Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.71 (9f595ebbf8*) started at 2025-11-14T10:03:04.342 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.15s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.16.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.11.4 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.8s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 1338.6 ms ✓ Measurements 4619.7 ms ✓ StatsBase 8094.8 ms ✓ RayTraceHeatTransfer 3 dependencies successfully precompiled in 14 seconds. 56 already precompiled. Precompilation completed after 25.95s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_hxb0NP/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_hxb0NP/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:04:14 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:06 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012354828413834742 Iteration 10: d = 1.5087288592296819e-5 Iteration 20: d = 2.2337053115257095e-7 Iteration 30: d = 3.663048819131755e-9 Iteration 40: d = 6.202003061190227e-11 Iteration 50: d = 1.0638796524227663e-12 Iteration 60: d = 1.8360060303722914e-14 Converged after 66 iterations. d = 1.6238045458896016e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▊ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001287179904229149 Iteration 10: d = 1.386611909101684e-5 Iteration 20: d = 1.9108626307387305e-7 Iteration 30: d = 3.0657274143266933e-9 Iteration 40: d = 5.1847671828703414e-11 Iteration 50: d = 8.975009995086382e-13 Iteration 60: d = 1.571309487485004e-14 Converged after 65 iterations. d = 2.0543020382614372e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011544457639363474 Iteration 10: d = 1.2558750131404736e-5 Iteration 20: d = 1.909347341024542e-7 Iteration 30: d = 3.246908376243777e-9 Iteration 40: d = 5.704559427602561e-11 Iteration 50: d = 1.0165253960045513e-12 Iteration 60: d = 1.821493519484256e-14 Converged after 66 iterations. d = 1.6559852853476277e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|██████████████ | ETA: 0:00:01 Bin 1 progress: 88%|█████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012833664079242794 Iteration 10: d = 1.5153040578024038e-5 Iteration 20: d = 2.2547633690245998e-7 Iteration 30: d = 3.802520332567704e-9 Iteration 40: d = 6.64544462613061e-11 Iteration 50: d = 1.1777418380309405e-12 Iteration 60: d = 2.1002694828034128e-14 Converged after 66 iterations. d = 1.8916436994193237e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012421295116714502 Iteration 10: d = 1.7257735849086445e-5 Iteration 20: d = 2.483490968461173e-7 Iteration 30: d = 3.77458159073697e-9 Iteration 40: d = 5.829313836857062e-11 Iteration 50: d = 9.064469081915157e-13 Iteration 60: d = 1.4128377767887213e-14 Converged after 65 iterations. d = 1.7618983237437656e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013386873568776647 Iteration 10: d = 1.773843772661817e-5 Iteration 20: d = 2.3628751196848038e-7 Iteration 30: d = 3.402441580301987e-9 Iteration 40: d = 5.084504506465605e-11 Iteration 50: d = 7.755010379397819e-13 Iteration 60: d = 1.199310095134039e-14 Converged after 65 iterations. d = 1.4751174626963925e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012674834067574784 Iteration 10: d = 1.369456470204983e-5 Iteration 20: d = 1.7601954789762314e-7 Iteration 30: d = 2.5274985536532136e-9 Iteration 40: d = 3.792973740668752e-11 Iteration 50: d = 5.821212301814661e-13 Iteration 60: d = 9.01273961261194e-15 Converged after 64 iterations. d = 1.7145869215421815e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001174604033988426 Iteration 10: d = 1.4699621178285822e-5 Iteration 20: d = 2.0848218081038124e-7 Iteration 30: d = 3.1194404436388457e-9 Iteration 40: d = 4.748247810234713e-11 Iteration 50: d = 7.288521273991101e-13 Iteration 60: d = 1.1184797924318062e-14 Converged after 64 iterations. d = 2.1577397828009495e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 86%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012189110200066073 Iteration 10: d = 1.0792995079447819e-5 Iteration 20: d = 1.4368148331582558e-7 Iteration 30: d = 2.1807582104844395e-9 Iteration 40: d = 3.3806469764979424e-11 Iteration 50: d = 5.274411683169627e-13 Iteration 60: d = 8.251565589708896e-15 Converged after 64 iterations. d = 1.5807158009643084e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013588864546268374 Iteration 10: d = 1.7292601662735187e-5 Iteration 20: d = 2.4192117224549265e-7 Iteration 30: d = 3.691047154068081e-9 Iteration 40: d = 5.7518091498061223e-11 Iteration 50: d = 9.033876830444926e-13 Iteration 60: d = 1.4245470631604706e-14 Converged after 65 iterations. d = 1.772751921959381e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004956835080128523 Iteration 10: d = 4.3725612781943215e-5 Iteration 20: d = 3.9231879672540535e-7 Iteration 30: d = 4.215254376698658e-9 Iteration 40: d = 5.054999143496393e-11 Iteration 50: d = 6.526487307025911e-13 Iteration 60: d = 8.816384263418336e-15 Converged after 64 iterations. d = 1.564957868009432e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0031573642081374974 Iteration 10: d = 2.707830333838876e-5 Iteration 20: d = 3.5850674086497525e-7 Iteration 30: d = 5.460651445021552e-9 Iteration 40: d = 8.456600291575676e-11 Iteration 50: d = 1.3145262695382071e-12 Iteration 60: d = 2.0482485252275006e-14 Converged after 66 iterations. d = 1.7206028292088548e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0028358859221811663 Iteration 10: d = 2.7362420866838304e-5 Iteration 20: d = 3.7942993912076603e-7 Iteration 30: d = 6.0318394335747324e-9 Iteration 40: d = 9.991732818357681e-11 Iteration 50: d = 1.6948105044391441e-12 Iteration 60: d = 2.911362235823422e-14 Converged after 67 iterations. d = 1.6882754980142473e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0021817844327664164 Iteration 10: d = 1.6526416955741862e-5 Iteration 20: d = 2.5155987249854874e-7 Iteration 30: d = 4.315407459473969e-9 Iteration 40: d = 7.42869590739981e-11 Iteration 50: d = 1.2792702165852574e-12 Iteration 60: d = 2.2068160533388804e-14 Converged after 66 iterations. d = 1.946256716982912e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 83%|███████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012421295116714502 Iteration 10: d = 1.7257735849086445e-5 Iteration 20: d = 2.483490968461173e-7 Iteration 30: d = 3.77458159073697e-9 Iteration 40: d = 5.829313836857062e-11 Iteration 50: d = 9.064469081915157e-13 Iteration 60: d = 1.4128377767887213e-14 Converged after 65 iterations. d = 1.7618983237437656e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00109678160521295 Iteration 10: d = 1.3680033260136234e-5 Iteration 20: d = 1.764412554018477e-7 Iteration 30: d = 2.4660340618553457e-9 Iteration 40: d = 3.473794635679254e-11 Iteration 50: d = 4.8894536041998e-13 Iteration 60: d = 6.8575262208165546e-15 Converged after 63 iterations. d = 1.9049873131686676e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001669689357422663 Iteration 10: d = 1.6986688873507577e-5 Iteration 20: d = 2.0721847750383564e-7 Iteration 30: d = 2.8225697952719072e-9 Iteration 40: d = 3.927387012478642e-11 Iteration 50: d = 5.500028491063454e-13 Iteration 60: d = 7.737583722144337e-15 Converged after 63 iterations. d = 2.1053626922563302e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.771644432361 Iteration 2: convergence error = 4830.356558983315 Iteration 3: convergence error = 1093.3176035402914 Iteration 4: convergence error = 320.337321850453 Iteration 5: convergence error = 94.98517586112007 Iteration 6: convergence error = 28.307591015948674 Iteration 7: convergence error = 8.462496501741043 Iteration 8: convergence error = 2.5348489134387364 Iteration 9: convergence error = 0.7574586974990325 Iteration 10: convergence error = 0.22602912896422822 Iteration 11: convergence error = 0.06739509859175996 Iteration 12: convergence error = 0.020086241590661302 Iteration 13: convergence error = 0.005984931035754926 Iteration 14: convergence error = 0.0017830230663093971 Iteration 15: convergence error = 0.000531152079020103 Iteration 16: convergence error = 0.00015821955867068027 Iteration 17: convergence error = 4.7129147560553974e-5 Iteration 18: convergence error = 1.4038221024748054e-5 Iteration 19: convergence error = 4.181483063803171e-6 Iteration 20: convergence error = 1.2455104752007173e-6 Iteration 21: convergence error = 3.709842530952301e-7 Iteration 22: convergence error = 1.1035558600269724e-7 Iteration 23: convergence error = 3.19712398777483e-8 Iteration 24: convergence error = 9.209088602801785e-9 Iteration 25: convergence error = 2.644583219080232e-9 Iteration 26: convergence error = 7.530616130679846e-10 Iteration 27: convergence error = 2.1714186004828662e-10 Iteration 28: convergence error = 6.093614501878619e-11 Iteration 29: convergence error = 1.887201506178826e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00109678160521295 Iteration 10: d = 1.3680033260136234e-5 Iteration 20: d = 1.764412554018477e-7 Iteration 30: d = 2.4660340618553457e-9 Iteration 40: d = 3.473794635679254e-11 Iteration 50: d = 4.8894536041998e-13 Iteration 60: d = 6.8575262208165546e-15 Converged after 63 iterations. d = 1.9049873131686676e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.856338249221 Iteration 2: convergence error = 4825.971158461207 Iteration 3: convergence error = 1101.9141460578244 Iteration 4: convergence error = 319.3682395479891 Iteration 5: convergence error = 94.79991822800389 Iteration 6: convergence error = 28.504243094042295 Iteration 7: convergence error = 8.592779662694056 Iteration 8: convergence error = 2.580125389220484 Iteration 9: convergence error = 0.7729034483852502 Iteration 10: convergence error = 0.23121684956527133 Iteration 11: convergence error = 0.06911579587858796 Iteration 12: convergence error = 0.020651134381068914 Iteration 13: convergence error = 0.006168812778923893 Iteration 14: convergence error = 0.0018424554409648408 Iteration 15: convergence error = 0.0005502456833710312 Iteration 16: convergence error = 0.00016432199004157155 Iteration 17: convergence error = 4.9070759587266366e-5 Iteration 18: convergence error = 1.4653553989774082e-5 Iteration 19: convergence error = 4.375820026325528e-6 Iteration 20: convergence error = 1.3066892279312015e-6 Iteration 21: convergence error = 3.901968739228323e-7 Iteration 22: convergence error = 1.1639622243819758e-7 Iteration 23: convergence error = 3.384161573194433e-8 Iteration 24: convergence error = 9.78275238594506e-9 Iteration 25: convergence error = 2.8194335754960775e-9 Iteration 26: convergence error = 8.071765478234738e-10 Iteration 27: convergence error = 2.3283064365386963e-10 Iteration 28: convergence error = 6.889422365929931e-11 Iteration 29: convergence error = 1.9099388737231493e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 12:13:51 Bin 1 ray tracing: 9%|██▊ | ETA: 0:00:54 Bin 1 ray tracing: 18%|█████▍ | ETA: 0:00:30 Bin 1 ray tracing: 26%|███████▉ | ETA: 0:00:21 Bin 1 ray tracing: 35%|██████████▌ | ETA: 0:00:16 Bin 1 ray tracing: 44%|█████████████▏ | ETA: 0:00:12 Bin 1 ray tracing: 52%|███████████████▋ | ETA: 0:00:10 Bin 1 ray tracing: 60%|██████████████████▏ | ETA: 0:00:08 Bin 1 ray tracing: 69%|████████████████████▋ | ETA: 0:00:06 Bin 1 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:04 Bin 1 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 1 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 2 ray tracing: 16%|█████ | ETA: 0:00:10 Bin 2 ray tracing: 25%|███████▍ | ETA: 0:00:09 Bin 2 ray tracing: 33%|█████████▉ | ETA: 0:00:08 Bin 2 ray tracing: 41%|████████████▍ | ETA: 0:00:07 Bin 2 ray tracing: 49%|██████████████▉ | ETA: 0:00:06 Bin 2 ray tracing: 58%|█████████████████▎ | ETA: 0:00:05 Bin 2 ray tracing: 66%|███████████████████▊ | ETA: 0:00:04 Bin 2 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:03 Bin 2 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 2 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:01 Bin 2 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▍ | ETA: 0:00:11 Bin 3 ray tracing: 16%|████▉ | ETA: 0:00:10 Bin 3 ray tracing: 24%|███████▎ | ETA: 0:00:09 Bin 3 ray tracing: 32%|█████████▋ | ETA: 0:00:08 Bin 3 ray tracing: 40%|████████████▏ | ETA: 0:00:07 Bin 3 ray tracing: 48%|██████████████▌ | ETA: 0:00:06 Bin 3 ray tracing: 57%|█████████████████ | ETA: 0:00:05 Bin 3 ray tracing: 65%|███████████████████▋ | ETA: 0:00:04 Bin 3 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:03 Bin 3 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 3 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:01 Bin 3 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 4 ray tracing: 18%|█████▎ | ETA: 0:00:09 Bin 4 ray tracing: 27%|████████ | ETA: 0:00:08 Bin 4 ray tracing: 36%|██████████▋ | ETA: 0:00:07 Bin 4 ray tracing: 44%|█████████████▍ | ETA: 0:00:06 Bin 4 ray tracing: 55%|████████████████▌ | ETA: 0:00:05 Bin 4 ray tracing: 68%|████████████████████▍ | ETA: 0:00:03 Bin 4 ray tracing: 81%|████████████████████████▏ | ETA: 0:00:02 Bin 4 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 14%|████▏ | ETA: 0:00:07 Bin 5 ray tracing: 27%|████████▏ | ETA: 0:00:06 Bin 5 ray tracing: 41%|████████████▎ | ETA: 0:00:04 Bin 5 ray tracing: 55%|████████████████▋ | ETA: 0:00:03 Bin 5 ray tracing: 70%|█████████████████████ | ETA: 0:00:02 Bin 5 ray tracing: 84%|█████████████████████████▍ | ETA: 0:00:01 Bin 5 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 14%|████▎ | ETA: 0:00:06 Bin 6 ray tracing: 29%|████████▋ | ETA: 0:00:05 Bin 6 ray tracing: 43%|████████████▉ | ETA: 0:00:04 Bin 6 ray tracing: 57%|█████████████████▎ | ETA: 0:00:03 Bin 6 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:02 Bin 6 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:06 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 14%|████▎ | ETA: 0:00:06 Bin 7 ray tracing: 29%|████████▋ | ETA: 0:00:05 Bin 7 ray tracing: 43%|█████████████ | ETA: 0:00:04 Bin 7 ray tracing: 58%|█████████████████▎ | ETA: 0:00:03 Bin 7 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 87%|██████████████████████████ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:06 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 15%|████▍ | ETA: 0:00:06 Bin 8 ray tracing: 29%|████████▉ | ETA: 0:00:05 Bin 8 ray tracing: 44%|█████████████▎ | ETA: 0:00:04 Bin 8 ray tracing: 59%|█████████████████▋ | ETA: 0:00:03 Bin 8 ray tracing: 73%|██████████████████████ | ETA: 0:00:02 Bin 8 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:06 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 15%|████▌ | ETA: 0:00:06 Bin 9 ray tracing: 30%|█████████ | ETA: 0:00:05 Bin 9 ray tracing: 45%|█████████████▌ | ETA: 0:00:04 Bin 9 ray tracing: 60%|██████████████████ | ETA: 0:00:03 Bin 9 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:02 Bin 9 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:06 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 15%|████▍ | ETA: 0:00:06 Bin 10 ray tracing: 30%|████████▊ | ETA: 0:00:05 Bin 10 ray tracing: 45%|█████████████▏ | ETA: 0:00:04 Bin 10 ray tracing: 60%|█████████████████▌ | ETA: 0:00:03 Bin 10 ray tracing: 75%|█████████████████████▉ | ETA: 0:00:02 Bin 10 ray tracing: 90%|██████████████████████████▎ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:06 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 2 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 3 progress: 82%|███████████████████████████▏ | ETA: 0:00:00 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 4 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 5 progress: 82%|███████████████████████████▏ | ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 6 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 7 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 29%|█████████▌ | ETA: 0:00:03 Bin 8 progress: 60%|███████████████████▊ | ETA: 0:00:01 Bin 8 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 9 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 40%|████████████▊ | ETA: 0:00:02 Bin 10 progress: 80%|█████████████████████████▋ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:02 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00109678160521295 Iteration 10: d = 1.3680033260136234e-5 Iteration 20: d = 1.764412554018477e-7 Iteration 30: d = 2.4660340618553457e-9 Iteration 40: d = 3.473794635679254e-11 Iteration 50: d = 4.8894536041998e-13 Iteration 60: d = 6.8575262208165546e-15 Converged after 63 iterations. d = 1.9049873131686676e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016631609591702475 Iteration 10: d = 1.7101315396830873e-5 Iteration 20: d = 2.0961287487254564e-7 Iteration 30: d = 2.8587188816161585e-9 Iteration 40: d = 3.9789600225500105e-11 Iteration 50: d = 5.57220994947984e-13 Iteration 60: d = 7.796125984411303e-15 Converged after 63 iterations. d = 2.1199096379139455e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011287964308791829 Iteration 10: d = 1.11239701894532e-5 Iteration 20: d = 1.2602673281416905e-7 Iteration 30: d = 1.6579072316232946e-9 Iteration 40: d = 2.301178697958535e-11 Iteration 50: d = 3.2674161146515656e-13 Iteration 60: d = 4.672944418098015e-15 Converged after 62 iterations. d = 2.0147721933580328e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012075814224794062 Iteration 10: d = 1.146794388650977e-5 Iteration 20: d = 1.3972795869181082e-7 Iteration 30: d = 1.8572977743398115e-9 Iteration 40: d = 2.5137386462894597e-11 Iteration 50: d = 3.4298355853322685e-13 Iteration 60: d = 4.675950797299113e-15 Converged after 62 iterations. d = 2.000857479133604e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014769331688415906 Iteration 10: d = 1.3079917024881828e-5 Iteration 20: d = 1.5449793302837344e-7 Iteration 30: d = 2.14425520528995e-9 Iteration 40: d = 3.035460084331721e-11 Iteration 50: d = 4.292870720806158e-13 Iteration 60: d = 6.07579632123832e-15 Converged after 63 iterations. d = 1.6727741373125057e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001184535965708298 Iteration 10: d = 1.5936654271412108e-5 Iteration 20: d = 2.0519106266409327e-7 Iteration 30: d = 2.7721440152335603e-9 Iteration 40: d = 3.775143913827577e-11 Iteration 50: d = 5.157633532643997e-13 Iteration 60: d = 7.0446415373559865e-15 Converged after 63 iterations. d = 1.9607791650741072e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013803316840818797 Iteration 10: d = 1.4216367657270272e-5 Iteration 20: d = 1.721473823578488e-7 Iteration 30: d = 2.2954549953435624e-9 Iteration 40: d = 3.1076900268447856e-11 Iteration 50: d = 4.238918213004355e-13 Iteration 60: d = 5.813437163653472e-15 Converged after 63 iterations. d = 1.628192062255048e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011563742476454117 Iteration 10: d = 9.77151040638762e-6 Iteration 20: d = 1.0743007344057888e-7 Iteration 30: d = 1.4680989023828765e-9 Iteration 40: d = 2.077610928364e-11 Iteration 50: d = 2.944997536875156e-13 Iteration 60: d = 4.195009584809618e-15 Converged after 62 iterations. d = 1.7636866106917187e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001533769818093242 Iteration 10: d = 1.5797927355018305e-5 Iteration 20: d = 1.815245072153088e-7 Iteration 30: d = 2.394328779649996e-9 Iteration 40: d = 3.2726564754958e-11 Iteration 50: d = 4.5283591394490594e-13 Iteration 60: d = 6.234897981530542e-15 Converged after 63 iterations. d = 1.785322541949456e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013970102223756858 Iteration 10: d = 1.2819051426397365e-5 Iteration 20: d = 1.3613121760923873e-7 Iteration 30: d = 1.7356155813557689e-9 Iteration 40: d = 2.3323105380048943e-11 Iteration 50: d = 3.2002248274575596e-13 Iteration 60: d = 4.468853069624523e-15 Converged after 62 iterations. d = 1.898406852303769e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8650.640409671014 Iteration 2: convergence error = 4830.084089689709 Iteration 3: convergence error = 1097.5993708496262 Iteration 4: convergence error = 312.209870801476 Iteration 5: convergence error = 92.91688646288048 Iteration 6: convergence error = 28.19630070869289 Iteration 7: convergence error = 8.502966148558926 Iteration 8: convergence error = 2.553885888397872 Iteration 9: convergence error = 0.7652237225738645 Iteration 10: convergence error = 0.22896682696341486 Iteration 11: convergence error = 0.06845628022006167 Iteration 12: convergence error = 0.020457800593703723 Iteration 13: convergence error = 0.006112143387781543 Iteration 14: convergence error = 0.001825848176395084 Iteration 15: convergence error = 0.0005453801932162605 Iteration 16: convergence error = 0.00016289698965010757 Iteration 17: convergence error = 4.865356095251627e-5 Iteration 18: convergence error = 1.4531457281918847e-5 Iteration 19: convergence error = 4.340099167166045e-6 Iteration 20: convergence error = 1.296247546633822e-6 Iteration 21: convergence error = 3.871373337460682e-7 Iteration 22: convergence error = 1.1549923328857403e-7 Iteration 23: convergence error = 3.357286004757043e-8 Iteration 24: convergence error = 9.687710189609788e-9 Iteration 25: convergence error = 2.7871465135831386e-9 Iteration 26: convergence error = 8.030838216654956e-10 Iteration 27: convergence error = 2.2896529117133468e-10 Iteration 28: convergence error = 6.343725544866174e-11 Iteration 29: convergence error = 2.1827872842550278e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.3479716660829 K, F = -7439.795715980459, relative_change = 0.03265202833391708 Iter 2: T = 936.771972179157 K, F = -6306.463607270119, relative_change = 0.03160806698572404 Iter 3: T = 908.2405794723344 K, F = -5344.263103991158, relative_change = 0.030457137440237172 Iter 5: T = 857.1727444419066 K, F = -3834.1712189109935, relative_change = 0.027840261786751856 Iter 10: T = 762.2531295263336 K, F = -1660.096839375286, relative_change = 0.019911081102906982 Iter 15: T = 706.7323775694696 K, F = -710.7088991892946, relative_change = 0.011915766358251896 Iter 20: T = 678.2030411660423 K, F = -301.199892299018, relative_change = 0.006096127766915291 Iter 25: T = 664.906592735805 K, F = -126.79392101220107, relative_change = 0.0028145772827028607 Iter 30: T = 659.0547890848421 K, F = -53.184446684917646, relative_change = 0.0012308620785498668 Iter 35: T = 656.5516682759761 K, F = -22.271019786446082, relative_change = 0.0005248092638874238 Iter 40: T = 655.4946649974087 K, F = -9.319099622463698, relative_change = 0.00022128969701982714 Iter 45: T = 655.0508040542408 K, F = -3.898255736169425, relative_change = 9.286608782387719e-5 Iter 50: T = 654.8648572891976 K, F = -1.6304544432176071, relative_change = 3.889397644253844e-5 Iter 55: T = 654.7870361980989 K, F = -0.681903072167282, relative_change = 1.6275787979575737e-5 Iter 60: T = 654.7544806930209 K, F = -0.28518482975885207, relative_change = 6.808455411795233e-6 Iter 65: T = 654.7408638778536 K, F = -0.11926854504905349, relative_change = 2.8476794431250817e-6 Iter 70: T = 654.7351688632582 K, F = -0.049879677425662516, relative_change = 1.1909863937271653e-6 Iter 75: T = 654.7327870876887 K, F = -0.02086030258618876, relative_change = 4.980939758855579e-7 Iter 80: T = 654.731790991527 K, F = -0.008724032176901042, relative_change = 2.0831046577527394e-7 Iter 85: T = 654.7313744106117 K, F = -0.0036484952315705144, relative_change = 8.711820726481597e-8 Iter 90: T = 654.7312001912173 K, F = -0.0015258444157710827, relative_change = 3.6433924134390455e-8 Iter 95: T = 654.7311273305369 K, F = -0.0006381263813544091, relative_change = 1.5237110837929565e-8 Iter 100: T = 654.7310968593215 K, F = -0.00026687207702330573, relative_change = 6.3723432175631745e-9 Iter 105: T = 654.731084115894 K, F = -0.00011160909003715691, relative_change = 2.6649902895624084e-9 Iter 110: T = 654.7310787864401 K, F = -4.667625489468419e-5, relative_change = 1.1145308220575196e-9 Iter 115: T = 654.7310765575987 K, F = -1.9520566402586592e-5, relative_change = 4.661100879110409e-10 Iter 120: T = 654.7310756254706 K, F = -8.163733135502227e-6, relative_change = 1.9493278610806043e-10 Iter 125: T = 654.7310752356435 K, F = -3.41416987492682e-6, relative_change = 8.152319984077404e-11 Iter 130: T = 654.7310750726132 K, F = -1.4278462474592857e-6, relative_change = 3.409396701856102e-11 Iter 135: T = 654.731075004432 K, F = -5.971426708106797e-7, relative_change = 1.4258511776261238e-11 Iter 140: T = 654.7310749759179 K, F = -2.497328889794481e-7, relative_change = 5.963096447851176e-12 Iter 145: T = 654.7310749639928 K, F = -1.0444042902735262e-7, relative_change = 2.4938179105849282e-12 Iter 150: T = 654.7310749590057 K, F = -4.367800704452307e-8, relative_change = 1.0429389967529661e-12 Iter 155: T = 654.73107495692 K, F = -1.8267024282092592e-8, relative_change = 4.3617814245271464e-13 Converged in 159 iterations to T = 654.7310749561672 K Iter 1: T = 970.4618667269458 K, F = -6730.291764283962, relative_change = 0.02953813327305423 Iter 2: T = 943.0903039493234 K, F = -5700.21803641758, relative_change = 0.028204676264032804 Iter 3: T = 917.8398355708731 K, F = -4826.042854383368, relative_change = 0.0267741787533075 Iter 5: T = 873.482505055905 K, F = -3455.1799790896066, relative_change = 0.02366849946817101 Iter 10: T = 794.8766943416966 K, F = -1486.8834413300576, relative_change = 0.015363392025239184 Iter 15: T = 752.1474239872598 K, F = -632.8139479181411, relative_change = 0.008389174915565773 Iter 20: T = 731.4414646126938 K, F = -267.0821459691122, relative_change = 0.004028978248664733 Iter 25: T = 722.1311161221072 K, F = -112.17614488570086, relative_change = 0.0017971690186268361 Iter 30: T = 718.1075750924601 K, F = -47.001940866492625, relative_change = 0.0007731961599865475 Iter 35: T = 716.4007903020599 K, F = -19.672633625714617, relative_change = 0.00032729882703384875 Iter 40: T = 715.682669895468 K, F = -8.230132824741927, relative_change = 0.0001375815905697082 Iter 45: T = 715.3815791057974 K, F = -3.4424321099401265, relative_change = 5.766184919377488e-5 Iter 50: T = 715.2555250618412 K, F = -1.439752474404866, relative_change = 2.4136557330424823e-5 Iter 55: T = 715.2027842246617 K, F = -0.602136776436098, relative_change = 1.0097993980965434e-5 Iter 60: T = 715.1807232578782 K, F = -0.2518234322776927, relative_change = 4.223766223859383e-6 Iter 65: T = 715.1714963774803 K, F = -0.10531602880301583, relative_change = 1.7665457336257618e-6 Iter 70: T = 715.1676374598504 K, F = -0.04404450178875097, relative_change = 7.388108580358104e-7 Iter 75: T = 715.1660235923641 K, F = -0.018419950779509642, relative_change = 3.0898308082607874e-7 Iter 80: T = 715.1653486498515 K, F = -0.007703445866451775, relative_change = 1.2922103650204978e-7 Iter 85: T = 715.1650663801578 K, F = -0.0032216734917985823, relative_change = 5.404188948904796e-8 Iter 90: T = 715.164948331483 K, F = -0.0013473424050127747, relative_change = 2.2600982614912464e-8 Iter 95: T = 715.1648989620967 K, F = -0.0005634746989021666, relative_change = 9.452004191443782e-9 Iter 100: T = 715.1648783152261 K, F = -0.00023565185013807444, relative_change = 3.952941606304166e-9 Iter 105: T = 715.1648696804577 K, F = -9.855241907741341e-5, relative_change = 1.6531675008676879e-9 Iter 110: T = 715.1648660692942 K, F = -4.121579781291018e-5, relative_change = 6.913743948911485e-10 Iter 115: T = 715.1648645590625 K, F = -1.7236937718934087e-5, relative_change = 2.891410123641822e-10 Iter 120: T = 715.1648639274656 K, F = -7.2086927332959405e-6, relative_change = 1.2092221701318375e-10 Iter 125: T = 715.1648636633242 K, F = -3.014761995157045e-6, relative_change = 5.057112549390925e-11 Iter 130: T = 715.1648635528572 K, F = -1.2608098923783118e-6, relative_change = 2.114945572510954e-11 Iter 135: T = 715.1648635066585 K, F = -5.272847451998075e-7, relative_change = 8.844938038614889e-12 Iter 140: T = 715.1648634873377 K, F = -2.2051772841091832e-7, relative_change = 3.699074669270882e-12 Iter 145: T = 715.1648634792575 K, F = -9.222382257867423e-8, relative_change = 1.5470085261660361e-12 Iter 150: T = 715.1648634758782 K, F = -3.856793395762281e-8, relative_change = 6.469578141753396e-13 Iter 155: T = 715.164863474465 K, F = -1.6129907964845813e-8, relative_change = 2.705711436695123e-13 Converged in 157 iterations to T = 715.1648634741659 K Iter 1: T = 974.4276271061714 K, F = -5826.689489465402, relative_change = 0.025572372893828643 Iter 2: T = 951.0443967571423 K, F = -4929.569063016916, relative_change = 0.023996887709836358 Iter 3: T = 929.775468186749 K, F = -4168.77322703835, relative_change = 0.022363759928469982 Iter 5: T = 893.2266631572369 K, F = -2977.2582336089026, relative_change = 0.019009074738719094 Iter 10: T = 831.6701580299142 K, F = -1273.0759142626528, relative_change = 0.011165025818860903 Iter 15: T = 800.4280833698767 K, F = -539.0497541307062, relative_change = 0.005634158055828664 Iter 20: T = 785.9825427600379 K, F = -226.80347275913968, relative_change = 0.002581118956421704 Iter 25: T = 779.6513949839418 K, F = -95.11027222347236, relative_change = 0.0011245227300499415 Iter 30: T = 776.9484606020654 K, F = -39.823030805402325, relative_change = 0.0004786631334377422 Iter 35: T = 775.8080469724808 K, F = -16.662771550394517, relative_change = 0.00020168589289212992 Iter 40: T = 775.3293329514006 K, F = -6.970031702538645, relative_change = 8.461327764318748e-5 Iter 45: T = 775.128815723896 K, F = -2.9152068187021047, relative_change = 3.543299233736778e-5 Iter 50: T = 775.0449020732298 K, F = -1.219219186935041, relative_change = 1.4826685875430075e-5 Iter 55: T = 775.0097987600291 K, F = -0.5098998777322128, relative_change = 6.20212988383179e-6 Iter 60: T = 774.9951164514414 K, F = -0.213247592124019, relative_change = 2.594055466517038e-6 Iter 65: T = 774.9889758400906 K, F = -0.08918293001799271, relative_change = 1.0849088259419645e-6 Iter 70: T = 774.9864077115673 K, F = -0.0372974084223493, relative_change = 4.5372949739950156e-7 Iter 75: T = 774.9853336805375 K, F = -0.015598228975183037, relative_change = 1.897564359661469e-7 Iter 80: T = 774.9848845063581 K, F = -0.006523366922373097, relative_change = 7.935864229111653e-8 Iter 85: T = 774.9846966560764 K, F = -0.002728150176628752, relative_change = 3.3188772978996505e-8 Iter 90: T = 774.984618094797 K, F = -0.0011409450253766495, relative_change = 1.387994840955034e-8 Iter 95: T = 774.9845852395232 K, F = -0.00047715684090021693, relative_change = 5.804761425392285e-9 Iter 100: T = 774.9845714990538 K, F = -0.00019955268932958514, relative_change = 2.4276207566312176e-9 Iter 105: T = 774.9845657526253 K, F = -8.345531654929683e-5, relative_change = 1.0152600124781867e-9 Iter 110: T = 774.9845633494001 K, F = -3.4902009180215465e-5, relative_change = 4.245938576970594e-10 Iter 115: T = 774.9845623443427 K, F = -1.4596437353353586e-5, relative_change = 1.775702267099025e-10 Iter 120: T = 774.9845619240157 K, F = -6.104403803663949e-6, relative_change = 7.426198214700009e-11 Iter 125: T = 774.9845617482299 K, F = -2.5529341778351977e-6, relative_change = 3.105724303949513e-11 Iter 130: T = 774.9845616747142 K, F = -1.067668482845896e-6, relative_change = 1.2988521153509691e-11 Iter 135: T = 774.9845616439691 K, F = -4.465118380592159e-7, relative_change = 5.431956218808006e-12 Iter 140: T = 774.9845616311111 K, F = -1.8673697843585302e-7, relative_change = 2.2717137708712992e-12 Iter 145: T = 774.9845616257337 K, F = -7.80945793588117e-8, relative_change = 9.500449929718536e-13 Iter 150: T = 774.9845616234849 K, F = -3.2662356930224234e-8, relative_change = 3.9734779181119245e-13 Converged in 154 iterations to T = 774.9845616226731 K Iter 1: T = 970.372283040282 K, F = -6750.703492506395, relative_change = 0.029627716959718033 Iter 2: T = 942.9094342008804 K, F = -5717.645202255978, relative_change = 0.028301353325300597 Iter 3: T = 917.5665237547067 K, F = -4840.925122447529, relative_change = 0.026877353780696733 Iter 5: T = 873.023630562692 K, F = -3466.0360495380824, relative_change = 0.023781778123017353 Iter 10: T = 793.9889400397727 K, F = -1491.7948925470885, relative_change = 0.015476097473288913 Iter 15: T = 750.9480120851312 K, F = -634.9941163149083, relative_change = 0.008469243972930106 Iter 20: T = 730.062908001626 K, F = -268.0268944194543, relative_change = 0.0040731284263326424 Iter 25: T = 720.6647351363381 K, F = -112.57834997479277, relative_change = 0.0018181818533479 Iter 30: T = 716.6017017868149 K, F = -47.17151576393041, relative_change = 0.0007824987710566468 Iter 35: T = 714.8778712541649 K, F = -19.743801510515183, relative_change = 0.0003312851806543665 Iter 40: T = 714.1525257432847 K, F = -8.259940545994048, relative_change = 0.00013926595925443838 Iter 45: T = 713.8483961869797 K, F = -3.4549058912080417, relative_change = 5.836931982013463e-5 Iter 50: T = 713.7210682750849 K, F = -1.4449705336862961, relative_change = 2.4432965551793036e-5 Iter 55: T = 713.6677941614439 K, F = -0.6043192719558923, relative_change = 1.0222049295192233e-5 Iter 60: T = 713.645510079319 K, F = -0.2527362201098493, relative_change = 4.27566406703236e-6 Iter 65: T = 713.6361898731892 K, F = -0.10569777494731969, relative_change = 1.788252905917091e-6 Iter 70: T = 713.6322919227842 K, F = -0.044204153875147645, relative_change = 7.478895595556347e-7 Iter 75: T = 713.6306617308285 K, F = -0.01848671941480473, relative_change = 3.127799901831436e-7 Iter 80: T = 713.6299799611409 K, F = -0.0077313693454951204, relative_change = 1.3080896470433094e-7 Iter 85: T = 713.629694836226 K, F = -0.0032333514323972246, relative_change = 5.470598273932541e-8 Iter 90: T = 713.6295755934607 K, F = -0.0013522262593144152, relative_change = 2.2878714794658724e-8 Iter 95: T = 713.6295257246912 K, F = -0.0005655171841965068, relative_change = 9.568155169518869e-9 Iter 100: T = 713.6295048689725 K, F = -0.0002365060419269316, relative_change = 4.0015173469436066e-9 Iter 105: T = 713.6294961468614 K, F = -9.890965252390416e-5, relative_change = 1.673482462272005e-9 Iter 110: T = 713.6294924991702 K, F = -4.13651980831764e-5, relative_change = 6.998703711807324e-10 Iter 115: T = 713.6294909736621 K, F = -1.7299419429184226e-5, relative_change = 2.9269414341966385e-10 Iter 120: T = 713.6294903356763 K, F = -7.234823590440698e-6, relative_change = 1.224081831924063e-10 Iter 125: T = 713.6294900688631 K, F = -3.0256881229373533e-6, relative_change = 5.119253870740723e-11 Iter 130: T = 713.6294899572786 K, F = -1.26537883071709e-6, relative_change = 2.140932977466169e-11 Iter 135: T = 713.6294899106127 K, F = -5.291963313114323e-7, relative_change = 8.953633885035393e-12 Iter 140: T = 713.6294898910965 K, F = -2.2131704424666054e-7, relative_change = 3.744530469533105e-12 Iter 145: T = 713.6294898829345 K, F = -9.255785604622702e-8, relative_change = 1.5660145532774914e-12 Iter 150: T = 713.6294898795212 K, F = -3.8710176064604696e-8, relative_change = 6.549492573402859e-13 Iter 155: T = 713.6294898780936 K, F = -1.6188937301819806e-8, relative_change = 2.7390556026820274e-13 Converged in 157 iterations to T = 713.6294898777916 K Iter 1: T = 969.3541721217376 K, F = -6982.6810337702245, relative_change = 0.030645827878262352 Iter 2: T = 940.8501242495084 K, F = -5915.761473522426, relative_change = 0.02940519439849221 Iter 3: T = 914.4486119268287 K, F = -5010.17042544667, relative_change = 0.02806133691456925 Iter 5: T = 867.7664478656652 K, F = -3589.60776182946, relative_change = 0.02509626878573459 Iter 10: T = 783.6999936088037 K, F = -1547.897061475793, relative_change = 0.016825481353314627 Iter 15: T = 736.9091731530826 K, F = -660.0032618702868, relative_change = 0.009455221145249564 Iter 20: T = 713.8261662535306 K, F = -278.9002167840644, relative_change = 0.004626978665686609 Iter 25: T = 703.3379204007892 K, F = -117.21625513592488, relative_change = 0.002084381077884021 Iter 30: T = 698.7818616241402 K, F = -49.12872763224424, relative_change = 0.0009008888930098 Iter 35: T = 696.8446702957629 K, F = -20.565551681731147, relative_change = 0.0003821197275996872 Iter 40: T = 696.0287853395329 K, F = -8.60418083890284, relative_change = 0.00016076369744174747 Iter 45: T = 695.6865578640202 K, F = -3.598972625455532, relative_change = 6.740209401521464e-5 Iter 50: T = 695.5432558377854 K, F = -1.5052387478692657, relative_change = 2.8217992180566934e-5 Iter 55: T = 695.4832939453923 K, F = -0.6295272741350103, relative_change = 1.180629191072964e-5 Iter 60: T = 695.4582116909917 K, F = -0.2632790528636069, relative_change = 4.938440699412625e-6 Iter 65: T = 695.4477210347155 K, F = -0.11010700889155328, relative_change = 2.0654738052185177e-6 Iter 70: T = 695.4433335494043 K, F = -0.04604816485058694, relative_change = 8.638336118715206e-7 Iter 75: T = 695.4414986213395 K, F = -0.01925790974661068, relative_change = 3.6127039521074636e-7 Iter 80: T = 695.4407312273825 K, F = -0.008053890862225521, relative_change = 1.5108844414785135e-7 Iter 85: T = 695.4404102931686 K, F = -0.0033682338696582326, relative_change = 6.318714044450029e-8 Iter 90: T = 695.4402760744908 K, F = -0.0014086357221678725, relative_change = 2.642564276825452e-8 Iter 95: T = 695.4402199426095 K, F = -0.0005891082978098927, relative_change = 1.1051523944188523e-8 Iter 100: T = 695.4401964675815 K, F = -0.00024637212867828495, relative_change = 4.621880097397401e-9 Iter 105: T = 695.4401866500435 K, F = -0.00010303576695247507, relative_change = 1.9329255917071555e-9 Iter 110: T = 695.4401825442319 K, F = -4.3090789008770614e-5, relative_change = 8.083726034821227e-10 Iter 115: T = 695.4401808271323 K, F = -1.80210816586035e-5, relative_change = 3.3807106354483895e-10 Iter 120: T = 695.4401801090208 K, F = -7.536631525195681e-6, relative_change = 1.4138535611032115e-10 Iter 125: T = 695.440179808698 K, F = -3.151909459986335e-6, relative_change = 5.912904735412796e-11 Iter 130: T = 695.4401796830994 K, F = -1.3181661278061085e-6, relative_change = 2.472847283469009e-11 Iter 135: T = 695.4401796305725 K, F = -5.512719540856637e-7, relative_change = 1.0341726477773098e-11 Iter 140: T = 695.4401796086051 K, F = -2.3054841402636583e-7, relative_change = 4.3250316299115415e-12 Iter 145: T = 695.4401795994181 K, F = -9.641737341858914e-8, relative_change = 1.8087662476261005e-12 Iter 150: T = 695.4401795955761 K, F = -4.032217237881497e-8, relative_change = 7.564340517247374e-13 Iter 155: T = 695.4401795939692 K, F = -1.6862603646750074e-8, relative_change = 3.1633830338916574e-13 Converged in 158 iterations to T = 695.4401795934988 K Iter 1: T = 963.5815824367785 K, F = -8297.971084638573, relative_change = 0.03641841756322157 Iter 2: T = 929.0421397749727 K, F = -7041.068829997562, relative_change = 0.035844855579804456 Iter 3: T = 896.3482118941234 K, F = -5973.627608039518, relative_change = 0.03519100639371237 Iter 5: T = 836.3782554871633 K, F = -4297.314160569129, relative_change = 0.03361327314033657 Iter 10: T = 716.8111996351113 K, F = -1877.8386185481681, relative_change = 0.027874732398908534 Iter 15: T = 637.3069504206637 K, F = -813.0963296663562, relative_change = 0.019951833084289355 Iter 20: T = 590.7733923411876 K, F = -348.11553766647586, relative_change = 0.011950131239298114 Iter 25: T = 566.8488676358038 K, F = -147.53804432149713, relative_change = 0.006117521535902171 Iter 30: T = 555.6945152436462 K, F = -62.10947265800682, relative_change = 0.0028254651964183934 Iter 35: T = 550.7845157701323 K, F = -26.052479190791473, relative_change = 0.0012358388902199157 Iter 40: T = 548.6840661260878 K, F = -10.9095481562355, relative_change = 0.0005269723780944651 Iter 45: T = 547.7970657110703 K, F = -4.5650084293840365, relative_change = 0.0002222092597452372 Iter 50: T = 547.4245867978148 K, F = -1.9095822396218907, relative_change = 9.325331758911094e-5 Iter 55: T = 547.2685430203044 K, F = -0.7986874890887515, relative_change = 3.905638893436162e-5 Iter 60: T = 547.2032365169422 K, F = -0.33403419861748224, relative_change = 1.6343793005345366e-5 Iter 65: T = 547.1759163031963 K, F = -0.1396994625836157, relative_change = 6.836910318702942e-6 Iter 70: T = 547.1644892191013 K, F = -0.05842439847555342, relative_change = 2.8595821437622672e-6 Iter 75: T = 547.1597100233746 K, F = -0.024433853738821787, relative_change = 1.1959646859269448e-6 Iter 80: T = 547.1577112624465 K, F = -0.010218542125368824, relative_change = 5.001760342424252e-7 Iter 85: T = 547.1568753490253 K, F = -0.0042735185699619704, relative_change = 2.091812208882156e-7 Iter 90: T = 547.1565257586976 K, F = -0.0017872368896515722, relative_change = 8.748236977954224e-8 Iter 95: T = 547.1563795556112 K, F = -0.0007474438790696092, relative_change = 3.6586221658065656e-8 Iter 100: T = 547.1563184116931 K, F = -0.00031258996821334484, relative_change = 1.5300803538327067e-8 Iter 105: T = 547.1562928405691 K, F = -0.00013072885986561977, relative_change = 6.39898029382307e-9 Iter 110: T = 547.1562821464184 K, F = -5.4672371041369905e-5, relative_change = 2.6761302578750932e-9 Iter 115: T = 547.1562776739967 K, F = -2.2864638860697895e-5, relative_change = 1.1191896950172088e-9 Iter 120: T = 547.1562758035764 K, F = -9.56226521192649e-6, relative_change = 4.680585127796202e-10 Iter 125: T = 547.1562750213442 K, F = -3.99905285269897e-6, relative_change = 1.9574762904157055e-10 Iter 130: T = 547.1562746942055 K, F = -1.6724521252897695e-6, relative_change = 8.186401910690709e-11 Iter 135: T = 547.1562745573922 K, F = -6.994395896353645e-7, relative_change = 3.423651722663123e-11 Iter 140: T = 547.1562745001751 K, F = -2.9251333771851407e-7, relative_change = 1.4318088479987233e-11 Iter 145: T = 547.1562744762463 K, F = -1.2233225332725084e-7, relative_change = 5.987980039207685e-12 Iter 150: T = 547.156274466239 K, F = -5.116103790614446e-8, relative_change = 2.5042559542682178e-12 Iter 155: T = 547.1562744620538 K, F = -2.1395810900770584e-8, relative_change = 1.0472928040454735e-12 Iter 160: T = 547.1562744603035 K, F = -8.947794949420995e-9, relative_change = 4.3798112192177984e-13 Converged in 164 iterations to T = 547.1562744596717 K Iter 1: T = 966.9263238462997 K, F = -7535.868572808678, relative_change = 0.03307367615370026 Iter 2: T = 935.9114154173014 K, F = -6388.630818602458, relative_change = 0.03207577212876493 Iter 3: T = 906.9248189139213 K, F = -5414.580699195999, relative_change = 0.030971517203319626 Iter 5: T = 854.9051815183094 K, F = -3885.755671794477, relative_change = 0.02844450753721936 Iter 10: T = 757.5272288022559 K, F = -1683.98182792385, relative_change = 0.020644347254729297 Iter 15: T = 699.8940904358616 K, F = -721.646224568297, relative_change = 0.012546796857334428 Iter 20: T = 669.9708489406935 K, F = -306.0674339855376, relative_change = 0.006494295378587166 Iter 25: T = 655.929278762614 K, F = -128.9002755883909, relative_change = 0.003018722756059048 Iter 30: T = 649.7270888206289 K, F = -54.07981679236656, relative_change = 0.0013245085722251367 Iter 35: T = 647.0695762427368 K, F = -22.648190769156756, relative_change = 0.0005655762198165834 Iter 40: T = 645.9465379234795 K, F = -9.477326979454922, relative_change = 0.00023863197690486015 Iter 45: T = 645.4747965639722 K, F = -3.964515124060855, relative_change = 0.0001001710641962468 Iter 50: T = 645.2771431931109 K, F = -1.6581801786233878, relative_change = 4.195821203623444e-5 Iter 55: T = 645.1944180541475 K, F = -0.6935009823880817, relative_change = 1.7558903604121473e-5 Iter 60: T = 645.1598101795445 K, F = -0.2900356829059688, relative_change = 7.3453526707677105e-6 Iter 65: T = 645.1453347871798 K, F = -0.12129731175459668, relative_change = 3.0722658111820252e-6 Iter 70: T = 645.1392806612992 K, F = -0.050728146233465166, relative_change = 1.284919758622845e-6 Iter 75: T = 645.1367486933965 K, F = -0.02121514488520737, relative_change = 5.373795463656385e-7 Iter 80: T = 645.1356897836595 K, F = -0.008872431903194866, relative_change = 2.247404255870157e-7 Iter 85: T = 645.1352469331212 K, F = -0.0037105578461354427, relative_change = 9.398945903269868e-8 Iter 90: T = 645.1350617274154 K, F = -0.0015517997554478358, relative_change = 3.930757178321131e-8 Iter 95: T = 645.1349842721212 K, F = -0.0006489812160762609, relative_change = 1.6438906005135146e-8 Iter 100: T = 645.1349518793824 K, F = -0.00027141170001665493, relative_change = 6.874948583005112e-9 Iter 105: T = 645.1349383323503 K, F = -0.000113507615748909, relative_change = 2.875185926112075e-9 Iter 110: T = 645.1349326668195 K, F = -4.747024060824945e-5, relative_change = 1.2024371449622723e-9 Iter 115: T = 645.1349302974268 K, F = -1.9852621634341983e-5, relative_change = 5.028735854201619e-10 Iter 120: T = 645.1349293065184 K, F = -8.30260332140842e-6, relative_change = 2.1030773708333157e-10 Iter 125: T = 645.1349288921086 K, F = -3.4722470352299695e-6, relative_change = 8.795318655341201e-11 Iter 130: T = 645.1349287187975 K, F = -1.4521347563856146e-6, relative_change = 3.678306237907815e-11 Iter 135: T = 645.1349286463168 K, F = -6.072999933492973e-7, relative_change = 1.5383113345300143e-11 Iter 140: T = 645.1349286160046 K, F = -2.539805028511921e-7, relative_change = 6.433411668890046e-12 Iter 145: T = 645.1349286033276 K, F = -1.0621822887912913e-7, relative_change = 2.6905435083106634e-12 Iter 150: T = 645.1349285980259 K, F = -4.442131829041074e-8, relative_change = 1.1252069519775874e-12 Iter 155: T = 645.1349285958087 K, F = -1.857737885746502e-8, relative_change = 4.705712627352521e-13 Converged in 160 iterations to T = 645.1349285948813 K Iter 1: T = 965.2354317457873 K, F = -7921.139946364053, relative_change = 0.03476456825421264 Iter 2: T = 932.4482970596662 K, F = -6718.320217584142, relative_change = 0.03396801817233359 Iter 3: T = 901.6091847228121 K, F = -5696.921583875095, relative_change = 0.033073267905685 Iter 5: T = 845.6617768857329 K, F = -4093.281219835122, relative_change = 0.030970949729005635 Iter 10: T = 737.7110918758455 K, F = -1780.949285726596, relative_change = 0.023948904608013084 Iter 15: T = 670.3389667190085 K, F = -766.7082389078753, relative_change = 0.015643094976001935 Iter 20: T = 633.5503780819611 K, F = -326.4235912834804, relative_change = 0.008588414272031357 Iter 25: T = 615.6634785649326 K, F = -137.8000537801882, relative_change = 0.00413904091293101 Iter 30: T = 607.6052085962316 K, F = -57.883787312424886, relative_change = 0.0018496037227548215 Iter 35: T = 604.1194776842273 K, F = -24.254722725350444, relative_change = 0.0007964202516991915 Iter 40: T = 602.6402050870412 K, F = -10.152045950927546, relative_change = 0.000337252821985569 Iter 45: T = 602.0176953988741 K, F = -4.247197079728677, relative_change = 0.00014178785154794077 Iter 50: T = 601.7566716842273 K, F = -1.7764903406222494, relative_change = 5.94286324518133e-5 Iter 55: T = 601.6473884777853 K, F = -0.7429953504624125, relative_change = 2.4876795955116688e-5 Iter 60: T = 601.6016639112216 K, F = -0.3107375584651052, relative_change = 1.0407806989423052e-5 Iter 65: T = 601.5825376711783 K, F = -0.12995556277449244, relative_change = 4.353375101038764e-6 Iter 70: T = 601.5745382052777 K, F = -0.05434921408176091, relative_change = 1.820756953375196e-6 Iter 75: T = 601.5711926204698 K, F = -0.022729533373931576, relative_change = 7.614839039537867e-7 Iter 80: T = 601.5697934372475 K, F = -0.009505769820444043, relative_change = 3.184654409252553e-7 Iter 85: T = 601.5692082786686 K, F = -0.003975427776043983, relative_change = 1.3318671150090998e-7 Iter 90: T = 601.5689635577598 K, F = -0.0016625716018426884, relative_change = 5.570038889480619e-8 Iter 95: T = 601.5688612124479 K, F = -0.0006953073395917775, relative_change = 2.3294588060741757e-8 Iter 100: T = 601.5688184103979 K, F = -0.00029078584030101107, relative_change = 9.742078463104782e-9 Iter 105: T = 601.5688005100661 K, F = -0.00012161011278033484, relative_change = 4.0742541907289685e-9 Iter 110: T = 601.568793023933 K, F = -5.0858802084219334e-5, relative_change = 1.703901880084744e-9 Iter 115: T = 601.5687898931426 K, F = -2.1269757898068065e-5, relative_change = 7.125921155090584e-10 Iter 120: T = 601.5687885838087 K, F = -8.895267440189869e-6, relative_change = 2.9801455847709937e-10 Iter 125: T = 601.5687880362295 K, F = -3.7201064788661142e-6, relative_change = 1.2463322795474173e-10 Iter 130: T = 601.5687878072254 K, F = -1.555792204510631e-6, relative_change = 5.2123079252697516e-11 Iter 135: T = 601.5687877114532 K, F = -6.506511991966057e-7, relative_change = 2.1798504934635756e-11 Iter 140: T = 601.5687876714002 K, F = -2.7211063319265705e-7, relative_change = 9.116412894683536e-12 Iter 145: T = 601.5687876546494 K, F = -1.1379965186852914e-7, relative_change = 3.812583880570989e-12 Iter 150: T = 601.5687876476442 K, F = -4.759305000101577e-8, relative_change = 1.5944907764812045e-12 Iter 155: T = 601.5687876447143 K, F = -1.9904211667753913e-8, relative_change = 6.668427830832801e-13 Iter 160: T = 601.568787643489 K, F = -8.323545241939456e-9, relative_change = 2.7886038226273903e-13 Converged in 162 iterations to T = 601.5687876432298 K Iter 1: T = 980.0080500127227 K, F = -4555.18482185507, relative_change = 0.019991949987277238 Iter 2: T = 962.0655761173682 K, F = -3847.9184768544906, relative_change = 0.01830849644053593 Iter 3: T = 946.0526341971022 K, F = -3248.951630972923, relative_change = 0.01664433518647437 Iter 5: T = 919.2951213860191 K, F = -2313.025773690276, relative_change = 0.013463238046416175 Iter 10: T = 876.7594335999304 K, F = -982.104141484939, relative_change = 0.007089270910455562 Iter 15: T = 856.5956372737951 K, F = -413.88990305975244, relative_change = 0.003328956245730044 Iter 20: T = 847.6401277418094 K, F = -173.70461454612888, relative_change = 0.0014680130130798898 Iter 25: T = 843.7928732543027 K, F = -72.75711295518927, relative_change = 0.0006282836268302731 Iter 30: T = 842.1651907620242 K, F = -30.44782703364875, relative_change = 0.00026535123287037645 Iter 35: T = 841.4811326433116 K, F = -12.73716027775817, relative_change = 0.00011143362419142698 Iter 40: T = 841.1944617199431 K, F = -5.327449534404527, relative_change = 4.6683918269269935e-5 Iter 45: T = 841.0744690048411 K, F = -2.228111088734572, relative_change = 1.9537983370851348e-5 Iter 50: T = 841.0242684861058 K, F = -0.9318415796141472, relative_change = 8.173506194858798e-6 Iter 55: T = 841.0032708562456 K, F = -0.38971058582754636, relative_change = 3.4186932890462265e-6 Iter 60: T = 840.9944888414925 K, F = -0.16298219984950713, relative_change = 1.429814524856484e-6 Iter 65: T = 840.9908160009311 K, F = -0.06816120360835431, relative_change = 5.979788319209241e-7 Iter 70: T = 840.9892799581597 K, F = -0.028505847062922918, relative_change = 2.500842189542822e-7 Iter 75: T = 840.9886375637578 K, F = -0.011921488766494681, relative_change = 1.0458861452111968e-7 Iter 80: T = 840.9883689062275 K, F = -0.004985709513000147, relative_change = 4.374027889605765e-8 Iter 85: T = 840.9882565503491 K, F = -0.0020850833539864944, relative_change = 1.8292719461810466e-8 Iter 90: T = 840.988209561763 K, F = -0.0008720067759926398, relative_change = 7.65023591745315e-9 Iter 95: T = 840.9881899105724 K, F = -0.00036468364983544, relative_change = 3.1994203986532588e-9 Iter 100: T = 840.9881816922093 K, F = -0.00015251505682534194, relative_change = 1.3380358752938038e-9 Iter 105: T = 840.9881782551917 K, F = -6.378361804881827e-5, relative_change = 5.595825923194205e-10 Iter 110: T = 840.9881768177898 K, F = -2.6675070742498974e-5, relative_change = 2.3402412428910755e-10 Iter 115: T = 840.9881762166513 K, F = -1.1155833609999277e-5, relative_change = 9.787168796598336e-11 Iter 120: T = 840.9881759652479 K, F = -4.6655037320153525e-6, relative_change = 4.09311165868035e-11 Iter 125: T = 840.988175860108 K, F = -1.9511699653751435e-6, relative_change = 1.7117886935325627e-11 Iter 130: T = 840.9881758161372 K, F = -8.160009048463479e-7, relative_change = 7.158890040148228e-12 Iter 135: T = 840.9881757977481 K, F = -3.412615015019327e-7, relative_change = 2.9939348718033443e-12 Iter 140: T = 840.9881757900575 K, F = -1.427191715919207e-7, relative_change = 1.252095249074327e-12 Iter 145: T = 840.9881757868412 K, F = -5.968665983679955e-8, relative_change = 5.236394128591174e-13 Converged in 150 iterations to T = 840.9881757854962 K Iter 1: T = 976.4203008985487 K, F = -5372.656870350105, relative_change = 0.023579699101451333 Iter 2: T = 955.0025961006102 K, F = -4542.957010393307, relative_change = 0.021934923698563983 Iter 3: T = 935.655386718925 K, F = -3839.6486006650603, relative_change = 0.020258802919156552 Iter 5: T = 902.7520115583147 K, F = -2739.00465530277, relative_change = 0.01690567712446879 Iter 10: T = 848.5538967415498 K, F = -1167.9969766550757, relative_change = 0.009515536891466518 Iter 15: T = 821.78959641166 K, F = -493.5999421152341, relative_change = 0.004661505971967876 Iter 20: T = 809.6213206917355 K, F = -207.45819832243544, relative_change = 0.002101142229624959 Iter 25: T = 804.333863277773 K, F = -86.95329758782424, relative_change = 0.000908377978956355 Iter 30: T = 802.0853796321107 K, F = -36.39940914350941, relative_change = 0.0003853419586849672 Iter 35: T = 801.1383316103464 K, F = -15.228774871162496, relative_change = 0.0001621275517152434 Iter 40: T = 800.7410770140702 K, F = -6.369929116674466, relative_change = 6.797535921903364e-5 Iter 45: T = 800.5747315317988 K, F = -2.664168602422886, relative_change = 2.8458245944159597e-5 Iter 50: T = 800.5051272513363 K, F = -1.114220067247855, relative_change = 1.19068578569653e-5 Iter 55: T = 800.4760115002717 K, F = -0.4659859021828059, relative_change = 4.9805141522900695e-6 Iter 60: T = 800.4638338239522 K, F = -0.19488187749879127, relative_change = 2.083072150528288e-6 Iter 65: T = 800.4587407780986 K, F = -0.0815021048778588, relative_change = 8.7119392672603e-7 Iter 70: T = 800.4566107711837 K, F = -0.03408518443540176, relative_change = 3.6434865013217015e-7 Iter 75: T = 800.4557199708527 K, F = -0.01425483658485771, relative_change = 1.5237582173375976e-7 Iter 80: T = 800.4553474264661 K, F = -0.005961543841078276, relative_change = 6.372553968956413e-8 Iter 85: T = 800.4551916237709 K, F = -0.0024931889946208097, relative_change = 2.6650808197761206e-8 Iter 90: T = 800.455126465191 K, F = -0.001042681441077331, relative_change = 1.114569089127773e-8 Iter 95: T = 800.4550992150891 K, F = -0.00043606183514921515, relative_change = 4.661261839301401e-9 Iter 100: T = 800.4550878187702 K, F = -0.00018236626796852562, relative_change = 1.9493955094460276e-9 Iter 105: T = 800.4550830526933 K, F = -7.626775206270864e-5, relative_change = 8.152605153226012e-10 Iter 110: T = 800.4550810594629 K, F = -3.189608386033882e-5, relative_change = 3.40951678393166e-10 Iter 115: T = 800.4550802258702 K, F = -1.3339321994654263e-5, relative_change = 1.4259005165554186e-10 Iter 120: T = 800.4550798772517 K, F = -5.578662620742136e-6, relative_change = 5.963285039740031e-11 Iter 125: T = 800.4550797314554 K, F = -2.33306360741814e-6, relative_change = 2.4939173176048993e-11 Iter 130: T = 800.4550796704816 K, F = -9.757132249932354e-7, relative_change = 1.0429840412290044e-11 Iter 135: T = 800.4550796449817 K, F = -4.0805630696638673e-7, relative_change = 4.361898611718513e-12 Iter 140: T = 800.4550796343173 K, F = -1.7065368884683352e-7, relative_change = 1.824194543264791e-12 Iter 145: T = 800.4550796298572 K, F = -7.136630952864209e-8, relative_change = 7.628667935528443e-13 Iter 150: T = 800.4550796279921 K, F = -2.984622327062425e-8, relative_change = 3.1903979338090963e-13 Converged in 153 iterations to T = 800.455079627446 K Iter 1: T = 980.7537800941396 K, F = -4385.269513431788, relative_change = 0.01924621990586033 Iter 2: T = 963.5235099166445 K, F = -3703.6209071134936, relative_change = 0.017568395378339846 Iter 3: T = 948.1840535089127 K, F = -3126.4732819461037, relative_change = 0.015920168267672917 Iter 5: T = 922.6414252154443 K, F = -2224.947638158275, relative_change = 0.012798177950057901 Iter 10: T = 882.310351972031 K, F = -943.9416996060098, relative_change = 0.006655571125038965 Iter 15: T = 863.3324712021378 K, F = -397.61304886263736, relative_change = 0.0031022142874043944 Iter 20: T = 854.9374428709256 K, F = -166.83266659247883, relative_change = 0.0013629905795280088 Iter 25: T = 851.3378251470441 K, F = -69.87101696358052, relative_change = 0.0005823643597656553 Iter 30: T = 849.816192995317 K, F = -29.23863251201001, relative_change = 0.0002457802484560154 Iter 35: T = 849.1769346428578 K, F = -12.231071734415663, relative_change = 0.00010318326164540897 Iter 40: T = 848.9090789370155 K, F = -5.11572885416825, relative_change = 4.3221953321621946e-5 Iter 45: T = 848.7969689370605 K, F = -2.139554979330089, relative_change = 1.8088118116381734e-5 Iter 50: T = 848.7500675122687 K, F = -0.8948042575432706, relative_change = 7.5667996029500476e-6 Iter 55: T = 848.7304500315199 K, F = -0.37422076806016724, relative_change = 3.1648991068849105e-6 Iter 60: T = 848.7222452866042 K, F = -0.1565041088090453, relative_change = 1.3236638781783576e-6 Iter 65: T = 848.7188138803022 K, F = -0.06545197733054953, relative_change = 5.535834591096555e-7 Iter 70: T = 848.717378810516 K, F = -0.027372814313743277, relative_change = 2.3151721071931238e-7 Iter 75: T = 848.7167786446238 K, F = -0.011447640594586694, relative_change = 9.682361166376573e-8 Iter 80: T = 848.7165276476308 K, F = -0.004787540489925801, relative_change = 4.04928517898259e-8 Iter 85: T = 848.7164226776122 K, F = -0.002002206689988073, relative_change = 1.69346048695805e-8 Iter 90: T = 848.7163787778832 K, F = -0.000837346765625524, relative_change = 7.082255881898741e-9 Iter 95: T = 848.7163604184897 K, F = -0.00035018841865785966, relative_change = 2.961884305367304e-9 Iter 100: T = 848.7163527403718 K, F = -0.0001464529803729686, relative_change = 1.2386954554011505e-9 Iter 105: T = 848.716349529291 K, F = -6.12483852047152e-5, relative_change = 5.180372401929359e-10 Iter 110: T = 848.7163481863787 K, F = -2.5614806361540232e-5, relative_change = 2.1664936391752877e-10 Iter 115: T = 848.7163476247567 K, F = -1.0712417543690123e-5, relative_change = 9.060534838383088e-11 Iter 120: T = 848.7163473898798 K, F = -4.480062764100623e-6, relative_change = 3.789225414357782e-11 Iter 125: T = 848.7163472916515 K, F = -1.8736177851419455e-6, relative_change = 1.584701042372593e-11 Iter 130: T = 848.7163472505713 K, F = -7.835723545568385e-7, relative_change = 6.627434566291035e-12 Iter 135: T = 848.7163472333908 K, F = -3.276993252310234e-7, relative_change = 2.7716723579712736e-12 Iter 140: T = 848.7163472262058 K, F = -1.370452984428283e-7, relative_change = 1.1591255649715995e-12 Iter 145: T = 848.716347223201 K, F = -5.731501895311908e-8, relative_change = 4.847689375803507e-13 Converged in 150 iterations to T = 848.7163472219444 K Iter 1: T = 967.2998858304763 K, F = -7450.752119364867, relative_change = 0.03270011416952371 Iter 2: T = 936.6738926594878 K, F = -6315.833255186579, relative_change = 0.03166132201565867 Iter 3: T = 908.0907216583898 K, F = -5352.280538571593, relative_change = 0.03051560551126511 Iter 5: T = 856.9148825277791 K, F = -3840.0507701126367, relative_change = 0.027908670941737584 Iter 10: T = 761.7182450176529 K, F = -1662.8151268195186, relative_change = 0.019993063562496284 Iter 15: T = 705.9621090454926 K, F = -711.9508088254524, relative_change = 0.011985382900869288 Iter 20: T = 677.279002687045 K, F = -301.7513963083825, relative_change = 0.006139607791958969 Iter 25: T = 663.9009077985139 K, F = -127.03223833987572, relative_change = 0.0028367374094306753 Iter 30: T = 658.0108500283006 K, F = -53.28567623932269, relative_change = 0.0012409976706284486 Iter 35: T = 655.4909021205222 K, F = -22.3136478650665, relative_change = 0.0005292157486061334 Iter 40: T = 654.4267071661415 K, F = -9.33697992365585, relative_change = 0.00022316314905216142 Iter 45: T = 653.9798108374742 K, F = -3.905742830953789, relative_change = 9.365503923349823e-5 Iter 50: T = 653.7925897303734 K, F = -1.6335872777982576, relative_change = 3.9224886110514326e-5 Iter 55: T = 653.7142348317384 K, F = -0.6832135488519314, relative_change = 1.6414346932769187e-5 Iter 60: T = 653.6814559308234 K, F = -0.28573293715077597, relative_change = 6.866431944832199e-6 Iter 65: T = 653.6677456623906 K, F = -0.11949777892258578, relative_change = 2.8719310883021037e-6 Iter 70: T = 653.6620115598944 K, F = -0.049975547313209245, relative_change = 1.2011296252763746e-6 Iter 75: T = 653.6596134364883 K, F = -0.020900396789857556, relative_change = 5.023361546059334e-7 Iter 80: T = 653.6586105033241 K, F = -0.008740800098031964, relative_change = 2.100846232112036e-7 Iter 85: T = 653.6581910630681 K, F = -0.0036555077848445805, relative_change = 8.786018593268221e-8 Iter 90: T = 653.6580156478589 K, F = -0.0015287771508993298, relative_change = 3.6744229324087655e-8 Iter 95: T = 653.6579422870736 K, F = -0.0006393528862997933, relative_change = 1.5366884318170295e-8 Iter 100: T = 653.6579116067085 K, F = -0.00026738501657380676, relative_change = 6.426616074379727e-9 Iter 105: T = 653.6578987758119 K, F = -0.00011182360862704854, relative_change = 2.68768787820757e-9 Iter 110: T = 653.6578934097773 K, F = -4.676596850261561e-5, relative_change = 1.124023210420099e-9 Iter 115: T = 653.6578911656377 K, F = -1.9558086959081677e-5, relative_change = 4.700799482326619e-10 Iter 120: T = 653.6578902271116 K, F = -8.17942500219715e-6, relative_change = 1.9659303672869676e-10 Iter 125: T = 653.6578898346088 K, F = -3.4207340784409013e-6, relative_change = 8.221757667121555e-11 Iter 130: T = 653.6578896704593 K, F = -1.4305913532131065e-6, relative_change = 3.4384360699038256e-11 Iter 135: T = 653.6578896018101 K, F = -5.982906827739498e-7, relative_change = 1.4379957353618373e-11 Iter 140: T = 653.6578895731002 K, F = -2.5021136096370356e-7, relative_change = 6.013847122136618e-12 Iter 145: T = 653.6578895610934 K, F = -1.0464192740089473e-7, relative_change = 2.5150758606081938e-12 Iter 150: T = 653.657889556072 K, F = -4.376233830871712e-8, relative_change = 1.0518307854401018e-12 Iter 155: T = 653.657889553972 K, F = -1.8302592219576752e-8, relative_change = 4.3990405207317436e-13 Converged in 159 iterations to T = 653.657889553214 K Iter 1: T = 973.5539472917492 K, F = -6025.758266265565, relative_change = 0.026446052708250876 Iter 2: T = 949.3008737475269 K, F = -5099.207675650529, relative_change = 0.024911894827903368 Iter 3: T = 927.1730429321635 K, F = -4313.3144459458135, relative_change = 0.023309607551513182 Iter 5: T = 888.9695014172061 K, F = -3082.1094189029077, relative_change = 0.019978951436377866 Iter 10: T = 823.953550183403 K, F = -1319.6121658306806, relative_change = 0.011973536600227081 Iter 15: T = 790.5130624856749 K, F = -559.2934332559221, relative_change = 0.006132248367817754 Iter 20: T = 774.9179688556873 K, F = -235.4512275948566, relative_change = 0.0028329949644669405 Iter 25: T = 768.0522596101507 K, F = -98.76334952450202, relative_change = 0.0012392875279061274 Iter 30: T = 765.1149860327288 K, F = -41.35758290551312, relative_change = 0.0005284725411975928 Iter 35: T = 763.8745673111874 K, F = -17.30575986755723, relative_change = 0.00022284721857995015 Iter 40: T = 763.3536707849377 K, F = -7.239152982237933, relative_change = 9.352200283358396e-5 Iter 45: T = 763.1354488246402 K, F = -3.0277944927301883, relative_change = 3.9169088231750076e-5 Iter 50: T = 763.0441196854755 K, F = -1.2663113460857003, relative_change = 1.639098343762374e-5 Iter 55: T = 763.005913171189 K, F = -0.5295955450377325, relative_change = 6.856656121079017e-6 Iter 60: T = 762.9899327246013 K, F = -0.22148475905299803, relative_change = 2.8678418591199697e-6 Iter 65: T = 762.9832491565569 K, F = -0.09262784722306017, relative_change = 1.1994193098059147e-6 Iter 70: T = 762.9804539465856 K, F = -0.038738120169584556, relative_change = 5.01620853826407e-7 Iter 75: T = 762.9792849455501 K, F = -0.016200752920245698, relative_change = 2.0978547126087237e-7 Iter 80: T = 762.97879605346 K, F = -0.00677534982365724, relative_change = 8.773507620707362e-8 Iter 85: T = 762.9785915926176 K, F = -0.002833532469539213, relative_change = 3.6691906810475116e-8 Iter 90: T = 762.9785060845934 K, F = -0.0011850171623651873, relative_change = 1.5345002380856017e-8 Iter 95: T = 762.9784703241064 K, F = -0.0004955883366383196, relative_change = 6.417464779596422e-9 Iter 100: T = 762.9784553686419 K, F = -0.00020726096202028366, relative_change = 2.683860675788472e-9 Iter 105: T = 762.9784491140877 K, F = -8.667900785619409e-5, relative_change = 1.12242260874292e-9 Iter 110: T = 762.9784464983584 K, F = -3.625019498976201e-5, relative_change = 4.694105308577069e-10 Iter 115: T = 762.9784454044293 K, F = -1.5160265524838401e-5, relative_change = 1.963131050342655e-10 Iter 120: T = 762.9784449469349 K, F = -6.34020297363147e-6, relative_change = 8.210047072165219e-11 Iter 125: T = 762.9784447556053 K, F = -2.651547934218179e-6, relative_change = 3.433538874159487e-11 Iter 130: T = 762.9784446755891 K, F = -1.1089105144135303e-6, relative_change = 1.4359489081712108e-11 Iter 135: T = 762.9784446421253 K, F = -4.6375880335958186e-7, relative_change = 6.005299244819897e-12 Iter 140: T = 762.9784446281303 K, F = -1.9394857841970037e-7, relative_change = 2.511476317391556e-12 Iter 145: T = 762.9784446222775 K, F = -8.111200566762733e-8, relative_change = 1.0503344905008283e-12 Iter 150: T = 762.9784446198298 K, F = -3.392242964306291e-8, relative_change = 4.3926786870788935e-13 Converged in 154 iterations to T = 762.9784446189464 K Iter 1: T = 969.9918700913064 K, F = -6837.380944796606, relative_change = 0.03000812990869357 Iter 2: T = 942.1407869730199 K, F = -5791.658052853051, relative_change = 0.02871269747411891 Iter 3: T = 916.4040612648167 K, F = -4904.139338138456, relative_change = 0.027317282155772147 Iter 5: T = 871.0684103097758 K, F = -3512.166370781743, relative_change = 0.02426705877954022 Iter 10: T = 790.1880158222245 K, F = -1512.6954768274363, relative_change = 0.015965244980008054 Iter 15: T = 745.7918253414762 K, F = -644.2878981607125, relative_change = 0.008820765149006551 Iter 20: T = 724.1215029589264 K, F = -272.05963180056307, relative_change = 0.0042684122993748574 Iter 25: T = 714.3365831996737 K, F = -114.29650948198531, relative_change = 0.0019114902999149978 Iter 30: T = 710.0992368095302 K, F = -47.896181936403856, relative_change = 0.0008238827036136577 Iter 35: T = 708.3000901384246 K, F = -20.047982451508656, relative_change = 0.00034903315881622726 Iter 40: T = 707.5428062294067 K, F = -8.38735169882263, relative_change = 0.0001467676276576543 Iter 45: T = 707.225241294467 K, F = -3.5082258483460325, relative_change = 6.152063161920982e-5 Iter 50: T = 707.0922807408733 K, F = -1.467275734538367, relative_change = 2.5753346762347148e-5 Iter 55: T = 707.0366485671045 K, F = -0.6136486518755963, relative_change = 1.0774680502538072e-5 Iter 60: T = 707.0133778918992 K, F = -0.25663806695665614, relative_change = 4.5068566630233375e-6 Iter 65: T = 707.0036450065323 K, F = -0.10732960691618715, relative_change = 1.884953642278542e-6 Iter 70: T = 706.9995744557564 K, F = -0.044886611267747734, relative_change = 7.883332769236483e-7 Iter 75: T = 706.9978720779928 K, F = -0.018772132255991503, relative_change = 3.2969444061753646e-7 Iter 80: T = 706.9971601189411 K, F = -0.007850732582476483, relative_change = 1.3788286071288515e-7 Iter 85: T = 706.9968623684041 K, F = -0.003283270592896015, relative_change = 5.7664382887501186e-8 Iter 90: T = 706.9967378454409 K, F = -0.0013731030554174906, relative_change = 2.411595526134906e-8 Iter 95: T = 706.9966857684273 K, F = -0.0005742481099415553, relative_change = 1.008558427594829e-8 Iter 100: T = 706.9966639891941 K, F = -0.00024015741919558575, relative_change = 4.217912439077806e-9 Iter 105: T = 706.9966548808582 K, F = -0.00010043670302428698, relative_change = 1.7639815019247813e-9 Iter 110: T = 706.996651071643 K, F = -4.200382763608346e-5, relative_change = 7.377181312180036e-10 Iter 115: T = 706.9966494785838 K, F = -1.7566502530153016e-5, relative_change = 3.085225391810592e-10 Iter 120: T = 706.9966488123474 K, F = -7.346520758955144e-6, relative_change = 1.2902780419596213e-10 Iter 125: T = 706.9966485337194 K, F = -3.0724027210160543e-6, relative_change = 5.396096879723782e-11 Iter 130: T = 706.9966484171938 K, F = -1.2849159128913712e-6, relative_change = 2.256712867188349e-11 Iter 135: T = 706.9966483684615 K, F = -5.373672504749294e-7, relative_change = 9.437843961489613e-12 Iter 140: T = 706.9966483480811 K, F = -2.2473500549402559e-7, relative_change = 3.947047225065651e-12 Iter 145: T = 706.9966483395576 K, F = -9.3985879634495e-8, relative_change = 1.650685012833228e-12 Iter 150: T = 706.9966483359931 K, F = -3.9306669696870244e-8, relative_change = 6.903476439960205e-13 Iter 155: T = 706.9966483345023 K, F = -1.6439569705539725e-8, relative_change = 2.8873008835814165e-13 Converged in 157 iterations to T = 706.9966483341868 K Iter 1: T = 973.5254920601514 K, F = -6032.241817853033, relative_change = 0.02647450793984866 Iter 2: T = 949.2440050599945 K, F = -5104.734035402177, relative_change = 0.024941809123840104 Iter 3: T = 927.0880300096085 K, F = -4318.02451691745, relative_change = 0.023340653122150334 Iter 5: T = 888.8299957032136 K, F = -3085.5284331396456, relative_change = 0.020011051149619992 Iter 10: T = 823.6987924009994 K, F = -1321.132866996867, relative_change = 0.012000843105524371 Iter 15: T = 790.183981418819 K, F = -559.956293243606, relative_change = 0.006149325998549429 Iter 20: T = 774.549645552754 K, F = -235.73476581059077, relative_change = 0.0028417055603714245 Iter 25: T = 767.6655935269451 K, F = -98.88320727498399, relative_change = 0.0012432730942690037 Iter 30: T = 764.7202593950915 K, F = -41.40794765762749, relative_change = 0.0005302055763430748 Iter 35: T = 763.4763971315215 K, F = -17.32686597966122, relative_change = 0.00022358408652142046 Iter 40: T = 762.9540474443428 K, F = -7.247987417255853, relative_change = 9.383232363642599e-5 Iter 45: T = 762.7352154496374 K, F = -3.0314904961781624, relative_change = 3.9299247706366985e-5 Iter 50: T = 762.6436307816907 K, F = -1.2678572932463275, relative_change = 1.6445484292287353e-5 Iter 55: T = 762.6053173312201 K, F = -0.5302421196307117, relative_change = 6.8794606948598925e-6 Iter 60: T = 762.5892921502156 K, F = -0.22175517144817158, relative_change = 2.8773810456772676e-6 Iter 65: T = 762.5825898715293 K, F = -0.09274093817157647, relative_change = 1.203409068679428e-6 Iter 70: T = 762.5797868361639 K, F = -0.0387854163742406, relative_change = 5.032894811015559e-7 Iter 75: T = 762.5786145623888 K, F = -0.016220532800667153, relative_change = 2.1048332209815566e-7 Iter 80: T = 762.578124301588 K, F = -0.0067836220140767844, relative_change = 8.802692769165882e-8 Iter 85: T = 762.5779192683324 K, F = -0.002836991997442806, relative_change = 3.681396289383798e-8 Iter 90: T = 762.5778335209179 K, F = -0.0011864639801061339, relative_change = 1.5396047772427436e-8 Iter 95: T = 762.577797660315 K, F = -0.0004961934140604862, relative_change = 6.43881259421552e-9 Iter 100: T = 762.5777826629808 K, F = -0.00020751401404350833, relative_change = 2.692788606922198e-9 Iter 105: T = 762.5777763909161 K, F = -8.678483891344513e-5, relative_change = 1.1261563981994394e-9 Iter 110: T = 762.5777737678637 K, F = -3.6294453429119855e-5, relative_change = 4.709720284035928e-10 Iter 115: T = 762.5777726708719 K, F = -1.5178775625512841e-5, relative_change = 1.969661509837804e-10 Iter 120: T = 762.5777722120969 K, F = -6.3479461243076685e-6, relative_change = 8.237360833222556e-11 Iter 125: T = 762.5777720202316 K, F = -2.654785778322122e-6, relative_change = 3.444961250286079e-11 Iter 130: T = 762.5777719399913 K, F = -1.1102627680559252e-6, relative_change = 1.440723483881837e-11 Iter 135: T = 762.5777719064338 K, F = -4.6432461398016045e-7, relative_change = 6.025270727731449e-12 Iter 140: T = 762.5777718923997 K, F = -1.9418555419203898e-7, relative_change = 2.519833108770138e-12 Iter 145: T = 762.5777718865305 K, F = -8.121276184880344e-8, relative_change = 1.0538508233542328e-12 Iter 150: T = 762.5777718840759 K, F = -3.3963728496289036e-8, relative_change = 4.4072757071331807e-13 Converged in 154 iterations to T = 762.5777718831899 K Iter 1: T = 964.3686524667318 K, F = -8118.636429616824, relative_change = 0.03563134753326824 Iter 2: T = 930.6654805856731 K, F = -6887.437459159055, relative_change = 0.03494843159288749 Iter 3: T = 898.8596353192331 K, F = -5841.874513414745, relative_change = 0.03417537872622549 Iter 5: T = 840.8271175306134 K, F = -4200.082033175506, relative_change = 0.03233367668466798 Iter 10: T = 726.9615247232208 K, F = -1831.4567248021717, relative_change = 0.02590815182136223 Iter 15: T = 653.6198356739203 K, F = -790.6886541054765, relative_change = 0.017698513482078508 Iter 20: T = 612.2203908366299 K, F = -337.51844753878055, relative_change = 0.010121013109750582 Iter 25: T = 591.5694379572737 K, F = -142.73718679227693, relative_change = 0.0050118873876176025 Iter 30: T = 582.1232787211615 K, F = -60.014946558949944, relative_change = 0.0022722522144371744 Iter 35: T = 578.0060589090856 K, F = -25.15902908823833, relative_change = 0.0009850493754007996 Iter 40: T = 576.2527703419676 K, F = -10.532635688186406, relative_change = 0.0004183718355311552 Iter 45: T = 575.5138476252376 K, F = -4.4067929184979295, relative_change = 0.000176115436969694 Iter 50: T = 575.2038146686118 K, F = -1.8433108947424852, relative_change = 7.385618706913746e-5 Iter 55: T = 575.0739780899514 K, F = -0.7709537900271346, relative_change = 3.0923119120055544e-5 Iter 60: T = 575.0196478324764 K, F = -0.32243243926370213, relative_change = 1.2938651167751622e-5 Iter 65: T = 574.9969208337697 K, F = -0.134846908944668, relative_change = 5.412189447477189e-6 Iter 70: T = 574.9874151802907 K, F = -0.05639490473073175, relative_change = 2.263633137030551e-6 Iter 75: T = 574.9834396360887 K, F = -0.023585078099350176, relative_change = 9.467117996348563e-7 Iter 80: T = 574.9817769869207 K, F = -0.009863571022925732, relative_change = 3.9593202064132914e-7 Iter 85: T = 574.9810816420919 K, F = -0.004125064891968067, relative_change = 1.655845208208421e-7 Iter 90: T = 574.9807908396901 K, F = -0.001725151697775873, relative_change = 6.924960274092792e-8 Iter 95: T = 574.9806692224971 K, F = -0.0007214790950691441, relative_change = 2.8961042148284735e-8 Iter 100: T = 574.9806183607072 K, F = -0.0003017311825195823, relative_change = 1.21118591435892e-8 Iter 105: T = 574.9805970896947 K, F = -0.00012618758592747303, relative_change = 5.065325111067634e-9 Iter 110: T = 574.9805881939023 K, F = -5.2773156005214705e-5, relative_change = 2.118379633214715e-9 Iter 115: T = 574.9805844735755 K, F = -2.2070363857484843e-5, relative_change = 8.859316795254625e-10 Iter 120: T = 574.9805829176903 K, F = -9.230088900191724e-6, relative_change = 3.7050717965800026e-10 Iter 125: T = 574.9805822670006 K, F = -3.8601330548115875e-6, relative_change = 1.5495051395645785e-10 Iter 130: T = 574.9805819948746 K, F = -1.6143545029101425e-6, relative_change = 6.48021860763795e-11 Iter 135: T = 574.980581881068 K, F = -6.75142273975915e-7, relative_change = 2.7101045791724754e-11 Iter 140: T = 574.9805818334728 K, F = -2.823528484352522e-7, relative_change = 1.1333992512156476e-11 Iter 145: T = 574.9805818135679 K, F = -1.180833681946325e-7, relative_change = 4.740012429715815e-12 Iter 150: T = 574.9805818052434 K, F = -4.9383870770469684e-8, relative_change = 1.982329644508569e-12 Iter 155: T = 574.980581801762 K, F = -2.0652458243564098e-8, relative_change = 8.290152142924719e-13 Iter 160: T = 574.9805818003061 K, F = -8.637071502448634e-9, relative_change = 3.4670273136998217e-13 Converged in 163 iterations to T = 574.9805817998799 K Iter 1: T = 963.5273163996588 K, F = -8310.335652816599, relative_change = 0.03647268360034116 Iter 2: T = 928.9300580310118 K, F = -7051.663555460726, relative_change = 0.03590687859055633 Iter 3: T = 896.1745362618726 K, F = -5982.716150312484, relative_change = 0.03526155869966004 Iter 5: T = 836.0694160890017 K, F = -4304.026994675246, relative_change = 0.03370302400356834 Iter 10: T = 716.0968518602623 K, F = -1881.055707580574, relative_change = 0.02801758199343903 Iter 15: T = 636.1377383489111 K, F = -814.6660749178014, relative_change = 0.02012358769631573 Iter 20: T = 589.2087242845157 K, F = -348.8679465074198, relative_change = 0.012096483885656817 Iter 25: T = 565.0227693509453 K, F = -147.88289424197296, relative_change = 0.006209168003208583 Iter 30: T = 553.7287871131334 K, F = -62.261006245282665, relative_change = 0.002872244946339416 Iter 35: T = 548.7531872381666 K, F = -26.117351709190608, relative_change = 0.0012572509309753275 Iter 40: T = 546.6238466545012 K, F = -10.936960308085856, relative_change = 0.0005362844513774137 Iter 45: T = 545.7244922494232 K, F = -4.576523334144842, relative_change = 0.00022616893260051115 Iter 50: T = 545.3467979555074 K, F = -1.914406915379373, relative_change = 9.492092383694322e-5 Iter 55: T = 545.1885644100557 K, F = -0.8007068098256972, relative_change = 3.97558505208683e-5 Iter 60: T = 545.1223406022334 K, F = -0.334878980301065, relative_change = 1.663667568036144e-5 Iter 65: T = 545.0946364948794 K, F = -0.14005280897799094, relative_change = 6.959460310780201e-6 Iter 70: T = 545.083048815342 K, F = -0.05857218066142378, relative_change = 2.9108450319108833e-6 Iter 75: T = 545.078202448539 K, F = -0.02449565950218424, relative_change = 1.2174053654941705e-6 Iter 80: T = 545.0761755944396 K, F = -0.01024439029353108, relative_change = 5.091431196276397e-7 Iter 85: T = 545.0753279318697 K, F = -0.004284328628749473, relative_change = 2.1293142208859058e-7 Iter 90: T = 545.074973427864 K, F = -0.0017917577938454388, relative_change = 8.905075904918305e-8 Iter 95: T = 545.0748251698111 K, F = -0.0007493345762217829, relative_change = 3.72421425668651e-8 Iter 100: T = 545.0747631664801 K, F = -0.0003133806809885453, relative_change = 1.55751178310957e-8 Iter 105: T = 545.0747372359392 K, F = -0.00013105954567330103, relative_change = 6.5137018741237206e-9 Iter 110: T = 545.074726391476 K, F = -5.4810667509092026e-5, relative_change = 2.724108188063709e-9 Iter 115: T = 545.0747218561918 K, F = -2.2922475882980464e-5, relative_change = 1.139254629706967e-9 Iter 120: T = 545.0747199594817 K, F = -9.586453257576233e-6, relative_change = 4.764499041397759e-10 Iter 125: T = 545.0747191662549 K, F = -4.009169212809693e-6, relative_change = 1.992570400161197e-10 Iter 130: T = 545.074718834518 K, F = -1.676682632650861e-6, relative_change = 8.33316833644783e-11 Iter 135: T = 545.0747186957815 K, F = -7.012082490764904e-7, relative_change = 3.485028276521607e-11 Iter 140: T = 545.0747186377604 K, F = -2.932535164423822e-7, relative_change = 1.4574797128456704e-11 Iter 145: T = 545.0747186134952 K, F = -1.2264177243204166e-7, relative_change = 6.095336808693989e-12 Iter 150: T = 545.0747186033473 K, F = -5.129032157324964e-8, relative_change = 2.549146011536368e-12 Iter 155: T = 545.0747185991033 K, F = -2.1450474674278297e-8, relative_change = 1.066095713309853e-12 Iter 160: T = 545.0747185973282 K, F = -8.970181791800869e-9, relative_change = 4.458210133440327e-13 Converged in 164 iterations to T = 545.0747185966877 K Iter 1: T = 969.320102403456 K, F = -6990.443851489378, relative_change = 0.03067989759654405 Iter 2: T = 940.7810930127422 K, F = -5922.393012182043, relative_change = 0.029442296017538987 Iter 3: T = 914.343899763365 K, F = -5015.8374831949095, relative_change = 0.028101322874926313 Iter 5: T = 867.5891681830166 K, F = -3593.749120933319, relative_change = 0.025141134355914734 Iter 10: T = 783.3491413104002 K, F = -1549.7837203275749, relative_change = 0.016872928660493988 Iter 15: T = 736.4258004269765 K, F = -660.8478728618707, relative_change = 0.009490833483320742 Iter 20: T = 713.2636486352502 K, F = -279.26867653468724, relative_change = 0.004647341741084822 Iter 25: T = 702.7357073557228 K, F = -117.37372845459404, relative_change = 0.002094260901752577 Iter 30: T = 698.161593688658 K, F = -49.19524600763283, relative_change = 0.0009053022490896105 Iter 35: T = 696.2165689713947 K, F = -20.59349198091723, relative_change = 0.00038401840648779906 Iter 40: T = 695.3973562385054 K, F = -8.615887516781209, relative_change = 0.0001615673042589961 Iter 45: T = 695.0537278149319 K, F = -3.603872329547344, relative_change = 6.77398656331679e-5 Iter 50: T = 694.909838267381 K, F = -1.5072885353236798, relative_change = 2.835955017113047e-5 Iter 55: T = 694.8496303808105 K, F = -0.6303846375682902, relative_change = 1.1865545371058183e-5 Iter 60: T = 694.8244451986569 K, F = -0.26363763311518607, relative_change = 4.96323034604963e-6 Iter 65: T = 694.8139114880062 K, F = -0.11025697504342957, relative_change = 2.0758427310698372e-6 Iter 70: T = 694.8095059953089 K, F = -0.04611088311820366, relative_change = 8.681703003228191e-7 Iter 75: T = 694.8076635360719 K, F = -0.019284139382077403, relative_change = 3.63084098990204e-7 Iter 80: T = 694.8068929924423 K, F = -0.00806486043012522, relative_change = 1.518469653226068e-7 Iter 85: T = 694.8065707409893 K, F = -0.0033728214772780207, relative_change = 6.350436455454051e-8 Iter 90: T = 694.806435971425 K, F = -0.0014105543142433064, relative_change = 2.6558309926179482e-8 Iter 95: T = 694.806379609156 K, F = -0.0005899106764062356, relative_change = 1.1107006986860005e-8 Iter 100: T = 694.8063560377772 K, F = -0.0002467076911680799, relative_change = 4.645083741841115e-9 Iter 105: T = 694.8063461799442 K, F = -0.00010317610328014482, relative_change = 1.942629635898645e-9 Iter 110: T = 694.8063420572805 K, F = -4.3149478288317944e-5, relative_change = 8.124309311903748e-10 Iter 115: T = 694.8063403331333 K, F = -1.804562716689606e-5, relative_change = 3.397683225360422e-10 Iter 120: T = 694.8063396120743 K, F = -7.546895228749406e-6, relative_change = 1.4209514145349535e-10 Iter 125: T = 694.806339310519 K, F = -3.1562020110786904e-6, relative_change = 5.942589085354035e-11 Iter 130: T = 694.8063391844049 K, F = -1.3199618126291668e-6, relative_change = 2.4852625529226043e-11 Iter 135: T = 694.8063391316624 K, F = -5.520231208810955e-7, relative_change = 1.0393652134802457e-11 Iter 140: T = 694.8063391096049 K, F = -2.3086152944884475e-7, relative_change = 4.34672813148214e-12 Iter 145: T = 694.8063391003802 K, F = -9.654920862800509e-8, relative_change = 1.817856627061846e-12 Iter 150: T = 694.8063390965225 K, F = -4.037929290934272e-8, relative_change = 7.602730903375733e-13 Iter 155: T = 694.806339094909 K, F = -1.6887284570721306e-8, relative_change = 3.1795871356537925e-13 Converged in 158 iterations to T = 694.8063390944367 K Iter 1: T = 966.5168687701071 K, F = -7629.163301411502, relative_change = 0.0334831312298929 Iter 2: T = 935.0745923265115 K, F = -6468.439406029779, relative_change = 0.03253153406790082 Iter 3: T = 905.6433976400766 K, F = -5482.898511653305, relative_change = 0.03147470258304061 Iter 5: T = 852.6891045177696 K, F = -3935.9108933038524, relative_change = 0.02904089685329957 Iter 10: T = 752.8589921349269 K, F = -1707.2848991772141, relative_change = 0.021388772427413588 Iter 15: T = 693.064408481173 K, F = -732.373961907638, relative_change = 0.013207222150363969 Iter 20: T = 661.6815335083941 K, F = -310.8663384756475, relative_change = 0.006920959289503328 Iter 25: T = 646.8473762227437 K, F = -130.98403830197574, relative_change = 0.003240541868888321 Iter 30: T = 640.2692906262786 K, F = -54.96717091453182, relative_change = 0.0014269647063698905 Iter 35: T = 637.4454749888906 K, F = -23.02229498138349, relative_change = 0.0006103168769921272 Iter 40: T = 636.251179653572 K, F = -9.634324642848956, relative_change = 0.0002576902107903304 Iter 45: T = 635.7493300482441 K, F = -4.030269710780137, relative_change = 0.00010820340732365207 Iter 50: T = 635.539030539492 K, F = -1.6856964735458997, relative_change = 4.532836400668803e-5 Iter 55: T = 635.4510070495329 K, F = -0.7050115960226988, relative_change = 1.897025995716866e-5 Iter 60: T = 635.4141816610507 K, F = -0.2948500790764466, relative_change = 7.935934812792914e-6 Iter 65: T = 635.3987785837506 K, F = -0.12331084073158843, relative_change = 3.319313130150982e-6 Iter 70: T = 635.3923364374841 K, F = -0.05157024401740751, relative_change = 1.3882481871276228e-6 Iter 75: T = 635.389642185819 K, F = -0.021567323018546025, relative_change = 5.805945289490582e-7 Iter 80: T = 635.3885154054997 K, F = -0.009019717491832002, relative_change = 2.4281376221038856e-7 Iter 85: T = 635.3880441703978 K, F = -0.0037721545228853737, relative_change = 1.0154799929374875e-7 Iter 90: T = 635.3878470938805 K, F = -0.0015775602358634178, relative_change = 4.246865320896946e-8 Iter 95: T = 635.3877646740626 K, F = -0.0006597545587882503, relative_change = 1.776090968007242e-8 Iter 100: T = 635.3877302050993 K, F = -0.0002759172407278965, relative_change = 7.427826594251987e-9 Iter 105: T = 635.3877157897651 K, F = -0.00011539188587761373, relative_change = 3.1064061419373095e-9 Iter 110: T = 635.3877097610999 K, F = -4.82582650460639e-5, relative_change = 1.2991362136955768e-9 Iter 115: T = 635.38770723984 K, F = -2.0182181503181074e-5, relative_change = 5.43314255754297e-10 Iter 120: T = 635.3877061854191 K, F = -8.440429553724371e-6, relative_change = 2.2722051809598851e-10 Iter 125: T = 635.3877057444477 K, F = -3.529889219089366e-6, relative_change = 9.502635555784206e-11 Iter 130: T = 635.3877055600282 K, F = -1.4762425599168516e-6, relative_change = 3.9741176528570625e-11 Iter 135: T = 635.3877054829018 K, F = -6.173825061739358e-7, relative_change = 1.6620241038892068e-11 Iter 140: T = 635.3877054506465 K, F = -2.5819674848159835e-7, relative_change = 6.9507835958191675e-12 Iter 145: T = 635.387705437157 K, F = -1.0798087046737237e-7, relative_change = 2.906898199131436e-12 Iter 150: T = 635.3877054315155 K, F = -4.5158799533151495e-8, relative_change = 1.2156971181582578e-12 Iter 155: T = 635.3877054291562 K, F = -1.8886867070300184e-8, relative_change = 5.084437608212384e-13 Converged in 160 iterations to T = 635.3877054281695 K Iter 1: T = 966.4831658988502 K, F = -7636.842532687092, relative_change = 0.03351683410114979 Iter 2: T = 935.0056615368686 K, F = -6475.009335541173, relative_change = 0.03256911808981875 Iter 3: T = 905.5377584551708 K, F = -5488.523330960406, relative_change = 0.03151628304930419 Iter 5: T = 852.5060716138626 K, F = -3940.042003519403, relative_change = 0.029090415132803197 Iter 10: T = 752.4711807980259 K, F = -1709.2078982638475, relative_change = 0.02145153182622543 Iter 15: T = 692.4935637620852 K, F = -733.2618724165169, relative_change = 0.013263838349207384 Iter 20: T = 660.9854899686446 K, F = -311.2647086058152, relative_change = 0.0069580202370673645 Iter 25: T = 646.0827476705364 K, F = -131.15736257190275, relative_change = 0.0032599611540301086 Iter 30: T = 639.4719771972672 K, F = -55.04105760460431, relative_change = 0.0014359693398694195 Iter 35: T = 636.6336678407497 K, F = -23.053460535657877, relative_change = 0.0006142559752215578 Iter 40: T = 635.4331559350501 K, F = -9.647406479377723, relative_change = 0.0002593694351849799 Iter 45: T = 634.9286784893153 K, F = -4.035749216152427, relative_change = 0.00010891136786216085 Iter 50: T = 634.7172750242187 K, F = -1.6879895684640605, relative_change = 4.5625445427725694e-5 Iter 55: T = 634.6287889737933 K, F = -0.7059708587944065, relative_change = 1.90946791889125e-5 Iter 60: T = 634.5917699839996 K, F = -0.29525130028944535, relative_change = 7.987999293010817e-6 Iter 65: T = 634.5762859135326 K, F = -0.12347864429489464, relative_change = 3.3410925205627476e-6 Iter 70: T = 634.5698098902695 K, F = -0.05164042288201992, relative_change = 1.3973575335581741e-6 Iter 75: T = 634.56710147002 K, F = -0.021596672904599767, relative_change = 5.844043317617246e-7 Iter 80: T = 634.5659687640862 K, F = -0.009031992007231593, relative_change = 2.4440709614915795e-7 Iter 85: T = 634.5654950507965 K, F = -0.00377728788030518, relative_change = 1.0221435565902768e-7 Iter 90: T = 634.565296937867 K, F = -0.0015797070681369818, relative_change = 4.274733227198908e-8 Iter 95: T = 634.5652140846084 K, F = -0.0006606523915237417, relative_change = 1.7877456790503548e-8 Iter 100: T = 634.5651794343747 K, F = -0.00027629272453194575, relative_change = 7.476567998295926e-9 Iter 105: T = 634.5651649432313 K, F = -0.0001155489184311298, relative_change = 3.126790403804304e-9 Iter 110: T = 634.5651588828616 K, F = -4.83239376193878e-5, relative_change = 1.307661147713843e-9 Iter 115: T = 634.5651563483427 K, F = -2.020964849791529e-5, relative_change = 5.468795374327201e-10 Iter 120: T = 634.5651552883766 K, F = -8.451916780782831e-6, relative_change = 2.287115669889029e-10 Iter 125: T = 634.565154845086 K, F = -3.5346917395262523e-6, relative_change = 9.564988750204562e-11 Iter 130: T = 634.5651546596965 K, F = -1.4782504016985776e-6, relative_change = 4.000192809966058e-11 Iter 135: T = 634.5651545821645 K, F = -6.182214283834142e-7, relative_change = 1.6729269353711963e-11 Iter 140: T = 634.5651545497398 K, F = -2.5854846036343915e-7, relative_change = 6.996403936968065e-12 Iter 145: T = 634.5651545361793 K, F = -1.0812820033789805e-7, relative_change = 2.925983645599331e-12 Iter 150: T = 634.5651545305082 K, F = -4.522038227205982e-8, relative_change = 1.2236779911988588e-12 Iter 155: T = 634.5651545281364 K, F = -1.8912628740874737e-8, relative_change = 5.117817759058284e-13 Converged in 160 iterations to T = 634.5651545271445 K Iter 1: T = 976.3173190021349 K, F = -5396.1213934090465, relative_change = 0.02368268099786506 Iter 2: T = 954.7986586043158 K, F = -4562.92709119062, relative_change = 0.022040641888656277 Iter 3: T = 935.3533828752066 K, F = -3856.639445348347, relative_change = 0.020365838969163857 Iter 5: T = 902.2658496107958 K, F = -2751.2879120713646, relative_change = 0.017010837687447697 Iter 10: T = 847.7043016606351 K, F = -1173.3932479137625, relative_change = 0.009594804196491166 Iter 15: T = 820.7248610698794 K, F = -495.9261255535712, relative_change = 0.004706962209449536 Iter 20: T = 808.4490591784693 K, F = -208.44626531820083, relative_change = 0.0021232312063121646 Iter 25: T = 803.112763153853 K, F = -87.36948497815574, relative_change = 0.0009182524471281441 Iter 30: T = 800.8431020849947 K, F = -36.574007754921254, relative_change = 0.0003895914460316123 Iter 35: T = 799.8870595681726 K, F = -15.301891220791946, relative_change = 0.0001639263755011829 Iter 40: T = 799.4860187784479 K, F = -6.400524382104201, relative_change = 6.87314840321484e-5 Iter 45: T = 799.3180855285362 K, F = -2.6769669156144706, relative_change = 2.877514092385718e-5 Iter 50: T = 799.2478164636125 K, F = -1.1195730015390928, relative_change = 1.2039505379274048e-5 Iter 55: T = 799.2184225584405 K, F = -0.4682246554378695, relative_change = 5.03600963390274e-6 Iter 60: T = 799.2061285314218 K, F = -0.19581816698092547, relative_change = 2.106284646305287e-6 Iter 65: T = 799.2009868222347 K, F = -0.08189367514206103, relative_change = 8.809023033704592e-7 Iter 70: T = 799.1988364630188 K, F = -0.034248944289546945, relative_change = 3.684089200276416e-7 Iter 75: T = 799.1979371509874 K, F = -0.014323322998791577, relative_change = 1.540738944905628e-7 Iter 80: T = 799.1975610468843 K, F = -0.005990185691293948, relative_change = 6.443569737482976e-8 Iter 85: T = 799.1974037554693 K, F = -0.00250516736085582, relative_change = 2.694780521345967e-8 Iter 90: T = 799.1973379742883 K, F = -0.0010476909362412412, relative_change = 1.1269898681912516e-8 Iter 95: T = 799.1973104638072 K, F = -0.00043815686821446764, relative_change = 4.713207063322988e-9 Iter 100: T = 799.1972989585944 K, F = -0.00018324243530665196, relative_change = 1.9711196200232695e-9 Iter 105: T = 799.1972941469769 K, F = -7.663417471592826e-5, relative_change = 8.24345787721771e-10 Iter 110: T = 799.197292134701 K, F = -3.2049329140915184e-5, relative_change = 3.447512795861874e-10 Iter 115: T = 799.1972912931432 K, F = -1.340341334510331e-5, relative_change = 1.4417911540042136e-10 Iter 120: T = 799.1972909411935 K, F = -5.605468230585053e-6, relative_change = 6.029743556933249e-11 Iter 125: T = 799.197290794004 K, F = -2.3442735449519247e-6, relative_change = 2.5217105394749055e-11 Iter 130: T = 799.1972907324476 K, F = -9.804032504723281e-7, relative_change = 1.0546095253610335e-11 Iter 135: T = 799.197290706704 K, F = -4.1001862860490235e-7, relative_change = 4.410527516715131e-12 Iter 140: T = 799.1972906959377 K, F = -1.7147456798927152e-7, relative_change = 1.8445339987486323e-12 Iter 145: T = 799.1972906914351 K, F = -7.171368865410699e-8, relative_change = 7.714166506020811e-13 Iter 150: T = 799.1972906895521 K, F = -2.999291737193488e-8, relative_change = 3.226306761697648e-13 Converged in 153 iterations to T = 799.1972906890009 K Iter 1: T = 965.2345428288697 K, F = -7921.342486929304, relative_change = 0.03476545717113023 Iter 2: T = 932.4464713454907 K, F = -6718.4936149122905, relative_change = 0.033969019993094166 Iter 3: T = 901.6063735849973 K, F = -5697.070162212974, relative_change = 0.03307438947781325 Iter 5: T = 845.6568528500267 K, F = -4093.390600761383, relative_change = 0.030972323059578078 Iter 10: T = 737.7002848690298 K, F = -1781.0007913954075, relative_change = 0.02395081314458063 Iter 15: T = 670.3224206972869 K, F = -766.7324954135441, relative_change = 0.015645012358752767 Iter 20: T = 633.5295562018889 K, F = -326.43470677663447, relative_change = 0.008589788089710178 Iter 25: T = 615.6401647123948 K, F = -137.80496361821724, relative_change = 0.004139802629634691 Iter 30: T = 607.5806645484874 K, F = -57.88589771645355, relative_change = 0.0018499673017496744 Iter 35: T = 604.0943786673156 K, F = -24.255616386420378, relative_change = 0.0007965814276139217 Iter 40: T = 602.6148661949899 K, F = -10.152421715820063, relative_change = 0.0003373219295207968 Iter 45: T = 601.992254770655 K, F = -4.247354590235817, relative_change = 0.00014181705910069824 Iter 50: T = 601.7311882564633 K, F = -1.7765562770813998, relative_change = 5.944090153589173e-5 Iter 55: T = 601.6218871062956 K, F = -0.7430229370531931, relative_change = 2.48819365473854e-5 Iter 60: T = 601.5761550276545 K, F = -0.3107490974652499, relative_change = 1.0409958514076754e-5 Iter 65: T = 601.5570256446049 K, F = -0.12996038886459613, relative_change = 4.35427518624349e-6 Iter 70: T = 601.5490248640225 K, F = -0.05435123246912088, relative_change = 1.8211334307932565e-6 Iter 75: T = 601.5456787293574 K, F = -0.022730377497317933, relative_change = 7.61641360213439e-7 Iter 80: T = 601.544279316171 K, F = -0.009506122845223286, relative_change = 3.185312925916837e-7 Iter 85: T = 601.5436940614169 K, F = -0.003975575415019805, relative_change = 1.3321425171001746e-7 Iter 90: T = 601.5434493002865 K, F = -0.001662633347225717, relative_change = 5.571190661858872e-8 Iter 95: T = 601.5433469381533 K, F = -0.0006953331621617487, relative_change = 2.3299404915509634e-8 Iter 100: T = 601.5433041290681 K, F = -0.0002907966389461558, relative_change = 9.744092908517088e-9 Iter 105: T = 601.5432862257943 K, F = -0.00012161462817517066, relative_change = 4.0750966317278825e-9 Iter 110: T = 601.5432787384309 K, F = -5.0860690305187806e-5, relative_change = 1.7042541932839557e-9 Iter 115: T = 601.5432756071259 K, F = -2.1270547735041667e-5, relative_change = 7.127394624760599e-10 Iter 120: T = 601.5432742975768 K, F = -8.895597133518063e-6, relative_change = 2.980761597697631e-10 Iter 125: T = 601.5432737499077 K, F = -3.720245222160745e-6, relative_change = 1.2465901921882393e-10 Iter 130: T = 601.543273520866 K, F = -1.5558508588142672e-6, relative_change = 5.213388658006e-11 Iter 135: T = 601.5432734250779 K, F = -6.506750467871747e-7, relative_change = 2.180300182579673e-11 Iter 140: T = 601.5432733850183 K, F = -2.7212030412337995e-7, relative_change = 9.118283417836539e-12 Iter 145: T = 601.5432733682649 K, F = -1.1380427467067022e-7, relative_change = 3.813385532141644e-12 Iter 150: T = 601.5432733612585 K, F = -4.759417221444906e-8, relative_change = 1.5947988621000147e-12 Iter 155: T = 601.5432733583283 K, F = -1.9905266823716516e-8, relative_change = 6.669912597273637e-13 Iter 160: T = 601.5432733571027 K, F = -8.324262168457608e-9, relative_change = 2.7893170984670947e-13 Converged in 162 iterations to T = 601.5432733568434 K Iter 1: T = 964.5671115989928 K, F = -8073.417327547772, relative_change = 0.03543288840100718 Iter 2: T = 931.0741318160883 K, F = -6848.709362983249, relative_change = 0.034723327573736286 Iter 3: T = 899.4906693538242 K, F = -5808.672632887525, relative_change = 0.033921533616941564 Iter 5: T = 841.9399907723921 K, F = -4175.6031918644085, relative_change = 0.03201744347545922 Iter 10: T = 729.461047719779 K, F = -1819.841169196776, relative_change = 0.025441532806053543 Iter 15: T = 657.5557160331646 K, F = -785.1376683924642, relative_change = 0.017192687508511335 Iter 20: T = 617.2965244820749 K, F = -334.9300126787114, relative_change = 0.009732420251083247 Iter 25: T = 597.3438325386995 K, F = -141.57826644166354, relative_change = 0.00478612035600527 Iter 30: T = 588.2527989039537 K, F = -59.51291163881612, relative_change = 0.0021617638797974503 Iter 35: T = 584.2982042417171 K, F = -24.945635058796622, relative_change = 0.0009354920910279458 Iter 40: T = 582.6156892499336 K, F = -10.442756660131542, relative_change = 0.00039701328528916235 Iter 45: T = 581.9068723017525 K, F = -4.3690907061325825, relative_change = 0.00016706856574515196 Iter 50: T = 581.6095205660826 K, F = -1.8275232885335764, relative_change = 7.00523734299826e-5 Iter 55: T = 581.485003417433 K, F = -0.7643476959212152, relative_change = 2.932874662407554e-5 Iter 60: T = 581.432900616531 K, F = -0.3196690735665769, relative_change = 1.2271239220687221e-5 Iter 65: T = 581.4111056585488 K, F = -0.1336911281969148, relative_change = 5.132960141742525e-6 Iter 70: T = 581.4019898817012 K, F = -0.05591152448715164, relative_change = 2.1468369189232284e-6 Iter 75: T = 581.3981774036205 K, F = -0.023382919396912394, relative_change = 8.97862869813872e-7 Iter 80: T = 581.3965829532856 K, F = -0.009779025259300467, relative_change = 3.7550222767294764e-7 Iter 85: T = 581.3959161304841 K, F = -0.004089706743429733, relative_change = 1.5704043476289438e-7 Iter 90: T = 581.3956372564152 K, F = -0.0017103644795783968, relative_change = 6.567634593447408e-8 Iter 95: T = 581.3955206278075 K, F = -0.0007152948995585717, relative_change = 2.7466660291138735e-8 Iter 100: T = 581.3954718523062 K, F = -0.0002991448777429073, relative_change = 1.1486890262513723e-8 Iter 105: T = 581.3954514538048 K, F = -0.00012510596150849818, relative_change = 4.803955534605458e-9 Iter 110: T = 581.395442922907 K, F = -5.2320807355288323e-5, relative_change = 2.0090717228599755e-9 Iter 115: T = 581.3954393551836 K, F = -2.1881186454020263e-5, relative_change = 8.402178114952884e-10 Iter 120: T = 581.395437863119 K, F = -9.150973122318273e-6, relative_change = 3.5138911319943424e-10 Iter 125: T = 581.3954372391198 K, F = -3.827046395288303e-6, relative_change = 1.469551301167316e-10 Iter 130: T = 581.3954369781559 K, F = -1.600516312205702e-6, relative_change = 6.145838307744017e-11 Iter 135: T = 581.3954368690178 K, F = -6.693551148906352e-7, relative_change = 2.5702632824694647e-11 Iter 140: T = 581.3954368233748 K, F = -2.799318578605714e-7, relative_change = 1.0749130918928813e-11 Iter 145: T = 581.3954368042863 K, F = -1.1707099273339239e-7, relative_change = 4.495420555254171e-12 Iter 150: T = 581.3954367963033 K, F = -4.8960644261075714e-8, relative_change = 1.88004459076681e-12 Iter 155: T = 581.3954367929647 K, F = -2.047515107461706e-8, relative_change = 7.862273384058142e-13 Iter 160: T = 581.3954367915685 K, F = -8.563178333087507e-9, relative_change = 3.288183264025376e-13 Converged in 163 iterations to T = 581.3954367911597 K Iter 1: T = 964.3459124363175 K, F = -8123.817767178085, relative_change = 0.03565408756368258 Iter 2: T = 930.6186388473637 K, F = -6891.875294006587, relative_change = 0.03497424850772206 Iter 3: T = 898.7872727190495 K, F = -5845.679384986838, relative_change = 0.03420452245372995 Iter 5: T = 840.6993743094827 K, F = -4202.887866641488, relative_change = 0.03237007431196714 Iter 10: T = 726.673624300942 K, F = -1832.7896679047926, relative_change = 0.025962337388593836 Iter 15: T = 653.1645219365113 K, F = -791.3271235981922, relative_change = 0.01775794008324761 Iter 20: T = 611.6308487391663 K, F = -337.81702306816356, relative_change = 0.010167175309748984 Iter 25: T = 590.8970373249426 K, F = -142.871178364727, relative_change = 0.005038913287501577 Iter 30: T = 581.4085288321858 K, F = -60.07307001595044, relative_change = 0.002285533800655875 Iter 35: T = 577.2718667216533 K, F = -25.183751537943277, relative_change = 0.000991018361712691 Iter 40: T = 575.5101071591141 K, F = -10.543051631943623, relative_change = 0.000420946643110522 Iter 45: T = 574.7675792169307 K, F = -4.411162738908449, relative_change = 0.00017720646050715117 Iter 50: T = 574.456027332374 K, F = -1.8451408352583178, relative_change = 7.43149873479414e-5 Iter 55: T = 574.325553546702 K, F = -0.7717195197538671, relative_change = 3.1115438522457024e-5 Iter 60: T = 574.2709564552064 K, F = -0.3227527513537393, relative_change = 1.3019159230504211e-5 Iter 65: T = 574.2481178026361 K, F = -0.13498088037403014, relative_change = 5.4458725011754255e-6 Iter 70: T = 574.2385654435561 K, F = -0.05645093547266353, relative_change = 2.2777221756446326e-6 Iter 75: T = 574.2345703646558 K, F = -0.023608511225321344, relative_change = 9.526044207576136e-7 Iter 80: T = 574.2328995455186 K, F = -0.009873371105716122, relative_change = 3.983964580759707e-7 Iter 85: T = 574.2322007838543 K, F = -0.004129163416952075, relative_change = 1.666151907854181e-7 Iter 90: T = 574.2319085524811 K, F = -0.0017268657516057995, relative_change = 6.968064344325929e-8 Iter 95: T = 574.2317863376734 K, F = -0.0007221959326550453, relative_change = 2.914130888497953e-8 Iter 100: T = 574.2317352259537 K, F = -0.00030203097241454646, relative_change = 1.2187248905408312e-8 Iter 105: T = 574.2317138504173 K, F = -0.0001263129613688907, relative_change = 5.096854010345315e-9 Iter 110: T = 574.231704910912 K, F = -5.2825589599125866e-5, relative_change = 2.131565401006746e-9 Iter 115: T = 574.2317011723038 K, F = -2.2092292082165343e-5, relative_change = 8.914461201151785e-10 Iter 120: T = 574.2316996087732 K, F = -9.23926017087906e-6, relative_change = 3.7281340968154717e-10 Iter 125: T = 574.2316989548862 K, F = -3.863969667394773e-6, relative_change = 1.559150503151249e-10 Iter 130: T = 574.2316986814226 K, F = -1.6159577060359531e-6, relative_change = 6.520551383748973e-11 Iter 135: T = 574.231698567057 K, F = -6.758130253192718e-7, relative_change = 2.7269733267892194e-11 Iter 140: T = 574.231698519228 K, F = -2.8263329721056607e-7, relative_change = 1.1404536967857646e-11 Iter 145: T = 574.2316984992252 K, F = -1.1820087197911278e-7, relative_change = 4.76952371729244e-12 Iter 150: T = 574.2316984908598 K, F = -4.943253301137318e-8, relative_change = 1.9946522785517256e-12 Iter 155: T = 574.2316984873613 K, F = -2.067354953894096e-8, relative_change = 8.341984556063341e-13 Iter 160: T = 574.2316984858983 K, F = -8.645972715548567e-9, relative_change = 3.4887366937289285e-13 Converged in 163 iterations to T = 574.2316984854699 K Iter 1: T = 979.9926826869932 K, F = -4558.686281640645, relative_change = 0.02000731731300677 Iter 2: T = 962.0354959202941 K, F = -3850.8926441267886, relative_change = 0.018323796783322084 Iter 3: T = 946.008606102676 K, F = -3251.4766353572936, relative_change = 0.016659353927774342 Iter 5: T = 919.2258409066326 K, F = -2314.8424480949016, relative_change = 0.013477115923283154 Iter 10: T = 876.6439928652601 K, F = -982.8921803771902, relative_change = 0.007098434789873597 Iter 15: T = 856.455167071585 K, F = -414.2262882574768, relative_change = 0.003333783265954079 Iter 20: T = 847.4877756782439 K, F = -173.84669639942902, relative_change = 0.0014702571890025176 Iter 25: T = 843.6352602564627 K, F = -72.81679724384561, relative_change = 0.000629266523103443 Iter 30: T = 842.0053226368174 K, F = -30.472835396132844, relative_change = 0.0002657704557921409 Iter 35: T = 841.3203114774954 K, F = -12.747627528215853, relative_change = 0.00011161040741585628 Iter 40: T = 841.0332402227579 K, F = -5.33182855085092, relative_change = 4.675810868059321e-5 Iter 45: T = 840.9130797750056 K, F = -2.229942706472478, relative_change = 1.956905590654093e-5 Iter 50: T = 840.862809054249 K, F = -0.9326076296798556, relative_change = 8.18650902202776e-6 Iter 55: T = 840.8417820555721 K, F = -0.39003096510256696, relative_change = 3.4241326130984735e-6 Iter 60: T = 840.8329877567679 K, F = -0.16311618768407454, relative_change = 1.4320895576761717e-6 Iter 65: T = 840.8293097785792 K, F = -0.06821723916579714, relative_change = 5.989303202481809e-7 Iter 70: T = 840.8277715871399 K, F = -0.02852928184631187, relative_change = 2.504821501685272e-7 Iter 75: T = 840.8271282941305 K, F = -0.011931289481220908, relative_change = 1.0475503541366843e-7 Iter 80: T = 840.8268592607903 K, F = -0.004989808294649567, relative_change = 4.3809878366419955e-8 Iter 85: T = 840.8267467477433 K, F = -0.0020867975139895467, relative_change = 1.8321826834183224e-8 Iter 90: T = 840.8266996934274 K, F = -0.0008727236547414474, relative_change = 7.66240894461949e-9 Iter 95: T = 840.8266800147477 K, F = -0.00036498345603197535, relative_change = 3.204511295853858e-9 Iter 100: T = 840.8266717848884 K, F = -0.00015264043713880682, relative_change = 1.3401649300172704e-9 Iter 105: T = 840.8266683430629 K, F = -6.383605210813492e-5, relative_change = 5.604729754255817e-10 Iter 110: T = 840.8266669036504 K, F = -2.6697000720554698e-5, relative_change = 2.343965056830724e-10 Iter 115: T = 840.8266663016709 K, F = -1.1165004901059206e-5, relative_change = 9.80274215465963e-11 Iter 120: T = 840.8266660499158 K, F = -4.669337041462995e-6, relative_change = 4.0996226621963765e-11 Iter 125: T = 840.826665944629 K, F = -1.952773513780315e-6, relative_change = 1.714512035630497e-11 Iter 130: T = 840.8266659005967 K, F = -8.166728282521518e-7, relative_change = 7.170290787328633e-12 Iter 135: T = 840.8266658821819 K, F = -3.415434504105974e-7, relative_change = 2.9987110768068545e-12 Iter 140: T = 840.8266658744807 K, F = -1.4283872551423826e-7, relative_change = 1.2541071067246833e-12 Iter 145: T = 840.8266658712598 K, F = -5.973710570650326e-8, relative_change = 5.244847189258068e-13 Converged in 150 iterations to T = 840.826665869913 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 10%|███ | ETA: 0:00:09 Bin 1 ray tracing: 20%|██████ | ETA: 0:00:08 Bin 1 ray tracing: 30%|████████▉ | ETA: 0:00:07 Bin 1 ray tracing: 40%|████████████ | ETA: 0:00:06 Bin 1 ray tracing: 50%|███████████████ | ETA: 0:00:05 Bin 1 ray tracing: 60%|██████████████████▏ | ETA: 0:00:04 Bin 1 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:03 Bin 1 ray tracing: 80%|████████████████████████ | ETA: 0:00:02 Bin 1 ray tracing: 89%|██████████████████████████▉ | ETA: 0:00:01 Bin 1 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 10%|███ | ETA: 0:00:09 Bin 2 ray tracing: 20%|██████ | ETA: 0:00:09 Bin 2 ray tracing: 30%|█████████ | ETA: 0:00:07 Bin 2 ray tracing: 40%|████████████ | ETA: 0:00:06 Bin 2 ray tracing: 50%|███████████████ | ETA: 0:00:05 Bin 2 ray tracing: 60%|██████████████████▏ | ETA: 0:00:04 Bin 2 ray tracing: 71%|█████████████████████▏ | ETA: 0:00:03 Bin 2 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:02 Bin 2 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 2 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 7%|██▎ | ETA: 0:00:13 Bin 3 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 3 ray tracing: 22%|██████▌ | ETA: 0:00:11 Bin 3 ray tracing: 28%|████████▍ | ETA: 0:00:11 Bin 3 ray tracing: 35%|██████████▍ | ETA: 0:00:10 Bin 3 ray tracing: 41%|████████████▎ | ETA: 0:00:09 Bin 3 ray tracing: 47%|██████████████▏ | ETA: 0:00:08 Bin 3 ray tracing: 53%|████████████████ | ETA: 0:00:07 Bin 3 ray tracing: 60%|██████████████████ | ETA: 0:00:06 Bin 3 ray tracing: 67%|████████████████████ | ETA: 0:00:05 Bin 3 ray tracing: 73%|██████████████████████ | ETA: 0:00:04 Bin 3 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:03 Bin 3 ray tracing: 87%|██████████████████████████▎ | ETA: 0:00:02 Bin 3 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 7%|██ | ETA: 0:00:14 Bin 4 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 4 ray tracing: 21%|██████▎ | ETA: 0:00:11 Bin 4 ray tracing: 28%|████████▍ | ETA: 0:00:10 Bin 4 ray tracing: 36%|██████████▊ | ETA: 0:00:09 Bin 4 ray tracing: 44%|█████████████▎ | ETA: 0:00:08 Bin 4 ray tracing: 51%|███████████████▍ | ETA: 0:00:07 Bin 4 ray tracing: 59%|█████████████████▋ | ETA: 0:00:06 Bin 4 ray tracing: 66%|███████████████████▉ | ETA: 0:00:05 Bin 4 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 4 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:03 Bin 4 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 4 ray tracing: 96%|████████████████████████████▋ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 7%|██ | ETA: 0:00:14 Bin 5 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 5 ray tracing: 21%|██████▎ | ETA: 0:00:12 Bin 5 ray tracing: 28%|████████▎ | ETA: 0:00:11 Bin 5 ray tracing: 35%|██████████▌ | ETA: 0:00:09 Bin 5 ray tracing: 44%|█████████████▎ | ETA: 0:00:08 Bin 5 ray tracing: 53%|████████████████ | ETA: 0:00:06 Bin 5 ray tracing: 61%|██████████████████▎ | ETA: 0:00:05 Bin 5 ray tracing: 68%|████████████████████▍ | ETA: 0:00:04 Bin 5 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:04 Bin 5 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:02 Bin 5 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 5 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 6 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 6 ray tracing: 21%|██████▍ | ETA: 0:00:11 Bin 6 ray tracing: 29%|████████▌ | ETA: 0:00:10 Bin 6 ray tracing: 36%|██████████▊ | ETA: 0:00:09 Bin 6 ray tracing: 43%|████████████▉ | ETA: 0:00:08 Bin 6 ray tracing: 50%|██████████████▉ | ETA: 0:00:07 Bin 6 ray tracing: 57%|█████████████████▏ | ETA: 0:00:06 Bin 6 ray tracing: 65%|███████████████████▍ | ETA: 0:00:05 Bin 6 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:04 Bin 6 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:03 Bin 6 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 6 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 10%|██▉ | ETA: 0:00:09 Bin 7 ray tracing: 21%|██████▎ | ETA: 0:00:08 Bin 7 ray tracing: 32%|█████████▌ | ETA: 0:00:06 Bin 7 ray tracing: 43%|████████████▉ | ETA: 0:00:05 Bin 7 ray tracing: 54%|████████████████▎ | ETA: 0:00:04 Bin 7 ray tracing: 66%|███████████████████▋ | ETA: 0:00:03 Bin 7 ray tracing: 77%|███████████████████████ | ETA: 0:00:02 Bin 7 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:01 Bin 7 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 11%|███▎ | ETA: 0:00:08 Bin 8 ray tracing: 21%|██████▌ | ETA: 0:00:09 Bin 8 ray tracing: 29%|████████▋ | ETA: 0:00:09 Bin 8 ray tracing: 36%|██████████▉ | ETA: 0:00:08 Bin 8 ray tracing: 44%|█████████████▏ | ETA: 0:00:07 Bin 8 ray tracing: 51%|███████████████▍ | ETA: 0:00:06 Bin 8 ray tracing: 60%|█████████████████▉ | ETA: 0:00:05 Bin 8 ray tracing: 69%|████████████████████▉ | ETA: 0:00:04 Bin 8 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 8 ray tracing: 86%|█████████████████████████▋ | ETA: 0:00:02 Bin 8 ray tracing: 93%|███████████████████████████▊ | ETA: 0:00:01 Bin 8 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 9 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 9 ray tracing: 22%|██████▌ | ETA: 0:00:11 Bin 9 ray tracing: 29%|████████▋ | ETA: 0:00:10 Bin 9 ray tracing: 36%|██████████▊ | ETA: 0:00:09 Bin 9 ray tracing: 43%|████████████▉ | ETA: 0:00:08 Bin 9 ray tracing: 50%|███████████████ | ETA: 0:00:07 Bin 9 ray tracing: 57%|█████████████████▏ | ETA: 0:00:06 Bin 9 ray tracing: 64%|███████████████████▏ | ETA: 0:00:05 Bin 9 ray tracing: 71%|█████████████████████▏ | ETA: 0:00:04 Bin 9 ray tracing: 78%|███████████████████████▎ | ETA: 0:00:03 Bin 9 ray tracing: 84%|█████████████████████████▍ | ETA: 0:00:02 Bin 9 ray tracing: 96%|████████████████████████████▋ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 11%|███▏ | ETA: 0:00:09 Bin 10 ray tracing: 21%|██████▏ | ETA: 0:00:09 Bin 10 ray tracing: 29%|████████▎ | ETA: 0:00:09 Bin 10 ray tracing: 39%|███████████▎ | ETA: 0:00:07 Bin 10 ray tracing: 49%|██████████████▏ | ETA: 0:00:06 Bin 10 ray tracing: 56%|████████████████▍ | ETA: 0:00:05 Bin 10 ray tracing: 64%|██████████████████▊ | ETA: 0:00:04 Bin 10 ray tracing: 73%|█████████████████████ | ETA: 0:00:03 Bin 10 ray tracing: 80%|███████████████████████▎ | ETA: 0:00:02 Bin 10 ray tracing: 87%|█████████████████████████▎ | ETA: 0:00:02 Bin 10 ray tracing: 94%|███████████████████████████▍ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2713224239964 K, F = -7457.260318702137, relative_change = 0.032728677576003645 Iter 2: T = 936.6156251803492 K, F = -6321.399019920874, relative_change = 0.03169296611298632 Iter 3: T = 908.0016810792541 K, F = -5357.043180426429, relative_change = 0.030550359541124773 Iter 5: T = 856.7616208205261 K, F = -3843.5436732493977, relative_change = 0.027949367225166208 Iter 10: T = 761.4000281489283 K, F = -1664.4304919367496, relative_change = 0.020041958414218443 Iter 15: T = 705.503414541563 K, F = -712.6891623463008, relative_change = 0.012027013493741209 Iter 20: T = 676.7283544367701 K, F = -302.0794234217628, relative_change = 0.006165661249040082 Iter 25: T = 663.3013704883324 K, F = -127.17402583582982, relative_change = 0.002850031372692975 Iter 30: T = 657.388390249439 K, F = -53.34591171692508, relative_change = 0.0012470815333191707 Iter 35: T = 654.8583559031953 K, F = -22.339014896510214, relative_change = 0.0005318614077521745 Iter 40: T = 653.7898495041799 K, F = -9.347620405485616, relative_change = 0.00022428809643637774 Iter 45: T = 653.341133332198 K, F = -3.9101984201995648, relative_change = 9.412880123927908e-5 Iter 50: T = 653.153148182201 K, F = -1.6354516453439312, relative_change = 3.9423599888821335e-5 Iter 55: T = 653.0744732310171 K, F = -0.6839934226229608, relative_change = 1.649755332731489e-5 Iter 60: T = 653.0415603890513 K, F = -0.2860591199621808, relative_change = 6.901247702625679e-6 Iter 65: T = 653.0277940888976 K, F = -0.11963419776845363, relative_change = 2.8864945777165466e-6 Iter 70: T = 653.0220365504716 K, F = -0.05003260022935624, relative_change = 1.2072207969137564e-6 Iter 75: T = 653.019628625391 K, F = -0.020924257162560966, relative_change = 5.048836509086154e-7 Iter 80: T = 653.0186215929641 K, F = -0.008750778819648586, relative_change = 2.1115003331800078e-7 Iter 85: T = 653.0182004383324 K, F = -0.003659681010646565, relative_change = 8.830575609420749e-8 Iter 90: T = 653.0180243061482 K, F = -0.00153052244414148, relative_change = 3.693057258637419e-8 Iter 95: T = 653.017950645515 K, F = -0.0006400827882488414, relative_change = 1.544481536891442e-8 Iter 100: T = 653.0179198397499 K, F = -0.00026769027195799877, relative_change = 6.45920782582789e-9 Iter 105: T = 653.0179069564093 K, F = -0.0001119512687771107, relative_change = 2.7013181092823542e-9 Iter 110: T = 653.0179015684422 K, F = -4.681935777683943e-5, relative_change = 1.1297235429067439e-9 Iter 115: T = 653.01789931513 K, F = -1.958041395067056e-5, relative_change = 4.724638703668914e-10 Iter 120: T = 653.017898372768 K, F = -8.188763622629658e-6, relative_change = 1.9759005049616452e-10 Iter 125: T = 653.0178979786609 K, F = -3.4246398255000088e-6, relative_change = 8.263454523538358e-11 Iter 130: T = 653.0178978138406 K, F = -1.4322263947041947e-6, relative_change = 3.455878076913803e-11 Iter 135: T = 653.0178977449108 K, F = -5.989740012868339e-7, relative_change = 1.4452890467476083e-11 Iter 140: T = 653.0178977160834 K, F = -2.5049821511524684e-7, relative_change = 6.044374644545068e-12 Iter 145: T = 653.0178977040275 K, F = -1.0476183709418052e-7, relative_change = 2.527841532173626e-12 Iter 150: T = 653.0178976989856 K, F = -4.381214807613887e-8, relative_change = 1.057161372849083e-12 Iter 155: T = 653.017897696877 K, F = -1.832322349404336e-8, relative_change = 4.4212860941257806e-13 Converged in 159 iterations to T = 653.0178976961159 K Iter 1: T = 970.2912026719791 K, F = -6769.177731551535, relative_change = 0.029708797328020852 Iter 2: T = 942.7456868691972 K, F = -5733.418887168337, relative_change = 0.028388916365445032 Iter 3: T = 917.3190113169659 K, F = -4854.396102608305, relative_change = 0.02697087444300262 Iter 5: T = 872.6078010401086 K, F = -3475.864014995721, relative_change = 0.02388463144233362 Iter 10: T = 793.1830625873032 K, F = -1496.2435541441425, relative_change = 0.015578910499351173 Iter 15: T = 749.8576361322446 K, F = -636.9700802904292, relative_change = 0.008542585499221848 Iter 20: T = 728.8085366811357 K, F = -268.8835608027178, relative_change = 0.004113676438825932 Iter 25: T = 719.3298332900879 K, F = -112.94315489769475, relative_change = 0.0018375070238887932 Iter 30: T = 715.2305578274845 K, F = -47.325342351950134, relative_change = 0.0007910597291749217 Iter 35: T = 713.491078627763 K, F = -19.808363833799177, relative_change = 0.00033495475174230815 Iter 40: T = 712.7590991239276 K, F = -8.286982290945527, relative_change = 0.00014081666231551628 Iter 45: T = 712.4521792239245 K, F = -3.4662223005055903, relative_change = 5.902068092749868e-5 Iter 50: T = 712.3236815509814 K, F = -1.449704459618288, relative_change = 2.4705871408644483e-5 Iter 55: T = 712.2699177370504 K, F = -0.6062992784657744, relative_change = 1.033626921138117e-5 Iter 60: T = 712.2474287702124 K, F = -0.2535643213549063, relative_change = 4.32344750415226e-6 Iter 65: T = 712.2380228637636 K, F = -0.1060441035782318, relative_change = 1.8082391876133074e-6 Iter 70: T = 712.2340890698227 K, F = -0.04434899383240409, relative_change = 7.562485296074965e-7 Iter 75: T = 712.2324438872108 K, F = -0.018547293423816114, relative_change = 3.1627589323086354e-7 Iter 80: T = 712.231755848171 K, F = -0.007756702157681428, relative_change = 1.3227100746891594e-7 Iter 85: T = 712.2314681013239 K, F = -0.003243945922420166, relative_change = 5.531742897437902e-8 Iter 90: T = 712.2313477620329 K, F = -0.0013566570026284364, relative_change = 2.313442934971786e-8 Iter 95: T = 712.2312974346827 K, F = -0.0005673701732386016, relative_change = 9.67509811130456e-9 Iter 100: T = 712.2312763871802 K, F = -0.0002372809856309166, relative_change = 4.046242201676051e-9 Iter 105: T = 712.2312675848626 K, F = -9.923374240561333e-5, relative_change = 1.6921869188574411e-9 Iter 110: T = 712.2312639036281 K, F = -4.150073731512549e-5, relative_change = 7.076928152998192e-10 Iter 115: T = 712.2312623640918 K, F = -1.7356102953614005e-5, relative_change = 2.95965572732329e-10 Iter 120: T = 712.2312617202393 K, F = -7.258529808762404e-6, relative_change = 1.2377634236399616e-10 Iter 125: T = 712.2312614509726 K, F = -3.035603097667483e-6, relative_change = 5.176473182225385e-11 Iter 130: T = 712.2312613383621 K, F = -1.2695256366157537e-6, relative_change = 2.1648631937705092e-11 Iter 135: T = 712.2312612912671 K, F = -5.309321124968847e-7, relative_change = 9.053739097078744e-12 Iter 140: T = 712.2312612715713 K, F = -2.220420307619264e-7, relative_change = 3.786379780108879e-12 Iter 145: T = 712.2312612633342 K, F = -9.285992275120947e-8, relative_change = 1.5834971996090294e-12 Iter 150: T = 712.2312612598894 K, F = -3.8835047733165595e-8, relative_change = 6.622360595574139e-13 Iter 155: T = 712.2312612584487 K, F = -1.624131540367557e-8, relative_change = 2.769556198041549e-13 Converged in 157 iterations to T = 712.231261258144 K Iter 1: T = 974.3974520345934 K, F = -5833.564908228361, relative_change = 0.025602547965406678 Iter 2: T = 950.9842614500275 K, F = -4935.426704928792, relative_change = 0.02402837829232615 Iter 3: T = 929.6858361795373 K, F = -4173.762952801433, relative_change = 0.022396191118888874 Iter 5: T = 893.0804675966504 K, F = -2980.875558469614, relative_change = 0.019042072245994357 Iter 10: T = 831.4069786918482 K, F = -1274.6782658529535, relative_change = 0.01119201647794958 Iter 15: T = 800.0915732177303 K, F = -539.7455167784419, relative_change = 0.005650553160475592 Iter 20: T = 785.6080321417757 K, F = -227.10033845491705, relative_change = 0.002589343126107503 Iter 25: T = 779.2592981059773 K, F = -95.23560063415967, relative_change = 0.0011282553295171023 Iter 30: T = 776.5486716458371 K, F = -39.875662827294484, relative_change = 0.00048028029071066277 Iter 35: T = 775.4049786420462 K, F = -16.6848220403958, relative_change = 0.0002023724169046648 Iter 40: T = 774.9248819543402 K, F = -6.979260402848565, relative_change = 8.490220558051913e-5 Iter 45: T = 774.7237845011783 K, F = -2.9190675875985677, relative_change = 3.555414517856517e-5 Iter 50: T = 774.6396278457657 K, F = -1.2208340197167065, relative_change = 1.487740952411275e-5 Iter 55: T = 774.6044228441989 K, F = -0.5105752573901199, relative_change = 6.223352940506749e-6 Iter 60: T = 774.5896979976662 K, F = -0.21353005048948082, relative_change = 2.602932920862055e-6 Iter 65: T = 774.5835395945747 K, F = -0.08930105862286464, relative_change = 1.0886217840327523e-6 Iter 70: T = 774.5809640250067 K, F = -0.037346811415426284, relative_change = 4.552823534039794e-7 Iter 75: T = 774.579886881986 K, F = -0.015618889929120527, relative_change = 1.904058680574284e-7 Iter 80: T = 774.579436406325 K, F = -0.006532007588032851, relative_change = 7.963024417905278e-8 Iter 85: T = 774.5792480117464 K, F = -0.0027317638068120598, relative_change = 3.330236040795464e-8 Iter 90: T = 774.5791692228352 K, F = -0.001142456287379967, relative_change = 1.3927452060037328e-8 Iter 95: T = 774.5791362723631 K, F = -0.00047778887164651174, relative_change = 5.8246280632113935e-9 Iter 100: T = 774.5791224920806 K, F = -0.00019981701153559683, relative_change = 2.4359292159142147e-9 Iter 105: T = 774.5791167290016 K, F = -8.356585849489395e-5, relative_change = 1.0187347003510285e-9 Iter 110: T = 774.5791143188133 K, F = -3.4948239844734275e-5, relative_change = 4.2604702224961167e-10 Iter 115: T = 774.5791133108437 K, F = -1.4615771205428452e-5, relative_change = 1.7817795305860513e-10 Iter 120: T = 774.5791128892987 K, F = -6.11249029791594e-6, relative_change = 7.451615086796206e-11 Iter 125: T = 774.5791127130035 K, F = -2.5563151105911786e-6, relative_change = 3.11635280170887e-11 Iter 130: T = 774.5791126392749 K, F = -1.0690810980928944e-6, relative_change = 1.3032954595473177e-11 Iter 135: T = 774.5791126084406 K, F = -4.4710167790285027e-7, relative_change = 5.450527447512517e-12 Iter 140: T = 774.5791125955453 K, F = -1.8698291059937588e-7, relative_change = 2.2794713974209484e-12 Iter 145: T = 774.5791125901525 K, F = -7.819904346284545e-8, relative_change = 9.533089538169683e-13 Iter 150: T = 774.579112587897 K, F = -3.270240656050305e-8, relative_change = 3.98668520807865e-13 Converged in 154 iterations to T = 774.5791125870829 K Iter 1: T = 970.3190581917503 K, F = -6762.830824874233, relative_change = 0.02968094180824968 Iter 2: T = 942.8019479002329 K, F = -5727.999691503544, relative_change = 0.02835882698500963 Iter 3: T = 917.4040606956526 K, F = -4849.767943785765, relative_change = 0.02693873009187704 Iter 5: T = 872.7507160103602 K, F = -3472.4873210804158, relative_change = 0.023849260595495178 Iter 10: T = 793.4601823063689 K, F = -1494.7148304571767, relative_change = 0.015543501766108622 Iter 15: T = 750.2327582174462 K, F = -636.2909341107995, relative_change = 0.008517294279389942 Iter 20: T = 729.2402008721907 K, F = -268.5890772862759, relative_change = 0.004099682167273743 Iter 25: T = 719.7892770848856 K, F = -112.81774060557761, relative_change = 0.0018308344608046771 Iter 30: T = 715.7025068194918 K, F = -47.272456970235616, relative_change = 0.0007881032203007919 Iter 35: T = 713.9684277568939 K, F = -19.78616698337498, relative_change = 0.0003336873614122908 Iter 40: T = 713.2387376666013 K, F = -8.27768513017401, relative_change = 0.00014028106296141643 Iter 45: T = 712.9327807442164 K, F = -3.4623316186164077, relative_change = 5.8795702900739894e-5 Iter 50: T = 712.8046867720092 K, F = -1.4480768916141114, relative_change = 2.4611609978819305e-5 Iter 55: T = 712.7510919610644 K, F = -0.6056185333117435, relative_change = 1.0296817648429755e-5 Iter 60: T = 712.7286737031551 K, F = -0.25327961216759665, relative_change = 4.306943084144609e-6 Iter 65: T = 712.7192973732504 K, F = -0.10592503244647289, relative_change = 1.8013359138550062e-6 Iter 70: T = 712.7153759494876 K, F = -0.04429919645430125, relative_change = 7.533613357481751e-7 Iter 75: T = 712.7137359403915 K, F = -0.018526467492473886, relative_change = 3.150684058575361e-7 Iter 80: T = 712.713050065006 K, F = -0.007747992492081024, relative_change = 1.317660168646097e-7 Iter 85: T = 712.7127632230297 K, F = -0.0032403034327190827, relative_change = 5.510623498133307e-8 Iter 90: T = 712.7126432621674 K, F = -0.0013551336692211313, relative_change = 2.3046105342127044e-8 Iter 95: T = 712.7125930930808 K, F = -0.0005667330980919649, relative_change = 9.638159949433691e-9 Iter 100: T = 712.7125721117659 K, F = -0.00023701455150049178, relative_change = 4.030794187914044e-9 Iter 105: T = 712.7125633371287 K, F = -9.912231566400198e-5, relative_change = 1.6857263605193545e-9 Iter 110: T = 712.7125596674706 K, F = -4.145413604905723e-5, relative_change = 7.049909108298288e-10 Iter 115: T = 712.7125581327757 K, F = -1.7336613780782884e-5, relative_change = 2.9483560460310856e-10 Iter 120: T = 712.712557490948 K, F = -7.25037923188232e-6, relative_change = 1.2330377665613477e-10 Iter 125: T = 712.712557222528 K, F = -3.032194523244769e-6, relative_change = 5.15671008350108e-11 Iter 130: T = 712.7125571102715 K, F = -1.2680996037683911e-6, relative_change = 2.156597133993348e-11 Iter 135: T = 712.7125570633245 K, F = -5.303340014917168e-7, relative_change = 9.019140015785727e-12 Iter 140: T = 712.7125570436908 K, F = -2.2179182113113427e-7, relative_change = 3.771908804213103e-12 Iter 145: T = 712.7125570354798 K, F = -9.275681733811325e-8, relative_change = 1.5774714063091918e-12 Iter 150: T = 712.7125570320458 K, F = -3.879264476314148e-8, relative_change = 6.597281973065835e-13 Iter 155: T = 712.7125570306097 K, F = -1.622448153604239e-8, relative_change = 2.7592209867268344e-13 Converged in 157 iterations to T = 712.7125570303057 K Iter 1: T = 969.2904385528557 K, F = -6997.20278806625, relative_change = 0.030709561447144294 Iter 2: T = 940.7209825382233 K, F = -5928.167062894336, relative_change = 0.02947460830964796 Iter 3: T = 914.2527089878787 K, F = -5020.7718661450135, relative_change = 0.02813615731088386 Iter 5: T = 867.4347418596146 K, F = -3597.355252263927, relative_change = 0.025180245106054613 Iter 10: T = 783.0433053710361 K, F = -1551.4269000580375, relative_change = 0.01691436703543354 Iter 15: T = 736.0041877218541 K, F = -661.5836846604839, relative_change = 0.009521989491385526 Iter 20: T = 712.7728065039631 K, F = -279.58974413481235, relative_change = 0.004665177549812325 Iter 25: T = 702.2101172017551 K, F = -117.51096520284882, relative_change = 0.002102919984163155 Iter 30: T = 697.6201929699234 K, F = -49.2532199872901, relative_change = 0.0009091714403838383 Iter 35: T = 695.6683074227371 K, F = -20.61784400860464, relative_change = 0.000385683196226541 Iter 40: T = 694.8461798580248 K, F = -8.626090876003722, relative_change = 0.00016227195789991064 Iter 45: T = 694.5013242915841 K, F = -3.608142858416302, relative_change = 6.803605227411732e-5 Iter 50: T = 694.3569201052436 K, F = -1.5090751117823982, relative_change = 2.848368138262448e-5 Iter 55: T = 694.2964967390797 K, F = -0.6311319085865076, relative_change = 1.1917504531004958e-5 Iter 60: T = 694.2712213967337 K, F = -0.263950168876964, relative_change = 4.9849683414109075e-6 Iter 65: T = 694.2606499723042 K, F = -0.11038768439692787, relative_change = 2.0849352295768315e-6 Iter 70: T = 694.2562287059056 K, F = -0.04616554788493876, relative_change = 8.719731383127809e-7 Iter 75: T = 694.2543796496826 K, F = -0.0193070009398999, relative_change = 3.6467453442320845e-7 Iter 80: T = 694.2536063470732 K, F = -0.008074421424136946, relative_change = 1.525121119669934e-7 Iter 85: T = 694.2532829417747 K, F = -0.003376820002940928, relative_change = 6.37825381593081e-8 Iter 90: T = 694.2531476896572 K, F = -0.0014122265468418105, relative_change = 2.66746456973838e-8 Iter 95: T = 694.2530911255784 K, F = -0.0005906100240126166, relative_change = 1.1155660033682531e-8 Iter 100: T = 694.2530674698003 K, F = -0.0002470001678311906, relative_change = 4.665431055299505e-9 Iter 105: T = 694.2530575766705 K, F = -0.00010329842087519747, relative_change = 1.9511391333992644e-9 Iter 110: T = 694.2530534392453 K, F = -4.320063210205838e-5, relative_change = 8.159896885103574e-10 Iter 115: T = 694.2530517089247 K, F = -1.80670203367983e-5, relative_change = 3.412566380289439e-10 Iter 120: T = 694.253050985284 K, F = -7.555843903106485e-6, relative_change = 1.4271760658784022e-10 Iter 125: T = 694.2530506826487 K, F = -3.159941873276395e-6, relative_change = 5.968616448802869e-11 Iter 130: T = 694.253050556083 K, F = -1.3215263481303197e-6, relative_change = 2.4961484173267168e-11 Iter 135: T = 694.2530505031518 K, F = -5.526778752429351e-7, relative_change = 1.0439186521189805e-11 Iter 140: T = 694.2530504810153 K, F = -2.3113708924604737e-7, relative_change = 4.365803834485096e-12 Iter 145: T = 694.2530504717574 K, F = -9.666220623927302e-8, relative_change = 1.8257919231074543e-12 Iter 150: T = 694.2530504678858 K, F = -4.042560086681135e-8, relative_change = 7.635738767295149e-13 Iter 155: T = 694.2530504662667 K, F = -1.690670370368963e-8, relative_change = 3.193401461717135e-13 Converged in 158 iterations to T = 694.2530504657926 K Iter 1: T = 963.561770864794 K, F = -8302.485170160891, relative_change = 0.03643822913520598 Iter 2: T = 929.0012230669379 K, F = -7044.936742542806, relative_change = 0.03586749582939359 Iter 3: T = 896.2848138045599 K, F = -5976.945605855766, relative_change = 0.035216755855681646 Iter 5: T = 836.2655354370331 K, F = -4299.764762677256, relative_change = 0.033646016429172594 Iter 10: T = 716.5506273869014 K, F = -1879.0128264196069, relative_change = 0.027926770418110182 Iter 15: T = 636.8807956044643 K, F = -813.6690240829997, relative_change = 0.020014268618500874 Iter 20: T = 590.2035563364346 K, F = -348.38987381475806, relative_change = 0.012003214212663106 Iter 25: T = 566.1842063137331 K, F = -147.66371160800995, relative_change = 0.006150706055883232 Iter 30: T = 554.9792645129941 K, F = -62.16467419819398, relative_change = 0.002842387185918383 Iter 35: T = 550.0455115945582 K, F = -26.076107170181487, relative_change = 0.0012435807022724368 Iter 40: T = 547.9346037080818 K, F = -10.919531453180914, relative_change = 0.0005303385562011044 Iter 45: T = 547.0431318262902 K, F = -4.569201923260345, relative_change = 0.00022364049007667837 Iter 50: T = 546.6687653322501 K, F = -1.911339262167701, relative_change = 9.385605283223748e-5 Iter 55: T = 546.5119290391372 K, F = -0.7994228690430303, relative_change = 3.930919630307496e-5 Iter 60: T = 546.4462905502758 K, F = -0.33434184359507946, relative_change = 1.64496492587182e-5 Iter 65: T = 546.4188314005384 K, F = -0.13982814094651408, relative_change = 6.881203294399325e-6 Iter 70: T = 546.4073461950015 K, F = -0.05847821637593931, relative_change = 2.8781099547639195e-6 Iter 75: T = 546.4025426892633 K, F = -0.024456361565542206, relative_change = 1.2037139304872137e-6 Iter 80: T = 546.4005337610853 K, F = -0.010227955261688237, relative_change = 5.034169820473088e-7 Iter 85: T = 546.3996935955091 K, F = -0.004277455272609254, relative_change = 2.105366451666163e-7 Iter 90: T = 546.3993422268637 K, F = -0.0017888832690452772, relative_change = 8.804922812885783e-8 Iter 95: T = 546.3991952800608 K, F = -0.0007481324152217583, relative_change = 3.682328924387269e-8 Iter 100: T = 546.3991338251111 K, F = -0.000312877922526128, relative_change = 1.5399948156232374e-8 Iter 105: T = 546.39910812391 K, F = -0.00013084928608789181, relative_change = 6.440443790396843e-9 Iter 110: T = 546.3990973753594 K, F = -5.472273459239396e-5, relative_change = 2.6934707841629746e-9 Iter 115: T = 546.3990928801869 K, F = -2.2885701648045487e-5, relative_change = 1.126441718191961e-9 Iter 120: T = 546.399091000252 K, F = -9.5710737994803e-6, relative_change = 4.710913896383888e-10 Iter 125: T = 546.3990902140408 K, F = -4.002737194863659e-6, relative_change = 1.9701603810697015e-10 Iter 130: T = 546.399089885238 K, F = -1.6739928896669642e-6, relative_change = 8.239447953502583e-11 Iter 135: T = 546.3990897477288 K, F = -7.00084759996944e-7, relative_change = 3.445840173845655e-11 Iter 140: T = 546.3990896902206 K, F = -2.9278360422213545e-7, relative_change = 1.4410905133571178e-11 Iter 145: T = 546.3990896661701 K, F = -1.22445830058604e-7, relative_change = 6.026823961108564e-12 Iter 150: T = 546.3990896561119 K, F = -5.120851218065603e-8, relative_change = 2.520499784291827e-12 Iter 155: T = 546.3990896519053 K, F = -2.1415881401587455e-8, relative_change = 1.0540967147155153e-12 Iter 160: T = 546.399089650146 K, F = -8.95588608829101e-9, relative_change = 4.4081165403161415e-13 Converged in 164 iterations to T = 546.399089649511 K Iter 1: T = 966.8717489151576 K, F = -7548.303522783576, relative_change = 0.03312825108484239 Iter 2: T = 935.7999435671875 K, F = -6399.2672550664365, relative_change = 0.03213642903811497 Iter 3: T = 906.7542339999852 K, F = -5423.6846446791105, relative_change = 0.031038374993358746 Iter 5: T = 854.6106137599309 K, F = -3892.4371320859855, relative_change = 0.028523446406498742 Iter 10: T = 756.9095772107529 K, F = -1687.0815477040405, relative_change = 0.020741682409861597 Iter 15: T = 698.9948151482829 K, F = -723.0698702141999, relative_change = 0.012631997746791402 Iter 20: T = 668.8833336931397 K, F = -306.70282181062254, relative_change = 0.006548760356489951 Iter 25: T = 654.7402658986927 K, F = -129.17574695063183, relative_change = 0.0030468609712811746 Iter 30: T = 648.4901246448471 K, F = -54.19702903015302, relative_change = 0.0013374646984687132 Iter 35: T = 645.8114365058814 K, F = -22.697588284822466, relative_change = 0.0005712259028674309 Iter 40: T = 644.6793323429985 K, F = -9.498053870990192, relative_change = 0.000241037104115812 Iter 45: T = 644.2037617295858 K, F = -3.973195460294036, relative_change = 0.00010118447294020985 Iter 50: T = 644.004500224035 K, F = -1.6618125278491682, relative_change = 4.238336413847005e-5 Iter 55: T = 643.9211013669012 K, F = -0.6950204474659867, relative_change = 1.773694114705188e-5 Iter 60: T = 643.8862115290009 K, F = -0.29067120669653995, relative_change = 7.419851058454668e-6 Iter 65: T = 643.8716181801008 K, F = -0.12156310682767707, relative_change = 3.10342909507142e-6 Iter 70: T = 643.8655147170689 K, F = -0.05083930690654348, relative_change = 1.2979538701780311e-6 Iter 75: T = 643.8629621146749 K, F = -0.021261633954372472, relative_change = 5.428307867986665e-7 Iter 80: T = 643.861894575154 K, F = -0.008891874247514253, relative_change = 2.2702023778587104e-7 Iter 85: T = 643.8614481155032 K, F = -0.003718688876852505, relative_change = 9.494291041706899e-8 Iter 90: T = 643.8612614004177 K, F = -0.0015552002522021824, relative_change = 3.9706317731055995e-8 Iter 95: T = 643.8611833138818 K, F = -0.0006504033460617009, relative_change = 1.6605666561051866e-8 Iter 100: T = 643.8611506571499 K, F = -0.0002720064515882581, relative_change = 6.944689869150019e-9 Iter 105: T = 643.8611369997127 K, F = -0.00011375634672011747, relative_change = 2.9043525393898823e-9 Iter 110: T = 643.8611312880091 K, F = -4.757426306245538e-5, relative_change = 1.2146349769013118e-9 Iter 115: T = 643.8611288993064 K, F = -1.989612492214743e-5, relative_change = 5.07974860911055e-10 Iter 120: T = 643.8611279003225 K, F = -8.320797470984242e-6, relative_change = 2.1244116559150456e-10 Iter 125: T = 643.8611274825355 K, F = -3.479857840882339e-6, relative_change = 8.884545750230349e-11 Iter 130: T = 643.8611273078119 K, F = -1.4553177887788316e-6, relative_change = 3.715622328111076e-11 Iter 135: T = 643.8611272347404 K, F = -6.086310274100448e-7, relative_change = 1.5539169889110317e-11 Iter 140: T = 643.861127204181 K, F = -2.545362070560664e-7, relative_change = 6.49865220000198e-12 Iter 145: T = 643.8611271914008 K, F = -1.064502863079575e-7, relative_change = 2.717819187189531e-12 Iter 150: T = 643.8611271860559 K, F = -4.451864910048897e-8, relative_change = 1.1366210736889695e-12 Iter 155: T = 643.8611271838207 K, F = -1.861895165822247e-8, relative_change = 4.753669137019969e-13 Converged in 160 iterations to T = 643.8611271828858 K Iter 1: T = 965.2210135715233 K, F = -7924.425141085354, relative_change = 0.03477898642847675 Iter 2: T = 932.4186834283818 K, F = -6721.132720842647, relative_change = 0.0339842685581055 Iter 3: T = 901.5635860719958 K, F = -5699.331534210162, relative_change = 0.033091461920235044 Iter 5: T = 845.5819007916047 K, F = -4095.055408470084, relative_change = 0.03099323109968135 Iter 10: T = 737.5357495103962 K, F = -1781.7847763647153, relative_change = 0.023979885273429067 Iter 15: T = 670.0704471744983 K, F = -767.1017587345473, relative_change = 0.015674238903574413 Iter 20: T = 633.2124009615851 K, F = -326.60394541359574, relative_change = 0.008610741560207852 Iter 25: T = 615.285005741108 K, F = -137.8797263255038, relative_change = 0.0041514248278208266 Iter 30: T = 607.2067399532827 K, F = -57.91803505644677, relative_change = 0.0018555158787465478 Iter 35: T = 603.7119874456562 K, F = -24.269225500335338, relative_change = 0.0007990413638897512 Iter 40: T = 602.2288152305917 K, F = -10.158144124179508, relative_change = 0.0003383767219822349 Iter 45: T = 601.60465159446 K, F = -4.249753282827918, relative_change = 0.00014226286356980108 Iter 50: T = 601.3429320713356 K, F = -1.7775604111542573, relative_change = 5.9628169983063025e-5 Iter 55: T = 601.233357145764 K, F = -0.7434430485370275, relative_change = 2.4960399921154642e-5 Iter 60: T = 601.1875104518091 K, F = -0.3109248229892676, relative_change = 1.0442798329403058e-5 Iter 65: T = 601.1683331143969 K, F = -0.13003388460681686, relative_change = 4.368013652170588e-6 Iter 70: T = 601.1603122750753 K, F = -0.05438197018203228, relative_change = 1.826879802203691e-6 Iter 75: T = 601.1569577509667 K, F = -0.02274323253469629, relative_change = 7.64044697913536e-7 Iter 80: T = 601.1555548291033 K, F = -0.00951149900294429, relative_change = 3.195364209972595e-7 Iter 85: T = 601.154968106959 K, F = -0.003977823793617052, relative_change = 1.336346126030674e-7 Iter 90: T = 601.154722732145 K, F = -0.001663573646385974, relative_change = 5.588770727912665e-8 Iter 95: T = 601.1546201133614 K, F = -0.000695726406189201, relative_change = 2.337292696361478e-8 Iter 100: T = 601.154577196942 K, F = -0.0002909610985361022, relative_change = 9.774840736612857e-9 Iter 105: T = 601.1545592487797 K, F = -0.00012168340720591919, relative_change = 4.087955746597025e-9 Iter 110: T = 601.1545517426433 K, F = -5.0889454732028216e-5, relative_change = 1.7096320365827707e-9 Iter 115: T = 601.1545486034873 K, F = -2.1282577202408337e-5, relative_change = 7.14988535492465e-10 Iter 120: T = 601.1545472906548 K, F = -8.900628473418326e-6, relative_change = 2.990167648783601e-10 Iter 125: T = 601.1545467416126 K, F = -3.7223494334659435e-6, relative_change = 1.250523930423186e-10 Iter 130: T = 601.1545465119966 K, F = -1.5567313630393542e-6, relative_change = 5.229841692880717e-11 Iter 135: T = 601.1545464159684 K, F = -6.510437750573139e-7, relative_change = 2.1871826842538874e-11 Iter 140: T = 601.1545463758082 K, F = -2.7227362814352674e-7, relative_change = 9.147037232503821e-12 Iter 145: T = 601.1545463590128 K, F = -1.1386805992552596e-7, relative_change = 3.825399437220768e-12 Iter 150: T = 601.1545463519886 K, F = -4.762085226150958e-8, relative_change = 1.5998233531899217e-12 Iter 155: T = 601.1545463490511 K, F = -1.9914998317105415e-8, relative_change = 6.690447120144522e-13 Iter 160: T = 601.1545463478226 K, F = -8.328635781040816e-9, relative_change = 2.7980066274310563e-13 Converged in 162 iterations to T = 601.1545463475626 K Iter 1: T = 980.0296097885151 K, F = -4550.272406432143, relative_change = 0.01997039021148489 Iter 2: T = 962.1077750110405 K, F = -3843.7458746581788, relative_change = 0.018287033981903934 Iter 3: T = 946.114396723875 K, F = -3245.4092192341045, relative_change = 0.016623271012420688 Iter 5: T = 919.3922971481463 K, F = -2310.4771604910584, relative_change = 0.013443779809161933 Iter 10: T = 876.9213199730865 K, F = -980.9986644853061, relative_change = 0.007076430113529089 Iter 15: T = 856.7925978088947 K, F = -413.418034250585, relative_change = 0.0033221949580777258 Iter 20: T = 847.8537348192147 K, F = -173.50531175533436, relative_change = 0.001464870148826562 Iter 25: T = 844.0138501385302 K, F = -72.67339275721754, relative_change = 0.0006269072437372894 Iter 30: T = 842.3893266027911 K, F = -30.412747526884743, relative_change = 0.00026476420248730136 Iter 35: T = 841.706603465136 K, F = -12.722477778659478, relative_change = 0.00011118608168710265 Iter 40: T = 841.4204933050405 K, F = -5.321307056794864, relative_change = 4.658003308047335e-5 Iter 45: T = 841.3007355402204 K, F = -2.2255418663652904, relative_change = 1.9494474146179855e-5 Iter 50: T = 841.2506333563026 K, F = -0.930767036255035, relative_change = 8.155299046374688e-6 Iter 55: T = 841.2296768645087 K, F = -0.3892611877832881, relative_change = 3.41107690445312e-6 Iter 60: T = 841.2209120565083 K, F = -0.16279425426574767, relative_change = 1.4266289228745242e-6 Iter 65: T = 841.2172464124226 K, F = -0.0680826021796781, relative_change = 5.966465158399012e-7 Iter 70: T = 841.2157133793744 K, F = -0.028472974947087115, relative_change = 2.4952701808779694e-7 Iter 75: T = 841.215072243687 K, F = -0.011907741246396375, relative_change = 1.0435558466598311e-7 Iter 80: T = 841.2148041125685 K, F = -0.004979960137394546, relative_change = 4.364282273942924e-8 Iter 85: T = 841.214691976842 K, F = -0.002082678897952439, relative_change = 1.825196209375792e-8 Iter 90: T = 841.2146450803261 K, F = -0.0008710012025949787, relative_change = 7.6331906799317e-9 Iter 95: T = 841.2146254676404 K, F = -0.0003642631065368107, relative_change = 3.192291870818997e-9 Iter 100: T = 841.2146172653806 K, F = -0.00015233918324986107, relative_change = 1.335054662813102e-9 Iter 105: T = 841.2146138350975 K, F = -6.371006542504887e-5, relative_change = 5.583358119082649e-10 Iter 110: T = 841.2146124005121 K, F = -2.6644310684220684e-5, relative_change = 2.335027104454265e-10 Iter 115: T = 841.2146118005513 K, F = -1.1142970591793144e-5, relative_change = 9.765363702855544e-11 Iter 120: T = 841.2146115496406 K, F = -4.660123619437684e-6, relative_change = 4.0839919421686146e-11 Iter 125: T = 841.2146114447067 K, F = -1.948920600014503e-6, relative_change = 1.7079752987482716e-11 Iter 130: T = 841.214611400822 K, F = -8.150611245927308e-7, relative_change = 7.1429501443506465e-12 Iter 135: T = 841.214611382469 K, F = -3.408673572291576e-7, relative_change = 2.9872588267462502e-12 Iter 140: T = 841.2146113747935 K, F = -1.4255448377298308e-7, relative_change = 1.2493045489108282e-12 Iter 145: T = 841.2146113715836 K, F = -5.961905658047328e-8, relative_change = 5.224834506624368e-13 Converged in 150 iterations to T = 841.2146113702411 K Iter 1: T = 976.4009258491932 K, F = -5377.071493776191, relative_change = 0.023599074150806858 Iter 2: T = 954.9642323970454 K, F = -4546.714103816623, relative_change = 0.021954806560126813 Iter 3: T = 935.5985830521116 K, F = -3842.84511133246, relative_change = 0.020278926359706982 Iter 5: T = 902.6605947723166 K, F = -2741.3153869822154, relative_change = 0.016925433479187426 Iter 10: T = 848.3942368002091 K, F = -1169.0119584740085, relative_change = 0.00953040398387433 Iter 15: T = 821.5895848310626 K, F = -494.0374125882138, relative_change = 0.0046700219551001395 Iter 20: T = 809.4011556401413 K, F = -207.64400244663966, relative_change = 0.0021052779627835617 Iter 25: T = 804.1045477328502 K, F = -87.0315576376619, relative_change = 0.0009102262518182044 Iter 30: T = 801.8520968916285 K, F = -36.4322401339793, relative_change = 0.00038613726424914144 Iter 35: T = 800.9033640382191 K, F = -15.24252333717879, relative_change = 0.00016246418931652065 Iter 40: T = 800.5054002407871 K, F = -6.37568209190056, relative_change = 6.811685959031007e-5 Iter 45: T = 800.3387573536506 K, F = -2.6665751275231497, relative_change = 2.851754875600772e-5 Iter 50: T = 800.2690285530284 K, F = -1.1152266032570615, relative_change = 1.1931681031783059e-5 Iter 55: T = 800.2398607012926 K, F = -0.46640686479715554, relative_change = 4.990899357419949e-6 Iter 60: T = 800.2276612315007 K, F = -0.19505793210759137, relative_change = 2.0874160422135756e-6 Iter 65: T = 800.2225590705957 K, F = -0.08157573354596093, relative_change = 8.730107121684815e-7 Iter 70: T = 800.2204252515244 K, F = -0.034115976916501034, relative_change = 3.651084721562519e-7 Iter 75: T = 800.2195328568806 K, F = -0.014267714383637053, relative_change = 1.5269359198269327e-7 Iter 80: T = 800.2191596457293 K, F = -0.005966929491071249, relative_change = 6.385843561216132e-8 Iter 85: T = 800.2190035641845 K, F = -0.0024954413379004725, relative_change = 2.6706386966337596e-8 Iter 90: T = 800.2189382889864 K, F = -0.0010436233987904942, relative_change = 1.1168934623593247e-8 Iter 95: T = 800.2189109901132 K, F = -0.0004364557729333862, relative_change = 4.670982647017426e-9 Iter 100: T = 800.2188995733975 K, F = -0.00018253101724929888, relative_change = 1.9534608656902206e-9 Iter 105: T = 800.2188947987905 K, F = -7.633665378092847e-5, relative_change = 8.169607131013458e-10 Iter 110: T = 800.2188928019928 K, F = -3.192490035486273e-5, relative_change = 3.416627318288693e-10 Iter 115: T = 800.2188919669081 K, F = -1.3351374513859149e-5, relative_change = 1.4288743463677608e-10 Iter 120: T = 800.2188916176658 K, F = -5.583705193434874e-6, relative_change = 5.975724159993112e-11 Iter 125: T = 800.2188914716085 K, F = -2.3351731316401114e-6, relative_change = 2.4991202130517948e-11 Iter 130: T = 800.2188914105254 K, F = -9.765965327535042e-7, relative_change = 1.0451611072509322e-11 Iter 135: T = 800.2188913849799 K, F = -4.0842404225305273e-7, relative_change = 4.37098545793964e-12 Iter 140: T = 800.2188913742964 K, F = -1.7080858971674218e-7, relative_change = 1.8280066415089604e-12 Iter 145: T = 800.2188913698285 K, F = -7.14353708408666e-8, relative_change = 7.64506823431911e-13 Iter 150: T = 800.2188913679599 K, F = -2.987506853013855e-8, relative_change = 3.197252771728416e-13 Converged in 153 iterations to T = 800.2188913674128 K Iter 1: T = 980.7530244449007 K, F = -4385.441688829686, relative_change = 0.019246975555099258 Iter 2: T = 963.5220343409662 K, F = -3703.7670944329047, relative_change = 0.01756914296918648 Iter 3: T = 948.1818988114045 K, F = -3126.597337387574, relative_change = 0.01592089748113972 Iter 5: T = 922.6380498353245 K, F = -2225.036809254989, relative_change = 0.012798843626890434 Iter 10: T = 882.3047771714683 K, F = -943.9802925337691, relative_change = 0.006655999945347354 Iter 15: T = 863.3257224497532 K, F = -397.6294964820976, relative_change = 0.0031024368385224087 Iter 20: T = 854.930141683524 K, F = -166.83960771453965, relative_change = 0.0013630932835417668 Iter 25: T = 851.3302803831044 K, F = -69.87393153585026, relative_change = 0.0005824091907649402 Iter 30: T = 849.8085440158916 K, F = -29.239853531290677, relative_change = 0.00024579934186696957 Iter 35: T = 849.1692416561958 K, F = -12.231582753066105, relative_change = 0.0001031913082226782 Iter 40: T = 848.9013674710789 K, F = -5.1159426339947425, relative_change = 4.322532934131764e-5 Iter 45: T = 848.7892497296981 K, F = -2.139644396130638, relative_change = 1.808953191169698e-5 Iter 50: T = 848.7423450650406 K, F = -0.8948416547333523, relative_change = 7.5673912024540755e-6 Iter 55: T = 848.722726228937 K, F = -0.37423640836393224, relative_change = 3.1651465792098254e-6 Iter 60: T = 848.714520917125 K, F = -0.1565106498339952, relative_change = 1.3237673842804856e-6 Iter 65: T = 848.7110892737278 K, F = -0.06545471287771987, relative_change = 5.536267483970927e-7 Iter 70: T = 848.7096541047835 K, F = -0.02737395835157508, relative_change = 2.3153531510704121e-7 Iter 75: T = 848.7090538974217 K, F = -0.011448119045533334, relative_change = 9.683118319236416e-8 Iter 80: T = 848.7088028830855 K, F = -0.004787740583394706, relative_change = 4.049601829892973e-8 Iter 85: T = 848.7086979058139 K, F = -0.0020022903741843123, relative_change = 1.693592916607767e-8 Iter 90: T = 848.7086540030515 K, F = -0.0008373817615703327, relative_change = 7.082809703685262e-9 Iter 95: T = 848.7086356423895 K, F = -0.0003502030562123615, relative_change = 2.9621159357998695e-9 Iter 100: T = 848.708627963741 K, F = -0.00014645910202104595, relative_change = 1.238792326428915e-9 Iter 105: T = 848.7086247524384 K, F = -6.125094417930299e-5, relative_change = 5.180777429040695e-10 Iter 110: T = 848.7086234094332 K, F = -2.5615875272277933e-5, relative_change = 2.1666629178341125e-10 Iter 115: T = 848.7086228477724 K, F = -1.071286404230598e-5, relative_change = 9.061242331438009e-11 Iter 120: T = 848.7086226128791 K, F = -4.480246382554398e-6, relative_change = 3.789518663734686e-11 Iter 125: T = 848.7086225146439 K, F = -1.8736899860538614e-6, relative_change = 1.584819800037134e-11 Iter 130: T = 848.7086224735609 K, F = -7.835983575343874e-7, relative_change = 6.627895766250834e-12 Iter 135: T = 848.7086224563794 K, F = -3.2770992275388267e-7, relative_change = 2.7718628923911294e-12 Iter 140: T = 848.708622449194 K, F = -1.3705133228292254e-7, relative_change = 1.1592187967052099e-12 Iter 145: T = 848.708622446189 K, F = -5.731653263119085e-8, relative_change = 4.847993878089664e-13 Converged in 150 iterations to T = 848.7086224449322 K Iter 1: T = 967.2564943242246 K, F = -7460.638915340293, relative_change = 0.03274350567577539 Iter 2: T = 936.5853746561587 K, F = -6324.288404105985, relative_change = 0.031709396471402716 Iter 3: T = 907.9554505338125 K, F = -5359.515670508102, relative_change = 0.03056840828083285 Iter 5: T = 856.6820318628363 K, F = -3845.357058580397, relative_change = 0.02797051170816949 Iter 10: T = 761.2346878256473 K, F = -1665.2692751428726, relative_change = 0.020067399191819463 Iter 15: T = 705.2649538000609 K, F = -713.0726546540054, relative_change = 0.012048707416745545 Iter 20: T = 676.4419761353035 K, F = -302.2498387199807, relative_change = 0.0061792534406382455 Iter 25: T = 662.9894965722376 K, F = -127.24769844692261, relative_change = 0.0028569715024359954 Iter 30: T = 657.0645574284827 K, F = -53.37721258394483, relative_change = 0.001250258656891272 Iter 35: T = 654.5292598699612 K, F = -22.352197165557428, relative_change = 0.0005332432299767322 Iter 40: T = 653.4585035229942 K, F = -9.353149945650236, relative_change = 0.0002248756911930717 Iter 45: T = 653.0088376228359 K, F = -3.912513873005284, relative_change = 9.437626838418265e-5 Iter 50: T = 652.8204537329502 K, F = -1.6364205111131207, relative_change = 3.952739817561473e-5 Iter 55: T = 652.7416117511784 K, F = -0.6843987042657694, relative_change = 1.6541016453009802e-5 Iter 60: T = 652.7086290072152 K, F = -0.286228629412709, relative_change = 6.919433860690904e-6 Iter 65: T = 652.6948334648421 K, F = -0.11970509141406493, relative_change = 2.8941018841756e-6 Iter 70: T = 652.6890636955063 K, F = -0.05006224928250064, relative_change = 1.2104025498636658e-6 Iter 75: T = 652.6866506550571 K, F = -0.020936656834890932, relative_change = 5.062143481009898e-7 Iter 80: T = 652.6856414832772 K, F = -0.008755964526553028, relative_change = 2.1170655556752105e-7 Iter 85: T = 652.6852194339347 K, F = -0.0036618497378655412, relative_change = 8.853850188025124e-8 Iter 90: T = 652.6850429275703 K, F = -0.0015314294317221866, relative_change = 3.7027909909841056e-8 Iter 95: T = 652.6849691104503 K, F = -0.0006404621024119761, relative_change = 1.5485523072199888e-8 Iter 100: T = 652.6849382392403 K, F = -0.00026784890349629276, relative_change = 6.4762322288517975e-9 Iter 105: T = 652.6849253285301 K, F = -0.00011201761132001442, relative_change = 2.708437941994665e-9 Iter 110: T = 652.6849199291166 K, F = -4.684710290198124e-5, relative_change = 1.1327011393520386e-9 Iter 115: T = 652.6849176710174 K, F = -1.9592017978131704e-5, relative_change = 4.73709153328179e-10 Iter 120: T = 652.6849167266533 K, F = -8.19361673320973e-6, relative_change = 1.9811084679763234e-10 Iter 125: T = 652.684916331709 K, F = -3.42666765718036e-6, relative_change = 8.285230507088643e-11 Iter 130: T = 652.6849161665386 K, F = -1.433074515777566e-6, relative_change = 3.4649851982223116e-11 Iter 135: T = 652.6849160974624 K, F = -5.993300517537214e-7, relative_change = 1.4491010316348239e-11 Iter 140: T = 652.6849160685738 K, F = -2.5064662945162297e-7, relative_change = 6.060304974327065e-12 Iter 145: T = 652.6849160564922 K, F = -1.0482283058221853e-7, relative_change = 2.5344778146280953e-12 Iter 150: T = 652.6849160514397 K, F = -4.383886581527108e-8, relative_change = 1.05996596556519e-12 Iter 155: T = 652.6849160493265 K, F = -1.833331880751743e-8, relative_change = 4.43275472819256e-13 Converged in 159 iterations to T = 652.6849160485638 K Iter 1: T = 973.4119965546464 K, F = -6058.101876744419, relative_change = 0.026588003445353548 Iter 2: T = 949.0171283601981 K, F = -5126.7771084415035, relative_change = 0.025061195342561002 Iter 3: T = 926.7487907080792 K, F = -4336.812475118041, relative_change = 0.02346463197202364 Iter 5: T = 888.2730277518974 K, F = -3099.1679633874774, relative_change = 0.02013940915036508 Iter 10: T = 822.6804696607167 K, F = -1327.2015115786048, relative_change = 0.01211039242187435 Iter 15: T = 788.8674288376553 K, F = -562.6024431681841, relative_change = 0.006218009008123552 Iter 20: T = 773.075376398523 K, F = -236.86690625200436, relative_change = 0.0028767884113884527 Iter 25: T = 766.117540059833 K, F = -99.36184296232865, relative_change = 0.0012593367191073923 Iter 30: T = 763.1397689168116 K, F = -41.60908323476262, relative_change = 0.0005371927017024325 Iter 35: T = 761.882046774532 K, F = -17.411156859541215, relative_change = 0.000226555343389055 Iter 40: T = 761.3538478237775 K, F = -7.283269600554045, relative_change = 9.508369606717768e-5 Iter 45: T = 761.1325602386427 K, F = -3.04625132900388, relative_change = 3.98241301638789e-5 Iter 50: T = 761.0399469687171 K, F = -1.2740313967340424, relative_change = 1.666526725240801e-5 Iter 55: T = 761.0012030563668 K, F = -0.5328243692102674, relative_change = 6.971423989548949e-6 Iter 60: T = 760.9849978006056 K, F = -0.2228351280635189, relative_change = 2.915849495101351e-6 Iter 65: T = 760.9782202036774 K, F = -0.09319259399994229, relative_change = 1.2194984859052752e-6 Iter 70: T = 760.9753856677794 K, F = -0.03897430512278377, relative_change = 5.100185215564842e-7 Iter 75: T = 760.9742002198352 K, F = -0.01629952848381211, relative_change = 2.1329753157635338e-7 Iter 80: T = 760.9737044493922 K, F = -0.0068166589763858365, relative_change = 8.920387143697328e-8 Iter 85: T = 760.9734971119304 K, F = -0.002850808456894671, relative_change = 3.730617621581437e-8 Iter 90: T = 760.9734104008679 K, F = -0.0011922421884171808, relative_change = 1.5601897488410242e-8 Iter 95: T = 760.9733741372555 K, F = -0.0004986099284445267, relative_change = 6.524901426002966e-9 Iter 100: T = 760.9733589713779 K, F = -0.00020852462714371356, relative_change = 2.728791964406444e-9 Iter 105: T = 760.9733526288264 K, F = -8.720748918600307e-5, relative_change = 1.1412134309027001e-9 Iter 110: T = 760.9733499762956 K, F = -3.647121244587659e-5, relative_change = 4.772690804859998e-10 Iter 115: T = 760.9733488669756 K, F = -1.5252697396772597e-5, relative_change = 1.995996410269548e-10 Iter 120: T = 760.9733484030448 K, F = -6.378861279521253e-6, relative_change = 8.347496787803245e-11 Iter 125: T = 760.9733482090234 K, F = -2.6677173440292634e-6, relative_change = 3.4910246533462056e-11 Iter 130: T = 760.9733481278812 K, F = -1.1156713348725589e-6, relative_change = 1.459988310143249e-11 Iter 135: T = 760.9733480939467 K, F = -4.665877715304134e-7, relative_change = 6.105854573315185e-12 Iter 140: T = 760.9733480797548 K, F = -1.9513274229776556e-7, relative_change = 2.553543448342341e-12 Iter 145: T = 760.9733480738196 K, F = -8.16069823939003e-8, relative_change = 1.0679241873241358e-12 Iter 150: T = 760.9733480713373 K, F = -3.412730131824304e-8, relative_change = 4.465962281328116e-13 Converged in 155 iterations to T = 760.9733480702994 K Iter 1: T = 969.9362558505015 K, F = -6850.052702466796, relative_change = 0.03006374414949844 Iter 2: T = 942.0283346405506 K, F = -5802.479564523747, relative_change = 0.028772943625536958 Iter 3: T = 916.2338633258104 K, F = -4913.383258405461, relative_change = 0.027381842314310616 Iter 5: T = 870.7816636540686 K, F = -3518.914520408346, relative_change = 0.02433858539941885 Iter 10: T = 789.628062142798 K, F = -1515.7571131009431, relative_change = 0.01603822014627143 Iter 15: T = 745.029300273851 K, F = -645.6515541682304, relative_change = 0.008873774507904884 Iter 20: T = 723.2407352905192 K, F = -272.6521072766998, relative_change = 0.0042980682886649526 Iter 25: T = 713.3973207720763 K, F = -114.54912182639733, relative_change = 0.0019257124974748946 Iter 30: T = 709.133552219544 K, F = -48.00276408206988, relative_change = 0.0008302013085618015 Iter 35: T = 707.3229779224339 K, F = -20.09272778910581, relative_change = 0.0003517449992826884 Iter 40: T = 706.5608459635315 K, F = -8.406095300093046, relative_change = 0.00014791422808567713 Iter 45: T = 706.2412412510856 K, F = -3.5160700363293254, relative_change = 6.200236221003195e-5 Iter 50: T = 706.1074254767332 K, F = -1.4705572136095895, relative_change = 2.5955200495103167e-5 Iter 55: T = 706.0514352601912 K, F = -0.6150211713042378, relative_change = 1.0859166193144896e-5 Iter 60: T = 706.0280147808049 K, F = -0.2572120999706835, relative_change = 4.542201500215504e-6 Iter 65: T = 706.0182192339176 K, F = -0.10756967945246548, relative_change = 1.8997373595901695e-6 Iter 70: T = 706.0141224753121 K, F = -0.04498701335695987, relative_change = 7.945163686566102e-7 Iter 75: T = 706.0124091367657 K, F = -0.018814121764161862, relative_change = 3.3228034719759166e-7 Iter 80: T = 706.0116925937212 K, F = -0.007868293122000658, relative_change = 1.3896432885622177e-7 Iter 85: T = 706.0113929260929 K, F = -0.0032906146252253965, relative_change = 5.811666773548339e-8 Iter 90: T = 706.0112676013773 K, F = -0.0013761744177493984, relative_change = 2.430510651821256e-8 Iter 95: T = 706.011215189061 K, F = -0.000575532590711858, relative_change = 1.0164689653989978e-8 Iter 100: T = 706.0111932696002 K, F = -0.0002406946041557667, relative_change = 4.2509952585949935e-9 Iter 105: T = 706.0111841026194 K, F = -0.00010066135951658506, relative_change = 1.7778171221692964e-9 Iter 110: T = 706.0111802688783 K, F = -4.2097783178429715e-5, relative_change = 7.435043797773145e-10 Iter 115: T = 706.0111786655619 K, F = -1.7605795668895752e-5, relative_change = 3.109424141252185e-10 Iter 120: T = 706.0111779950358 K, F = -7.362953806766548e-6, relative_change = 1.3003982808716527e-10 Iter 125: T = 706.0111777146138 K, F = -3.0792755718600517e-6, relative_change = 5.4384215528683235e-11 Iter 130: T = 706.011177597338 K, F = -1.2877885642303966e-6, relative_change = 2.2744106285220618e-11 Iter 135: T = 706.0111775482919 K, F = -5.385692130044362e-7, relative_change = 9.51186845947211e-12 Iter 140: T = 706.0111775277802 K, F = -2.2523583387279444e-7, relative_change = 3.9779726964011114e-12 Iter 145: T = 706.011177519202 K, F = -9.419714475100704e-8, relative_change = 1.6636503325299094e-12 Iter 150: T = 706.0111775156145 K, F = -3.939438708577825e-8, relative_change = 6.957587233656772e-13 Iter 155: T = 706.0111775141141 K, F = -1.6474854591663757e-8, relative_change = 2.9096845125394016e-13 Converged in 157 iterations to T = 706.0111775137966 K Iter 1: T = 973.4455071611169 K, F = -6050.466453183312, relative_change = 0.026554492838883104 Iter 2: T = 949.0841245270418 K, F = -5120.268546673325, relative_change = 0.025025933608878396 Iter 3: T = 926.8489808815606 K, F = -4331.264899016781, relative_change = 0.023428000817695378 Iter 5: T = 888.437567758034 K, F = -3095.1403363355316, relative_change = 0.020101455880467665 Iter 10: T = 822.9815067330685 K, F = -1325.4091489248872, relative_change = 0.012077940773232565 Iter 15: T = 789.2568197530555 K, F = -561.8207603148197, relative_change = 0.006197634662729178 Iter 20: T = 773.5115348794378 K, F = -236.5324256971141, relative_change = 0.002866372880244939 Iter 25: T = 766.5755884032029 K, F = -99.22042514083516, relative_change = 0.0012545657926358404 Iter 30: T = 763.6074426791191 K, F = -41.54965386219851, relative_change = 0.0005351171419574915 Iter 35: T = 762.3538337601628 K, F = -17.38625116853892, relative_change = 0.00022567264904791297 Iter 40: T = 761.8273707821638 K, F = -7.272844604151274, relative_change = 9.471192901698984e-5 Iter 45: T = 761.6068119924034 K, F = -3.041889864344691, relative_change = 3.9668192031237497e-5 Iter 50: T = 761.5145040038992 K, F = -1.2722070985136922, relative_change = 1.659997122090734e-5 Iter 55: T = 761.4758878498469 K, F = -0.5320613766084733, relative_change = 6.944102250684756e-6 Iter 60: T = 761.4597360391795 K, F = -0.22251602682123928, relative_change = 2.9044207398540282e-6 Iter 65: T = 761.4529807962605 K, F = -0.09305914054017805, relative_change = 1.2147184104958913e-6 Iter 70: T = 761.4501556095365 K, F = -0.03891849302796435, relative_change = 5.080193611089742e-7 Iter 75: T = 761.4489740716091 K, F = -0.016276187151272326, relative_change = 2.1246144551705783e-7 Iter 80: T = 761.4484799363961 K, F = -0.006806897345364327, relative_change = 8.885420795656403e-8 Iter 85: T = 761.4482732828093 K, F = -0.002846726023657542, relative_change = 3.715994235166588e-8 Iter 90: T = 761.4481868577519 K, F = -0.001190534864928261, relative_change = 1.5540740657226757e-8 Iter 95: T = 761.4481507137505 K, F = -0.0004978959057787558, relative_change = 6.4993249023413845e-9 Iter 100: T = 761.4481355978957 K, F = -0.00020822601512215932, relative_change = 2.718095564964312e-9 Iter 105: T = 761.4481292762642 K, F = -8.708260601253404e-5, relative_change = 1.1367400677844745e-9 Iter 110: T = 761.4481266324825 K, F = -3.6418986880337734e-5, relative_change = 4.753982935858476e-10 Iter 115: T = 761.4481255268214 K, F = -1.5230855241799013e-5, relative_change = 1.9881724512694557e-10 Iter 120: T = 761.4481250644208 K, F = -6.369725336297094e-6, relative_change = 8.314774365158382e-11 Iter 125: T = 761.4481248710392 K, F = -2.663894557719537e-6, relative_change = 3.4773370965584796e-11 Iter 130: T = 761.4481247901649 K, F = -1.1140746599691553e-6, relative_change = 1.4542666991752037e-11 Iter 135: T = 761.4481247563423 K, F = -4.6592070024331633e-7, relative_change = 6.081934930485761e-12 Iter 140: T = 761.4481247421971 K, F = -1.9485397817486927e-7, relative_change = 2.5435427438441334e-12 Iter 145: T = 761.4481247362814 K, F = -8.149061891948861e-8, relative_change = 1.0637446276086986e-12 Iter 150: T = 761.4481247338074 K, F = -3.407992832382689e-8, relative_change = 4.448652022159495e-13 Converged in 154 iterations to T = 761.4481247329145 K Iter 1: T = 964.320233695766 K, F = -8129.668692639529, relative_change = 0.03567976630423406 Iter 2: T = 930.5657394448383 K, F = -6896.886696595774, relative_change = 0.03500340765594357 Iter 3: T = 898.7055445757118 K, F = -5849.976087063452, relative_change = 0.0342374466613545 Iter 5: T = 840.5550664853931 K, F = -4206.056541619189, relative_change = 0.032411216027846364 Iter 10: T = 726.3481448361922 K, F = -1834.295365980326, relative_change = 0.026023705664360037 Iter 15: T = 652.6492800798281 K, F = -792.0487110277219, relative_change = 0.01782541915148107 Iter 20: T = 610.9631201353978 K, F = -338.1546864641765, relative_change = 0.0102197237760102 Iter 25: T = 590.1350085936259 K, F = -143.02279129698454, relative_change = 0.0050697318044711105 Iter 30: T = 580.5982486859145 K, F = -60.138857914095055, relative_change = 0.002300693733975858 Iter 35: T = 576.4394218116346 K, F = -25.211738324328017, relative_change = 0.0009978346133027594 Iter 40: T = 574.6680025051851 K, F = -10.554843708057122, relative_change = 0.0004238875232157965 Iter 45: T = 573.9213629326892 K, F = -4.416110038732043, relative_change = 0.000178452707613787 Iter 50: T = 573.6080786795868 K, F = -1.8472126318832256, relative_change = 7.483908180043344e-5 Iter 55: T = 573.4768781310568 K, F = -0.7725864576182889, relative_change = 3.1335131232663046e-5 Iter 60: T = 573.4219767008634 K, F = -0.32311540059000277, relative_change = 1.3111126800378759e-5 Iter 65: T = 573.3990107005287 K, F = -0.1351325595759351, relative_change = 5.4843500997614774e-6 Iter 70: T = 573.3894050708965 K, F = -0.05651437214377225, relative_change = 2.2938167075172145e-6 Iter 75: T = 573.3853877114811 K, F = -0.023635041656547978, relative_change = 9.59335825620353e-7 Iter 80: T = 573.3837075739932 K, F = -0.009884466528489233, relative_change = 4.012116958183474e-7 Iter 85: T = 573.3830049152181 K, F = -0.004133803668727454, relative_change = 1.6779257147563272e-7 Iter 90: T = 573.3827110540152 K, F = -0.001728806363367641, relative_change = 7.017304069850158e-8 Iter 95: T = 573.3825881575913 K, F = -0.0007230075199654018, relative_change = 2.934723574088007e-8 Iter 100: T = 573.3825367608113 K, F = -0.0003023703884418305, relative_change = 1.2273370072298802e-8 Iter 105: T = 573.382515266059 K, F = -0.0001264549089644018, relative_change = 5.132870914293998e-9 Iter 110: T = 573.3825062766963 K, F = -5.288495374983215e-5, relative_change = 2.146628101594271e-9 Iter 115: T = 573.3825025172372 K, F = -2.211711950655948e-5, relative_change = 8.977455471684903e-10 Iter 120: T = 573.3825009449865 K, F = -9.249643716457978e-6, relative_change = 3.754479223791429e-10 Iter 125: T = 573.3825002874526 K, F = -3.8683121619809135e-6, relative_change = 1.5701683402948897e-10 Iter 130: T = 573.3825000124639 K, F = -1.6177744551204576e-6, relative_change = 6.566631984702866e-11 Iter 135: T = 573.3824998974603 K, F = -6.765726042745612e-7, relative_change = 2.74624394852041e-11 Iter 140: T = 573.3824998493645 K, F = -2.829504971435526e-7, relative_change = 1.1485110184956596e-11 Iter 145: T = 573.3824998292503 K, F = -1.1833329505162027e-7, relative_change = 4.803210972109746e-12 Iter 150: T = 573.3824998208383 K, F = -4.948913695512758e-8, relative_change = 2.008790218644882e-12 Iter 155: T = 573.3824998173203 K, F = -2.0697143499059933e-8, relative_change = 8.401079908448041e-13 Iter 160: T = 573.382499815849 K, F = -8.65574545372283e-9, relative_change = 3.5134128160295427e-13 Converged in 163 iterations to T = 573.3824998154183 K Iter 1: T = 963.5142845396853 K, F = -8313.304974508075, relative_change = 0.03648571546031472 Iter 2: T = 928.9031388368156 K, F = -7054.20789814617, relative_change = 0.03592177745388065 Iter 3: T = 896.1328184250441 K, F = -5984.89883016855, relative_change = 0.03527851187240788 Iter 5: T = 835.9952082104188 K, F = -4305.639239486206, relative_change = 0.03372460725151638 Iter 10: T = 715.9250152554617 K, F = -1881.8286628750923, relative_change = 0.028052033676940615 Iter 15: T = 635.856047363183 K, F = -815.0435506785547, relative_change = 0.02016518182313541 Iter 20: T = 588.8311691426389 K, F = -349.04909434008164, relative_change = 0.01213208093330035 Iter 25: T = 564.5816305799655 K, F = -147.966008454536, relative_change = 0.006231532656667272 Iter 30: T = 553.2536138930003 K, F = -62.2975530010754, relative_change = 0.0028836825621278627 Iter 35: T = 548.2620052855561 K, F = -26.133003037804823, relative_change = 0.0012624910731394194 Iter 40: T = 546.1256104269471 K, F = -10.943574890464234, relative_change = 0.0005385643438902098 Iter 45: T = 545.2232388230146 K, F = -4.579302084802732, relative_change = 0.00022713856297711343 Iter 50: T = 544.844270650494 K, F = -1.9155712292807956, relative_change = 9.532931267052183e-5 Iter 55: T = 544.6855022214534 K, F = -0.8011941280054153, relative_change = 3.992715088080279e-5 Iter 60: T = 544.619054344141 K, F = -0.33508285063958565, relative_change = 1.6708404549464637e-5 Iter 65: T = 544.591256462565 K, F = -0.1401380819033609, relative_change = 6.989473770227617e-6 Iter 70: T = 544.5796295540295 K, F = -0.05860784490234314, relative_change = 2.9233997473324908e-6 Iter 75: T = 544.5747667791792 K, F = -0.02451057507797666, relative_change = 1.2226563746833463e-6 Iter 80: T = 544.5727330626868 K, F = -0.010250628229584863, relative_change = 5.113392378831402e-7 Iter 85: T = 544.5718825301204 K, F = -0.0042869374196234655, relative_change = 2.1384987959047144e-7 Iter 90: T = 544.5715268258373 K, F = -0.0017928488235361972, relative_change = 8.94348715110637e-8 Iter 95: T = 544.5713780658122 K, F = -0.0007497908588347535, relative_change = 3.7402783463489316e-8 Iter 100: T = 544.57131585255 K, F = -0.0003135715042478504, relative_change = 1.5642299868721095e-8 Iter 105: T = 544.5712898342133 K, F = -0.0001311393503385938, relative_change = 6.541798222719599e-9 Iter 110: T = 544.5712789530328 K, F = -5.484404314065605e-5, relative_change = 2.735858437209614e-9 Iter 115: T = 544.571274402393 K, F = -2.2936433849485294e-5, relative_change = 1.1441687185995095e-9 Iter 120: T = 544.571272499261 K, F = -9.592290867943554e-6, relative_change = 4.785050459646569e-10 Iter 125: T = 544.5712717033485 K, F = -4.0116109108756515e-6, relative_change = 2.001165418234606e-10 Iter 130: T = 544.5712713704883 K, F = -1.6777032585402196e-6, relative_change = 8.369111131187096e-11 Iter 135: T = 544.5712712312823 K, F = -7.016352445432528e-7, relative_change = 3.500060760086802e-11 Iter 140: T = 544.5712711730646 K, F = -2.934323706516029e-7, relative_change = 1.463767869084472e-11 Iter 145: T = 544.5712711487173 K, F = -1.227167860939904e-7, relative_change = 6.121645274549701e-12 Iter 150: T = 544.5712711385349 K, F = -5.132147154474076e-8, relative_change = 2.5601374823501143e-12 Iter 155: T = 544.5712711342765 K, F = -2.1463051141923373e-8, relative_change = 1.0706700346302135e-12 Iter 160: T = 544.5712711324956 K, F = -8.975603510430474e-9, relative_change = 4.477420129106633e-13 Converged in 165 iterations to T = 544.5712711317508 K Iter 1: T = 969.3147494340574 K, F = -6991.663530658834, relative_change = 0.030685250565942634 Iter 2: T = 940.7702462528184 K, F = -5923.434957776765, relative_change = 0.029448126315941115 Iter 3: T = 914.3274453659851 K, F = -5016.727901122605, relative_change = 0.028107607561099663 Iter 5: T = 867.5613062678352 K, F = -3594.399840162193, relative_change = 0.02514818881070272 Iter 10: T = 783.2939764017921 K, F = -1550.0802045856665, relative_change = 0.016880397641640357 Iter 15: T = 736.3497702681918 K, F = -660.9806239484878, relative_change = 0.009496445431249572 Iter 20: T = 713.1751477863945 K, F = -279.32659685204845, relative_change = 0.004650552961961751 Iter 25: T = 702.6409489228317 K, F = -117.39848460118957, relative_change = 0.0020958195374540904 Iter 30: T = 698.0639884253312 K, F = -49.20570367931204, relative_change = 0.0009059986249455726 Iter 35: T = 696.1177284367404 K, F = -20.59788468749028, relative_change = 0.0003843180198632474 Iter 40: T = 695.2979909123258 K, F = -8.617728026697195, relative_change = 0.00016169411855900323 Iter 45: T = 694.9541415544411 K, F = -3.6046426576921546, relative_change = 6.779316893082528e-5 Iter 50: T = 694.810159352002 K, F = -1.5076108019548122, relative_change = 2.8381889388836475e-5 Iter 55: T = 694.7499126708532 K, F = -0.6305194319270845, relative_change = 1.1874896163107015e-5 Iter 60: T = 694.7247112564269 K, F = -0.26369400898138745, relative_change = 4.967142405808925e-6 Iter 65: T = 694.7141707558604 K, F = -0.11028055267288117, relative_change = 2.077479054328407e-6 Iter 70: T = 694.709762423297 K, F = -0.04612074366355701, relative_change = 8.688546745274899e-7 Iter 75: T = 694.7079187763518 K, F = -0.019288263198674493, relative_change = 3.633703202271293e-7 Iter 80: T = 694.7071477360008 K, F = -0.008066585062223242, relative_change = 1.5196666781127395e-7 Iter 85: T = 694.7068252768117 K, F = -0.0033735427404413265, relative_change = 6.355442581857768e-8 Iter 90: T = 694.7066904203695 K, F = -0.0014108559551172517, relative_change = 2.6579246184441634e-8 Iter 95: T = 694.7066340217671 K, F = -0.0005900368251453569, relative_change = 1.1115762766758072e-8 Iter 100: T = 694.7066104351932 K, F = -0.00024676044935389996, relative_change = 4.648745538807426e-9 Iter 105: T = 694.7066005710055 K, F = -0.00010319816738446619, relative_change = 1.9441610433514725e-9 Iter 110: T = 694.7065964456842 K, F = -4.315870590798632e-5, relative_change = 8.130713868924093e-10 Iter 115: T = 694.7065947204256 K, F = -1.8049488304860972e-5, relative_change = 3.4003620714535273e-10 Iter 120: T = 694.7065939989019 K, F = -7.548512071853253e-6, relative_change = 1.422072129604369e-10 Iter 125: T = 694.706593697152 K, F = -3.156878115140316e-6, relative_change = 5.94727590106481e-11 Iter 130: T = 694.7065935709564 K, F = -1.320243087077344e-6, relative_change = 2.4872198468658068e-11 Iter 135: T = 694.7065935181801 K, F = -5.521399341068545e-7, relative_change = 1.040182233329894e-11 Iter 140: T = 694.7065934961083 K, F = -2.3091079037751427e-7, relative_change = 4.350152684748628e-12 Iter 145: T = 694.7065934868776 K, F = -9.656888966258492e-8, relative_change = 1.8192714769572368e-12 Iter 150: T = 694.7065934830174 K, F = -4.038676770790062e-8, relative_change = 7.608505678811001e-13 Iter 155: T = 694.7065934814028 K, F = -1.6888936471559646e-8, relative_change = 3.1817245188756234e-13 Converged in 158 iterations to T = 694.7065934809302 K Iter 1: T = 966.4142595643784 K, F = -7652.542906543323, relative_change = 0.03358574043562153 Iter 2: T = 934.8647068904148 K, F = -6488.4420762434665, relative_change = 0.032645992504482434 Iter 3: T = 905.32169902221 K, F = -5500.024109256602, relative_change = 0.031601372530654155 Iter 5: T = 852.1315592018416 K, F = -3948.4894684596934, relative_change = 0.02919186118157842 Iter 10: T = 751.6765776641365 K, F = -1713.141863184417, relative_change = 0.02158056660618446 Iter 15: T = 691.322234062018 K, F = -735.0796064839583, relative_change = 0.013380709320184222 Iter 20: T = 659.5556727519596 K, F = -312.0808394168885, relative_change = 0.007034769296281839 Iter 25: T = 644.5110236028933 K, F = -131.51262175300906, relative_change = 0.0033002540107617243 Iter 30: T = 637.8325454390654 K, F = -55.192541150232096, relative_change = 0.0014546710295359434 Iter 35: T = 634.9641947836313 K, F = -23.117364376996985, relative_change = 0.0006224406658238181 Iter 40: T = 633.7507944525368 K, F = -9.674231743479318, relative_change = 0.0002628592052403744 Iter 45: T = 633.2408682767523 K, F = -4.046985599211425, relative_change = 0.00011038277279507499 Iter 50: T = 633.0271756935014 K, F = -1.6926918798281576, relative_change = 4.624291194689299e-5 Iter 55: T = 632.9377304782869 K, F = -0.7079379690063388, relative_change = 1.935328103928788e-5 Iter 60: T = 632.9003100338051 K, F = -0.2960740651257967, relative_change = 8.096214486866194e-6 Iter 65: T = 632.8846580140788 K, F = -0.1238227511487065, relative_change = 3.3863607501301924e-6 Iter 70: T = 632.8781117426112 K, F = -0.051784335410697546, relative_change = 1.4162912322168723e-6 Iter 75: T = 632.875373942006 K, F = -0.021656859357001068, relative_change = 5.923229778096439e-7 Iter 80: T = 632.8742289485562 K, F = -0.00905716279019042, relative_change = 2.4771882921069006e-7 Iter 85: T = 632.8737500964279 K, F = -0.00378781461808686, relative_change = 1.0359937259631726e-7 Iter 90: T = 632.8735498343656 K, F = -0.0015841094798297872, relative_change = 4.3326564793484214e-8 Iter 95: T = 632.8734660823125 K, F = -0.0006624935325469927, relative_change = 1.8119699057037183e-8 Iter 100: T = 632.8734310561919 K, F = -0.00027706271195054866, relative_change = 7.577876668462797e-9 Iter 105: T = 632.8734164078479 K, F = -0.00011587093563286688, relative_change = 3.169158889201497e-9 Iter 110: T = 632.8734102817351 K, F = -4.8458608999768504e-5, relative_change = 1.3253801542957082e-9 Iter 115: T = 632.8734077197215 K, F = -2.02659683132822e-5, relative_change = 5.542898007623181e-10 Iter 120: T = 632.8734066482568 K, F = -8.475470481716929e-6, relative_change = 2.3181063001394954e-10 Iter 125: T = 632.8734062001575 K, F = -3.544542607425427e-6, relative_change = 9.694596417754629e-11 Iter 130: T = 632.8734060127571 K, F = -1.48237050484612e-6, relative_change = 4.0543972517697005e-11 Iter 135: T = 632.8734059343839 K, F = -6.199444317345204e-7, relative_change = 1.69559566487544e-11 Iter 140: T = 632.8734059016074 K, F = -2.5926784708030226e-7, relative_change = 7.091174872389239e-12 Iter 145: T = 632.8734058878998 K, F = -1.084291035291507e-7, relative_change = 2.9656193126899624e-12 Iter 150: T = 632.8734058821672 K, F = -4.534565878344665e-8, relative_change = 1.2402386173421077e-12 Iter 155: T = 632.8734058797697 K, F = -1.8964442016766725e-8, relative_change = 5.186920639589347e-13 Converged in 160 iterations to T = 632.873405878767 K Iter 1: T = 966.4878799448771 K, F = -7635.768432815629, relative_change = 0.033512120055122815 Iter 2: T = 935.0153034018562 K, F = -6474.0903875646945, relative_change = 0.032563860547134796 Iter 3: T = 905.5525357863121 K, F = -5487.736569725791, relative_change = 0.03151046566655112 Iter 5: T = 852.5316783039469 K, F = -3939.4641567058, relative_change = 0.029083485021924402 Iter 10: T = 752.5254573024998 K, F = -1708.93888166523, relative_change = 0.021442739727116883 Iter 15: T = 692.5734895576719 K, F = -733.1376338912164, relative_change = 0.01325589793903304 Iter 20: T = 661.0829756797373 K, F = -311.2089564922286, relative_change = 0.006952817779641294 Iter 25: T = 646.1898586595821 K, F = -131.13310241695407, relative_change = 0.0032572336853301897 Iter 30: T = 639.5836767370475 K, F = -55.03071494809744, relative_change = 0.0014347042833026812 Iter 35: T = 636.7474024431109 K, F = -23.049097833908046, relative_change = 0.0006137025053749235 Iter 40: T = 635.5477634676905 K, F = -9.64557519468156, relative_change = 0.0002591334803069828 Iter 45: T = 635.0436550343076 K, F = -4.034982152737741, relative_change = 0.00010881188710757236 Iter 50: T = 634.8324065933773 K, F = -1.6876685624917405, relative_change = 4.558369993078867e-5 Iter 55: T = 634.7439854988163 K, F = -0.7058365732823129, relative_change = 1.9077195889853076e-5 Iter 60: T = 634.7069936958876 K, F = -0.2951951340097207, relative_change = 7.980683218309083e-6 Iter 65: T = 634.6915209990648 K, F = -0.12345515375379118, relative_change = 3.338032089411946e-6 Iter 70: T = 634.6850497330554 K, F = -0.05163059865899938, relative_change = 1.3960774915025172e-6 Iter 75: T = 634.6823433024616 K, F = -0.0215925642620039, relative_change = 5.838689795733544e-7 Iter 80: T = 634.6812114286457 K, F = -0.00903027371708709, relative_change = 2.4418320137690343e-7 Iter 85: T = 634.6807380633612 K, F = -0.003776569268487684, relative_change = 1.0212071944353618e-7 Iter 90: T = 634.6805400959723 K, F = -0.0015794065369516552, relative_change = 4.2708172392016056e-8 Iter 95: T = 634.6804573035807 K, F = -0.0006605267049641372, relative_change = 1.786107961768035e-8 Iter 100: T = 634.6804226788024 K, F = -0.00027624016115074257, relative_change = 7.469718871851585e-9 Iter 105: T = 634.6804081983046 K, F = -0.00011552693582012052, relative_change = 3.1239260172945338e-9 Iter 110: T = 634.6804021423872 K, F = -4.831474496963528e-5, relative_change = 1.3064632469878576e-9 Iter 115: T = 634.6803996097301 K, F = -2.0205803584860682e-5, relative_change = 5.463785491901505e-10 Iter 120: T = 634.6803985505427 K, F = -8.450308345508972e-6, relative_change = 2.285020356316071e-10 Iter 125: T = 634.6803981075777 K, F = -3.5340185901011623e-6, relative_change = 9.556224595171661e-11 Iter 130: T = 634.6803979223246 K, F = -1.4779693706667985e-6, relative_change = 3.9965288552993826e-11 Iter 135: T = 634.6803978448495 K, F = -6.181038453845211e-7, relative_change = 1.671394484969549e-11 Iter 140: T = 634.6803978124484 K, F = -2.5849764406782327e-7, relative_change = 6.989950636997166e-12 Iter 145: T = 634.6803977988981 K, F = -1.0810774631053732e-7, relative_change = 2.923306372827952e-12 Iter 150: T = 634.6803977932311 K, F = -4.521228952336642e-8, relative_change = 1.2225708019087204e-12 Iter 155: T = 634.6803977908611 K, F = -1.890901707435333e-8, relative_change = 5.113125747892345e-13 Converged in 160 iterations to T = 634.6803977898699 K Iter 1: T = 976.3987146799736 K, F = -5377.575310786216, relative_change = 0.02360128532002634 Iter 2: T = 954.9598540035638 K, F = -4547.142882984433, relative_change = 0.021957075889265838 Iter 3: T = 935.5920999031571 K, F = -3843.209916243364, relative_change = 0.02028122336159954 Iter 5: T = 902.6501604018522 K, F = -2741.579105446208, relative_change = 0.016927689006058445 Iter 10: T = 848.3760102897427 K, F = -1169.1278009162982, relative_change = 0.009532102044321807 Iter 15: T = 821.566749537878 K, F = -494.0873439660957, relative_change = 0.004670994899509539 Iter 20: T = 809.3760180942609 K, F = -207.6652099412862, relative_change = 0.0021057505409340393 Iter 25: T = 804.0783647753751 K, F = -87.0404902543655, relative_change = 0.0009104374641046722 Iter 30: T = 801.8254606771051 K, F = -36.435987487103525, relative_change = 0.0003862281511293932 Iter 35: T = 800.876535326075 K, F = -15.244092600296506, relative_change = 0.0001625026605244443 Iter 40: T = 800.4784904994247 K, F = -6.376338742587198, relative_change = 6.81330304579014e-5 Iter 45: T = 800.3118136324192 K, F = -2.6668498109455427, relative_change = 2.8524325983969998e-5 Iter 50: T = 800.2420706047787 K, F = -1.115341490402564, relative_change = 1.1934517870085671e-5 Iter 55: T = 800.2128968002909 K, F = -0.4664549139413783, relative_change = 4.992086198345335e-6 Iter 60: T = 800.2006948404895 K, F = -0.19507802717916733, relative_change = 2.087912470486796e-6 Iter 65: T = 800.1955916381456 K, F = -0.08158413760366456, relative_change = 8.732183378919626e-7 Iter 70: T = 800.1934573835169 K, F = -0.03411949160107286, relative_change = 3.651953060409525e-7 Iter 75: T = 800.1925648067153 K, F = -0.014269184269615875, relative_change = 1.5272990737499263e-7 Iter 80: T = 800.192191519383 K, F = -0.00596754421430068, relative_change = 6.387362320487512e-8 Iter 85: T = 800.1920354059783 K, F = -0.0024956984242232583, relative_change = 2.671273862950829e-8 Iter 90: T = 800.1919701174559 K, F = -0.0010437309161616115, relative_change = 1.1171590975662094e-8 Iter 95: T = 800.1919428130104 K, F = -0.00043650073901135844, relative_change = 4.672093576560531e-9 Iter 100: T = 800.1919313939642 K, F = -0.00018254982211030057, relative_change = 1.953925464513737e-9 Iter 105: T = 800.1919266183826 K, F = -7.634451431604017e-5, relative_change = 8.17154972337786e-10 Iter 110: T = 800.1919246211773 K, F = -3.192818895625393e-5, relative_change = 3.41743986547433e-10 Iter 115: T = 800.1919237859222 K, F = -1.3352750217410225e-5, relative_change = 1.4292142030356996e-10 Iter 120: T = 800.1919234366086 K, F = -5.584281482451381e-6, relative_change = 5.977146501737843e-11 Iter 125: T = 800.1919232905213 K, F = -2.3354122166141522e-6, relative_change = 2.499712992020804e-11 Iter 130: T = 800.1919232294259 K, F = -9.766973407820956e-7, relative_change = 1.0454098919000729e-11 Iter 135: T = 800.1919232038751 K, F = -4.0846684112860743e-7, relative_change = 4.372032752254722e-12 Iter 140: T = 800.1919231931895 K, F = -1.7082683001490295e-7, relative_change = 1.8284482867027624e-12 Iter 145: T = 800.1919231887207 K, F = -7.144194602570764e-8, relative_change = 7.64680254275595e-13 Iter 150: T = 800.1919231868517 K, F = -2.9878064689015105e-8, relative_change = 3.198004446252278e-13 Converged in 153 iterations to T = 800.1919231863045 K Iter 1: T = 965.1756523128627 K, F = -7934.7607470208595, relative_change = 0.034824347687137304 Iter 2: T = 932.3255062187776 K, F = -6729.981322408453, relative_change = 0.034035406939002116 Iter 3: T = 901.4200970917406 K, F = -5706.913789057711, relative_change = 0.03314873284157991 Iter 5: T = 845.3304822447617 K, F = -4100.637729808668, relative_change = 0.031063414925400518 Iter 10: T = 736.9833578540429 K, F = -1784.4143308580428, relative_change = 0.024077693346068137 Iter 15: T = 669.2236422516901 K, F = -768.3409464627641, relative_change = 0.015772838134375043 Iter 20: T = 632.1456267317006 K, F = -327.17222071379797, relative_change = 0.008681603426823588 Iter 25: T = 614.0897606931794 K, F = -138.13087916730524, relative_change = 0.004190792145521844 Iter 30: T = 605.947994359171 K, F = -58.026022210923614, relative_change = 0.001874326005971 Iter 35: T = 602.4245775500243 K, F = -24.314960044731855, relative_change = 0.0008073839832035553 Iter 40: T = 600.9290122484839 K, F = -10.17737577650045, relative_change = 0.00034195454920081953 Iter 45: T = 600.2995918021081 K, F = -4.257814902779389, relative_change = 0.00014377512972528066 Iter 50: T = 600.0356606695391 K, F = -1.7809351770197892, relative_change = 6.0263444880410555e-5 Iter 55: T = 599.9251585057714 K, F = -0.7448549951279937, relative_change = 2.522657637370289e-5 Iter 60: T = 599.8789236232791 K, F = -0.3115154173659979, relative_change = 1.0554203588723048e-5 Iter 65: T = 599.8595838696039 K, F = -0.13028089598299228, relative_change = 4.414619907001785e-6 Iter 70: T = 599.8514950934051 K, F = -0.05448527639474082, relative_change = 1.846373761855666e-6 Iter 75: T = 599.8481121551043 K, F = -0.02278643697112437, relative_change = 7.721977712736005e-7 Iter 80: T = 599.846697349705 K, F = -0.009529567709054831, relative_change = 3.229462152488783e-7 Iter 85: T = 599.8461056576575 K, F = -0.003985380358773716, relative_change = 1.3506064354982846e-7 Iter 90: T = 599.8458582043589 K, F = -0.0016667338950492883, relative_change = 5.6484092946784604e-8 Iter 95: T = 599.8457547163264 K, F = -0.0006970480614301722, relative_change = 2.3622343042628665e-8 Iter 100: T = 599.8457114363762 K, F = -0.0002915138309987908, relative_change = 9.879149608266216e-9 Iter 105: T = 599.8456933361808 K, F = -0.00012191456605054052, relative_change = 4.1315789591860334e-9 Iter 110: T = 599.8456857664626 K, F = -5.0986128466767866e-5, relative_change = 1.7278757991269404e-9 Iter 115: T = 599.8456826007158 K, F = -2.1323008506324292e-5, relative_change = 7.22618335542245e-10 Iter 120: T = 599.8456812767627 K, F = -8.917537175301415e-6, relative_change = 3.0220763343762565e-10 Iter 125: T = 599.8456807230696 K, F = -3.729420316123111e-6, relative_change = 1.2638683423763608e-10 Iter 130: T = 599.8456804915085 K, F = -1.5596876737355991e-6, relative_change = 5.2856468602636835e-11 Iter 135: T = 599.8456803946668 K, F = -6.522792712626568e-7, relative_change = 2.2105181331317083e-11 Iter 140: T = 599.8456803541666 K, F = -2.727910184407989e-7, relative_change = 9.244652092736389e-12 Iter 145: T = 599.8456803372289 K, F = -1.1408423011838309e-7, relative_change = 3.866216061225627e-12 Iter 150: T = 599.8456803301455 K, F = -4.7711729567190275e-8, relative_change = 1.6169093220025301e-12 Iter 155: T = 599.845680327183 K, F = -1.9954048635639765e-8, relative_change = 6.762254804865255e-13 Iter 160: T = 599.845680325944 K, F = -8.344718582797839e-9, relative_change = 2.827953081739031e-13 Converged in 162 iterations to T = 599.8456803256819 K Iter 1: T = 964.5364871112199 K, F = -8080.395146218228, relative_change = 0.03546351288878005 Iter 2: T = 931.0110899611585 K, F = -6854.685284632634, relative_change = 0.03475803932567623 Iter 3: T = 899.3933517212836 K, F = -5813.795545047764, relative_change = 0.03396064620582986 Iter 5: T = 841.7684932202627 K, F = -4179.379558049366, relative_change = 0.03206607616605926 Iter 10: T = 729.076863176073 K, F = -1821.6315504798217, relative_change = 0.025512810753401307 Iter 15: T = 656.9527335513321 K, F = -785.9918042863937, relative_change = 0.017269273654210406 Iter 20: T = 616.5211528980242 K, F = -335.327446662427, relative_change = 0.009790762944901388 Iter 25: T = 596.4635330982748 K, F = -141.75590402650442, relative_change = 0.004819819786454146 Iter 30: T = 587.3193338896149 K, F = -59.58978511288261, relative_change = 0.0021782038044573823 Iter 35: T = 583.340439225513 K, F = -24.97829456476561, relative_change = 0.0009428547999471794 Iter 40: T = 581.6473582802577 K, F = -10.456509396625846, relative_change = 0.0004001844089188224 Iter 45: T = 580.9340484890978 K, F = -4.374859113918382, relative_change = 0.00016841138069023504 Iter 50: T = 580.6348045757132 K, F = -1.8299386813367564, relative_change = 7.06169004823391e-5 Iter 55: T = 580.5094937639834 K, F = -0.7653583646390942, relative_change = 2.956535678193749e-5 Iter 60: T = 580.4570586343929 K, F = -0.32009183885488934, relative_change = 1.2370283267791561e-5 Iter 65: T = 580.4351246208865 K, F = -0.13386794971596963, relative_change = 5.174397451541996e-6 Iter 70: T = 580.4259506768101 K, F = -0.05598547616194727, relative_change = 2.164169279978268e-6 Iter 75: T = 580.4221138703043 K, F = -0.023413847360848283, relative_change = 9.05111957071369e-7 Iter 80: T = 580.4205092451475 K, F = -0.00979195978813141, relative_change = 3.785339676653064e-7 Iter 85: T = 580.4198381670469 K, F = -0.0040951161333677155, relative_change = 1.5830835954890016e-7 Iter 90: T = 580.4195575133493 K, F = -0.0017126267540766293, relative_change = 6.620660984268338e-8 Iter 95: T = 580.4194401404776 K, F = -0.0007162410108648709, relative_change = 2.7688423470276655e-8 Iter 100: T = 580.4193910537158 K, F = -0.0002995405527988493, relative_change = 1.1579634349315071e-8 Iter 105: T = 580.4193705250414 K, F = -0.00012527143786489336, relative_change = 4.842742245069312e-9 Iter 110: T = 580.4193619397039 K, F = -5.2390011817338156e-5, relative_change = 2.025292801283833e-9 Iter 115: T = 580.4193583492131 K, F = -2.1910128357116587e-5, relative_change = 8.470016517359203e-10 Iter 120: T = 580.4193568476269 K, F = -9.163078041496409e-6, relative_change = 3.5422623752928635e-10 Iter 125: T = 580.4193562196455 K, F = -3.832107800083584e-6, relative_change = 1.4814161013090635e-10 Iter 130: T = 580.4193559570164 K, F = -1.6026332906315943e-6, relative_change = 6.195459236032652e-11 Iter 135: T = 580.4193558471817 K, F = -6.702404493075242e-7, relative_change = 2.5910153058966716e-11 Iter 140: T = 580.4193558012475 K, F = -2.803030531017825e-7, relative_change = 1.0835954498125126e-11 Iter 145: T = 580.4193557820373 K, F = -1.1722619946974433e-7, relative_change = 4.531730031428507e-12 Iter 150: T = 580.4193557740033 K, F = -4.90252998752716e-8, relative_change = 1.895219880574039e-12 Iter 155: T = 580.4193557706434 K, F = -2.050336972425626e-8, relative_change = 7.926191990687127e-13 Iter 160: T = 580.4193557692383 K, F = -8.57484333538494e-9, relative_change = 3.3148626533667863e-13 Converged in 163 iterations to T = 580.4193557688269 K Iter 1: T = 964.2922771398519 K, F = -8136.038620498092, relative_change = 0.0357077228601481 Iter 2: T = 930.5081424819522 K, F = -6902.342708511731, relative_change = 0.035035160457890936 Iter 3: T = 898.6165498136439 K, F = -5854.654075091954, relative_change = 0.03427330854219456 Iter 5: T = 840.3978900268207 K, F = -4209.506583405983, relative_change = 0.03245605597960191 Iter 10: T = 725.9933423032569 K, F = -1835.93522775568, relative_change = 0.02609073594263446 Iter 15: T = 652.087015699875 K, F = -792.8350433739756, relative_change = 0.017899337243708364 Iter 20: T = 610.2337319866191 K, F = -338.52291301597364, relative_change = 0.010277447219283455 Iter 25: T = 589.3020591554507 K, F = -143.18822497464785, relative_change = 0.005103651450915471 Iter 30: T = 579.7122422654688 K, F = -60.21066811156808, relative_change = 0.002317397037438766 Iter 35: T = 575.529027345527 K, F = -25.24229234475515, relative_change = 0.0010053486307398756 Iter 40: T = 573.7469761818397 K, F = -10.567718477326329, relative_change = 0.0004271301875925554 Iter 45: T = 572.9958106134429 K, F = -4.421511758125795, relative_change = 0.00017982697388895075 Iter 50: T = 572.6806192997905 K, F = -1.8494747594961336, relative_change = 7.541703684124711e-5 Iter 55: T = 572.5486186829451 K, F = -0.7735330446604909, relative_change = 3.157740567505497e-5 Iter 60: T = 572.4933822134257 K, F = -0.32351136891086335, relative_change = 1.3212548245402691e-5 Iter 65: T = 572.4702760183516 K, F = -0.13529817476389014, relative_change = 5.526783159673252e-6 Iter 70: T = 572.4606117440775 K, F = -0.05658363728202451, relative_change = 2.31156576467818e-6 Iter 75: T = 572.4565698564058 K, F = -0.023664009670181924, relative_change = 9.66759225935446e-7 Iter 80: T = 572.4548794604942 K, F = -0.009896581385755443, relative_change = 4.04316343633486e-7 Iter 85: T = 572.4541725114515 K, F = -0.0041388702628361584, relative_change = 1.6909098859102065e-7 Iter 90: T = 572.4538768559947 K, F = -0.0017309252764415306, relative_change = 7.071605710098466e-8 Iter 95: T = 572.4537532091902 K, F = -0.0007238936754342951, relative_change = 2.9574332193761087e-8 Iter 100: T = 572.4537014985915 K, F = -0.00030274098910060276, relative_change = 1.2368344598993135e-8 Iter 105: T = 572.4536798725967 K, F = -0.0001266098985514552, relative_change = 5.172590408805575e-9 Iter 110: T = 572.4536708283466 K, F = -5.294977251668609e-5, relative_change = 2.1632392822601496e-9 Iter 115: T = 572.4536670459329 K, F = -2.2144227009968098e-5, relative_change = 9.046925222397683e-10 Iter 120: T = 572.4536654640823 K, F = -9.260979733138885e-6, relative_change = 3.783532032812091e-10 Iter 125: T = 572.4536648025335 K, F = -3.8730521583763e-6, relative_change = 1.5823182221375426e-10 Iter 130: T = 572.4536645258659 K, F = -1.6197566045095257e-6, relative_change = 6.617443535061483e-11 Iter 135: T = 572.4536644101602 K, F = -6.774009825849525e-7, relative_change = 2.767491575391396e-11 Iter 140: T = 572.4536643617707 K, F = -2.83297184544562e-7, relative_change = 1.1573980434496545e-11 Iter 145: T = 572.4536643415337 K, F = -1.1847838476963801e-7, relative_change = 4.840381699062162e-12 Iter 150: T = 572.4536643330703 K, F = -4.954870558293578e-8, relative_change = 2.0242903226530513e-12 Iter 155: T = 572.4536643295309 K, F = -2.072249327689235e-8, relative_change = 8.466082435327553e-13 Iter 160: T = 572.4536643280505 K, F = -8.666139528212824e-9, relative_change = 3.5405127492364333e-13 Converged in 163 iterations to T = 572.4536643276172 K Iter 1: T = 980.137643760058 K, F = -4525.656763249239, relative_change = 0.019862356239941918 Iter 2: T = 962.3191859700877 K, F = -3822.8380999742585, relative_change = 0.0181795464171891 Iter 3: T = 946.4237559163097 K, F = -3227.6598299324205, relative_change = 0.01651783554305241 Iter 5: T = 919.8788470109029 K, F = -2297.7082745501625, relative_change = 0.013346485229825518 Iter 10: T = 877.731243741442 K, F = -975.4611849846613, relative_change = 0.007012362313418579 Iter 15: T = 857.777553304559 K, F = -411.054717069021, relative_change = 0.0032885042440143506 Iter 20: T = 848.9216979107068 K, F = -172.50719684408008, relative_change = 0.0014492198816179796 Iter 25: T = 845.118548923445 K, F = -72.25413454556957, relative_change = 0.0006200554211817292 Iter 30: T = 843.5097689769916 K, F = -30.237077433040696, relative_change = 0.0002618422626178613 Iter 35: T = 842.8336986358398 K, F = -12.64895170838688, relative_change = 0.00010995400806984146 Iter 40: T = 842.5503829209393 K, F = -5.29054724351973, relative_change = 4.606298552879539e-5 Iter 45: T = 842.4317959663242 K, F = -2.2126759335690975, relative_change = 1.927792623796322e-5 Iter 50: T = 842.3821838043592 K, F = -0.9253860323472982, relative_change = 8.064681390660986e-6 Iter 55: T = 842.3614323112757 K, F = -0.38701073219348425, relative_change = 3.3731699391749018e-6 Iter 60: T = 842.352753247676 K, F = -0.16185307715192843, relative_change = 1.4107741013444234e-6 Iter 65: T = 842.3491234649329 K, F = -0.06768898897302855, relative_change = 5.900155469778553e-7 Iter 70: T = 842.3476054298781 K, F = -0.028308360905520358, relative_change = 2.467538164366534e-7 Iter 75: T = 842.3469705665922 K, F = -0.01183889763582946, relative_change = 1.0319578964352486e-7 Iter 80: T = 842.3467050586775 K, F = -0.004951168906659031, relative_change = 4.3157781028104925e-8 Iter 85: T = 842.3465940200081 K, F = -0.0020706380581319017, relative_change = 1.804911156827218e-8 Iter 90: T = 842.346547582295 K, F = -0.0008659655804508226, relative_change = 7.548356129690126e-9 Iter 95: T = 842.3465281614862 K, F = -0.00036215714971366, relative_change = 3.156813045178068e-9 Iter 100: T = 842.3465200394714 K, F = -0.00015145844604558256, relative_change = 1.3202169848295327e-9 Iter 105: T = 842.3465166427478 K, F = -6.334173074895588e-5, relative_change = 5.521305187805603e-10 Iter 110: T = 842.3465152221975 K, F = -2.6490267932555156e-5, relative_change = 2.3090757579149044e-10 Iter 115: T = 842.3465146281062 K, F = -1.10785440079475e-5, relative_change = 9.656828520111031e-11 Iter 120: T = 842.3465143796503 K, F = -4.6331795238163664e-6, relative_change = 4.038601118984772e-11 Iter 125: T = 842.3465142757431 K, F = -1.9376542796933904e-6, relative_change = 1.6889940712518765e-11 Iter 130: T = 842.3465142322877 K, F = -8.103502566747522e-7, relative_change = 7.0635757567333185e-12 Iter 135: T = 842.3465142141141 K, F = -3.3889518236129845e-7, relative_change = 2.954045827380648e-12 Iter 140: T = 842.3465142065138 K, F = -1.4172997531147757e-7, relative_change = 1.2354169194275086e-12 Iter 145: T = 842.3465142033353 K, F = -5.9274132269138136e-8, relative_change = 5.166745124315474e-13 Converged in 150 iterations to T = 842.346514202006 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00109678160521295 Iteration 10: d = 1.3680033260136234e-5 Iteration 20: d = 1.764412554018477e-7 Iteration 30: d = 2.4660340618553457e-9 Iteration 40: d = 3.473794635679254e-11 Iteration 50: d = 4.8894536041998e-13 Iteration 60: d = 6.8575262208165546e-15 Converged after 63 iterations. d = 1.9049873131686676e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.856338249221 Iteration 2: convergence error = 4825.971158461207 Iteration 3: convergence error = 1101.9141460578244 Iteration 4: convergence error = 319.3682395479891 Iteration 5: convergence error = 94.79991822800389 Iteration 6: convergence error = 28.504243094042295 Iteration 7: convergence error = 8.592779662694056 Iteration 8: convergence error = 2.580125389220484 Iteration 9: convergence error = 0.7729034483852502 Iteration 10: convergence error = 0.23121684956527133 Iteration 11: convergence error = 0.06911579587858796 Iteration 12: convergence error = 0.020651134381068914 Iteration 13: convergence error = 0.006168812778923893 Iteration 14: convergence error = 0.0018424554409648408 Iteration 15: convergence error = 0.0005502456833710312 Iteration 16: convergence error = 0.00016432199004157155 Iteration 17: convergence error = 4.9070759587266366e-5 Iteration 18: convergence error = 1.4653553989774082e-5 Iteration 19: convergence error = 4.375820026325528e-6 Iteration 20: convergence error = 1.3066892279312015e-6 Iteration 21: convergence error = 3.901968739228323e-7 Iteration 22: convergence error = 1.1639622243819758e-7 Iteration 23: convergence error = 3.384161573194433e-8 Iteration 24: convergence error = 9.78275238594506e-9 Iteration 25: convergence error = 2.8194335754960775e-9 Iteration 26: convergence error = 8.071765478234738e-10 Iteration 27: convergence error = 2.3283064365386963e-10 Iteration 28: convergence error = 6.889422365929931e-11 Iteration 29: convergence error = 1.9099388737231493e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 91%|█████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013887568583115073 Iteration 10: d = 1.2120178468519498e-5 Iteration 20: d = 1.3579399427164808e-7 Iteration 30: d = 1.7651617092056466e-9 Iteration 40: d = 2.32486946859648e-11 Iteration 50: d = 3.069737763637358e-13 Iteration 60: d = 4.041730210347539e-15 Converged after 62 iterations. d = 1.6902072254164618e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12272.608197297059 Iteration 2: convergence error = 8303.642481183564 Iteration 3: convergence error = 1956.1058853223099 Iteration 4: convergence error = 482.0366647668063 Iteration 5: convergence error = 123.01709678787438 Iteration 6: convergence error = 32.87783333535094 Iteration 7: convergence error = 8.966180873481107 Iteration 8: convergence error = 2.4593761631704183 Iteration 9: convergence error = 0.6754553813702842 Iteration 10: convergence error = 0.18554232048109043 Iteration 11: convergence error = 0.050965268865184044 Iteration 12: convergence error = 0.013998649508721428 Iteration 13: convergence error = 0.0038449094276984397 Iteration 14: convergence error = 0.0010560395862739824 Iteration 15: convergence error = 0.0002900491879245237 Iteration 16: convergence error = 7.966398879943881e-5 Iteration 17: convergence error = 2.1880239046367933e-5 Iteration 18: convergence error = 6.00954626861494e-6 Iteration 19: convergence error = 1.6505618987139314e-6 Iteration 20: convergence error = 4.533376340987161e-7 Iteration 21: convergence error = 1.253577011084417e-7 Iteration 22: convergence error = 3.3777951102820225e-8 Iteration 23: convergence error = 9.047880666912533e-9 Iteration 24: convergence error = 2.418119038338773e-9 Iteration 25: convergence error = 6.45741238258779e-10 Iteration 26: convergence error = 1.7348611436318606e-10 Iteration 27: convergence error = 4.5929482439532876e-11 Iteration 28: convergence error = 1.1596057447604835e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 94%|███████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013887568583115073 Iteration 10: d = 1.2120178468519498e-5 Iteration 20: d = 1.3579399427164808e-7 Iteration 30: d = 1.7651617092056466e-9 Iteration 40: d = 2.32486946859648e-11 Iteration 50: d = 3.069737763637358e-13 Iteration 60: d = 4.041730210347539e-15 Converged after 62 iterations. d = 1.6902072254164618e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.102752441866 Iteration 2: convergence error = 5738.360033505465 Iteration 3: convergence error = 2030.9147651955536 Iteration 4: convergence error = 904.6711214836132 Iteration 5: convergence error = 411.6408643640448 Iteration 6: convergence error = 194.3779598238416 Iteration 7: convergence error = 91.85823435447082 Iteration 8: convergence error = 43.429399108501 Iteration 9: convergence error = 20.532821065619828 Iteration 10: convergence error = 9.705557307550862 Iteration 11: convergence error = 4.5864977597907455 Iteration 12: convergence error = 2.1669291975376836 Iteration 13: convergence error = 1.0236077401168586 Iteration 14: convergence error = 0.4834691160640432 Iteration 15: convergence error = 0.2283320428332445 Iteration 16: convergence error = 0.10774522178144252 Iteration 17: convergence error = 0.05041434930944888 Iteration 18: convergence error = 0.023048001447023125 Iteration 19: convergence error = 0.010496702566797467 Iteration 20: convergence error = 0.004770041886331455 Iteration 21: convergence error = 0.0021649284813065606 Iteration 22: convergence error = 0.0009818524522415828 Iteration 23: convergence error = 0.0004451043141671107 Iteration 24: convergence error = 0.0002017281431108131 Iteration 25: convergence error = 9.14123543225287e-5 Iteration 26: convergence error = 4.1419354147365084e-5 Iteration 27: convergence error = 1.8766243556456175e-5 Iteration 28: convergence error = 8.50230844662292e-6 Iteration 29: convergence error = 3.852002464554971e-6 Iteration 30: convergence error = 1.7451461644668598e-6 Iteration 31: convergence error = 7.906292012194172e-7 Iteration 32: convergence error = 3.581899363780394e-7 Iteration 33: convergence error = 1.6226977095357142e-7 Iteration 34: convergence error = 7.351900421781465e-8 Iteration 35: convergence error = 3.330706022097729e-8 Iteration 36: convergence error = 1.50844243762549e-8 Iteration 37: convergence error = 6.834397936472669e-9 Iteration 38: convergence error = 3.09819370158948e-9 Iteration 39: convergence error = 1.4024408301338553e-9 Iteration 40: convergence error = 6.357367965392768e-10 Iteration 41: convergence error = 2.9194779926910996e-10 Iteration 42: convergence error = 1.3233147910796106e-10 Iteration 43: convergence error = 6.002665031701326e-11 Iteration 44: convergence error = 2.7284841053187847e-11 Iteration 45: convergence error = 1.3642420526593924e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 72%|███████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013887568583115073 Iteration 10: d = 1.2120178468519498e-5 Iteration 20: d = 1.3579399427164808e-7 Iteration 30: d = 1.7651617092056466e-9 Iteration 40: d = 2.32486946859648e-11 Iteration 50: d = 3.069737763637358e-13 Iteration 60: d = 4.041730210347539e-15 Converged after 62 iterations. d = 1.6902072254164618e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.818604919692 Iteration 2: convergence error = 7355.976028411557 Iteration 3: convergence error = 1747.5233033391855 Iteration 4: convergence error = 506.76998123753947 Iteration 5: convergence error = 157.65886720475964 Iteration 6: convergence error = 49.03801797845608 Iteration 7: convergence error = 15.225663885684753 Iteration 8: convergence error = 4.719371888471414 Iteration 9: convergence error = 1.461111679476744 Iteration 10: convergence error = 0.4520332076763225 Iteration 11: convergence error = 0.13978966718468655 Iteration 12: convergence error = 0.04321910547423613 Iteration 13: convergence error = 0.0133603416115875 Iteration 14: convergence error = 0.004129771724365128 Iteration 15: convergence error = 0.0012764849002451228 Iteration 16: convergence error = 0.0003945432640648505 Iteration 17: convergence error = 0.00012194598502901499 Iteration 18: convergence error = 3.769092518268735e-5 Iteration 19: convergence error = 1.1649423413473414e-5 Iteration 20: convergence error = 3.600568561523687e-6 Iteration 21: convergence error = 1.11284998638439e-6 Iteration 22: convergence error = 3.43804458680097e-7 Iteration 23: convergence error = 1.0506300895940512e-7 Iteration 24: convergence error = 3.1305262382375076e-8 Iteration 25: convergence error = 9.305040293838829e-9 Iteration 26: convergence error = 2.760316419880837e-9 Iteration 27: convergence error = 8.158167474903166e-10 Iteration 28: convergence error = 2.482920535840094e-10 Iteration 29: convergence error = 7.366907084360719e-11 Iteration 30: convergence error = 2.2737367544323206e-11 Iteration 31: convergence error = 6.821210263296962e-12 Converged after 31 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 62%|████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013887568583115073 Iteration 10: d = 1.2120178468519498e-5 Iteration 20: d = 1.3579399427164808e-7 Iteration 30: d = 1.7651617092056466e-9 Iteration 40: d = 2.32486946859648e-11 Iteration 50: d = 3.069737763637358e-13 Iteration 60: d = 4.041730210347539e-15 Converged after 62 iterations. d = 1.6902072254164618e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.751897974622 Iteration 2: convergence error = 5523.629407655182 Iteration 3: convergence error = 945.9769964168418 Iteration 4: convergence error = 172.60054520377048 Iteration 5: convergence error = 31.357213162330027 Iteration 6: convergence error = 5.711512767781869 Iteration 7: convergence error = 1.0416998765761036 Iteration 8: convergence error = 0.19015033979371765 Iteration 9: convergence error = 0.03472875921465857 Iteration 10: convergence error = 0.0063449682229475 Iteration 11: convergence error = 0.0011596764215937583 Iteration 12: convergence error = 0.00021200406717980513 Iteration 13: convergence error = 3.875428501487477e-5 Iteration 14: convergence error = 7.084001026669284e-6 Iteration 15: convergence error = 1.2948762559972238e-6 Iteration 16: convergence error = 2.367050910834223e-7 Iteration 17: convergence error = 4.3246927816653624e-8 Iteration 18: convergence error = 7.909193300292827e-9 Iteration 19: convergence error = 1.4483703125733882e-9 Iteration 20: convergence error = 2.660272002685815e-10 Iteration 21: convergence error = 4.729372449219227e-11 Iteration 22: convergence error = 8.640199666842818e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 66%|█████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013887568583115073 Iteration 10: d = 1.2120178468519498e-5 Iteration 20: d = 1.3579399427164808e-7 Iteration 30: d = 1.7651617092056466e-9 Iteration 40: d = 2.32486946859648e-11 Iteration 50: d = 3.069737763637358e-13 Iteration 60: d = 4.041730210347539e-15 Converged after 62 iterations. d = 1.6902072254164618e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.490928691755 Iteration 2: convergence error = 2715.7533785032847 Iteration 3: convergence error = 206.68321689919878 Iteration 4: convergence error = 19.38392187146864 Iteration 5: convergence error = 1.6048657639908537 Iteration 6: convergence error = 0.13092412737556033 Iteration 7: convergence error = 0.010693356084882207 Iteration 8: convergence error = 0.0008753436964537227 Iteration 9: convergence error = 7.17636060843994e-5 Iteration 10: convergence error = 5.890467435239117e-6 Iteration 11: convergence error = 4.836116696303474e-7 Iteration 12: convergence error = 3.9709597898579425e-8 Iteration 13: convergence error = 3.261745067294247e-9 Iteration 14: convergence error = 2.669899481838923e-10 Iteration 15: convergence error = 2.2396307031158358e-11 Iteration 16: convergence error = 4.320099833421409e-12 Converged after 16 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 67%|██████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00109678160521295 Iteration 10: d = 1.3680033260136234e-5 Iteration 20: d = 1.764412554018477e-7 Iteration 30: d = 2.4660340618553457e-9 Iteration 40: d = 3.473794635679254e-11 Iteration 50: d = 4.8894536041998e-13 Iteration 60: d = 6.8575262208165546e-15 Converged after 63 iterations. d = 1.9049873131686676e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.391389295395 Iteration 2: convergence error = 3610.532774453634 Iteration 3: convergence error = 595.8541525273181 Iteration 4: convergence error = 104.59283083739888 Iteration 5: convergence error = 18.629051428282082 Iteration 6: convergence error = 3.289459893600224 Iteration 7: convergence error = 0.5787822899251296 Iteration 8: convergence error = 0.10168681699519766 Iteration 9: convergence error = 0.017854645744591835 Iteration 10: convergence error = 0.0031342313486675266 Iteration 11: convergence error = 0.0005501330242623226 Iteration 12: convergence error = 9.655773442318605e-5 Iteration 13: convergence error = 1.6947257790889125e-5 Iteration 14: convergence error = 2.974463995997212e-6 Iteration 15: convergence error = 5.220597358857049e-7 Iteration 16: convergence error = 9.161863090412226e-8 Iteration 17: convergence error = 1.609873834240716e-8 Iteration 18: convergence error = 2.803062670864165e-9 Iteration 19: convergence error = 4.988578439224511e-10 Iteration 20: convergence error = 8.708411769475788e-11 Iteration 21: convergence error = 1.4551915228366852e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 8m28.7s Testing RayTraceHeatTransfer tests passed Testing completed after 519.89s PkgEval succeeded after 615.06s