Package evaluation of IterativeLQR on Julia 1.11.5 (760b2e5b73*) started at 2025-04-16T16:03:24.068 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.66s ################################################################################ # Installation # Installing IterativeLQR... Resolving package versions... Updating `~/.julia/environments/v1.11/Project.toml` [605048dd] + IterativeLQR v0.2.3 Updating `~/.julia/environments/v1.11/Manifest.toml` ⌅ [47edcb42] + ADTypes v0.2.7 ⌅ [c3fe647b] + AbstractAlgebra v0.27.10 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 ⌅ [79e6a3ab] + Adapt v3.7.2 [66dad0bd] + AliasTables v1.1.3 [dce04be8] + ArgCheck v2.5.0 ⌃ [4fba245c] + ArrayInterface v7.7.1 [30b0a656] + ArrayInterfaceCore v0.1.29 ⌅ [15f4f7f2] + AutoHashEquals v0.2.0 [198e06fe] + BangBang v0.4.4 [9718e550] + Baselet v0.1.1 [e2ed5e7c] + Bijections v0.1.9 [d360d2e6] + ChainRulesCore v1.25.1 [861a8166] + Combinatorics v1.0.2 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.16.0 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 ⌅ [187b0558] + ConstructionBase v1.5.6 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [244e2a9f] + DefineSingletons v0.1.2 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [31c24e10] + Distributions v0.25.119 [ffbed154] + DocStringExtensions v0.9.4 ⌅ [5b8099bc] + DomainSets v0.5.14 ⌅ [7c1d4256] + DynamicPolynomials v0.4.6 [4e289a0a] + EnumX v1.0.5 [e2ba6199] + ExprTools v0.1.10 [5789e2e9] + FileIO v1.17.0 [1a297f60] + FillArrays v1.13.0 [59287772] + Formatting v0.4.3 ⌅ [f6369f11] + ForwardDiff v0.10.38 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 ⌅ [46192b85] + GPUArraysCore v0.1.5 ⌅ [0b43b601] + Groebner v0.2.11 ⌅ [d5909c97] + GroupsCore v0.4.2 [34004b35] + HypergeometricFunctions v0.3.28 [615f187c] + IfElse v0.1.1 [22cec73e] + InitialValues v0.3.1 [18e54dd8] + IntegerMathUtils v0.1.2 [8197267c] + IntervalSets v0.7.10 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.4 [605048dd] + IterativeLQR v0.2.3 [82899510] + IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] + JLD2 v0.4.54 [692b3bcd] + JLLWrappers v1.7.0 [b964fa9f] + LaTeXStrings v1.4.0 ⌃ [2ee39098] + LabelledArrays v1.15.1 ⌅ [984bce1d] + LambertW v0.4.6 ⌅ [23fbe1c1] + Latexify v0.15.21 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.15 ⌅ [e9d8d322] + Metatheory v1.3.5 [128add7d] + MicroCollections v0.2.0 [e1d29d7a] + Missings v1.2.0 ⌅ [102ac46a] + MultivariatePolynomials v0.4.7 [d8a4904e] + MutableArithmetics v1.6.4 [77ba4419] + NaNMath v1.1.3 [bac558e1] + OrderedCollections v1.8.0 [90014a1f] + PDMats v0.11.34 [d96e819e] + Parameters v0.12.3 ⌃ [d236fae5] + PreallocationTools v0.4.24 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [27ebfcd6] + Primes v0.5.7 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [fb686558] + RandomExtensions v0.4.4 [3cdcf5f2] + RecipesBase v1.3.4 ⌅ [731186ca] + RecursiveArrayTools v2.38.10 [189a3867] + Reexport v1.2.2 [42d2dcc6] + Referenceables v0.1.3 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.8.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.13 ⌅ [0bca4576] + SciMLBase v1.98.1 [c0aeaf25] + SciMLOperators v0.3.13 [6c6a2e73] + Scratch v1.2.1 [efcf1570] + Setfield v1.1.2 [66db9d55] + SnoopPrecompile v1.0.3 [a2af1166] + SortingAlgorithms v1.2.1 [276daf66] + SpecialFunctions v2.5.1 [171d559e] + SplittablesBase v0.1.15 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.0 [2913bbd2] + StatsBase v0.34.4 [4c63d2b9] + StatsFuns v1.4.0 ⌅ [2efcf032] + SymbolicIndexingInterface v0.2.2 ⌅ [d1185830] + SymbolicUtils v0.19.11 ⌅ [0c5d862f] + Symbolics v4.14.0 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.0 ⌅ [8ea1fca8] + TermInterface v0.2.3 [ac1d9e8a] + ThreadsX v0.1.12 [a759f4b9] + TimerOutputs v0.5.28 [3bb67fe8] + TranscodingStreams v0.11.3 [28d57a85] + Transducers v0.4.84 [a2a6695c] + TreeViews v0.3.0 [781d530d] + TruncatedStacktraces v1.4.0 [3a884ed6] + UnPack v1.0.2 [700de1a5] + ZygoteRules v0.2.7 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.11.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.6.0+0 [e37daf67] + LibGit2_jll v1.7.2+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.6+0 [14a3606d] + MozillaCACerts_jll v2023.12.12 [4536629a] + OpenBLAS_jll v0.3.27+1 [05823500] + OpenLibm_jll v0.8.5+0 [bea87d4a] + SuiteSparse_jll v7.7.0+0 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.59.0+0 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 6.62s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 228.52s ################################################################################ # Testing # Testing IterativeLQR Status `/tmp/jl_Faw6VY/Project.toml` [6e4b80f9] BenchmarkTools v1.6.0 ⌅ [f6369f11] ForwardDiff v0.10.38 [605048dd] IterativeLQR v0.2.3 ⌅ [0c5d862f] Symbolics v4.14.0 [37e2e46d] LinearAlgebra v1.11.0 [2f01184e] SparseArrays v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_Faw6VY/Manifest.toml` ⌅ [47edcb42] ADTypes v0.2.7 ⌅ [c3fe647b] AbstractAlgebra v0.27.10 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.42 ⌅ [79e6a3ab] Adapt v3.7.2 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.5.0 ⌃ [4fba245c] ArrayInterface v7.7.1 [30b0a656] ArrayInterfaceCore v0.1.29 ⌅ [15f4f7f2] AutoHashEquals v0.2.0 [198e06fe] BangBang v0.4.4 [9718e550] Baselet v0.1.1 [6e4b80f9] BenchmarkTools v1.6.0 [e2ed5e7c] Bijections v0.1.9 [d360d2e6] ChainRulesCore v1.25.1 [861a8166] Combinatorics v1.0.2 [38540f10] CommonSolve v0.2.4 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.16.0 [b152e2b5] CompositeTypes v0.1.4 [a33af91c] CompositionsBase v0.1.2 ⌅ [187b0558] ConstructionBase v1.5.6 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [31c24e10] Distributions v0.25.119 [ffbed154] DocStringExtensions v0.9.4 ⌅ [5b8099bc] DomainSets v0.5.14 ⌅ [7c1d4256] DynamicPolynomials v0.4.6 [4e289a0a] EnumX v1.0.5 [e2ba6199] ExprTools v0.1.10 [5789e2e9] FileIO v1.17.0 [1a297f60] FillArrays v1.13.0 [59287772] Formatting v0.4.3 ⌅ [f6369f11] ForwardDiff v0.10.38 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 ⌅ [46192b85] GPUArraysCore v0.1.5 ⌅ [0b43b601] Groebner v0.2.11 ⌅ [d5909c97] GroupsCore v0.4.2 [34004b35] HypergeometricFunctions v0.3.28 [615f187c] IfElse v0.1.1 [22cec73e] InitialValues v0.3.1 [18e54dd8] IntegerMathUtils v0.1.2 [8197267c] IntervalSets v0.7.10 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.4 [605048dd] IterativeLQR v0.2.3 [82899510] IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] JLD2 v0.4.54 [692b3bcd] JLLWrappers v1.7.0 [682c06a0] JSON v0.21.4 [b964fa9f] LaTeXStrings v1.4.0 ⌃ [2ee39098] LabelledArrays v1.15.1 ⌅ [984bce1d] LambertW v0.4.6 ⌅ [23fbe1c1] Latexify v0.15.21 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.15 ⌅ [e9d8d322] Metatheory v1.3.5 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 ⌅ [102ac46a] MultivariatePolynomials v0.4.7 [d8a4904e] MutableArithmetics v1.6.4 [77ba4419] NaNMath v1.1.3 [bac558e1] OrderedCollections v1.8.0 [90014a1f] PDMats v0.11.34 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.2 ⌃ [d236fae5] PreallocationTools v0.4.24 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [27ebfcd6] Primes v0.5.7 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [fb686558] RandomExtensions v0.4.4 [3cdcf5f2] RecipesBase v1.3.4 ⌅ [731186ca] RecursiveArrayTools v2.38.10 [189a3867] Reexport v1.2.2 [42d2dcc6] Referenceables v0.1.3 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.8.0 [7e49a35a] RuntimeGeneratedFunctions v0.5.13 ⌅ [0bca4576] SciMLBase v1.98.1 [c0aeaf25] SciMLOperators v0.3.13 [6c6a2e73] Scratch v1.2.1 [efcf1570] Setfield v1.1.2 [66db9d55] SnoopPrecompile v1.0.3 [a2af1166] SortingAlgorithms v1.2.1 [276daf66] SpecialFunctions v2.5.1 [171d559e] SplittablesBase v0.1.15 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.0 [2913bbd2] StatsBase v0.34.4 [4c63d2b9] StatsFuns v1.4.0 ⌅ [2efcf032] SymbolicIndexingInterface v0.2.2 ⌅ [d1185830] SymbolicUtils v0.19.11 ⌅ [0c5d862f] Symbolics v4.14.0 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.0 ⌅ [8ea1fca8] TermInterface v0.2.3 [ac1d9e8a] ThreadsX v0.1.12 [a759f4b9] TimerOutputs v0.5.28 [3bb67fe8] TranscodingStreams v0.11.3 [28d57a85] Transducers v0.4.84 [a2a6695c] TreeViews v0.3.0 [781d530d] TruncatedStacktraces v1.4.0 [3a884ed6] UnPack v1.0.2 [700de1a5] ZygoteRules v0.2.7 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.11.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.11.0 [de0858da] Printf v1.11.0 [9abbd945] Profile v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.6.0+0 [e37daf67] LibGit2_jll v1.7.2+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.6+0 [14a3606d] MozillaCACerts_jll v2023.12.12 [4536629a] OpenBLAS_jll v0.3.27+1 [05823500] OpenLibm_jll v0.8.5+0 [bea87d4a] SuiteSparse_jll v7.7.0+0 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.59.0+0 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... Precompiling Symbolics... 3085.4 ms ? DomainSets 8260.5 ms ? SciMLBase Info Given Symbolics was explicitly requested, output will be shown live  WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 5264.7 ms ? Symbolics WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. Precompiling DomainSets... Info Given DomainSets was explicitly requested, output will be shown live  WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 2947.9 ms ? DomainSets WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. WARNING: Wrapping `Vararg` directly in UnionAll is deprecated (wrap the tuple instead). You may need to write `f(x::Vararg{T})` rather than `f(x::Vararg{<:T})` or `f(x::Vararg{T}) where T` instead of `f(x::Vararg{T} where T)`. Precompiling ArrayInterfaceCore... 978.7 ms ✓ SnoopPrecompile 1926.4 ms ✓ ArrayInterfaceCore 2 dependencies successfully precompiled in 3 seconds. 9 already precompiled. Precompiling SciMLBase... 2465.1 ms ✓ ZygoteRules Info Given SciMLBase was explicitly requested, output will be shown live  WARNING: Method definition islinear(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/2UPBq/src/interface.jl:311 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:7. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. 5683.3 ms ? SciMLBase 1 dependency successfully precompiled in 8 seconds. 62 already precompiled. 1 dependencies failed but may be precompilable after restarting julia 1 dependency had output during precompilation: ┌ SciMLBase │ [Output was shown above] └ WARNING: Method definition islinear(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/2UPBq/src/interface.jl:311 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:7. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. WARNING: Method definition islinear(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/2UPBq/src/interface.jl:311 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:7. WARNING: Method definition isconstant(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/2UPBq/src/interface.jl:254 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:8. Precompiling Groebner... 4175.9 ms ✓ Groebner 1 dependency successfully precompiled in 4 seconds. 28 already precompiled. WARNING: Code.get_symbolify is deprecated, use get_rewrites instead. likely near /home/pkgeval/.julia/packages/Symbolics/UrqtQ/src/build_function.jl:130 Precompiling Distributions... 1575.0 ms ✓ PDMats 991.7 ms ✓ SortingAlgorithms 2045.7 ms ✓ QuadGK 1179.4 ms ✓ FillArrays → FillArraysPDMatsExt 4451.4 ms ✓ StatsBase 9045.9 ms ✓ Distributions 6 dependencies successfully precompiled in 20 seconds. 40 already precompiled. Precompiling StatsFunsChainRulesCoreExt... 4204.2 ms ✓ StatsFuns → StatsFunsChainRulesCoreExt 1 dependency successfully precompiled in 4 seconds. 24 already precompiled. Precompiling DistributionsTestExt... 2890.5 ms ✓ Distributions → DistributionsTestExt 1 dependency successfully precompiled in 3 seconds. 48 already precompiled. Precompiling DistributionsChainRulesCoreExt... 3339.9 ms ✓ Distributions → DistributionsChainRulesCoreExt 1 dependency successfully precompiled in 4 seconds. 51 already precompiled. Precompiling Latexify... 5174.6 ms ✓ Latexify 1 dependency successfully precompiled in 5 seconds. 12 already precompiled. Precompiling IterativeLQR... 2921.2 ms ? DomainSets 54775.8 ms ✓ JLD2 5925.2 ms ? SciMLBase 3345.6 ms ? Symbolics Info Given IterativeLQR was explicitly requested, output will be shown live  ┌ Warning: Module Symbolics with build ID ffffffff-ffff-ffff-0028-e10320058f07 is missing from the cache. │ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. └ @ Base loading.jl:2541 1750.3 ms ? IterativeLQR 1 dependency successfully precompiled in 70 seconds. 180 already precompiled. 3 dependencies precompiled but different versions are currently loaded. Restart julia to access the new versions. Otherwise, loading dependents of these packages may trigger further precompilation to work with the unexpected versions. 4 dependencies failed but may be precompilable after restarting julia 4 dependencies had output during precompilation: ┌ DomainSets │ WARNING: Method definition isapprox(IntervalSets.AbstractInterval{T} where T, IntervalSets.AbstractInterval{T} where T) in module IntervalSets at /home/pkgeval/.julia/packages/IntervalSets/kyCuf/src/IntervalSets.jl:296 overwritten in module DomainSets at /home/pkgeval/.julia/packages/DomainSets/aafhp/src/domains/interval.jl:52. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ ┌ Symbolics │ ┌ Warning: Module DomainSets with build ID ffffffff-ffff-ffff-0028-e10507794737 is missing from the cache. │ │ This may mean DomainSets [5b8099bc-c8ec-5219-889f-1d9e522a28bf] does not support precompilation but is imported by a module that does. │ └ @ Base loading.jl:2541 └ ┌ SciMLBase │ WARNING: Method definition islinear(Any) in module SciMLOperators at /home/pkgeval/.julia/packages/SciMLOperators/2UPBq/src/interface.jl:311 overwritten in module SciMLBase at /home/pkgeval/.julia/packages/SciMLBase/szsYq/src/operators/operators.jl:7. │ ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. └ ┌ IterativeLQR │ [Output was shown above] └ ┌ Warning: Module Symbolics with build ID ffffffff-ffff-ffff-0028-e10320058f07 is missing from the cache. │ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. └ @ Base loading.jl:2541 Test Summary: | Pass Total Time Objective | 7 7 39.9s Test Summary: | Pass Total Time Dynamics | 4 4 22.8s Test Summary: | Pass Total Time Constraints | 12 12 19.1s ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University al iter: 1 ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University iter: 1 cost: 13.73556196808013 gradient_norm: 9.738537125227333 max_violation: 3.1167417799952184 step_size: 1.0 iter: 2 cost: 7.194194893999767 gradient_norm: 4.880266378883017 max_violation: 3.111412835748066 step_size: 1.0 iter: 3 cost: 5.910419638371584 gradient_norm: 3.214194780195978 max_violation: 3.109777253126606 step_size: 1.0 iter: 4 cost: 5.460011258854504 gradient_norm: 2.3890875955977617 max_violation: 3.109039735986553 step_size: 1.0 iter: 5 cost: 5.251418503191425 gradient_norm: 1.899281891842421 max_violation: 3.1086175354092878 step_size: 1.0 iter: 6 cost: 5.13808070982056 gradient_norm: 1.5755418203348917 max_violation: 3.108342745197569 step_size: 1.0 iter: 7 cost: 5.069731333869272 gradient_norm: 1.3458512753866647 max_violation: 3.1081490648732877 step_size: 1.0 iter: 8 cost: 5.025365111842574 gradient_norm: 1.1744994375482236 max_violation: 3.108004933497733 step_size: 1.0 iter: 9 cost: 4.994945080077201 gradient_norm: 1.0417970792767461 max_violation: 3.10789335761669 step_size: 1.0 iter: 10 cost: 4.9731841449007135 gradient_norm: 0.9360084648632282 max_violation: 3.1078043521156276 step_size: 1.0 iter: 11 cost: 4.9570824096109725 gradient_norm: 0.849707722927812 max_violation: 3.107731654166434 step_size: 1.0 iter: 12 cost: 4.944834949527657 gradient_norm: 0.7779684413092529 max_violation: 3.107671131387413 step_size: 1.0 iter: 13 cost: 4.935302988486477 gradient_norm: 0.7173944469290463 max_violation: 3.107619944298545 step_size: 1.0 iter: 14 cost: 4.927739254048469 gradient_norm: 0.6655688438756413 max_violation: 3.107576075943601 step_size: 1.0 iter: 15 cost: 4.9216369024442574 gradient_norm: 0.6207249773635876 max_violation: 3.107538053373858 step_size: 1.0 iter: 16 cost: 4.916642328602176 gradient_norm: 0.5815416457522403 max_violation: 3.107504775355776 step_size: 1.0 iter: 17 cost: 4.912502753388858 gradient_norm: 0.5470110881925287 max_violation: 3.1074754017868123 step_size: 1.0 iter: 18 cost: 4.90903359307344 gradient_norm: 0.5163512741200446 max_violation: 3.107449280446806 step_size: 1.0 iter: 19 cost: 4.906097516200899 gradient_norm: 0.48894607437488624 max_violation: 3.107425897140057 step_size: 1.0 iter: 20 cost: 4.903590637467726 gradient_norm: 0.46430349724669784 max_violation: 3.1074048409414723 step_size: 1.0 iter: 21 cost: 4.901433198490429 gradient_norm: 0.4420259325078367 max_violation: 3.107385779457632 step_size: 1.0 iter: 22 cost: 4.899563143129073 gradient_norm: 0.4217885607266883 max_violation: 3.107368440885574 step_size: 1.0 iter: 23 cost: 4.897931603673365 gradient_norm: 0.4033234287612088 max_violation: 3.1073526007827366 step_size: 1.0 iter: 24 cost: 4.896499674914018 gradient_norm: 0.3864075296722182 max_violation: 3.1073380721635027 step_size: 1.0 iter: 25 cost: 4.895236072638865 gradient_norm: 0.3708537597626431 max_violation: 3.107324697984566 step_size: 1.0 iter: 26 cost: 4.894115409912495 gradient_norm: 0.35650397404059797 max_violation: 3.1073123453720823 step_size: 1.0 iter: 27 cost: 4.893116911641829 gradient_norm: 0.3432235932614615 max_violation: 3.1073009011365915 step_size: 1.0 al iter: 2 iter: 1 cost: 56.272672787352874 gradient_norm: 6.764955889565363 max_violation: 2.9377565377336863 step_size: 1.0 iter: 2 cost: 55.78897395877914 gradient_norm: 3.1939522357565693 max_violation: 2.9406339391659406 step_size: 1.0 iter: 3 cost: 55.700246554459525 gradient_norm: 2.08896405094137 max_violation: 2.94142308137491 step_size: 1.0 iter: 4 cost: 55.66917810856518 gradient_norm: 1.5517040311930979 max_violation: 2.9417763179493472 step_size: 1.0 iter: 5 cost: 55.65478061872977 gradient_norm: 1.2341984845947094 max_violation: 2.9419718508050687 step_size: 1.0 iter: 6 cost: 55.64695032679045 gradient_norm: 1.0245487716257458 max_violation: 2.942094041133597 step_size: 1.0 iter: 7 cost: 55.64222367654948 gradient_norm: 0.8757887104619351 max_violation: 2.9421766722203824 step_size: 1.0 iter: 8 cost: 55.639152820779806 gradient_norm: 0.7647595911315666 max_violation: 2.942235750194685 step_size: 1.0 iter: 9 cost: 55.63704553538475 gradient_norm: 0.6787237134565123 max_violation: 2.942279774997587 step_size: 1.0 iter: 10 cost: 55.635536953714 gradient_norm: 0.6100962502122327 max_violation: 2.9423136509222285 step_size: 1.0 iter: 11 cost: 55.63441992124491 gradient_norm: 0.5540791903165969 max_violation: 2.942340392397159 step_size: 1.0 iter: 12 cost: 55.63356972615072 gradient_norm: 0.5074892222869218 max_violation: 2.9423619470550175 step_size: 1.0 al iter: 3 iter: 1 cost: 477.5959829242451 gradient_norm: 137.90777586891954 max_violation: 2.2688837302632647 step_size: 1.0 iter: 2 cost: 404.00135860745957 gradient_norm: 155.39976468615964 max_violation: 1.7673716529907688 step_size: 1.0 iter: 3 cost: 343.12242422537855 gradient_norm: 109.73711745133477 max_violation: 1.5530812001489167 step_size: 1.0 iter: 4 cost: 311.6704600880582 gradient_norm: 89.76511404908042 max_violation: 1.3963627648906336 step_size: 1.0 iter: 5 cost: 295.67056927943975 gradient_norm: 80.9402668375635 max_violation: 1.303354586328813 step_size: 1.0 iter: 6 cost: 280.2854371238583 gradient_norm: 74.01731215597563 max_violation: 1.2028839251486518 step_size: 1.0 iter: 7 cost: 267.844344350941 gradient_norm: 67.12210223381767 max_violation: 1.113695545393107 step_size: 1.0 iter: 8 cost: 258.21870320115426 gradient_norm: 71.05964751280436 max_violation: 1.0429849967002447 step_size: 1.0 iter: 9 cost: 250.78075555249333 gradient_norm: 74.06493903966398 max_violation: 0.9882700479680704 step_size: 1.0 iter: 10 cost: 244.75713285801535 gradient_norm: 77.04827010347701 max_violation: 0.9446054046980095 step_size: 1.0 iter: 11 cost: 239.84063274113768 gradient_norm: 76.97792296595256 max_violation: 0.9080748026482675 step_size: 1.0 iter: 12 cost: 236.16136009442315 gradient_norm: 72.49804556362345 max_violation: 0.877485545825627 step_size: 1.0 iter: 13 cost: 233.3834234782871 gradient_norm: 66.43761037875166 max_violation: 0.8523403219466088 step_size: 1.0 iter: 14 cost: 231.13917761265347 gradient_norm: 60.588590252066695 max_violation: 0.8315555936753829 step_size: 1.0 iter: 15 cost: 229.27341527937597 gradient_norm: 55.37834416747177 max_violation: 0.8141004571832093 step_size: 1.0 iter: 16 cost: 227.7040614499659 gradient_norm: 64.06737876548202 max_violation: 0.7992085045654456 step_size: 1.0 iter: 17 cost: 226.37189561637604 gradient_norm: 74.3040101736698 max_violation: 0.7863284055634674 step_size: 1.0 iter: 18 cost: 225.23041152728376 gradient_norm: 81.46165211539808 max_violation: 0.7750581178571276 step_size: 1.0 iter: 19 cost: 224.24285300384724 gradient_norm: 86.32853220408579 max_violation: 0.7650979781365206 step_size: 1.0 iter: 20 cost: 223.38032047885312 gradient_norm: 89.50076765753023 max_violation: 0.7562198071847881 step_size: 1.0 iter: 21 cost: 222.6201767446393 gradient_norm: 91.41916391203438 max_violation: 0.7482465535819998 step_size: 1.0 iter: 22 cost: 221.94470648977722 gradient_norm: 92.40818690062186 max_violation: 0.7410386124849637 step_size: 1.0 iter: 23 cost: 221.34002069173312 gradient_norm: 92.70735200542592 max_violation: 0.7344843943395705 step_size: 1.0 iter: 24 cost: 220.79517748895242 gradient_norm: 92.49450828970816 max_violation: 0.7284936462289688 step_size: 1.0 iter: 25 cost: 220.30148670821677 gradient_norm: 91.90260754604117 max_violation: 0.7229925984050887 step_size: 1.0 iter: 26 cost: 219.85196882958917 gradient_norm: 91.03168075724363 max_violation: 0.7179203581329796 step_size: 1.0 iter: 27 cost: 219.44094261255879 gradient_norm: 89.95741005161995 max_violation: 0.7132261860097318 step_size: 1.0 iter: 28 cost: 219.0637172128681 gradient_norm: 88.73731139123463 max_violation: 0.7088674169701226 step_size: 1.0 iter: 29 cost: 218.71636594182795 gradient_norm: 87.41523955428661 max_violation: 0.704807862885378 step_size: 1.0 iter: 30 cost: 218.39556121694503 gradient_norm: 86.02470530923475 max_violation: 0.7010165788305245 step_size: 1.0 iter: 31 cost: 218.09845377978584 gradient_norm: 84.59134144675444 max_violation: 0.6974669047437176 step_size: 1.0 iter: 32 cost: 217.82258318739915 gradient_norm: 83.13475112447986 max_violation: 0.6941357156000092 step_size: 1.0 iter: 33 cost: 217.56581018286215 gradient_norm: 81.66990279756685 max_violation: 0.691002829577334 step_size: 1.0 iter: 34 cost: 217.32626443196654 gradient_norm: 80.2081891544257 max_violation: 0.688050536343292 step_size: 1.0 iter: 35 cost: 217.1023032177548 gradient_norm: 78.75823515718774 max_violation: 0.68526321725242 step_size: 1.0 iter: 36 cost: 216.8924781312634 gradient_norm: 77.3265175470396 max_violation: 0.6826270364837304 step_size: 1.0 iter: 37 cost: 216.69550775490538 gradient_norm: 75.91784190099503 max_violation: 0.6801296874908749 step_size: 1.0 iter: 38 cost: 216.51025495791183 gradient_norm: 74.53571152617647 max_violation: 0.6777601830441884 step_size: 1.0 iter: 39 cost: 216.3357078273445 gradient_norm: 73.18261383998795 max_violation: 0.6755086799942225 step_size: 1.0 iter: 40 cost: 216.17096352302633 gradient_norm: 71.86024351638457 max_violation: 0.6733663319720957 step_size: 1.0 iter: 41 cost: 216.01521452202195 gradient_norm: 70.56967695920704 max_violation: 0.6713251647789411 step_size: 1.0 iter: 42 cost: 215.8677368403341 gradient_norm: 69.311509148298 max_violation: 0.6693779703602893 step_size: 1.0 iter: 43 cost: 215.72787990625164 gradient_norm: 68.08596127566116 max_violation: 0.6675182161213682 step_size: 1.0 iter: 44 cost: 215.59505782346895 gradient_norm: 66.89296561382342 max_violation: 0.6657399669938417 step_size: 1.0 iter: 45 cost: 215.4687418102898 gradient_norm: 65.73223256952112 max_violation: 0.6640378181682953 step_size: 1.0 iter: 46 cost: 215.34845363860015 gradient_norm: 64.60330374657063 max_violation: 0.662406836798707 step_size: 1.0 iter: 47 cost: 215.23375992592986 gradient_norm: 63.505593983839496 max_violation: 0.6608425112932572 step_size: 1.0 iter: 48 cost: 215.12426715776488 gradient_norm: 62.43842467674106 max_violation: 0.6593407070502555 step_size: 1.0 iter: 49 cost: 215.01961733674912 gradient_norm: 61.401050187980985 max_violation: 0.6578976276935893 step_size: 1.0 iter: 50 cost: 214.91948417141305 gradient_norm: 60.39267876375558 max_violation: 0.6565097810197971 step_size: 1.0 iter: 51 cost: 214.82356973037122 gradient_norm: 59.412489071582385 max_violation: 0.6551739489969837 step_size: 1.0 iter: 52 cost: 214.73160149900107 gradient_norm: 58.45964324150682 max_violation: 0.6538871612604829 step_size: 1.0 iter: 53 cost: 214.6433297849068 gradient_norm: 57.533297110385575 max_violation: 0.6526466716362571 step_size: 1.0 iter: 54 cost: 214.55852542626528 gradient_norm: 56.63260822545985 max_violation: 0.6514499372940867 step_size: 1.0 iter: 55 cost: 214.4769777637524 gradient_norm: 55.75674205135402 max_violation: 0.6502946001917747 step_size: 1.0 iter: 56 cost: 214.3984928422889 gradient_norm: 54.90487673530473 max_violation: 0.6491784705207726 step_size: 1.0 iter: 57 cost: 214.32289181358604 gradient_norm: 54.07620671560031 max_violation: 0.648099511905023 step_size: 1.0 iter: 58 cost: 214.25000951446498 gradient_norm: 53.26994540198981 max_violation: 0.647055828139468 step_size: 1.0 iter: 59 cost: 214.17969319933704 gradient_norm: 52.485327112228646 max_violation: 0.6460456512840689 step_size: 1.0 iter: 60 cost: 214.11180140814898 gradient_norm: 51.72160841357583 max_violation: 0.6450673309539696 step_size: 1.0 iter: 61 cost: 214.0462029535768 gradient_norm: 50.97806898920234 max_violation: 0.6441193246676016 step_size: 1.0 iter: 62 cost: 213.98277601338708 gradient_norm: 50.254012126664186 max_violation: 0.6432001891324979 step_size: 1.0 iter: 63 cost: 213.92140731570828 gradient_norm: 49.548764907156105 max_violation: 0.642308572364024 step_size: 1.0 iter: 64 cost: 213.86199140652994 gradient_norm: 48.86167815905509 max_violation: 0.6414432065454014 step_size: 1.0 iter: 65 cost: 213.80442999009412 gradient_norm: 48.192126227645794 max_violation: 0.6406029015487911 step_size: 1.0 iter: 66 cost: 213.7486313340204 gradient_norm: 47.53950660261566 max_violation: 0.6397865390470105 step_size: 1.0 iter: 67 cost: 213.69450973199866 gradient_norm: 46.90323943724911 max_violation: 0.6389930671538466 step_size: 1.0 iter: 68 cost: 213.64198501777665 gradient_norm: 46.28276698684579 max_violation: 0.6382214955383971 step_size: 1.0 iter: 69 cost: 213.5909821249078 gradient_norm: 45.67755298829714 max_violation: 0.6374708909650977 step_size: 1.0 iter: 70 cost: 213.54143068739882 gradient_norm: 45.087081998862686 max_violation: 0.6367403732167691 step_size: 1.0 iter: 71 cost: 213.49326467695514 gradient_norm: 44.510858708306095 max_violation: 0.6360291113627592 step_size: 1.0 iter: 72 cost: 213.44642207303542 gradient_norm: 43.94840723602238 max_violation: 0.6353363203385376 step_size: 1.0 iter: 73 cost: 213.40084456234723 gradient_norm: 43.399270422193126 max_violation: 0.6346612578068025 step_size: 1.0 iter: 74 cost: 213.35647726481446 gradient_norm: 42.8630091202742 max_violation: 0.6340032212733835 step_size: 1.0 iter: 75 cost: 213.31326848336263 gradient_norm: 42.3392014964277 max_violation: 0.6333615454341155 step_size: 1.0 iter: 76 cost: 213.27116947517965 gradient_norm: 41.82744234047626 max_violation: 0.6327355997313511 step_size: 1.0 iter: 77 cost: 213.2301342423498 gradient_norm: 41.32734239141598 max_violation: 0.6321247861010275 step_size: 1.0 iter: 78 cost: 213.19011934000076 gradient_norm: 40.83852768048877 max_violation: 0.6315285368931383 step_size: 1.0 iter: 79 cost: 213.15108370029276 gradient_norm: 40.360638893171114 max_violation: 0.6309463129502393 step_size: 1.0 iter: 80 cost: 213.11298847075992 gradient_norm: 39.89333075178663 max_violation: 0.6303776018301224 step_size: 1.0 iter: 81 cost: 213.07579686566942 gradient_norm: 39.43627141926738 max_violation: 0.6298219161601915 step_size: 1.0 iter: 82 cost: 213.03947402920198 gradient_norm: 38.98914192477602 max_violation: 0.6292787921122756 step_size: 1.0 iter: 83 cost: 213.00398690937897 gradient_norm: 38.5516356112007 max_violation: 0.6287477879877232 step_size: 1.0 iter: 84 cost: 212.96930414177118 gradient_norm: 38.123457604650454 max_violation: 0.6282284829035629 step_size: 1.0 iter: 85 cost: 212.93539594211967 gradient_norm: 37.704324305555794 max_violation: 0.6277204755714116 step_size: 1.0 iter: 86 cost: 212.90223400708803 gradient_norm: 37.2939629012045 max_violation: 0.6272233831615752 step_size: 1.0 iter: 87 cost: 212.86979142243672 gradient_norm: 36.892110899057506 max_violation: 0.626736840245472 step_size: 1.0 iter: 88 cost: 212.83804257798576 gradient_norm: 36.498515680451995 max_violation: 0.6262604978101596 step_size: 1.0 iter: 89 cost: 212.8069630887854 gradient_norm: 36.11293407401735 max_violation: 0.6257940223392784 step_size: 1.0 iter: 90 cost: 212.7765297219764 gradient_norm: 35.73513194805626 max_violation: 0.6253370949552508 step_size: 1.0 iter: 91 cost: 212.7467203288653 gradient_norm: 35.36488382147728 max_violation: 0.6248894106180232 step_size: 1.0 iter: 92 cost: 212.71751378178732 gradient_norm: 35.001972492274156 max_violation: 0.6244506773760423 step_size: 1.0 iter: 93 cost: 212.68888991536434 gradient_norm: 34.64618868302795 max_violation: 0.6240206156655361 step_size: 1.0 iter: 94 cost: 212.66082947181144 gradient_norm: 34.29733070281734 max_violation: 0.6235989576544991 step_size: 1.0 iter: 95 cost: 212.6333140499599 gradient_norm: 33.95520412450784 max_violation: 0.6231854466280908 step_size: 1.0 iter: 96 cost: 212.60632605771295 gradient_norm: 33.619621477202436 max_violation: 0.6227798364124189 step_size: 1.0 iter: 97 cost: 212.57984866766273 gradient_norm: 33.29040195275428 max_violation: 0.6223818908339536 step_size: 1.0 iter: 98 cost: 212.55386577562342 gradient_norm: 32.96737112601655 max_violation: 0.6219913832119994 step_size: 1.0 iter: 99 cost: 212.52836196186186 gradient_norm: 32.65036068801273 max_violation: 0.6216080958819186 step_size: 1.0 iter: 100 cost: 212.50332245481889 gradient_norm: 32.33920819145331 max_violation: 0.6212318197469249 step_size: 1.0 al iter: 4 iter: 1 cost: 448.0283262874374 gradient_norm: 249.13391365314175 max_violation: 0.3679609816921472 step_size: 1.0 iter: 2 cost: 418.34381391628256 gradient_norm: 480.25704095621876 max_violation: 0.3536422342684191 step_size: 0.125 iter: 3 cost: 393.4332261655506 gradient_norm: 1600.7465845359793 max_violation: 0.3408293883177258 step_size: 0.25 iter: 4 cost: 380.96745020587895 gradient_norm: 3680.421699389406 max_violation: 0.3403045867807051 step_size: 0.5 iter: 5 cost: 356.3660294333389 gradient_norm: 4640.1168504499965 max_violation: 0.305844318126284 step_size: 1.0 iter: 6 cost: 329.1036632102622 gradient_norm: 3794.9118438438754 max_violation: 0.2766822438017922 step_size: 1.0 iter: 7 cost: 313.2299613502908 gradient_norm: 3201.4638201998587 max_violation: 0.2563767571547966 step_size: 1.0 iter: 8 cost: 302.7825333115842 gradient_norm: 2761.02055615581 max_violation: 0.24047566300504064 step_size: 1.0 iter: 9 cost: 295.4428992835658 gradient_norm: 2423.8455470319113 max_violation: 0.23192752534218464 step_size: 1.0 iter: 10 cost: 290.0516880733534 gradient_norm: 2158.724386582619 max_violation: 0.22961267204768365 step_size: 1.0 iter: 11 cost: 285.95649176803335 gradient_norm: 1945.3258998596639 max_violation: 0.22782392748962188 step_size: 1.0 iter: 12 cost: 282.76097407769697 gradient_norm: 1770.0862961072512 max_violation: 0.22635733051879203 step_size: 1.0 iter: 13 cost: 280.2111467194549 gradient_norm: 1623.7092268872918 max_violation: 0.22510831392929243 step_size: 1.0 iter: 14 cost: 278.13752661341937 gradient_norm: 1499.6498457811058 max_violation: 0.22401723712228572 step_size: 1.0 iter: 15 cost: 276.42327714163446 gradient_norm: 1393.183919538396 max_violation: 0.22304696175023508 step_size: 1.0 iter: 16 cost: 274.9856287549619 gradient_norm: 1300.8235151305423 max_violation: 0.22217266568386318 step_size: 1.0 iter: 17 cost: 273.7645571759006 gradient_norm: 1219.940968169806 max_violation: 0.22137679651877606 step_size: 1.0 iter: 18 cost: 272.71563346822376 gradient_norm: 1148.5207827646027 max_violation: 0.22064637465044123 step_size: 1.0 iter: 19 cost: 271.80537070306946 gradient_norm: 1084.9920213711748 max_violation: 0.21997145372039517 step_size: 1.0 iter: 20 cost: 271.00811558217805 gradient_norm: 1028.1125620129158 max_violation: 0.2193441898485755 step_size: 1.0 iter: 21 cost: 270.3039239522805 gradient_norm: 976.887549337373 max_violation: 0.21875825017384853 step_size: 1.0 iter: 22 cost: 269.67707879331795 gradient_norm: 930.51087330188 max_violation: 0.21820842043560562 step_size: 1.0 iter: 23 cost: 269.1150371324715 gradient_norm: 888.322464125312 max_violation: 0.21769033472883415 step_size: 1.0 iter: 24 cost: 268.60766903692235 gradient_norm: 849.776649354107 max_violation: 0.21720028334101604 step_size: 1.0 iter: 25 cost: 268.146699082081 gradient_norm: 814.4183782097966 max_violation: 0.21673507234995038 step_size: 1.0 iter: 26 cost: 267.7252905011222 gradient_norm: 781.8651279309977 max_violation: 0.21629191873497167 step_size: 1.0 iter: 27 cost: 267.33773146178686 gradient_norm: 751.7929728117374 max_violation: 0.21586837071815168 step_size: 1.0 iter: 28 cost: 266.979195621346 gradient_norm: 723.925743826128 max_violation: 0.2154622467476397 step_size: 1.0 iter: 29 cost: 266.6455577128892 gradient_norm: 698.0265120191455 max_violation: 0.21507158894281186 step_size: 1.0 iter: 30 cost: 266.33325091647896 gradient_norm: 673.8908405260862 max_violation: 0.21469462847408405 step_size: 1.0 iter: 31 cost: 266.0391571026368 gradient_norm: 651.3413989156004 max_violation: 0.214329761528798 step_size: 1.0 iter: 32 cost: 265.76052426369483 gradient_norm: 630.2236393459438 max_violation: 0.21397553532765468 step_size: 1.0 iter: 33 cost: 265.494907840088 gradient_norm: 610.4023094549472 max_violation: 0.2136306440720066 step_size: 1.0 iter: 34 cost: 265.2401342001038 gradient_norm: 591.7586300474779 max_violation: 0.21329393456341483 step_size: 1.0 iter: 35 cost: 264.99428498257083 gradient_norm: 574.1880016215106 max_violation: 0.21296442031364293 step_size: 1.0 iter: 36 cost: 264.75569996064814 gradient_norm: 557.5981263350756 max_violation: 0.21264130111393964 step_size: 1.0 iter: 37 cost: 264.52299333559995 gradient_norm: 541.9074453762718 max_violation: 0.21232398250482776 step_size: 1.0 iter: 38 cost: 264.29507451889896 gradient_norm: 527.0438018004004 max_violation: 0.2120120873443465 step_size: 1.0 iter: 39 cost: 264.07116135507334 gradient_norm: 512.9432532443818 max_violation: 0.21170545135103724 step_size: 1.0 iter: 40 cost: 263.85077400896927 gradient_norm: 499.5489829763303 max_violation: 0.21140409755382317 step_size: 1.0 iter: 41 cost: 263.6337029990964 gradient_norm: 486.8102898641582 max_violation: 0.2111081908131398 step_size: 1.0 iter: 42 cost: 263.41995367781175 gradient_norm: 474.68166765239954 max_violation: 0.21081798038470456 step_size: 1.0 iter: 43 cost: 263.2096775406135 gradient_norm: 463.1219987457003 max_violation: 0.21053374225349586 step_size: 1.0 iter: 44 cost: 263.00310394827153 gradient_norm: 452.0938827714156 max_violation: 0.21025573178302537 step_size: 1.0 iter: 45 cost: 262.8004833245345 gradient_norm: 441.5631024772582 max_violation: 0.20998415236847867 step_size: 1.0 iter: 46 cost: 262.6020472050477 gradient_norm: 431.49821130083404 max_violation: 0.2097191403186729 step_size: 1.0 iter: 47 cost: 262.40798505813524 gradient_norm: 421.8702166554462 max_violation: 0.20946076254568435 step_size: 1.0 iter: 48 cost: 262.2184345221285 gradient_norm: 412.6523318868397 max_violation: 0.20920902242500405 step_size: 1.0 iter: 49 cost: 262.0334807224209 gradient_norm: 403.81977456419224 max_violation: 0.20896386969426395 step_size: 1.0 iter: 50 cost: 261.85316080677615 gradient_norm: 395.3495953061156 max_violation: 0.20872521147058665 step_size: 1.0 iter: 51 cost: 261.6774708740916 gradient_norm: 387.22052716702586 max_violation: 0.20849292267721697 step_size: 1.0 iter: 52 cost: 261.50637350537556 gradient_norm: 379.4128497934869 max_violation: 0.20826685507730147 step_size: 1.0 iter: 53 cost: 261.3398049043463 gradient_norm: 371.9082651933839 max_violation: 0.2080468446809416 step_size: 1.0 iter: 54 cost: 261.1776811871341 gradient_norm: 364.6897834272947 max_violation: 0.20783271759570754 step_size: 1.0 iter: 55 cost: 261.0199036775081 gradient_norm: 357.7416172643636 max_violation: 0.20762429452400566 step_size: 1.0 iter: 56 cost: 260.86636323325905 gradient_norm: 351.04908518331416 max_violation: 0.20742139414711858 step_size: 1.0 iter: 57 cost: 260.7169437072043 gradient_norm: 344.598522206105 max_violation: 0.20722383562406854 step_size: 1.0 iter: 58 cost: 260.5715246724776 gradient_norm: 338.37719809632574 max_violation: 0.20703144040240762 step_size: 1.0 iter: 59 cost: 260.4299835410706 gradient_norm: 332.3732424357501 max_violation: 0.20684403350227676 step_size: 1.0 iter: 60 cost: 260.29219719180395 gradient_norm: 326.5755760997946 max_violation: 0.2066614444016266 step_size: 1.0 iter: 61 cost: 260.158043206839 gradient_norm: 320.9738486429573 max_violation: 0.20648350762197065 step_size: 1.0 iter: 62 cost: 260.027400798662 gradient_norm: 315.5583811227409 max_violation: 0.2063100630908834 step_size: 1.0 iter: 63 cost: 259.9001514938765 gradient_norm: 310.3201139011341 max_violation: 0.2061409563392047 step_size: 1.0 iter: 64 cost: 259.7761796268693 gradient_norm: 305.25055899314293 max_violation: 0.2059760385768108 step_size: 1.0 iter: 65 cost: 259.6553726854153 gradient_norm: 300.34175655634886 max_violation: 0.20581516668001676 step_size: 1.0 iter: 66 cost: 259.53762154142487 gradient_norm: 295.58623514486726 max_violation: 0.20565820311547034 step_size: 1.0 iter: 67 cost: 259.4228205929255 gradient_norm: 290.9769753831842 max_violation: 0.20550501581924285 step_size: 1.0 iter: 68 cost: 259.3108678377743 gradient_norm: 286.5073767435523 max_violation: 0.2053554780450524 step_size: 1.0 iter: 69 cost: 259.2016648951594 gradient_norm: 282.1712271385164 max_violation: 0.20520946819213037 step_size: 1.0 iter: 70 cost: 259.0951169874639 gradient_norm: 277.9626750670317 max_violation: 0.2050668696204827 step_size: 1.0 iter: 71 cost: 258.99113289236885 gradient_norm: 273.8762040799606 max_violation: 0.20492757045937537 step_size: 1.0 iter: 72 cost: 258.88962487288825 gradient_norm: 269.90660934628187 max_violation: 0.20479146341326526 step_size: 1.0 iter: 73 cost: 258.79050859138334 gradient_norm: 266.04897613293303 max_violation: 0.20465844556831536 step_size: 1.0 iter: 74 cost: 258.6937030122649 gradient_norm: 262.2986600176788 max_violation: 0.2045284182017686 step_size: 1.0 iter: 75 cost: 258.5991302970574 gradient_norm: 258.65126868209427 max_violation: 0.20440128659572165 step_size: 1.0 iter: 76 cost: 258.5067156946901 gradient_norm: 255.10264514064514 max_violation: 0.20427695985646954 step_size: 1.0 iter: 77 cost: 258.416387429227 gradient_norm: 251.64885227870056 max_violation: 0.20415535074008284 step_size: 1.0 iter: 78 cost: 258.32807658673653 gradient_norm: 248.28615858263257 max_violation: 0.2040363754847263 step_size: 1.0 iter: 79 cost: 258.2417170026241 gradient_norm: 245.0110249593545 max_violation: 0.20391995364991766 step_size: 1.0 iter: 80 cost: 258.15724515040023 gradient_norm: 241.8200925482254 max_violation: 0.20380600796284076 step_size: 1.0 iter: 81 cost: 258.0746000326349 gradient_norm: 238.71017144297636 max_violation: 0.2036944641716718 step_size: 1.0 iter: 82 cost: 257.9937230746407 gradient_norm: 235.67823024531285 max_violation: 0.20358525090580848 step_size: 1.0 iter: 83 cost: 257.9145580212693 gradient_norm: 232.72138637836397 max_violation: 0.20347829954282926 step_size: 1.0 iter: 84 cost: 257.8370508370863 gradient_norm: 229.8368970988859 max_violation: 0.20337354408197994 step_size: 1.0 iter: 85 cost: 257.76114961009984 gradient_norm: 227.02215115107998 max_violation: 0.2032709210239383 step_size: 1.0 iter: 86 cost: 257.6868044591362 gradient_norm: 224.2746610067368 max_violation: 0.20317036925661291 step_size: 1.0 iter: 87 cost: 257.61396744488957 gradient_norm: 221.59205564742857 max_violation: 0.20307182994670692 step_size: 1.0 iter: 88 cost: 257.5425924846493 gradient_norm: 218.97207384318162 max_violation: 0.20297524643676956 step_size: 1.0 iter: 89 cost: 257.472635270657 gradient_norm: 216.41255789152626 max_violation: 0.2028805641474749 step_size: 1.0 iter: 90 cost: 257.4040531920204 gradient_norm: 213.91144777555903 max_violation: 0.2027877304848933 step_size: 1.0 iter: 91 cost: 257.3368052601097 gradient_norm: 211.46677571429953 max_violation: 0.20269669475245422 step_size: 1.0 iter: 92 cost: 257.2708520373057 gradient_norm: 209.07666107154773 max_violation: 0.20260740806738298 step_size: 1.0 iter: 93 cost: 257.20615556902953 gradient_norm: 206.7393055986947 max_violation: 0.2025198232813752 step_size: 1.0 iter: 94 cost: 257.1426793188941 gradient_norm: 204.4529889824512 max_violation: 0.20243389490527441 step_size: 1.0 iter: 95 cost: 257.080388106882 gradient_norm: 202.21606467977804 max_violation: 0.20234957903752804 step_size: 1.0 iter: 96 cost: 257.01924805041835 gradient_norm: 200.02695601530618 max_violation: 0.20226683329624295 step_size: 1.0 iter: 97 cost: 256.9592265082162 gradient_norm: 197.88415252357984 max_violation: 0.202185616754615 step_size: 1.0 iter: 98 cost: 256.90029202676504 gradient_norm: 195.78620651733752 max_violation: 0.20210588987956024 step_size: 1.0 iter: 99 cost: 256.84241428935815 gradient_norm: 193.73172986854908 max_violation: 0.20202761447337547 step_size: 1.0 iter: 100 cost: 256.78556406752625 gradient_norm: 191.71939098218624 max_violation: 0.20195075361827008 step_size: 1.0 al iter: 5 iter: 1 cost: 573.6320011275513 gradient_norm: 28675.869883809653 max_violation: 0.15219475276210703 step_size: 0.5 iter: 2 cost: 532.9323214175988 gradient_norm: 25697.6645775515 max_violation: 0.1480320159503581 step_size: 0.25 iter: 3 cost: 438.97541889940595 gradient_norm: 19539.003888880237 max_violation: 0.13540814925224262 step_size: 1.0 iter: 4 cost: 367.4108985048716 gradient_norm: 14342.843058311684 max_violation: 0.10225691421464025 step_size: 1.0 iter: 5 cost: 334.0594672424839 gradient_norm: 11277.056525025515 max_violation: 0.0832565443807105 step_size: 1.0 iter: 6 cost: 314.6934844302129 gradient_norm: 9270.637830762813 max_violation: 0.06971853237325198 step_size: 1.0 iter: 7 cost: 302.6649130749448 gradient_norm: 7865.95313958574 max_violation: 0.05988243643268315 step_size: 1.0 iter: 8 cost: 294.68958247735804 gradient_norm: 6828.988754827794 max_violation: 0.052443144329358204 step_size: 1.0 iter: 9 cost: 289.1262882303492 gradient_norm: 6032.527184793264 max_violation: 0.046629838175278826 step_size: 1.0 iter: 10 cost: 285.0865026044079 gradient_norm: 5401.7994866948875 max_violation: 0.04196611492767549 step_size: 1.0 iter: 11 cost: 282.0562349593303 gradient_norm: 4890.06043079418 max_violation: 0.03814364708086576 step_size: 1.0 iter: 12 cost: 279.7216055403843 gradient_norm: 4466.607487212358 max_violation: 0.03495470167556408 step_size: 1.0 iter: 13 cost: 277.88216662864147 gradient_norm: 4110.451001029506 max_violation: 0.03225444861384352 step_size: 1.0 iter: 14 cost: 276.4050242515502 gradient_norm: 3806.7585460535593 max_violation: 0.02993892899851719 step_size: 1.0 iter: 15 cost: 275.19922748746444 gradient_norm: 3544.753321046292 max_violation: 0.027931635669999233 step_size: 1.0 iter: 16 cost: 274.20080985670563 gradient_norm: 3316.417737275853 max_violation: 0.026175037268163504 step_size: 1.0 iter: 17 cost: 273.3637062745331 gradient_norm: 3115.6641216724825 max_violation: 0.02462505163113149 step_size: 1.0 iter: 18 cost: 272.65404889717746 gradient_norm: 2937.7874007349274 max_violation: 0.02324734016251906 step_size: 1.0 iter: 19 cost: 272.046477913845 gradient_norm: 2779.0939531928207 max_violation: 0.022014761172693742 step_size: 1.0 iter: 20 cost: 271.52169280899324 gradient_norm: 2636.6438702246123 max_violation: 0.020905581029740383 step_size: 1.0 iter: 21 cost: 271.06478911697263 gradient_norm: 2508.0681690389524 max_violation: 0.019902192874824642 step_size: 1.0 iter: 22 cost: 270.6641051987473 gradient_norm: 2391.4367143717664 max_violation: 0.018990182695143187 step_size: 1.0 iter: 23 cost: 270.3104077029508 gradient_norm: 2285.161167129671 max_violation: 0.018157637768009383 step_size: 1.0 iter: 24 cost: 269.99630653295026 gradient_norm: 2187.9225853352054 max_violation: 0.017394627211425595 step_size: 1.0 iter: 25 cost: 269.71582821498095 gradient_norm: 2098.6166709140607 max_violation: 0.01669280670665574 step_size: 1.0 iter: 26 cost: 269.46410043166946 gradient_norm: 2016.3118423237515 max_violation: 0.01604511411881293 step_size: 1.0 iter: 27 cost: 269.23711577023096 gradient_norm: 1940.216760776541 max_violation: 0.015445532547522345 step_size: 1.0 iter: 28 cost: 269.03155271310396 gradient_norm: 1869.6549141881976 max_violation: 0.014888904012794524 step_size: 1.0 iter: 29 cost: 268.8446385299808 gradient_norm: 1804.0445324892098 max_violation: 0.01437078159454841 step_size: 1.0 iter: 30 cost: 268.6740432088341 gradient_norm: 1742.8825741039145 max_violation: 0.013887311079958442 step_size: 1.0 iter: 31 cost: 268.5177966346282 gradient_norm: 1685.7318526674158 max_violation: 0.013435135473739646 step_size: 1.0 iter: 32 cost: 268.374223359533 gradient_norm: 1632.2106085100656 max_violation: 0.013011317381956822 step_size: 1.0 iter: 33 cost: 268.24189081247965 gradient_norm: 1581.9840000846257 max_violation: 0.012613275486577202 step_size: 1.0 iter: 34 cost: 268.11956786791103 gradient_norm: 1534.7571153441113 max_violation: 0.01223873221520777 step_size: 1.0 iter: 35 cost: 268.0061914665784 gradient_norm: 1490.2691956013582 max_violation: 0.011885670371245105 step_size: 1.0 iter: 36 cost: 267.9008395442581 gradient_norm: 1448.288833404681 max_violation: 0.011552296984691623 step_size: 1.0 iter: 37 cost: 267.80270893868897 gradient_norm: 1408.6099581352464 max_violation: 0.011237013019752995 step_size: 1.0 iter: 38 cost: 267.7110972526246 gradient_norm: 1371.048462638937 max_violation: 0.010938387861694987 step_size: 1.0 iter: 39 cost: 267.6253878814674 gradient_norm: 1335.4393545922721 max_violation: 0.010655137726087838 step_size: 1.0 iter: 40 cost: 267.54503758800644 gradient_norm: 1301.6343398406132 max_violation: 0.010386107304934167 step_size: 1.0 iter: 41 cost: 267.46956613932997 gradient_norm: 1269.4997631576155 max_violation: 0.010130254097274416 step_size: 1.0 iter: 42 cost: 267.39854762261507 gradient_norm: 1238.9148462993703 max_violation: 0.009886634977564923 step_size: 1.0 iter: 43 cost: 267.3316031349639 gradient_norm: 1209.7701744494607 max_violation: 0.009654394637637065 step_size: 1.0 iter: 44 cost: 267.26839460344513 gradient_norm: 1181.9663911483235 max_violation: 0.009432755604306342 step_size: 1.0 iter: 45 cost: 267.20861953925544 gradient_norm: 1155.4130689857964 max_violation: 0.009221009587868423 step_size: 1.0 iter: 46 cost: 267.1520065674244 gradient_norm: 1130.027729039206 max_violation: 0.00901850995889586 step_size: 1.0 iter: 47 cost: 267.0983116032173 gradient_norm: 1105.7349867016164 max_violation: 0.008824665185407365 step_size: 1.0 iter: 48 cost: 267.04731457006085 gradient_norm: 1082.465805314046 max_violation: 0.008638933090521106 step_size: 1.0 iter: 49 cost: 266.99881657266104 gradient_norm: 1060.1568420236626 max_violation: 0.008460815813116973 step_size: 1.0 iter: 50 cost: 266.95263745430265 gradient_norm: 1038.7498728995101 max_violation: 0.008289855373557531 step_size: 1.0 iter: 51 cost: 266.90861367945917 gradient_norm: 1018.191286271215 max_violation: 0.008125629760979858 step_size: 1.0 iter: 52 cost: 266.8665964929251 gradient_norm: 998.4316350723911 max_violation: 0.007967749472280183 step_size: 1.0 iter: 53 cost: 266.82645031473385 gradient_norm: 979.4252403057601 max_violation: 0.007815854442991155 step_size: 1.0 iter: 54 cost: 266.78805133678725 gradient_norm: 961.1298389583288 max_violation: 0.007669611319304215 step_size: 1.0 iter: 55 cost: 266.7512862925785 gradient_norm: 943.5062706460883 max_violation: 0.007528711027718016 step_size: 1.0 iter: 56 cost: 266.7160513759065 gradient_norm: 926.5181981359411 max_violation: 0.007392866605315573 step_size: 1.0 iter: 57 cost: 266.68225128818324 gradient_norm: 910.1318575242417 max_violation: 0.007261811258465034 step_size: 1.0 iter: 58 cost: 266.6497983970448 gradient_norm: 894.3158344722765 max_violation: 0.0071352966224168535 step_size: 1.0 iter: 59 cost: 266.6186119915585 gradient_norm: 879.0408633881151 max_violation: 0.007013091198023846 step_size: 1.0 iter: 60 cost: 266.5886176214844 gradient_norm: 864.2796468527074 max_violation: 0.006894978944868235 step_size: 1.0 iter: 61 cost: 266.55974650983944 gradient_norm: 850.0066929533684 max_violation: 0.006780758012875254 step_size: 1.0 iter: 62 cost: 266.53193502955634 gradient_norm: 836.1981684709897 max_violation: 0.006670239596653582 step_size: 1.0 iter: 63 cost: 266.5051242363246 gradient_norm: 822.8317661779979 max_violation: 0.0065632468991631 step_size: 1.0 iter: 64 cost: 266.47925945074957 gradient_norm: 809.8865846532071 max_violation: 0.006459614192449337 step_size: 1.0 iter: 65 cost: 266.454289883957 gradient_norm: 797.3430192896877 max_violation: 0.006359185965243985 step_size: 1.0 iter: 66 cost: 266.4301683014902 gradient_norm: 785.1826632791806 max_violation: 0.006261816148068866 step_size: 1.0 iter: 67 cost: 266.4068507210733 gradient_norm: 773.3882175372538 max_violation: 0.006167367407837632 step_size: 1.0 iter: 68 cost: 266.3842961403447 gradient_norm: 761.9434086178027 max_violation: 0.006075710504611753 step_size: 1.0 iter: 69 cost: 266.36246629121393 gradient_norm: 750.8329138398306 max_violation: 0.005986723704508812 step_size: 1.0 iter: 70 cost: 266.34132541785425 gradient_norm: 740.042292866091 max_violation: 0.005900292242885352 step_size: 1.0 iter: 71 cost: 266.3208400757568 gradient_norm: 729.5579250999889 max_violation: 0.005816307832870016 step_size: 1.0 iter: 72 cost: 266.30097894957987 gradient_norm: 719.3669523449099 max_violation: 0.005734668214961602 step_size: 1.0 iter: 73 cost: 266.2817126877871 gradient_norm: 709.4572262145912 max_violation: 0.005655276743722237 step_size: 1.0 iter: 74 cost: 266.2630137523084 gradient_norm: 699.8172598212345 max_violation: 0.005578042007878259 step_size: 1.0 iter: 75 cost: 266.24485628167923 gradient_norm: 690.4361833720775 max_violation: 0.005502877480981216 step_size: 1.0 iter: 76 cost: 266.22721596626974 gradient_norm: 681.3037032707629 max_violation: 0.00542970119947761 step_size: 1.0 iter: 77 cost: 266.210069934406 gradient_norm: 672.4100644655869 max_violation: 0.005358435466194522 step_size: 1.0 iter: 78 cost: 266.19339664827476 gradient_norm: 663.7460156682407 max_violation: 0.005289006576298716 step_size: 1.0 iter: 79 cost: 266.1771758086757 gradient_norm: 655.3027772728881 max_violation: 0.005221344564413921 step_size: 1.0 iter: 80 cost: 266.1613882677478 gradient_norm: 647.0720116647033 max_violation: 0.005155382970471023 step_size: 1.0 iter: 81 cost: 266.1460159489177 gradient_norm: 639.0457957656387 max_violation: 0.00509105862310788 step_size: 1.0 iter: 82 cost: 266.1310417733776 gradient_norm: 631.2165955777135 max_violation: 0.005028311438734168 step_size: 1.0 iter: 83 cost: 266.1164495925025 gradient_norm: 623.577242610269 max_violation: 0.0049670842354062605 step_size: 1.0 iter: 84 cost: 266.1022241256346 gradient_norm: 616.1209119676665 max_violation: 0.0049073225597282555 step_size: 1.0 iter: 85 cost: 266.08835090276756 gradient_norm: 608.8411020144623 max_violation: 0.004848974526154959 step_size: 1.0 iter: 86 cost: 266.07481621168466 gradient_norm: 601.7316154664092 max_violation: 0.004791990667514123 step_size: 1.0 iter: 87 cost: 266.0616070491457 gradient_norm: 594.7865417850016 max_violation: 0.0047363237957692705 step_size: 1.0 iter: 88 cost: 266.04871107578117 gradient_norm: 588.0002407851144 max_violation: 0.004681928872339092 step_size: 1.0 iter: 89 cost: 266.0361165743629 gradient_norm: 581.3673273545933 max_violation: 0.004628762887163407 step_size: 1.0 iter: 90 cost: 266.02381241116603 gradient_norm: 574.8826571952806 max_violation: 0.004576784745822238 step_size: 1.0 iter: 91 cost: 266.01178800015794 gradient_norm: 568.5413135137809 max_violation: 0.004525955164132012 step_size: 1.0 iter: 92 cost: 266.00003326978117 gradient_norm: 562.3385945849195 max_violation: 0.004476236569623593 step_size: 1.0 iter: 93 cost: 265.9885386321043 gradient_norm: 556.270002113739 max_violation: 0.004427593009312947 step_size: 1.0 iter: 94 cost: 265.97729495416837 gradient_norm: 550.3312303627506 max_violation: 0.0043799900635205224 step_size: 1.0 iter: 95 cost: 265.9662935313211 gradient_norm: 544.5181559455167 max_violation: 0.004333394764930332 step_size: 1.0 iter: 96 cost: 265.9555260624124 gradient_norm: 538.826828288009 max_violation: 0.004287775522940684 step_size: 1.0 iter: 97 cost: 265.94498462667076 gradient_norm: 533.2534606583299 max_violation: 0.004243102052485792 step_size: 1.0 iter: 98 cost: 265.9346616621574 gradient_norm: 527.7944217640882 max_violation: 0.004199345307353219 step_size: 1.0 iter: 99 cost: 265.92454994565793 gradient_norm: 522.4462278650022 max_violation: 0.004156477417572302 step_size: 1.0 iter: 100 cost: 265.91464257390555 gradient_norm: 517.2055353469759 max_violation: 0.0041144716304454265 step_size: 1.0 Test Summary: | Pass Total Time Solve: acrobot | 1 1 6m02.0s ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University al iter: 1 ___ _ _ _ _ ___ ___ |_ _| |_ ___ _ _ __ _| |_(_)_ _____| | / _ \| _ \ | || _/ -_) '_/ _` | _| \ V / -_) |_| (_) | / |___|\__\___|_| \__,_|\__|_|\_/\___|____\__\_\_|_\ Taylor Howell and Simon Le Cleac'h Robotic Exploration Lab Stanford University iter: 1 cost: 261.2537798738653 gradient_norm: 885.6763002794513 max_violation: 1.1807656674637883 step_size: 1.0 iter: 2 cost: 69.99469960068207 gradient_norm: 376.08357134305186 max_violation: 0.766429330514935 step_size: 1.0 iter: 3 cost: 34.54977364243712 gradient_norm: 193.82532155965612 max_violation: 0.5197983639867401 step_size: 1.0 iter: 4 cost: 22.539037764763805 gradient_norm: 111.7024513072441 max_violation: 0.4196158004810382 step_size: 1.0 iter: 5 cost: 17.035664625358486 gradient_norm: 69.14467761180012 max_violation: 0.37323467952446965 step_size: 1.0 iter: 6 cost: 14.062954292496705 gradient_norm: 45.607762506571646 max_violation: 0.34188493819304266 step_size: 1.0 iter: 7 cost: 12.272616098482587 gradient_norm: 31.744197515746393 max_violation: 0.3195794259745215 step_size: 1.0 iter: 8 cost: 11.110324366994146 gradient_norm: 28.481409161315987 max_violation: 0.30283107541267995 step_size: 1.0 iter: 9 cost: 10.312569004061332 gradient_norm: 25.725116998667954 max_violation: 0.28976177042682494 step_size: 1.0 iter: 10 cost: 9.740976036112503 gradient_norm: 24.387263942641127 max_violation: 0.27926490324135944 step_size: 1.0 iter: 11 cost: 9.317182750501477 gradient_norm: 23.27948171916522 max_violation: 0.270642534988605 step_size: 1.0 iter: 12 cost: 8.99409364960746 gradient_norm: 22.133658624582665 max_violation: 0.2634309744732146 step_size: 1.0 iter: 13 cost: 8.742010825607291 gradient_norm: 21.003710960323513 max_violation: 0.25730926409585564 step_size: 1.0 iter: 14 cost: 8.541448500865746 gradient_norm: 19.918615937273927 max_violation: 0.2520477436399142 step_size: 1.0 iter: 15 cost: 8.379187541400649 gradient_norm: 18.892634093629162 max_violation: 0.24747750308208794 step_size: 1.0 iter: 16 cost: 8.246001295724474 gradient_norm: 17.931443843477687 max_violation: 0.243471404916475 step_size: 1.0 iter: 17 cost: 8.135289721002943 gradient_norm: 17.035806102872616 max_violation: 0.2399318426078958 step_size: 1.0 iter: 18 cost: 8.042229513640368 gradient_norm: 16.203750801407285 max_violation: 0.23678258854916034 step_size: 1.0 iter: 19 cost: 7.963228813262942 gradient_norm: 15.431879152844623 max_violation: 0.23396321467267356 step_size: 1.0 iter: 20 cost: 7.895567773780683 gradient_norm: 14.71613518888006 max_violation: 0.2314251818556059 step_size: 1.0 iter: 21 cost: 7.837155934003607 gradient_norm: 14.05225742418412 max_violation: 0.2291290411089797 step_size: 1.0 iter: 22 cost: 7.786364917793634 gradient_norm: 13.436037151680694 max_violation: 0.22704239307714413 step_size: 1.0 iter: 23 cost: 7.741910858273423 gradient_norm: 12.86345977297741 max_violation: 0.22513837563732508 step_size: 1.0 iter: 24 cost: 7.702770335780684 gradient_norm: 12.330775619639935 max_violation: 0.223394526194177 step_size: 1.0 iter: 25 cost: 7.668119333509148 gradient_norm: 11.834528666306948 max_violation: 0.22179191431193956 step_size: 1.0 iter: 26 cost: 7.637288274827675 gradient_norm: 11.37156056170258 max_violation: 0.2203144723692816 step_size: 1.0 iter: 27 cost: 7.609728473089355 gradient_norm: 10.939000679422454 max_violation: 0.21894847327438605 step_size: 1.0 iter: 28 cost: 7.5849867970528555 gradient_norm: 10.534248743252592 max_violation: 0.21768211877573584 step_size: 1.0 iter: 29 cost: 7.562686328832223 gradient_norm: 10.154954010172425 max_violation: 0.21650521190799044 step_size: 1.0 iter: 30 cost: 7.542511446200534 gradient_norm: 9.798993394781991 max_violation: 0.2154088941268837 step_size: 1.0 iter: 31 cost: 7.5241962083383624 gradient_norm: 9.464449922833648 max_violation: 0.21438543266983068 step_size: 1.0 iter: 32 cost: 7.507515233952561 gradient_norm: 9.149592283243631 max_violation: 0.21342804726960818 step_size: 1.0 iter: 33 cost: 7.492276478169418 gradient_norm: 8.852855866270925 max_violation: 0.21253076796176984 step_size: 1.0 iter: 34 cost: 7.478315469141725 gradient_norm: 8.572825443102449 max_violation: 0.2116883176538611 step_size: 1.0 iter: 35 cost: 7.465490676384057 gradient_norm: 8.308219503864 max_violation: 0.21089601456018237 step_size: 1.0 iter: 36 cost: 7.453679763543525 gradient_norm: 8.057876191788143 max_violation: 0.21014969068297518 step_size: 1.0 iter: 37 cost: 7.442776537525081 gradient_norm: 7.820740728824099 max_violation: 0.20944562333843297 step_size: 1.0 iter: 38 cost: 7.432688449752018 gradient_norm: 7.595854208610376 max_violation: 0.2087804773531028 step_size: 1.0 iter: 39 cost: 7.423334538118871 gradient_norm: 7.382343627146472 max_violation: 0.2081512560379437 step_size: 1.0 iter: 40 cost: 7.414643722894794 gradient_norm: 7.179413023837764 max_violation: 0.20755525942109987 step_size: 1.0 iter: 41 cost: 7.406553388595878 gradient_norm: 6.986335612818852 max_violation: 0.20699004851539815 step_size: 1.0 iter: 42 cost: 7.399008198200706 gradient_norm: 6.802446793745567 max_violation: 0.20645341462638545 step_size: 1.0 iter: 43 cost: 7.391959097146254 gradient_norm: 6.627137941422962 max_violation: 0.2059433528896557 step_size: 1.0 iter: 44 cost: 7.385362473123337 gradient_norm: 6.45985088395812 max_violation: 0.20545803937275675 step_size: 1.0 iter: 45 cost: 7.379179444392276 gradient_norm: 6.300072989008616 max_violation: 0.2049958111936343 step_size: 1.0 iter: 46 cost: 7.373375254601611 gradient_norm: 6.147332786703153 max_violation: 0.2045551492013793 step_size: 1.0 iter: 47 cost: 7.367918756251549 gradient_norm: 6.001196066353447 max_violation: 0.2041346628427032 step_size: 1.0 iter: 48 cost: 7.362781968245788 gradient_norm: 5.861262391436014 max_violation: 0.20373307689846154 step_size: 1.0 iter: 49 cost: 7.357939695613454 gradient_norm: 5.727161984084324 max_violation: 0.20334921982621523 step_size: 1.0 iter: 50 cost: 7.353369201599009 gradient_norm: 5.598552936261505 max_violation: 0.2029820134865652 step_size: 1.0 iter: 51 cost: 7.349049924024784 gradient_norm: 5.475118710010506 max_violation: 0.20263046406533292 step_size: 1.0 iter: 52 cost: 7.34496322921335 gradient_norm: 5.35656589373689 max_violation: 0.20229365403219823 step_size: 1.0 iter: 53 cost: 7.341092197882067 gradient_norm: 5.242622185541038 max_violation: 0.2019707350005815 step_size: 1.0 iter: 54 cost: 7.337421438340977 gradient_norm: 5.133034578164165 max_violation: 0.20166092137318348 step_size: 1.0 iter: 55 cost: 7.333936923079356 gradient_norm: 5.0275677230832505 max_violation: 0.2013634846738297 step_size: 1.0 iter: 56 cost: 7.330625845447401 gradient_norm: 4.926002454107622 max_violation: 0.20107774848119497 step_size: 1.0 iter: 57 cost: 7.327476493652688 gradient_norm: 4.828134453115053 max_violation: 0.20080308389097912 step_size: 1.0 iter: 58 cost: 7.324478139716949 gradient_norm: 4.733773042605958 max_violation: 0.2005389054433122 step_size: 1.0 iter: 59 cost: 7.321620941393538 gradient_norm: 4.64274009160189 max_violation: 0.20028466746088736 step_size: 1.0 iter: 60 cost: 7.318895855341548 gradient_norm: 4.554869022929657 max_violation: 0.20003986075024294 step_size: 1.0 iter: 61 cost: 7.316294560101643 gradient_norm: 4.47000391137999 max_violation: 0.19980400962503886 step_size: 1.0 iter: 62 cost: 7.313809387626099 gradient_norm: 4.387998663338512 max_violation: 0.1995766692150367 step_size: 1.0 iter: 63 cost: 7.3114332622926375 gradient_norm: 4.318891416810995 max_violation: 0.19935742302960957 step_size: 1.0 iter: 64 cost: 7.309159646479266 gradient_norm: 4.2614430161156545 max_violation: 0.19914588074805462 step_size: 1.0 iter: 65 cost: 7.306982491904377 gradient_norm: 4.205440961225905 max_violation: 0.19894167621241277 step_size: 1.0 iter: 66 cost: 7.304896196042877 gradient_norm: 4.150833848380019 max_violation: 0.1987444656016777 step_size: 1.0 iter: 67 cost: 7.302895563020863 gradient_norm: 4.09757253229489 max_violation: 0.19855392576839925 step_size: 1.0 iter: 68 cost: 7.300975768469271 gradient_norm: 4.0456100154202375 max_violation: 0.19836975272122537 step_size: 1.0 iter: 69 cost: 7.299132327884227 gradient_norm: 3.994901342440709 max_violation: 0.19819166023870682 step_size: 1.0 iter: 70 cost: 7.297361068098634 gradient_norm: 3.945403499836873 max_violation: 0.1980193786011526 step_size: 1.0 iter: 71 cost: 7.295658101519613 gradient_norm: 3.8970753204244346 max_violation: 0.1978526534292424 step_size: 1.0 iter: 72 cost: 7.294019802828746 gradient_norm: 3.8498773926640872 max_violation: 0.19769124461888232 step_size: 1.0 iter: 73 cost: 7.292442787879104 gradient_norm: 3.803771974568054 max_violation: 0.19753492536320216 step_size: 1.0 iter: 74 cost: 7.290923894554755 gradient_norm: 3.7587229120288264 max_violation: 0.19738348125356087 step_size: 1.0 iter: 75 cost: 7.289460165386733 gradient_norm: 3.714695561357109 max_violation: 0.1972367094521399 step_size: 1.0 iter: 76 cost: 7.28804883174277 gradient_norm: 3.671656715862188 max_violation: 0.19709441792968274 step_size: 1.0 iter: 77 cost: 7.286687299430009 gradient_norm: 3.62957453626189 max_violation: 0.1969564247623623 step_size: 1.0 iter: 78 cost: 7.285373135567649 gradient_norm: 3.588418484737847 max_violation: 0.19682255748258193 step_size: 1.0 iter: 79 cost: 7.284104056602718 gradient_norm: 3.548159262458899 max_violation: 0.19669265247897094 step_size: 1.0 iter: 80 cost: 7.282877917356494 gradient_norm: 3.508768750404913 max_violation: 0.19656655444127047 step_size: 1.0 iter: 81 cost: 7.281692701001064 gradient_norm: 3.470219953278031 max_violation: 0.19644411584615984 step_size: 1.0 iter: 82 cost: 7.28054650987663 gradient_norm: 3.432486946391343 max_violation: 0.19632519648074798 step_size: 1.0 iter: 83 cost: 7.2794375570698175 gradient_norm: 3.3955448253297504 max_violation: 0.19620966300036713 step_size: 1.0 iter: 84 cost: 7.2783641586813435 gradient_norm: 3.3593696582735255 max_violation: 0.19609738851796976 step_size: 1.0 iter: 85 cost: 7.277324726719402 gradient_norm: 3.323938440791899 max_violation: 0.1959882522223797 step_size: 1.0 iter: 86 cost: 7.276317762561029 gradient_norm: 3.2892290530176655 max_violation: 0.19588213902326235 step_size: 1.0 iter: 87 cost: 7.275341850930356 gradient_norm: 3.25522021904111 max_violation: 0.19577893922049228 step_size: 1.0 al iter: 2 iter: 1 cost: 7.269944849743791 gradient_norm: 0.48354130657668726 max_violation: 0.0481756108564424 step_size: 1.0 iter: 2 cost: 7.253994869618226 gradient_norm: 0.13733625988558718 max_violation: 0.0017963190921093108 step_size: 1.0 iter: 3 cost: 7.252163371769252 gradient_norm: 0.12093728810343407 max_violation: 0.001811038634711104 step_size: 1.0 iter: 4 cost: 7.251086984969248 gradient_norm: 0.114766263279237 max_violation: 0.0018202529338060547 step_size: 1.0 iter: 5 cost: 7.250360358028719 gradient_norm: 0.1096676429055452 max_violation: 0.0018264790512261264 step_size: 1.0 Test Summary: | Pass Total Time Solve: car | 3 3 39.5s Testing IterativeLQR tests passed Testing completed after 740.34s PkgEval succeeded after 1001.45s