Package evaluation of IterativeLQR on Julia 1.11.5 (2d89891cf8*) started at 2025-05-05T11:25:04.345 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.31s ################################################################################ # Installation # Installing IterativeLQR... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [605048dd] + IterativeLQR v0.2.3 Updating `~/.julia/environments/v1.11/Manifest.toml` ⌅ [47edcb42] + ADTypes v0.2.7 ⌅ [c3fe647b] + AbstractAlgebra v0.27.10 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 ⌅ [79e6a3ab] + Adapt v3.7.2 [66dad0bd] + AliasTables v1.1.3 [dce04be8] + ArgCheck v2.5.0 ⌃ [4fba245c] + ArrayInterface v7.7.1 [30b0a656] + ArrayInterfaceCore v0.1.29 ⌅ [15f4f7f2] + AutoHashEquals v0.2.0 [198e06fe] + BangBang v0.4.4 [9718e550] + Baselet v0.1.1 [e2ed5e7c] + Bijections v0.1.9 [d360d2e6] + ChainRulesCore v1.25.1 [861a8166] + Combinatorics v1.0.3 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.16.0 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 ⌅ [187b0558] + ConstructionBase v1.5.6 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [244e2a9f] + DefineSingletons v0.1.2 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [31c24e10] + Distributions v0.25.119 [ffbed154] + DocStringExtensions v0.9.4 ⌅ [5b8099bc] + DomainSets v0.5.14 ⌅ [7c1d4256] + DynamicPolynomials v0.4.6 [4e289a0a] + EnumX v1.0.5 [e2ba6199] + ExprTools v0.1.10 [5789e2e9] + FileIO v1.17.0 [1a297f60] + FillArrays v1.13.0 [59287772] + Formatting v0.4.3 ⌅ [f6369f11] + ForwardDiff v0.10.38 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 ⌅ [46192b85] + GPUArraysCore v0.1.5 ⌅ [0b43b601] + Groebner v0.2.11 ⌅ [d5909c97] + GroupsCore v0.4.2 [34004b35] + HypergeometricFunctions v0.3.28 [615f187c] + IfElse v0.1.1 [22cec73e] + InitialValues v0.3.1 [18e54dd8] + IntegerMathUtils v0.1.2 [8197267c] + IntervalSets v0.7.11 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.4 [605048dd] + IterativeLQR v0.2.3 [82899510] + IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] + JLD2 v0.4.54 [692b3bcd] + JLLWrappers v1.7.0 [b964fa9f] + LaTeXStrings v1.4.0 ⌃ [2ee39098] + LabelledArrays v1.15.1 ⌅ [984bce1d] + LambertW v0.4.6 ⌅ [23fbe1c1] + Latexify v0.15.21 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 ⌅ [e9d8d322] + Metatheory v1.3.5 [128add7d] + MicroCollections v0.2.0 [e1d29d7a] + Missings v1.2.0 ⌅ [102ac46a] + MultivariatePolynomials v0.4.7 [d8a4904e] + MutableArithmetics v1.6.4 [77ba4419] + NaNMath v1.1.3 [bac558e1] + OrderedCollections v1.8.0 [90014a1f] + PDMats v0.11.34 [d96e819e] + Parameters v0.12.3 ⌃ [d236fae5] + PreallocationTools v0.4.24 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [27ebfcd6] + Primes v0.5.7 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [fb686558] + RandomExtensions v0.4.4 [3cdcf5f2] + RecipesBase v1.3.4 ⌅ [731186ca] + RecursiveArrayTools v2.38.10 [189a3867] + Reexport v1.2.2 [42d2dcc6] + Referenceables v0.1.3 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.8.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.14 ⌅ [0bca4576] + SciMLBase v1.98.1 [c0aeaf25] + SciMLOperators v0.3.14 [6c6a2e73] + Scratch v1.2.1 [efcf1570] + Setfield v1.1.2 [66db9d55] + SnoopPrecompile v1.0.3 [a2af1166] + SortingAlgorithms v1.2.1 [276daf66] + SpecialFunctions v2.5.1 [171d559e] + SplittablesBase v0.1.15 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.0 [2913bbd2] + StatsBase v0.34.5 [4c63d2b9] + StatsFuns v1.5.0 ⌅ [2efcf032] + SymbolicIndexingInterface v0.2.2 ⌅ [d1185830] + SymbolicUtils v0.19.11 ⌅ [0c5d862f] + Symbolics v4.14.0 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.0 ⌅ [8ea1fca8] + TermInterface v0.2.3 [ac1d9e8a] + ThreadsX v0.1.12 [a759f4b9] + TimerOutputs v0.5.28 [3bb67fe8] + TranscodingStreams v0.11.3 [28d57a85] + Transducers v0.4.84 [a2a6695c] + TreeViews v0.3.0 [781d530d] + TruncatedStacktraces v1.4.0 [3a884ed6] + UnPack v1.0.2 [700de1a5] + ZygoteRules v0.2.7 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.6.0+0 [e37daf67] + LibGit2_jll v1.7.2+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.6+0 [14a3606d] + MozillaCACerts_jll v2023.12.12 [4536629a] + OpenBLAS_jll v0.3.27+1 [05823500] + OpenLibm_jll v0.8.5+0 [bea87d4a] + SuiteSparse_jll v7.7.0+0 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.59.0+0 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 6.76s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 191.08s ################################################################################ # Testing # Testing IterativeLQR Status `/tmp/jl_xhcj4R/Project.toml` [6e4b80f9] BenchmarkTools v1.6.0 ⌅ [f6369f11] ForwardDiff v0.10.38 [605048dd] IterativeLQR v0.2.3 ⌅ [0c5d862f] Symbolics v4.14.0 [37e2e46d] LinearAlgebra v1.11.0 [2f01184e] SparseArrays v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_xhcj4R/Manifest.toml` ⌅ [47edcb42] ADTypes v0.2.7 ⌅ [c3fe647b] AbstractAlgebra v0.27.10 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.42 ⌅ [79e6a3ab] Adapt v3.7.2 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.5.0 ⌃ [4fba245c] ArrayInterface v7.7.1 [30b0a656] ArrayInterfaceCore v0.1.29 ⌅ [15f4f7f2] AutoHashEquals v0.2.0 [198e06fe] BangBang v0.4.4 [9718e550] Baselet v0.1.1 [6e4b80f9] BenchmarkTools v1.6.0 [e2ed5e7c] Bijections v0.1.9 [d360d2e6] ChainRulesCore v1.25.1 [861a8166] Combinatorics v1.0.3 [38540f10] CommonSolve v0.2.4 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.16.0 [b152e2b5] CompositeTypes v0.1.4 [a33af91c] CompositionsBase v0.1.2 ⌅ [187b0558] ConstructionBase v1.5.6 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [31c24e10] Distributions v0.25.119 [ffbed154] DocStringExtensions v0.9.4 ⌅ [5b8099bc] DomainSets v0.5.14 ⌅ [7c1d4256] DynamicPolynomials v0.4.6 [4e289a0a] EnumX v1.0.5 [e2ba6199] ExprTools v0.1.10 [5789e2e9] FileIO v1.17.0 [1a297f60] FillArrays v1.13.0 [59287772] Formatting v0.4.3 ⌅ [f6369f11] ForwardDiff v0.10.38 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 ⌅ [46192b85] GPUArraysCore v0.1.5 ⌅ [0b43b601] Groebner v0.2.11 ⌅ [d5909c97] GroupsCore v0.4.2 [34004b35] HypergeometricFunctions v0.3.28 [615f187c] IfElse v0.1.1 [22cec73e] InitialValues v0.3.1 [18e54dd8] IntegerMathUtils v0.1.2 [8197267c] IntervalSets v0.7.11 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.4 [605048dd] IterativeLQR v0.2.3 [82899510] IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] JLD2 v0.4.54 [692b3bcd] JLLWrappers v1.7.0 [682c06a0] JSON v0.21.4 [b964fa9f] LaTeXStrings v1.4.0 ⌃ [2ee39098] LabelledArrays v1.15.1 ⌅ [984bce1d] LambertW v0.4.6 ⌅ [23fbe1c1] Latexify v0.15.21 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 ⌅ [e9d8d322] Metatheory v1.3.5 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 ⌅ [102ac46a] MultivariatePolynomials v0.4.7 [d8a4904e] MutableArithmetics v1.6.4 [77ba4419] NaNMath v1.1.3 [bac558e1] OrderedCollections v1.8.0 [90014a1f] PDMats v0.11.34 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.3 ⌃ [d236fae5] PreallocationTools v0.4.24 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [27ebfcd6] Primes v0.5.7 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [fb686558] RandomExtensions v0.4.4 [3cdcf5f2] RecipesBase v1.3.4 ⌅ [731186ca] RecursiveArrayTools v2.38.10 [189a3867] Reexport v1.2.2 [42d2dcc6] Referenceables v0.1.3 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.8.0 [7e49a35a] RuntimeGeneratedFunctions v0.5.14 ⌅ [0bca4576] SciMLBase v1.98.1 [c0aeaf25] SciMLOperators v0.3.14 [6c6a2e73] Scratch v1.2.1 [efcf1570] Setfield v1.1.2 [66db9d55] SnoopPrecompile v1.0.3 [a2af1166] SortingAlgorithms v1.2.1 [276daf66] SpecialFunctions v2.5.1 [171d559e] SplittablesBase v0.1.15 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.0 [2913bbd2] StatsBase v0.34.5 [4c63d2b9] StatsFuns v1.5.0 ⌅ [2efcf032] SymbolicIndexingInterface v0.2.2 ⌅ [d1185830] SymbolicUtils v0.19.11 ⌅ [0c5d862f] Symbolics v4.14.0 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.0 ⌅ [8ea1fca8] TermInterface v0.2.3 [ac1d9e8a] ThreadsX v0.1.12 [a759f4b9] TimerOutputs v0.5.28 [3bb67fe8] TranscodingStreams v0.11.3 [28d57a85] Transducers v0.4.84 [a2a6695c] TreeViews v0.3.0 [781d530d] TruncatedStacktraces v1.4.0 [3a884ed6] UnPack v1.0.2 [700de1a5] ZygoteRules v0.2.7 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [9abbd945] Profile v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [05823500] OpenLibm_jll v0.8.5+0 [bea87d4a] SuiteSparse_jll v7.7.0+0 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... Precompiling Symbolics... 3165.0 ms ? DomainSets 5969.7 ms ? SciMLBase Info Given Symbolics was explicitly requested, output will be shown live  WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/CFJJK/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 5252.3 ms ? Symbolics WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/CFJJK/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. Precompiling DomainSets... Info Given DomainSets was explicitly requested, output will be shown live  WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/CFJJK/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 2952.5 ms ? DomainSets WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/CFJJK/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/CFJJK/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. WARNING: Wrapping `Vararg` directly in UnionAll is deprecated (wrap the tuple instead). You may need to write `f(x::Vararg{T})` rather than `f(x::Vararg{<:T})` or `f(x::Vararg{T}) where T` instead of `f(x::Vararg{T} where T)`. Precompiling IntervalSetsRecipesBaseExt... 1339.2 ms ✓ IntervalSets → IntervalSetsRecipesBaseExt 1 dependency successfully precompiled in 1 seconds. 9 already precompiled. Precompiling ArrayInterfaceCore... 1983.4 ms ✓ ArrayInterfaceCore 1 dependency successfully precompiled in 2 seconds. 10 already precompiled. Precompiling SciMLBase... Info Given SciMLBase was explicitly requested, output will be shown live  WARNING: Method definition islinear(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/xgbzR/src/interface.jl:311 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:7. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 5720.7 ms ? SciMLBase WARNING: Method definition islinear(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/xgbzR/src/interface.jl:311 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:7. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. WARNING: Method definition islinear(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/xgbzR/src/interface.jl:311 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:7. WARNING: Method definition isconstant(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/xgbzR/src/interface.jl:254 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:8. Precompiling Groebner... 4105.3 ms ✓ Groebner 1 dependency successfully precompiled in 4 seconds. 28 already precompiled. WARNING: Code.get_symbolify is deprecated, use get_rewrites instead. likely near /home/pkgeval/.julia/packages/Symbolics/UrqtQ/src/build_function.jl:130 Precompiling Distributions... 1514.0 ms ✓ PDMats 1129.9 ms ✓ FillArrays → FillArraysPDMatsExt 9415.0 ms ✓ Distributions 3 dependencies successfully precompiled in 12 seconds. 43 already precompiled. Precompiling DistributionsTestExt... 3020.6 ms ✓ Distributions → DistributionsTestExt 1 dependency successfully precompiled in 3 seconds. 48 already precompiled. Precompiling DistributionsChainRulesCoreExt... 3146.9 ms ✓ Distributions → DistributionsChainRulesCoreExt 1 dependency successfully precompiled in 4 seconds. 51 already precompiled. Precompiling IterativeLQR... 2782.8 ms ? DomainSets 56318.9 ms ✓ JLD2 5651.9 ms ? SciMLBase 3381.3 ms ? Symbolics Info Given IterativeLQR was explicitly requested, output will be shown live  ┌ Warning: Module Symbolics with build ID ffffffff-ffff-ffff-002e-a6d0d1c15eec is missing from the cache. │ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. └ @ Base loading.jl:2541 1798.1 ms ? IterativeLQR 1 dependency successfully precompiled in 71 seconds. 180 already precompiled. 3 dependencies precompiled but different versions are currently loaded. Restart julia to access the new versions. Otherwise, loading dependents of these packages may trigger further precompilation to work with the unexpected versions. 4 dependencies failed but may be precompilable after restarting julia 4 dependencies had output during precompilation: ┌ DomainSets │ WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/CFJJK/src/IntervalSets.jl:297 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ ┌ SciMLBase │ WARNING: Method definition islinear(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/xgbzR/src/interface.jl:311 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:7. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ ┌ Symbolics │ ┌ Warning: Module DomainSets with build ID ffffffff-ffff-ffff-002e-a6d2b45897bb is missing from the cache. │ │ This may mean DomainSets [5b8099bc-c8ec-5219-889f-1d9e522a28bf] does not support precompilation but is imported by a module that does. │ └ @ Base loading.jl:2541 └ ┌ IterativeLQR │ [Output was shown above] └ ┌ Warning: Module Symbolics with build ID ffffffff-ffff-ffff-002e-a6d0d1c15eec is missing from the cache. │ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. └ @ Base loading.jl:2541 Test Summary: | Pass Total Time Objective | 7 7 39.4s Test Summary: | Pass Total Time Dynamics | 4 4 22.4s Test Summary: | Pass Total Time Constraints | 12 12 19.2s ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University al iter: 1 ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University iter: 1 cost: 10.72482553608395 gradient_norm: 5.436456522493843 max_violation: 3.070427809429664 step_size: 1.0 iter: 2 cost: 6.389874139157744 gradient_norm: 2.9011228917809233 max_violation: 3.084603472198682 step_size: 1.0 iter: 3 cost: 5.550082252967063 gradient_norm: 1.9799548812868017 max_violation: 3.0919152100561083 step_size: 1.0 iter: 4 cost: 5.256895017178709 gradient_norm: 1.5020746436765122 max_violation: 3.09564936757914 step_size: 1.0 iter: 5 cost: 5.121324372463508 gradient_norm: 1.2098779888531725 max_violation: 3.097902912314023 step_size: 1.0 iter: 6 cost: 5.047705968472647 gradient_norm: 1.0128181948911448 max_violation: 3.0994095278310785 step_size: 1.0 iter: 7 cost: 5.003320931508239 gradient_norm: 0.8709562751903054 max_violation: 3.1004875709885984 step_size: 1.0 iter: 8 cost: 4.974513521750275 gradient_norm: 0.763955595264508 max_violation: 3.1012971063733965 step_size: 1.0 iter: 9 cost: 4.954762562503548 gradient_norm: 0.6803742136011998 max_violation: 3.101927342622189 step_size: 1.0 iter: 10 cost: 4.9406340612402335 gradient_norm: 0.6132825937219559 max_violation: 3.1024319174914847 step_size: 1.0 iter: 11 cost: 4.930179928350032 gradient_norm: 0.558239211336228 max_violation: 3.102845015759252 step_size: 1.0 iter: 12 cost: 4.922228196772624 gradient_norm: 0.5122660645267778 max_violation: 3.1031894536521847 step_size: 1.0 iter: 13 cost: 4.916039486793402 gradient_norm: 0.4732918175307759 max_violation: 3.1034810416273553 step_size: 1.0 iter: 14 cost: 4.911128630125446 gradient_norm: 0.43983118885289435 max_violation: 3.1037310814953796 step_size: 1.0 iter: 15 cost: 4.90716656390583 gradient_norm: 0.4107913886132933 max_violation: 3.103947866616659 step_size: 1.0 iter: 16 cost: 4.903923716094275 gradient_norm: 0.38535051260380704 max_violation: 3.1041376204946656 step_size: 1.0 iter: 17 cost: 4.901235974704204 gradient_norm: 0.3628785081021908 max_violation: 3.1043051046223624 step_size: 1.0 iter: 18 cost: 4.8989835021952945 gradient_norm: 0.3428842837015586 max_violation: 3.104454024008072 step_size: 1.0 iter: 19 cost: 4.89707713836843 gradient_norm: 0.32497940123476915 max_violation: 3.104587304814845 step_size: 1.0 iter: 20 cost: 4.895449437038501 gradient_norm: 0.3088525859772665 max_violation: 3.1047072888150002 step_size: 1.0 iter: 21 cost: 4.894048615786932 gradient_norm: 0.29425147255876655 max_violation: 3.104815872354074 step_size: 1.0 iter: 22 cost: 4.892834384944183 gradient_norm: 0.28096929859932773 max_violation: 3.1049146074597824 step_size: 1.0 iter: 23 cost: 4.891775017144299 gradient_norm: 0.2688350491534983 max_violation: 3.105004776604369 step_size: 1.0 iter: 24 cost: 4.8908452529951285 gradient_norm: 0.2577060511725225 max_violation: 3.1050874487966564 step_size: 1.0 al iter: 2 iter: 1 cost: 56.195709972042756 gradient_norm: 6.3717067156339855 max_violation: 2.9379394280537148 step_size: 1.0 iter: 2 cost: 55.76669428935711 gradient_norm: 3.019957867889395 max_violation: 2.940728887423169 step_size: 1.0 iter: 3 cost: 55.687997965816145 gradient_norm: 1.9777497447466095 max_violation: 2.94149505765583 step_size: 1.0 iter: 4 cost: 55.66044432359877 gradient_norm: 1.4700687153921406 max_violation: 2.9418386270155716 step_size: 1.0 iter: 5 cost: 55.6476765319547 gradient_norm: 1.1697373011688499 max_violation: 2.9420291221932433 step_size: 1.0 iter: 6 cost: 55.6407329684046 gradient_norm: 0.9712989141296156 max_violation: 2.9421483442162137 step_size: 1.0 iter: 7 cost: 55.636541775961796 gradient_norm: 0.830430510532107 max_violation: 2.942229080960876 step_size: 1.0 iter: 8 cost: 55.63381890993097 gradient_norm: 0.7252565489611147 max_violation: 2.9422868805266216 step_size: 1.0 iter: 9 cost: 55.63195048693909 gradient_norm: 0.6437370621188334 max_violation: 2.942330006447968 step_size: 1.0 iter: 10 cost: 55.63061294498181 gradient_norm: 0.5786990548648188 max_violation: 2.9423632303445233 step_size: 1.0 iter: 11 cost: 55.629622586298794 gradient_norm: 0.5256032159605493 max_violation: 2.9423894872741023 step_size: 1.0 al iter: 3 iter: 1 cost: 478.1375973534825 gradient_norm: 138.9967630748213 max_violation: 2.2689166106599736 step_size: 1.0 iter: 2 cost: 404.0971636751405 gradient_norm: 157.13779510982405 max_violation: 1.7674680377515677 step_size: 1.0 iter: 3 cost: 342.9012582614887 gradient_norm: 111.06135104186741 max_violation: 1.5521681795975286 step_size: 1.0 iter: 4 cost: 311.4983389595405 gradient_norm: 90.59421474635292 max_violation: 1.395565759369714 step_size: 1.0 iter: 5 cost: 295.4926321452801 gradient_norm: 81.8637195195673 max_violation: 1.3022511432500157 step_size: 1.0 iter: 6 cost: 280.0385604382007 gradient_norm: 74.6770237999262 max_violation: 1.201526675664453 step_size: 1.0 iter: 7 cost: 267.5836781679396 gradient_norm: 67.52855227290262 max_violation: 1.1125586845281878 step_size: 1.0 iter: 8 cost: 257.970314031385 gradient_norm: 71.45864291356769 max_violation: 1.0418215308791536 step_size: 1.0 iter: 9 cost: 250.54285993622705 gradient_norm: 74.45900056059965 max_violation: 0.9872713056246005 step_size: 1.0 iter: 10 cost: 244.5249150745727 gradient_norm: 77.36840805551053 max_violation: 0.9436176396288598 step_size: 1.0 iter: 11 cost: 239.64439709878917 gradient_norm: 76.96727190660532 max_violation: 0.90709858776215 step_size: 1.0 iter: 12 cost: 236.01986423700268 gradient_norm: 72.22618691447364 max_violation: 0.8766060470823756 step_size: 1.0 iter: 13 cost: 233.2719339059601 gradient_norm: 66.09015716591395 max_violation: 0.8515825873608622 step_size: 1.0 iter: 14 cost: 231.04326430300517 gradient_norm: 60.23782601124489 max_violation: 0.8309001463713073 step_size: 1.0 iter: 15 cost: 229.18750586113114 gradient_norm: 55.04484022924776 max_violation: 0.8135249029313445 step_size: 1.0 iter: 16 cost: 227.62528033002 gradient_norm: 65.90882884287207 max_violation: 0.7986953007679904 step_size: 1.0 iter: 17 cost: 226.29831486038339 gradient_norm: 75.93785117091075 max_violation: 0.7858644951423881 step_size: 1.0 iter: 18 cost: 225.1606011211602 gradient_norm: 82.91367099275983 max_violation: 0.7746337097345224 step_size: 1.0 iter: 19 cost: 224.17573559575735 gradient_norm: 87.6252387961821 max_violation: 0.7647055870612292 step_size: 1.0 iter: 20 cost: 223.31510340982578 gradient_norm: 90.66554889821458 max_violation: 0.7558536069108159 step_size: 1.0 iter: 21 cost: 222.5563064319543 gradient_norm: 92.47166247450173 max_violation: 0.7479019560580205 step_size: 1.0 iter: 22 cost: 221.88182848459567 gradient_norm: 93.36466474673219 max_violation: 0.7407119910839404 step_size: 1.0 iter: 23 cost: 221.2779395663571 gradient_norm: 93.58126883996694 max_violation: 0.7341728915839316 step_size: 1.0 iter: 24 cost: 220.73381600100825 gradient_norm: 93.29706258451638 max_violation: 0.7281950272566893 step_size: 1.0 iter: 25 cost: 220.2408468046995 gradient_norm: 92.64317577654812 max_violation: 0.722705128792787 step_size: 1.0 iter: 26 cost: 219.79209792961063 gradient_norm: 91.71815735854362 max_violation: 0.7176426975161925 step_size: 1.0 iter: 27 cost: 219.38190757471043 gradient_norm: 90.59646973556644 max_violation: 0.7129572962075073 step_size: 1.0 iter: 28 cost: 219.00558655467648 gradient_norm: 89.33461569832882 max_violation: 0.708606485620999 step_size: 1.0 iter: 29 cost: 218.6591993244319 gradient_norm: 87.97560382559391 max_violation: 0.7045542429475828 step_size: 1.0 iter: 30 cost: 218.33940443003516 gradient_norm: 86.55223646030197 max_violation: 0.7007697427913584 step_size: 1.0 iter: 31 cost: 218.04333738679415 gradient_norm: 85.08955289703668 max_violation: 0.6972264112620601 step_size: 1.0 iter: 32 cost: 217.76852331158202 gradient_norm: 83.60665896303396 max_violation: 0.6939011859046484 step_size: 1.0 iter: 33 cost: 217.51281035246845 gradient_norm: 82.11810613622663 max_violation: 0.6907739310993257 step_size: 1.0 iter: 34 cost: 217.27431779765956 gradient_norm: 80.63493706823905 max_violation: 0.6878269714931062 step_size: 1.0 iter: 35 cost: 217.05139475093748 gradient_norm: 79.16548229207964 max_violation: 0.6850447157478037 step_size: 1.0 iter: 36 cost: 216.84258660826418 gradient_norm: 77.71597022629436 max_violation: 0.6824133500776144 step_size: 1.0 iter: 37 cost: 216.6466074509434 gradient_norm: 76.29099632806924 max_violation: 0.6799205862997004 step_size: 1.0 iter: 38 cost: 216.4623170408374 gradient_norm: 74.89388545482646 max_violation: 0.6775554529354721 step_size: 1.0 iter: 39 cost: 216.28870147404163 gradient_norm: 73.5269728685178 max_violation: 0.6753081206736686 step_size: 1.0 iter: 40 cost: 216.12485679491073 gradient_norm: 72.19182296951664 max_violation: 0.673169755534174 step_size: 1.0 iter: 41 cost: 215.96997503904288 gradient_norm: 70.88940015160412 max_violation: 0.6711323945672167 step_size: 1.0 iter: 42 cost: 215.82333229063937 gradient_norm: 69.62020267966578 max_violation: 0.6691888400379105 step_size: 1.0 iter: 43 cost: 215.6842784241819 gradient_norm: 68.38436788715316 max_violation: 0.6673325688873142 step_size: 1.0 iter: 44 cost: 215.55222826346068 gradient_norm: 67.18175503654363 max_violation: 0.665557654903254 step_size: 1.0 iter: 45 cost: 215.42665393936448 gradient_norm: 66.01201071509362 max_violation: 0.6638587015298176 step_size: 1.0 iter: 46 cost: 215.3070782657729 gradient_norm: 64.87462052454913 max_violation: 0.662230783631109 step_size: 1.0 iter: 47 cost: 215.19306898316728 gradient_norm: 63.768949977562976 max_violation: 0.6606693968295607 step_size: 1.0 iter: 48 cost: 215.08423374408045 gradient_norm: 62.69427686703018 max_violation: 0.6591704132814202 step_size: 1.0 iter: 49 cost: 214.98021573453184 gradient_norm: 61.64981687941287 max_violation: 0.6577300429461843 step_size: 1.0 iter: 50 cost: 214.8806898421129 gradient_norm: 60.63474384065896 max_violation: 0.656344799563684 step_size: 1.0 iter: 51 cost: 214.78535929507626 gradient_norm: 59.648205688477546 max_violation: 0.6550114706799794 step_size: 1.0 iter: 52 cost: 214.6939527081972 gradient_norm: 58.689337034523874 max_violation: 0.6537270911676489 step_size: 1.0 iter: 53 cost: 214.6062214807278 gradient_norm: 57.75726900146147 max_violation: 0.6524889197718267 step_size: 1.0 iter: 54 cost: 214.5219374997743 gradient_norm: 56.851136879104516 max_violation: 0.6512944182843889 step_size: 1.0 iter: 55 cost: 214.44089110918503 gradient_norm: 55.9700860338302 max_violation: 0.6501412330076386 step_size: 1.0 iter: 56 cost: 214.3628893097312 gradient_norm: 55.113276418234804 max_violation: 0.649027178218097 step_size: 1.0 iter: 57 cost: 214.287754161182 gradient_norm: 54.27988595917963 max_violation: 0.6479502213822657 step_size: 1.0 iter: 58 cost: 214.2153213609702 gradient_norm: 53.46911304754331 max_violation: 0.6469084699109278 step_size: 1.0 iter: 59 cost: 214.1454389776129 gradient_norm: 52.6801783093652 max_violation: 0.6459001592678799 step_size: 1.0 iter: 60 cost: 214.07796632002112 gradient_norm: 51.912325803397614 max_violation: 0.6449236422738345 step_size: 1.0 iter: 61 cost: 214.0127729263475 gradient_norm: 51.164823761840566 max_violation: 0.6439773794673078 step_size: 1.0 iter: 62 cost: 213.9497376581949 gradient_norm: 50.43696496880273 max_violation: 0.6430599304023663 step_size: 1.0 iter: 63 cost: 213.88874788784852 gradient_norm: 49.72806685295875 max_violation: 0.64216994577848 step_size: 1.0 iter: 64 cost: 213.82969876778878 gradient_norm: 49.03747135618969 max_violation: 0.6413061603108758 step_size: 1.0 iter: 65 cost: 213.7724925731111 gradient_norm: 48.36454462816805 max_violation: 0.6404673862612862 step_size: 1.0 iter: 66 cost: 213.71703810865552 gradient_norm: 47.70867658756061 max_violation: 0.6396525075586275 step_size: 1.0 iter: 67 cost: 213.6632501736611 gradient_norm: 47.06928038245081 max_violation: 0.6388604744476871 step_size: 1.0 iter: 68 cost: 213.61104907765335 gradient_norm: 46.445791776320895 max_violation: 0.6380902986112607 step_size: 1.0 iter: 69 cost: 213.56036020201844 gradient_norm: 45.83766848116169 max_violation: 0.6373410487174302 step_size: 1.0 iter: 70 cost: 213.5111136023962 gradient_norm: 45.24438945461246 max_violation: 0.636611846349386 step_size: 1.0 iter: 71 cost: 213.4632436475869 gradient_norm: 44.66545417486546 max_violation: 0.6359018622798702 step_size: 1.0 iter: 72 cost: 213.4166886911789 gradient_norm: 44.100381904497205 max_violation: 0.6352103130566582 step_size: 1.0 iter: 73 cost: 213.3713907725328 gradient_norm: 43.548710951627214 max_violation: 0.6345364578691579 step_size: 1.0 iter: 74 cost: 213.3272953441466 gradient_norm: 43.00999793546268 max_violation: 0.6338795956694292 step_size: 1.0 iter: 75 cost: 213.28435102275918 gradient_norm: 42.48381706146137 max_violation: 0.6332390625238471 step_size: 1.0 iter: 76 cost: 213.24250936184404 gradient_norm: 41.9697594102461 max_violation: 0.6326142291740804 step_size: 1.0 iter: 77 cost: 213.20172464340007 gradient_norm: 41.46743224339823 max_violation: 0.6320044987883384 step_size: 1.0 iter: 78 cost: 213.1619536871803 gradient_norm: 40.976458328434 max_violation: 0.6314093048857554 step_size: 1.0 iter: 79 cost: 213.1231556756896 gradient_norm: 40.49647528449736 max_violation: 0.6308281094185446 step_size: 1.0 iter: 80 cost: 213.08529199346975 gradient_norm: 40.02713495015206 max_violation: 0.6302604009981057 step_size: 1.0 iter: 81 cost: 213.04832607933665 gradient_norm: 39.568102773601126 max_violation: 0.6297056932526006 step_size: 1.0 iter: 82 cost: 213.01222329037904 gradient_norm: 39.11905722598162 max_violation: 0.6291635233047805 step_size: 1.0 iter: 83 cost: 212.97695077664844 gradient_norm: 38.67968923767977 max_violation: 0.6286334503598958 step_size: 1.0 iter: 84 cost: 212.9424773655755 gradient_norm: 38.24970165739445 max_violation: 0.6281150543944998 step_size: 1.0 iter: 85 cost: 212.90877345525178 gradient_norm: 37.82880873400936 max_violation: 0.6276079349378461 step_size: 1.0 iter: 86 cost: 212.87581091579347 gradient_norm: 37.41673562029213 max_violation: 0.6271117099383181 step_size: 1.0 iter: 87 cost: 212.8435629980866 gradient_norm: 37.01321789847226 max_violation: 0.6266260147080427 step_size: 1.0 iter: 88 cost: 212.81200424927738 gradient_norm: 36.61800112653281 max_violation: 0.6261505009394797 step_size: 1.0 iter: 89 cost: 212.7811104344353 gradient_norm: 36.230840404937084 max_violation: 0.6256848357882987 step_size: 1.0 iter: 90 cost: 212.75085846386995 gradient_norm: 35.851499962903404 max_violation: 0.6252287010174089 step_size: 1.0 iter: 91 cost: 212.7212263256285 gradient_norm: 35.47975276355715 max_violation: 0.6247817921974046 step_size: 1.0 iter: 92 cost: 212.69219302275283 gradient_norm: 35.115380127172024 max_violation: 0.6243438179591645 step_size: 1.0 iter: 93 cost: 212.66373851490386 gradient_norm: 34.75817137189877 max_violation: 0.6239144992946493 step_size: 1.0 iter: 94 cost: 212.6358436640038 gradient_norm: 34.40792347097758 max_violation: 0.623493568902322 step_size: 1.0 iter: 95 cost: 212.60849018357655 gradient_norm: 34.06444072607853 max_violation: 0.6230807705738863 step_size: 1.0 iter: 96 cost: 212.58166059149553 gradient_norm: 33.72753445572188 max_violation: 0.6226758586193633 step_size: 1.0 iter: 97 cost: 212.555338165869 gradient_norm: 33.39702269827577 max_violation: 0.6222785973276759 step_size: 1.0 iter: 98 cost: 212.52950690382892 gradient_norm: 33.07272992886179 max_violation: 0.6218887604602772 step_size: 1.0 iter: 99 cost: 212.50415148299277 gradient_norm: 32.754486789389745 max_violation: 0.6215061307754199 step_size: 1.0 iter: 100 cost: 212.47925722540492 gradient_norm: 32.442129831264225 max_violation: 0.6211304995809721 step_size: 1.0 al iter: 4 iter: 1 cost: 448.0298246343153 gradient_norm: 249.48819442199348 max_violation: 0.3680693571191811 step_size: 1.0 iter: 2 cost: 418.3212556493587 gradient_norm: 477.66261722103263 max_violation: 0.35373877367642903 step_size: 0.125 iter: 3 cost: 393.35137453178237 gradient_norm: 1594.417219925751 max_violation: 0.3405986496462532 step_size: 0.25 iter: 4 cost: 380.7212937183034 gradient_norm: 3664.6721390471566 max_violation: 0.33998262408782676 step_size: 0.5 iter: 5 cost: 356.2176957282002 gradient_norm: 4630.288636626805 max_violation: 0.30566151061440294 step_size: 1.0 iter: 6 cost: 328.9880343624072 gradient_norm: 3786.929459352041 max_violation: 0.27652631961852325 step_size: 1.0 iter: 7 cost: 313.1347037541273 gradient_norm: 3194.7779797074472 max_violation: 0.2562439003986139 step_size: 1.0 iter: 8 cost: 302.7022171884059 gradient_norm: 2755.289620137551 max_violation: 0.24035895596678225 step_size: 1.0 iter: 9 cost: 295.3739420204453 gradient_norm: 2418.843100842003 max_violation: 0.23199811641550916 step_size: 1.0 iter: 10 cost: 289.99141556972495 gradient_norm: 2154.2904638893287 max_violation: 0.2296754253497708 step_size: 1.0 iter: 11 cost: 285.90292415235535 gradient_norm: 1941.345067426168 max_violation: 0.22788114059565956 step_size: 1.0 iter: 12 cost: 282.71265949581635 gradient_norm: 1766.4738519964642 max_violation: 0.2264104859599776 step_size: 1.0 iter: 13 cost: 280.167017134647 gradient_norm: 1620.4017965244457 max_violation: 0.22515841678124282 step_size: 1.0 iter: 14 cost: 278.09678817825625 gradient_norm: 1496.5990378856598 max_violation: 0.22406499858325857 step_size: 1.0 iter: 15 cost: 276.38533200487564 gradient_norm: 1390.3520559617073 max_violation: 0.22309290330450748 step_size: 1.0 iter: 16 cost: 274.9500204923489 gradient_norm: 1298.1807288744276 max_violation: 0.22221718124002887 step_size: 1.0 iter: 17 cost: 273.7309327953511 gradient_norm: 1217.4631996390751 max_violation: 0.22142019125674084 step_size: 1.0 iter: 18 cost: 272.6837167881087 gradient_norm: 1146.1883706813662 max_violation: 0.22068889033693617 step_size: 1.0 iter: 19 cost: 271.7749435189754 gradient_norm: 1082.7886932287174 max_violation: 0.22001328581878177 step_size: 1.0 iter: 20 cost: 270.9790042076179 gradient_norm: 1026.0246976483063 max_violation: 0.21938549946222574 step_size: 1.0 iter: 21 cost: 270.27598951355253 gradient_norm: 974.9036345900388 max_violation: 0.21879917262937143 step_size: 1.0 iter: 22 cost: 269.65021018696507 gradient_norm: 928.6210883097425 max_violation: 0.2182490716184855 step_size: 1.0 iter: 23 cost: 269.0891459036756 gradient_norm: 886.5183686057896 max_violation: 0.21773081587773335 step_size: 1.0 iter: 24 cost: 268.58268566915825 gradient_norm: 848.050938835055 max_violation: 0.2172406847594357 step_size: 1.0 iter: 25 cost: 268.1225703425667 gradient_norm: 812.7646929147393 max_violation: 0.2167754763362626 step_size: 1.0 iter: 26 cost: 267.70197758760736 gradient_norm: 780.2779012196056 max_violation: 0.21633240192564207 step_size: 1.0 iter: 27 cost: 267.3152087590899 gradient_norm: 750.2673096291895 max_violation: 0.21590900596151075 step_size: 1.0 iter: 28 cost: 266.95744990867667 gradient_norm: 722.4573220421174 max_violation: 0.2155031045626692 step_size: 1.0 iter: 29 cost: 266.62458766861084 gradient_norm: 696.6115012082704 max_violation: 0.21511273856007573 step_size: 1.0 iter: 30 cost: 266.3130667460432 gradient_norm: 672.5258338767945 max_violation: 0.21473613839937533 step_size: 1.0 iter: 31 cost: 266.01978006805365 gradient_norm: 650.0233547327135 max_violation: 0.2143716995143632 step_size: 1.0 iter: 32 cost: 265.741985824153 gradient_norm: 628.9498291697821 max_violation: 0.21401796758944513 step_size: 1.0 iter: 33 cost: 265.47724804052933 gradient_norm: 609.170270329752 max_violation: 0.21367363357454305 step_size: 1.0 iter: 34 cost: 265.22339890810355 gradient_norm: 590.5661191168887 max_violation: 0.21333753824227708 step_size: 1.0 iter: 35 cost: 264.97852164257506 gradient_norm: 573.0329522060036 max_violation: 0.21300868526384287 step_size: 1.0 iter: 36 cost: 264.7409517924083 gradient_norm: 556.4786060690542 max_violation: 0.21268626007040314 step_size: 1.0 iter: 37 cost: 264.50929239511333 gradient_norm: 540.8216186837705 max_violation: 0.21236964934467073 step_size: 1.0 iter: 38 cost: 264.28243467938654 gradient_norm: 525.9899003579842 max_violation: 0.2120584537020651 step_size: 1.0 iter: 39 cost: 264.05957277290696 gradient_norm: 511.91955818130634 max_violation: 0.21175248550908998 step_size: 1.0 iter: 40 cost: 263.8402006323437 gradient_norm: 498.55382074440274 max_violation: 0.21145174634600217 step_size: 1.0 iter: 41 cost: 263.6240839550789 gradient_norm: 485.8420403421122 max_violation: 0.21115638441115347 step_size: 1.0 iter: 42 cost: 263.4112081859442 gradient_norm: 473.7387797524212 max_violation: 0.21086663892005664 step_size: 1.0 iter: 43 cost: 263.2017119605344 gradient_norm: 462.20300735292113 max_violation: 0.21058278274659603 step_size: 1.0 iter: 44 cost: 262.9958191942026 gradient_norm: 451.1974218630667 max_violation: 0.21030507401906684 step_size: 1.0 iter: 45 cost: 262.7937812210303 gradient_norm: 440.687911807573 max_violation: 0.2100337229716036 step_size: 1.0 iter: 46 cost: 262.595835061231 gradient_norm: 430.6431365721068 max_violation: 0.2097688749396709 step_size: 1.0 iter: 47 cost: 262.402178391707 gradient_norm: 421.034204668057 max_violation: 0.2095106065153245 step_size: 1.0 iter: 48 cost: 262.21295825760234 gradient_norm: 411.8344226262002 max_violation: 0.20925893037877374 step_size: 1.0 iter: 49 cost: 262.0282693187935 gradient_norm: 403.0190919523831 max_violation: 0.2090138046324692 step_size: 1.0 iter: 50 cost: 261.84815773516937 gradient_norm: 394.56533782258737 max_violation: 0.20877514359389737 step_size: 1.0 iter: 51 cost: 261.6726277642196 gradient_norm: 386.45195904996274 max_violation: 0.2085428282091044 step_size: 1.0 iter: 52 cost: 261.5016491725812 gradient_norm: 378.6592931504963 max_violation: 0.20831671518499073 step_size: 1.0 iter: 53 cost: 261.33516438284926 gradient_norm: 371.16909311822724 max_violation: 0.2080966445408352 step_size: 1.0 iter: 54 cost: 261.17309483523616 gradient_norm: 363.9644140804563 max_violation: 0.2078824456114301 step_size: 1.0 iter: 55 cost: 261.0153463828004 gradient_norm: 357.0295088223593 max_violation: 0.20767394168612974 step_size: 1.0 iter: 56 cost: 260.8618137240992 gradient_norm: 350.34973153372925 max_violation: 0.20747095351585232 step_size: 1.0 iter: 57 cost: 260.7123839653299 gradient_norm: 343.91144927566927 max_violation: 0.20727330191462645 step_size: 1.0 iter: 58 cost: 260.5669394364327 gradient_norm: 337.70196070513913 max_violation: 0.20708080965406106 step_size: 1.0 iter: 59 cost: 260.4253598885033 gradient_norm: 331.70942158918314 max_violation: 0.20689330281467466 step_size: 1.0 iter: 60 cost: 260.28752418886546 gradient_norm: 325.9227766433907 max_violation: 0.20671061172468086 step_size: 1.0 iter: 61 cost: 260.15331161399234 gradient_norm: 320.33169721898753 max_violation: 0.2065325715882378 step_size: 1.0 iter: 62 cost: 260.02260282356264 gradient_norm: 314.9265243771399 max_violation: 0.20635902288157348 step_size: 1.0 iter: 63 cost: 259.8952805834019 gradient_norm: 309.6982169032274 max_violation: 0.20618981157680905 step_size: 1.0 iter: 64 cost: 259.77123029165756 gradient_norm: 304.6383038325742 max_violation: 0.2060247892388105 step_size: 1.0 iter: 65 cost: 259.65034035140957 gradient_norm: 299.73884109158 max_violation: 0.2058638130293331 step_size: 1.0 iter: 66 cost: 259.53250242388594 gradient_norm: 294.9923718820633 max_violation: 0.20570674564426383 step_size: 1.0 iter: 67 cost: 259.4176115891746 gradient_norm: 290.39189046559636 max_violation: 0.20555345520332002 step_size: 1.0 iter: 68 cost: 259.3055664355951 gradient_norm: 285.9308090373935 max_violation: 0.20540381510681938 step_size: 1.0 iter: 69 cost: 259.19626909432617 gradient_norm: 281.6029274041888 max_violation: 0.20525770387039133 step_size: 1.0 iter: 70 cost: 259.08962523231526 gradient_norm: 277.4024052026776 max_violation: 0.20511500494575952 step_size: 1.0 iter: 71 cost: 258.9855440137043 gradient_norm: 273.3237364306089 max_violation: 0.2049756065337056 step_size: 1.0 iter: 72 cost: 258.88393803775705 gradient_norm: 269.36172607207664 max_violation: 0.20483940139361412 step_size: 1.0 iter: 73 cost: 258.78472325957966 gradient_norm: 265.5114686251781 max_violation: 0.20470628665296298 step_size: 1.0 iter: 74 cost: 258.68781889854034 gradient_norm: 261.76832836382255 max_violation: 0.2045761636190937 step_size: 1.0 iter: 75 cost: 258.5931473382247 gradient_norm: 258.12792117064794 max_violation: 0.20444893759498273 step_size: 1.0 iter: 76 cost: 258.50063402091575 gradient_norm: 254.58609780254216 max_violation: 0.20432451770019 step_size: 1.0 iter: 77 cost: 258.41020733893583 gradient_norm: 251.13892846307502 max_violation: 0.20420281669779383 step_size: 1.0 iter: 78 cost: 258.3217985246297 gradient_norm: 247.78268856193748 max_violation: 0.20408375082780372 step_size: 1.0 iter: 79 cost: 258.2353415403878 gradient_norm: 244.51384556206176 max_violation: 0.20396723964734909 step_size: 1.0 iter: 80 cost: 258.1507729697535 gradient_norm: 241.32904681788924 max_violation: 0.20385320587774158 step_size: 1.0 iter: 81 cost: 258.06803191040933 gradient_norm: 238.22510831919263 max_violation: 0.2037415752584355 step_size: 1.0 iter: 82 cost: 257.9870598696295 gradient_norm: 235.19900426450246 max_violation: 0.2036322764077907 step_size: 1.0 iter: 83 cost: 257.9078006626226 gradient_norm: 232.24785739600685 max_violation: 0.2035252406904582 step_size: 1.0 iter: 84 cost: 257.8302003140685 gradient_norm: 229.36893002870028 max_violation: 0.203420402091246 step_size: 1.0 iter: 85 cost: 257.7542069630261 gradient_norm: 226.55961571956976 max_violation: 0.20331769709518488 step_size: 1.0 iter: 86 cost: 257.67977077135475 gradient_norm: 223.8174315235861 max_violation: 0.2032170645735918 step_size: 1.0 iter: 87 cost: 257.6068438356883 gradient_norm: 221.14001078976028 max_violation: 0.2031184456758286 step_size: 1.0 iter: 88 cost: 257.53538010297314 gradient_norm: 218.5250964528415 max_violation: 0.20302178372655932 step_size: 1.0 iter: 89 cost: 257.4653352895364 gradient_norm: 215.97053478296232 max_violation: 0.20292702412816643 step_size: 1.0 iter: 90 cost: 257.39666680364155 gradient_norm: 213.4742695569254 max_violation: 0.202834114268152 step_size: 1.0 iter: 91 cost: 257.3293336714363 gradient_norm: 211.03433661712043 max_violation: 0.20274300343120544 step_size: 1.0 iter: 92 cost: 257.26329646621 gradient_norm: 208.6488587908852 max_violation: 0.20265364271573105 step_size: 1.0 iter: 93 cost: 257.1985172408598 gradient_norm: 206.3160411413763 max_violation: 0.2025659849545982 step_size: 1.0 iter: 94 cost: 257.1349594634361 gradient_norm: 204.03416652423337 max_violation: 0.20247998463987837 step_size: 1.0 iter: 95 cost: 257.07258795567003 gradient_norm: 201.80159143027237 max_violation: 0.20239559785134897 step_size: 1.0 iter: 96 cost: 257.01136883436294 gradient_norm: 199.61674208952013 max_violation: 0.2023127821886006 step_size: 1.0 iter: 97 cost: 256.9512694555056 gradient_norm: 197.47811082118403 max_violation: 0.20223149670649132 step_size: 1.0 iter: 98 cost: 256.8922583610186 gradient_norm: 195.38425260756856 max_violation: 0.2021517018538157 step_size: 1.0 iter: 99 cost: 256.8343052279986 gradient_norm: 193.33378188092206 max_violation: 0.2020733594149875 step_size: 1.0 iter: 100 cost: 256.7773808203503 gradient_norm: 191.32536950366895 max_violation: 0.20199643245458132 step_size: 1.0 al iter: 5 iter: 1 cost: 572.3419006645407 gradient_norm: 28525.183515099583 max_violation: 0.15147571552730804 step_size: 0.5 iter: 2 cost: 531.5735492238568 gradient_norm: 25556.805720768225 max_violation: 0.1472566852057457 step_size: 0.25 iter: 3 cost: 438.12435198059023 gradient_norm: 19449.34714512654 max_violation: 0.13484341663161598 step_size: 1.0 iter: 4 cost: 366.9302696818968 gradient_norm: 14277.126263188933 max_violation: 0.10182961250169176 step_size: 1.0 iter: 5 cost: 333.7421726029314 gradient_norm: 11225.734700099823 max_violation: 0.08291067240620384 step_size: 1.0 iter: 6 cost: 314.4697112778241 gradient_norm: 9228.544652469447 max_violation: 0.06942914689939594 step_size: 1.0 iter: 7 cost: 302.4983609731096 gradient_norm: 7830.299376142879 max_violation: 0.059634039762289426 step_size: 1.0 iter: 8 cost: 294.5604524315078 gradient_norm: 6798.077643948469 max_violation: 0.052225760917329445 step_size: 1.0 iter: 9 cost: 289.0229299516452 gradient_norm: 6005.251834128301 max_violation: 0.04643670819040968 step_size: 1.0 iter: 10 cost: 285.0016316942425 gradient_norm: 5377.398673535159 max_violation: 0.04179245836828255 step_size: 1.0 iter: 11 cost: 281.98506949191534 gradient_norm: 4867.988603580044 max_violation: 0.03798596406797938 step_size: 1.0 iter: 12 cost: 279.6608792134656 gradient_norm: 4446.460501728035 max_violation: 0.034810354839124424 step_size: 1.0 iter: 13 cost: 277.8295737414919 gradient_norm: 4091.9212324518494 max_violation: 0.03212140216458348 step_size: 1.0 iter: 14 cost: 276.35889149669043 gradient_norm: 3789.6064757598847 max_violation: 0.02981557919208333 step_size: 1.0 iter: 15 cost: 275.1583114881069 gradient_norm: 3528.7888477284587 max_violation: 0.027816696899854554 step_size: 1.0 iter: 16 cost: 274.1641676921553 gradient_norm: 3301.487478920325 max_violation: 0.026067463292930027 step_size: 1.0 iter: 17 cost: 273.33061007069205 gradient_norm: 3101.642545125662 max_violation: 0.024523979716511435 step_size: 1.0 iter: 18 cost: 272.623927943066 gradient_norm: 2924.5704743476167 max_violation: 0.023152050593534923 step_size: 1.0 iter: 19 cost: 272.0188784922917 gradient_norm: 2766.594508446137 max_violation: 0.021924647333556646 step_size: 1.0 iter: 20 cost: 271.49624972981724 gradient_norm: 2624.7881488655203 max_violation: 0.02082012691015872 step_size: 1.0 iter: 21 cost: 271.0412051631849 gradient_norm: 2496.793210075955 max_violation: 0.01982095589782573 step_size: 1.0 iter: 22 cost: 270.64213603591907 gradient_norm: 2380.688347342012 max_violation: 0.01891278042552713 step_size: 1.0 iter: 23 cost: 270.28985063114783 gradient_norm: 2274.8924504616352 max_violation: 0.018083737495560914 step_size: 1.0 iter: 24 cost: 269.9769919875001 gradient_norm: 2178.092576426034 max_violation: 0.01732393769412366 step_size: 1.0 iter: 25 cost: 269.6976132639289 gradient_norm: 2089.1894468928263 max_violation: 0.01662507155835502 step_size: 1.0 iter: 26 cost: 269.44686374399237 gradient_norm: 2007.2557126150868 max_violation: 0.015980106463590937 step_size: 1.0 iter: 27 cost: 269.22075368125587 gradient_norm: 1931.5036281243051 max_violation: 0.015383050660486175 step_size: 1.0 iter: 28 cost: 269.01597611823485 gradient_norm: 1861.2597517712095 max_violation: 0.014828767736678405 step_size: 1.0 iter: 29 cost: 268.82977041046695 gradient_norm: 1795.9449527412355 max_violation: 0.014312829372335578 step_size: 1.0 iter: 30 cost: 268.6598166446683 gradient_norm: 1735.058470592926 max_violation: 0.013831397480614793 step_size: 1.0 iter: 31 cost: 268.50415319642633 gradient_norm: 1678.1651006801487 max_violation: 0.01338112911600764 step_size: 1.0 iter: 32 cost: 268.3611117978088 gradient_norm: 1624.8848131623754 max_violation: 0.012959099181732658 step_size: 1.0 iter: 33 cost: 268.22926598214366 gradient_norm: 1574.8842831913541 max_violation: 0.012562737169222404 step_size: 1.0 iter: 34 cost: 268.1073898402839 gradient_norm: 1527.869934112206 max_violation: 0.01218977504618246 step_size: 1.0 iter: 35 cost: 267.99442479189725 gradient_norm: 1483.582187601185 max_violation: 0.011838204067652236 step_size: 1.0 iter: 36 cost: 267.8894526357861 gradient_norm: 1441.7906833950738 max_violation: 0.01150623877774537 step_size: 1.0 iter: 37 cost: 267.7916735557113 gradient_norm: 1402.2902831436807 max_violation: 0.011192286843722088 step_size: 1.0 iter: 38 cost: 267.70038806430387 gradient_norm: 1364.89771236618 max_violation: 0.010894923649309218 step_size: 1.0 iter: 39 cost: 267.61498209721026 gradient_norm: 1329.4487247701793 max_violation: 0.010612870794194262 step_size: 1.0 iter: 40 cost: 267.53491464282286 gradient_norm: 1295.7956965611781 max_violation: 0.010344977816786671 step_size: 1.0 iter: 41 cost: 267.4597074248657 gradient_norm: 1263.8055765531292 max_violation: 0.010090206590297135 step_size: 1.0 iter: 42 cost: 267.3889362563449 gradient_norm: 1233.358132227577 max_violation: 0.009847617947317255 step_size: 1.0 iter: 43 cost: 267.32222376134354 gradient_norm: 1204.344443033264 max_violation: 0.009616360169966587 step_size: 1.0 iter: 44 cost: 267.2592332220176 gradient_norm: 1176.6656012484907 max_violation: 0.009395659049353688 step_size: 1.0 iter: 45 cost: 267.1996633555299 gradient_norm: 1150.2315877935578 max_violation: 0.009184809270236571 step_size: 1.0 iter: 46 cost: 267.143243863079 gradient_norm: 1124.9602961038959 max_violation: 0.008983166919190766 step_size: 1.0 iter: 47 cost: 267.0897316227919 gradient_norm: 1100.776681849939 max_violation: 0.008790142949399615 step_size: 1.0 iter: 48 cost: 267.0389074217127 gradient_norm: 1077.612019923634 max_violation: 0.008605197462109748 step_size: 1.0 iter: 49 cost: 266.99057314103777 gradient_norm: 1055.4032532987424 max_violation: 0.008427834688691238 step_size: 1.0 iter: 50 cost: 266.94454932378426 gradient_norm: 1034.092420712845 max_violation: 0.008257598574614833 step_size: 1.0 iter: 51 cost: 266.90067306639537 gradient_norm: 1013.6261523170481 max_violation: 0.008094068883256034 step_size: 1.0 iter: 52 cost: 266.8587961856617 gradient_norm: 993.9552240577707 max_violation: 0.007936857749475168 step_size: 1.0 iter: 53 cost: 266.8187836203743 gradient_norm: 975.0341629152089 max_violation: 0.007785606623153973 step_size: 1.0 iter: 54 cost: 266.7805120338471 gradient_norm: 956.8208964205979 max_violation: 0.00763998355273543 step_size: 1.0 iter: 55 cost: 266.7438685887816 gradient_norm: 939.2764407270879 max_violation: 0.007499680765108763 step_size: 1.0 iter: 56 cost: 266.7087498704723 gradient_norm: 922.3646223850137 max_violation: 0.0073644125048923925 step_size: 1.0 iter: 57 cost: 266.6750609380651 gradient_norm: 906.0518296571124 max_violation: 0.0072339131013169355 step_size: 1.0 iter: 58 cost: 266.6427144866333 gradient_norm: 890.30678975729 max_violation: 0.0071079352350639224 step_size: 1.0 iter: 59 cost: 266.61163010546187 gradient_norm: 875.1003689567351 max_violation: 0.006986248381649518 step_size: 1.0 iter: 60 cost: 266.5817336199978 gradient_norm: 860.405392807038 max_violation: 0.006868637410308298 step_size: 1.0 iter: 61 cost: 266.5529565068239 gradient_norm: 846.1964842247277 max_violation: 0.006754901321048168 step_size: 1.0 iter: 62 cost: 266.5252353724364 gradient_norm: 832.4499173339372 max_violation: 0.006644852103733112 step_size: 1.0 iter: 63 cost: 266.49851148797586 gradient_norm: 819.1434853628639 max_violation: 0.006538313706083265 step_size: 1.0 iter: 64 cost: 266.47273037308105 gradient_norm: 806.2563810081214 max_violation: 0.006435121098403829 step_size: 1.0 iter: 65 cost: 266.44784142298795 gradient_norm: 793.7690879325826 max_violation: 0.0063351194247495135 step_size: 1.0 iter: 66 cost: 266.4237975737744 gradient_norm: 781.6632821937809 max_violation: 0.006238163231245264 step_size: 1.0 iter: 67 cost: 266.400555001326 gradient_norm: 769.9217425743865 max_violation: 0.006144115763639713 step_size: 1.0 iter: 68 cost: 266.37807285015975 gradient_norm: 758.5282688801614 max_violation: 0.006052848326866034 step_size: 1.0 iter: 69 cost: 266.35631298874046 gradient_norm: 747.46760738749 max_violation: 0.00596423970027371 step_size: 1.0 iter: 70 cost: 266.3352397883558 gradient_norm: 736.7253827425977 max_violation: 0.005878175603159064 step_size: 1.0 iter: 71 cost: 266.31481992295744 gradient_norm: 726.2880356344136 max_violation: 0.005794548205311334 step_size: 1.0 iter: 72 cost: 266.2950221877283 gradient_norm: 716.1427657274933 max_violation: 0.005713255678620022 step_size: 1.0 iter: 73 cost: 266.27581733435375 gradient_norm: 706.2774792823133 max_violation: 0.00563420178527807 step_size: 1.0 iter: 74 cost: 266.2571779212762 gradient_norm: 696.6807410866695 max_violation: 0.005557295499692527 step_size: 1.0 iter: 75 cost: 266.23907817736057 gradient_norm: 687.3417302383557 max_violation: 0.005482450660493465 step_size: 1.0 iter: 76 cost: 266.22149387760663 gradient_norm: 678.25019944582 max_violation: 0.005409585650072435 step_size: 1.0 iter: 77 cost: 266.20440222970274 gradient_norm: 669.396437520879 max_violation: 0.005338623099114814 step_size: 1.0 iter: 78 cost: 266.1877817703348 gradient_norm: 660.7712347842056 max_violation: 0.005269489613948353 step_size: 1.0 iter: 79 cost: 266.1716122702988 gradient_norm: 652.3658511057486 max_violation: 0.005202115524537643 step_size: 1.0 iter: 80 cost: 266.15587464755976 gradient_norm: 644.1719863613669 max_violation: 0.0051364346514301 step_size: 1.0 iter: 81 cost: 266.1405508875003 gradient_norm: 636.1817530884289 max_violation: 0.005072384089955251 step_size: 1.0 iter: 82 cost: 266.1256239696843 gradient_norm: 628.3876511671024 max_violation: 0.00500990401032797 step_size: 1.0 iter: 83 cost: 266.1110778005168 gradient_norm: 620.7825443240214 max_violation: 0.00494893747205305 step_size: 1.0 iter: 84 cost: 266.0968971512737 gradient_norm: 613.3596383448026 max_violation: 0.004889430251772242 step_size: 1.0 iter: 85 cost: 266.08306760099265 gradient_norm: 606.1124608178413 max_violation: 0.004831330683140234 step_size: 1.0 iter: 86 cost: 266.0695754838063 gradient_norm: 599.0348423077029 max_violation: 0.004774589507943183 step_size: 1.0 iter: 87 cost: 266.05640784031976 gradient_norm: 592.1208988419412 max_violation: 0.004719159737565093 step_size: 1.0 iter: 88 cost: 266.0435523726617 gradient_norm: 585.3650155794712 max_violation: 0.004664996523735199 step_size: 1.0 iter: 89 cost: 266.03099740291646 gradient_norm: 578.761831607278 max_violation: 0.0046120570381738 step_size: 1.0 iter: 90 cost: 266.01873183462004 gradient_norm: 572.3062257374247 max_violation: 0.004560300360123559 step_size: 1.0 iter: 91 cost: 266.0067451170913 gradient_norm: 565.9933032727391 max_violation: 0.004509687371502147 step_size: 1.0 iter: 92 cost: 265.9950272123243 gradient_norm: 559.8183836051887 max_violation: 0.0044601806586318515 step_size: 1.0 iter: 93 cost: 265.98356856426267 gradient_norm: 553.7769886541748 max_violation: 0.0044117444205901135 step_size: 1.0 iter: 94 cost: 265.97236007023866 gradient_norm: 547.8648320175992 max_violation: 0.0043643443831835604 step_size: 1.0 iter: 95 cost: 265.9613930544169 gradient_norm: 542.0778088378802 max_violation: 0.004317947718567305 step_size: 1.0 iter: 96 cost: 265.95065924306493 gradient_norm: 536.4119862783708 max_violation: 0.0042725229696858325 step_size: 1.0 iter: 97 cost: 265.94015074152657 gradient_norm: 530.863594617662 max_violation: 0.004228039979591869 step_size: 1.0 iter: 98 cost: 265.9298600127452 gradient_norm: 525.4290188749164 max_violation: 0.00418446982496512 step_size: 1.0 iter: 99 cost: 265.9197798572289 gradient_norm: 520.104790952994 max_violation: 0.004141784753720734 step_size: 1.0 iter: 100 cost: 265.9099033943395 gradient_norm: 514.8875822488887 max_violation: 0.004099958126312475 step_size: 1.0 Test Summary: | Pass Total Time Solve: acrobot | 1 1 6m19.7s ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University al iter: 1 ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University iter: 1 cost: 261.2537798738653 gradient_norm: 885.6763002794513 max_violation: 1.1807656674637883 step_size: 1.0 iter: 2 cost: 69.99469960068207 gradient_norm: 376.08357134305186 max_violation: 0.766429330514935 step_size: 1.0 iter: 3 cost: 34.54977364243712 gradient_norm: 193.82532155965612 max_violation: 0.5197983639867401 step_size: 1.0 iter: 4 cost: 22.539037764763805 gradient_norm: 111.7024513072441 max_violation: 0.4196158004810382 step_size: 1.0 iter: 5 cost: 17.035664625358486 gradient_norm: 69.14467761180012 max_violation: 0.37323467952446965 step_size: 1.0 iter: 6 cost: 14.062954292496705 gradient_norm: 45.607762506571646 max_violation: 0.34188493819304266 step_size: 1.0 iter: 7 cost: 12.272616098482587 gradient_norm: 31.744197515746393 max_violation: 0.3195794259745215 step_size: 1.0 iter: 8 cost: 11.110324366994146 gradient_norm: 28.481409161315987 max_violation: 0.30283107541267995 step_size: 1.0 iter: 9 cost: 10.312569004061332 gradient_norm: 25.725116998667954 max_violation: 0.28976177042682494 step_size: 1.0 iter: 10 cost: 9.740976036112503 gradient_norm: 24.387263942641127 max_violation: 0.27926490324135944 step_size: 1.0 iter: 11 cost: 9.317182750501477 gradient_norm: 23.27948171916522 max_violation: 0.270642534988605 step_size: 1.0 iter: 12 cost: 8.99409364960746 gradient_norm: 22.133658624582665 max_violation: 0.2634309744732146 step_size: 1.0 iter: 13 cost: 8.742010825607291 gradient_norm: 21.003710960323513 max_violation: 0.25730926409585564 step_size: 1.0 iter: 14 cost: 8.541448500865746 gradient_norm: 19.918615937273927 max_violation: 0.2520477436399142 step_size: 1.0 iter: 15 cost: 8.379187541400649 gradient_norm: 18.892634093629162 max_violation: 0.24747750308208794 step_size: 1.0 iter: 16 cost: 8.246001295724474 gradient_norm: 17.931443843477687 max_violation: 0.243471404916475 step_size: 1.0 iter: 17 cost: 8.135289721002943 gradient_norm: 17.035806102872616 max_violation: 0.2399318426078958 step_size: 1.0 iter: 18 cost: 8.042229513640368 gradient_norm: 16.203750801407285 max_violation: 0.23678258854916034 step_size: 1.0 iter: 19 cost: 7.963228813262942 gradient_norm: 15.431879152844623 max_violation: 0.23396321467267356 step_size: 1.0 iter: 20 cost: 7.895567773780683 gradient_norm: 14.71613518888006 max_violation: 0.2314251818556059 step_size: 1.0 iter: 21 cost: 7.837155934003607 gradient_norm: 14.05225742418412 max_violation: 0.2291290411089797 step_size: 1.0 iter: 22 cost: 7.786364917793634 gradient_norm: 13.436037151680694 max_violation: 0.22704239307714413 step_size: 1.0 iter: 23 cost: 7.741910858273423 gradient_norm: 12.86345977297741 max_violation: 0.22513837563732508 step_size: 1.0 iter: 24 cost: 7.702770335780684 gradient_norm: 12.330775619639935 max_violation: 0.223394526194177 step_size: 1.0 iter: 25 cost: 7.668119333509148 gradient_norm: 11.834528666306948 max_violation: 0.22179191431193956 step_size: 1.0 iter: 26 cost: 7.637288274827675 gradient_norm: 11.37156056170258 max_violation: 0.2203144723692816 step_size: 1.0 iter: 27 cost: 7.609728473089355 gradient_norm: 10.939000679422454 max_violation: 0.21894847327438605 step_size: 1.0 iter: 28 cost: 7.5849867970528555 gradient_norm: 10.534248743252592 max_violation: 0.21768211877573584 step_size: 1.0 iter: 29 cost: 7.562686328832223 gradient_norm: 10.154954010172425 max_violation: 0.21650521190799044 step_size: 1.0 iter: 30 cost: 7.542511446200534 gradient_norm: 9.798993394781991 max_violation: 0.2154088941268837 step_size: 1.0 iter: 31 cost: 7.5241962083383624 gradient_norm: 9.464449922833648 max_violation: 0.21438543266983068 step_size: 1.0 iter: 32 cost: 7.507515233952561 gradient_norm: 9.149592283243631 max_violation: 0.21342804726960818 step_size: 1.0 iter: 33 cost: 7.492276478169418 gradient_norm: 8.852855866270925 max_violation: 0.21253076796176984 step_size: 1.0 iter: 34 cost: 7.478315469141725 gradient_norm: 8.572825443102449 max_violation: 0.2116883176538611 step_size: 1.0 iter: 35 cost: 7.465490676384057 gradient_norm: 8.308219503864 max_violation: 0.21089601456018237 step_size: 1.0 iter: 36 cost: 7.453679763543525 gradient_norm: 8.057876191788143 max_violation: 0.21014969068297518 step_size: 1.0 iter: 37 cost: 7.442776537525081 gradient_norm: 7.820740728824099 max_violation: 0.20944562333843297 step_size: 1.0 iter: 38 cost: 7.432688449752018 gradient_norm: 7.595854208610376 max_violation: 0.2087804773531028 step_size: 1.0 iter: 39 cost: 7.423334538118871 gradient_norm: 7.382343627146472 max_violation: 0.2081512560379437 step_size: 1.0 iter: 40 cost: 7.414643722894794 gradient_norm: 7.179413023837764 max_violation: 0.20755525942109987 step_size: 1.0 iter: 41 cost: 7.406553388595878 gradient_norm: 6.986335612818852 max_violation: 0.20699004851539815 step_size: 1.0 iter: 42 cost: 7.399008198200706 gradient_norm: 6.802446793745567 max_violation: 0.20645341462638545 step_size: 1.0 iter: 43 cost: 7.391959097146254 gradient_norm: 6.627137941422962 max_violation: 0.2059433528896557 step_size: 1.0 iter: 44 cost: 7.385362473123337 gradient_norm: 6.45985088395812 max_violation: 0.20545803937275675 step_size: 1.0 iter: 45 cost: 7.379179444392276 gradient_norm: 6.300072989008616 max_violation: 0.2049958111936343 step_size: 1.0 iter: 46 cost: 7.373375254601611 gradient_norm: 6.147332786703153 max_violation: 0.2045551492013793 step_size: 1.0 iter: 47 cost: 7.367918756251549 gradient_norm: 6.001196066353447 max_violation: 0.2041346628427032 step_size: 1.0 iter: 48 cost: 7.362781968245788 gradient_norm: 5.861262391436014 max_violation: 0.20373307689846154 step_size: 1.0 iter: 49 cost: 7.357939695613454 gradient_norm: 5.727161984084324 max_violation: 0.20334921982621523 step_size: 1.0 iter: 50 cost: 7.353369201599009 gradient_norm: 5.598552936261505 max_violation: 0.2029820134865652 step_size: 1.0 iter: 51 cost: 7.349049924024784 gradient_norm: 5.475118710010506 max_violation: 0.20263046406533292 step_size: 1.0 iter: 52 cost: 7.34496322921335 gradient_norm: 5.35656589373689 max_violation: 0.20229365403219823 step_size: 1.0 iter: 53 cost: 7.341092197882067 gradient_norm: 5.242622185541038 max_violation: 0.2019707350005815 step_size: 1.0 iter: 54 cost: 7.337421438340977 gradient_norm: 5.133034578164165 max_violation: 0.20166092137318348 step_size: 1.0 iter: 55 cost: 7.333936923079356 gradient_norm: 5.0275677230832505 max_violation: 0.2013634846738297 step_size: 1.0 iter: 56 cost: 7.330625845447401 gradient_norm: 4.926002454107622 max_violation: 0.20107774848119497 step_size: 1.0 iter: 57 cost: 7.327476493652688 gradient_norm: 4.828134453115053 max_violation: 0.20080308389097912 step_size: 1.0 iter: 58 cost: 7.324478139716949 gradient_norm: 4.733773042605958 max_violation: 0.2005389054433122 step_size: 1.0 iter: 59 cost: 7.321620941393538 gradient_norm: 4.64274009160189 max_violation: 0.20028466746088736 step_size: 1.0 iter: 60 cost: 7.318895855341548 gradient_norm: 4.554869022929657 max_violation: 0.20003986075024294 step_size: 1.0 iter: 61 cost: 7.316294560101643 gradient_norm: 4.47000391137999 max_violation: 0.19980400962503886 step_size: 1.0 iter: 62 cost: 7.313809387626099 gradient_norm: 4.387998663338512 max_violation: 0.1995766692150367 step_size: 1.0 iter: 63 cost: 7.3114332622926375 gradient_norm: 4.318891416810995 max_violation: 0.19935742302960957 step_size: 1.0 iter: 64 cost: 7.309159646479266 gradient_norm: 4.2614430161156545 max_violation: 0.19914588074805462 step_size: 1.0 iter: 65 cost: 7.306982491904377 gradient_norm: 4.205440961225905 max_violation: 0.19894167621241277 step_size: 1.0 iter: 66 cost: 7.304896196042877 gradient_norm: 4.150833848380019 max_violation: 0.1987444656016777 step_size: 1.0 iter: 67 cost: 7.302895563020863 gradient_norm: 4.09757253229489 max_violation: 0.19855392576839925 step_size: 1.0 iter: 68 cost: 7.300975768469271 gradient_norm: 4.0456100154202375 max_violation: 0.19836975272122537 step_size: 1.0 iter: 69 cost: 7.299132327884227 gradient_norm: 3.994901342440709 max_violation: 0.19819166023870682 step_size: 1.0 iter: 70 cost: 7.297361068098634 gradient_norm: 3.945403499836873 max_violation: 0.1980193786011526 step_size: 1.0 iter: 71 cost: 7.295658101519613 gradient_norm: 3.8970753204244346 max_violation: 0.1978526534292424 step_size: 1.0 iter: 72 cost: 7.294019802828746 gradient_norm: 3.8498773926640872 max_violation: 0.19769124461888232 step_size: 1.0 iter: 73 cost: 7.292442787879104 gradient_norm: 3.803771974568054 max_violation: 0.19753492536320216 step_size: 1.0 iter: 74 cost: 7.290923894554755 gradient_norm: 3.7587229120288264 max_violation: 0.19738348125356087 step_size: 1.0 iter: 75 cost: 7.289460165386733 gradient_norm: 3.714695561357109 max_violation: 0.1972367094521399 step_size: 1.0 iter: 76 cost: 7.28804883174277 gradient_norm: 3.671656715862188 max_violation: 0.19709441792968274 step_size: 1.0 iter: 77 cost: 7.286687299430009 gradient_norm: 3.62957453626189 max_violation: 0.1969564247623623 step_size: 1.0 iter: 78 cost: 7.285373135567649 gradient_norm: 3.588418484737847 max_violation: 0.19682255748258193 step_size: 1.0 iter: 79 cost: 7.284104056602718 gradient_norm: 3.548159262458899 max_violation: 0.19669265247897094 step_size: 1.0 iter: 80 cost: 7.282877917356494 gradient_norm: 3.508768750404913 max_violation: 0.19656655444127047 step_size: 1.0 iter: 81 cost: 7.281692701001064 gradient_norm: 3.470219953278031 max_violation: 0.19644411584615984 step_size: 1.0 iter: 82 cost: 7.28054650987663 gradient_norm: 3.432486946391343 max_violation: 0.19632519648074798 step_size: 1.0 iter: 83 cost: 7.2794375570698175 gradient_norm: 3.3955448253297504 max_violation: 0.19620966300036713 step_size: 1.0 iter: 84 cost: 7.2783641586813435 gradient_norm: 3.3593696582735255 max_violation: 0.19609738851796976 step_size: 1.0 iter: 85 cost: 7.277324726719402 gradient_norm: 3.323938440791899 max_violation: 0.1959882522223797 step_size: 1.0 iter: 86 cost: 7.276317762561029 gradient_norm: 3.2892290530176655 max_violation: 0.19588213902326235 step_size: 1.0 iter: 87 cost: 7.275341850930356 gradient_norm: 3.25522021904111 max_violation: 0.19577893922049228 step_size: 1.0 al iter: 2 iter: 1 cost: 7.269944849743791 gradient_norm: 0.48354130657668726 max_violation: 0.0481756108564424 step_size: 1.0 iter: 2 cost: 7.253994869618226 gradient_norm: 0.13733625988558718 max_violation: 0.0017963190921093108 step_size: 1.0 iter: 3 cost: 7.252163371769252 gradient_norm: 0.12093728810343407 max_violation: 0.001811038634711104 step_size: 1.0 iter: 4 cost: 7.251086984969248 gradient_norm: 0.114766263279237 max_violation: 0.0018202529338060547 step_size: 1.0 iter: 5 cost: 7.250360358028719 gradient_norm: 0.1096676429055452 max_violation: 0.0018264790512261264 step_size: 1.0 Test Summary: | Pass Total Time Solve: car | 3 3 41.7s Testing IterativeLQR tests passed Testing completed after 739.84s PkgEval succeeded after 965.79s