Package evaluation of CompactBases on Julia 1.12.0-rc1.2 (995ff9db19*) started at 2025-07-14T15:50:47.238 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.75s ################################################################################ # Installation # Installing CompactBases... Resolving package versions... Updating `~/.julia/environments/v1.12/Project.toml` [2c0377a8] + CompactBases v0.3.14 Updating `~/.julia/environments/v1.12/Manifest.toml` [621f4979] + AbstractFFTs v1.5.0 [4c555306] + ArrayLayouts v1.11.1 ⌅ [aae01518] + BandedMatrices v0.17.38 ⌅ [8e7c35d0] + BlockArrays v0.16.43 ⌅ [ffab5731] + BlockBandedMatrices v0.12.10 [2c0377a8] + CompactBases v0.3.14 [b152e2b5] + CompositeTypes v0.1.4 ⌅ [7ae1f121] + ContinuumArrays v0.12.6 [ffbed154] + DocStringExtensions v0.9.5 ⌅ [5b8099bc] + DomainSets v0.6.7 ⌅ [442a2c76] + FastGaussQuadrature v0.5.1 [1a297f60] + FillArrays v1.13.0 [59287772] + Formatting v0.4.3 ⌅ [4858937d] + InfiniteArrays v0.12.15 [e1ba4f0e] + Infinities v0.1.11 [8197267c] + IntervalSets v0.7.11 [92d709cd] + IrrationalConstants v0.2.4 [692b3bcd] + JLLWrappers v1.7.0 ⌅ [5078a376] + LazyArrays v1.10.0 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 ⌅ [a3b82374] + MatrixFactorizations v2.2.0 [6fe1bfb0] + OffsetArrays v1.17.0 [aea7be01] + PrecompileTools v1.3.2 [21216c6a] + Preferences v1.4.3 ⌅ [c4ea9172] + QuasiArrays v0.9.8 [3cdcf5f2] + RecipesBase v1.3.4 [276daf66] + SpecialFunctions v2.5.1 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.12.0 [56ddb016] + Logging v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [2f01184e] + SparseArrays v1.12.0 [fa267f1f] + TOML v1.0.3 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.5+0 [bea87d4a] + SuiteSparse_jll v7.8.3+2 [8e850b90] + libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.17s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 449.74s ################################################################################ # Testing # Testing CompactBases Status `/tmp/jl_xhf5Bl/Project.toml` ⌅ [ec485272] ArnoldiMethod v0.2.0 ⌅ [aae01518] BandedMatrices v0.17.38 ⌅ [ffab5731] BlockBandedMatrices v0.12.10 [2c0377a8] CompactBases v0.3.14 ⌅ [7ae1f121] ContinuumArrays v0.12.6 ⌅ [442a2c76] FastGaussQuadrature v0.5.1 [1a297f60] FillArrays v1.13.0 [59287772] Formatting v0.4.3 [8197267c] IntervalSets v0.7.11 ⌅ [5078a376] LazyArrays v1.10.0 [6fe1bfb0] OffsetArrays v1.17.0 [08abe8d2] PrettyTables v2.4.0 [92933f4c] ProgressMeter v1.10.4 ⌅ [c4ea9172] QuasiArrays v0.9.8 [3cdcf5f2] RecipesBase v1.3.4 ⌅ [b0e4dd01] RollingFunctions v0.7.0 [b8865327] UnicodePlots v3.8.1 [37e2e46d] LinearAlgebra v1.12.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.12.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_xhf5Bl/Manifest.toml` [621f4979] AbstractFFTs v1.5.0 [22286c92] AccurateArithmetic v0.3.8 [79e6a3ab] Adapt v4.3.0 [66dad0bd] AliasTables v1.1.3 ⌅ [ec485272] ArnoldiMethod v0.2.0 ⌃ [4fba245c] ArrayInterface v7.10.0 [4c555306] ArrayLayouts v1.11.1 ⌅ [aae01518] BandedMatrices v0.17.38 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌅ [8e7c35d0] BlockArrays v0.16.43 ⌅ [ffab5731] BlockBandedMatrices v0.12.10 [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [35d6a980] ColorSchemes v3.30.0 [3da002f7] ColorTypes v0.12.1 [c3611d14] ColorVectorSpace v0.11.0 [5ae59095] Colors v0.13.1 [f70d9fcc] CommonWorldInvalidations v1.0.0 [2c0377a8] CompactBases v0.3.14 [34da2185] Compat v4.17.0 [b152e2b5] CompositeTypes v0.1.4 ⌅ [7ae1f121] ContinuumArrays v0.12.6 [d38c429a] Contour v0.6.3 [adafc99b] CpuId v0.3.1 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [ffbed154] DocStringExtensions v0.9.5 ⌅ [5b8099bc] DomainSets v0.6.7 ⌅ [442a2c76] FastGaussQuadrature v0.5.1 [1a297f60] FillArrays v1.13.0 [53c48c17] FixedPointNumbers v0.8.5 [59287772] Formatting v0.4.3 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 ⌅ [4858937d] InfiniteArrays v0.12.15 [e1ba4f0e] Infinities v0.1.11 [8197267c] IntervalSets v0.7.11 [92d709cd] IrrationalConstants v0.2.4 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.0 [8e2b3108] KahanSummation v0.3.1 [b964fa9f] LaTeXStrings v1.4.0 [10f19ff3] LayoutPointers v0.1.17 ⌅ [5078a376] LazyArrays v1.10.0 [2ab3a3ac] LogExpFunctions v0.3.29 [bdcacae8] LoopVectorization v0.12.172 [1914dd2f] MacroTools v0.5.16 [d125e4d3] ManualMemory v0.1.8 [299715c1] MarchingCubes v0.1.11 ⌅ [a3b82374] MatrixFactorizations v2.2.0 [e1d29d7a] Missings v1.2.0 [77ba4419] NaNMath v1.1.3 [6fe1bfb0] OffsetArrays v1.17.0 [bac558e1] OrderedCollections v1.8.1 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.2 [21216c6a] Preferences v1.4.3 [08abe8d2] PrettyTables v2.4.0 [92933f4c] ProgressMeter v1.10.4 [43287f4e] PtrArrays v1.3.0 ⌅ [c4ea9172] QuasiArrays v0.9.8 [3cdcf5f2] RecipesBase v1.3.4 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.1 ⌅ [b0e4dd01] RollingFunctions v0.7.0 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 [a2af1166] SortingAlgorithms v1.2.1 [276daf66] SpecialFunctions v2.5.1 [aedffcd0] Static v1.2.0 [0d7ed370] StaticArrayInterface v1.8.0 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.5 [892a3eda] StringManipulation v0.4.1 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [62fd8b95] TensorCore v0.1.1 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [b8865327] UnicodePlots v3.8.1 [3d5dd08c] VectorizationBase v0.21.71 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.12.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.5+0 [bea87d4a] SuiteSparse_jll v7.8.3+2 [8e850b90] libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition kron(FillArrays.RectDiagonal{T, V, Axes} where Axes<:Tuple{Base.AbstractUnitRange{T} where T, Base.AbstractUnitRange{T} where T} where V<:(FillArrays.AbstractFill{T, 1, Axes} where Axes) where T, FillArrays.RectDiagonal{T, V, Axes} where Axes<:Tuple{Base.AbstractUnitRange{T} where T, Base.AbstractUnitRange{T} where T} where V<:(FillArrays.AbstractFill{T, 1, Axes} where Axes) where T) in module FillArraysSparseArraysExt at deprecated.jl:213 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition dot(FillArrays.AbstractFill{T, 1, Axes} where Axes where T, Union{SparseArrays.AbstractCompressedVector{Tv, Ti}, Base.SubArray{Tv, 1, var"#s197", Tuple{Base.Slice{Base.OneTo{Int64}}, Int64}, false} where var"#s197"<:SparseArrays.AbstractSparseMatrixCSC{Tv, Ti}, Base.SubArray{Tv, 1, var"#s197", Tuple{Base.Slice{Base.OneTo{Int64}}}, false} where var"#s197"<:SparseArrays.AbstractSparseArray{Tv, Ti, 1}} where Ti where Tv) in module FillArraysSparseArraysExt at /home/pkgeval/.julia/packages/FillArrays/lVl4c/ext/FillArraysSparseArraysExt.jl:65 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition convert(Type{SparseArrays.AbstractSparseArray{Tv, Ti, N}}, FillArrays.Zeros{T, N, Axes} where Axes) where {T, Tv, Ti, N} in module FillArraysSparseArraysExt at /home/pkgeval/.julia/packages/FillArrays/lVl4c/ext/FillArraysSparseArraysExt.jl:31 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition convert(Type{SparseArrays.AbstractSparseArray{Tv, Ti, N} where N}, FillArrays.Zeros{T, N, Axes} where Axes where N) where {T, Tv, Ti} in module FillArraysSparseArraysExt at /home/pkgeval/.julia/packages/FillArrays/lVl4c/ext/FillArraysSparseArraysExt.jl:30 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition convert(Type{SparseArrays.AbstractSparseArray{Tv, Ti, N} where N where Ti}, FillArrays.Zeros{T, N, Axes} where Axes where N) where {T, Tv} in module FillArraysSparseArraysExt at /home/pkgeval/.julia/packages/FillArrays/lVl4c/ext/FillArraysSparseArraysExt.jl:29 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition convert(Type{SparseArrays.AbstractSparseArray{Tv, Ti, N} where N where Ti where Tv}, FillArrays.Zeros{T, N, Axes} where Axes where N) where {T} in module FillArraysSparseArraysExt at /home/pkgeval/.julia/packages/FillArrays/lVl4c/ext/FillArraysSparseArraysExt.jl:28 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition convert(Type{SparseArrays.AbstractSparseArray{T, Ti, 2} where Ti}, FillArrays.Zeros{T, 2, Axes} where Axes where T) where {T} in module FillArraysSparseArraysExt at /home/pkgeval/.julia/packages/FillArrays/lVl4c/ext/FillArraysSparseArraysExt.jl:26 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition convert(Type{SparseArrays.AbstractSparseArray{Tv, Ti, 2} where Ti where Tv}, FillArrays.Zeros{T, 2, Axes} where Axes) where {T} in module FillArraysSparseArraysExt at /home/pkgeval/.julia/packages/FillArrays/lVl4c/ext/FillArraysSparseArraysExt.jl:25 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition convert(Type{SparseArrays.AbstractSparseArray{T, Ti, 1} where Ti}, FillArrays.Zeros{T, 1, Axes} where Axes where T) where {T} in module FillArraysSparseArraysExt at /home/pkgeval/.julia/packages/FillArrays/lVl4c/ext/FillArraysSparseArraysExt.jl:20 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition convert(Type{SparseArrays.AbstractSparseArray{Tv, Ti, 1} where Ti where Tv}, FillArrays.Zeros{T, 1, Axes} where Axes) where {T} in module FillArraysSparseArraysExt at /home/pkgeval/.julia/packages/FillArrays/lVl4c/ext/FillArraysSparseArraysExt.jl:19 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition convert(Type{SparseArrays.AbstractSparseArray{Tv, Ti, 2}}, Union{FillArrays.RectDiagonal{T, FillArrays.Ones{T, 1, Tuple{Axes}}, Axes}, LinearAlgebra.Diagonal{T, FillArrays.Ones{T, 1, Tuple{Axes}}}} where Axes where Axes) where {T, Tv, Ti} in module FillArraysSparseArraysExt at /home/pkgeval/.julia/packages/FillArrays/lVl4c/ext/FillArraysSparseArraysExt.jl:47 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition convert(Type{SparseArrays.AbstractSparseArray{Tv, Ti, N} where N}, Union{FillArrays.RectDiagonal{T, FillArrays.Ones{T, 1, Tuple{Axes}}, Axes}, LinearAlgebra.Diagonal{T, FillArrays.Ones{T, 1, Tuple{Axes}}}} where Axes where Axes) where {T, Tv, Ti} in module FillArraysSparseArraysExt at /home/pkgeval/.julia/packages/FillArrays/lVl4c/ext/FillArraysSparseArraysExt.jl:45 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition convert(Type{SparseArrays.AbstractSparseArray{Tv, Ti, N} where N where Ti}, Union{FillArrays.RectDiagonal{T, FillArrays.Ones{T, 1, Tuple{Axes}}, Axes}, LinearAlgebra.Diagonal{T, FillArrays.Ones{T, 1, Tuple{Axes}}}} where Axes where Axes) where {T, Tv} in module FillArraysSparseArraysExt at /home/pkgeval/.julia/packages/FillArrays/lVl4c/ext/FillArraysSparseArraysExt.jl:42 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition convert(Type{SparseArrays.AbstractSparseArray{Tv, Ti, N} where N where Ti where Tv}, Union{FillArrays.RectDiagonal{T, FillArrays.Ones{T, 1, Tuple{Axes}}, Axes}, LinearAlgebra.Diagonal{T, FillArrays.Ones{T, 1, Tuple{Axes}}}} where Axes where Axes) where {T} in module FillArraysSparseArraysExt at /home/pkgeval/.julia/packages/FillArrays/lVl4c/ext/FillArraysSparseArraysExt.jl:41 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition convert(Type{SparseArrays.AbstractSparseArray{Tv, Ti, 2} where Ti}, Union{FillArrays.RectDiagonal{T, FillArrays.Ones{T, 1, Tuple{Axes}}, Axes}, LinearAlgebra.Diagonal{T, FillArrays.Ones{T, 1, Tuple{Axes}}}} where Axes where Axes) where {T, Tv} in module FillArraysSparseArraysExt at /home/pkgeval/.julia/packages/FillArrays/lVl4c/ext/FillArraysSparseArraysExt.jl:39 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition convert(Type{SparseArrays.AbstractSparseArray{Tv, Ti, 2} where Ti where Tv}, Union{FillArrays.RectDiagonal{T, FillArrays.Ones{T, 1, Tuple{Axes}}, Axes}, LinearAlgebra.Diagonal{T, FillArrays.Ones{T, 1, Tuple{Axes}}}} where Axes where Axes) where {T} in module FillArraysSparseArraysExt at /home/pkgeval/.julia/packages/FillArrays/lVl4c/ext/FillArraysSparseArraysExt.jl:38 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition (::Type{SparseArrays.SparseVector{Tv, Ti}})(FillArrays.Zeros{T, 1, Axes} where Axes where T) where {Tv, Ti} in module FillArraysSparseArraysExt at /home/pkgeval/.julia/packages/FillArrays/lVl4c/ext/FillArraysSparseArraysExt.jl:17 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition (::Type{SparseArrays.SparseVector{T, Ti} where Ti<:Integer})(FillArrays.Zeros{T, 1, Axes} where Axes where T) where {T} in module FillArraysSparseArraysExt at /home/pkgeval/.julia/packages/FillArrays/lVl4c/ext/FillArraysSparseArraysExt.jl:16 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition (::Type{SparseArrays.SparseMatrixCSC{Tv, Ti}})(FillArrays.Zeros{T, 2, Axes}) where {Tv, Ti<:Integer, T, Axes} in module FillArraysSparseArraysExt at /home/pkgeval/.julia/packages/FillArrays/lVl4c/ext/FillArraysSparseArraysExt.jl:23 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition (::Type{SparseArrays.SparseMatrixCSC{T, Ti} where Ti<:Integer})(FillArrays.Zeros{T, 2, Axes} where Axes where T) where {T} in module FillArraysSparseArraysExt at /home/pkgeval/.julia/packages/FillArrays/lVl4c/ext/FillArraysSparseArraysExt.jl:22 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition (::Type{SparseArrays.SparseMatrixCSC{Tv, Ti}})(Union{FillArrays.RectDiagonal{T, V, Axes}, LinearAlgebra.Diagonal{T, V}} where Axes where V<:(FillArrays.AbstractFill{T, 1, Axes} where Axes) where T) where {Tv, Ti} in module FillArraysSparseArraysExt at /home/pkgeval/.julia/packages/FillArrays/lVl4c/ext/FillArraysSparseArraysExt.jl:53 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition (::Type{SparseArrays.SparseMatrixCSC{Tv, Ti} where Ti<:Integer})(Union{FillArrays.RectDiagonal{T, V, Axes}, LinearAlgebra.Diagonal{T, V}} where Axes where V<:(FillArrays.AbstractFill{T, 1, Axes} where Axes) where T) where {Tv} in module FillArraysSparseArraysExt at /home/pkgeval/.julia/packages/FillArrays/lVl4c/ext/FillArraysSparseArraysExt.jl:50 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition (::Type{SparseArrays.SparseMatrixCSC{Tv, Ti}})(Union{FillArrays.RectDiagonal{T, FillArrays.Ones{T, 1, Tuple{Axes}}, Axes}, LinearAlgebra.Diagonal{T, FillArrays.Ones{T, 1, Tuple{Axes}}}} where Axes where Axes) where {T, Tv, Ti<:Integer} in module FillArraysSparseArraysExt at /home/pkgeval/.julia/packages/FillArrays/lVl4c/ext/FillArraysSparseArraysExt.jl:35 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition (::Type{SparseArrays.SparseMatrixCSC{Tv, Ti} where Ti<:Integer})(Union{FillArrays.RectDiagonal{T, FillArrays.Ones{T, 1, Tuple{Axes}}, Axes}, LinearAlgebra.Diagonal{T, FillArrays.Ones{T, 1, Tuple{Axes}}}} where Axes where Axes) where {T, Tv} in module FillArraysSparseArraysExt at /home/pkgeval/.julia/packages/FillArrays/lVl4c/ext/FillArraysSparseArraysExt.jl:33 overwritten in module FillArraysSparseArraysExt on the same line (check for duplicate calls to `include`). ┌ Warning: Replacing module `FillArraysSparseArraysExt` └ @ Base loading.jl:2514 Precompiling packages... 8490.1 ms ✓ ArnoldiMethod 1 dependency successfully precompiled in 9 seconds. 8 already precompiled. Precompiling packages... 5308.8 ms ✓ StatsBase 106570.7 ms ✓ UnicodePlots 2 dependencies successfully precompiled in 113 seconds. 47 already precompiled. Precompiling packages... 13812.9 ms ✓ StaticArrayInterface 1865.3 ms ✓ ColorVectorSpace → SpecialFunctionsExt 1675.0 ms ✓ StaticArrayInterface → StaticArrayInterfaceOffsetArraysExt 1718.0 ms ✓ CloseOpenIntervals 1923.4 ms ✓ LayoutPointers 18693.4 ms ✓ VectorizationBase 6566.8 ms ✓ SLEEFPirates 50253.5 ms ✓ LoopVectorization 6399.2 ms ✓ LoopVectorization → SpecialFunctionsExt 9 dependencies successfully precompiled in 103 seconds. 50 already precompiled. 2 dependencies had output during precompilation: ┌ LoopVectorization │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vreduce(typeof(Base.:(+)), Any) at /home/pkgeval/.julia/packages/LoopVectorization/ImqiY/src/simdfunctionals/mapreduce.jl └ ┌ VectorizationBase │ WARNING: Constructor for type "Int16" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "Int16" refers to `Base.Int16`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Int16 end`. │ Hint: To silence the warning, qualify `Int16` as `Base.Int16` in the method signature or explicitly `import Base: Int16`. │ WARNING: Constructor for type "Int64" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "Int64" refers to `Base.Int64`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Int64 end`. │ Hint: To silence the warning, qualify `Int64` as `Base.Int64` in the method signature or explicitly `import Base: Int64`. │ WARNING: Constructor for type "Int32" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "Int32" refers to `Base.Int32`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Int32 end`. │ Hint: To silence the warning, qualify `Int32` as `Base.Int32` in the method signature or explicitly `import Base: Int32`. │ WARNING: Constructor for type "UInt8" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "UInt8" refers to `Base.UInt8`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function UInt8 end`. │ Hint: To silence the warning, qualify `UInt8` as `Base.UInt8` in the method signature or explicitly `import Base: UInt8`. │ WARNING: Constructor for type "UInt16" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "UInt16" refers to `Base.UInt16`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function UInt16 end`. │ Hint: To silence the warning, qualify `UInt16` as `Base.UInt16` in the method signature or explicitly `import Base: UInt16`. │ WARNING: Constructor for type "Float32" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "Float32" refers to `Base.Float32`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Float32 end`. │ Hint: To silence the warning, qualify `Float32` as `Base.Float32` in the method signature or explicitly `import Base: Float32`. │ WARNING: Constructor for type "UInt64" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "UInt64" refers to `Base.UInt64`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function UInt64 end`. │ Hint: To silence the warning, qualify `UInt64` as `Base.UInt64` in the method signature or explicitly `import Base: UInt64`. │ WARNING: Constructor for type "Bool" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "Bool" refers to `Base.Bool`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Bool end`. │ Hint: To silence the warning, qualify `Bool` as `Base.Bool` in the method signature or explicitly `import Base: Bool`. │ WARNING: Constructor for type "Int8" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "Int8" refers to `Base.Int8`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Int8 end`. │ Hint: To silence the warning, qualify `Int8` as `Base.Int8` in the method signature or explicitly `import Base: Int8`. │ WARNING: Constructor for type "Float64" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "Float64" refers to `Base.Float64`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Float64 end`. │ Hint: To silence the warning, qualify `Float64` as `Base.Float64` in the method signature or explicitly `import Base: Float64`. │ WARNING: Constructor for type "UInt32" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "UInt32" refers to `Base.UInt32`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function UInt32 end`. │ Hint: To silence the warning, qualify `UInt32` as `Base.UInt32` in the method signature or explicitly `import Base: UInt32`. │ WARNING: Constructor for type "Float16" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "Float16" refers to `Base.Float16`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Float16 end`. │ Hint: To silence the warning, qualify `Float16` as `Base.Float16` in the method signature or explicitly `import Base: Float16`. └ Precompiling packages... 8229.6 ms ✓ UnicodePlots → IntervalSetsExt 1 dependency successfully precompiled in 9 seconds. 52 already precompiled. Precompiling packages... 6528.1 ms ✓ AccurateArithmetic 17088.1 ms ✓ RollingFunctions 2 dependencies successfully precompiled in 24 seconds. 58 already precompiled. Precompiling packages... 3222.1 ms ✓ ArrayInterface → ArrayInterfaceBandedMatricesExt 3858.5 ms ✓ ArrayInterface → ArrayInterfaceBlockBandedMatricesExt 2 dependencies successfully precompiled in 7 seconds. 25 already precompiled. 1 dependency had output during precompilation: ┌ ArrayInterface → ArrayInterfaceBandedMatricesExt │ WARNING: Constructor for type "BandedMatrixIndex" was extended in `ArrayInterfaceBandedMatricesExt` without explicit qualification or import. │ NOTE: Assumed "BandedMatrixIndex" refers to `ArrayInterface.BandedMatrixIndex`. This behavior is deprecated and may differ in future versions.` │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function BandedMatrixIndex end`. │ Hint: To silence the warning, qualify `BandedMatrixIndex` as `ArrayInterface.BandedMatrixIndex` in the method signature or explicitly `import ArrayInterface: BandedMatrixIndex`. └ Precompiling packages... 2505.4 ms ✓ StaticArrayInterface → StaticArrayInterfaceStaticArraysExt 1 dependency successfully precompiled in 3 seconds. 25 already precompiled. WARNING: method definition for #test_particle_in_a_box#13 at /home/pkgeval/.julia/packages/CompactBases/wrkDy/test/derivative_accuracy_utils.jl:156 declares type variable B but does not use it. WARNING: method definition for #test_singular_scheme#14 at /home/pkgeval/.julia/packages/CompactBases/wrkDy/test/derivative_accuracy_utils.jl:170 declares type variable B but does not use it. WARNING: method definition for #compute_diagonalization_errors#17 at /home/pkgeval/.julia/packages/CompactBases/wrkDy/test/derivative_accuracy_utils.jl:193 declares type variable B but does not use it. ┌ Warning: Need to test correctness of ImplicitDerivative in restricted bases └ @ Main ~/.julia/packages/CompactBases/wrkDy/test/fd/derivatives.jl:125 [ Info: FiniteDifferences derivative accuracy Progress: 12%|█████▏ | ETA: 0:00:59 Progress: 88%|███████████████████████████████████▉ | ETA: 0:00:01 Progress: 100%|█████████████████████████████████████████| Time: 0:00:10 ┌─────────────┬─────────────────────────┬─────────────────────────┬──────────────────────────┐ │ h │ δg [1.9999668257368828] │ δh [1.9998412537681958] │ δh′ [1.9997089449838656] │ ├─────────────┼─────────────────────────┼─────────────────────────┼──────────────────────────┤ │ 0.03125 │ 0.0312116 │ 0.902596 │ 0.309899 │ │ 0.015625 │ 0.00848843 │ 0.456107 │ 0.13137 │ │ 0.0078125 │ 0.00222861 │ 0.154105 │ 0.0421471 │ │ 0.00390625 │ 0.000568708 │ 0.0424089 │ 0.0108802 │ │ 0.00195312 │ 0.000143206 │ 0.0109224 │ 0.00274923 │ │ 0.000976562 │ 3.59014e-5 │ 0.00275458 │ 0.000689836 │ │ 0.000488281 │ 8.98601e-6 │ 0.000690509 │ 0.000172702 │ │ 0.000244141 │ 2.24772e-6 │ 0.000172786 │ 4.32013e-5 │ │ 0.00012207 │ 5.62074e-7 │ 4.32118e-5 │ 1.08032e-5 │ │ 6.10352e-5 │ 1.40536e-7 │ 1.08046e-5 │ 2.70117e-6 │ │ 3.05176e-5 │ 3.51362e-8 │ 2.70133e-6 │ 6.75851e-7 │ │ 1.52588e-5 │ 8.78432e-9 │ 6.75872e-7 │ 2.00025e-7 │ │ 7.62939e-6 │ 2.19611e-9 │ 1.9959e-7 │ 4.2494e-7 │ │ 3.8147e-6 │ 5.49045e-10 │ 4.24749e-7 │ 1.67881e-6 │ │ 1.90735e-6 │ 1.37513e-10 │ 1.86903e-6 │ 7.18066e-6 │ │ 9.53674e-7 │ 3.75823e-11 │ 6.92401e-6 │ 2.74506e-5 │ └─────────────┴─────────────────────────┴─────────────────────────┴──────────────────────────┘ ┌────────────────────────────────────────┐ -1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠊⡠⠊⠁⠀⣀⠀⠀⠀│ δg │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⢁⠔⠉⠀⠀⡠⠊⠀⠀⠀⠀│ δh │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⢁⠔⠁⠀⢀⠔⠊⠀⠀⠀⠀⠀⠀│ δh′ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⡡⠊⠁⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⡠⠊⠀⠀⡠⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠐⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⢊⠔⠊⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠈⠢⡈⠢⡀⠀⠀⠀⠀⠀⢀⠔⢁⠔⠁⠀⢀⠤⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ log10(error) │⠀⠀⠀⠀⠀⠀⠀⠀⠈⠢⡈⠢⡀⠀⣀⠔⣁⠔⠁⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠪⠛⠢⠊⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⡠⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -11 │⠀⠀⠀⠀⠀⠀⠈⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-7⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀-1⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀log10(h)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ [ Info: ImplicitFiniteDifferences derivative accuracy Progress: 12%|█████▏ | ETA: 0:00:33 Progress: 75%|██████████████████████████████▊ | ETA: 0:00:02 Progress: 100%|█████████████████████████████████████████| Time: 0:00:06 ┌─────────────┬────────────────────────┬────────────────────────┬─────────────────────────┐ │ h │ δg [4.327246115360989] │ δh [4.153488580939254] │ δh′ [4.068060110048131] │ ├─────────────┼────────────────────────┼────────────────────────┼─────────────────────────┤ │ 0.03125 │ 0.0106537 │ 0.298722 │ 0.129122 │ │ 0.015625 │ 0.00131112 │ 0.0767078 │ 0.0168038 │ │ 0.0078125 │ 5.92325e-5 │ 0.0129878 │ 0.00420642 │ │ 0.00390625 │ 3.25372e-6 │ 0.00072526 │ 0.000243813 │ │ 0.00195312 │ 1.9222e-7 │ 4.10095e-5 │ 1.49519e-5 │ │ 0.000976562 │ 1.1879e-8 │ 2.49515e-6 │ 9.29309e-7 │ │ 0.000488281 │ 7.41116e-10 │ 1.55063e-7 │ 5.80505e-8 │ │ 0.000244141 │ 4.6322e-11 │ 9.68706e-9 │ 3.67541e-9 │ │ 0.00012207 │ 2.90248e-12 │ 1.33757e-9 │ 2.30744e-9 │ │ 6.10352e-5 │ 4.7678e-13 │ 5.37484e-9 │ 9.81074e-9 │ │ 3.05176e-5 │ 7.89387e-13 │ 1.90986e-8 │ 3.69845e-8 │ │ 1.52588e-5 │ 1.56701e-12 │ 7.59888e-8 │ 1.50054e-7 │ │ 7.62939e-6 │ 3.12099e-12 │ 3.02974e-7 │ 5.90969e-7 │ │ 3.8147e-6 │ 6.21874e-12 │ 1.20799e-6 │ 2.34667e-6 │ │ 1.90735e-6 │ 1.35433e-11 │ 5.18672e-6 │ 1.00121e-5 │ │ 9.53674e-7 │ 2.53917e-11 │ 1.96428e-5 │ 3.83529e-5 │ └─────────────┴────────────────────────┴────────────────────────┴─────────────────────────┘ ┌────────────────────────────────────────┐ 0 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⢤⡴⠀⠀⠀│ δg │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⢔⠮⠒⣁⠔⠀⠀⠀│ δh │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠁⡠⠊⠀⠀⠀⠀⠀│ δh′ │⠀⠀⠀⠀⠀⠀⠰⠦⣤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⡴⠋⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠛⠶⣤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠮⠊⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠙⠳⢦⣄⡀⠀⠀⠀⠀⣠⠞⠁⢀⠔⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠛⠶⠒⠛⠁⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ log10(error) │⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠈⠉⠑⠒⠢⠤⠤⣀⣀⠀⠀⠀⢀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠉⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -20 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-7⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀-1⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀log10(h)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ [ Info: Uniform StaggeredFiniteDifferences derivative accuracy Progress: 12%|█████▏ | ETA: 0:00:12 Progress: 100%|█████████████████████████████████████████| Time: 0:00:02 ┌─────────────┬─────────────────────────┬─────────────────────────┬──────────────────────────┐ │ h │ δg [1.9999663550299933] │ δh [1.9998413609747636] │ δh′ [1.9997088944115025] │ ├─────────────┼─────────────────────────┼─────────────────────────┼──────────────────────────┤ │ 0.03125 │ 0.025274 │ 1.17668 │ 0.498569 │ │ 0.015625 │ 0.00826838 │ 0.493053 │ 0.168167 │ │ 0.0078125 │ 0.00221108 │ 0.152334 │ 0.0410682 │ │ 0.00390625 │ 0.000563411 │ 0.0418107 │ 0.0106135 │ │ 0.00195312 │ 0.000141821 │ 0.0107596 │ 0.00268065 │ │ 0.000976562 │ 3.5551e-5 │ 0.00271297 │ 0.000672554 │ │ 0.000488281 │ 8.8981e-6 │ 0.000680042 │ 0.000168371 │ │ 0.000244141 │ 2.22572e-6 │ 0.000170165 │ 4.21176e-5 │ │ 0.00012207 │ 5.56571e-7 │ 4.25561e-5 │ 1.05322e-5 │ │ 6.10352e-5 │ 1.3916e-7 │ 1.06406e-5 │ 2.63341e-6 │ │ 3.05176e-5 │ 3.47922e-8 │ 2.66034e-6 │ 6.59137e-7 │ │ 1.52588e-5 │ 8.69832e-9 │ 6.65728e-7 │ 2.05337e-7 │ │ 7.62939e-6 │ 2.17461e-9 │ 2.01865e-7 │ 4.91218e-7 │ │ 3.8147e-6 │ 5.43675e-10 │ 4.63257e-7 │ 3.06287e-6 │ │ 1.90735e-6 │ 1.36271e-10 │ 2.10483e-6 │ 7.95283e-6 │ │ 9.53674e-7 │ 3.75479e-11 │ 7.11268e-6 │ 2.79003e-5 │ └─────────────┴─────────────────────────┴─────────────────────────┴──────────────────────────┘ ┌────────────────────────────────────────┐ -1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⡠⠊⠀⠀⢀⠀⠀⠀│ δg │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⢉⠔⠉⠀⠀⡠⠒⠁⠀⠀⠀│ δh │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⢁⠔⠁⠀⢀⠔⠊⠀⠀⠀⠀⠀⠀│ δh′ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠚⡡⠒⠁⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⡠⠊⠀⠀⡠⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠐⠤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠤⢊⠤⠊⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠈⠢⡈⠒⢄⠀⠀⠀⠀⠀⢀⠔⢁⠔⠁⠀⢀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ log10(error) │⠀⠀⠀⠀⠀⠀⠀⠀⠈⠢⡀⠑⢄⠀⣀⠔⣁⠔⠁⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠢⠋⠢⠊⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⡠⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -11 │⠀⠀⠀⠀⠀⠀⠈⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-7⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀-1⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀log10(h)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ [ Info: Non-uniform StaggeredFiniteDifferences derivative accuracy Progress: 12%|█████▏ | ETA: 0:00:39 Progress: 75%|██████████████████████████████▊ | ETA: 0:00:02 Progress: 100%|█████████████████████████████████████████| Time: 0:00:06 ┌─────────────┬─────────────────────────┬─────────────────────────┬──────────────────────────┐ │ h │ δg [1.9999657435503622] │ δh [1.9998530920119901] │ δh′ [1.9997170672283044] │ ├─────────────┼─────────────────────────┼─────────────────────────┼──────────────────────────┤ │ 0.03125 │ 0.0189602 │ 0.762223 │ 0.221287 │ │ 0.015625 │ 0.00503126 │ 0.247737 │ 0.065511 │ │ 0.0078125 │ 0.00128919 │ 0.0676587 │ 0.01695 │ │ 0.00390625 │ 0.000325589 │ 0.0173971 │ 0.00429145 │ │ 0.00195312 │ 8.17645e-5 │ 0.00438933 │ 0.00107839 │ │ 0.000976562 │ 2.04842e-5 │ 0.00110094 │ 0.000270207 │ │ 0.000488281 │ 5.12623e-6 │ 0.000275596 │ 6.76231e-5 │ │ 0.000244141 │ 1.2822e-6 │ 6.89384e-5 │ 1.69144e-5 │ │ 0.00012207 │ 3.20628e-7 │ 1.72392e-5 │ 4.22964e-6 │ │ 6.10352e-5 │ 8.01669e-8 │ 4.31034e-6 │ 1.05756e-6 │ │ 3.05176e-5 │ 2.00429e-8 │ 1.07767e-6 │ 2.65366e-7 │ │ 1.52588e-5 │ 5.01089e-9 │ 2.70392e-7 │ 1.13663e-7 │ │ 7.62939e-6 │ 1.25274e-9 │ 1.12818e-7 │ 3.64408e-7 │ │ 3.8147e-6 │ 3.13226e-10 │ 3.63839e-7 │ 1.47547e-6 │ │ 1.90735e-6 │ 7.89131e-11 │ 1.44406e-6 │ 5.79615e-6 │ │ 9.53674e-7 │ 2.77874e-11 │ 5.81779e-6 │ 2.36124e-5 │ └─────────────┴─────────────────────────┴─────────────────────────┴──────────────────────────┘ ┌────────────────────────────────────────┐ -1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠒⡡⠒⠁⠀⠀⠀⠀│ δg │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⡠⠊⠀⢀⠤⠊⠀⠀⠀│ δh │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⢊⠔⠊⠀⢀⠔⠁⠀⠀⠀⠀⠀│ δh′ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⢁⠔⠁⠀⡠⠔⠁⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠔⣁⠔⠁⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠐⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⡠⠊⠀⢀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠐⢄⠑⢄⠀⠀⠀⠀⠀⠀⠀⢀⡠⠊⡠⠊⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ log10(error) │⠀⠀⠀⠀⠀⠀⠀⠀⠑⠢⡉⠢⡀⠀⠀⢀⠔⢁⠔⠉⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠢⢌⡢⢖⡡⠔⠁⠀⡠⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -11 │⠀⠀⠀⠀⠀⠀⠐⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-7⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀-1⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀log10(h)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ [ Info: FiniteDifferences particle-in-a-box eigenvalues convergence rate Progress: 25%|██████████▎ | ETA: 0:01:13 Progress: 100%|█████████████████████████████████████████| Time: 0:00:24 ┌─────────────┬───────────────────────┬───────────────────────┬────────────────────────┐ │ h │ 1 [2.008327312983383] │ 2 [1.999905293987712] │ 3 [1.9998835414188267] │ ├─────────────┼───────────────────────┼───────────────────────┼────────────────────────┤ │ 0.0078125 │ 0.000243894 │ 0.00390206 │ 0.0197523 │ │ 0.00390625 │ 6.14497e-5 │ 0.000983181 │ 0.00497723 │ │ 0.00195312 │ 1.54224e-5 │ 0.000246758 │ 0.0012492 │ │ 0.000976562 │ 3.86314e-6 │ 6.18102e-5 │ 0.000312914 │ │ 0.000488281 │ 9.66729e-7 │ 1.54676e-5 │ 7.83049e-5 │ │ 0.000244141 │ 2.41782e-7 │ 3.86881e-6 │ 1.95858e-5 │ │ 0.00012207 │ 6.03881e-8 │ 9.67398e-7 │ 4.89754e-6 │ │ 6.10352e-5 │ 1.49379e-8 │ 2.41832e-7 │ 1.22431e-6 │ └─────────────┴───────────────────────┴───────────────────────┴────────────────────────┘ ┌────────────────────────────────────────┐ -3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⢀⠔⠉⠀⠀⠀⠀⠀│ 1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠤⠊⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⢀⠀│ 2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⡠⠒⠁⠀⠀⠀⠀⠀⡠⠔⠁⠀│ 3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠁⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⢀⡠⠊⠀⠀⠀⠀⠀⢀⡠⠊⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠉⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ log10(error) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⡠⠊⠁⠀⠀⠀⠀⠀⡠⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠤⠊⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠒⠉⠀⠀⠀⠀⠀⢀⠔⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠤⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -8 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-5⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀-2⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀log10(h)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ [ Info: ImplicitFiniteDifferences particle-in-a-box eigenvalues convergence rate Progress: 25%|██████████▎ | ETA: 0:00:20 Progress: 100%|█████████████████████████████████████████| Time: 0:00:06 ┌─────────────┬──────────────────────┬───────────────────────┬───────────────────────┐ │ h │ 1 [4.67457889963784] │ 2 [4.007669480176429] │ 3 [4.010187362293662] │ ├─────────────┼──────────────────────┼───────────────────────┼───────────────────────┤ │ 0.0078125 │ 7.23293e-9 │ 4.62935e-7 │ 5.27374e-6 │ │ 0.00390625 │ 4.59357e-10 │ 2.93846e-8 │ 3.34716e-7 │ │ 0.00195312 │ 2.87903e-11 │ 1.85089e-9 │ 2.10831e-8 │ │ 0.000976562 │ 7.04325e-13 │ 1.1357e-10 │ 1.32195e-9 │ │ 0.000488281 │ 7.21201e-13 │ 8.88889e-12 │ 8.12008e-11 │ │ 0.000244141 │ 1.84697e-11 │ 7.17293e-12 │ 1.10987e-11 │ │ 0.00012207 │ 7.6648e-11 │ 3.79252e-11 │ 1.07498e-10 │ │ 6.10352e-5 │ 1.80115e-10 │ 5.64562e-11 │ 2.5203e-10 │ └─────────────┴──────────────────────┴───────────────────────┴───────────────────────┘ ┌────────────────────────────────────────┐ -8 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⠀⡜⠀⠀⠀⠀⠀⡔⠀│ 1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠃⠀⢀⠎⠀⠀⠀⠀⢀⠎⠀⠀│ 2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠁⠀⢠⠊⠀⠀⠀⠀⢀⠎⠀⠀⠀│ 3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜⠀⠀⢠⠃⠀⠀⠀⠀⢠⠃⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜⠀⠀⢠⠃⠀⠀⠀⠀⢀⠎⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⠭⣒⢄⡀⠀⠀⠀⠀⠀⠀⠀⢀⠎⠀⠀⢰⠁⠀⠀⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢄⣀⠀⠉⠚⢆⠀⠀⠀⠀⠀⢀⠜⠀⠀⡰⠁⠀⠀⠀⠀⡠⠃⠀⠀⠀⠀⠀⠀⠀│ log10(error) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠉⠒⢄⠳⡤⡀⠀⡰⠁⠀⠀⡔⠁⠀⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⢕⢼⡎⠀⠀⢀⠜⠀⠀⠀⠀⠀⢰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⠳⡒⠊⠉⠀⠀⠀⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⡀⠀⠀⠀⠀⠀⢀⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⡀⠀⠀⠀⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⠒⠒⠒⠚⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -13 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-5⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀-2⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀log10(h)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ [ Info: StaggeredFiniteDifferences hydrogen eigenvalues convergence rate Progress: 25%|██████████▎ | ETA: 0:00:06 Progress: 100%|█████████████████████████████████████████| Time: 0:00:02 ┌─────────────┬───────────────────────┬───────────────────────┬────────────────────────┐ │ h │ 1 [3.977861769716465] │ 2 [3.097263673352746] │ 3 [2.4342783268339185] │ ├─────────────┼───────────────────────┼───────────────────────┼────────────────────────┤ │ 0.0078125 │ 0.00387607 │ 0.000623986 │ 0.000466755 │ │ 0.00390625 │ 0.000101813 │ 7.29545e-5 │ 7.89953e-5 │ │ 0.00195312 │ 1.56128e-5 │ 8.51993e-6 │ 1.59774e-5 │ │ 0.000976562 │ 4.76837e-6 │ 1.10204e-6 │ 3.62403e-6 │ │ 0.000488281 │ 8.86683e-7 │ 1.49235e-7 │ 8.63707e-7 │ │ 0.000244141 │ 1.38183e-7 │ 2.01247e-8 │ 2.10485e-7 │ │ 0.00012207 │ 1.96276e-8 │ 2.66073e-9 │ 5.18954e-8 │ │ 6.10352e-5 │ 2.64392e-9 │ 3.45737e-10 │ 1.28784e-8 │ └─────────────┴───────────────────────┴───────────────────────┴────────────────────────┘ ┌────────────────────────────────────────┐ -2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠀│ 1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠁⠀│ 2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡔⠁⣠⠀│ 3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜⡠⠚⠁⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⡾⠊⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⡪⠋⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡤⠖⡩⠊⠀⠀⠀⠀⠀⠀⠀⠀│ log10(error) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡤⠞⠉⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠖⠉⢀⠔⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⡴⠋⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⢔⠝⠁⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠒⣁⠔⠁⠀⡠⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠔⠊⢀⠔⠉⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -9 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⢀⠔⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-5⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀-2⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀log10(h)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ [ Info: ImplicitFiniteDifferences hydrogen eigenvalues convergence rate Progress: 25%|██████████▎ | ETA: 0:00:23 Progress: 100%|█████████████████████████████████████████| Time: 0:00:07 ┌─────────────┬───────────────────────┬────────────────────────┬────────────────────────┐ │ h │ 1 [4.214332295957357] │ 2 [4.1481114926534755] │ 3 [4.1391014850093395] │ ├─────────────┼───────────────────────┼────────────────────────┼────────────────────────┤ │ 0.0078125 │ 0.0469573 │ 0.00364505 │ 0.00098683 │ │ 0.00390625 │ 0.00223635 │ 0.000189571 │ 5.19368e-5 │ │ 0.00195312 │ 0.000136277 │ 1.15955e-5 │ 3.17874e-6 │ │ 0.000976562 │ 8.5049e-6 │ 7.23611e-7 │ 1.98364e-7 │ │ 0.000488281 │ 5.32031e-7 │ 4.52616e-8 │ 1.24075e-8 │ │ 0.000244141 │ 3.32767e-8 │ 2.8309e-9 │ 7.76062e-10 │ │ 0.00012207 │ 2.08137e-9 │ 1.77729e-10 │ 4.92447e-11 │ │ 6.10352e-5 │ 1.30804e-10 │ 1.17318e-11 │ 3.78272e-12 │ └─────────────┴───────────────────────┴────────────────────────┴────────────────────────┘ ┌────────────────────────────────────────┐ -1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠀│ 1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀│ 2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠊⠀⢀⠔⠀│ 3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⢀⠔⢁⠔⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⡰⢁⠔⠁⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⡠⢊⠔⠁⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⡠⢊⠔⠁⠀⠀⠀⠀⠀⠀│ log10(error) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⡠⢊⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⡠⢊⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⡠⠊⡰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⡠⠊⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⡠⠊⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠁⠀⡠⠊⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⡠⠊⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -10 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⢀⠤⠊⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-5⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀-2⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀log10(h)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Pretty printing: Test Failed at /home/pkgeval/.julia/packages/CompactBases/wrkDy/test/fedvr/basics.jl:48 Expression: occursin("FEDVR{Float64} basis with 70 elements on 0.0..20.0", string(B)) Evaluated: occursin("FEDVR{Float64} basis with 70 elements on 0.0..20.0", "FEDVR{Float64} basis with 70 elements on 0.0 .. 20.0") Stacktrace: [1] top-level scope @ ~/.julia/packages/CompactBases/wrkDy/test/fedvr/basics.jl:46 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1776 [inlined] [3] macro expansion @ ~/.julia/packages/CompactBases/wrkDy/test/fedvr/basics.jl:48 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:680 [inlined] Pretty printing: Test Failed at /home/pkgeval/.julia/packages/CompactBases/wrkDy/test/fedvr/basics.jl:50 Expression: occursin("FEDVR{$(Ts)} basis with 70 elements on 0.0..20.0 with ECS @ 60.00° starting at 10.00", string(C)) Evaluated: occursin("FEDVR{ComplexF64} basis with 70 elements on 0.0..20.0 with ECS @ 60.00° starting at 10.00", "FEDVR{ComplexF64} basis with 70 elements on 0.0 .. 20.0 with ECS @ 60.00° starting at 10.00") Stacktrace: [1] top-level scope @ ~/.julia/packages/CompactBases/wrkDy/test/fedvr/basics.jl:46 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:1776 [inlined] [3] macro expansion @ ~/.julia/packages/CompactBases/wrkDy/test/fedvr/basics.jl:50 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.12/Test/src/Test.jl:680 [inlined] 4.967702 seconds (1.47 M allocations: 77.503 MiB, 99.97% compilation time) ┌ Warning: Need to implement/test basis inverses for restricted bases └ @ Main ~/.julia/packages/CompactBases/wrkDy/test/fedvr/scalar_operators.jl:56 ┌ Warning: Need to implement/test basis inverses for restricted bases └ @ Main ~/.julia/packages/CompactBases/wrkDy/test/fedvr/scalar_operators.jl:56 [ Info: FE-DVR derivative accuracy order = 2 extrema(Ns) = (32, 1000) Progress: 20%|████████▎ | ETA: 0:00:30 Progress: 100%|█████████████████████████████████████████| Time: 0:00:07 ┌────────────┬────────────────────────┬─────────────────────────┬──────────────────────────┐ │ h │ δg [2.001608574427828] │ δh [1.9916863868488421] │ δh′ [2.1174460361285212] │ ├────────────┼────────────────────────┼─────────────────────────┼──────────────────────────┤ │ 0.03125 │ 0.0359713 │ 0.847528 │ 0.235642 │ │ 0.0212766 │ 0.0150877 │ 0.838511 │ 0.344813 │ │ 0.0144928 │ 0.007768 │ 0.431796 │ 0.12678 │ │ 0.01 │ 0.00374095 │ 0.244204 │ 0.0698556 │ │ 0.00680272 │ 0.00174622 │ 0.123252 │ 0.0331502 │ │ 0.00462963 │ 0.000811077 │ 0.0597525 │ 0.0154877 │ │ 0.00315457 │ 0.000376729 │ 0.0283743 │ 0.00721861 │ │ 0.00215054 │ 0.000175005 │ 0.0133245 │ 0.00335884 │ │ 0.00146628 │ 8.13038e-5 │ 0.00622234 │ 0.00156165 │ │ 0.001 │ 3.77939e-5 │ 0.00289948 │ 0.000726188 │ └────────────┴────────────────────────┴─────────────────────────┴──────────────────────────┘ ┌────────────────────────────────────────┐ -1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠔⠉⠀⠀⠀⣀⠔⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ δg │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠔⠉⠀⠀⠀⣀⠔⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ δh │⠀⠀⠀⠀⠀⠀⠀⣀⠔⠉⠀⠀⠀⢀⠤⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠤⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ δh′ │⠀⠀⠀⠀⠀⡠⠚⠀⠀⠀⢀⡠⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠔⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡠⠔⠉⠀⠀⠀⡠⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠔⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠔⠊⠀⠀⠀⢀⠴⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠤⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⢀⡠⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ log10(error) │⡠⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢀⠔⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⡠⠜⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⣀⠔⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠤⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -5 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀-1⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀log10(h)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ order = 3 extrema(Ns) = (16, 317) Progress: 20%|████████▎ | ETA: 0:00:05 Progress: 40%|████████████████▍ | ETA: 0:00:02 Progress: 100%|█████████████████████████████████████████| Time: 0:00:01 ┌────────────┬─────────────────────────┬─────────────────────────┬─────────────────────────┐ │ h │ δg [2.2355387528038975] │ δh [1.9169732408585116] │ δh′ [1.978771811752636] │ ├────────────┼─────────────────────────┼─────────────────────────┼─────────────────────────┤ │ 0.0625 │ 0.0422607 │ 0.422783 │ 0.340208 │ │ 0.0434783 │ 0.0190956 │ 0.535062 │ 0.339088 │ │ 0.0322581 │ 0.00962287 │ 0.137493 │ 0.181051 │ │ 0.0232558 │ 0.0067228 │ 0.157467 │ 0.100234 │ │ 0.0166667 │ 0.00349825 │ 0.0778841 │ 0.0645242 │ │ 0.0119048 │ 0.00184706 │ 0.050846 │ 0.0334593 │ │ 0.00854701 │ 0.000965817 │ 0.0298558 │ 0.0181373 │ │ 0.00613497 │ 0.000501392 │ 0.0170388 │ 0.00950329 │ │ 0.00440529 │ 0.000259315 │ 0.00931193 │ 0.00494747 │ │ 0.00315457 │ 0.000133097 │ 0.00493393 │ 0.00254839 │ └────────────┴─────────────────────────┴─────────────────────────┴─────────────────────────┘ ┌────────────────────────────────────────┐ -1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⣔⠕⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ δg │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⡩⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠀⠀⠀⠀│ δh │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠒⢁⠜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠃⠀⠀⠀⠀│ δh′ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠊⡠⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠁⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠊⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ log10(error) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -4 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀-1⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀log10(h)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ order = 4 extrema(Ns) = (20, 317) Progress: 20%|████████▎ | ETA: 0:00:01 Progress: 100%|█████████████████████████████████████████| Time: 0:00:01 ┌────────────┬────────────────────────┬─────────────────────────┬────────────────────────┐ │ h │ δg [3.760715184509308] │ δh [2.0645122096879467] │ δh′ [3.43020464843222] │ ├────────────┼────────────────────────┼─────────────────────────┼────────────────────────┤ │ 0.05 │ 0.00547177 │ 0.292439 │ 0.193083 │ │ 0.0357143 │ 0.00399555 │ 0.0615463 │ 0.0548564 │ │ 0.027027 │ 0.00141257 │ 0.0924182 │ 0.0337453 │ │ 0.0196078 │ 0.000419187 │ 0.0633016 │ 0.0168284 │ │ 0.0144928 │ 0.000241747 │ 0.0351339 │ 0.00394727 │ │ 0.0107527 │ 7.92993e-5 │ 0.0205764 │ 0.00262544 │ │ 0.00793651 │ 3.2212e-5 │ 0.0110825 │ 0.000894897 │ │ 0.00581395 │ 1.22946e-5 │ 0.00582782 │ 0.000332572 │ │ 0.00429185 │ 4.84412e-6 │ 0.0031149 │ 0.000132226 │ │ 0.00315457 │ 1.89912e-6 │ 0.00165719 │ 5.1622e-5 │ └────────────┴────────────────────────┴─────────────────────────┴────────────────────────┘ ┌────────────────────────────────────────┐ -2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠁⠀⠀⠀⠀⠀⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀⢀⠀⠀⠀⠀⠀⠀│ δg │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠊⠀⠀⠀⠀⠀⠀⢀⡠⠎⠀⠀⠀⠀⠀⠀⡠⠒⠉⠁⠀⠀⠀⠀⠀⠀│ δh │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠒⠁⠀⠀⠀⠀⠀⠀⢠⠊⠁⠀⠀⠀⠀⠀⠀⢀⠜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ δh′ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⢠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠎⠀⠀⠀⠀⠀⠀⠀⢀⠤⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ log10(error) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠎⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -6 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀-1⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀log10(h)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ order = 5 extrema(Ns) = (20, 317) ┌────────────┬────────────────────────┬─────────────────────────┬─────────────────────────┐ │ h │ δg [4.050145495069955] │ δh [3.8973715760844967] │ δh′ [4.506107937318107] │ ├────────────┼────────────────────────┼─────────────────────────┼─────────────────────────┤ │ 0.05 │ 0.00260694 │ 0.198347 │ 0.0740966 │ │ 0.0357143 │ 0.0006482 │ 0.0503967 │ 0.0238505 │ │ 0.027027 │ 0.000227439 │ 0.03375 │ 0.00694585 │ │ 0.0196078 │ 9.8111e-5 │ 0.0159711 │ 0.00160138 │ │ 0.0144928 │ 1.85724e-5 │ 0.00330916 │ 0.00106451 │ │ 0.0107527 │ 9.23692e-6 │ 0.00230991 │ 0.000226311 │ │ 0.00793651 │ 2.57729e-6 │ 0.0006821 │ 8.48674e-5 │ │ 0.00581395 │ 7.65226e-7 │ 0.000210228 │ 2.7139e-5 │ │ 0.00429185 │ 2.33199e-7 │ 7.01377e-5 │ 8.00505e-6 │ │ 0.00315457 │ 6.87911e-8 │ 2.16357e-5 │ 2.3725e-6 │ └────────────┴────────────────────────┴─────────────────────────┴─────────────────────────┘ ┌────────────────────────────────────────┐ -2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠊⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ δg │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠔⠒⠁⠀⢀⡔⠁⠀⠀⠀⠀⠀⡔⠀⠀⠀⠀⠀⠀│ δh │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠊⠀⠀⡠⠒⠉⠁⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀│ δh′ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⢀⠤⠊⠀⠀⠀⠀⠀⣀⠔⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⡠⠊⠁⠀⠀⠀⠀⠀⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠔⠁⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⢀⡠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ log10(error) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⡠⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⢀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -8 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀-1⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀log10(h)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ order = 6 extrema(Ns) = (20, 317) ┌────────────┬────────────────────────┬────────────────────────┬─────────────────────────┐ │ h │ δg [5.484930367787877] │ δh [5.207123453210741] │ δh′ [5.791593693916592] │ ├────────────┼────────────────────────┼────────────────────────┼─────────────────────────┤ │ 0.05 │ 0.00129551 │ 0.052605 │ 0.0332708 │ │ 0.0357143 │ 0.00023452 │ 0.0264284 │ 0.00942801 │ │ 0.027027 │ 6.30712e-5 │ 0.00628277 │ 0.002549 │ │ 0.0196078 │ 9.53295e-6 │ 0.0011651 │ 0.000592541 │ │ 0.0144928 │ 5.46996e-6 │ 0.00094119 │ 0.000101774 │ │ 0.0107527 │ 7.13142e-7 │ 0.000251576 │ 4.84605e-5 │ │ 0.00793651 │ 2.00707e-7 │ 0.000101056 │ 9.68809e-6 │ │ 0.00581395 │ 4.66763e-8 │ 3.30105e-5 │ 1.37814e-6 │ │ 0.00429185 │ 9.29654e-9 │ 1.05513e-5 │ 3.79787e-7 │ │ 0.00315457 │ 1.93554e-9 │ 3.20583e-6 │ 8.97963e-8 │ └────────────┴────────────────────────┴────────────────────────┴─────────────────────────┘ ┌────────────────────────────────────────┐ -2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⢁⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀│ δg │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⢁⠔⠁⠀⠀⠀⢀⠀⠀⠀⠀⠀⠀│ δh │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠉⠉⡩⠊⠁⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀│ δh′ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠔⠁⠀⢀⠔⠁⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠒⠉⠀⢀⡠⠔⠃⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠤⠋⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⡰⠁⠀⠀⠀⠀⣀⡠⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ log10(error) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠊⠁⠀⠀⠀⢀⠜⠀⠀⠀⠀⢀⠜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠤⠃⠀⠀⠀⠀⢠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠔⠁⠀⠀⠀⠀⡠⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -9 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀-1⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀log10(h)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ order = 7 extrema(Ns) = (10, 317) Progress: 30%|████████████▎ | ETA: 0:00:00 Progress: 40%|████████████████▍ | ETA: 0:00:00 Progress: 100%|█████████████████████████████████████████| Time: 0:00:00 ┌────────────┬─────────────────────────┬────────────────────────┬─────────────────────────┐ │ h │ δg [7.2673729976422905] │ δh [5.300704298477056] │ δh′ [6.373269314756494] │ ├────────────┼─────────────────────────┼────────────────────────┼─────────────────────────┤ │ 0.1 │ 0.00537777 │ 0.246302 │ 0.140405 │ │ 0.0666667 │ 0.0019312 │ 0.0646102 │ 0.0412162 │ │ 0.0454545 │ 0.000205343 │ 0.032243 │ 0.0112785 │ │ 0.03125 │ 6.00941e-5 │ 0.00551557 │ 0.00180899 │ │ 0.0212766 │ 4.55558e-6 │ 0.000744998 │ 0.00022257 │ │ 0.0144928 │ 2.25777e-7 │ 0.000167027 │ 3.57412e-5 │ │ 0.01 │ 6.254e-8 │ 3.99416e-5 │ 4.6174e-6 │ │ 0.00680272 │ 9.30035e-9 │ 7.91434e-6 │ 2.89383e-7 │ │ 0.00462963 │ 8.67549e-10 │ 8.71309e-7 │ 4.3076e-8 │ │ 0.00315457 │ 1.01585e-10 │ 1.34717e-7 │ 8.39243e-8 │ └────────────┴─────────────────────────┴────────────────────────┴─────────────────────────┘ ┌────────────────────────────────────────┐ -2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠊⡠⠊⠀⠀⠀⠀⠀⣀⠤│ δg │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⢁⠔⠊⠀⠀⠀⠀⢀⠖⠉⠀⠀│ δh │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⢊⠔⠁⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀│ δh′ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠤⠊⢁⡠⠊⠀⠀⠀⢀⡠⠒⠁⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠁⢀⠔⠁⠀⠀⠀⢀⠎⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠊⠀⢀⠔⠁⠀⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⡠⠃⠀⠀⠀⠀⢀⠜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ log10(error) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⢀⠜⠀⠀⠀⠀⠀⢠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠁⠀⠀⢀⠤⠃⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠤⢄⣀⢀⠔⠁⠀⠀⠀⢀⡤⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -10 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀-1⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀log10(h)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ order = 8 extrema(Ns) = (10, 317) ┌────────────┬─────────────────────────┬────────────────────────┬─────────────────────────┐ │ h │ δg [7.3045902999488455] │ δh [6.910396403343729] │ δh′ [7.155748225462958] │ ├────────────┼─────────────────────────┼────────────────────────┼─────────────────────────┤ │ 0.1 │ 0.00307506 │ 0.180868 │ 0.0721652 │ │ 0.0666667 │ 0.000680322 │ 0.058206 │ 0.0242842 │ │ 0.0454545 │ 0.000183262 │ 0.011654 │ 0.00519792 │ │ 0.03125 │ 1.50895e-5 │ 0.00210772 │ 0.000842949 │ │ 0.0212766 │ 8.71414e-7 │ 0.000435666 │ 7.5297e-5 │ │ 0.0144928 │ 1.4814e-7 │ 6.71435e-5 │ 3.45046e-6 │ │ 0.01 │ 1.45643e-8 │ 6.76557e-6 │ 4.89768e-7 │ │ 0.00680272 │ 5.9355e-10 │ 3.6192e-7 │ 5.48314e-8 │ │ 0.00462963 │ 5.83858e-11 │ 7.6496e-8 │ 4.51955e-8 │ │ 0.00315457 │ 1.06399e-10 │ 2.31333e-7 │ 2.03333e-7 │ └────────────┴─────────────────────────┴────────────────────────┴─────────────────────────┘ ┌────────────────────────────────────────┐ -2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⡪⠊⠁⠀⠀⠀⠀⢀│ δg │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⢊⠕⠊⠀⠀⠀⠀⣀⡠⠒⠉│ δh │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠚⢀⠔⠁⠀⠀⠀⡠⠔⠉⠀⠀⠀⠀│ δh′ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠊⠀⡠⠊⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⢀⠎⠀⠀⠀⡠⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠃⠀⢀⡰⠁⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠎⠀⢀⠔⠁⠀⠀⠀⣠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ log10(error) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠀⠀⠀⠀⡠⠔⠁⢀⠔⠁⠀⠀⢀⠤⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠛⠶⣔⣉⣀⣀⠔⠁⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠒⠢⠤⠤⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -11 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀-1⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀log10(h)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ order = 9 extrema(Ns) = (10, 317) Progress: 80%|████████████████████████████████▊ | ETA: 0:00:00 Progress: 100%|█████████████████████████████████████████| Time: 0:00:00 ┌────────────┬────────────────────────┬────────────────────────┬─────────────────────────┐ │ h │ δg [8.154143683772197] │ δh [7.027769046341366] │ δh′ [7.456746202755429] │ ├────────────┼────────────────────────┼────────────────────────┼─────────────────────────┤ │ 0.1 │ 0.00226508 │ 0.0572536 │ 0.0492383 │ │ 0.0666667 │ 0.000409349 │ 0.0314329 │ 0.0114561 │ │ 0.0454545 │ 4.43306e-5 │ 0.00859653 │ 0.00248558 │ │ 0.03125 │ 7.34041e-6 │ 0.00146864 │ 0.000333485 │ │ 0.0212766 │ 5.00699e-7 │ 0.000130135 │ 2.12259e-5 │ │ 0.0144928 │ 1.39512e-8 │ 6.63298e-6 │ 1.0833e-6 │ │ 0.01 │ 1.07448e-9 │ 1.17063e-6 │ 1.32196e-7 │ │ 0.00680272 │ 9.3033e-11 │ 1.31972e-7 │ 3.22447e-8 │ │ 0.00462963 │ 7.08063e-11 │ 1.41611e-7 │ 1.18727e-7 │ │ 0.00315457 │ 1.43699e-10 │ 4.10578e-7 │ 3.56509e-7 │ └────────────┴────────────────────────┴────────────────────────┴─────────────────────────┘ ┌────────────────────────────────────────┐ -2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠔⡡⠔⠉⠀⠀⠀⠀│ δg │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠊⡠⠊⠁⠀⠀⠀⢀⡠⠚│ δh │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠁⡔⠊⠀⠀⠀⠀⡠⠒⠁⠀⠀│ δh′ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⡠⠊⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⢁⠜⠀⠀⠀⢀⠤⠊⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠃⡠⠃⠀⠀⢀⠎⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠖⠁⢀⠎⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ log10(error) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠢⢤⣀⠀⠀⠀⠀⡠⠒⠁⢀⠔⠁⠀⠀⢠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⠫⢍⠉⢀⠤⠒⠁⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠁⠀⠀⠀⠀⠀⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠒⠢⠤⠤⠒⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -11 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀-1⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀log10(h)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ order = 10 extrema(Ns) = (10, 317) ┌────────────┬───────────────────────┬────────────────────────┬────────────────────────┐ │ h │ δg [8.80691807728123] │ δh [6.758833558096309] │ δh′ [8.02666358290014] │ ├────────────┼───────────────────────┼────────────────────────┼────────────────────────┤ │ 0.1 │ 0.000816765 │ 0.0740489 │ 0.0308079 │ │ 0.0666667 │ 0.000232247 │ 0.0145084 │ 0.00725935 │ │ 0.0454545 │ 3.7524e-5 │ 0.00325017 │ 0.00121444 │ │ 0.03125 │ 3.05821e-6 │ 0.000465198 │ 0.000147498 │ │ 0.0212766 │ 1.15425e-7 │ 3.13881e-5 │ 9.79297e-6 │ │ 0.0144928 │ 3.52037e-9 │ 2.58367e-6 │ 3.20054e-7 │ │ 0.01 │ 3.72971e-10 │ 3.3033e-7 │ 2.29425e-8 │ │ 0.00680272 │ 2.13907e-11 │ 2.84413e-8 │ 2.38204e-8 │ │ 0.00462963 │ 7.26476e-11 │ 1.64124e-7 │ 1.45998e-7 │ │ 0.00315457 │ 2.17923e-10 │ 7.71529e-7 │ 6.22045e-7 │ └────────────┴───────────────────────┴────────────────────────┴────────────────────────┘ ┌────────────────────────────────────────┐ -3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠒⡡⠊⠀⠀⠀⠀⢀⠤⠚│ δg │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⢡⠊⠀⠀⠀⢀⠔⠉⠁⠀⠀│ δh │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠊⡔⠁⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀│ δh′ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⢡⠊⠀⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⡰⠁⠀⠀⢠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⡔⠁⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠢⣄⠀⠀⠀⠀⠀⠀⢀⠎⠀⢀⠜⠀⠀⠀⡔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ log10(error) │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⢦⡀⠀⢀⠔⠁⠀⡠⠃⠀⠀⢀⠜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠢⠧⠤⠤⠜⠀⠀⠀⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠤⣀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⠒⢄⡀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -11 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀-1⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀log10(h)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Derivative convergence rates: ┌───────┬─────────┬─────────┬─────────┐ │ Order │ pg │ ph │ ph′ │ ├───────┼─────────┼─────────┼─────────┤ │ 2.0 │ 2.00161 │ 1.99169 │ 2.11745 │ │ 3.0 │ 2.23554 │ 1.91697 │ 1.97877 │ │ 4.0 │ 3.76072 │ 2.06451 │ 3.4302 │ │ 5.0 │ 4.05015 │ 3.89737 │ 4.50611 │ │ 6.0 │ 5.48493 │ 5.20712 │ 5.79159 │ │ 7.0 │ 7.26737 │ 5.3007 │ 6.37327 │ │ 8.0 │ 7.30459 │ 6.9104 │ 7.15575 │ │ 9.0 │ 8.15414 │ 7.02777 │ 7.45675 │ │ 10.0 │ 8.80692 │ 6.75883 │ 8.02666 │ └───────┴─────────┴─────────┴─────────┘ ┌────────────────────────────────────────┐ 9 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠴│ pg │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠔⠊⠀⠀│ ph │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠔⠁⠀⢀⡠⠔⠊│ ph′ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠤⠤⠤⠤⠤⣔⣊⠤⠤⠒⠊⠁⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠊⠀⠀⣀⠔⡪⠒⠒⠒⠒⠒⠑⠒⠢⠤⢤│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠁⣀⠔⠊⢀⠜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⠼⠒⠉⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Error slope │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⡪⠎⠀⠀⢀⣀⡔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⢊⢔⠏⠉⠉⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠎⣠⠗⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣔⠥⡞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢀⠜⡩⠋⠁⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⡠⢃⠎⠀⠀⢠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢀⠜⡔⠁⠀⠀⡰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 2 │⣄⣀⣠⣤⡤⡣⠊⠀⣀⣀⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀10⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀FE-DVR order⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ [ Info: B-splines derivative accuracy k = 3 Progress: 20%|████████▎ | ETA: 0:00:12 Progress: 30%|████████████▎ | ETA: 0:00:08 Progress: 40%|████████████████▍ | ETA: 0:00:05 Progress: 50%|████████████████████▌ | ETA: 0:00:04 Progress: 60%|████████████████████████▋ | ETA: 0:00:03 Progress: 70%|████████████████████████████▊ | ETA: 0:00:02 Progress: 80%|████████████████████████████████▊ | ETA: 0:00:02 Progress: 90%|████████████████████████████████████▉ | ETA: 0:00:01 Progress: 100%|█████████████████████████████████████████| Time: 0:00:13 ┌────────────┬────────────────────────┬─────────────────────────┬─────────────────────────┐ │ h │ δg [7.044342285920604] │ δh [6.8854092287067745] │ δh′ [5.256985014022984] │ ├────────────┼────────────────────────┼─────────────────────────┼─────────────────────────┤ │ 0.01 │ 9.28879e-5 │ 0.0208056 │ 0.0118897 │ │ 0.00769231 │ 2.02641e-5 │ 0.00616754 │ 0.00228773 │ │ 0.00598802 │ 3.82438e-6 │ 0.00150163 │ 0.000805701 │ │ 0.00462963 │ 7.10609e-7 │ 0.000325343 │ 0.000230307 │ │ 0.00358423 │ 1.16715e-7 │ 5.57017e-5 │ 7.14384e-5 │ │ 0.00277778 │ 1.94471e-8 │ 9.6566e-6 │ 2.35767e-5 │ │ 0.00215054 │ 3.53771e-9 │ 1.66585e-6 │ 7.97766e-6 │ │ 0.00166667 │ 7.00507e-10 │ 3.09637e-7 │ 2.77523e-6 │ │ 0.00129032 │ 1.43639e-10 │ 6.10918e-8 │ 9.75544e-7 │ │ 0.001 │ 3.02786e-11 │ 1.26125e-8 │ 3.47414e-7 │ └────────────┴────────────────────────┴─────────────────────────┴─────────────────────────┘ ┌────────────────────────────────────────┐ -4 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⡴⠞⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠤⠊│ δg │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠤⠒⢉⠕⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠒⠊⠁⠀⠀│ δh │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠔⠒⠉⢀⠤⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠔⠉⠀⠀⠀⠀⠀⠀│ δh′ │⠀⠀⠀⠀⠀⢀⣀⠤⠒⠉⠁⠀⢀⡠⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠤⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣀⠤⠔⠊⠁⠀⠀⠀⠀⡠⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠉⠀⠀⠀⠀⠀⠀⡠⠔⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡠⠔⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ log10(error) │⠀⡠⠔⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠔⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠔⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⡠⠔⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⡠⠔⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⡠⠔⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -11 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀-2⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀log10(h)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ k = 4 Progress: 20%|████████▎ | ETA: 0:00:06 Progress: 30%|████████████▎ | ETA: 0:00:04 Progress: 40%|████████████████▍ | ETA: 0:00:03 Progress: 50%|████████████████████▌ | ETA: 0:00:03 Progress: 60%|████████████████████████▋ | ETA: 0:00:02 Progress: 70%|████████████████████████████▊ | ETA: 0:00:02 Progress: 80%|████████████████████████████████▊ | ETA: 0:00:02 Progress: 90%|████████████████████████████████████▉ | ETA: 0:00:02 Progress: 100%|█████████████████████████████████████████| Time: 0:00:21 ┌────────────┬───────────────────────┬────────────────────────┬─────────────────────────┐ │ h │ δg [9.63479222719649] │ δh [9.831265754404946] │ δh′ [8.284376954784523] │ ├────────────┼───────────────────────┼────────────────────────┼─────────────────────────┤ │ 0.01 │ 8.56336e-5 │ 0.027792 │ 0.0124506 │ │ 0.00769231 │ 1.05286e-5 │ 0.00476218 │ 0.00347393 │ │ 0.00598802 │ 3.3783e-6 │ 0.00150978 │ 0.000658864 │ │ 0.00462963 │ 3.29803e-7 │ 0.000167523 │ 5.1955e-5 │ │ 0.00358423 │ 3.02511e-8 │ 2.81159e-5 │ 1.22351e-5 │ │ 0.00277778 │ 3.07122e-9 │ 3.09316e-6 │ 1.33437e-6 │ │ 0.00215054 │ 2.59631e-10 │ 2.58545e-7 │ 1.86571e-7 │ │ 0.00166667 │ 2.23793e-11 │ 2.03858e-8 │ 3.14206e-8 │ │ 0.00129032 │ 2.19983e-12 │ 1.76737e-9 │ 5.75477e-9 │ │ 0.001 │ 2.56179e-13 │ 1.91527e-10 │ 1.13559e-9 │ └────────────┴───────────────────────┴────────────────────────┴─────────────────────────┘ ┌────────────────────────────────────────┐ -4 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⢊⡡⠔⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠚│ δg │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⡪⠔⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠤⠒⠁⠀⠀│ δh │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠤⣊⠕⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠒⠉⠁⠀⠀⠀⠀⠀⠀│ δh′ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⣔⠕⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡤⠞⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠤⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⠖⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢀⡠⢔⠮⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ log10(error) │⢀⡠⠔⠊⡡⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠤⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠁⢀⠔⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠤⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢀⠔⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⢀⡠⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⢀⡠⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -13 │⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀-2⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀log10(h)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ k = 5 Progress: 20%|████████▎ | ETA: 0:00:12 Progress: 30%|████████████▎ | ETA: 0:00:08 Progress: 40%|████████████████▍ | ETA: 0:00:06 Progress: 50%|████████████████████▌ | ETA: 0:00:05 Progress: 60%|████████████████████████▋ | ETA: 0:00:04 Progress: 70%|████████████████████████████▊ | ETA: 0:00:04 Progress: 80%|████████████████████████████████▊ | ETA: 0:00:04 Progress: 90%|████████████████████████████████████▉ | ETA: 0:00:02 Progress: 100%|█████████████████████████████████████████| Time: 0:00:35 ┌────────────┬─────────────────────────┬─────────────────────────┬──────────────────────────┐ │ h │ δg [12.913687104246955] │ δh [12.542996503848402] │ δh′ [12.162330158259307] │ ├────────────┼─────────────────────────┼─────────────────────────┼──────────────────────────┤ │ 0.01 │ 4.19858e-5 │ 0.0135442 │ 0.0147525 │ │ 0.00769231 │ 1.99041e-5 │ 0.0119707 │ 0.0074911 │ │ 0.00598802 │ 1.08406e-6 │ 0.000842029 │ 0.000439284 │ │ 0.00462963 │ 4.37734e-7 │ 0.000378017 │ 0.000269905 │ │ 0.00358423 │ 4.25365e-8 │ 4.89119e-5 │ 2.56156e-5 │ │ 0.00277778 │ 2.57741e-9 │ 3.26168e-6 │ 1.13686e-6 │ │ 0.00215054 │ 1.33614e-10 │ 1.78885e-7 │ 5.13213e-8 │ │ 0.00166667 │ 5.29736e-12 │ 8.55986e-9 │ 3.21881e-9 │ │ 0.00129032 │ 1.82391e-13 │ 2.95133e-10 │ 2.07096e-10 │ │ 0.001 │ 7.80227e-14 │ 7.74658e-11 │ 1.28218e-10 │ └────────────┴─────────────────────────┴─────────────────────────┴──────────────────────────┘ ┌────────────────────────────────────────┐ -4 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⡲⠝⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣀⡠⠤│ δg │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⡪⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠒⠉⠀⠀⠀⠀│ δh │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⢊⠕⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀│ δh′ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠤⢊⠔⠁⠀⠀⠀⠀⠀⠀⠀⢀⠤⠒⠒⠉⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⡡⠔⠁⠀⠀⠀⠀⠀⠀⢀⠤⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⢊⠥⠊⠀⠀⠀⠀⠀⠀⠀⡠⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⡠⡪⠔⠁⠀⠀⠀⠀⠀⠀⢀⠤⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ log10(error) │⠀⠀⠀⠀⠀⣠⠮⠊⠀⠀⠀⠀⠀⠀⠀⣀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⣀⣤⠤⠶⠞⠁⠀⠀⠀⠀⠀⠀⠀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠤⠒⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -14 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀-2⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀log10(h)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ k = 6 Progress: 20%|████████▎ | ETA: 0:00:12 Progress: 30%|████████████▎ | ETA: 0:00:09 Progress: 40%|████████████████▍ | ETA: 0:00:07 Progress: 50%|████████████████████▌ | ETA: 0:00:06 Progress: 60%|████████████████████████▋ | ETA: 0:00:06 Progress: 70%|████████████████████████████▊ | ETA: 0:00:06 Progress: 80%|████████████████████████████████▊ | ETA: 0:00:05 Progress: 90%|████████████████████████████████████▉ | ETA: 0:00:04 Progress: 100%|█████████████████████████████████████████| Time: 0:00:53 ┌────────────┬─────────────────────────┬─────────────────────────┬──────────────────────────┐ │ h │ δg [12.811920733249334] │ δh [14.217512314497128] │ δh′ [14.785567059661448] │ ├────────────┼─────────────────────────┼─────────────────────────┼──────────────────────────┤ │ 0.01 │ 6.70735e-5 │ 0.0413227 │ 0.027726 │ │ 0.00769231 │ 3.69411e-6 │ 0.00247409 │ 0.00256314 │ │ 0.00598802 │ 3.12104e-6 │ 0.00288557 │ 0.00213484 │ │ 0.00462963 │ 2.77098e-7 │ 0.000335122 │ 0.000146875 │ │ 0.00358423 │ 1.59002e-8 │ 1.82573e-5 │ 1.66062e-5 │ │ 0.00277778 │ 1.61406e-9 │ 3.17106e-6 │ 2.6429e-6 │ │ 0.00215054 │ 7.64502e-11 │ 1.94773e-7 │ 1.44537e-7 │ │ 0.00166667 │ 2.71299e-12 │ 5.77281e-9 │ 3.85408e-9 │ │ 0.00129032 │ 1.09907e-13 │ 1.36601e-10 │ 7.58412e-11 │ │ 0.001 │ 8.22358e-14 │ 8.51708e-11 │ 1.03233e-10 │ └────────────┴─────────────────────────┴─────────────────────────┴──────────────────────────┘ ┌────────────────────────────────────────┐ -4 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠞⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔│ δg │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠴⠚⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠔⠁⠀│ δh │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠔⠋⠉⠉⠉⠉⠀⠀⠀⠀│ δh′ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡠⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠤⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢀⡴⠕⠁⠀⠀⠀⠀⠀⠀⠀⢀⠤⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ log10(error) │⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⡠⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⡀⢀⣀⣀⣠⠞⠁⠀⠀⠀⠀⠀⠀⢀⡠⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠉⠉⠉⠉⠉⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⣀⠔⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠤⠤⠤⠒⠊⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -14 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀-2⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀log10(h)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌ Warning: Need to test inner products with restricted bases as well └ @ Main ~/.julia/packages/CompactBases/wrkDy/test/inner_products.jl:66 Test Summary: | Pass Fail Broken Total Time CompactBases | 1865 2 1 1868 15m08.5s Restrictions | 40 40 46.0s Finite-differences | 299 299 2m52.8s FE-DVR | 504 2 506 2m58.9s Simple tests | 26 26 0.8s Pretty printing | 2 2 11.0s Element access | 4 4 0.1s Complex scaling | 6 6 0.2s Real locations | 1 1 0.2s Block structure | 73 73 17.8s Set blocks | 14 14 19.6s Set blocks 2 | 46 46 20.7s Scalar operators | 2 2 1.2s Mass matrices and inverses | 18 18 1.8s Inner products | 4 4 5.6s Function interpolation | 9 9 24.7s Lazy derivatives | 8 8 27.1s Materialize derivatives | 12 12 0.8s Derivatives in restricted bases | 275 275 20.6s Derivative accuracy | 6 6 17.3s B-splines | 674 1 675 3m22.8s Interpolation | 16 16 15.7s Inner products | 100 100 20.7s Densities | 46 46 1m30.6s Linear operators | 48 48 24.4s Diagonal operators | 48 48 10.0s Matricization of DiagonalOperators | 24 24 20.6s ShiftAndInvert | 6 6 57.1s Orthogonality | 6 6 0.1s Basis transforms | 54 54 51.2s RNG of the outermost testset: Xoshiro(0xa4e2b2b1d7c2166a, 0xab3bb199693b8db9, 0x7cbff873dc772828, 0x0ac7cdb752ae2f2e, 0x61cc41c4a48bd29f) ERROR: LoadError: Some tests did not pass: 1865 passed, 2 failed, 0 errored, 1 broken. in expression starting at /home/pkgeval/.julia/packages/CompactBases/wrkDy/test/runtests.jl:33 Testing failed after 1234.75s ERROR: LoadError: Package CompactBases errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.12/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2458 [3] test @ /opt/julia/share/julia/stdlib/v1.12/Pkg/src/Operations.jl:2313 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:511 [5] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:164 [6] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:152 [7] test @ /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:152 [inlined] [8] #test#81 @ /opt/julia/share/julia/stdlib/v1.12/Pkg/src/API.jl:151 [inlined] [9] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [10] include(mod::Module, _path::String) @ Base ./Base.jl:305 [11] exec_options(opts::Base.JLOptions) @ Base ./client.jl:321 [12] _start() @ Base ./client.jl:554 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 1716.21s: package has test failures