Package evaluation of MatrixProductBP on Julia 1.10.9 (96dc2d8c45*) started at 2025-06-06T23:26:13.251 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 5.09s ################################################################################ # Installation # Installing MatrixProductBP... Resolving package versions... Updating `~/.julia/environments/v1.10/Project.toml` [3d39929c] + MatrixProductBP v0.9.0 Updating `~/.julia/environments/v1.10/Manifest.toml` [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.3.0 [66dad0bd] + AliasTables v1.1.3 [dce04be8] + ArgCheck v2.5.0 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.19.0 [198e06fe] + BangBang v0.4.4 [9718e550] + Baselet v0.1.1 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] + CPUSummary v0.2.6 [49dc2e85] + Calculus v0.5.2 [217fe2f1] + CavityTools v1.3.1 [d360d2e6] + ChainRulesCore v1.25.1 [fb6a15b2] + CloseOpenIntervals v0.1.13 [f70d9fcc] + CommonWorldInvalidations v1.0.0 [34da2185] + Compat v4.16.0 [a33af91c] + CompositionsBase v0.1.2 [187b0558] + ConstructionBase v1.5.8 [6add18c4] + ContextVariablesX v0.1.3 [adafc99b] + CpuId v0.3.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [244e2a9f] + DefineSingletons v0.1.2 [b552c78f] + DiffRules v1.15.1 [31c24e10] + Distributions v0.25.120 [ffbed154] + DocStringExtensions v0.9.4 [cc61a311] + FLoops v0.2.2 [b9860ae5] + FLoopsBase v0.1.1 [9aa1b823] + FastClosures v0.3.2 [1a297f60] + FillArrays v1.13.0 [9c68100b] + FoldsThreads v0.1.2 [069b7b12] + FunctionWrappers v1.1.3 [46192b85] + GPUArraysCore v0.2.0 [86223c79] + Graphs v1.13.0 [f0d1745a] + HalfIntegers v1.6.0 [3e5b6fbb] + HostCPUFeatures v0.1.17 [34004b35] + HypergeometricFunctions v0.3.28 [615f187c] + IfElse v0.1.1 [8a731c18] + IndexedGraphs v0.6.1 [d25df0c9] + Inflate v0.1.5 [22cec73e] + InitialValues v0.3.1 [18e54dd8] + IntegerMathUtils v0.1.2 [3587e190] + InverseFunctions v0.1.17 [41ab1584] + InvertedIndices v1.3.1 [92d709cd] + IrrationalConstants v0.2.4 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.0 [b14d175d] + JuliaVariables v0.2.4 [2c470bb0] + Kronecker v0.5.5 ⌅ [0b1a1467] + KrylovKit v0.8.3 [8ac3fa9e] + LRUCache v1.6.2 [10f19ff3] + LayoutPointers v0.1.17 [50d2b5c4] + Lazy v0.15.1 [1fad7336] + LazyStack v0.1.3 [2ab3a3ac] + LogExpFunctions v0.3.29 [aa2f6b4e] + LogarithmicNumbers v1.4.1 [e6f89c97] + LoggingExtras v1.1.0 [bdcacae8] + LoopVectorization v0.12.172 ⌅ [33e6dc65] + MKL v0.7.0 [d8e11817] + MLStyle v0.4.17 ⌅ [bb1c41ca] + MPSKit v0.11.6 [1914dd2f] + MacroTools v0.5.16 [d125e4d3] + ManualMemory v0.1.8 [3d39929c] + MatrixProductBP v0.9.0 [eff96d63] + Measurements v2.12.0 [128add7d] + MicroCollections v0.2.0 [e1d29d7a] + Missings v1.2.0 [77ba4419] + NaNMath v1.1.3 [71a1bf82] + NameResolution v0.1.5 [356022a1] + NamedDims v1.2.2 [6fe1bfb0] + OffsetArrays v1.17.0 ⌅ [77e91f04] + OptimKit v0.3.1 [bac558e1] + OrderedCollections v1.8.1 [90014a1f] + PDMats v0.11.35 [65ce6f38] + PackageExtensionCompat v1.0.2 [1d0040c9] + PolyesterWeave v0.2.2 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [8162dcfd] + PrettyPrint v0.2.0 [27ebfcd6] + Primes v0.5.7 [92933f4c] + ProgressMeter v1.10.4 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [308eb6b3] + RationalRoots v0.2.1 [3cdcf5f2] + RecipesBase v1.3.4 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.8.0 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 [efcf1570] + Setfield v1.1.2 [699a6c99] + SimpleTraits v0.9.4 [a2af1166] + SortingAlgorithms v1.2.1 [276daf66] + SpecialFunctions v2.5.1 [171d559e] + SplittablesBase v0.1.15 [aedffcd0] + Static v1.2.0 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.5 [4c63d2b9] + StatsFuns v1.5.0 [5e0ebb24] + Strided v2.3.0 [4db3bf67] + StridedViews v0.4.1 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 [02d47bb6] + TensorCast v0.4.9 ⌅ [07d1fe3e] + TensorKit v0.12.0 ⌃ [11fa318c] + TensorKitManifolds v0.6.2 ⌅ [6aa20fa7] + TensorOperations v4.0.6 [89893e69] + TensorTrains v0.12.1 [8290d209] + ThreadingUtilities v0.5.4 [d94bfb22] + TrackingHeaps v0.1.0 [28d57a85] + Transducers v0.4.84 [24ddb15e] + TransmuteDims v0.1.17 [bc48ee85] + Tullio v0.3.8 [9d95972d] + TupleTools v1.6.0 [3a884ed6] + UnPack v1.0.2 [41fe7b60] + Unzip v0.2.0 ⌅ [409d34a3] + VectorInterface v0.4.9 [3d5dd08c] + VectorizationBase v0.21.71 [9f57e263] + WignerSymbols v2.0.0 ⌅ [1d5cc7b8] + IntelOpenMP_jll v2024.2.1+0 ⌅ [856f044c] + MKL_jll v2024.2.0+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [1317d2d5] + oneTBB_jll v2022.0.0+0 [0dad84c5] + ArgTools v1.1.1 [56f22d72] + Artifacts [2a0f44e3] + Base64 [ade2ca70] + Dates [8ba89e20] + Distributed [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching [9fa8497b] + Future [b77e0a4c] + InteractiveUtils [4af54fe1] + LazyArtifacts [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 [8f399da3] + Libdl [37e2e46d] + LinearAlgebra [56ddb016] + Logging [d6f4376e] + Markdown [a63ad114] + Mmap [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.10.0 [de0858da] + Printf [3fa0cd96] + REPL [9a3f8284] + Random [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization [1a1011a3] + SharedArrays [6462fe0b] + Sockets [2f01184e] + SparseArrays v1.10.0 [10745b16] + Statistics v1.10.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test [cf7118a7] + UUIDs [4ec0a83e] + Unicode [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.4.0+0 [e37daf67] + LibGit2_jll v1.6.4+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.2+1 [14a3606d] + MozillaCACerts_jll v2023.1.10 [4536629a] + OpenBLAS_jll v0.3.23+4 [05823500] + OpenLibm_jll v0.8.5+0 [bea87d4a] + SuiteSparse_jll v7.2.1+1 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.52.0+1 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 9.96s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 163.2s ################################################################################ # Testing # Testing MatrixProductBP Status `/tmp/jl_QO3gqf/Project.toml` [4c88cf16] Aqua v0.8.13 [31c24e10] Distributions v0.25.120 [86223c79] Graphs v1.13.0 [8a731c18] IndexedGraphs v0.6.1 [3d39929c] MatrixProductBP v0.9.0 [89893e69] TensorTrains v0.12.1 [9a3f8284] Random [2f01184e] SparseArrays v1.10.0 [8dfed614] Test Status `/tmp/jl_QO3gqf/Manifest.toml` [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.3.0 [66dad0bd] AliasTables v1.1.3 [4c88cf16] Aqua v0.8.13 [dce04be8] ArgCheck v2.5.0 [ec485272] ArnoldiMethod v0.4.0 [4fba245c] ArrayInterface v7.19.0 [198e06fe] BangBang v0.4.4 [9718e550] Baselet v0.1.1 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] CPUSummary v0.2.6 [49dc2e85] Calculus v0.5.2 [217fe2f1] CavityTools v1.3.1 [d360d2e6] ChainRulesCore v1.25.1 [fb6a15b2] CloseOpenIntervals v0.1.13 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.16.0 [a33af91c] CompositionsBase v0.1.2 [187b0558] ConstructionBase v1.5.8 [6add18c4] ContextVariablesX v0.1.3 [adafc99b] CpuId v0.3.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [b552c78f] DiffRules v1.15.1 [31c24e10] Distributions v0.25.120 [ffbed154] DocStringExtensions v0.9.4 [cc61a311] FLoops v0.2.2 [b9860ae5] FLoopsBase v0.1.1 [9aa1b823] FastClosures v0.3.2 [1a297f60] FillArrays v1.13.0 [9c68100b] FoldsThreads v0.1.2 [069b7b12] FunctionWrappers v1.1.3 [46192b85] GPUArraysCore v0.2.0 [86223c79] Graphs v1.13.0 [f0d1745a] HalfIntegers v1.6.0 [3e5b6fbb] HostCPUFeatures v0.1.17 [34004b35] HypergeometricFunctions v0.3.28 [615f187c] IfElse v0.1.1 [8a731c18] IndexedGraphs v0.6.1 [d25df0c9] Inflate v0.1.5 [22cec73e] InitialValues v0.3.1 [18e54dd8] IntegerMathUtils v0.1.2 [3587e190] InverseFunctions v0.1.17 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.4 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.0 [b14d175d] JuliaVariables v0.2.4 [2c470bb0] Kronecker v0.5.5 ⌅ [0b1a1467] KrylovKit v0.8.3 [8ac3fa9e] LRUCache v1.6.2 [10f19ff3] LayoutPointers v0.1.17 [50d2b5c4] Lazy v0.15.1 [1fad7336] LazyStack v0.1.3 [2ab3a3ac] LogExpFunctions v0.3.29 [aa2f6b4e] LogarithmicNumbers v1.4.1 [e6f89c97] LoggingExtras v1.1.0 [bdcacae8] LoopVectorization v0.12.172 ⌅ [33e6dc65] MKL v0.7.0 [d8e11817] MLStyle v0.4.17 ⌅ [bb1c41ca] MPSKit v0.11.6 [1914dd2f] MacroTools v0.5.16 [d125e4d3] ManualMemory v0.1.8 [3d39929c] MatrixProductBP v0.9.0 [eff96d63] Measurements v2.12.0 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [77ba4419] NaNMath v1.1.3 [71a1bf82] NameResolution v0.1.5 [356022a1] NamedDims v1.2.2 [6fe1bfb0] OffsetArrays v1.17.0 ⌅ [77e91f04] OptimKit v0.3.1 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.35 [65ce6f38] PackageExtensionCompat v1.0.2 [1d0040c9] PolyesterWeave v0.2.2 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [8162dcfd] PrettyPrint v0.2.0 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.10.4 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [308eb6b3] RationalRoots v0.2.1 [3cdcf5f2] RecipesBase v1.3.4 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.8.0 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 [efcf1570] Setfield v1.1.2 [699a6c99] SimpleTraits v0.9.4 [a2af1166] SortingAlgorithms v1.2.1 [276daf66] SpecialFunctions v2.5.1 [171d559e] SplittablesBase v0.1.15 [aedffcd0] Static v1.2.0 [0d7ed370] StaticArrayInterface v1.8.0 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.5 [4c63d2b9] StatsFuns v1.5.0 [5e0ebb24] Strided v2.3.0 [4db3bf67] StridedViews v0.4.1 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [02d47bb6] TensorCast v0.4.9 ⌅ [07d1fe3e] TensorKit v0.12.0 ⌃ [11fa318c] TensorKitManifolds v0.6.2 ⌅ [6aa20fa7] TensorOperations v4.0.6 [89893e69] TensorTrains v0.12.1 [8290d209] ThreadingUtilities v0.5.4 [d94bfb22] TrackingHeaps v0.1.0 [28d57a85] Transducers v0.4.84 [24ddb15e] TransmuteDims v0.1.17 [bc48ee85] Tullio v0.3.8 [9d95972d] TupleTools v1.6.0 [3a884ed6] UnPack v1.0.2 [41fe7b60] Unzip v0.2.0 ⌅ [409d34a3] VectorInterface v0.4.9 [3d5dd08c] VectorizationBase v0.21.71 [9f57e263] WignerSymbols v2.0.0 ⌅ [1d5cc7b8] IntelOpenMP_jll v2024.2.1+0 ⌅ [856f044c] MKL_jll v2024.2.0+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [1317d2d5] oneTBB_jll v2022.0.0+0 [0dad84c5] ArgTools v1.1.1 [56f22d72] Artifacts [2a0f44e3] Base64 [ade2ca70] Dates [8ba89e20] Distributed [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching [9fa8497b] Future [b77e0a4c] InteractiveUtils [4af54fe1] LazyArtifacts [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 [8f399da3] Libdl [37e2e46d] LinearAlgebra [56ddb016] Logging [d6f4376e] Markdown [a63ad114] Mmap [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.10.0 [de0858da] Printf [3fa0cd96] REPL [9a3f8284] Random [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization [1a1011a3] SharedArrays [6462fe0b] Sockets [2f01184e] SparseArrays v1.10.0 [10745b16] Statistics v1.10.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test [cf7118a7] UUIDs [4ec0a83e] Unicode [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.4.0+0 [e37daf67] LibGit2_jll v1.6.4+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.2+1 [14a3606d] MozillaCACerts_jll v2023.1.10 [4536629a] OpenBLAS_jll v0.3.23+4 [05823500] OpenLibm_jll v0.8.5+0 [bea87d4a] SuiteSparse_jll v7.2.1+1 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.52.0+1 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... Test Summary: | Pass Total Time Aqua | 11 11 1m14.6s Running PopDyn: iter 2 Time: 0:00:00 it: 2/100 ε: 2.3861939062e-5/1.0e-15     Running PopDyn: iter 6 Time: 0:00:00 it: 6/100 ε: 0.006345237491905/1.0e-15     Running PopDyn: iter 8 Time: 0:00:00 it: 8/100 ε: 0.006441800803183/1.0e-15     Running PopDyn: iter 11 Time: 0:00:00 it: 11/100 ε: 0.019637449297155/1.0e-15     Running PopDyn: iter 13 Time: 0:00:00 it: 13/100 ε: 0.035660813459093/1.0e-15     Running PopDyn: iter 16 Time: 0:00:01 it: 16/100 ε: 0.036632500120281/1.0e-15     Running PopDyn: iter 18 Time: 0:00:01 it: 18/100 ε: 0.054969770144629/1.0e-15     Running PopDyn: iter 20 Time: 0:00:01 it: 20/100 ε: 0.074877328483462/1.0e-15     Running PopDyn: iter 23 Time: 0:00:01 it: 23/100 ε: 0.148792315416453/1.0e-15     Running PopDyn: iter 25 Time: 0:00:01 it: 25/100 ε: 0.102428167038713/1.0e-15     Running PopDyn: iter 28 Time: 0:00:01 it: 28/100 ε: 0.017113691288687/1.0e-15     Running PopDyn: iter 30 Time: 0:00:01 it: 30/100 ε: 0.006821795432577/1.0e-15     Running PopDyn: iter 33 Time: 0:00:01 it: 33/100 ε: 0.003207295690604/1.0e-15     Running PopDyn: iter 36 Time: 0:00:02 it: 36/100 ε: 0.000330729190012/1.0e-15     Running PopDyn: iter 39 Time: 0:00:02 it: 39/100 ε: 0.000147911056152/1.0e-15     Running PopDyn: iter 41 Time: 0:00:02 it: 41/100 ε: 5.2789070701e-5/1.0e-15     Running PopDyn: iter 44 Time: 0:00:02 it: 44/100 ε: 5.39431642e-6/1.0e-15     Running PopDyn: iter 46 Time: 0:00:02 it: 46/100 ε: 1.966792168e-6/1.0e-15     Running PopDyn: iter 48 Time: 0:00:02 it: 48/100 ε: 7.06875345e-7/1.0e-15     Running PopDyn: iter 51 Time: 0:00:02 it: 51/100 ε: 3.05617202e-7/1.0e-15     Running PopDyn: iter 53 Time: 0:00:02 it: 53/100 ε: 1.09740034e-7/1.0e-15     Running PopDyn: iter 56 Time: 0:00:02 it: 56/100 ε: 1.1153674e-8/1.0e-15     Running PopDyn: iter 58 Time: 0:00:03 it: 58/100 ε: 4.025108e-9/1.0e-15     Running PopDyn: iter 61 Time: 0:00:03 it: 61/100 ε: 1.783093e-9/1.0e-15     Running PopDyn: iter 63 Time: 0:00:03 it: 63/100 ε: 6.36754e-10/1.0e-15     Running PopDyn: iter 65 Time: 0:00:03 it: 65/100 ε: 2.2711e-10/1.0e-15     Running PopDyn: iter 68 Time: 0:00:03 it: 68/100 ε: 2.313e-11/1.0e-15     Running PopDyn: iter 70 Time: 0:00:03 it: 70/100 ε: 8.37e-12/1.0e-15     Running PopDyn: iter 73 Time: 0:00:03 it: 73/100 ε: 3.652e-12/1.0e-15     Running PopDyn: iter 75 Time: 0:00:03 it: 75/100 ε: 1.306e-12/1.0e-15     Running PopDyn: iter 78 Time: 0:00:04 it: 78/100 ε: 1.35e-13/1.0e-15     Running PopDyn: iter 80 Time: 0:00:04 it: 80/100 ε: 4.6e-14/1.0e-15     Running PopDyn: iter 82 Time: 0:00:04 it: 82/100 ε: 2.2e-14/1.0e-15     Running PopDyn: iter 85 Time: 0:00:04 it: 85/100 ε: 8.0e-15/1.0e-15     Running PopDyn: iter 87 Time: 0:00:04 it: 87/100 ε: 1.0e-15/1.0e-15  Test Summary: | Pass Total Time Equilibrium | 1 1 0.2s Running MPBP: iter 2 Time: 0:02:14 Δ: 0.4933186766876245 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 7 Time: 0:02:15 Δ: 0.02341246104595962 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 10 Time: 0:02:15 Δ: 0.005799671073017709 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 13 Time: 0:02:15 Δ: 0.0034664624869109595 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 15 Time: 0:02:15 Δ: 0.001844032057162659 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 17 Time: 0:02:15 Δ: 0.0006758868013934105 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 20 Time: 0:02:16 Δ: 0.00012928886169283338 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 23 Time: 0:02:16 Δ: 8.489830052393899e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 26 Time: 0:02:16 Δ: 2.7838475467945045e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 28 Time: 0:02:16 Δ: 2.1340373915990085e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 31 Time: 0:02:16 Δ: 6.79500065281502e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 34 Time: 0:02:16 Δ: 2.396495301315582e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 37 Time: 0:02:16 Δ: 7.539254447408439e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 40 Time: 0:02:16 Δ: 2.0019238555768482e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 43 Time: 0:02:17 Δ: 6.225357096489859e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 46 Time: 0:02:17 Δ: 1.268482807681437e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 49 Time: 0:02:17 Δ: 8.666093620490756e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 52 Time: 0:02:17 Δ: 2.7943998226476197e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 55 Time: 0:02:17 Δ: 1.346623035303196e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 58 Time: 0:02:17 Δ: 4.3047321263145477e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 61 Time: 0:02:17 Δ: 1.603976951258801e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 64 Time: 0:02:18 Δ: 5.519185108937563e-11 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 67 Time: 0:02:18 Δ: 1.7589263379136355e-11 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 70 Time: 0:02:18 Δ: 6.757261417078553e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 73 Time: 0:02:18 Δ: 2.135402965564026e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 76 Time: 0:02:18 Δ: 6.403766406037903e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 79 Time: 0:02:18 Δ: 2.013944566670034e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 82 Time: 0:02:18 Δ: 3.9745984281580604e-14 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 85 Time: 0:02:18 Δ: 1.9539925233402755e-14 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 88 Time: 0:02:19 Δ: 7.993605777301127e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 91 Time: 0:02:19 Δ: 3.552713678800501e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 94 Time: 0:02:19 Δ: 1.1102230246251565e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 97 Time: 0:02:19 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 100 Time: 0:02:19 Δ: 6.661338147750939e-16 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 101 Time: 0:02:29 Δ: 0.4888130173049514 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 102 Time: 0:02:29 Δ: 0.5260864054144496 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 103 Time: 0:02:29 Δ: 0.05525748603286029 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 104 Time: 0:02:30 Δ: 0.04494394963084636 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 105 Time: 0:02:30 Δ: 0.01305683433679361 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 106 Time: 0:02:30 Δ: 0.00970213997596936 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 107 Time: 0:02:30 Δ: 0.0020283160543943524 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 108 Time: 0:02:30 Δ: 0.0016775718997119604 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 109 Time: 0:02:30 Δ: 0.00039163536039676927 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 110 Time: 0:02:30 Δ: 0.000350630281132025 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 111 Time: 0:02:31 Δ: 6.882256652684937e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 112 Time: 0:02:31 Δ: 6.112898798216193e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 113 Time: 0:02:31 Δ: 1.2951035044839188e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 114 Time: 0:02:31 Δ: 1.2519248069331468e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 115 Time: 0:02:31 Δ: 2.4629264558928554e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 116 Time: 0:02:31 Δ: 2.2302080353586717e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 117 Time: 0:02:32 Δ: 4.4618194428025504e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 118 Time: 0:02:32 Δ: 4.398875881328479e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 119 Time: 0:02:32 Δ: 8.51396695367157e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 120 Time: 0:02:32 Δ: 7.963854553594274e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 121 Time: 0:02:32 Δ: 1.5516955720329406e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 122 Time: 0:02:32 Δ: 1.5274036258006163e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 123 Time: 0:02:32 Δ: 2.9347493324394236e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 124 Time: 0:02:33 Δ: 2.8276767594093144e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 125 Time: 0:02:33 Δ: 6.112619299614153e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 126 Time: 0:02:33 Δ: 5.283480319917544e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 127 Time: 0:02:33 Δ: 1.2120104919688401e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 128 Time: 0:02:33 Δ: 1.0002088046690005e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 129 Time: 0:02:33 Δ: 2.5907720413442803e-11 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 130 Time: 0:02:33 Δ: 1.8526291611919987e-11 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 131 Time: 0:02:34 Δ: 5.190292640122607e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 132 Time: 0:02:34 Δ: 3.5160763189878708e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 133 Time: 0:02:34 Δ: 1.0722533971829762e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 134 Time: 0:02:34 Δ: 6.52811138479592e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 135 Time: 0:02:34 Δ: 2.142730437526552e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 136 Time: 0:02:34 Δ: 1.2234657731369225e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 137 Time: 0:02:34 Δ: 4.4853010194856324e-14 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 138 Time: 0:02:34 Δ: 2.3092638912203256e-14 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 139 Time: 0:02:35 Δ: 9.103828801926284e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 140 Time: 0:02:35 Δ: 4.884981308350689e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 141 Time: 0:02:35 Δ: 3.552713678800501e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 142 Time: 0:02:35 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 143 Time: 0:02:35 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 144 Time: 0:02:35 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 145 Time: 0:02:36 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 146 Time: 0:02:36 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 147 Time: 0:02:36 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 148 Time: 0:02:36 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 149 Time: 0:02:36 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 150 Time: 0:02:36 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 151 Time: 0:02:37 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 152 Time: 0:02:37 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 153 Time: 0:02:37 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 154 Time: 0:02:37 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 155 Time: 0:02:37 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 156 Time: 0:02:37 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 157 Time: 0:02:38 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 158 Time: 0:02:38 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 159 Time: 0:02:38 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 160 Time: 0:02:38 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 161 Time: 0:02:38 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 162 Time: 0:02:38 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 163 Time: 0:02:38 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 164 Time: 0:02:39 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 165 Time: 0:02:39 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 166 Time: 0:02:39 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 167 Time: 0:02:39 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 168 Time: 0:02:39 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 169 Time: 0:02:39 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 170 Time: 0:02:39 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 171 Time: 0:02:39 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 172 Time: 0:02:40 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 173 Time: 0:02:40 Δ: 8.881784197001252e-16 trunc: ("SVD tolerance", "0.0")  Test Summary: | Pass Total Time Glauber infinite graph | 2 2 2m43.2s Running MPBP: iter 2 Time: 0:00:00 Δ: 0.37742576912570946 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 5 Time: 0:00:00 Δ: 0.0003158340292810369 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 8 Time: 0:00:00 Δ: 3.7599977509295e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 11 Time: 0:00:00 Δ: 3.972884243808039e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 14 Time: 0:00:01 Δ: 3.836930773104541e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 17 Time: 0:00:01 Δ: 8.881784197001252e-16 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 20 Time: 0:00:01 Δ: 0.045793239685444354 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 22 Time: 0:00:02 Δ: 0.0004655584267228008 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 24 Time: 0:00:02 Δ: 4.1235162406838555e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 26 Time: 0:00:02 Δ: 4.531440089827754e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 28 Time: 0:00:02 Δ: 6.826257337166908e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 30 Time: 0:00:02 Δ: 3.361977363169899e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 32 Time: 0:00:02 Δ: 9.947598300641403e-14 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 34 Time: 0:00:02 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 36 Time: 0:00:03 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 38 Time: 0:00:03 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 40 Time: 0:00:03 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 42 Time: 0:00:03 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 44 Time: 0:00:03 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 46 Time: 0:00:03 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 48 Time: 0:00:03 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 50 Time: 0:00:04 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 52 Time: 0:00:04 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 54 Time: 0:00:04 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 56 Time: 0:00:04 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 58 Time: 0:00:04 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 60 Time: 0:00:04 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 62 Time: 0:00:04 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 64 Time: 0:00:05 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 66 Time: 0:00:05 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 68 Time: 0:00:05 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 70 Time: 0:00:05 Δ: 1.1102230246251565e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 72 Time: 0:00:05 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 74 Time: 0:00:05 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 76 Time: 0:00:05 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 78 Time: 0:00:06 Δ: 3.9968028886505635e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 80 Time: 0:00:06 Δ: 1.1102230246251565e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 82 Time: 0:00:06 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 84 Time: 0:00:06 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 86 Time: 0:00:06 Δ: 3.9968028886505635e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 88 Time: 0:00:06 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 90 Time: 0:00:06 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 92 Time: 0:00:07 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 94 Time: 0:00:07 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 96 Time: 0:00:07 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 98 Time: 0:00:07 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 100 Time: 0:00:07 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 102 Time: 0:00:07 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 104 Time: 0:00:07 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 106 Time: 0:00:08 Δ: 3.1086244689504383e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 108 Time: 0:00:08 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 110 Time: 0:00:08 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 112 Time: 0:00:08 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 114 Time: 0:00:08 Δ: 1.1102230246251565e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 116 Time: 0:00:08 Δ: 3.774758283725532e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 118 Time: 0:00:09 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 120 Time: 0:00:09 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 122 Time: 0:00:09 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 124 Time: 0:00:09 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 126 Time: 0:00:09 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 128 Time: 0:00:09 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 130 Time: 0:00:10 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 132 Time: 0:00:10 Δ: 3.1086244689504383e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 134 Time: 0:00:10 Δ: 3.9968028886505635e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 136 Time: 0:00:10 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 138 Time: 0:00:10 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 140 Time: 0:00:10 Δ: 3.1086244689504383e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 142 Time: 0:00:10 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 144 Time: 0:00:11 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 146 Time: 0:00:11 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 148 Time: 0:00:11 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 150 Time: 0:00:11 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 152 Time: 0:00:11 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 154 Time: 0:00:11 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 156 Time: 0:00:11 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 158 Time: 0:00:12 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 160 Time: 0:00:12 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 162 Time: 0:00:12 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 164 Time: 0:00:12 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 166 Time: 0:00:12 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")  Test Summary: | Pass Total Time Glauber infinite bipartite graph | 2 2 13.9s Computing joint probability 0%| | ETA: 5:57:22 Computing joint probability 100%|████████████████████████| Time: 0:00:02 Computing exact marginals 13%|███▍ | ETA: 0:00:01 Computing exact marginals 34%|████████▉ | ETA: 0:00:00 Computing exact marginals 56%|██████████████▌ | ETA: 0:00:00 Computing exact marginals 77%|████████████████████ | ETA: 0:00:00 Computing exact marginals 98%|█████████████████████████▍| ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 18%|████▊ | ETA: 0:00:00 Computing exact marginals 39%|██████████▏ | ETA: 0:00:00 Computing exact marginals 59%|███████████████▌ | ETA: 0:00:00 Computing exact marginals 82%|█████████████████████▍ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 32%|███████▋ | ETA: 0:00:00 Computing joint probability 70%|████████████████▊ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 19%|████▉ | ETA: 0:00:00 Computing exact marginals 38%|█████████▊ | ETA: 0:00:00 Computing exact marginals 55%|██████████████▍ | ETA: 0:00:00 Computing exact marginals 74%|███████████████████▎ | ETA: 0:00:00 Computing exact marginals 96%|█████████████████████████ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Test Summary: | Pass Total Time Glauber ±J small tree | 13 13 2m08.5s Computing joint probability 0%| | ETA: 1:00:22 Computing joint probability 47%|███████████▍ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 31%|████████ | ETA: 0:00:00 Computing exact marginals 88%|██████████████████████▉ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 33%|████████▌ | ETA: 0:00:00 Computing exact marginals 90%|███████████████████████▍ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 95%|██████████████████████▊ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 58%|███████████████ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 93%|██████████████████████▍ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact pair marginals 9%|█▉ | ETA: 0:00:01 Computing exact pair marginals 18%|███▊ | ETA: 0:00:01 Computing exact pair marginals 33%|██████▉ | ETA: 0:00:01 Computing exact pair marginals 47%|█████████▉ | ETA: 0:00:00 Computing exact pair marginals 62%|█████████████ | ETA: 0:00:00 Computing exact pair marginals 76%|████████████████ | ETA: 0:00:00 Computing exact pair marginals 91%|███████████████████ | ETA: 0:00:00 Computing exact pair marginals 100%|█████████████████████| Time: 0:00:00 Computing joint probability 89%|█████████████████████▍ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact pair marginals 14%|███ | ETA: 0:00:01 Computing exact pair marginals 29%|██████▏ | ETA: 0:00:00 Computing exact pair marginals 44%|█████████▎ | ETA: 0:00:00 Computing exact pair marginals 59%|████████████▍ | ETA: 0:00:00 Computing exact pair marginals 73%|███████████████▍ | ETA: 0:00:00 Computing exact pair marginals 88%|██████████████████▍ | ETA: 0:00:00 Computing exact pair marginals 100%|█████████████████████| Time: 0:00:00 Computing joint probability 90%|█████████████████████▋ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact pair marginals 15%|███▏ | ETA: 0:00:01 Computing exact pair marginals 29%|██████▏ | ETA: 0:00:00 Computing exact pair marginals 44%|█████████▎ | ETA: 0:00:00 Computing exact pair marginals 59%|████████████▌ | ETA: 0:00:00 Computing exact pair marginals 74%|███████████████▋ | ETA: 0:00:00 Computing exact pair marginals 89%|██████████████████▊ | ETA: 0:00:00 Computing exact pair marginals 100%|█████████████████████| Time: 0:00:00 Computing joint probability 96%|███████████████████████ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 52%|█████████████▌ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 31%|███████▉ | ETA: 0:00:00 Computing exact marginals 88%|██████████████████████▊ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 93%|██████████████████████▎ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 51%|█████████████▍ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 83%|███████████████████▉ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact pair marginals 13%|██▊ | ETA: 0:00:01 Computing exact pair marginals 27%|█████▋ | ETA: 0:00:01 Computing exact pair marginals 40%|████████▍ | ETA: 0:00:00 Computing exact pair marginals 53%|███████████▏ | ETA: 0:00:00 Computing exact pair marginals 66%|█████████████▉ | ETA: 0:00:00 Computing exact pair marginals 81%|█████████████████ | ETA: 0:00:00 Computing exact pair marginals 96%|████████████████████▏| ETA: 0:00:00 Computing exact pair marginals 100%|█████████████████████| Time: 0:00:00 Computing joint probability 93%|██████████████████████▍ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact pair marginals 15%|███▏ | ETA: 0:00:01 Computing exact pair marginals 30%|██████▎ | ETA: 0:00:00 Computing exact pair marginals 44%|█████████▎ | ETA: 0:00:00 Computing exact pair marginals 59%|████████████▎ | ETA: 0:00:00 Computing exact pair marginals 73%|███████████████▍ | ETA: 0:00:00 Computing exact pair marginals 88%|██████████████████▍ | ETA: 0:00:00 Computing exact pair marginals 100%|█████████████████████| Time: 0:00:00 Computing joint probability 87%|████████████████████▉ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 48%|████████████▍ | ETA: 0:00:00 Computing exact marginals 96%|████████████████████████▉ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 50%|████████████▉ | ETA: 0:00:00 Computing exact marginals 99%|█████████████████████████▉| ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 73%|█████████████████▍ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 54%|██████████████▏ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Test Summary: | Pass Total Time Glauber small tree | 20 20 1m22.9s Computing joint probability 0%|▏ | ETA: 0:00:38 Computing joint probability 100%|████████████████████████| Time: 0:00:00 WARNING: Method definition f(Any, Any) in module Main at /home/pkgeval/.julia/packages/MatrixProductBP/Hhmig/test/glauber_small_tree.jl:213 overwritten at /home/pkgeval/.julia/packages/MatrixProductBP/Hhmig/test/glauber_small_tree.jl:267. ┌ Warning: #= /home/pkgeval/.julia/packages/Tullio/2zyFP/src/macro.jl:1093 =#: │ `LoopVectorization.check_args` on your inputs failed; running fallback `@inbounds @fastmath` loop instead. │ Use `warn_check_args=false`, e.g. `@turbo warn_check_args=false ...`, to disable this warning. └ @ MatrixProductBP ~/.julia/packages/LoopVectorization/ImqiY/src/condense_loopset.jl:1166 ┌ Warning: Verbosity logging macros are deprecated as they are not compatible with juliac-compiled programs │ caller = withlevel at verbosity.jl:107 [inlined] └ @ Core ~/.julia/packages/LoggingExtras/cFgEq/src/verbosity.jl:107 ┌ Warning: Verbosity logging macros are deprecated as they are not compatible with juliac-compiled programs │ caller = ip:0x0 └ @ Core :-1 ┌ Warning: Verbosity logging macros are deprecated as they are not compatible with juliac-compiled programs │ caller = withlevel at verbosity.jl:107 [inlined] └ @ Core ~/.julia/packages/LoggingExtras/cFgEq/src/verbosity.jl:107 Running MPBP: iter 2 Time: 0:02:48 (84.43 s/it) Δ: 0.31831742959129383 trunc: VUMPS truncation to bond size m'=12     Running MPBP: iter 3 Time: 0:02:56 (59.00 s/it) Δ: 0.1862164070178407 trunc: VUMPS truncation to bond size m'=12     Running MPBP: iter 4 Time: 0:03:05 (46.26 s/it) Δ: 4.440892098500626e-16 trunc: VUMPS truncation to bond size m'=12   Running MPBP: iter 2 Time: 0:00:38 Δ: 1.7541523789077473e-14 trunc: VUMPS truncation to bond size m'=12     Running MPBP: iter 3 Time: 0:00:54 Δ: 1.7763568394002505e-15 trunc: VUMPS truncation to bond size m'=12  Test Summary: | Pass Total Time IntegerGlauber small tree | 17 17 5m30.4s Test Summary: | Pass Total Time MPEM1 | 1 1 15.8s Test Summary: | Pass Total Time MPEM2 | 1 1 11.7s Test Summary: | Pass Total Time MPEM3 | 1 1 4.0s Test Summary: | Pass Total Time periodic MPEM2 | 1 1 6.5s Test Summary: | Pass Total Time periodic MPEM3 | 1 1 8.2s Running MPBP: iter 2 Time: 0:00:28 Δ: 0.3655050446383452 trunc: ("SVD tolerance", "1.0e-6")  Test Summary: | Pass Total Time Message normaliz | 1 1 32.3s Computing joint probability 65%|███████████████▌ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing joint probability 69%|████████████████▋ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 58%|███████████████▏ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 77%|██████████████████▌ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 57%|███████████████ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 68%|████████████████▎ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing joint probability 31%|███████▍ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 50%|█████████████ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 64%|███████████████▌ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 61%|███████████████▉ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Test Summary: | Pass Total Time Pair observations | 6 6 6.8s Computing joint probability 57%|█████████████▊ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 57%|██████████████▉ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 51%|█████████████▎ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 64%|███████████████▎ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 66%|█████████████████ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Running MPBP: iter 2 Time: 0:00:06 Δ: 0.8213012177166086 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 3 Time: 0:00:07 Δ: 0.15504165449730378 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 4 Time: 0:00:07 Δ: 0.005399703341050555 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 5 Time: 0:00:07 Δ: 0.003183802703716321 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 6 Time: 0:00:08 Δ: 0.0017269038888907406 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 7 Time: 0:00:08 Δ: 0.0006158674125897878 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 8 Time: 0:00:09 Δ: 0.00036241806177561564 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 9 Time: 0:00:09 Δ: 9.230961611317312e-5 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 10 Time: 0:00:09 Δ: 7.587928210672779e-5 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 11 Time: 0:00:10 Δ: 1.2968855748196617e-5 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 12 Time: 0:00:10 Δ: 1.4754167857899958e-5 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 13 Time: 0:00:11 Δ: 2.1375684875479806e-6 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 14 Time: 0:00:11 Δ: 2.8140314618507745e-6 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 15 Time: 0:00:11 Δ: 4.185454736127525e-7 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 16 Time: 0:00:12 Δ: 5.273821122031563e-7 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 17 Time: 0:00:12 Δ: 8.059628742174141e-8 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 18 Time: 0:00:12 Δ: 9.741836781707036e-8 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 19 Time: 0:00:13 Δ: 1.528827930918908e-8 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 20 Time: 0:00:13 Δ: 1.7742428859435222e-8 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 21 Time: 0:00:14 Δ: 2.8585038780448713e-9 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 22 Time: 0:00:14 Δ: 3.185232744229438e-9 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 23 Time: 0:00:14 Δ: 5.270242020571914e-10 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 24 Time: 0:00:15 Δ: 5.632314614700817e-10 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 25 Time: 0:00:15 Δ: 1.1617462547519608e-10 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 26 Time: 0:00:15 Δ: 9.796541355910904e-11 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 27 Time: 0:00:16 Δ: 2.6385338358636545e-11 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 28 Time: 0:00:16 Δ: 1.6726842133607533e-11 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 29 Time: 0:00:17 Δ: 5.7127635955112055e-12 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 30 Time: 0:00:17 Δ: 2.794875442191369e-12 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 31 Time: 0:00:17 Δ: 1.1948220191015935e-12 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 32 Time: 0:00:18 Δ: 4.549693954913892e-13 trunc: ("SVD Matrix size", "10")   Running MPBP: iter 2 Time: 0:00:02 Δ: 0.5904118751349734 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 3 Time: 0:00:03 Δ: 0.005178379580944581 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 4 Time: 0:00:05 Δ: 0.0019635478005404217 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 5 Time: 0:00:06 Δ: 0.00044058452528172865 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 6 Time: 0:00:08 Δ: 6.1031147183365775e-5 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 7 Time: 0:00:09 Δ: 1.052775854071264e-5 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 8 Time: 0:00:11 Δ: 1.493783412298555e-6 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 9 Time: 0:00:12 Δ: 5.674999044025242e-7 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 10 Time: 0:00:14 Δ: 1.5163195699052778e-7 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 11 Time: 0:00:15 Δ: 2.176923863395075e-8 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 12 Time: 0:00:17 Δ: 2.730206505319188e-9 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 13 Time: 0:00:18 Δ: 7.409537428060275e-10 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 14 Time: 0:00:19 Δ: 2.5725266361575905e-10 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 15 Time: 0:00:21 Δ: 4.1354697444262456e-11 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 16 Time: 0:00:22 Δ: 5.156097770964152e-12 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 17 Time: 0:00:23 Δ: 9.194867089945546e-13 trunc: ("SVD Matrix size", "10")   Computing joint probability 72%|█████████████████▍ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 58%|███████████████ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 53%|█████████████▋ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 68%|████████████████▍ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 31%|███████▉ | ETA: 0:00:00 Computing exact marginals 94%|████████████████████████▌ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Test Summary: | Pass Total Time Periodic | 12 12 1m14.8s Marginals from Soft Margin 50%|████████████▌ | ETA: 0:00:02 Marginals from Soft Margin 100%|█████████████████████████| Time: 0:00:02 Pair marginals from Soft Margin 33%|██████▋ | ETA: 0:00:09 Pair marginals from Soft Margin 100%|████████████████████| Time: 0:00:04 Autocorrelations from Soft Margin 50%|█████████ | ETA: 0:00:01 Autocorrelations from Soft Margin 100%|██████████████████| Time: 0:00:01 sampling - Gillespie - reproducibility: Error During Test at /home/pkgeval/.julia/packages/MatrixProductBP/Hhmig/test/sampling.jl:40 Got exception outside of a @test UndefVarError: `ExponentialQueue` not defined Stacktrace: [1] continuous_sis_sampler(sis::SIS{2, 4, Float64}, T::Int64, λ::Float64, ρ::Float64; α::Float64, nsamples::Int64, sites::Int64, Δt::Float64, discard_dead_epidemics::Bool, rng::MersenneTwister) @ MatrixProductBP ~/.julia/packages/MatrixProductBP/Hhmig/src/sampling.jl:276 [2] macro expansion @ ~/.julia/packages/MatrixProductBP/Hhmig/test/sampling.jl:41 [inlined] [3] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [4] macro expansion @ ~/.julia/packages/MatrixProductBP/Hhmig/test/sampling.jl:41 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [6] top-level scope @ ~/.julia/packages/MatrixProductBP/Hhmig/test/sampling.jl:3 [7] include(fname::String) @ Base.MainInclude ./client.jl:494 [8] top-level scope @ ~/.julia/packages/MatrixProductBP/Hhmig/test/runtests.jl:20 [9] include(fname::String) @ Base.MainInclude ./client.jl:494 [10] top-level scope @ none:6 [11] eval @ ./boot.jl:385 [inlined] [12] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [13] _start() @ Base ./client.jl:557 Test Summary: | Pass Error Total Time Sampling | 6 1 7 26.4s sampling - SoftMargin | 3 3 0.4s sampling - Gillespie - reproducibility | 1 1 2.5s ERROR: LoadError: Some tests did not pass: 6 passed, 0 failed, 1 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/MatrixProductBP/Hhmig/test/sampling.jl:1 in expression starting at /home/pkgeval/.julia/packages/MatrixProductBP/Hhmig/test/runtests.jl:20 Testing failed after 1000.76s ERROR: LoadError: Package MatrixProductBP errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.10/Pkg/src/Types.jl:70 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:2034 [3] test @ /opt/julia/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:1915 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::Base.PipeEndpoint}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:444 [5] test(pkgs::Vector{Pkg.Types.PackageSpec}; io::Base.PipeEndpoint, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:159 [6] test @ /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:147 [inlined] [7] #test#74 @ /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:146 [inlined] [8] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 1202.39s: package tests unexpectedly errored