Package evaluation of QuasiNewtonMethods on Julia 1.10.9 (96dc2d8c45*) started at 2025-06-06T16:19:51.399 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 4.53s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.10/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.10/Manifest.toml` [79e6a3ab] + Adapt v4.3.0 [4fba245c] + ArrayInterface v7.19.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.16.0 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.4 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.4 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.71 [56f22d72] + Artifacts [2a0f44e3] + Base64 [ade2ca70] + Dates [8f399da3] + Libdl [37e2e46d] + LinearAlgebra [d6f4376e] + Markdown [de0858da] + Printf [9a3f8284] + Random [ea8e919c] + SHA v0.7.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs [4ec0a83e] + Unicode [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [4536629a] + OpenBLAS_jll v0.3.23+4 [8e850b90] + libblastrampoline_jll v5.11.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 6.7s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 114.66s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_35zEA2/Project.toml` [4c88cf16] Aqua v0.8.13 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test Status `/tmp/jl_35zEA2/Manifest.toml` [79e6a3ab] Adapt v4.3.0 [4c88cf16] Aqua v0.8.13 [4fba245c] ArrayInterface v7.19.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.16.0 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.4 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.172 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.28 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.4 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.71 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.10 [0dad84c5] ArgTools v1.1.1 [56f22d72] Artifacts [2a0f44e3] Base64 [ade2ca70] Dates [8ba89e20] Distributed [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching [b77e0a4c] InteractiveUtils [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 [8f399da3] Libdl [37e2e46d] LinearAlgebra [56ddb016] Logging [d6f4376e] Markdown [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.10.0 [de0858da] Printf [3fa0cd96] REPL [9a3f8284] Random [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization [6462fe0b] Sockets [2f01184e] SparseArrays v1.10.0 [10745b16] Statistics v1.10.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test [cf7118a7] UUIDs [4ec0a83e] Unicode [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.4.0+0 [e37daf67] LibGit2_jll v1.6.4+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.2+1 [14a3606d] MozillaCACerts_jll v2023.1.10 [4536629a] OpenBLAS_jll v0.3.23+4 [bea87d4a] SuiteSparse_jll v7.2.1+1 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.52.0+1 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. QuasiNewtonMethods [64452400-c6f4-4a1d-a4f6-ad403655768a] does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] QuasiNewtonMethods [64452400-c6f4-4a1d-a4f6-ad403655768a] extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/1UuaV/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Test [8dfed614-e22c-5e08-85e1-65c5234f0b40]]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:672 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/1UuaV/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/1UuaV/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/1UuaV/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/1UuaV/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [1.4724221841788676e-11, 2.9869218209910287e-11] QuasiNewtonMethods.optimum(state) .- 1 = [7.948908198329718e-11, 1.708695407387495e-10] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [-2.2496449147979547e-12, -4.079736548590063e-12, -5.682676551543864e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.6027756899461565e-10, 3.261793057873774e-10, -1.869504551166301e-11] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [9.809930645587883e-13, 7.930101020292568e-12, 2.0052848270779577e-12, 1.5141221609837885e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-6.5218941358580196e-12, 5.073719222536965e-12, -1.0720091481175587e-11, 1.2426282225419527e-11] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [5.7271964948313325e-12, -7.627232179174825e-14, 1.2438272634085479e-11, -4.821698595947055e-13, 2.3669954885008337e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-1.8809953594711715e-11, -2.527511533401139e-11, -3.9178438271392224e-11, -5.1861737127012475e-11, 1.4095435929561972e-10] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [3.9071634816423284e-11, -4.664246766594715e-11, 6.664513385601367e-11, 9.538614342829987e-11, -9.554290691937695e-11, 1.3519318997623486e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.9726109634632394e-11, -8.802070183833166e-11, 2.2824186984848893e-11, -3.927280722848536e-11, -1.7444123923127108e-10, 5.125944113615333e-11] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [2.7535973501358058e-11, -4.531042208100189e-11, -6.08656458567225e-11, 5.300893057835765e-11, -8.781542160107847e-11, -1.244457870086535e-10, 5.0182968891476776e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.468070109922337e-11, 1.400279892038725e-11, 1.71984648744683e-11, 2.882383220992324e-11, 2.897482254127226e-11, 3.5183189694976136e-11, -3.056443986793056e-13] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [-3.771971623933723e-11, -3.225804068307525e-10, 1.2410472649548865e-10, 9.824141500303085e-12, -6.367839588961033e-11, -6.406021269000917e-10, 2.5506619039106226e-10, 3.0335067791043e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.43625111803658e-11, 4.974665124279909e-11, 5.731193297719983e-12, 4.3428372009657323e-11, 2.8248514638562483e-11, 9.258038780046718e-11, 1.2395195980730023e-11, 9.905765097073527e-11] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [2.1644908088092052e-11, 2.2001067634391802e-11, 6.04918337643312e-11, 1.0846590292601377e-10, 5.501266109320113e-11, 4.527689334565821e-11, 1.2965584161861443e-10, 2.2422175227632124e-10, -1.5945245124271423e-11] QuasiNewtonMethods.optimum(state) .- 1 = [4.347233684143248e-11, 8.749356794623964e-11, -1.5835688316201413e-10, 1.4664802705510738e-10, 9.088485519725964e-11, 1.558106976773388e-10, -3.0088964653174344e-10, 3.035109941151859e-10, -3.286149130588001e-12] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [-1.5683676579669736e-11, -2.093381024081964e-11, 4.383826635034893e-12, -4.981015599980765e-12, 1.5201395697772568e-11, -2.8015145758786275e-11, -4.15014689281179e-11, 1.0050626997326617e-11, -1.1230794072503159e-11, 3.059841269248409e-11] QuasiNewtonMethods.optimum(state) .- 1 = [2.49217313452732e-10, 1.6929968538192952e-10, -2.2714807812462823e-10, -1.6059242824439934e-10, -6.894185222705573e-11, 5.175726514039525e-10, 3.3488012363136477e-10, -4.407735287870196e-10, -3.078992616423193e-10, -1.3171652657462118e-10] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [4.994848978867594e-11, -6.902356464166814e-11, 4.332312286692286e-12, -5.720057760782993e-11, -3.5383140861711126e-11, 9.955547497497719e-11, -1.4136625203775566e-10, 8.680611784939174e-12, -1.1486300799390392e-10, -7.288436520980213e-11, -7.263412094005162e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.322608689235949e-11, 6.153166864919513e-11, -2.736699755701011e-13, 7.009437474891911e-11, 4.503242223563575e-11, 2.7854163420215627e-11, 1.221740486556655e-10, 4.855671420500585e-12, 1.4053913588440992e-10, 8.706635412636388e-11, 2.3883117705736367e-12] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [-2.9893865161056965e-12, -1.2722711772994444e-11, -4.66437999335767e-12, 5.852385243088065e-11, -1.0761058710784255e-11, -2.361755235824603e-11, -2.4578117319151715e-12, -2.6210700276863008e-11, -9.109157872444484e-12, 1.20481402632322e-10, -2.200362114734844e-11, -4.7441495176769877e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.049605012961365e-11, 1.9699797348948778e-12, 3.395950187723429e-12, 2.6601609803833526e-11, 1.073963140640899e-11, -3.9674041829584894e-11, -5.8066329522432625e-11, 3.927747016518879e-12, 5.618838727627917e-12, 5.286859838804503e-11, 2.133626608724626e-11, -7.971923121630198e-11] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [9.421863289560406e-11, 1.5335399616844825e-10, 1.5747181336678295e-10, 1.3527623465847682e-10, -6.028944010694204e-11, 7.143974301015987e-11, 1.8660384348834214e-10, 3.0155922203789487e-10, 3.122744285377621e-10, 2.5770696687743566e-10, -1.2669820748101301e-10, 1.3200085469122769e-10, -6.614275793737079e-11] QuasiNewtonMethods.optimum(state) .- 1 = [3.0245139726048365e-11, 1.0599676691924742e-10, 1.386593062591146e-10, 2.6598501179364575e-11, -9.230538555726753e-11, -2.5792479263486712e-11, 5.691158655452e-11, 2.0182078230845946e-10, 2.799391829455544e-10, 5.3678173017601694e-11, -1.7976964361565706e-10, -4.232048045338388e-11, 9.61208890259968e-12] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [-2.2453172654479658e-10, 4.920508445138694e-12, 1.3339551685476181e-11, -1.1698864099685125e-10, -4.007050247167854e-11, -8.551859220773395e-11, 1.0202394484792876e-10, -4.6312653712021756e-10, 3.7840841571323836e-12, 3.7309932920948086e-11, -2.44607334387581e-10, -6.953071451931692e-11, -1.5089474114660106e-10, 1.9957790975411172e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-6.490130655123494e-11, -5.971212413413696e-11, -1.7497736592986257e-10, -6.787359563276141e-11, -6.405986852087153e-13, 3.9196867973601e-11, 1.4224799116391296e-10, -1.3244960683778118e-10, -1.1174516867384909e-10, -3.59236085323289e-10, -1.256272863514596e-10, -6.821765374809274e-12, 7.051159656157324e-11, 2.788096420403008e-10] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [-1.988487152715379e-11, 1.4654943925052066e-12, -5.288769422406858e-11, -6.912803662828537e-12, -2.675049071143576e-11, -7.2015726715335404e-12, 1.2079226507921703e-13, -4.014921728412446e-11, 4.971578704271451e-12, -1.0968925767684823e-10, -1.3379630736665149e-11, -5.146161274893757e-11, -1.6814660774855383e-11, 8.752998326144734e-13, -2.9495295095216534e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-3.0102020875943936e-10, -2.6873769876090137e-10, 2.436093549107454e-10, 2.708899771164397e-11, 2.1592172494422357e-10, 8.7613916122109e-11, -1.0082934487343209e-10, -6.04337913046038e-10, -5.36740207834896e-10, 4.971920652963036e-10, 5.123568236342635e-11, 4.543674325674374e-10, 1.7338819269241412e-10, -1.8907331256201587e-10, -4.383160501220118e-13] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [-1.2145839889399213e-12, 4.66118255104675e-11, -2.9492741582259896e-11, 1.0437872788315872e-11, 3.539391002504999e-12, -1.18822729433532e-11, -1.55981894067736e-11, -2.201239190924298e-11, 1.6016077353242508e-12, 9.682743495886825e-11, -5.870759434145612e-11, 2.0759172159046102e-11, 6.183498157952272e-12, -2.2912227670701668e-11, -3.086930711049263e-11, -4.089950600416614e-11] QuasiNewtonMethods.optimum(state) .- 1 = [4.5244030744129304e-11, -3.220879118970288e-11, 6.842770794435182e-11, -2.1351587164986086e-11, 6.7128524960935465e-12, 5.6169069395650695e-11, -5.0670578843892145e-11, 6.430678212154817e-11, 9.189649041729808e-11, -6.299261112729937e-11, 1.4166778861124385e-10, -4.070865866623308e-11, 1.2543299732215019e-11, 1.1133627353387965e-10, -1.0461309596365709e-10, 1.2519962844237398e-10] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [2.5367929978870052e-11, 2.4529045461463284e-11, -1.5976642231407823e-10, -5.314537698808408e-11, 8.76192451926272e-11, 4.901723471562036e-11, 5.47693002062033e-11, 3.620059807474263e-11, 5.2522874938176756e-11, 4.6997072900012427e-11, -3.249928104409605e-10, -1.0209844081288111e-10, 1.7073054081606642e-10, 9.935985367803823e-11, 1.0733791633299461e-10, 7.357625619874852e-11, -3.609335053056384e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-1.0390610594157579e-10, -1.850140041170789e-10, -4.5996539910220235e-12, 6.638911642653511e-12, -8.64917026888179e-11, 2.4323254521618765e-10, 9.553291491215532e-11, 1.0152922946815579e-10, -1.9720280963753112e-10, -3.773384937844071e-10, -1.7761792037163104e-11, 1.5094814287408553e-11, -1.7532963969557613e-10, 4.693425648127914e-10, 1.933735394032965e-10, 2.1881851886007553e-10, -4.283240429003854e-13] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [-3.43246542300335e-11, 8.871881007621596e-11, -1.5040368950280936e-10, -6.202149904765974e-11, 4.1101344550042995e-11, 3.2831737328820054e-11, -1.3649081864741675e-12, -1.0088152535558947e-10, -2.0041779347224065e-10, -6.63841204229243e-11, 1.7805956709082693e-10, -3.111703117397724e-10, -1.4280931992516344e-10, 8.363953973855587e-11, 6.321143608545299e-11, 9.416911694870578e-12, -2.0032187020291303e-10, -4.2116987675200335e-10] QuasiNewtonMethods.optimum(state) .- 1 = [1.7887025194340822e-11, 9.31315025098911e-11, 9.614353757569916e-11, -6.037403910141848e-11, 9.556688773670885e-11, -8.418732377890592e-11, 2.7511548594816304e-11, 9.129030864585275e-11, 1.126319038036172e-10, 4.058020586228395e-11, 1.7762524784359357e-10, 1.9974910614450891e-10, -1.258606552312358e-10, 1.9050094834938136e-10, -1.7069523572388334e-10, 5.901323874013542e-11, 1.9179613452990907e-10, 2.299145318573892e-10] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [7.67481633801026e-11, -3.3637537200092993e-12, -4.189071312055148e-11, 1.065278976142281e-10, -9.141754020447479e-11, 8.721690036850305e-12, 5.452305273934144e-11, 6.905542804247489e-11, 4.281530685545931e-11, 1.4895240596501935e-10, -7.608691454663585e-12, -6.906852867416546e-11, 2.1091506319237396e-10, -1.8668144807776343e-10, 1.826161444284935e-11, 1.0994738453007358e-10, 1.38504097080272e-10, 8.430700582096051e-11, -3.1248670318007044e-11] QuasiNewtonMethods.optimum(state) .- 1 = [2.3263391213390605e-11, -6.992850742904011e-12, 6.502798299834467e-12, 1.8207657603852567e-13, -4.925726493354432e-12, -4.195910285886839e-11, 5.633715716157894e-12, 1.2934542326092924e-11, -1.2852940933782975e-11, 4.5718984154063946e-11, -1.5463519353886568e-11, 1.4625856081806887e-11, 5.697664562376303e-13, -9.818923452087347e-12, -8.547762497812528e-11, 1.3662626585642101e-11, 2.702549295463541e-11, -2.7581270600762764e-11, -1.1773138020032548e-11] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [2.143856203673522e-10, 9.866440997541304e-11, 4.246158979981374e-11, 2.922107000813412e-13, 1.2000000992884452e-10, -2.44765763213195e-10, 1.5733081504265556e-10, 1.1733125582225057e-10, 1.4965517713960708e-10, -2.160306378229393e-10, 4.522473506796132e-10, 2.2102630836684511e-10, 6.717604250638942e-11, -5.2444715237243145e-12, 2.3321766740025396e-10, -4.849562973419097e-10, 3.257283331947747e-10, 2.141868904459443e-10, 2.9581892491137296e-10, -4.3790604475901773e-10] QuasiNewtonMethods.optimum(state) .- 1 = [8.113332228276704e-11, -3.993028130366838e-11, 4.1386893911976586e-11, -8.132050588471884e-12, -6.043421318935316e-11, -2.7726598794686197e-11, 2.7824853532365523e-11, -7.603251361842922e-12, 5.334754860086832e-11, 9.174216941687519e-12, 1.747311184630007e-10, -8.110301319419477e-11, 8.657274896961553e-11, -8.037570609076283e-12, -1.1553080714321595e-10, -5.98544547258939e-11, 6.115841166831615e-11, -1.9744650359143634e-11, 1.012152583967918e-10, 1.4262369063544611e-11] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [-9.581391235968795e-11, 6.45838937884946e-11, 1.7033707777613927e-11, -2.0050072713218015e-11, 2.485767147675233e-11, 2.669930943000054e-11, 1.5014656185030617e-11, 1.6938894731310938e-10, -1.2505330104772838e-11, 3.019562377915008e-11, -1.9243495685827838e-10, 1.2958212280977932e-10, 3.0672797635133975e-11, -4.332367797843517e-11, 5.025069249597891e-11, 5.2946980133583565e-11, 2.733657744613538e-11, 3.4232772172515524e-10, -1.945721361806818e-11, 5.826095161864941e-11, -4.356182081721727e-12] QuasiNewtonMethods.optimum(state) .- 1 = [6.200577828963105e-10, -5.454836582430289e-11, 3.955658023357955e-10, 4.127296282518955e-10, -6.892673098946034e-10, -1.1284861933802404e-11, 3.4792169145703156e-11, -2.8061708512439054e-10, -1.7864631995934133e-10, -7.716971506255277e-10, 1.2430927398554559e-9, -1.1031731084187868e-10, 7.917397848444807e-10, 8.266571871473616e-10, -1.3936521936486201e-9, -2.3058110976137414e-11, 7.464473483764777e-11, -5.650704348880708e-10, -3.607278920014778e-10, -1.5520850160655186e-9, 7.028377879692016e-12] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [2.67832422906622e-11, -1.5150070087344147e-10, 1.359048429350196e-10, -8.969358589183685e-11, 1.655409143097586e-11, 6.529066176597098e-11, 1.108035885266645e-10, 8.704326148745167e-11, 4.1939784978239913e-11, -1.6975421068821106e-11, 2.793409947798864e-11, 5.6265214709583233e-11, -3.0338254131123676e-10, 2.8710145372201623e-10, -1.7735923840689338e-10, 3.0999425248978696e-11, 1.3287548839002739e-10, 2.159832312997878e-10, 1.8075008156870354e-10, 8.732814471557049e-11, -3.4269143078802244e-11, 5.232170252611468e-11] QuasiNewtonMethods.optimum(state) .- 1 = [8.767098158557474e-11, -4.6675330267476056e-11, 7.349809649781491e-11, 2.1087354085125298e-11, -7.200462448508915e-12, 1.2477086031026374e-10, -5.069078490294032e-11, -1.1730638682649897e-10, -4.1142866891163976e-11, -1.3477952087725953e-10, 2.3682167338279214e-11, 1.764608459353667e-10, -7.751232988795209e-11, 1.5578649481540197e-10, 4.661937502703495e-11, -9.493961172779564e-12, 2.570126333978351e-10, -1.2042800090483752e-10, -2.313892411009988e-10, -7.450995376245828e-11, -2.5702051598130993e-10, 6.469447200174727e-11] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [1.1753953366167025e-10, -1.968092355753015e-11, 1.3803691523150974e-10, -7.82965914325473e-11, -9.345013651795853e-11, 7.614997521443456e-11, 4.653388785413881e-11, 1.2486411904433226e-10, -1.9047530219751252e-10, -4.442812784333228e-11, -1.7057266710196473e-10, 2.289211042949546e-10, -3.6174840900571326e-11, 2.8417512787370924e-10, -1.589229858822705e-10, -1.9148604923913126e-10, 1.5846857159829142e-10, 8.954548214035185e-11, 2.6023339039227267e-10, -3.7236991268230213e-10, -8.849887489503772e-11, -3.4151415029270993e-10, -4.722333635243103e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-5.666855873442955e-11, -1.2827416906446842e-10, 7.368217147529776e-11, -1.2976841823331142e-11, 4.384492768849668e-12, -3.0523694682926816e-11, 1.5813883535997775e-10, 1.2912226843297958e-10, -6.758105186577268e-11, 7.232414667157627e-11, -6.429234922222804e-11, -1.1296652502323923e-10, -2.6627089422248673e-10, 1.4002998760531682e-10, -3.3559044432251994e-11, 1.0895062629856511e-11, -6.098643812180171e-11, 3.220099742407001e-10, 2.5854340890418825e-10, -1.3751078054013988e-10, 1.4808998471949053e-10, -1.28882571281963e-10, -2.8901325777042075e-12] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [-6.273748187624051e-11, 3.207145660155675e-11, -7.521427924928048e-12, -1.3037348978173213e-11, -4.845124301766646e-12, -9.048983784509801e-12, 3.3939517862791035e-12, 3.022737615765436e-11, -6.77901068613096e-11, 7.290834602713403e-12, 6.189937451495098e-12, -6.09476913382423e-11, -1.2249579128820187e-10, 6.117284456763628e-11, -1.5335843706054675e-11, -2.770417228958877e-11, -1.2812306771081694e-11, -1.8074319818595086e-11, 7.2299943809639444e-12, 6.285105769165966e-11, -1.3701617618266937e-10, 1.5939916053753223e-11, 1.3536727294649609e-11, -1.205933131132042e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-9.35674870916614e-11, -3.9788394801121285e-11, -1.3991519054457058e-10, -9.861045313641625e-11, -1.7420176412485944e-10, -7.126144119240507e-11, -1.0510647907580051e-10, 8.855116639949756e-11, 7.99673660623057e-11, 6.254996520738132e-11, -1.6299850358336698e-11, -4.766842476300326e-11, -1.8368140342062134e-10, -8.795641992520586e-11, -2.779708685451965e-10, -1.909009617051538e-10, -3.6083558363486645e-10, -1.385985770596676e-10, -2.0973922598699346e-10, 1.6314305462117318e-10, 1.817770378664818e-10, 1.2680057004388345e-10, -4.337885606275904e-11, -9.722367355635697e-11] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 2m29.0s Method ambiguity | 1 1 4.6s Unbound type parameters | 1 1 0.2s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.3s Stale dependencies | 1 1 4.9s Compat bounds | 3 1 4 6.6s julia | 1 1 0.0s QuasiNewtonMethods [64452400-c6f4-4a1d-a4f6-ad403655768a] deps | 1 1 0.4s QuasiNewtonMethods [64452400-c6f4-4a1d-a4f6-ad403655768a] extras | 1 1 6.2s QuasiNewtonMethods [64452400-c6f4-4a1d-a4f6-ad403655768a] weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 14.7s ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 159.93s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.10/Pkg/src/Types.jl:70 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:2034 [3] test @ /opt/julia/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:1915 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::Base.PipeEndpoint}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:444 [5] test(pkgs::Vector{Pkg.Types.PackageSpec}; io::Base.PipeEndpoint, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:159 [6] test @ /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:147 [inlined] [7] #test#74 @ /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:146 [inlined] [8] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 307.56s: package has test failures