationKit.var"#136#137", Nothing, typeof(Jbru_ana), Nothing, BifurcationKit.var"#134#135"{typeof(Jbru_ana)}, BifurcationKit.var"#143#144"{BifurcationKit.var"#d1Fad#140"}, BifurcationKit.var"#147#148", BifurcationKit.var"#151#152", BifurcationKit.var"#155#156", Bool, Float64, BifurcationKit.Jet{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64, D1::Float64, D2::Float64, l::Float64}, PropertyLens{:l}, typeof(BifurcationKit.plot_default), var"#183#184", typeof(BifurcationKit.save_solution_default)}, PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}}, ind_bif::Int64; normN::Function, options::NewtonPar{Float64, DefaultLS, DefaultEig{typeof(real)}}, start_with_eigen::Bool, lens2::typeof(identity), kwargs::@Kwargs{}) @ BifurcationKit ~/.julia/packages/BifurcationKit/DXZuX/src/codim2/codim2.jl:186 [8] top-level scope @ ~/.julia/packages/BifurcationKit/DXZuX/test/testHopfMA.jl:86 [9] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [10] top-level scope @ ~/.julia/packages/BifurcationKit/DXZuX/test/runtests.jl:8 [11] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [12] macro expansion @ ~/.julia/packages/BifurcationKit/DXZuX/test/runtests.jl:48 [inlined] [13] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1724 [inlined] [14] macro expansion @ ~/.julia/packages/BifurcationKit/DXZuX/test/runtests.jl:48 [inlined] [15] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:301 [16] top-level scope @ none:6 [17] eval(m::Module, e::Any) @ Core ./boot.jl:485 [18] exec_options(opts::Base.JLOptions) @ Base ./client.jl:295 [19] _start() @ Base ./client.jl:558 in expression starting at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/test/testHopfMA.jl:86 ┌─ Trapezoid functional for periodic orbits ├─ time slices : 10 ├─ dimension : 2 ├─ jacobian : Dense ├─ update section : 1 ├─ # unknowns without phase condition : 19 └─ inplace : false ┌ Info: (:Dense, 1, DefaultLS │ useFactorization: Bool true └ ) Periodic orbits function FD: Error During Test at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/test/stuartLandauTrap.jl:74 Test threw exception Expression: _test_sorted(BK.eigenvals(br_po, 1)) UndefVarError: `_test_sorted` not defined in `Main` Stacktrace: [1] macro expansion @ ~/.julia/packages/BifurcationKit/DXZuX/test/stuartLandauTrap.jl:74 [inlined] [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:676 [inlined] [3] top-level scope @ ~/.julia/packages/BifurcationKit/DXZuX/test/stuartLandauTrap.jl:74 ┌ Info: (:DenseAD, 2, DefaultLS │ useFactorization: Bool true └ ) ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 303 running 1 of 1 signal (10): User defined signal 1 jl_is_concrete_type at /source/src/julia.h:1796 [inlined] jl_type_equality_is_identity at /source/src/jltypes.c:1356 obviously_unequal at /source/src/subtype.c:461 ijl_types_equal at /source/src/subtype.c:2289 jl_specializations_get_linfo_ at /source/src/gf.c:225 #specialize_method#9 at ./runtime_internals.jl:1562 [inlined] specialize_method at ./runtime_internals.jl:1549 [inlined] typeinf_edge at ./../usr/share/julia/Compiler/src/typeinfer.jl:795 abstract_call_method at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:746 infercalls at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:167 abstract_call_gf_by_type at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:344 abstract_call_known at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:2757 jfptr_abstract_call_known_52634.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_invoke at /source/src/gf.c:3366 tojlinvoke115560.1 at /opt/julia/lib/julia/sys.so (unknown line) j_abstract_call_known_52798.1 at /opt/julia/lib/julia/sys.so (unknown line) abstract_call at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:2862 abstract_call at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:2855 [inlined] abstract_call at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:3014 abstract_eval_call at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:3032 [inlined] abstract_eval_statement_expr at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:3289 typeinf_local at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:4036 jfptr_typeinf_local_53276.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 typeinf at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:4228 typeinf_ext at ./../usr/share/julia/Compiler/src/typeinfer.jl:1147 typeinf_ext_toplevel at ./../usr/share/julia/Compiler/src/typeinfer.jl:1218 [inlined] typeinf_ext_toplevel at ./../usr/share/julia/Compiler/src/typeinfer.jl:1216 jfptr_typeinf_ext_toplevel_53666.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] jl_type_infer at /source/src/gf.c:395 jl_compile_method_internal at /source/src/gf.c:2877 _jl_invoke at /source/src/gf.c:3351 [inlined] ijl_apply_generic at /source/src/gf.c:3547 #continuation_potrap#1197 at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/src/periodicorbit/PeriodicOrbitTrapeze.jl:983 continuation_potrap at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/src/periodicorbit/PeriodicOrbitTrapeze.jl:927 [inlined] #continuation#1228 at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/src/periodicorbit/PeriodicOrbitTrapeze.jl:1054 [inlined] continuation at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/src/periodicorbit/PeriodicOrbitTrapeze.jl:1046 unknown function (ip: 0x7b62355d43ec) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 top-level scope at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/test/stuartLandauTrap.jl:64 _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_invoke at /source/src/gf.c:3366 jl_toplevel_eval_flex at /source/src/toplevel.c:1059 jl_toplevel_eval_flex at /source/src/toplevel.c:1010 ijl_toplevel_eval at /source/src/toplevel.c:1082 ijl_toplevel_eval_in at /source/src/toplevel.c:1127 eval at ./boot.jl:485 include_string at ./loading.jl:2846 _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 _include at ./loading.jl:2906 include at ./Base.jl:301 IncludeInto at ./Base.jl:302 jfptr_IncludeInto_69051.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] do_call at /source/src/interpreter.c:125 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:687 eval_body at /source/src/interpreter.c:562 eval_body at /source/src/interpreter.c:562 eval_body at /source/src/interpreter.c:562 eval_body at /source/src/interpreter.c:562 jl_interpret_toplevel_thunk at /source/src/interpreter.c:896 jl_toplevel_eval_flex at /source/src/toplevel.c:1070 jl_toplevel_eval_flex at /source/src/toplevel.c:1010 ijl_toplevel_eval at /source/src/toplevel.c:1082 ijl_toplevel_eval_in at /source/src/toplevel.c:1127 eval at ./boot.jl:485 include_string at ./loading.jl:2846 _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 _include at ./loading.jl:2906 include at ./Base.jl:301 IncludeInto at ./Base.jl:302 jfptr_IncludeInto_69051.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] do_call at /source/src/interpreter.c:125 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:687 jl_interpret_toplevel_thunk at /source/src/interpreter.c:896 jl_toplevel_eval_flex at /source/src/toplevel.c:1070 jl_toplevel_eval_flex at /source/src/toplevel.c:1010 ijl_toplevel_eval at /source/src/toplevel.c:1082 ijl_toplevel_eval_in at /source/src/toplevel.c:1127 eval at ./boot.jl:485 exec_options at ./client.jl:295 _start at ./client.jl:558 jfptr__start_108457.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] true_main at /source/src/jlapi.c:922 jl_repl_entrypoint at /source/src/jlapi.c:1081 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7b6262a34249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point ============================================================== ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:454 poptask at ./task.jl:1187 wait at ./task.jl:1199 #wait#551 at ./condition.jl:141 wait at ./condition.jl:136 [inlined] wait at ./process.jl:694 wait at ./process.jl:687 jfptr_wait_97191.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 subprocess_handler at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2377 unknown function (ip: 0x7e5a1fd84fa3) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 #201 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2317 withenv at ./env.jl:265 #186 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2138 with_temp_env at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:1996 #182 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2105 #mktempdir#21 at ./file.jl:899 unknown function (ip: 0x7e5a1fd74dec) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 mktempdir at ./file.jl:895 mktempdir at ./file.jl:895 #sandbox#178 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2052 [inlined] sandbox at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2044 unknown function (ip: 0x7e5a1fd6c0f9) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 #test#189 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2302 test at /source/usr/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2214 [inlined] #test#170 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:481 test at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:460 unknown function (ip: 0x7e5a1fd6b311) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 #test#84 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:159 unknown function (ip: 0x7e5a1fd627d8) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 test at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:148 #test#82 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:147 test at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:147 [inlined] #test#81 at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:146 [inlined] test at /source/usr/share/julia/stdlib/v1.12/Pkg/src/API.jl:146 unknown function (ip: 0x7e5a1fd6041f) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] do_call at /source/src/interpreter.c:125 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:687 eval_body at /source/src/interpreter.c:562 eval_body at /source/src/interpreter.c:562 jl_interpret_toplevel_thunk at /source/src/interpreter.c:896 jl_toplevel_eval_flex at /source/src/toplevel.c:1070 jl_toplevel_eval_flex at /source/src/toplevel.c:1010 ijl_toplevel_eval at /source/src/toplevel.c:1082 ijl_toplevel_eval_in at /source/src/toplevel.c:1127 eval at ./boot.jl:485 include_string at ./loading.jl:2846 _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 _include at ./loading.jl:2906 include at ./Base.jl:300 exec_options at ./client.jl:329 _start at ./client.jl:558 jfptr__start_108457.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] true_main at /source/src/jlapi.c:922 jl_repl_entrypoint at /source/src/jlapi.c:1081 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7e5a29735249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.12/Profile/src/Profile.jl:1353 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x00007e5a1b600010 Total snapshots: 1. Utilization: 0% ╎1 @Base/client.jl:558 _start() ╎ 1 @Base/client.jl:329 exec_options(opts::Base.JLOptions) ╎ 1 @Base/Base.jl:300 include(mod::Module, _path::String) ╎ 1 @Base/loading.jl:2906 _include(mapexpr::Function, mod::Module, _path::S… ╎ 1 @Base/loading.jl:2846 include_string(mapexpr::typeof(identity), mod::M… ╎ 1 @Base/boot.jl:485 eval(m::Module, e::Any) ╎ ╎ 1 @Pkg/src/API.jl:146 kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(… ╎ ╎ 1 @Pkg/src/API.jl:146 #test#81 ╎ ╎ 1 @Pkg/src/API.jl:147 test ╎ ╎ 1 @Pkg/src/API.jl:147 test(pkgs::Vector{String}; kwargs::Base.Pairs… ╎ ╎ 1 @Pkg/src/API.jl:148 kwcall(::@NamedTuple{julia_args::Cmd}, ::typ… ╎ ╎ ╎ 1 @Pkg/src/API.jl:159 test(pkgs::Vector{Pkg.Types.PackageSpec}; i… ╎ ╎ ╎ 1 @Pkg/src/API.jl:460 kwcall(::@NamedTuple{julia_args::Cmd, io::… ╎ ╎ ╎ 1 @Pkg/src/API.jl:481 test(ctx::Pkg.Types.Context, pkgs::Vector… ╎ ╎ ╎ 1 @Pkg/…Operations.jl:2214 test ╎ ╎ ╎ 1 @Pkg/…perations.jl:2302 test(ctx::Pkg.Types.Context, pkgs::… ╎ ╎ ╎ ╎ 1 @Pkg/…perations.jl:2044 kwcall(::@NamedTuple{preferences::… ╎ ╎ ╎ ╎ 1 @Pkg/…perations.jl:2052 #sandbox#178 ╎ ╎ ╎ ╎ 1 @Base/file.jl:895 mktempdir(fn::Function) ╎ ╎ ╎ ╎ 1 @Base/file.jl:895 mktempdir(fn::Function, parent::Strin… ╎ ╎ ╎ ╎ 1 @Base/file.jl:899 mktempdir(fn::Pkg.Operations.var"#18… ╎ ╎ ╎ ╎ ╎ 1 @Pkg/…rations.jl:2105 (::Pkg.Operations.var"#182#183"… ╎ ╎ ╎ ╎ ╎ 1 @Pkg/…rations.jl:1996 with_temp_env(fn::Pkg.Operatio… ╎ ╎ ╎ ╎ ╎ 1 @Pkg/…ations.jl:2138 (::Pkg.Operations.var"#186#187… ╎ ╎ ╎ ╎ ╎ 1 @Base/env.jl:265 withenv(::Pkg.Operations.var"#201… ╎ ╎ ╎ ╎ ╎ 1 @Pkg/…tions.jl:2317 (::Pkg.Operations.var"#201#20… ╎ ╎ ╎ ╎ ╎ ╎ 1 @Pkg/…tions.jl:2377 subprocess_handler(cmd::Cmd,… ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…cess.jl:687 wait(x::Base.Process) ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…cess.jl:694 wait(x::Base.Process, syncd… ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ion.jl:136 wait ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ion.jl:141 wait(c::Base.GenericCondit… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…sk.jl:1199 wait() ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…sk.jl:1187 poptask(W::Base.Intrusiv… [1] signal 15: Terminated in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:454 [303] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/test/stuartLandauTrap.jl:56 _ZN4llvm13BasicAAResult8aliasPHIEPKNS_7PHINodeENS_12LocationSizeEPKNS_5ValueES4_RNS_11AAQueryInfoE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm13BasicAAResult19aliasCheckRecursiveEPKNS_5ValueENS_12LocationSizeES3_S4_RNS_11AAQueryInfoES3_S3_ at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm13BasicAAResult10aliasCheckEPKNS_5ValueENS_12LocationSizeES3_S4_RNS_11AAQueryInfoEPKNS_11InstructionE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm13BasicAAResult5aliasERKNS_14MemoryLocationES3_RNS_11AAQueryInfoEPKNS_11InstructionE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm9AAResults5aliasERKNS_14MemoryLocationES3_RNS_11AAQueryInfoEPKNS_11InstructionE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm13BasicAAResult8aliasGEPEPKNS_11GEPOperatorENS_12LocationSizeEPKNS_5ValueES4_S7_S7_RNS_11AAQueryInfoE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm13BasicAAResult19aliasCheckRecursiveEPKNS_5ValueENS_12LocationSizeES3_S4_RNS_11AAQueryInfoES3_S3_ at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm13BasicAAResult10aliasCheckEPKNS_5ValueENS_12LocationSizeES3_S4_RNS_11AAQueryInfoEPKNS_11InstructionE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm13BasicAAResult5aliasERKNS_14MemoryLocationES3_RNS_11AAQueryInfoEPKNS_11InstructionE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm9AAResults5aliasERKNS_14MemoryLocationES3_RNS_11AAQueryInfoEPKNS_11InstructionE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm9AAResults13getModRefInfoEPKNS_11InstructionERKSt8optionalINS_14MemoryLocationEERNS_11AAQueryInfoE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm23MemoryDependenceResults30getSimplePointerDependencyFromERKNS_14MemoryLocationEbNS_21ilist_iterator_w_bitsINS_12ilist_detail12node_optionsINS_11InstructionELb1ELb0EvLb1EEELb0ELb0EEEPNS_10BasicBlockEPS7_PjRNS_14BatchAAResultsE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm23MemoryDependenceResults24getPointerDependencyFromERKNS_14MemoryLocationEbNS_21ilist_iterator_w_bitsINS_12ilist_detail12node_optionsINS_11InstructionELb1ELb0EvLb1EEELb0ELb0EEEPNS_10BasicBlockEPS7_PjRNS_14BatchAAResultsE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm23MemoryDependenceResults23getNonLocalInfoForBlockEPNS_11InstructionERKNS_14MemoryLocationEbPNS_10BasicBlockEPSt6vectorINS_16NonLocalDepEntryESaIS9_EEjRNS_14BatchAAResultsE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm23MemoryDependenceResults27getNonLocalPointerDepFromBBEPNS_11InstructionERKNS_12PHITransAddrERKNS_14MemoryLocationEbPNS_10BasicBlockERNS_15SmallVectorImplINS_17NonLocalDepResultEEERNS_8DenseMapISA_PNS_5ValueENS_12DenseMapInfoISA_vEENS_6detail12DenseMapPairISA_SH_EEEEbb at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm23MemoryDependenceResults27getNonLocalPointerDepFromBBEPNS_11InstructionERKNS_12PHITransAddrERKNS_14MemoryLocationEbPNS_10BasicBlockERNS_15SmallVectorImplINS_17NonLocalDepResultEEERNS_8DenseMapISA_PNS_5ValueENS_12DenseMapInfoISA_vEENS_6detail12DenseMapPairISA_SH_EEEEbb at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm23MemoryDependenceResults27getNonLocalPointerDepFromBBEPNS_11InstructionERKNS_12PHITransAddrERKNS_14MemoryLocationEbPNS_10BasicBlockERNS_15SmallVectorImplINS_17NonLocalDepResultEEERNS_8DenseMapISA_PNS_5ValueENS_12DenseMapInfoISA_vEENS_6detail12DenseMapPairISA_SH_EEEEbb at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm23MemoryDependenceResults28getNonLocalPointerDependencyEPNS_11InstructionERNS_15SmallVectorImplINS_17NonLocalDepResultEEE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) poptask at ./task.jl:1187 _ZN4llvm7GVNPass19processNonLocalLoadEPNS_8LoadInstE.part.0 at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) wait at ./task.jl:1199 #wait#551 at ./condition.jl:141 _ZN4llvm7GVNPass18processInstructionEPNS_11InstructionE.part.0 at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) wait at ./condition.jl:136 [inlined] _trywait at ./asyncevent.jl:145 _ZN4llvm7GVNPass12processBlockEPNS_10BasicBlockE.part.0 at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm7GVNPass17iterateOnFunctionERNS_8FunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm7GVNPass7runImplERNS_8FunctionERNS_15AssumptionCacheERNS_13DominatorTreeERKNS_17TargetLibraryInfoERNS_9AAResultsEPNS_23MemoryDependenceResultsERNS_8LoopInfoEPNS_25OptimizationRemarkEmitterEPNS_9MemorySSAE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) _ZN4llvm7GVNPass3runERNS_8FunctionERNS_15AnalysisManagerIS1_JEEE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) profile_printing_listener at ./Base.jl:326 run at /source/usr/include/llvm/IR/PassManagerInternal.h:89 run at /source/usr/include/llvm/IR/PassManager.h:543 [inlined] #start_profile_listener##0 at ./Base.jl:346 run at /source/usr/include/llvm/IR/PassManagerInternal.h:89 _ZN4llvm27ModuleToFunctionPassAdaptor3runERNS_6ModuleERNS_15AnalysisManagerIS1_JEEE at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:89 _ZN4llvm11PassManagerINS_6ModuleENS_15AnalysisManagerIS1_JEEEJEE3runERS1_RS3_ at /opt/julia/bin/../lib/julia/libLLVM.so.18.1jl (unknown line) run at /source/src/pipeline.cpp:740 jfptr_YY.start_profile_listenerYY.YY.0_111230.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] start_task at /source/src/task.c:1281 unknown function (ip: (nil)) at (unknown file) Allocations: 24928096 (Pool: 24926525; Big: 1571); GC: 30 operator() at /source/src/jitlayers.cpp:1532 withModuleDo<(anonymous namespace)::sizedOptimizerT::operator()(llvm::orc::ThreadSafeModule) [with long unsigned int N = 4]:: > at /source/usr/include/llvm/ExecutionEngine/Orc/ThreadSafeModule.h:136 [inlined] operator() at /source/src/jitlayers.cpp:1493 [inlined] operator() at /source/src/jitlayers.cpp:1645 [inlined] addModule at /source/src/jitlayers.cpp:2104 jl_compile_codeinst_now at /source/src/jitlayers.cpp:569 _jl_compile_codeinst at /source/src/jitlayers.cpp:758 [inlined] jl_compile_codeinst_impl at /source/src/jitlayers.cpp:902 jl_compile_method_internal at /source/src/gf.c:2890 _jl_invoke at /source/src/gf.c:3351 [inlined] ijl_apply_generic at /source/src/gf.c:3547 continuation at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/src/Continuation.jl:567 #continuation#443 at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/src/Continuation.jl:638 continuation at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/src/Continuation.jl:608 unknown function (ip: 0x7b6234d82477) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 #continuation_potrap#1197 at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/src/periodicorbit/PeriodicOrbitTrapeze.jl:983 continuation_potrap at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/src/periodicorbit/PeriodicOrbitTrapeze.jl:927 [inlined] #continuation#1228 at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/src/periodicorbit/PeriodicOrbitTrapeze.jl:1054 [inlined] continuation at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/src/periodicorbit/PeriodicOrbitTrapeze.jl:1046 unknown function (ip: 0x7b62355d43ec) at (unknown file) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 top-level scope at /home/pkgeval/.julia/packages/BifurcationKit/DXZuX/test/stuartLandauTrap.jl:64 _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_invoke at /source/src/gf.c:3366 jl_toplevel_eval_flex at /source/src/toplevel.c:1059 jl_toplevel_eval_flex at /source/src/toplevel.c:1010 ijl_toplevel_eval at /source/src/toplevel.c:1082 ijl_toplevel_eval_in at /source/src/toplevel.c:1127 eval at ./boot.jl:485 include_string at ./loading.jl:2846 _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 _include at ./loading.jl:2906 include at ./Base.jl:301 IncludeInto at ./Base.jl:302 jfptr_IncludeInto_69051.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] do_call at /source/src/interpreter.c:125 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:687 eval_body at /source/src/interpreter.c:562 eval_body at /source/src/interpreter.c:562 eval_body at /source/src/interpreter.c:562 eval_body at /source/src/interpreter.c:562 jl_interpret_toplevel_thunk at /source/src/interpreter.c:896 jl_toplevel_eval_flex at /source/src/toplevel.c:1070 jl_toplevel_eval_flex at /source/src/toplevel.c:1010 ijl_toplevel_eval at /source/src/toplevel.c:1082 ijl_toplevel_eval_in at /source/src/toplevel.c:1127 eval at ./boot.jl:485 include_string at ./loading.jl:2846 _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 _include at ./loading.jl:2906 include at ./Base.jl:301 IncludeInto at ./Base.jl:302 jfptr_IncludeInto_69051.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] do_call at /source/src/interpreter.c:125 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:687 jl_interpret_toplevel_thunk at /source/src/interpreter.c:896 jl_toplevel_eval_flex at /source/src/toplevel.c:1070 jl_toplevel_eval_flex at /source/src/toplevel.c:1010 ijl_toplevel_eval at /source/src/toplevel.c:1082 ijl_toplevel_eval_in at /source/src/toplevel.c:1127 eval at ./boot.jl:485 exec_options at ./client.jl:295 _start at ./client.jl:558 jfptr__start_108457.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3359 [inlined] ijl_apply_generic at /source/src/gf.c:3547 jl_apply at /source/src/julia.h:2244 [inlined] true_main at /source/src/jlapi.c:922 jl_repl_entrypoint at /source/src/jlapi.c:1081 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7b6262a34249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) Allocations: 745658582 (Pool: 745647178; Big: 11404); GC: 309 PkgEval terminated after 2733.41s: test duration exceeded the time limit