Package evaluation of LaMEM on Julia 1.10.9 (96dc2d8c45*) started at 2025-06-07T01:11:37.989 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 5.03s ################################################################################ # Installation # Installing LaMEM... Resolving package versions... Updating `~/.julia/environments/v1.10/Project.toml` [2e889f3d] + LaMEM v0.4.7 Updating `~/.julia/environments/v1.10/Manifest.toml` [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.3.0 [66dad0bd] + AliasTables v1.1.3 [13072b0f] + AxisAlgorithms v1.1.0 [39de3d68] + AxisArrays v0.4.7 [7b0aa2c9] + BibTeX v0.1.0 [fa961155] + CEnum v0.5.0 [d360d2e6] + ChainRulesCore v1.25.1 [944b1d66] + CodecZlib v0.7.8 ⌅ [3da002f7] + ColorTypes v0.11.5 ⌃ [c3611d14] + ColorVectorSpace v0.10.0 ⌅ [5ae59095] + Colors v0.12.11 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.16.0 [a33af91c] + CompositionsBase v0.1.2 [187b0558] + ConstructionBase v1.5.8 [150eb455] + CoordinateTransformations v0.6.4 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [8bb1440f] + DelimitedFiles v1.9.1 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [b4f34e82] + Distances v0.10.12 [ffbed154] + DocStringExtensions v0.9.4 [411431e0] + Extents v0.1.6 [c87230d0] + FFMPEG v0.4.2 [5789e2e9] + FileIO v1.17.0 [1a297f60] + FillArrays v1.13.0 [53c48c17] + FixedPointNumbers v0.8.5 ⌅ [f6369f11] + ForwardDiff v0.10.38 [68eda718] + GeoFormatTypes v0.4.4 [cf35fbd7] + GeoInterface v1.4.1 ⌅ [e018b62d] + GeoParams v0.6.8 [0ef565a4] + Geodesy v1.1.0 ⌅ [5c1252a2] + GeometryBasics v0.4.11 ⌃ [3700c31b] + GeophysicalModelGenerator v0.7.4 [c27321d9] + Glob v1.3.1 [615f187c] + IfElse v0.1.1 [2803e5a7] + ImageAxes v0.6.12 [c817782e] + ImageBase v0.1.7 [a09fc81d] + ImageCore v0.10.5 [82e4d734] + ImageIO v0.6.9 [bc367c6b] + ImageMetadata v0.9.10 [9b13fd28] + IndirectArrays v1.0.0 [d25df0c9] + Inflate v0.1.5 [7d512f48] + InternedStrings v0.7.0 ⌅ [a98d9a8b] + Interpolations v0.15.1 [8197267c] + IntervalSets v0.7.11 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.4 [c8e1da08] + IterTools v1.10.0 [82899510] + IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] + JLD2 v0.4.54 [692b3bcd] + JLLWrappers v1.7.0 [b835a17e] + JpegTurbo v0.1.6 [49dc5b4e] + KernelDensitySJ v0.2.1 [2e889f3d] + LaMEM v0.4.7 [b964fa9f] + LaTeXStrings v1.4.0 [8cdb02fc] + LazyModules v0.3.1 [9c8b4983] + LightXML v0.9.1 [4345ca2d] + Loess v0.6.4 [2ab3a3ac] + LogExpFunctions v0.3.29 [da04e1cc] + MPI v0.20.22 [3da0fdf6] + MPIPreferences v0.1.11 [1914dd2f] + MacroTools v0.5.16 [dbb5928d] + MappedArrays v0.4.2 ⌅ [7269a6da] + MeshIO v0.4.13 [e1d29d7a] + Missings v1.2.0 [e94cdb99] + MosaicViews v0.3.4 [46d2c3a1] + MuladdMacro v0.2.4 [77ba4419] + NaNMath v1.1.3 [b8a86587] + NearestNeighbors v0.4.21 [f09324ee] + Netpbm v1.1.1 [6fe1bfb0] + OffsetArrays v1.17.0 [52e1d378] + OpenEXR v0.3.3 [bac558e1] + OrderedCollections v1.8.1 [f57f5aa1] + PNGFiles v0.4.4 [5432bcbf] + PaddedViews v0.5.12 [d96e819e] + Parameters v0.12.3 [eebad327] + PkgVersion v0.3.3 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [92933f4c] + ProgressMeter v1.10.4 [43287f4e] + PtrArrays v1.3.0 [4b34888f] + QOI v1.0.1 [b3c3ace0] + RangeArrays v0.3.2 [c84ed2f1] + Ratios v0.4.5 [dc215faf] + ReadVTK v0.2.4 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [f2b01f46] + Roots v2.2.7 [fdea26ae] + SIMD v3.7.1 [efcf1570] + Setfield v1.1.2 [699a6c99] + SimpleTraits v0.9.4 [45858cf5] + Sixel v0.1.3 [a2af1166] + SortingAlgorithms v1.2.1 [276daf66] + SpecialFunctions v2.5.1 [cae243ae] + StackViews v0.1.2 ⌅ [aedffcd0] + Static v0.8.10 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.5 ⌅ [09ab397b] + StructArrays v0.6.21 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 [62fd8b95] + TensorCore v0.1.1 [731e570b] + TiffImages v0.11.4 [3bb67fe8] + TranscodingStreams v0.11.3 [3a884ed6] + UnPack v1.0.2 [967fb449] + Unidecode v1.2.0 [1986cc42] + Unitful v1.22.1 [4004b06d] + VTKBase v1.0.1 [e3aaa7dc] + WebP v0.1.3 [efce3f68] + WoodburyMatrices v1.0.0 [64499a7a] + WriteVTK v1.21.2 [6e34b625] + Bzip2_jll v1.0.9+0 [83423d85] + Cairo_jll v1.18.5+0 [5ae413db] + EarCut_jll v2.2.4+0 [2e619515] + Expat_jll v2.6.5+0 ⌅ [b22a6f82] + FFMPEG_jll v4.4.4+1 [a3f928ae] + Fontconfig_jll v2.16.0+0 [d7e528f0] + FreeType2_jll v2.13.4+0 [559328eb] + FriBidi_jll v1.0.17+0 [78b55507] + Gettext_jll v0.21.0+0 [59f7168a] + Giflib_jll v5.2.3+0 [7746bdde] + Glib_jll v2.84.0+0 [3b182d85] + Graphite2_jll v1.3.15+0 [2e76f6c2] + HarfBuzz_jll v8.5.1+0 [e33a78d0] + Hwloc_jll v2.12.1+0 [905a6f67] + Imath_jll v3.1.11+0 [aacddb02] + JpegTurbo_jll v3.1.1+0 [c1c5ebd0] + LAME_jll v3.100.2+0 [88015f11] + LERC_jll v4.0.1+0 [1d63c593] + LLVMOpenMP_jll v18.1.8+0 [dd4b983a] + LZO_jll v2.10.3+0 [15d6fa20] + LaMEM_jll v2.1.4+0 [e9f186c6] + Libffi_jll v3.4.7+0 [7e76a0d4] + Libglvnd_jll v1.7.1+1 [94ce4f54] + Libiconv_jll v1.18.0+0 [4b2f31a3] + Libmount_jll v2.41.0+0 [89763e89] + Libtiff_jll v4.7.1+0 [38a345b3] + Libuuid_jll v2.41.0+0 ⌅ [7cb0a576] + MPICH_jll v4.1.2+1 [f1f71cc9] + MPItrampoline_jll v5.5.3+0 [9237b28f] + MicrosoftMPI_jll v10.1.4+3 [e7412a2a] + Ogg_jll v1.3.5+1 ⌅ [656ef2d0] + OpenBLAS32_jll v0.3.24+0 [18a262bb] + OpenEXR_jll v3.2.4+0 [fe0851c0] + OpenMPI_jll v5.0.7+2 [458c3c95] + OpenSSL_jll v3.5.0+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [91d4177d] + Opus_jll v1.3.3+0 ⌅ [8fa3689e] + PETSc_jll v3.19.6+0 ⌅ [30392449] + Pixman_jll v0.44.2+0 [aabda75e] + SCALAPACK32_jll v2.2.1+1 ⌅ [02c8fc9c] + XML2_jll v2.13.6+1 [ffd25f8a] + XZ_jll v5.8.1+0 [4f6342f7] + Xorg_libX11_jll v1.8.12+0 [0c0b7dd1] + Xorg_libXau_jll v1.0.13+0 [a3789734] + Xorg_libXdmcp_jll v1.1.6+0 [1082639a] + Xorg_libXext_jll v1.3.7+0 [ea2f1a96] + Xorg_libXrender_jll v0.9.12+0 [c7cfdc94] + Xorg_libxcb_jll v1.17.1+0 [c5fb5394] + Xorg_xtrans_jll v1.6.0+0 [3161d3a3] + Zstd_jll v1.5.7+1 [a4ae2306] + libaom_jll v3.11.0+0 [0ac62f75] + libass_jll v0.15.2+0 [f638f0a6] + libfdk_aac_jll v2.0.3+0 [b53b4c65] + libpng_jll v1.6.48+0 [075b6546] + libsixel_jll v1.10.5+0 [f27f6e37] + libvorbis_jll v1.3.7+2 [c5f90fcd] + libwebp_jll v1.5.0+0 ⌅ [1270edf5] + x264_jll v2021.5.5+0 ⌅ [dfaa095f] + x265_jll v3.5.0+0 [0dad84c5] + ArgTools v1.1.1 [56f22d72] + Artifacts [2a0f44e3] + Base64 [ade2ca70] + Dates [8ba89e20] + Distributed [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching [9fa8497b] + Future [b77e0a4c] + InteractiveUtils [4af54fe1] + LazyArtifacts [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 [8f399da3] + Libdl [37e2e46d] + LinearAlgebra [56ddb016] + Logging [d6f4376e] + Markdown [a63ad114] + Mmap [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.10.0 [de0858da] + Printf [3fa0cd96] + REPL [9a3f8284] + Random [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization [1a1011a3] + SharedArrays [6462fe0b] + Sockets [2f01184e] + SparseArrays v1.10.0 [10745b16] + Statistics v1.10.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test [cf7118a7] + UUIDs [4ec0a83e] + Unicode [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.4.0+0 [e37daf67] + LibGit2_jll v1.6.4+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.2+1 [14a3606d] + MozillaCACerts_jll v2023.1.10 [4536629a] + OpenBLAS_jll v0.3.23+4 [05823500] + OpenLibm_jll v0.8.5+0 [efcefdf7] + PCRE2_jll v10.42.0+1 [bea87d4a] + SuiteSparse_jll v7.2.1+1 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.52.0+1 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 17.71s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... ERROR: LoadError: The following 1 direct dependency failed to precompile: CairoMakie Failed to precompile CairoMakie [13f3f980-e62b-5c42-98c6-ff1f3baf88f0] to "/home/pkgeval/.julia/compiled/v1.10/CairoMakie/jl_1rbSdp". julia: /source/src/subtype.c:4817: sub_msp: Assertion `obvious_sub == 3 || obvious_sub == subtype || ijl_has_free_typevars(x) || ijl_has_free_typevars(y)' failed. [189] signal (6.-6): Aborted in expression starting at /home/pkgeval/.julia/packages/Makie/Y3ABD/precompile/shared-precompile.jl:90 unknown function (ip: 0x725166ad4ebc) gsignal at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) abort at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x725166a70394) __assert_fail at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) sub_msp at /source/src/subtype.c:4817 type_morespecific_ at /source/src/subtype.c:5075 type_morespecific_ at /source/src/subtype.c:5240 type_morespecific_ at /source/src/subtype.c:5240 type_morespecific_ at /source/src/subtype.c:5185 type_morespecific_ at /source/src/subtype.c:5143 type_morespecific_ at /source/src/subtype.c:5240 type_morespecific_ at /source/src/subtype.c:5237 tuple_morespecific at /source/src/subtype.c:4879 [inlined] type_morespecific_ at /source/src/subtype.c:5061 ml_matches at /source/src/gf.c:3700 ml_matches at /source/src/gf.c:3587 [inlined] _gf_invoke_lookup at /source/src/gf.c:3091 [inlined] jl_mt_assoc_by_type at /source/src/gf.c:1461 jl_lookup_generic_ at /source/src/gf.c:3048 [inlined] ijl_apply_generic at /source/src/gf.c:3073 conversion_pipeline at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/interfaces.jl:227 conversion_pipeline at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/interfaces.jl:218 unknown function (ip: 0x725144d150bc) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 Plot at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/interfaces.jl:278 unknown function (ip: 0x725144d142cc) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 _create_plot! at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/figureplotting.jl:390 _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] do_apply at /source/src/builtins.c:768 #poly!#65 at /home/pkgeval/.julia/packages/MakieCore/EU17Y/src/recipes.jl:514 poly! at /home/pkgeval/.julia/packages/MakieCore/EU17Y/src/recipes.jl:512 [inlined] initialize_block! at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/makielayout/blocks/toggle.jl:38 unknown function (ip: 0x725144d07825) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] do_apply at /source/src/builtins.c:768 #_block#1443 at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/makielayout/blocks.jl:398 _block at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/makielayout/blocks.jl:317 [inlined] #_block#1442 at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/makielayout/blocks.jl:262 [inlined] _block at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/makielayout/blocks.jl:261 [inlined] #_#1440 at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/makielayout/blocks.jl:240 [inlined] Block at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/makielayout/blocks.jl:239 unknown function (ip: 0x725144d01ed5) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] do_call at /source/src/interpreter.c:126 eval_value at /source/src/interpreter.c:223 eval_stmt_value at /source/src/interpreter.c:174 [inlined] eval_body at /source/src/interpreter.c:635 jl_interpret_toplevel_thunk at /source/src/interpreter.c:775 jl_toplevel_eval_flex at /source/src/toplevel.c:934 jl_toplevel_eval_flex at /source/src/toplevel.c:877 ijl_toplevel_eval_in at /source/src/toplevel.c:985 eval at ./boot.jl:385 [inlined] include_string at ./loading.jl:2146 _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 _include at ./loading.jl:2206 include at ./Base.jl:495 jfptr_include_46645.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] jl_f__call_latest at /source/src/builtins.c:812 include at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/Makie.jl:1 [inlined] macro expansion at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/precompiles.jl:33 [inlined] macro expansion at /home/pkgeval/.julia/packages/PrecompileTools/L8A3n/src/workloads.jl:78 [inlined] top-level scope at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/precompiles.jl:27 _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_invoke at /source/src/gf.c:2902 jl_toplevel_eval_flex at /source/src/toplevel.c:925 jl_toplevel_eval_flex at /source/src/toplevel.c:877 ijl_toplevel_eval_in at /source/src/toplevel.c:985 eval at ./boot.jl:385 [inlined] include_string at ./loading.jl:2146 _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 _include at ./loading.jl:2206 include at ./Base.jl:495 jfptr_include_46645.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] jl_f__call_latest at /source/src/builtins.c:812 include at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/Makie.jl:1 unknown function (ip: 0x725165c256e5) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] do_call at /source/src/interpreter.c:126 eval_value at /source/src/interpreter.c:223 eval_stmt_value at /source/src/interpreter.c:174 [inlined] eval_body at /source/src/interpreter.c:635 jl_interpret_toplevel_thunk at /source/src/interpreter.c:775 jl_toplevel_eval_flex at /source/src/toplevel.c:934 jl_eval_module_expr at /source/src/toplevel.c:215 [inlined] jl_toplevel_eval_flex at /source/src/toplevel.c:736 jl_toplevel_eval_flex at /source/src/toplevel.c:877 ijl_toplevel_eval_in at /source/src/toplevel.c:985 eval at ./boot.jl:385 [inlined] include_string at ./loading.jl:2146 _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 _include at ./loading.jl:2206 include at ./Base.jl:495 [inlined] include_package_for_output at ./loading.jl:2292 jfptr_include_package_for_output_81383.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] do_call at /source/src/interpreter.c:126 eval_value at /source/src/interpreter.c:223 eval_stmt_value at /source/src/interpreter.c:174 [inlined] eval_body at /source/src/interpreter.c:635 jl_interpret_toplevel_thunk at /source/src/interpreter.c:775 jl_toplevel_eval_flex at /source/src/toplevel.c:934 jl_toplevel_eval_flex at /source/src/toplevel.c:877 ijl_toplevel_eval_in at /source/src/toplevel.c:985 eval at ./boot.jl:385 [inlined] include_string at ./loading.jl:2146 include_string at ./loading.jl:2156 [inlined] exec_options at ./client.jl:321 _start at ./client.jl:557 jfptr__start_83099.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] true_main at /source/src/jlapi.c:582 jl_repl_entrypoint at /source/src/jlapi.c:731 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x725166a71249) __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) Allocations: 100104212 (Pool: 100029066; Big: 75146); GC: 96 ERROR: LoadError: Failed to precompile Makie [ee78f7c6-11fb-53f2-987a-cfe4a2b5a57a] to "/home/pkgeval/.julia/compiled/v1.10/Makie/jl_IOCjvp". Stacktrace: [1] error(s::String) @ Base ./error.jl:35 [2] compilecache(pkg::Base.PkgId, path::String, internal_stderr::IO, internal_stdout::IO, keep_loaded_modules::Bool) @ Base ./loading.jl:2539 [3] compilecache @ ./loading.jl:2411 [inlined] [4] (::Base.var"#971#972"{Base.PkgId})() @ Base ./loading.jl:2044 [5] mkpidlock(f::Base.var"#971#972"{Base.PkgId}, at::String, pid::Int32; kwopts::@Kwargs{stale_age::Int64, wait::Bool}) @ FileWatching.Pidfile /opt/julia/share/julia/stdlib/v1.10/FileWatching/src/pidfile.jl:93 [6] #mkpidlock#6 @ /opt/julia/share/julia/stdlib/v1.10/FileWatching/src/pidfile.jl:88 [inlined] [7] trymkpidlock(::Function, ::Vararg{Any}; kwargs::@Kwargs{stale_age::Int64}) @ FileWatching.Pidfile /opt/julia/share/julia/stdlib/v1.10/FileWatching/src/pidfile.jl:111 [8] #invokelatest#2 @ ./essentials.jl:894 [inlined] [9] invokelatest @ ./essentials.jl:889 [inlined] [10] maybe_cachefile_lock(f::Base.var"#971#972"{Base.PkgId}, pkg::Base.PkgId, srcpath::String; stale_age::Int64) @ Base ./loading.jl:3054 [11] maybe_cachefile_lock @ ./loading.jl:3051 [inlined] [12] _require(pkg::Base.PkgId, env::String) @ Base ./loading.jl:2040 [13] __require_prelocked(uuidkey::Base.PkgId, env::String) @ Base ./loading.jl:1882 [14] #invoke_in_world#3 @ ./essentials.jl:926 [inlined] [15] invoke_in_world @ ./essentials.jl:923 [inlined] [16] _require_prelocked(uuidkey::Base.PkgId, env::String) @ Base ./loading.jl:1873 [17] macro expansion @ ./loading.jl:1860 [inlined] [18] macro expansion @ ./lock.jl:267 [inlined] [19] __require(into::Module, mod::Symbol) @ Base ./loading.jl:1823 [20] #invoke_in_world#3 @ ./essentials.jl:926 [inlined] [21] invoke_in_world @ ./essentials.jl:923 [inlined] [22] require(into::Module, mod::Symbol) @ Base ./loading.jl:1816 [23] include @ ./Base.jl:495 [inlined] [24] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing) @ Base ./loading.jl:2292 [25] top-level scope @ stdin:4 in expression starting at /home/pkgeval/.julia/packages/CairoMakie/JchUZ/src/CairoMakie.jl:1 in expression starting at stdin: in expression starting at /PkgEval.jl/scripts/precompile.jl:37 Precompilation failed after 643.16s ################################################################################ # Testing # Testing LaMEM Status `/tmp/jl_6FoVGm/Project.toml` ⌃ [13f3f980] CairoMakie v0.12.18 [8bb1440f] DelimitedFiles v1.9.1 [ffbed154] DocStringExtensions v0.9.4 ⌅ [e018b62d] GeoParams v0.6.8 ⌃ [3700c31b] GeophysicalModelGenerator v0.7.4 [c27321d9] Glob v1.3.1 ⌅ [a98d9a8b] Interpolations v0.15.1 [2e889f3d] LaMEM v0.4.7 [9c8b4983] LightXML v0.9.1 [da04e1cc] MPI v0.20.22 [3da0fdf6] MPIPreferences v0.1.11 [91a5bcdd] Plots v1.40.13 [dc215faf] ReadVTK v0.2.4 [64499a7a] WriteVTK v1.21.2 [15d6fa20] LaMEM_jll v2.1.4+0 ⌅ [7cb0a576] MPICH_jll v4.1.2+1 [10745b16] Statistics v1.10.0 [8dfed614] Test Status `/tmp/jl_6FoVGm/Manifest.toml` [621f4979] AbstractFFTs v1.5.0 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.3.0 [35492f91] AdaptivePredicates v1.2.0 [66dad0bd] AliasTables v1.1.3 [27a7e980] Animations v0.4.2 [67c07d97] Automa v1.1.0 [13072b0f] AxisAlgorithms v1.1.0 [39de3d68] AxisArrays v0.4.7 [18cc8868] BaseDirs v1.3.0 [7b0aa2c9] BibTeX v0.1.0 [d1d4a3ce] BitFlags v0.1.9 [fa961155] CEnum v0.5.0 [96374032] CRlibm v1.0.2 [159f3aea] Cairo v1.1.1 ⌃ [13f3f980] CairoMakie v0.12.18 [d360d2e6] ChainRulesCore v1.25.1 [944b1d66] CodecZlib v0.7.8 [a2cac450] ColorBrewer v0.4.1 [35d6a980] ColorSchemes v3.29.0 ⌅ [3da002f7] ColorTypes v0.11.5 ⌃ [c3611d14] ColorVectorSpace v0.10.0 ⌅ [5ae59095] Colors v0.12.11 [38540f10] CommonSolve v0.2.4 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.16.0 [a33af91c] CompositionsBase v0.1.2 [f0e56b4a] ConcurrentUtilities v2.5.0 [187b0558] ConstructionBase v1.5.8 [d38c429a] Contour v0.6.3 [150eb455] CoordinateTransformations v0.6.4 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [927a84f5] DelaunayTriangulation v1.6.4 [8bb1440f] DelimitedFiles v1.9.1 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [b4f34e82] Distances v0.10.12 [31c24e10] Distributions v0.25.120 [ffbed154] DocStringExtensions v0.9.4 [4e289a0a] EnumX v1.0.5 [429591f6] ExactPredicates v2.2.8 [460bff9d] ExceptionUnwrapping v0.1.11 [411431e0] Extents v0.1.6 [c87230d0] FFMPEG v0.4.2 [7a1cc6ca] FFTW v1.9.0 [5789e2e9] FileIO v1.17.0 ⌅ [8fc22ac5] FilePaths v0.8.3 [48062228] FilePathsBase v0.9.24 [1a297f60] FillArrays v1.13.0 [53c48c17] FixedPointNumbers v0.8.5 [1fa38f19] Format v1.3.7 ⌅ [f6369f11] ForwardDiff v0.10.38 [b38be410] FreeType v4.1.1 [663a7486] FreeTypeAbstraction v0.10.7 [28b8d3ca] GR v0.73.16 [68eda718] GeoFormatTypes v0.4.4 [cf35fbd7] GeoInterface v1.4.1 ⌅ [e018b62d] GeoParams v0.6.8 [0ef565a4] Geodesy v1.1.0 ⌅ [5c1252a2] GeometryBasics v0.4.11 ⌃ [3700c31b] GeophysicalModelGenerator v0.7.4 [c27321d9] Glob v1.3.1 [a2bd30eb] Graphics v1.1.3 [3955a311] GridLayoutBase v0.11.1 [42e2da0e] Grisu v1.0.2 [cd3eb016] HTTP v1.10.16 [34004b35] HypergeometricFunctions v0.3.28 [615f187c] IfElse v0.1.1 [2803e5a7] ImageAxes v0.6.12 [c817782e] ImageBase v0.1.7 [a09fc81d] ImageCore v0.10.5 [82e4d734] ImageIO v0.6.9 [bc367c6b] ImageMetadata v0.9.10 [9b13fd28] IndirectArrays v1.0.0 [d25df0c9] Inflate v0.1.5 [7d512f48] InternedStrings v0.7.0 ⌅ [a98d9a8b] Interpolations v0.15.1 [d1acc4aa] IntervalArithmetic v0.22.35 [8197267c] IntervalSets v0.7.11 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.4 [f1662d9f] Isoband v0.1.1 [c8e1da08] IterTools v1.10.0 [82899510] IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] JLD2 v0.4.54 [1019f520] JLFzf v0.1.11 [692b3bcd] JLLWrappers v1.7.0 [682c06a0] JSON v0.21.4 [b835a17e] JpegTurbo v0.1.6 [5ab0869b] KernelDensity v0.6.9 [49dc5b4e] KernelDensitySJ v0.2.1 [2e889f3d] LaMEM v0.4.7 [b964fa9f] LaTeXStrings v1.4.0 [23fbe1c1] Latexify v0.16.8 [8cdb02fc] LazyModules v0.3.1 [9c8b4983] LightXML v0.9.1 [4345ca2d] Loess v0.6.4 [2ab3a3ac] LogExpFunctions v0.3.29 [e6f89c97] LoggingExtras v1.1.0 [da04e1cc] MPI v0.20.22 [3da0fdf6] MPIPreferences v0.1.11 [1914dd2f] MacroTools v0.5.16 ⌅ [ee78f7c6] Makie v0.21.18 ⌅ [20f20a25] MakieCore v0.8.12 [dbb5928d] MappedArrays v0.4.2 [0a4f8689] MathTeXEngine v0.6.4 [739be429] MbedTLS v1.1.9 [442fdcdd] Measures v0.3.2 ⌅ [7269a6da] MeshIO v0.4.13 [e1d29d7a] Missings v1.2.0 [e94cdb99] MosaicViews v0.3.4 [46d2c3a1] MuladdMacro v0.2.4 [77ba4419] NaNMath v1.1.3 [b8a86587] NearestNeighbors v0.4.21 [f09324ee] Netpbm v1.1.1 [510215fc] Observables v0.5.5 [6fe1bfb0] OffsetArrays v1.17.0 [52e1d378] OpenEXR v0.3.3 [4d8831e6] OpenSSL v1.5.0 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.35 [f57f5aa1] PNGFiles v0.4.4 [19eb6ba3] Packing v0.5.1 [5432bcbf] PaddedViews v0.5.12 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.3 [eebad327] PkgVersion v0.3.3 [ccf2f8ad] PlotThemes v3.3.0 [995b91a9] PlotUtils v1.4.3 [91a5bcdd] Plots v1.40.13 [647866c9] PolygonOps v0.1.2 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [92933f4c] ProgressMeter v1.10.4 [43287f4e] PtrArrays v1.3.0 [4b34888f] QOI v1.0.1 [1fd47b50] QuadGK v2.11.2 [b3c3ace0] RangeArrays v0.3.2 [c84ed2f1] Ratios v0.4.5 [dc215faf] ReadVTK v0.2.4 [3cdcf5f2] RecipesBase v1.3.4 [01d81517] RecipesPipeline v0.6.12 [189a3867] Reexport v1.2.2 [05181044] RelocatableFolders v1.0.1 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.8.0 [f2b01f46] Roots v2.2.7 [5eaf0fd0] RoundingEmulator v0.2.1 [fdea26ae] SIMD v3.7.1 [6c6a2e73] Scratch v1.2.1 [efcf1570] Setfield v1.1.2 ⌅ [65257c39] ShaderAbstractions v0.4.1 [992d4aef] Showoff v1.0.3 [73760f76] SignedDistanceFields v0.4.0 [777ac1f9] SimpleBufferStream v1.2.0 [699a6c99] SimpleTraits v0.9.4 [45858cf5] Sixel v0.1.3 [a2af1166] SortingAlgorithms v1.2.1 [276daf66] SpecialFunctions v2.5.1 [860ef19b] StableRNGs v1.0.3 [cae243ae] StackViews v0.1.2 ⌅ [aedffcd0] Static v0.8.10 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.5 [4c63d2b9] StatsFuns v1.5.0 ⌅ [09ab397b] StructArrays v0.6.21 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [62fd8b95] TensorCore v0.1.1 [731e570b] TiffImages v0.11.4 [3bb67fe8] TranscodingStreams v0.11.3 [981d1d27] TriplotBase v0.1.0 [5c2747f8] URIs v1.5.2 [3a884ed6] UnPack v1.0.2 [1cfade01] UnicodeFun v0.4.1 [967fb449] Unidecode v1.2.0 [1986cc42] Unitful v1.22.1 [45397f5d] UnitfulLatexify v1.7.0 [41fe7b60] Unzip v0.2.0 [4004b06d] VTKBase v1.0.1 [e3aaa7dc] WebP v0.1.3 [efce3f68] WoodburyMatrices v1.0.0 [64499a7a] WriteVTK v1.21.2 [6e34b625] Bzip2_jll v1.0.9+0 [4e9b3aee] CRlibm_jll v1.0.1+0 [83423d85] Cairo_jll v1.18.5+0 [ee1fde0b] Dbus_jll v1.16.2+0 [5ae413db] EarCut_jll v2.2.4+0 [2702e6a9] EpollShim_jll v0.0.20230411+1 [2e619515] Expat_jll v2.6.5+0 ⌅ [b22a6f82] FFMPEG_jll v4.4.4+1 [f5851436] FFTW_jll v3.3.11+0 [a3f928ae] Fontconfig_jll v2.16.0+0 [d7e528f0] FreeType2_jll v2.13.4+0 [559328eb] FriBidi_jll v1.0.17+0 [0656b61e] GLFW_jll v3.4.0+2 [d2c73de3] GR_jll v0.73.16+0 [78b55507] Gettext_jll v0.21.0+0 [59f7168a] Giflib_jll v5.2.3+0 [7746bdde] Glib_jll v2.84.0+0 [3b182d85] Graphite2_jll v1.3.15+0 [2e76f6c2] HarfBuzz_jll v8.5.1+0 [e33a78d0] Hwloc_jll v2.12.1+0 [905a6f67] Imath_jll v3.1.11+0 [1d5cc7b8] IntelOpenMP_jll v2025.0.4+0 [aacddb02] JpegTurbo_jll v3.1.1+0 [c1c5ebd0] LAME_jll v3.100.2+0 [88015f11] LERC_jll v4.0.1+0 [1d63c593] LLVMOpenMP_jll v18.1.8+0 [dd4b983a] LZO_jll v2.10.3+0 [15d6fa20] LaMEM_jll v2.1.4+0 [e9f186c6] Libffi_jll v3.4.7+0 [7e76a0d4] Libglvnd_jll v1.7.1+1 [94ce4f54] Libiconv_jll v1.18.0+0 [4b2f31a3] Libmount_jll v2.41.0+0 [89763e89] Libtiff_jll v4.7.1+0 [38a345b3] Libuuid_jll v2.41.0+0 [856f044c] MKL_jll v2025.0.1+1 ⌅ [7cb0a576] MPICH_jll v4.1.2+1 [f1f71cc9] MPItrampoline_jll v5.5.3+0 [9237b28f] MicrosoftMPI_jll v10.1.4+3 [e7412a2a] Ogg_jll v1.3.5+1 ⌅ [656ef2d0] OpenBLAS32_jll v0.3.24+0 [6cdc7f73] OpenBLASConsistentFPCSR_jll v0.3.29+0 [18a262bb] OpenEXR_jll v3.2.4+0 [fe0851c0] OpenMPI_jll v5.0.7+2 [458c3c95] OpenSSL_jll v3.5.0+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [91d4177d] Opus_jll v1.3.3+0 ⌅ [8fa3689e] PETSc_jll v3.19.6+0 [36c8627f] Pango_jll v1.56.3+0 ⌅ [30392449] Pixman_jll v0.44.2+0 [c0090381] Qt6Base_jll v6.8.2+1 [629bc702] Qt6Declarative_jll v6.8.2+1 [ce943373] Qt6ShaderTools_jll v6.8.2+1 [e99dba38] Qt6Wayland_jll v6.8.2+0 [f50d1b31] Rmath_jll v0.5.1+0 [aabda75e] SCALAPACK32_jll v2.2.1+1 [a44049a8] Vulkan_Loader_jll v1.3.243+0 [a2964d1f] Wayland_jll v1.23.1+0 [2381bf8a] Wayland_protocols_jll v1.36.0+0 ⌅ [02c8fc9c] XML2_jll v2.13.6+1 [ffd25f8a] XZ_jll v5.8.1+0 [f67eecfb] Xorg_libICE_jll v1.1.2+0 [c834827a] Xorg_libSM_jll v1.2.6+0 [4f6342f7] Xorg_libX11_jll v1.8.12+0 [0c0b7dd1] Xorg_libXau_jll v1.0.13+0 [935fb764] Xorg_libXcursor_jll v1.2.4+0 [a3789734] Xorg_libXdmcp_jll v1.1.6+0 [1082639a] Xorg_libXext_jll v1.3.7+0 [d091e8ba] Xorg_libXfixes_jll v6.0.1+0 [a51aa0fd] Xorg_libXi_jll v1.8.3+0 [d1454406] Xorg_libXinerama_jll v1.1.6+0 [ec84b674] Xorg_libXrandr_jll v1.5.5+0 [ea2f1a96] Xorg_libXrender_jll v0.9.12+0 [c7cfdc94] Xorg_libxcb_jll v1.17.1+0 [cc61e674] Xorg_libxkbfile_jll v1.1.3+0 [e920d4aa] Xorg_xcb_util_cursor_jll v0.1.4+0 [12413925] Xorg_xcb_util_image_jll v0.4.0+1 [2def613f] Xorg_xcb_util_jll v0.4.0+1 [975044d2] Xorg_xcb_util_keysyms_jll v0.4.0+1 [0d47668e] Xorg_xcb_util_renderutil_jll v0.3.9+1 [c22f9ab0] Xorg_xcb_util_wm_jll v0.4.1+1 [35661453] Xorg_xkbcomp_jll v1.4.7+0 [33bec58e] Xorg_xkeyboard_config_jll v2.44.0+0 [c5fb5394] Xorg_xtrans_jll v1.6.0+0 [3161d3a3] Zstd_jll v1.5.7+1 [35ca27e7] eudev_jll v3.2.9+0 [214eeab7] fzf_jll v0.61.1+0 [1a1c6b14] gperf_jll v3.3.0+0 [9a68df92] isoband_jll v0.2.3+0 [a4ae2306] libaom_jll v3.11.0+0 [0ac62f75] libass_jll v0.15.2+0 [1183f4f0] libdecor_jll v0.2.2+0 [2db6ffa8] libevdev_jll v1.11.0+0 [f638f0a6] libfdk_aac_jll v2.0.3+0 [36db933b] libinput_jll v1.18.0+0 [b53b4c65] libpng_jll v1.6.48+0 [075b6546] libsixel_jll v1.10.5+0 [f27f6e37] libvorbis_jll v1.3.7+2 [c5f90fcd] libwebp_jll v1.5.0+0 [009596ad] mtdev_jll v1.1.6+0 [1317d2d5] oneTBB_jll v2022.0.0+0 ⌅ [1270edf5] x264_jll v2021.5.5+0 ⌅ [dfaa095f] x265_jll v3.5.0+0 [d8fb68d0] xkbcommon_jll v1.8.1+0 [0dad84c5] ArgTools v1.1.1 [56f22d72] Artifacts [2a0f44e3] Base64 [8bf52ea8] CRC32c [ade2ca70] Dates [8ba89e20] Distributed [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching [9fa8497b] Future [b77e0a4c] InteractiveUtils [4af54fe1] LazyArtifacts [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 [8f399da3] Libdl [37e2e46d] LinearAlgebra [56ddb016] Logging [d6f4376e] Markdown [a63ad114] Mmap [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.10.0 [de0858da] Printf [3fa0cd96] REPL [9a3f8284] Random [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization [1a1011a3] SharedArrays [6462fe0b] Sockets [2f01184e] SparseArrays v1.10.0 [10745b16] Statistics v1.10.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test [cf7118a7] UUIDs [4ec0a83e] Unicode [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.4.0+0 [e37daf67] LibGit2_jll v1.6.4+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.2+1 [14a3606d] MozillaCACerts_jll v2023.1.10 [4536629a] OpenBLAS_jll v0.3.23+4 [05823500] OpenLibm_jll v0.8.5+0 [efcefdf7] PCRE2_jll v10.42.0+1 [bea87d4a] SuiteSparse_jll v7.2.1+1 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.52.0+1 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition piece(ReadVTK.VTKFile) in module ReadVTK at /home/pkgeval/.julia/packages/ReadVTK/tf0t4/src/ReadVTK.jl:184 overwritten in module IO_functions at /home/pkgeval/.julia/packages/LaMEM/M6C0P/src/read_timestep.jl:279. ERROR: Method overwriting is not permitted during Module precompilation. Use `__precompile__(false)` to opt-out of precompilation. WARNING: Method definition piece(ReadVTK.VTKFile) in module ReadVTK at /home/pkgeval/.julia/packages/ReadVTK/tf0t4/src/ReadVTK.jl:184 overwritten in module IO_functions at /home/pkgeval/.julia/packages/LaMEM/M6C0P/src/read_timestep.jl:279. Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 1. [Myr] Maximum number of steps : 2 Time step : 1. [Myr] Minimum time step : 0.2 [Myr] Maximum time step : 10. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [16, 16, 16] Number of cells : 4096 Number of faces : 13056 Maximum cell aspect ratio : 2.00000 Lower coordinate bounds [bx, by, bz] : [-2., -1., -1.] Upper coordinate bounds [ex, ey, ez] : [2., 1., 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 1 -- sphere (dens) : rho = 3200. [kg/m^3] (diff) : eta = 1e+23 [Pa*s] Bd = 5e-24 [1/Pa/s] Phase ID : 0 -- matrix (dens) : rho = 3000. [kg/m^3] (diff) : eta = 1e+20 [Pa*s] Bd = 5e-21 [1/Pa/s] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.0293074 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress tensor @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Preconditioner type : coupled Galerkin geometric multigrid Global coarse grid [nx,ny,nz] : [8, 8, 8] Local coarse grid [nx,ny,nz] : [8, 8, 8] Number of multigrid levels : 2 -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : multigrid Multigrid smoother levels KSP : chebyshev Multigrid smoother levels PC : sor Number of smoothening steps : 10 Coarse level KSP : preonly Coarse level PC : lu Coarse level solver package : (null) -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 3.656395025301e+02 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 5 1 SNES Function norm 9.765816215863e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.614771 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.291310889682e-05 |Div|_2 = 2.886140529488e-04 Momentum: |mRes|_2 = 9.761550506474e-03 -------------------------------------------------------------------------- Saving output ... done (0.00402635 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 1.00000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 2.685113961409e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 15 1 SNES Function norm 4.489500644001e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.698295 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.406409583179e-06 |Div|_2 = 5.437966746000e-06 Momentum: |mRes|_2 = 4.489497350596e-03 -------------------------------------------------------------------------- Actual time step : 1.10000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.1348e-02 s -------------------------------------------------------------------------- Saving output ... done (0.003532 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 1.53195 (sec) -------------------------------------------------------------------------- Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 1. [Myr] Maximum number of steps : 3 Time step : 1. [Myr] Minimum time step : 1e-05 [Myr] Maximum time step : 10. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [16, 16, 16] Number of cells : 4096 Number of faces : 13056 Maximum cell aspect ratio : 2.00000 Lower coordinate bounds [bx, by, bz] : [-2., -1., -1.] Upper coordinate bounds [ex, ey, ez] : [2., 1., 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 1 -- sphere (dens) : rho = 3000. [kg/m^3] (diff) : eta = 1e+20 [Pa*s] Bd = 5e-21 [1/Pa/s] Phase ID : 0 -- matrix (dens) : rho = 3000. [kg/m^3] (diff) : eta = 1e+20 [Pa*s] Bd = 5e-21 [1/Pa/s] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of velocity boxes : 1 Velocity box # : 0 Box center : 0., 0., 0. [km] Box width : 1., 1., 1. [km] X-velocity : 1. [cm/yr] Top boundary temperature : 0. [C] Bottom boundary temperature : 20. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.0295705 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Preconditioner type : coupled Galerkin geometric multigrid Global coarse grid [nx,ny,nz] : [8, 8, 8] Local coarse grid [nx,ny,nz] : [8, 8, 8] Number of multigrid levels : 2 -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : multigrid Multigrid smoother levels KSP : chebyshev Multigrid smoother levels PC : sor Number of smoothening steps : 10 Coarse level KSP : preonly Coarse level PC : lu Coarse level solver package : (null) -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 3.647420796124e+02 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 4 1 SNES Function norm 7.297937424597e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.628453 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.461331555372e-06 |Div|_2 = 2.127815511859e-04 Momentum: |mRes|_2 = 7.294834793524e-03 -------------------------------------------------------------------------- Saving output ... done (0.00287531 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 1.00000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 5.382901817483e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 10 1 SNES Function norm 3.188552971360e-02 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.576139 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 8.448585401899e-05 |Div|_2 = 1.340409029960e-03 Momentum: |mRes|_2 = 3.185734308993e-02 -------------------------------------------------------------------------- Actual time step : 0.01250 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 4692 markers and merged 24 markers in 1.6171e-02 s -------------------------------------------------------------------------- Saving output ... done (0.00268629 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.01250000 [Myr] Tentative time step : 0.01250000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 3.188552971358e-02 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 11 1 SNES Function norm 1.891353888714e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.614147 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.163910967605e-09 |Div|_2 = 1.007415909660e-08 Momentum: |mRes|_2 = 1.888669019231e-07 -------------------------------------------------------------------------- Actual time step : 0.01250 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 8386 markers and merged 136 markers in 2.2496e-02 s -------------------------------------------------------------------------- Saving output ... done (0.00270867 sec) -------------------------------------------------------------------------- ================================= STEP 3 ================================= -------------------------------------------------------------------------- Current time : 0.02500000 [Myr] Tentative time step : 0.01250000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.891353882404e-07 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 13 1 SNES Function norm 3.806690487543e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.621718 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.732544348338e-15 |Div|_2 = 6.229370514023e-14 Momentum: |mRes|_2 = 3.806180757958e-12 -------------------------------------------------------------------------- Actual time step : 0.01250 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 9921 markers and merged 252 markers in 3.0573e-02 s -------------------------------------------------------------------------- Saving output ... done (0.00278661 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 2.93375 (sec) -------------------------------------------------------------------------- Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 100000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 1. [Myr] Maximum number of steps : 30 Time step : 0.01 [Myr] Minimum time step : 1e-05 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 5 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [64, 1, 64] Number of cells : 4096 Number of faces : 16512 Maximum cell aspect ratio : 1.28000 Lower coordinate bounds [bx, by, bz] : [-500., -10., -1000.] Upper coordinate bounds [ex, ey, ez] : [500., 10., 50.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- Air (dens) : rho = 3300. [kg/m^3] (diff) : eta = 1e+22 [Pa*s] Bd = 5e-23 [1/Pa/s] (temp) : alpha = 3e-05 [1/K] Cp = 1e+06 [J/kg/K] k = 100. [W/m/k] Phase ID : 1 -- OCrust (dens) : rho = 3300. [kg/m^3] (diff) : eta = 1e+24 [Pa*s] Bd = 5e-25 [1/Pa/s] (temp) : alpha = 3e-05 [1/K] Cp = 1050. [J/kg/K] k = 3. [W/m/k] Phase ID : 2 -- Omantle (dens) : rho = 3300. [kg/m^3] (diff) : eta = 1e+23 [Pa*s] Bd = 5e-24 [1/Pa/s] (temp) : alpha = 3e-05 [1/K] Cp = 1050. [J/kg/K] k = 3. [W/m/k] Phase ID : 3 -- Umantle (dens) : rho = 3300. [kg/m^3] (diff) : eta = 1e+20 [Pa*s] Bd = 5e-21 [1/Pa/s] (temp) : alpha = 3e-05 [1/K] Cp = 1050. [J/kg/K] k = 3. [W/m/k] Phase ID : 4 -- Plume (dens) : rho = 3300. [kg/m^3] (diff) : eta = 1e+20 [Pa*s] Bd = 5e-21 [1/Pa/s] (temp) : alpha = 3e-05 [1/K] Cp = 1050. [J/kg/K] k = 3. [W/m/k] Phase ID : 5 -- Lmantle (dens) : rho = 3300. [kg/m^3] (diff) : eta = 1e+21 [Pa*s] Bd = 5e-22 [1/Pa/s] (temp) : alpha = 3e-05 [1/K] Cp = 1050. [J/kg/K] k = 3. [W/m/k] Phase ID : 6 -- Plume2 (dens) : rho = 3300. [kg/m^3] (diff) : eta = 1e+20 [Pa*s] Bd = 5e-21 [1/Pa/s] (temp) : alpha = 3e-05 [1/K] Cp = 1050. [J/kg/K] k = 3. [W/m/k] Phase ID : 7 -- Umantle2 (dens) : rho = 3300. [kg/m^3] (diff) : eta = 1e+20 [Pa*s] Bd = 5e-21 [1/Pa/s] (temp) : alpha = 3e-05 [1/K] Cp = 1050. [J/kg/K] k = 3. [W/m/k] -------------------------------------------------------------------------- Phase Transition laws: -------------------------------------------------------------------------- Phase Transition [0] : Constant Parameter : T Transition Value : 1200.000 Phase Above : 3 Phase Below : 2 Direction : BothWays Phase Transition [1] : Constant Parameter : Depth Transition Value : -400.000 Phase Above : 6 Phase Below : 4 Direction : BelowToAbove Reset Parameter : APS Phase Transition [2] : Clapeyron Transition law : Mantle_Transition_660km # Equations : 1 [ P = P0 + gamma*(T-T0) ] eq[0] : gamma = -2.50e+00 [MPa/C], P0 = 2.30e+10 [Pa], T0 = 1667.0 [deg C] Phase Above : 5 Phase Below : 3 Direction : BothWays Phase Transition [3] : Box Box Bounds : [200.0; 400.0; -100.0; 100.0; -1000.0; -500.0] [km] Box Vicinity : Use all particles to check inside/outside Linear Temp; bot T : 1300.0 [C] Linear Temp; top T : 20.0 [C] Phase Outside : 3 Phase Inside : 7 Direction : BothWays Reset Parameter : APS Adjusting density values due to phase transitions: -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 1 0 Open top boundary @ Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.0344711 sec) -------------------------------------------------------------------------- Output parameters: Output file name : Plume_PhaseTransitions_new Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- Initializing pressure with lithostatic pressure ... done (0.0014599 sec) -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 1.985087139977e+04 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 6.594719909526e-02 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.242401 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.736320446684e-03 |Div|_2 = 6.379041312826e-02 Momentum: |mRes|_2 = 1.672770938997e-02 -------------------------------------------------------------------------- Saving output ... done (0.0195937 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.01000000 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0293094 sec) -------------------------------------------------------------------------- 0 SNES Function norm 8.903947944260e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 6.024649811614e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.150395 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 6.935922950757e-06 |Div|_2 = 6.296964037381e-05 Momentum: |mRes|_2 = 6.024320723283e-03 -------------------------------------------------------------------------- Actual time step : 0.01100 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 441 markers and merged 0 markers in 1.2415e-02 s -------------------------------------------------------------------------- Saving output ... done (0.00368398 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.01100000 [Myr] Tentative time step : 0.01100000 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0303099 sec) -------------------------------------------------------------------------- 0 SNES Function norm 8.034506122548e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.042794808280e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.137086 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 6.100791055896e-06 |Div|_2 = 2.663022244943e-05 Momentum: |mRes|_2 = 3.042678273585e-03 -------------------------------------------------------------------------- Actual time step : 0.01210 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 1089 markers and merged 0 markers in 1.3038e-02 s -------------------------------------------------------------------------- ================================= STEP 3 ================================= -------------------------------------------------------------------------- Current time : 0.02310000 [Myr] Tentative time step : 0.01210000 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0236805 sec) -------------------------------------------------------------------------- 0 SNES Function norm 5.318612913611e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 4.512638742054e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.136839 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.382602357380e-06 |Div|_2 = 8.871198692501e-06 Momentum: |mRes|_2 = 4.512630022295e-03 -------------------------------------------------------------------------- Actual time step : 0.01271 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 1648 markers and merged 0 markers in 1.3147e-02 s -------------------------------------------------------------------------- ================================= STEP 4 ================================= -------------------------------------------------------------------------- Current time : 0.03580813 [Myr] Tentative time step : 0.01270813 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0282287 sec) -------------------------------------------------------------------------- 0 SNES Function norm 1.935573222169e+04 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 2.347072227143e-02 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.137731 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.247047888856e-06 |Div|_2 = 7.447201618764e-06 Momentum: |mRes|_2 = 2.347072108994e-02 -------------------------------------------------------------------------- Actual time step : 0.01317 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 2283 markers and merged 0 markers in 1.4416e-02 s -------------------------------------------------------------------------- ================================= STEP 5 ================================= -------------------------------------------------------------------------- Current time : 0.04898011 [Myr] Tentative time step : 0.01317198 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0281587 sec) -------------------------------------------------------------------------- 0 SNES Function norm 1.589238590905e+04 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.013070382147e-02 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.140912 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.805947853928e-06 |Div|_2 = 3.560205426322e-06 Momentum: |mRes|_2 = 1.013070319589e-02 -------------------------------------------------------------------------- Actual time step : 0.01348 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 2457 markers and merged 3 markers in 1.5271e-02 s -------------------------------------------------------------------------- Saving output ... done (0.00386657 sec) -------------------------------------------------------------------------- ================================= STEP 6 ================================= -------------------------------------------------------------------------- Current time : 0.06246502 [Myr] Tentative time step : 0.01348490 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0287942 sec) -------------------------------------------------------------------------- 0 SNES Function norm 7.105193382543e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.154888385840e-02 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.142962 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.625893629040e-06 |Div|_2 = 7.876091187835e-06 Momentum: |mRes|_2 = 1.154888117274e-02 -------------------------------------------------------------------------- Actual time step : 0.01377 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 2718 markers and merged 21 markers in 1.6537e-02 s -------------------------------------------------------------------------- ================================= STEP 7 ================================= -------------------------------------------------------------------------- Current time : 0.07623411 [Myr] Tentative time step : 0.01376910 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0319796 sec) -------------------------------------------------------------------------- 0 SNES Function norm 1.042373659728e+04 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.510094877904e-02 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.147063 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.794971457089e-06 |Div|_2 = 6.312594508142e-06 Momentum: |mRes|_2 = 1.510094745962e-02 -------------------------------------------------------------------------- Actual time step : 0.01399 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 3179 markers and merged 33 markers in 1.7579e-02 s -------------------------------------------------------------------------- ================================= STEP 8 ================================= -------------------------------------------------------------------------- Current time : 0.09022767 [Myr] Tentative time step : 0.01399356 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0291476 sec) -------------------------------------------------------------------------- 0 SNES Function norm 2.871444769587e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.658430341970e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.14217 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.403254490275e-06 |Div|_2 = 5.498127413823e-06 Momentum: |mRes|_2 = 1.658421228085e-03 -------------------------------------------------------------------------- Actual time step : 0.01398 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 3119 markers and merged 57 markers in 1.8928e-02 s -------------------------------------------------------------------------- ================================= STEP 9 ================================= -------------------------------------------------------------------------- Current time : 0.10421032 [Myr] Tentative time step : 0.01398265 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0282703 sec) -------------------------------------------------------------------------- 0 SNES Function norm 4.449583974129e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 5.322063249770e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.134636 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.449661887811e-06 |Div|_2 = 5.875773877495e-06 Momentum: |mRes|_2 = 5.322060006223e-03 -------------------------------------------------------------------------- Actual time step : 0.01428 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 3466 markers and merged 90 markers in 2.1106e-02 s -------------------------------------------------------------------------- ================================ STEP 10 ================================= -------------------------------------------------------------------------- Current time : 0.11849403 [Myr] Tentative time step : 0.01428371 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0280575 sec) -------------------------------------------------------------------------- 0 SNES Function norm 4.706865316454e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 2.788517436845e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.141473 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.971033394610e-06 |Div|_2 = 3.839433186097e-06 Momentum: |mRes|_2 = 2.788514793639e-03 -------------------------------------------------------------------------- Actual time step : 0.01439 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 3661 markers and merged 117 markers in 2.1893e-02 s -------------------------------------------------------------------------- Saving output ... done (0.00359727 sec) -------------------------------------------------------------------------- ================================ STEP 11 ================================= -------------------------------------------------------------------------- Current time : 0.13288211 [Myr] Tentative time step : 0.01438807 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.030582 sec) -------------------------------------------------------------------------- 0 SNES Function norm 8.991485040991e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 8.694136165734e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.137057 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.383957079883e-06 |Div|_2 = 5.825431414762e-06 Momentum: |mRes|_2 = 8.694134214094e-03 -------------------------------------------------------------------------- Actual time step : 0.01458 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 3219 markers and merged 150 markers in 2.1726e-02 s -------------------------------------------------------------------------- ================================ STEP 12 ================================= -------------------------------------------------------------------------- Current time : 0.14746103 [Myr] Tentative time step : 0.01457892 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0305842 sec) -------------------------------------------------------------------------- 0 SNES Function norm 5.473879258981e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.560793671473e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.136827 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.258375541324e-06 |Div|_2 = 2.992576486504e-06 Momentum: |mRes|_2 = 3.560792413957e-03 -------------------------------------------------------------------------- Actual time step : 0.01463 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 3311 markers and merged 161 markers in 2.3134e-02 s -------------------------------------------------------------------------- ================================ STEP 13 ================================= -------------------------------------------------------------------------- Current time : 0.16209081 [Myr] Tentative time step : 0.01462979 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0319549 sec) -------------------------------------------------------------------------- 0 SNES Function norm 4.275685042272e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 5.103768241593e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.139011 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.613569589706e-06 |Div|_2 = 3.362504229368e-06 Momentum: |mRes|_2 = 5.103767133937e-03 -------------------------------------------------------------------------- Actual time step : 0.01468 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 3513 markers and merged 249 markers in 2.3845e-02 s -------------------------------------------------------------------------- ================================ STEP 14 ================================= -------------------------------------------------------------------------- Current time : 0.17677097 [Myr] Tentative time step : 0.01468015 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0334607 sec) -------------------------------------------------------------------------- 0 SNES Function norm 1.350290833178e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.726032134112e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.147375 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.747924524954e-06 |Div|_2 = 6.606745373525e-06 Momentum: |mRes|_2 = 1.726019489723e-03 -------------------------------------------------------------------------- Actual time step : 0.01480 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 3237 markers and merged 241 markers in 2.4484e-02 s -------------------------------------------------------------------------- ================================ STEP 15 ================================= -------------------------------------------------------------------------- Current time : 0.19157476 [Myr] Tentative time step : 0.01480379 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0364717 sec) -------------------------------------------------------------------------- 0 SNES Function norm 2.674533097998e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.036490753468e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.135518 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.276829055403e-06 |Div|_2 = 5.026127715309e-06 Momentum: |mRes|_2 = 3.036486593736e-03 -------------------------------------------------------------------------- Actual time step : 0.01474 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 3166 markers and merged 301 markers in 2.4933e-02 s -------------------------------------------------------------------------- Saving output ... done (0.00379243 sec) -------------------------------------------------------------------------- ================================ STEP 16 ================================= -------------------------------------------------------------------------- Current time : 0.20631027 [Myr] Tentative time step : 0.01473551 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0369932 sec) -------------------------------------------------------------------------- 0 SNES Function norm 3.214195749760e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.255579919968e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.139756 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 7.215428179386e-07 |Div|_2 = 1.542132189085e-06 Momentum: |mRes|_2 = 1.255578972927e-03 -------------------------------------------------------------------------- Actual time step : 0.01494 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 2829 markers and merged 348 markers in 2.6267e-02 s -------------------------------------------------------------------------- ================================ STEP 17 ================================= -------------------------------------------------------------------------- Current time : 0.22125036 [Myr] Tentative time step : 0.01494009 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0377835 sec) -------------------------------------------------------------------------- 0 SNES Function norm 1.415360965464e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.397087471237e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.137763 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.282432859018e-06 |Div|_2 = 2.980539196763e-06 Momentum: |mRes|_2 = 1.397084291900e-03 -------------------------------------------------------------------------- Actual time step : 0.01505 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 3076 markers and merged 366 markers in 2.7875e-02 s -------------------------------------------------------------------------- ================================ STEP 18 ================================= -------------------------------------------------------------------------- Current time : 0.23629778 [Myr] Tentative time step : 0.01504742 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0334552 sec) -------------------------------------------------------------------------- 0 SNES Function norm 3.271567359873e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.069485309642e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.136898 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.690801147980e-06 |Div|_2 = 4.153467007522e-06 Momentum: |mRes|_2 = 3.069482499514e-03 -------------------------------------------------------------------------- Actual time step : 0.01518 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 2831 markers and merged 351 markers in 2.7525e-02 s -------------------------------------------------------------------------- ================================ STEP 19 ================================= -------------------------------------------------------------------------- Current time : 0.25147556 [Myr] Tentative time step : 0.01517778 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0355926 sec) -------------------------------------------------------------------------- 0 SNES Function norm 8.407677792888e+02 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.478870555625e-04 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.136568 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.034064185168e-06 |Div|_2 = 1.427767384948e-06 Momentum: |mRes|_2 = 3.478841256917e-04 -------------------------------------------------------------------------- Actual time step : 0.01517 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 2958 markers and merged 373 markers in 3.0348e-02 s -------------------------------------------------------------------------- ================================ STEP 20 ================================= -------------------------------------------------------------------------- Current time : 0.26665036 [Myr] Tentative time step : 0.01517480 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0362845 sec) -------------------------------------------------------------------------- 0 SNES Function norm 3.454633636616e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 4.597346615330e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.136229 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.757287793226e-06 |Div|_2 = 4.633531387496e-06 Momentum: |mRes|_2 = 4.597344280328e-03 -------------------------------------------------------------------------- Actual time step : 0.01529 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 2615 markers and merged 348 markers in 2.9530e-02 s -------------------------------------------------------------------------- Saving output ... done (0.00403588 sec) -------------------------------------------------------------------------- ================================ STEP 21 ================================= -------------------------------------------------------------------------- Current time : 0.28194393 [Myr] Tentative time step : 0.01529357 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0358151 sec) -------------------------------------------------------------------------- 0 SNES Function norm 1.662243615071e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.457572792318e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.138455 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.549740517276e-06 |Div|_2 = 2.356606806332e-06 Momentum: |mRes|_2 = 1.457570887233e-03 -------------------------------------------------------------------------- Actual time step : 0.01530 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 2223 markers and merged 464 markers in 2.8400e-02 s -------------------------------------------------------------------------- ================================ STEP 22 ================================= -------------------------------------------------------------------------- Current time : 0.29723979 [Myr] Tentative time step : 0.01529587 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0413231 sec) -------------------------------------------------------------------------- 0 SNES Function norm 1.666098628745e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 2.181579776420e-04 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.141461 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.105071822966e-07 |Div|_2 = 4.345251602430e-07 Momentum: |mRes|_2 = 2.181575448998e-04 -------------------------------------------------------------------------- Actual time step : 0.01536 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 2358 markers and merged 388 markers in 2.8274e-02 s -------------------------------------------------------------------------- ================================ STEP 23 ================================= -------------------------------------------------------------------------- Current time : 0.31259987 [Myr] Tentative time step : 0.01536008 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0436403 sec) -------------------------------------------------------------------------- 0 SNES Function norm 6.520633752479e+02 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.585323132561e-04 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.143375 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 6.074607750498e-07 |Div|_2 = 1.241583485338e-06 Momentum: |mRes|_2 = 3.585301634720e-04 -------------------------------------------------------------------------- Actual time step : 0.01533 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 2052 markers and merged 489 markers in 3.0735e-02 s -------------------------------------------------------------------------- ================================ STEP 24 ================================= -------------------------------------------------------------------------- Current time : 0.32792814 [Myr] Tentative time step : 0.01532827 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0413456 sec) -------------------------------------------------------------------------- 0 SNES Function norm 7.544791942376e+02 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 6.645518857154e-04 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.144914 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.963381580539e-06 |Div|_2 = 3.578799441957e-06 Momentum: |mRes|_2 = 6.645422492230e-04 -------------------------------------------------------------------------- Actual time step : 0.01533 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 1961 markers and merged 581 markers in 3.0127e-02 s -------------------------------------------------------------------------- ================================ STEP 25 ================================= -------------------------------------------------------------------------- Current time : 0.34326050 [Myr] Tentative time step : 0.01533236 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0384745 sec) -------------------------------------------------------------------------- 0 SNES Function norm 2.428135768392e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.940813617477e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0999064 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.323266839596e-06 |Div|_2 = 2.195414288975e-06 Momentum: |mRes|_2 = 1.940812375769e-03 -------------------------------------------------------------------------- Actual time step : 0.01535 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 2019 markers and merged 548 markers in 2.0835e-02 s -------------------------------------------------------------------------- Saving output ... done (0.107081 sec) -------------------------------------------------------------------------- ================================ STEP 26 ================================= -------------------------------------------------------------------------- Current time : 0.35861463 [Myr] Tentative time step : 0.01535414 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0488282 sec) -------------------------------------------------------------------------- 0 SNES Function norm 1.789866730496e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.615523047067e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.113591 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.855295772624e-06 |Div|_2 = 3.281914795005e-06 Momentum: |mRes|_2 = 1.615519713479e-03 -------------------------------------------------------------------------- Actual time step : 0.01538 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 1918 markers and merged 626 markers in 3.1564e-02 s -------------------------------------------------------------------------- ================================ STEP 27 ================================= -------------------------------------------------------------------------- Current time : 0.37399938 [Myr] Tentative time step : 0.01538475 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0410117 sec) -------------------------------------------------------------------------- 0 SNES Function norm 5.889560968213e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.610205639529e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.138735 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.735301883940e-07 |Div|_2 = 1.052907877585e-06 Momentum: |mRes|_2 = 1.610205295283e-03 -------------------------------------------------------------------------- Actual time step : 0.01541 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 1756 markers and merged 594 markers in 3.2517e-02 s -------------------------------------------------------------------------- ================================ STEP 28 ================================= -------------------------------------------------------------------------- Current time : 0.38940579 [Myr] Tentative time step : 0.01540641 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0374986 sec) -------------------------------------------------------------------------- 0 SNES Function norm 6.172228468350e+02 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 5.191147607294e-04 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.134134 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.224928623258e-06 |Div|_2 = 5.311699400284e-06 Momentum: |mRes|_2 = 5.190875847645e-04 -------------------------------------------------------------------------- Actual time step : 0.01550 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 1699 markers and merged 628 markers in 3.0743e-02 s -------------------------------------------------------------------------- ================================ STEP 29 ================================= -------------------------------------------------------------------------- Current time : 0.40491046 [Myr] Tentative time step : 0.01550467 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.0421477 sec) -------------------------------------------------------------------------- 0 SNES Function norm 2.295216675739e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.561757840034e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.138571 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.107123301842e-06 |Div|_2 = 4.128857669323e-06 Momentum: |mRes|_2 = 1.561752382243e-03 -------------------------------------------------------------------------- Actual time step : 0.01561 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 1661 markers and merged 673 markers in 3.2314e-02 s -------------------------------------------------------------------------- ================================ STEP 30 ================================= -------------------------------------------------------------------------- Current time : 0.42052352 [Myr] Tentative time step : 0.01561306 [Myr] -------------------------------------------------------------------------- Phase_Transition ... done (0.027962 sec) -------------------------------------------------------------------------- 0 SNES Function norm 1.803452452713e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.966698890739e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.100001 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.558964615428e-06 |Div|_2 = 3.788307440217e-06 Momentum: |mRes|_2 = 1.966695242167e-03 -------------------------------------------------------------------------- Actual time step : 0.01574 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 1519 markers and merged 607 markers in 3.3701e-02 s -------------------------------------------------------------------------- Saving output ... done (0.00824109 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 10.3875 (sec) -------------------------------------------------------------------------- pwd() = "/home/pkgeval/.julia/packages/LaMEM/M6C0P/test" readdir() = ["CreateMarkers_Subduction_Linear_FreeSlip_parallel.jl", "Rhyolite.in", "input_files", "markers", "mesh_refinement_test.jl", "read_logfile.jl", "read_timestep.jl", "runLaMEM.jl", "run_lamem_save_grid_test.jl", "runtests.jl", "test_GeoParams_integration.jl", "test_compression.jl", "test_erosion.jl", "test_examples.jl", "test_julia_setup_phase_diagrams.jl", "test_julia_setups.jl", "test_sedimentation.jl"] Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 100000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 1. [Myr] Maximum number of steps : 4 Time step : 0.04 [Myr] Minimum time step : 0.004 [Myr] Maximum time step : 0.2 [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [16, 1, 16] Number of cells : 256 Number of faces : 1056 Maximum cell aspect ratio : 6.25000 Lower coordinate bounds [bx, by, bz] : [-100., -1., -100.] Upper coordinate bounds [ex, ey, ez] : [100., 1., 0.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 1 -- heter - Employing phase diagram: /home/pkgeval/.julia/packages/LaMEM/M6C0P/test/Rhyolite (diff) : eta = 1e+23 [Pa*s] Bd = 5e-24 [1/Pa/s] Phase ID : 0 -- matrix - Employing phase diagram: /home/pkgeval/.julia/packages/LaMEM/M6C0P/test/Rhyolite (diff) : eta = 1e+23 [Pa*s] Bd = 5e-24 [1/Pa/s] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Top boundary temperature : 0. [C] Bottom boundary temperature : 989.583 [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.00256154 sec) -------------------------------------------------------------------------- Phase Diagrams: Diagrams employed for phases : 0: P range=[0.2-20.2] kbar, T range = [386.4-2086.4] K 1: -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ Melt fraction @ Fluid density @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 3.934530286730e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.581262562749e+02 1 PICARD ||F||/||F0||=4.018936e-02 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 1.117627025004e+01 2 MMFD ||F||/||F0||=2.840560e-03 Linear js_ solve converged due to CONVERGED_RTOL iterations 3 3 SNES Function norm 1.432330149671e-01 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 3 SNES solution time : 0.0145951 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 6.002321873040e-09 |Div|_2 = 5.644441176775e-08 Momentum: |mRes|_2 = 1.432330149671e-01 -------------------------------------------------------------------------- Saving output ... done (0.00097788 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.04000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 3.050235816760e+02 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.039676666126e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.00573493 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 6.069414583551e-18 |Div|_2 = 3.162302608719e-17 Momentum: |mRes|_2 = 3.039676666126e-03 -------------------------------------------------------------------------- Actual time step : 0.04400 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 5.8481e-04 s -------------------------------------------------------------------------- Saving output ... done (0.00158595 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.04400000 [Myr] Tentative time step : 0.04400000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 3.040264438959e-03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 6.434728602950e-05 1 PICARD ||F||/||F0||=2.116503e-02 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 2 SNES Function norm 1.391731242115e-06 2 MMFD ||F||/||F0||=4.577665e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 3 3 SNES Function norm 3.775960634440e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 3 SNES solution time : 0.0183843 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 7.030373462211e-20 |Div|_2 = 2.243793518119e-19 Momentum: |mRes|_2 = 3.775960634440e-12 -------------------------------------------------------------------------- Actual time step : 0.04840 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 5.5445e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000841242 sec) -------------------------------------------------------------------------- ================================= STEP 3 ================================= -------------------------------------------------------------------------- Current time : 0.09240000 [Myr] Tentative time step : 0.04840000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 2.883181848925e-05 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 7.210941128243e-07 1 PICARD ||F||/||F0||=2.501036e-02 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 2 SNES Function norm 1.472232176353e-08 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.00959542 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.343431206158e-15 |Div|_2 = 7.266627062028e-15 Momentum: |mRes|_2 = 1.472232176353e-08 -------------------------------------------------------------------------- Actual time step : 0.05324 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 5.6808e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000911061 sec) -------------------------------------------------------------------------- ================================= STEP 4 ================================= -------------------------------------------------------------------------- Current time : 0.14564000 [Myr] Tentative time step : 0.05324000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 3.170864950966e-05 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 7.927997956283e-07 1 PICARD ||F||/||F0||=2.500264e-02 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 2 SNES Function norm 1.618712375651e-08 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.00957303 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.477117569190e-15 |Div|_2 = 7.988983672080e-15 Momentum: |mRes|_2 = 1.618712375651e-08 -------------------------------------------------------------------------- Actual time step : 0.05856 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 5.6955e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000862461 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.112316 (sec) -------------------------------------------------------------------------- Saved file: Model3D.vts cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 1. [Myr] Maximum number of steps : 2 Time step : 1. [Myr] Minimum time step : 0.2 [Myr] Maximum time step : 10. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [16, 1, 16] Number of cells : 256 Number of faces : 1056 Maximum cell aspect ratio : 2.00000 Lower coordinate bounds [bx, by, bz] : [-2., -0.09375, -1.] Upper coordinate bounds [ex, ey, ez] : [2., 0.09375, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 1 -- sphere (dens) : rho = 3200. [kg/m^3] (diff) : eta = 1e+23 [Pa*s] Bd = 5e-24 [1/Pa/s] Phase ID : 0 -- matrix (dens) : rho = 3000. [kg/m^3] (diff) : eta = 1e+20 [Pa*s] Bd = 5e-21 [1/Pa/s] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : geometric primitives Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise Background phase ID : 0 -------------------------------------------------------------------------- Reading geometric primitives ... done (0.000310967 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 9.118551990311e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.116028797339e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00762815 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.174184490476e-18 |Div|_2 = 5.984135402956e-18 Momentum: |mRes|_2 = 1.116028797323e-12 -------------------------------------------------------------------------- Saving output ... done (0.124202 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 1.00000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.116028797339e-12 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 4.979851535660e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00466405 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 6.877881017396e-30 |Div|_2 = 3.192494526470e-29 Momentum: |mRes|_2 = 4.979851535660e-14 -------------------------------------------------------------------------- Actual time step : 1.10000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 5.8065e-04 s -------------------------------------------------------------------------- Saving output ... done (0.0110801 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.17067 (sec) -------------------------------------------------------------------------- Saved file: Model3D.vts cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 1. [Myr] Maximum number of steps : 2 Time step : 1. [Myr] Minimum time step : 0.2 [Myr] Maximum time step : 10. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [16, 1, 16] Number of cells : 256 Number of faces : 1056 Maximum cell aspect ratio : 2.00000 Lower coordinate bounds [bx, by, bz] : [-2., -0.09375, -1.] Upper coordinate bounds [ex, ey, ez] : [2., 0.09375, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 1 -- sphere (dens) : rho = 3200. [kg/m^3] (diff) : eta = 1e+23 [Pa*s] Bd = 5e-24 [1/Pa/s] Phase ID : 0 -- matrix (dens) : rho = 3000. [kg/m^3] (diff) : eta = 1e+20 [Pa*s] Bd = 5e-21 [1/Pa/s] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : geometric primitives Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise Background phase ID : 0 -------------------------------------------------------------------------- Reading geometric primitives ... done (0.000383987 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 9.118551990311e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.116028797339e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00540997 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.174184490476e-18 |Div|_2 = 5.984135402956e-18 Momentum: |mRes|_2 = 1.116028797323e-12 -------------------------------------------------------------------------- Saving output ... done (0.0581923 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 1.00000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.116028797339e-12 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 4.979851535660e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00401319 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 6.877881017396e-30 |Div|_2 = 3.192494526470e-29 Momentum: |mRes|_2 = 4.979851535660e-14 -------------------------------------------------------------------------- Actual time step : 1.10000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 5.3161e-04 s -------------------------------------------------------------------------- Saving output ... done (0.130651 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.215168 (sec) -------------------------------------------------------------------------- cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : /home/pkgeval/.julia/packages/LaMEM/M6C0P/test/input_files/FallingBlock_Multigrid.dat Adding PETSc option: -snes_type ksponly Adding PETSc option: -js_ksp_monitor Adding PETSc option: -crs_pc_type bjacobi Finished parsing input file -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [ ] Maximum number of steps : 1 Time step : 10. [ ] Minimum time step : 1e-05 [ ] Maximum time step : 100. [ ] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.5 Output time step : 0.2 [ ] Output every [n] steps : 1 Output [n] initial steps : 1 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [32, 32, 32] Number of cells : 32768 Number of faces : 101376 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [0., 0., 0.] Upper coordinate bounds [ex, ey, ez] : [1., 1., 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 (dens) : rho = 1. [ ] (diff) : eta = 1. [ ] Bd = 0.5 [ ] Phase ID : 1 (dens) : rho = 2. [ ] (diff) : eta = 100. [ ] Bd = 0.005 [ ] Phase ID : 2 (dens) : rho = 2. [ ] (diff) : eta = 1000. [ ] Bd = 0.0005 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -1.] [ ] Surface stabilization (FSSA) : 1. Use lithostatic pressure for creep @ Minimum viscosity : 0.001 [ ] Maximum viscosity : 1e+12 [ ] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : geometric primitives Velocity interpolation scheme : empirical STAGP (STAG + pressure points) Marker control type : pure AVD for all control volumes Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise Background phase ID : 0 Interpolation constant : 0.7 -------------------------------------------------------------------------- Reading geometric primitives ... done (0.0223421 sec) -------------------------------------------------------------------------- Output parameters: Output file name : FB_multigrid Write .pvd file : yes Phase @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Deviatoric stress second invariant @ Deviatoric strain rate tensor @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- AVD output parameters: Write .pvd file : yes AVD refinement factor : 3 -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Preconditioner type : coupled Galerkin geometric multigrid Global coarse grid [nx,ny,nz] : [4, 4, 4] Local coarse grid [nx,ny,nz] : [4, 4, 4] Number of multigrid levels : 4 -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : multigrid Multigrid smoother levels KSP : chebyshev Multigrid smoother levels PC : sor Number of smoothening steps : 10 Coarse level KSP : preonly Coarse level PC : bjacobi -------------------------------------------------------------------------- Saving output ... done (0.803926 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [ ] Tentative time step : 10.00000000 [ ] -------------------------------------------------------------------------- 0 SNES Function norm 1.832203177398e+02 0 PICARD ||F||/||F0||=1.000000e+00 Residual norms for js_ solve. 0 KSP Residual norm 2.121468833494e+01 1 KSP Residual norm 2.007312746141e+01 2 KSP Residual norm 1.436721786209e+01 3 KSP Residual norm 7.031413261028e+00 4 KSP Residual norm 2.361866279194e+00 5 KSP Residual norm 1.011785314253e+00 6 KSP Residual norm 4.700182839567e-01 7 KSP Residual norm 3.431392417306e-01 8 KSP Residual norm 1.759675422301e-01 9 KSP Residual norm 1.053716068647e-01 10 KSP Residual norm 9.342460424411e-02 11 KSP Residual norm 7.749792924243e-02 12 KSP Residual norm 5.192767141878e-02 13 KSP Residual norm 3.842800827033e-02 14 KSP Residual norm 1.589386132911e-02 15 KSP Residual norm 8.851034636242e-03 16 KSP Residual norm 4.554700539865e-03 17 KSP Residual norm 2.632601842348e-03 18 KSP Residual norm 1.311043982030e-03 19 KSP Residual norm 6.462411319589e-04 20 KSP Residual norm 3.583024905386e-04 21 KSP Residual norm 1.510300556884e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 21 1 SNES Function norm 1.371165827605e-02 -------------------------------------------------------------------------- SNES Convergence Reason : maximum iterations reached Number of iterations : 1 SNES solution time : 6.63649 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.351162529297e-05 |Div|_2 = 1.404433474462e-04 Momentum: |mRes|_2 = 1.371093900305e-02 -------------------------------------------------------------------------- Actual time step : 6.73129 [ ] -------------------------------------------------------------------------- Marker control [0]: (AVD YZED) injected 5 markers and deleted 0 markers in 1.2726e-03 s Marker control [0]: (AVD XZED) injected 7 markers and deleted 0 markers in 1.4514e-03 s Marker control [0]: (AVD XYED) injected 10 markers and deleted 0 markers in 1.9364e-03 s -------------------------------------------------------------------------- Saving output ... done (1.19202 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 10.5719 (sec) -------------------------------------------------------------------------- cores_compute = 4 Falling Block test on 4 cores failed cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : /home/pkgeval/.julia/packages/LaMEM/M6C0P/test/input_files/FallingBlock_DirectSolver.dat Adding PETSc option: -snes_type ksponly Adding PETSc option: -js_ksp_monitor Finished parsing input file -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [ ] Maximum number of steps : 2 Time step : 10. [ ] Minimum time step : 1e-05 [ ] Maximum time step : 100. [ ] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.5 Output time step : 0.2 [ ] Output every [n] steps : 1000 Output [n] initial steps : 1 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [16, 16, 16] Number of cells : 4096 Number of faces : 13056 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [0., 0., 0.] Upper coordinate bounds [ex, ey, ez] : [1., 1., 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 (dens) : rho = 1. [ ] (diff) : eta = 1. [ ] Bd = 0.5 [ ] Phase ID : 1 (dens) : rho = 2. [ ] (diff) : eta = 100. [ ] Bd = 0.005 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -1.] [ ] Surface stabilization (FSSA) : 1. Use lithostatic pressure for creep @ Minimum viscosity : 0.001 [ ] Maximum viscosity : 1e+12 [ ] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : geometric primitives Velocity interpolation scheme : empirical STAGP (STAG + pressure points) Marker control type : pure AVD for all control volumes Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise Background phase ID : 0 Interpolation constant : 0.7 -------------------------------------------------------------------------- Reading geometric primitives ... done (0.00389782 sec) -------------------------------------------------------------------------- Output parameters: Output file name : FB_direct Write .pvd file : yes Phase @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ -------------------------------------------------------------------------- AVD output parameters: Write .pvd file : yes AVD refinement factor : 3 -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+03 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- Saving output ... done (0.117636 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [ ] Tentative time step : 10.00000000 [ ] -------------------------------------------------------------------------- 0 SNES Function norm 7.310266752999e+01 0 PICARD ||F||/||F0||=1.000000e+00 Residual norms for js_ solve. 0 KSP Residual norm 2.133540043787e+01 1 KSP Residual norm 1.859427686320e-02 2 KSP Residual norm 2.899733401244e-05 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.649877042896e-04 -------------------------------------------------------------------------- SNES Convergence Reason : maximum iterations reached Number of iterations : 1 SNES solution time : 2.48161 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.056315829386e-06 |Div|_2 = 3.650679845667e-05 Momentum: |mRes|_2 = 1.608980926960e-04 -------------------------------------------------------------------------- Actual time step : 7.69851 [ ] -------------------------------------------------------------------------- Marker control [0]: (AVD CELL) injected 1 markers and deleted 0 markers in 3.2476e-04 s Marker control [0]: (AVD YZED) injected 6 markers and deleted 0 markers in 1.0918e-03 s Marker control [0]: (AVD XZED) injected 8 markers and deleted 0 markers in 1.7809e-03 s Marker control [0]: (AVD XYED) injected 2 markers and deleted 0 markers in 4.9265e-04 s -------------------------------------------------------------------------- Saving output ... done (0.158377 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 7.69851107 [ ] Tentative time step : 7.69851107 [ ] -------------------------------------------------------------------------- 0 SNES Function norm 1.307661178463e+02 0 PICARD ||F||/||F0||=1.000000e+00 Residual norms for js_ solve. 0 KSP Residual norm 1.189285812726e+00 1 KSP Residual norm 1.071718651319e-03 2 KSP Residual norm 2.121756434235e-06 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 5.789132168326e-04 -------------------------------------------------------------------------- SNES Convergence Reason : maximum iterations reached Number of iterations : 1 SNES solution time : 2.3561 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 8.594135843254e-08 |Div|_2 = 7.340971818893e-07 Momentum: |mRes|_2 = 5.789127513924e-04 -------------------------------------------------------------------------- Actual time step : 8.25319 [ ] -------------------------------------------------------------------------- Marker control [0]: (AVD YZED) injected 5 markers and deleted 0 markers in 8.9149e-04 s Marker control [0]: (AVD XZED) injected 4 markers and deleted 0 markers in 6.8644e-04 s Marker control [0]: (AVD XYED) injected 7 markers and deleted 0 markers in 1.2884e-03 s -------------------------------------------------------------------------- Saving output ... done (0.137063 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 5.67078 (sec) -------------------------------------------------------------------------- cores_compute = 2 Fatal error in internal_Init_thread: Other MPI error, error stack: internal_Init_thread(67)...........: MPI_Init_thread(argc=0x7fff02ded06c, argv=0x7fff02ded060, required=1, provided=0x7fff02decc2c) failed MPII_Init_thread(234)..............: MPID_Init(67)......................: init_world(171)....................: channel initialization failed MPIDI_CH3_Init(84).................: MPID_nem_init(314).................: MPID_nem_tcp_init(175).............: MPID_nem_tcp_get_business_card(397): GetSockInterfaceAddr(370)..........: gethostbyname failed, LaMEM-primary-hdJX0NVe (errno 2) run LaMEM: Error During Test at /home/pkgeval/.julia/packages/LaMEM/M6C0P/test/runLaMEM.jl:4 Got exception outside of a @test failed process: Process(setenv(`/home/pkgeval/.julia/artifacts/0ed4137b58af5c5e3797cb0c400e60ed7c308bae/bin/mpiexec -n 2 /home/pkgeval/.julia/artifacts/cd461744844630cc33fbd2e7a8e795b56651d039/bin/LaMEM -ParamFile /home/pkgeval/.julia/packages/LaMEM/M6C0P/test/input_files/FallingBlock_DirectSolver.dat '-nstep_max 5'`,["PYTHON=", "PATH=/home/pkgeval/.julia/artifacts/0ed4137b58af5c5e3797cb0c400e60ed7c308bae/bin:/usr/local/bin:/usr/local/sbin:/usr/bin:/usr/sbin:/bin:/sbin", "ZES_ENABLE_SYSMAN=1", "DISPLAY=:1", "LD_LIBRARY_PATH=/opt/julia/bin/../lib/julia:/home/pkgeval/.julia/artifacts/93ddb84060b49f38ec59d4b04a3109fedc4577d2/lib:/home/pkgeval/.julia/artifacts/0ed4137b58af5c5e3797cb0c400e60ed7c308bae/lib:/home/pkgeval/.julia/artifacts/0a6a41be79ef85f32aa7d8529d4aebf9ef8ab030/lib:/home/pkgeval/.julia/artifacts/3f1a00f1080275e347bfbcf5d11aac546fc87017/lib/petsc/double_real_Int64/lib:/home/pkgeval/.julia/artifacts/3f1a00f1080275e347bfbcf5d11aac546fc87017/lib/petsc/single_complex_Int32/lib:/home/pkgeval/.julia/artifacts/3f1a00f1080275e347bfbcf5d11aac546fc87017/lib/petsc/single_complex_Int64/lib:/home/pkgeval/.julia/artifacts/3f1a00f1080275e347bfbcf5d11aac546fc87017/lib/petsc/single_real_Int32/lib:/home/pkgeval/.julia/artifacts/3f1a00f1080275e347bfbcf5d11aac546fc87017/lib/petsc/single_real_Int64/lib:/home/pkgeval/.julia/artifacts/3f1a00f1080275e347bfbcf5d11aac546fc87017/lib/petsc/double_complex_Int32/lib:/home/pkgeval/.julia/artifacts/3f1a00f1080275e347bfbcf5d11aac546fc87017/lib/petsc/double_complex_Int64/lib:/home/pkgeval/.julia/artifacts/3f1a00f1080275e347bfbcf5d11aac546fc87017/lib/petsc/double_real_Int32/lib:/home/pkgeval/.julia/artifacts/3f1a00f1080275e347bfbcf5d11aac546fc87017/lib/petsc/double_real_Int64_deb/lib:/home/pkgeval/.julia/artifacts/cd461744844630cc33fbd2e7a8e795b56651d039/lib:/opt/julia/bin/../lib/julia:/opt/julia/bin/../lib:/opt/julia/bin/../lib/julia:/home/pkgeval/.julia/artifacts/0ed4137b58af5c5e3797cb0c400e60ed7c308bae/lib:/opt/julia/bin/../lib/julia:/opt/julia/bin/../lib", "OPENBLAS_NUM_THREADS=1", "OMP_NUM_THREADS=1", "CI=true", "R_HOME=*", "FONTCONFIG_PATH=/home/pkgeval/.julia/artifacts/2a6bae048c28452d329375cbb7479499115e45ad/etc/fonts", "LANG=C.UTF-8", "VECLIB_MAXIMUM_THREADS=1", "JULIA_CPU_THREADS=1", "JULIA_NUM_PRECOMPILE_TASKS=1", "FONTCONFIG_FILE=/home/pkgeval/.julia/artifacts/2a6bae048c28452d329375cbb7479499115e45ad/etc/fonts/fonts.conf", "JULIA_LOAD_PATH=@:/tmp/jl_6FoVGm", "UCX_MEMTYPE_CACHE=no", "PKGEVAL=true", "UCX_ERROR_SIGNALS=SIGILL,SIGBUS,SIGFPE", "JULIA_PKG_PRECOMPILE_AUTO=0", "HOME=/home/pkgeval", "JULIA_PKGEVAL=true", "JULIA_DEPOT_PATH=/home/pkgeval/.julia:/usr/local/share/julia:", "JULIA_NUM_THREADS=1", "OPENBLAS_MAIN_FREE=1"]), ProcessExited(15)) [15] Stacktrace: [1] pipeline_error @ ./process.jl:565 [inlined] [2] run(::Cmd; wait::Bool) @ Base ./process.jl:480 [3] run @ ./process.jl:477 [inlined] [4] run_lamem(ParamFile::String, cores::Int64, args::String; wait::Bool, deactivate_multithreads::Bool) @ LaMEM.Run ~/.julia/packages/LaMEM/M6C0P/src/run_lamem.jl:79 [5] run_lamem(ParamFile::String, cores::Int64, args::String) @ LaMEM.Run ~/.julia/packages/LaMEM/M6C0P/src/run_lamem.jl:50 [6] macro expansion @ ~/.julia/packages/LaMEM/M6C0P/test/runLaMEM.jl:36 [inlined] [7] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [8] top-level scope @ ~/.julia/packages/LaMEM/M6C0P/test/runLaMEM.jl:7 [9] include(fname::String) @ Base.MainInclude ./client.jl:494 [10] macro expansion @ ~/.julia/packages/LaMEM/M6C0P/test/runtests.jl:7 [inlined] [11] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [12] top-level scope @ ~/.julia/packages/LaMEM/M6C0P/test/runtests.jl:6 [13] include(fname::String) @ Base.MainInclude ./client.jl:494 [14] top-level scope @ none:6 [15] eval @ ./boot.jl:385 [inlined] [16] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [17] _start() @ Base ./client.jl:557 Saved file: test_data.vts Saved file: test_data_phase.vts read LaMEM output: Error During Test at /home/pkgeval/.julia/packages/LaMEM/M6C0P/test/read_timestep.jl:5 Got exception outside of a @test SystemError: opening file "/home/pkgeval/.julia/packages/LaMEM/M6C0P/test/PlumeLithosphereInteraction_passive_tracers.pvd": No such file or directory Stacktrace: [1] systemerror(p::String, errno::Int32; extrainfo::Nothing) @ Base ./error.jl:176 [2] systemerror @ ./error.jl:175 [inlined] [3] open(fname::String; lock::Bool, read::Nothing, write::Nothing, create::Nothing, truncate::Nothing, append::Nothing) @ Base ./iostream.jl:293 [4] open @ ./iostream.jl:275 [inlined] [5] open(f::Base.var"#447#448"{@Kwargs{}}, args::String; kwargs::@Kwargs{}) @ Base ./io.jl:394 [6] open @ ./io.jl:393 [inlined] [7] #readlines#446 @ ./io.jl:599 [inlined] [8] readlines @ ./io.jl:598 [inlined] [9] readPVD(FileName::String) @ LaMEM.IO_functions ~/.julia/packages/LaMEM/M6C0P/src/read_timestep.jl:383 [10] read_LaMEM_simulation(FileName::String, DirName::String; phase::Bool, surf::Bool, passive_tracers::Bool) @ LaMEM.IO_functions ~/.julia/packages/LaMEM/M6C0P/src/read_timestep.jl:593 [11] read_LaMEM_simulation @ ~/.julia/packages/LaMEM/M6C0P/src/read_timestep.jl:581 [inlined] [12] read_LaMEM_timestep(FileName::String, TimeStep::Int64, DirName::String; fields::Nothing, phase::Bool, surf::Bool, passive_tracers::Bool, last::Bool) @ LaMEM.IO_functions ~/.julia/packages/LaMEM/M6C0P/src/read_timestep.jl:550 [13] read_LaMEM_timestep @ ~/.julia/packages/LaMEM/M6C0P/src/read_timestep.jl:548 [inlined] [14] macro expansion @ ~/.julia/packages/LaMEM/M6C0P/test/read_timestep.jl:51 [inlined] [15] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [16] top-level scope @ ~/.julia/packages/LaMEM/M6C0P/test/read_timestep.jl:8 [17] include(fname::String) @ Base.MainInclude ./client.jl:494 [18] macro expansion @ ~/.julia/packages/LaMEM/M6C0P/test/runtests.jl:8 [inlined] [19] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [20] top-level scope @ ~/.julia/packages/LaMEM/M6C0P/test/runtests.jl:6 [21] include(fname::String) @ Base.MainInclude ./client.jl:494 [22] top-level scope @ none:6 [23] eval @ ./boot.jl:385 [inlined] [24] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [25] _start() @ Base ./client.jl:557 No partitioning file required for 1 core model setup run lamem mode save grid test: Error During Test at /home/pkgeval/.julia/packages/LaMEM/M6C0P/test/run_lamem_save_grid_test.jl:3 Got exception outside of a @test MethodError: no method matching length(::Nothing) Closest candidates are: length(!Matched::TranscodingStreams.Buffer) @ TranscodingStreams ~/.julia/packages/TranscodingStreams/O3BYF/src/buffer.jl:43 length(!Matched::LibGit2.GitStatus) @ LibGit2 /opt/julia/share/julia/stdlib/v1.10/LibGit2/src/status.jl:21 length(!Matched::RegexMatch) @ Base regex.jl:291 ... Stacktrace: [1] run_lamem_save_grid(ParamFile::String, cores::Int64; verbose::Bool, directory::String) @ LaMEM.Run ~/.julia/packages/LaMEM/M6C0P/src/run_lamem_save_grid.jl:92 [2] macro expansion @ ~/.julia/packages/LaMEM/M6C0P/test/run_lamem_save_grid_test.jl:11 [inlined] [3] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [4] top-level scope @ ~/.julia/packages/LaMEM/M6C0P/test/run_lamem_save_grid_test.jl:5 [5] include(fname::String) @ Base.MainInclude ./client.jl:494 [6] macro expansion @ ~/.julia/packages/LaMEM/M6C0P/test/runtests.jl:9 [inlined] [7] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [8] top-level scope @ ~/.julia/packages/LaMEM/M6C0P/test/runtests.jl:6 [9] include(fname::String) @ Base.MainInclude ./client.jl:494 [10] top-level scope @ none:6 [11] eval @ ./boot.jl:385 [inlined] [12] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [13] _start() @ Base ./client.jl:557 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 1000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 1. [Myr] Maximum number of steps : 2 Time step : 1. [Myr] Minimum time step : 0.2 [Myr] Maximum time step : 10. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [24, 24, 24] Number of cells : 13824 Number of faces : 43200 Maximum cell aspect ratio : 2.00000 Lower coordinate bounds [bx, by, bz] : [-1., -1., -1.] Upper coordinate bounds [ex, ey, ez] : [1., 1., 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 1 -- sphere (dens) : rho = 3200. [kg/m^3] (diff) : eta = 1e+23 [Pa*s] Bd = 5e-24 [1/Pa/s] Phase ID : 0 -- matrix (dens) : rho = 3000. [kg/m^3] (diff) : eta = 1e+20 [Pa*s] Bd = 5e-21 [1/Pa/s] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.0982015 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Preconditioner type : coupled Galerkin geometric multigrid Global coarse grid [nx,ny,nz] : [12, 12, 12] Local coarse grid [nx,ny,nz] : [12, 12, 12] Number of multigrid levels : 2 -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : multigrid Multigrid smoother levels KSP : chebyshev Multigrid smoother levels PC : sor Number of smoothening steps : 10 Coarse level KSP : preonly Coarse level PC : lu Coarse level solver package : (null) -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 3.403291317974e+02 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 6 1 SNES Function norm 1.464986509563e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 21.1055 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.270115706137e-06 |Div|_2 = 6.060118300339e-05 Momentum: |mRes|_2 = 1.463732547230e-03 -------------------------------------------------------------------------- Saving output ... done (0.0076188 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 1.00000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.788630241324e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 16 1 SNES Function norm 3.498272686734e-03 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 20.9198 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.403141994493e-05 |Div|_2 = 9.116365292802e-05 Momentum: |mRes|_2 = 3.497084639973e-03 -------------------------------------------------------------------------- Actual time step : 1.10000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 5.6775e-02 s -------------------------------------------------------------------------- Saving output ... done (0.00770373 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 42.8587 (sec) -------------------------------------------------------------------------- | FineGrid | Cores | Nodes | CoarseGrid | CoaCores | Levels | SNES | KSP | TotalTime | CoarseTime | MemNode_Gb | Filename | | --------------- | ----- | ----- | ------------ | -------- | ------ | ---- | --- | --------- | ---------- | ---------- | -------------------------------- | | [512, 256, 256] | 512 | - | [32, 16, 16] | 512 | 5 | 1 | 72 | 26.26 | 9.9174 | - | input_files/128_cores_104812.txt | Saved file: Model3D.vts filesize compression: Error During Test at /home/pkgeval/.julia/packages/LaMEM/M6C0P/test/test_compression.jl:6 Got exception outside of a @test MethodError: no method matching length(::Nothing) Closest candidates are: length(!Matched::TranscodingStreams.Buffer) @ TranscodingStreams ~/.julia/packages/TranscodingStreams/O3BYF/src/buffer.jl:43 length(!Matched::LibGit2.GitStatus) @ LibGit2 /opt/julia/share/julia/stdlib/v1.10/LibGit2/src/status.jl:21 length(!Matched::RegexMatch) @ Base regex.jl:291 ... Stacktrace: [1] run_lamem_save_grid(ParamFile::String, cores::Int64; verbose::Bool, directory::String) @ LaMEM.Run ~/.julia/packages/LaMEM/M6C0P/src/run_lamem_save_grid.jl:92 [2] run_lamem_save_grid @ ~/.julia/packages/LaMEM/M6C0P/src/run_lamem_save_grid.jl:76 [inlined] [3] create_initialsetup(model::Model, cores::Int64, args::String; verbose::Bool) @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/Model.jl:296 [4] create_initialsetup @ ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/Model.jl:273 [inlined] [5] run_lamem(model::Model, cores::Int64, args::String; wait::Bool) @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/Model.jl:200 [6] run_lamem @ ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/Model.jl:195 [inlined] [7] run_lamem(model::Model, cores::Int64) @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/Model.jl:195 [8] macro expansion @ ~/.julia/packages/LaMEM/M6C0P/test/test_compression.jl:23 [inlined] [9] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [10] top-level scope @ ~/.julia/packages/LaMEM/M6C0P/test/test_compression.jl:7 [11] include(fname::String) @ Base.MainInclude ./client.jl:494 [12] macro expansion @ ~/.julia/packages/LaMEM/M6C0P/test/runtests.jl:12 [inlined] [13] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [14] top-level scope @ ~/.julia/packages/LaMEM/M6C0P/test/runtests.jl:6 [15] include(fname::String) @ Base.MainInclude ./client.jl:494 [16] top-level scope @ none:6 [17] eval @ ./boot.jl:385 [inlined] [18] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [19] _start() @ Base ./client.jl:557 rheology = Phase 0 (matrix): rho = 3000.0 eta = 1.0e20 ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- matrix (dens) : rho = 3000. [kg/m^3] (diff) : eta = 1e+20 [Pa*s] Bd = 5e-21 [1/Pa/s] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000752643 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.404679741346e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.855164213029e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00203933 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.219727444046e-18 |Div|_2 = 4.351986372410e-18 Momentum: |mRes|_2 = 1.855164212518e-13 -------------------------------------------------------------------------- Saving output ... done (0.000834162 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.855164213029e-13 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.268605661839e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00101004 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.421010862428e-20 |Div|_2 = 1.368738149400e-19 Momentum: |mRes|_2 = 1.268605661765e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.6719e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000610904 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.529012823718e-08 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.590416869505e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00145821 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.421010862428e-20 |Div|_2 = 1.533293416683e-19 Momentum: |mRes|_2 = 1.590416869431e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4434e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000754343 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0227069 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.002f0, 0.002f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- matrix (dens) : rho = 3000. [kg/m^3] (diff) : eta = 1e+20 [Pa*s] Bd = 5e-21 [1/Pa/s] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000698703 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.404745638765e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 8.192074820223e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00166773 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.107298248878e-18 |Div|_2 = 3.680670766906e-17 Momentum: |mRes|_2 = 8.192074811954e-13 -------------------------------------------------------------------------- Saving output ... done (0.00477737 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 8.192074820223e-13 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve did not converge due to DIVERGED_BREAKDOWN iterations 30 1 SNES Function norm 1.996269872508e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00231726 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.385244779468e-17 |Div|_2 = 6.076331735643e-17 Momentum: |mRes|_2 = 1.996269780031e-13 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.8671e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000701603 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.529035026473e-07 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 2.131007585929e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00129456 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.336808689942e-19 |Div|_2 = 1.533293416683e-18 Momentum: |mRes|_2 = 2.131007580413e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4039e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000793262 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0302022 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.02f0, 0.02f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- matrix (dens) : rho = 3000. [kg/m^3] (diff) : eta = 1e+20 [Pa*s] Bd = 5e-21 [1/Pa/s] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000737703 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.411330409550e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 7.900625156863e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00181164 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.367506770275e-17 |Div|_2 = 3.652489012102e-16 Momentum: |mRes|_2 = 7.900625148420e-12 -------------------------------------------------------------------------- Saving output ... done (0.000921321 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 7.900625156863e-12 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.193054234538e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00097847 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.469446951954e-18 |Div|_2 = 9.501471788263e-18 Momentum: |mRes|_2 = 1.193053856190e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4622e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000775693 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.531321061608e-06 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.505745134977e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000990461 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.469446951954e-18 |Div|_2 = 1.201851678990e-17 Momentum: |mRes|_2 = 1.505744655332e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4153e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000972221 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0189004 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.2f0, 0.2f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- matrix (dens) : rho = 3000. [kg/m^3] (diff) : eta = 1e+20 [Pa*s] Bd = 5e-21 [1/Pa/s] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.0032972 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 5.026432132460e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 7.408582653022e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00209832 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.992007221626e-16 |Div|_2 = 4.055212130474e-15 Momentum: |mRes|_2 = 7.408582641923e-11 -------------------------------------------------------------------------- Saving output ... done (0.000730902 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 7.408582653022e-11 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 2.331272599822e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00151191 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.551115123126e-17 |Div|_2 = 1.468687011488e-16 Momentum: |mRes|_2 = 2.331226336186e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.5965e-04 s -------------------------------------------------------------------------- Saving output ... done (0.0014911 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.744843946556e-05 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.645921959749e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00105588 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.551115123126e-17 |Div|_2 = 1.642041997679e-16 Momentum: |mRes|_2 = 1.645840049152e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.5176e-04 s -------------------------------------------------------------------------- Saving output ... done (0.002122 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0251959 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (2.0f0, 2.0f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- matrix (dens) : rho = 3000. [kg/m^3] (diff) : eta = 1e+20 [Pa*s] Bd = 5e-21 [1/Pa/s] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000635614 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 2.461266787616e+02 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.007037800205e-09 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00220699 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.043609643148e-14 |Div|_2 = 3.386489617389e-14 Momentum: |mRes|_2 = 1.007037799635e-09 -------------------------------------------------------------------------- Saving output ... done (0.000873992 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.007037800205e-09 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve did not converge due to DIVERGED_BREAKDOWN iterations 60 1 SNES Function norm 1.382743448093e-10 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00363786 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 7.771561172376e-15 |Div|_2 = 1.956356625210e-14 Momentum: |mRes|_2 = 1.382743434253e-10 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 7.1866e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000999611 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 8.543884777184e-04 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.658946166339e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00100329 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.440892098501e-16 |Div|_2 = 1.285176065878e-15 Momentum: |mRes|_2 = 1.658896384666e-13 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4206e-04 s -------------------------------------------------------------------------- Saving output ... done (0.00232557 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0240052 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (20.0f0, 20.0f0) τ_linear = [0.0020000000949949026, 0.019999999552965164, 0.20000000298023224, 2.0, 20.0] τ_anal = [0.002, 0.02, 0.20000000000000004, 2.0, 20.0] ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- matrix dislocation creep profile: Tumut_Pond_Serpentinite-Raleigh_Paterson_1965 (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 4.0257e-23 [1/Pa^n/s] En = 66000. [J/mol] n = 2.8 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.00398329 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.404679741346e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.855164213029e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00178668 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.219727444046e-18 |Div|_2 = 4.351986372410e-18 Momentum: |mRes|_2 = 1.855164212518e-13 -------------------------------------------------------------------------- Saving output ... done (0.000834752 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.732070997253e-13 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.676863757548e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.001064 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.065758146821e-20 |Div|_2 = 1.355252715607e-19 Momentum: |mRes|_2 = 1.676863757493e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4205e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000821112 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.529012298712e-08 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.344047801612e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00126862 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.421010862428e-20 |Div|_2 = 1.714274154578e-19 Momentum: |mRes|_2 = 1.344047801612e-12 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.5702e-04 s -------------------------------------------------------------------------- Saving output ... done (0.00430812 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 22.6525 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.00066601264f0, 0.00066601264f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- matrix dislocation creep profile: Tumut_Pond_Serpentinite-Raleigh_Paterson_1965 (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 4.0257e-23 [1/Pa^n/s] En = 66000. [J/mol] n = 2.8 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.00141204 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.404745638765e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 8.192074820223e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00157062 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.107298248878e-18 |Div|_2 = 3.680670766906e-17 Momentum: |mRes|_2 = 8.192074811954e-13 -------------------------------------------------------------------------- Saving output ... done (0.000663774 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 7.538538587820e-13 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 4 1 SNES Function norm 1.914610129611e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00107619 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 8.673617379884e-19 |Div|_2 = 2.395080882144e-18 Momentum: |mRes|_2 = 1.914610114630e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.6363e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000820202 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.529012236651e-07 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.060973992895e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00102267 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.336808689942e-19 |Div|_2 = 1.761620017532e-18 Momentum: |mRes|_2 = 3.060973992895e-11 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4221e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000619253 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0248054 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.001515742f0, 0.001515742f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- matrix dislocation creep profile: Tumut_Pond_Serpentinite-Raleigh_Paterson_1965 (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 4.0257e-23 [1/Pa^n/s] En = 66000. [J/mol] n = 2.8 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000645904 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.411330409550e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 7.900625156863e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00161429 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.367506770275e-17 |Div|_2 = 3.652489012102e-16 Momentum: |mRes|_2 = 7.900625148420e-12 -------------------------------------------------------------------------- Saving output ... done (0.000678073 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 7.574877395261e-12 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.864620915674e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000911901 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.469446951954e-18 |Div|_2 = 1.201851678990e-17 Momentum: |mRes|_2 = 1.864620528344e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.5333e-04 s -------------------------------------------------------------------------- Saving output ... done (0.00528643 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.529027476038e-06 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 6.967399903915e-10 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00106829 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.469446951954e-18 |Div|_2 = 1.321126039445e-17 Momentum: |mRes|_2 = 6.967399903915e-10 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.3185e-04 s -------------------------------------------------------------------------- Saving output ... done (0.0044588 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0265058 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.0034495955f0, 0.0034495955f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- matrix dislocation creep profile: Tumut_Pond_Serpentinite-Raleigh_Paterson_1965 (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 4.0257e-23 [1/Pa^n/s] En = 66000. [J/mol] n = 2.8 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000701413 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 5.026432132460e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 7.408582653022e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00164032 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.992007221626e-16 |Div|_2 = 4.055212130474e-15 Momentum: |mRes|_2 = 7.408582641923e-11 -------------------------------------------------------------------------- Saving output ... done (0.000692023 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 6.757947606630e-11 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.193302093907e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000942101 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.163336342344e-17 |Div|_2 = 1.455514664586e-16 Momentum: |mRes|_2 = 3.193268922383e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4469e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000871061 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.530525989706e-05 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.585686169509e-08 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00109081 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.163336342344e-17 |Div|_2 = 1.594436429147e-16 Momentum: |mRes|_2 = 1.585686169509e-08 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.3013e-04 s -------------------------------------------------------------------------- Saving output ... done (0.00244747 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0204575 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.007850748f0, 0.007850748f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- matrix dislocation creep profile: Tumut_Pond_Serpentinite-Raleigh_Paterson_1965 (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 4.0257e-23 [1/Pa^n/s] En = 66000. [J/mol] n = 2.8 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000713423 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 2.461266787616e+02 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.007037800205e-09 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.0017761 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.043609643148e-14 |Div|_2 = 3.386489617389e-14 Momentum: |mRes|_2 = 1.007037799635e-09 -------------------------------------------------------------------------- Saving output ... done (0.00111815 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 9.721068317499e-10 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 6.327026433622e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00111505 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.440892098501e-16 |Div|_2 = 1.514142333402e-15 Momentum: |mRes|_2 = 6.325214401243e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.5519e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000661763 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.673510065039e-04 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.608776481627e-07 1 MMFD ||F||/||F0||=2.156412e-03 Linear js_ solve converged due to CONVERGED_RTOL iterations 3 2 SNES Function norm 7.337506294466e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.00268831 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 8.881784197001e-16 |Div|_2 = 2.717212732710e-15 Momentum: |mRes|_2 = 7.332473400632e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.3758e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000701893 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0205603 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.017867092f0, 0.017867092f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 4.0257e-23 [1/Pa^n/s] En = 66000. [J/mol] n = 2.8 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000733493 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.404679741346e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.855164213029e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00169053 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.219727444046e-18 |Div|_2 = 4.351986372410e-18 Momentum: |mRes|_2 = 1.855164212518e-13 -------------------------------------------------------------------------- Saving output ... done (0.0853688 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.732070997253e-13 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.676863757548e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00119309 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.065758146821e-20 |Div|_2 = 1.355252715607e-19 Momentum: |mRes|_2 = 1.676863757493e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4671e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000572524 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.529012298712e-08 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.344047801612e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00107331 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.421010862428e-20 |Div|_2 = 1.714274154578e-19 Momentum: |mRes|_2 = 1.344047801612e-12 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.3773e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000544585 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.102388 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.00066601264f0, 0.00066601264f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 4.0257e-23 [1/Pa^n/s] En = 66000. [J/mol] n = 2.8 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000708213 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.404745638765e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 8.192074820223e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00169452 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.107298248878e-18 |Div|_2 = 3.680670766906e-17 Momentum: |mRes|_2 = 8.192074811954e-13 -------------------------------------------------------------------------- Saving output ... done (0.000835921 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 7.536173268120e-13 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve did not converge due to DIVERGED_BREAKDOWN iterations 60 1 SNES Function norm 1.558141012496e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00319301 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.531965080989e-17 |Div|_2 = 1.438840450765e-16 Momentum: |mRes|_2 = 1.558140348159e-13 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.8257e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000674973 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.529012312017e-07 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.061084525594e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00109714 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 6.505213034913e-19 |Div|_2 = 1.707403288634e-18 Momentum: |mRes|_2 = 3.061084525594e-11 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4924e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000579125 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 1.23802 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.001515742f0, 0.001515742f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 4.0257e-23 [1/Pa^n/s] En = 66000. [J/mol] n = 2.8 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000675434 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.411330409550e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 7.900625156863e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00165292 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.367506770275e-17 |Div|_2 = 3.652489012102e-16 Momentum: |mRes|_2 = 7.900625148420e-12 -------------------------------------------------------------------------- Saving output ... done (0.000709113 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 7.575177734083e-12 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.883753867839e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00096515 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.469446951954e-18 |Div|_2 = 1.250926888277e-17 Momentum: |mRes|_2 = 1.883753452494e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4542e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000616294 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.529027475860e-06 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 6.967410109455e-10 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000984891 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.469446951954e-18 |Div|_2 = 1.409296014026e-17 Momentum: |mRes|_2 = 6.967410109455e-10 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.3717e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000542985 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0173056 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.0034495955f0, 0.0034495955f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 4.0257e-23 [1/Pa^n/s] En = 66000. [J/mol] n = 2.8 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000655393 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 5.026432132460e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 7.408582653022e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00167984 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.992007221626e-16 |Div|_2 = 4.055212130474e-15 Momentum: |mRes|_2 = 7.408582641923e-11 -------------------------------------------------------------------------- Saving output ... done (0.000782702 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 6.757910772242e-11 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.290919515336e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00104063 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.163336342344e-17 |Div|_2 = 1.455514664586e-16 Momentum: |mRes|_2 = 3.290887327778e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.5115e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000640854 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.530525989717e-05 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.585686263715e-08 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00107597 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.551115123126e-17 |Div|_2 = 1.594436429147e-16 Momentum: |mRes|_2 = 1.585686263715e-08 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.3879e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000611244 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0178152 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.007850748f0, 0.007850748f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 4.0257e-23 [1/Pa^n/s] En = 66000. [J/mol] n = 2.8 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000704073 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 2.461266787616e+02 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.007037800205e-09 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00166533 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.043609643148e-14 |Div|_2 = 3.386489617389e-14 Momentum: |mRes|_2 = 1.007037799635e-09 -------------------------------------------------------------------------- Saving output ... done (0.000731962 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 9.721073818982e-10 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 6.206221377386e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000936521 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.440892098501e-16 |Div|_2 = 1.489520491948e-15 Momentum: |mRes|_2 = 6.204433662484e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4745e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000597534 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.673510065031e-04 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.608776465926e-07 1 MMFD ||F||/||F0||=2.156412e-03 Linear js_ solve converged due to CONVERGED_RTOL iterations 3 2 SNES Function norm 7.323744093763e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.00251157 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 8.881784197001e-16 |Div|_2 = 2.717212732710e-15 Momentum: |mRes|_2 = 7.318701736004e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.3379e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000666683 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0193914 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.017867092f0, 0.017867092f0) τ_num1 = [0.0006660126382485032, 0.0015157420421019197, 0.003449595533311367, 0.007850747555494308, 0.017867092043161392] τ_num2 = [0.0006660126382485032, 0.0015157420421019197, 0.003449595533311367, 0.007850747555494308, 0.017867092043161392] ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- matrix dislocation creep profile: Dry_Olivine-Ranalli_1995 (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 1.48058e-16 [1/Pa^n/s] En = 532000. [J/mol] n = 3.5 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000673723 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.404679741346e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.855164213029e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00157492 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.219727444046e-18 |Div|_2 = 4.351986372410e-18 Momentum: |mRes|_2 = 1.855164212518e-13 -------------------------------------------------------------------------- Saving output ... done (0.000648854 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.999601326924e-12 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 2.245639208773e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000881242 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.421010862428e-20 |Div|_2 = 2.019281067463e-19 Momentum: |mRes|_2 = 2.245639208773e-12 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.5012e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000545504 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.529983614622e-08 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 4 1 SNES Function norm 6.355036424707e-10 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00115789 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.151964808266e-18 |Div|_2 = 3.319788279835e-18 Momentum: |mRes|_2 = 6.355036424707e-10 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.3166e-04 s -------------------------------------------------------------------------- Saving output ... done (0.00198334 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.315164 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.28025904f0, 0.28025904f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- matrix dislocation creep profile: Dry_Olivine-Ranalli_1995 (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 1.48058e-16 [1/Pa^n/s] En = 532000. [J/mol] n = 3.5 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000701423 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.404745638765e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 8.192074820223e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.0018316 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.107298248878e-18 |Div|_2 = 3.680670766906e-17 Momentum: |mRes|_2 = 8.192074811954e-13 -------------------------------------------------------------------------- Saving output ... done (0.000613834 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 5.166485402623e-12 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve did not converge due to DIVERGED_BREAKDOWN iterations 30 1 SNES Function norm 2.672158256062e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.0023976 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.035766082959e-18 |Div|_2 = 7.132699033577e-18 Momentum: |mRes|_2 = 2.672158256062e-11 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.5482e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000576584 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.532640059961e-07 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 1.214267533388e-08 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00142671 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.433061127045e-14 |Div|_2 = 1.730949475871e-13 Momentum: |mRes|_2 = 1.214267533264e-08 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.3474e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000595344 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0217632 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.5410955f0, 0.5410955f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- matrix dislocation creep profile: Dry_Olivine-Ranalli_1995 (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 1.48058e-16 [1/Pa^n/s] En = 532000. [J/mol] n = 3.5 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000659084 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.411330409550e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 7.900625156863e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.0016771 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.367506770275e-17 |Div|_2 = 3.652489012102e-16 Momentum: |mRes|_2 = 7.900625148420e-12 -------------------------------------------------------------------------- Saving output ... done (0.000734743 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.042474277838e-11 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 3.155075594917e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000959461 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.469446951954e-18 |Div|_2 = 1.717288626685e-17 Momentum: |mRes|_2 = 3.155075594871e-12 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4579e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000491165 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.542469102073e-06 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 2.344382818817e-07 1 PICARD ||F||/||F0||=1.519890e-01 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 2 SNES Function norm 1.130031258622e-10 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.00175644 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.488670298144e-13 |Div|_2 = 4.858601896386e-13 Momentum: |mRes|_2 = 1.130020813724e-10 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.3210e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000571774 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0185175 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (1.0446918f0, 1.0446918f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- matrix dislocation creep profile: Dry_Olivine-Ranalli_1995 (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 1.48058e-16 [1/Pa^n/s] En = 532000. [J/mol] n = 3.5 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000650574 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 5.026432132460e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 7.408582653022e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00168051 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.992007221626e-16 |Div|_2 = 4.055212130474e-15 Momentum: |mRes|_2 = 7.408582641923e-11 -------------------------------------------------------------------------- Saving output ... done (0.000839502 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 6.784431980867e-11 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 7.724013332527e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00125028 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.163336342344e-17 |Div|_2 = 1.481742263891e-16 Momentum: |mRes|_2 = 7.724013331105e-12 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4645e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000672703 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.580001929353e-05 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 4.526537046699e-06 1 PICARD ||F||/||F0||=2.864893e-01 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 2.764898326264e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.00168729 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.163336342344e-17 |Div|_2 = 1.594436429147e-16 Momentum: |mRes|_2 = 2.764898321667e-12 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.3532e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000642444 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0187046 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (2.0169842f0, 2.0169842f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- matrix dislocation creep profile: Dry_Olivine-Ranalli_1995 (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 1.48058e-16 [1/Pa^n/s] En = 532000. [J/mol] n = 3.5 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000852302 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 2.461266787616e+02 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.007037800205e-09 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00190971 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.043609643148e-14 |Div|_2 = 3.386489617389e-14 Momentum: |mRes|_2 = 1.007037799635e-09 -------------------------------------------------------------------------- Saving output ... done (0.000675473 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 9.729160028127e-10 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 4 1 SNES Function norm 1.853669481181e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00106588 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.440892098501e-16 |Div|_2 = 1.534358746845e-15 Momentum: |mRes|_2 = 1.853669474831e-11 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4764e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000495315 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.836925303655e-04 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 8.739374791909e-05 1 PICARD ||F||/||F0||=4.757610e-01 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 1.216630214054e-10 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.00173491 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.440892098501e-16 |Div|_2 = 1.294731409828e-15 Momentum: |mRes|_2 = 1.216630213985e-10 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.3430e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000440745 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0220403 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (3.8941867f0, 3.8941867f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- matrix (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 1.48058e-16 [1/Pa^n/s] En = 532000. [J/mol] n = 3.5 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000848491 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.404679741346e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.855164213029e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00845265 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.219727444046e-18 |Div|_2 = 4.351986372410e-18 Momentum: |mRes|_2 = 1.855164212518e-13 -------------------------------------------------------------------------- Saving output ... done (0.000636163 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.999796133868e-12 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 2.245866084546e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000946251 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 8.131516293641e-20 |Div|_2 = 2.235140038341e-19 Momentum: |mRes|_2 = 2.245866084546e-12 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 3.4769e-04 s -------------------------------------------------------------------------- Saving output ... done (0.00113371 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.529983701625e-08 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 4 1 SNES Function norm 6.293315848640e-10 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00141028 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.065758146821e-19 |Div|_2 = 1.078767540907e-18 Momentum: |mRes|_2 = 6.293315848640e-10 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.6198e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000530795 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0266061 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.28025904f0, 0.28025904f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- matrix (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 1.48058e-16 [1/Pa^n/s] En = 532000. [J/mol] n = 3.5 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000678863 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.404745638765e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 8.192074820223e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00143929 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.107298248878e-18 |Div|_2 = 3.680670766906e-17 Momentum: |mRes|_2 = 8.192074811954e-13 -------------------------------------------------------------------------- Saving output ... done (0.000567964 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 5.166894085041e-12 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve did not converge due to DIVERGED_BREAKDOWN iterations 30 1 SNES Function norm 2.774742659001e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00161401 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.100818213309e-17 |Div|_2 = 7.866915976262e-17 Momentum: |mRes|_2 = 2.774742657886e-12 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.0388e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000453745 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.532629675324e-07 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 1.214267305153e-08 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000701993 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.433017758958e-14 |Div|_2 = 1.730935003775e-13 Momentum: |mRes|_2 = 1.214267305030e-08 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 9.0659e-05 s -------------------------------------------------------------------------- Saving output ... done (0.000530434 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0168942 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.5410955f0, 0.5410955f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- matrix (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 1.48058e-16 [1/Pa^n/s] En = 532000. [J/mol] n = 3.5 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000544114 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.411330409550e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 7.900625156863e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00129781 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.367506770275e-17 |Div|_2 = 3.652489012102e-16 Momentum: |mRes|_2 = 7.900625148420e-12 -------------------------------------------------------------------------- Saving output ... done (0.000586854 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.042468515420e-11 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 3.155420570896e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000707153 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 6.938893903907e-18 |Div|_2 = 1.734723475977e-17 Momentum: |mRes|_2 = 3.155420570848e-12 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 9.6429e-05 s -------------------------------------------------------------------------- Saving output ... done (0.000611744 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.542469101177e-06 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 2.344382790545e-07 1 PICARD ||F||/||F0||=1.519890e-01 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 2 SNES Function norm 1.130046859846e-10 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0012274 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.488670298144e-13 |Div|_2 = 4.858573569975e-13 Momentum: |mRes|_2 = 1.130036415214e-10 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 8.7289e-05 s -------------------------------------------------------------------------- Saving output ... done (0.000358036 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0139629 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (1.0446918f0, 1.0446918f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- matrix (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 1.48058e-16 [1/Pa^n/s] En = 532000. [J/mol] n = 3.5 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000881952 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 5.026432132460e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 7.408582653022e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00173458 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.992007221626e-16 |Div|_2 = 4.055212130474e-15 Momentum: |mRes|_2 = 7.408582641923e-11 -------------------------------------------------------------------------- Saving output ... done (0.000752123 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 6.784306707115e-11 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 7.724377954918e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.001119 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.551115123126e-17 |Div|_2 = 1.653729276826e-16 Momentum: |mRes|_2 = 7.724377953147e-12 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4422e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000635614 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.580001929359e-05 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 4.526537050781e-06 1 PICARD ||F||/||F0||=2.864893e-01 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 2.765021558113e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.00174548 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.551115123126e-17 |Div|_2 = 1.766354016019e-16 Momentum: |mRes|_2 = 2.765021552471e-12 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.6183e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000582554 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0217533 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (2.0169842f0, 2.0169842f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- matrix (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 1.48058e-16 [1/Pa^n/s] En = 532000. [J/mol] n = 3.5 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000782222 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 2.461266787616e+02 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.007037800205e-09 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00163683 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.043609643148e-14 |Div|_2 = 3.386489617389e-14 Momentum: |mRes|_2 = 1.007037799635e-09 -------------------------------------------------------------------------- Saving output ... done (0.000585264 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 9.729169044886e-10 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 6 1 SNES Function norm 3.928326031489e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00102139 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.221245327088e-15 |Div|_2 = 3.265263874808e-15 Momentum: |mRes|_2 = 3.928326017919e-11 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4748e-04 s -------------------------------------------------------------------------- Saving output ... done (0.00111688 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.836925357109e-04 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 8.739374791572e-05 1 PICARD ||F||/||F0||=4.757610e-01 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 1.222911451447e-10 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.00178713 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.440892098501e-16 |Div|_2 = 1.701939668836e-15 Momentum: |mRes|_2 = 1.222911451328e-10 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.3572e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000478295 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0189909 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (3.8941867f0, 3.8941867f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology dislocation creep profile: Wet_Quarzite-Ueda_et_al_2008 (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 1.53539e-17 [1/Pa^n/s] En = 154000. [J/mol] n = 2.3 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000626773 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.404679741346e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.855164213029e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00917628 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.219727444046e-18 |Div|_2 = 4.351986372410e-18 Momentum: |mRes|_2 = 1.855164212518e-13 -------------------------------------------------------------------------- Saving output ... done (0.000670484 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.733398697939e-13 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 8.470853950173e-15 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000944591 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.421010862428e-20 |Div|_2 = 1.196926789768e-19 Momentum: |mRes|_2 = 8.470853949328e-15 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4063e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000507595 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.529012429987e-08 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 5.141630061900e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00099588 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.421010862428e-20 |Div|_2 = 1.735570302230e-19 Momentum: |mRes|_2 = 5.141630061900e-13 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.3304e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000448066 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0258041 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.00029242327f0, 0.00029242327f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology dislocation creep profile: Wet_Quarzite-Ueda_et_al_2008 (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 1.53539e-17 [1/Pa^n/s] En = 154000. [J/mol] n = 2.3 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000635814 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.404745638765e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 8.192074820223e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00261556 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.107298248878e-18 |Div|_2 = 3.680670766906e-17 Momentum: |mRes|_2 = 8.192074811954e-13 -------------------------------------------------------------------------- Saving output ... done (0.000624854 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 7.537125835156e-13 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 4 1 SNES Function norm 1.773537767839e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00103496 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.336808689942e-19 |Div|_2 = 1.915082863629e-18 Momentum: |mRes|_2 = 1.773537757500e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.5424e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000588645 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.529012259639e-07 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.412456206055e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00119271 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.336808689942e-19 |Div|_2 = 1.622685226975e-18 Momentum: |mRes|_2 = 1.412456206055e-11 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 8.8029e-05 s -------------------------------------------------------------------------- Saving output ... done (0.000514075 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0253752 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.00079578283f0, 0.00079578283f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology dislocation creep profile: Wet_Quarzite-Ueda_et_al_2008 (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 1.53539e-17 [1/Pa^n/s] En = 154000. [J/mol] n = 2.3 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000530195 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.411330409550e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 7.900625156863e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00127426 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.367506770275e-17 |Div|_2 = 3.652489012102e-16 Momentum: |mRes|_2 = 7.900625148420e-12 -------------------------------------------------------------------------- Saving output ... done (0.000567775 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 7.575355648999e-12 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.497363577973e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000695173 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.469446951954e-18 |Div|_2 = 1.365922630907e-17 Momentum: |mRes|_2 = 1.497362954963e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 9.6009e-05 s -------------------------------------------------------------------------- Saving output ... done (0.000390816 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.529027377354e-06 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.845756209644e-10 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000740962 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.469446951954e-18 |Div|_2 = 1.226634733347e-17 Momentum: |mRes|_2 = 3.845756209644e-10 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 8.8479e-05 s -------------------------------------------------------------------------- Saving output ... done (0.000358216 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0129272 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.0021655946f0, 0.0021655946f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology dislocation creep profile: Wet_Quarzite-Ueda_et_al_2008 (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 1.53539e-17 [1/Pa^n/s] En = 154000. [J/mol] n = 2.3 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000522205 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 5.026432132460e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 7.408582653022e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00135431 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.992007221626e-16 |Div|_2 = 4.055212130474e-15 Momentum: |mRes|_2 = 7.408582641923e-11 -------------------------------------------------------------------------- Saving output ... done (0.000589714 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 6.758143280721e-11 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 2.557709372943e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000698653 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.775557561563e-17 |Div|_2 = 1.316562550716e-16 Momentum: |mRes|_2 = 2.557675488163e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 9.6129e-05 s -------------------------------------------------------------------------- Saving output ... done (0.000409566 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.530525703377e-05 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.046566607204e-08 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000725073 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.551115123126e-17 |Div|_2 = 1.455514664586e-16 Momentum: |mRes|_2 = 1.046566607204e-08 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 8.7089e-05 s -------------------------------------------------------------------------- Saving output ... done (0.000376146 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0127525 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.0058933166f0, 0.0058933166f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology dislocation creep profile: Wet_Quarzite-Ueda_et_al_2008 (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 1.53539e-17 [1/Pa^n/s] En = 154000. [J/mol] n = 2.3 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000603124 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 2.461266787616e+02 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.007037800205e-09 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00147856 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.043609643148e-14 |Div|_2 = 3.386489617389e-14 Momentum: |mRes|_2 = 1.007037799635e-09 -------------------------------------------------------------------------- Saving output ... done (0.000936831 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 9.721067804689e-10 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 5.655639651614e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000837002 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.440892098501e-16 |Div|_2 = 1.336885555458e-15 Momentum: |mRes|_2 = 5.654059359348e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.6078e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000391976 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.673510051971e-04 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 2.848062535603e-07 1 MMFD ||F||/||F0||=1.701850e-03 Linear js_ solve converged due to CONVERGED_RTOL iterations 3 2 SNES Function norm 4.525074343373e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.00195929 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 8.881784197001e-16 |Div|_2 = 2.383749925626e-15 Momentum: |mRes|_2 = 4.518791340168e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 9.8109e-05 s -------------------------------------------------------------------------- Saving output ... done (0.000492215 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0163044 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.016037712f0, 0.016037712f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 1.53539e-17 [1/Pa^n/s] En = 154000. [J/mol] n = 2.3 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000793263 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.404679741346e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.855164213029e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00169062 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.219727444046e-18 |Div|_2 = 4.351986372410e-18 Momentum: |mRes|_2 = 1.855164212518e-13 -------------------------------------------------------------------------- Saving output ... done (0.000766053 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.733398697939e-13 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 8.470853950173e-15 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000977621 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.421010862428e-20 |Div|_2 = 1.196926789768e-19 Momentum: |mRes|_2 = 8.470853949328e-15 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.0250e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000477956 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.529012429987e-08 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 5.141630061900e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00102442 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.421010862428e-20 |Div|_2 = 1.735570302230e-19 Momentum: |mRes|_2 = 5.141630061900e-13 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.3569e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000472175 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0181532 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.00029242327f0, 0.00029242327f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 1.53539e-17 [1/Pa^n/s] En = 154000. [J/mol] n = 2.3 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000538634 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.404745638765e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 8.192074820223e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.0016689 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.107298248878e-18 |Div|_2 = 3.680670766906e-17 Momentum: |mRes|_2 = 8.192074811954e-13 -------------------------------------------------------------------------- Saving output ... done (0.000681444 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 7.537750739444e-13 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 5 1 SNES Function norm 2.281739069316e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.0010641 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.301042606983e-18 |Div|_2 = 4.215859886717e-18 Momentum: |mRes|_2 = 2.281739030369e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.5111e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000604724 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.529012268549e-07 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.412613368437e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.0010488 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.336808689942e-19 |Div|_2 = 1.502314598737e-18 Momentum: |mRes|_2 = 1.412613368437e-11 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.3700e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000523495 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0163982 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.00079578283f0, 0.00079578283f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 1.53539e-17 [1/Pa^n/s] En = 154000. [J/mol] n = 2.3 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000552715 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.411330409550e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 7.900625156863e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00129737 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.367506770275e-17 |Div|_2 = 3.652489012102e-16 Momentum: |mRes|_2 = 7.900625148420e-12 -------------------------------------------------------------------------- Saving output ... done (0.000552144 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 7.575355648999e-12 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.497363577973e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000763202 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.469446951954e-18 |Div|_2 = 1.365922630907e-17 Momentum: |mRes|_2 = 1.497362954963e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 9.5429e-05 s -------------------------------------------------------------------------- Saving output ... done (0.000388636 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.529027377354e-06 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.845756209644e-10 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000730523 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.469446951954e-18 |Div|_2 = 1.226634733347e-17 Momentum: |mRes|_2 = 3.845756209644e-10 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 8.6549e-05 s -------------------------------------------------------------------------- Saving output ... done (0.000440675 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0130001 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.0021655946f0, 0.0021655946f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 1.53539e-17 [1/Pa^n/s] En = 154000. [J/mol] n = 2.3 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000552624 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 5.026432132460e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 7.408582653022e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00138321 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.992007221626e-16 |Div|_2 = 4.055212130474e-15 Momentum: |mRes|_2 = 7.408582641923e-11 -------------------------------------------------------------------------- Saving output ... done (0.000778752 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 6.758143280721e-11 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 2.557709372943e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000800792 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.775557561563e-17 |Div|_2 = 1.316562550716e-16 Momentum: |mRes|_2 = 2.557675488163e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.1389e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000458226 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.530525703371e-05 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.046566599353e-08 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00129663 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.551115123126e-17 |Div|_2 = 1.468687011488e-16 Momentum: |mRes|_2 = 1.046566599353e-08 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.7643e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000427676 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0149962 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.0058933166f0, 0.0058933166f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology (dens) : rho = 3000. [kg/m^3] (disl) : Bn = 1.53539e-17 [1/Pa^n/s] En = 154000. [J/mol] n = 2.3 [ ] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000551294 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 2.461266787616e+02 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.007037800205e-09 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00154406 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.043609643148e-14 |Div|_2 = 3.386489617389e-14 Momentum: |mRes|_2 = 1.007037799635e-09 -------------------------------------------------------------------------- Saving output ... done (0.000492885 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 9.721067804689e-10 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 5.613639044842e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000783772 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.440892098501e-16 |Div|_2 = 1.336885555458e-15 Momentum: |mRes|_2 = 5.612046925667e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.1166e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000419516 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.673510051970e-04 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 2.848062534818e-07 1 MMFD ||F||/||F0||=1.701850e-03 Linear js_ solve converged due to CONVERGED_RTOL iterations 3 2 SNES Function norm 4.645808098495e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.00253351 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.440892098501e-16 |Div|_2 = 1.790180836525e-15 Momentum: |mRes|_2 = 4.642357742975e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.3105e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000538055 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0184519 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.016037712f0, 0.016037712f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology diffusion creep profile : Dry_Plagioclase_RybackiDresen_2000 (dens) : rho = 3000. [kg/m^3] (diff) : Bd = 1.88835 [1/Pa/s] Ed = 460000. [J/mol] Vd = 2.4e-05 [m^3/mol] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000654404 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.404679741346e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.855164213029e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00194739 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.219727444046e-18 |Div|_2 = 4.351986372410e-18 Momentum: |mRes|_2 = 1.855164212518e-13 -------------------------------------------------------------------------- Saving output ... done (0.000804612 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.643776193159e-07 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.468632384106e-15 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00136056 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.421010862428e-20 |Div|_2 = 1.496925551340e-19 Momentum: |mRes|_2 = 1.468632376477e-15 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4961e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000698574 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.529012493598e-08 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.741239287980e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00130367 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.421010862428e-20 |Div|_2 = 1.509145554517e-19 Momentum: |mRes|_2 = 1.741239287915e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4051e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000682264 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0204687 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (1.6801193f-6, 1.8722288f-6) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology diffusion creep profile : Dry_Plagioclase_RybackiDresen_2000 (dens) : rho = 3000. [kg/m^3] (diff) : Bd = 1.88835 [1/Pa/s] Ed = 460000. [J/mol] Vd = 2.4e-05 [m^3/mol] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.0018568 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.404745638765e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 8.192074820223e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00166086 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.107298248878e-18 |Div|_2 = 3.680670766906e-17 Momentum: |mRes|_2 = 8.192074811954e-13 -------------------------------------------------------------------------- Saving output ... done (0.00931445 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.643775949684e-06 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 6.290700433835e-15 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00108389 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.336808689942e-19 |Div|_2 = 1.651407549307e-18 Momentum: |mRes|_2 = 6.290700217074e-15 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.5146e-04 s -------------------------------------------------------------------------- Saving output ... done (0.0175909 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.529012083211e-07 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 2.049795325108e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.0010868 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.336808689942e-19 |Div|_2 = 1.707403288634e-18 Momentum: |mRes|_2 = 2.049795317997e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.5260e-04 s -------------------------------------------------------------------------- Saving output ... done (0.00157066 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0456876 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (1.6801194f-5, 1.8722289f-5) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology diffusion creep profile : Dry_Plagioclase_RybackiDresen_2000 (dens) : rho = 3000. [kg/m^3] (diff) : Bd = 1.88835 [1/Pa/s] Ed = 460000. [J/mol] Vd = 2.4e-05 [m^3/mol] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000531455 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.411330409550e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 7.900625156863e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00126687 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.367506770275e-17 |Div|_2 = 3.652489012102e-16 Momentum: |mRes|_2 = 7.900625148420e-12 -------------------------------------------------------------------------- Saving output ... done (0.000623724 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.643775888174e-05 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 4.509971681121e-15 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000876612 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.469446951954e-18 |Div|_2 = 1.387778780781e-17 Momentum: |mRes|_2 = 4.509950329163e-15 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.0490e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000714583 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.529025548536e-06 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.248139529364e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000784692 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.469446951954e-18 |Div|_2 = 1.250926888277e-17 Momentum: |mRes|_2 = 1.248138902504e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 9.8319e-05 s -------------------------------------------------------------------------- Saving output ... done (0.000404036 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0148093 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.00016801193f0, 0.00018722289f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology diffusion creep profile : Dry_Plagioclase_RybackiDresen_2000 (dens) : rho = 3000. [kg/m^3] (diff) : Bd = 1.88835 [1/Pa/s] Ed = 460000. [J/mol] Vd = 2.4e-05 [m^3/mol] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000596944 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 5.026432132460e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 7.408582653022e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00138568 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.992007221626e-16 |Div|_2 = 4.055212130474e-15 Momentum: |mRes|_2 = 7.408582641923e-11 -------------------------------------------------------------------------- Saving output ... done (0.000653664 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.643775926557e-04 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.453753162213e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000761223 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.551115123126e-17 |Div|_2 = 1.241267076624e-16 Momentum: |mRes|_2 = 1.453700169309e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.1887e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000465215 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.530507771875e-05 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.935424250481e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000831972 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.551115123126e-17 |Div|_2 = 1.699674944388e-16 Momentum: |mRes|_2 = 1.935349616958e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.0663e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000440136 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0149859 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.0016801193f0, 0.0018722288f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology diffusion creep profile : Dry_Plagioclase_RybackiDresen_2000 (dens) : rho = 3000. [kg/m^3] (diff) : Bd = 1.88835 [1/Pa/s] Ed = 460000. [J/mol] Vd = 2.4e-05 [m^3/mol] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000579124 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 2.461266787616e+02 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.007037800205e-09 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00138388 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.043609643148e-14 |Div|_2 = 3.386489617389e-14 Momentum: |mRes|_2 = 1.007037799635e-09 -------------------------------------------------------------------------- Saving output ... done (0.000556634 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.643775934397e-03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.487533228243e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000766652 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.440892098501e-16 |Div|_2 = 1.373270039557e-15 Momentum: |mRes|_2 = 1.481180744917e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.0413e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000790532 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.673362537378e-04 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 2.370876409381e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.0010044 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.440892098501e-16 |Div|_2 = 1.505979781574e-15 Momentum: |mRes|_2 = 2.366088586156e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 9.9809e-05 s -------------------------------------------------------------------------- Saving output ... done (0.000329607 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0160997 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.016801193f0, 0.01872228f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology (dens) : rho = 3000. [kg/m^3] (diff) : Bd = 1.88839 [1/Pa/s] Ed = 460000. [J/mol] Vd = 2.4e-05 [m^3/mol] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000662984 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.404679741346e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.855164213029e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00171869 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.219727444046e-18 |Div|_2 = 4.351986372410e-18 Momentum: |mRes|_2 = 1.855164212518e-13 -------------------------------------------------------------------------- Saving output ... done (0.000803362 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.643742963921e-07 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 4.318548988781e-15 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000989601 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.421010862428e-20 |Div|_2 = 1.580482678012e-19 Momentum: |mRes|_2 = 4.318548985889e-15 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.5267e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000576414 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.529013223529e-08 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.854501415834e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00101427 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.065758146821e-20 |Div|_2 = 1.484604966916e-19 Momentum: |mRes|_2 = 1.854501415775e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.3857e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000673493 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.018558 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (1.6800853f-6, 1.8721911f-6) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology (dens) : rho = 3000. [kg/m^3] (diff) : Bd = 1.88839 [1/Pa/s] Ed = 460000. [J/mol] Vd = 2.4e-05 [m^3/mol] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000661993 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.404745638765e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 8.192074820223e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00166412 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.107298248878e-18 |Div|_2 = 3.680670766906e-17 Momentum: |mRes|_2 = 8.192074811954e-13 -------------------------------------------------------------------------- Saving output ... done (0.000726653 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.643742768540e-06 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 4.768238622152e-15 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000952051 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 6.505213034913e-19 |Div|_2 = 1.761620017532e-18 Momentum: |mRes|_2 = 4.768238296738e-15 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.5106e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000491305 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.529012070155e-07 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.494164679288e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.0010184 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.336808689942e-19 |Div|_2 = 1.707403288634e-18 Momentum: |mRes|_2 = 1.494164669533e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4024e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000400506 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0171728 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (1.6800854f-5, 1.872191f-5) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology (dens) : rho = 3000. [kg/m^3] (diff) : Bd = 1.88839 [1/Pa/s] Ed = 460000. [J/mol] Vd = 2.4e-05 [m^3/mol] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000683953 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 4.411330409550e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 7.900625156863e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00173687 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.367506770275e-17 |Div|_2 = 3.652489012102e-16 Momentum: |mRes|_2 = 7.900625148420e-12 -------------------------------------------------------------------------- Saving output ... done (0.000694513 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.643742707915e-05 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.303083294658e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000961801 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.469446951954e-18 |Div|_2 = 1.097135458930e-17 Momentum: |mRes|_2 = 1.303082832789e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.6109e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000585994 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.529025552216e-06 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.737093484513e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00109419 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.469446951954e-18 |Div|_2 = 1.430489624538e-17 Momentum: |mRes|_2 = 1.737092895512e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.3834e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000544655 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0192916 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.00016800854f0, 0.0001872191f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology (dens) : rho = 3000. [kg/m^3] (diff) : Bd = 1.88839 [1/Pa/s] Ed = 460000. [J/mol] Vd = 2.4e-05 [m^3/mol] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000655973 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 5.026432132460e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 7.408582653022e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00169364 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.992007221626e-16 |Div|_2 = 4.055212130474e-15 Momentum: |mRes|_2 = 7.408582641923e-11 -------------------------------------------------------------------------- Saving output ... done (0.000564614 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.643742746428e-04 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.276251701487e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.000936271 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.163336342344e-17 |Div|_2 = 1.401587864986e-16 Momentum: |mRes|_2 = 1.276174737524e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4995e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000546914 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.530507773124e-05 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.728004276619e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00099589 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.163336342344e-17 |Div|_2 = 1.455514664586e-16 Momentum: |mRes|_2 = 1.727942975830e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.3970e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000527365 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0172943 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.0016800853f0, 0.001872191f0) ┌ Warning: Your initial `Temp` grid is constant, as is your initial `Phases` grid. │ Is that intended? │ In most cases, you would want to set some variability in the initial conditions, │ for example with the `GeophysicalModelGenerator` function `add_sphere!(model,cen=(0.0,0.0,0.0), radius=(0.15, ))` └ @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/ErrorChecking.jl:22 Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 100. [Myr] Maximum number of steps : 2 Time step : 1e-06 [Myr] Minimum time step : 1e-10 [Myr] Maximum time step : 1. [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [8, 1, 8] Number of cells : 64 Number of faces : 272 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -0.125, -1.] Upper coordinate bounds [ex, ey, ez] : [1., 0.125, 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- rheology (dens) : rho = 3000. [kg/m^3] (diff) : Bd = 1.88839 [1/Pa/s] Ed = 460000. [J/mol] Vd = 2.4e-05 [m^3/mol] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Number of x-background strain rate periods : 1 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Universal gas constant : 8.31446 [J/mol/K] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.000669913 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 2.461266787616e+02 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.007037800205e-09 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00168482 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.043609643148e-14 |Div|_2 = 3.386489617389e-14 Momentum: |mRes|_2 = 1.007037799635e-09 -------------------------------------------------------------------------- Saving output ... done (0.000592444 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.00000100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.643742754277e-03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.380948806640e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00096201 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.440892098501e-16 |Div|_2 = 1.368774871884e-15 Momentum: |mRes|_2 = 1.374148521835e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4932e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000533084 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.00000110 [Myr] Tentative time step : 0.00000110 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.673362539976e-04 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 2.931460429801e-14 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.00102743 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.440892098501e-16 |Div|_2 = 1.382216518796e-15 Momentum: |mRes|_2 = 2.928199963534e-14 -------------------------------------------------------------------------- Actual time step : 0.00000 [Myr] -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.4774e-04 s -------------------------------------------------------------------------- Saving output ... done (0.000491976 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 0.0174171 (sec) -------------------------------------------------------------------------- extrema(data.fields.j2_dev_stress) = (0.016800852f0, 0.018721903f0) Saved file: Model3D.vts Saved file: Model3D.vts Subduction3D: Error During Test at /home/pkgeval/.julia/packages/LaMEM/M6C0P/test/test_examples.jl:13 Got exception outside of a @test LoadError: MethodError: no method matching length(::Nothing) Closest candidates are: length(!Matched::TranscodingStreams.Buffer) @ TranscodingStreams ~/.julia/packages/TranscodingStreams/O3BYF/src/buffer.jl:43 length(!Matched::LibGit2.GitStatus) @ LibGit2 /opt/julia/share/julia/stdlib/v1.10/LibGit2/src/status.jl:21 length(!Matched::RegexMatch) @ Base regex.jl:291 ... Stacktrace: [1] run_lamem_save_grid(ParamFile::String, cores::Int64; verbose::Bool, directory::String) @ LaMEM.Run ~/.julia/packages/LaMEM/M6C0P/src/run_lamem_save_grid.jl:92 [2] run_lamem_save_grid @ ~/.julia/packages/LaMEM/M6C0P/src/run_lamem_save_grid.jl:76 [inlined] [3] create_initialsetup(model::Model, cores::Int64, args::String; verbose::Bool) @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/Model.jl:296 [4] create_initialsetup @ ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/Model.jl:273 [inlined] [5] run_lamem(model::Model, cores::Int64, args::String; wait::Bool) @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/Model.jl:200 [6] run_lamem @ ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/Model.jl:195 [inlined] [7] run_lamem(model::Model, cores::Int64) @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/Model.jl:195 [8] top-level scope @ ~/.julia/packages/LaMEM/M6C0P/example_scripts/Subduction3D.jl:99 [9] include(fname::String) @ Base.MainInclude ./client.jl:494 [10] macro expansion @ ~/.julia/packages/LaMEM/M6C0P/test/test_examples.jl:15 [inlined] [11] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [12] macro expansion @ ~/.julia/packages/LaMEM/M6C0P/test/test_examples.jl:14 [inlined] [13] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [14] top-level scope @ ~/.julia/packages/LaMEM/M6C0P/test/test_examples.jl:6 [15] include(fname::String) @ Base.MainInclude ./client.jl:494 [16] macro expansion @ ~/.julia/packages/LaMEM/M6C0P/test/runtests.jl:14 [inlined] [17] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [18] top-level scope @ ~/.julia/packages/LaMEM/M6C0P/test/runtests.jl:6 [19] include(fname::String) @ Base.MainInclude ./client.jl:494 [20] top-level scope @ none:6 [21] eval @ ./boot.jl:385 [inlined] [22] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [23] _start() @ Base ./client.jl:557 in expression starting at /home/pkgeval/.julia/packages/LaMEM/M6C0P/example_scripts/Subduction3D.jl:91 caused by: MethodError: no method matching length(::Nothing) Closest candidates are: length(!Matched::TranscodingStreams.Buffer) @ TranscodingStreams ~/.julia/packages/TranscodingStreams/O3BYF/src/buffer.jl:43 length(!Matched::LibGit2.GitStatus) @ LibGit2 /opt/julia/share/julia/stdlib/v1.10/LibGit2/src/status.jl:21 length(!Matched::RegexMatch) @ Base regex.jl:291 ... Stacktrace: [1] run_lamem_save_grid(ParamFile::String, cores::Int64; verbose::Bool, directory::String) @ LaMEM.Run ~/.julia/packages/LaMEM/M6C0P/src/run_lamem_save_grid.jl:92 [2] run_lamem_save_grid @ ~/.julia/packages/LaMEM/M6C0P/src/run_lamem_save_grid.jl:76 [inlined] [3] create_initialsetup(model::Model, cores::Int64, args::String; verbose::Bool) @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/Model.jl:296 [4] create_initialsetup @ ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/Model.jl:273 [inlined] [5] run_lamem(model::Model, cores::Int64, args::String; wait::Bool) @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/Model.jl:200 [6] run_lamem(model::Model, cores::Int64, args::String) @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/Model.jl:195 [7] top-level scope @ ~/.julia/packages/LaMEM/M6C0P/example_scripts/Subduction3D.jl:94 [8] include(fname::String) @ Base.MainInclude ./client.jl:494 [9] macro expansion @ ~/.julia/packages/LaMEM/M6C0P/test/test_examples.jl:15 [inlined] [10] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [11] macro expansion @ ~/.julia/packages/LaMEM/M6C0P/test/test_examples.jl:14 [inlined] [12] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [13] top-level scope @ ~/.julia/packages/LaMEM/M6C0P/test/test_examples.jl:6 [14] include(fname::String) @ Base.MainInclude ./client.jl:494 [15] macro expansion @ ~/.julia/packages/LaMEM/M6C0P/test/runtests.jl:14 [inlined] [16] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [17] top-level scope @ ~/.julia/packages/LaMEM/M6C0P/test/runtests.jl:6 [18] include(fname::String) @ Base.MainInclude ./client.jl:494 [19] top-level scope @ none:6 [20] eval @ ./boot.jl:385 [inlined] [21] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [22] _start() @ Base ./client.jl:557 julia: /source/src/subtype.c:4817: sub_msp: Assertion `obvious_sub == 3 || obvious_sub == subtype || ijl_has_free_typevars(x) || ijl_has_free_typevars(y)' failed. [416] signal (6.-6): Aborted in expression starting at /home/pkgeval/.julia/packages/Makie/Y3ABD/precompile/shared-precompile.jl:90 unknown function (ip: 0x7691e5d5bebc) gsignal at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) abort at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x7691e5cf7394) __assert_fail at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) sub_msp at /source/src/subtype.c:4817 type_morespecific_ at /source/src/subtype.c:5075 type_morespecific_ at /source/src/subtype.c:5240 type_morespecific_ at /source/src/subtype.c:5240 type_morespecific_ at /source/src/subtype.c:5185 type_morespecific_ at /source/src/subtype.c:5143 type_morespecific_ at /source/src/subtype.c:5240 type_morespecific_ at /source/src/subtype.c:5237 tuple_morespecific at /source/src/subtype.c:4879 [inlined] type_morespecific_ at /source/src/subtype.c:5061 ml_matches at /source/src/gf.c:3700 ml_matches at /source/src/gf.c:3587 [inlined] _gf_invoke_lookup at /source/src/gf.c:3091 [inlined] jl_mt_assoc_by_type at /source/src/gf.c:1461 jl_lookup_generic_ at /source/src/gf.c:3048 [inlined] ijl_apply_generic at /source/src/gf.c:3073 conversion_pipeline at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/interfaces.jl:227 conversion_pipeline at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/interfaces.jl:218 unknown function (ip: 0x7691c3ccb86c) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 Plot at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/interfaces.jl:278 unknown function (ip: 0x7691c3ccaa8c) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 _create_plot! at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/figureplotting.jl:390 _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] do_apply at /source/src/builtins.c:768 #poly!#65 at /home/pkgeval/.julia/packages/MakieCore/EU17Y/src/recipes.jl:514 poly! at /home/pkgeval/.julia/packages/MakieCore/EU17Y/src/recipes.jl:512 [inlined] initialize_block! at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/makielayout/blocks/toggle.jl:38 unknown function (ip: 0x7691c3cbe035) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] do_apply at /source/src/builtins.c:768 #_block#1443 at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/makielayout/blocks.jl:398 _block at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/makielayout/blocks.jl:317 [inlined] #_block#1442 at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/makielayout/blocks.jl:262 [inlined] _block at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/makielayout/blocks.jl:261 [inlined] #_#1440 at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/makielayout/blocks.jl:240 [inlined] Block at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/makielayout/blocks.jl:239 unknown function (ip: 0x7691c3cb86f5) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] do_call at /source/src/interpreter.c:126 eval_value at /source/src/interpreter.c:223 eval_stmt_value at /source/src/interpreter.c:174 [inlined] eval_body at /source/src/interpreter.c:635 jl_interpret_toplevel_thunk at /source/src/interpreter.c:775 jl_toplevel_eval_flex at /source/src/toplevel.c:934 jl_toplevel_eval_flex at /source/src/toplevel.c:877 ijl_toplevel_eval_in at /source/src/toplevel.c:985 eval at ./boot.jl:385 [inlined] include_string at ./loading.jl:2146 _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 _include at ./loading.jl:2206 include at ./Base.jl:495 jfptr_include_46645.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] jl_f__call_latest at /source/src/builtins.c:812 include at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/Makie.jl:1 [inlined] macro expansion at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/precompiles.jl:33 [inlined] macro expansion at /home/pkgeval/.julia/packages/PrecompileTools/L8A3n/src/workloads.jl:78 [inlined] top-level scope at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/precompiles.jl:27 _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_invoke at /source/src/gf.c:2902 jl_toplevel_eval_flex at /source/src/toplevel.c:925 jl_toplevel_eval_flex at /source/src/toplevel.c:877 ijl_toplevel_eval_in at /source/src/toplevel.c:985 eval at ./boot.jl:385 [inlined] include_string at ./loading.jl:2146 _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 _include at ./loading.jl:2206 include at ./Base.jl:495 jfptr_include_46645.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] jl_f__call_latest at /source/src/builtins.c:812 include at /home/pkgeval/.julia/packages/Makie/Y3ABD/src/Makie.jl:1 unknown function (ip: 0x7691e4ecd3f5) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] do_call at /source/src/interpreter.c:126 eval_value at /source/src/interpreter.c:223 eval_stmt_value at /source/src/interpreter.c:174 [inlined] eval_body at /source/src/interpreter.c:635 jl_interpret_toplevel_thunk at /source/src/interpreter.c:775 jl_toplevel_eval_flex at /source/src/toplevel.c:934 jl_eval_module_expr at /source/src/toplevel.c:215 [inlined] jl_toplevel_eval_flex at /source/src/toplevel.c:736 jl_toplevel_eval_flex at /source/src/toplevel.c:877 ijl_toplevel_eval_in at /source/src/toplevel.c:985 eval at ./boot.jl:385 [inlined] include_string at ./loading.jl:2146 _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 _include at ./loading.jl:2206 include at ./Base.jl:495 [inlined] include_package_for_output at ./loading.jl:2292 jfptr_include_package_for_output_81383.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] do_call at /source/src/interpreter.c:126 eval_value at /source/src/interpreter.c:223 eval_stmt_value at /source/src/interpreter.c:174 [inlined] eval_body at /source/src/interpreter.c:635 jl_interpret_toplevel_thunk at /source/src/interpreter.c:775 jl_toplevel_eval_flex at /source/src/toplevel.c:934 jl_toplevel_eval_flex at /source/src/toplevel.c:877 ijl_toplevel_eval_in at /source/src/toplevel.c:985 eval at ./boot.jl:385 [inlined] include_string at ./loading.jl:2146 include_string at ./loading.jl:2156 [inlined] exec_options at ./client.jl:321 _start at ./client.jl:557 jfptr__start_83099.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] true_main at /source/src/jlapi.c:582 jl_repl_entrypoint at /source/src/jlapi.c:731 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7691e5cf8249) __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) Allocations: 102032364 (Pool: 101944483; Big: 87881); GC: 101 ERROR: LoadError: Failed to precompile Makie [ee78f7c6-11fb-53f2-987a-cfe4a2b5a57a] to "/home/pkgeval/.julia/compiled/v1.10/Makie/jl_EMsbM3". Stacktrace: [1] error(s::String) @ Base ./error.jl:35 [2] compilecache(pkg::Base.PkgId, path::String, internal_stderr::IO, internal_stdout::IO, keep_loaded_modules::Bool) @ Base ./loading.jl:2539 [3] compilecache @ ./loading.jl:2411 [inlined] [4] (::Base.var"#971#972"{Base.PkgId})() @ Base ./loading.jl:2044 [5] mkpidlock(f::Base.var"#971#972"{Base.PkgId}, at::String, pid::Int32; kwopts::@Kwargs{stale_age::Int64, wait::Bool}) @ FileWatching.Pidfile /opt/julia/share/julia/stdlib/v1.10/FileWatching/src/pidfile.jl:93 [6] #mkpidlock#6 @ /opt/julia/share/julia/stdlib/v1.10/FileWatching/src/pidfile.jl:88 [inlined] [7] trymkpidlock(::Function, ::Vararg{Any}; kwargs::@Kwargs{stale_age::Int64}) @ FileWatching.Pidfile /opt/julia/share/julia/stdlib/v1.10/FileWatching/src/pidfile.jl:111 [8] #invokelatest#2 @ ./essentials.jl:894 [inlined] [9] invokelatest @ ./essentials.jl:889 [inlined] [10] maybe_cachefile_lock(f::Base.var"#971#972"{Base.PkgId}, pkg::Base.PkgId, srcpath::String; stale_age::Int64) @ Base ./loading.jl:3054 [11] maybe_cachefile_lock @ ./loading.jl:3051 [inlined] [12] _require(pkg::Base.PkgId, env::String) @ Base ./loading.jl:2040 [13] __require_prelocked(uuidkey::Base.PkgId, env::String) @ Base ./loading.jl:1882 [14] #invoke_in_world#3 @ ./essentials.jl:926 [inlined] [15] invoke_in_world @ ./essentials.jl:923 [inlined] [16] _require_prelocked(uuidkey::Base.PkgId, env::String) @ Base ./loading.jl:1873 [17] macro expansion @ ./loading.jl:1860 [inlined] [18] macro expansion @ ./lock.jl:267 [inlined] [19] __require(into::Module, mod::Symbol) @ Base ./loading.jl:1823 [20] #invoke_in_world#3 @ ./essentials.jl:926 [inlined] [21] invoke_in_world @ ./essentials.jl:923 [inlined] [22] require(into::Module, mod::Symbol) @ Base ./loading.jl:1816 [23] include @ ./Base.jl:495 [inlined] [24] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::String) @ Base ./loading.jl:2292 [25] top-level scope @ stdin:4 in expression starting at /home/pkgeval/.julia/packages/CairoMakie/JchUZ/src/CairoMakie.jl:1 in expression starting at stdin:4 StrengthEnvelop: Error During Test at /home/pkgeval/.julia/packages/LaMEM/M6C0P/test/test_examples.jl:23 Got exception outside of a @test LoadError: Failed to precompile CairoMakie [13f3f980-e62b-5c42-98c6-ff1f3baf88f0] to "/home/pkgeval/.julia/compiled/v1.10/CairoMakie/jl_7fy8MO". Stacktrace: [1] error(s::String) @ Base ./error.jl:35 [2] compilecache(pkg::Base.PkgId, path::String, internal_stderr::IO, internal_stdout::IO, keep_loaded_modules::Bool) @ Base ./loading.jl:2539 [3] compilecache @ ./loading.jl:2411 [inlined] [4] (::Base.var"#971#972"{Base.PkgId})() @ Base ./loading.jl:2044 [5] mkpidlock(f::Base.var"#971#972"{Base.PkgId}, at::String, pid::Int32; kwopts::@Kwargs{stale_age::Int64, wait::Bool}) @ FileWatching.Pidfile /opt/julia/share/julia/stdlib/v1.10/FileWatching/src/pidfile.jl:93 [6] #mkpidlock#6 @ /opt/julia/share/julia/stdlib/v1.10/FileWatching/src/pidfile.jl:88 [inlined] [7] trymkpidlock(::Function, ::Vararg{Any}; kwargs::@Kwargs{stale_age::Int64}) @ FileWatching.Pidfile /opt/julia/share/julia/stdlib/v1.10/FileWatching/src/pidfile.jl:111 [8] #invokelatest#2 @ ./essentials.jl:894 [inlined] [9] invokelatest @ ./essentials.jl:889 [inlined] [10] maybe_cachefile_lock(f::Base.var"#971#972"{Base.PkgId}, pkg::Base.PkgId, srcpath::String; stale_age::Int64) @ Base ./loading.jl:3054 [11] maybe_cachefile_lock @ ./loading.jl:3051 [inlined] [12] _require(pkg::Base.PkgId, env::String) @ Base ./loading.jl:2040 [13] __require_prelocked(uuidkey::Base.PkgId, env::String) @ Base ./loading.jl:1882 [14] #invoke_in_world#3 @ ./essentials.jl:926 [inlined] [15] invoke_in_world @ ./essentials.jl:923 [inlined] [16] _require_prelocked(uuidkey::Base.PkgId, env::String) @ Base ./loading.jl:1873 [17] macro expansion @ ./loading.jl:1860 [inlined] [18] macro expansion @ ./lock.jl:267 [inlined] [19] __require(into::Module, mod::Symbol) @ Base ./loading.jl:1823 [20] #invoke_in_world#3 @ ./essentials.jl:926 [inlined] [21] invoke_in_world @ ./essentials.jl:923 [inlined] [22] require(into::Module, mod::Symbol) @ Base ./loading.jl:1816 [23] include(fname::String) @ Base.MainInclude ./client.jl:494 [24] macro expansion @ ~/.julia/packages/LaMEM/M6C0P/test/test_examples.jl:25 [inlined] [25] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [26] macro expansion @ ~/.julia/packages/LaMEM/M6C0P/test/test_examples.jl:24 [inlined] [27] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [28] top-level scope @ ~/.julia/packages/LaMEM/M6C0P/test/test_examples.jl:6 [29] include(fname::String) @ Base.MainInclude ./client.jl:494 [30] macro expansion @ ~/.julia/packages/LaMEM/M6C0P/test/runtests.jl:14 [inlined] [31] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [32] top-level scope @ ~/.julia/packages/LaMEM/M6C0P/test/runtests.jl:6 [33] include(fname::String) @ Base.MainInclude ./client.jl:494 [34] top-level scope @ none:6 [35] eval @ ./boot.jl:385 [inlined] [36] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [37] _start() @ Base ./client.jl:557 in expression starting at /home/pkgeval/.julia/packages/LaMEM/M6C0P/example_scripts/StrengthEnvelop.jl:1 Saved file: Model3D.vts Saved file: Model3D.vts TM_Subduction_example: Error During Test at /home/pkgeval/.julia/packages/LaMEM/M6C0P/test/test_examples.jl:33 Got exception outside of a @test LoadError: MethodError: no method matching length(::Nothing) Closest candidates are: length(!Matched::TranscodingStreams.Buffer) @ TranscodingStreams ~/.julia/packages/TranscodingStreams/O3BYF/src/buffer.jl:43 length(!Matched::LibGit2.GitStatus) @ LibGit2 /opt/julia/share/julia/stdlib/v1.10/LibGit2/src/status.jl:21 length(!Matched::RegexMatch) @ Base regex.jl:291 ... Stacktrace: [1] run_lamem_save_grid(ParamFile::String, cores::Int64; verbose::Bool, directory::String) @ LaMEM.Run ~/.julia/packages/LaMEM/M6C0P/src/run_lamem_save_grid.jl:92 [2] run_lamem_save_grid @ ~/.julia/packages/LaMEM/M6C0P/src/run_lamem_save_grid.jl:76 [inlined] [3] create_initialsetup(model::Model, cores::Int64, args::String; verbose::Bool) @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/Model.jl:296 [4] create_initialsetup @ ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/Model.jl:273 [inlined] [5] run_lamem(model::Model, cores::Int64, args::String; wait::Bool) @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/Model.jl:200 [6] run_lamem @ ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/Model.jl:195 [inlined] [7] run_lamem(model::Model, cores::Int64) @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/Model.jl:195 [8] top-level scope @ ~/.julia/packages/LaMEM/M6C0P/example_scripts/TM_Subduction_example.jl:249 [9] include(fname::String) @ Base.MainInclude ./client.jl:494 [10] macro expansion @ ~/.julia/packages/LaMEM/M6C0P/test/test_examples.jl:35 [inlined] [11] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [12] macro expansion @ ~/.julia/packages/LaMEM/M6C0P/test/test_examples.jl:34 [inlined] [13] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [14] top-level scope @ ~/.julia/packages/LaMEM/M6C0P/test/test_examples.jl:6 [15] include(fname::String) @ Base.MainInclude ./client.jl:494 [16] macro expansion @ ~/.julia/packages/LaMEM/M6C0P/test/runtests.jl:14 [inlined] [17] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [18] top-level scope @ ~/.julia/packages/LaMEM/M6C0P/test/runtests.jl:6 [19] include(fname::String) @ Base.MainInclude ./client.jl:494 [20] top-level scope @ none:6 [21] eval @ ./boot.jl:385 [inlined] [22] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [23] _start() @ Base ./client.jl:557 in expression starting at /home/pkgeval/.julia/packages/LaMEM/M6C0P/example_scripts/TM_Subduction_example.jl:241 caused by: MethodError: no method matching length(::Nothing) Closest candidates are: length(!Matched::TranscodingStreams.Buffer) @ TranscodingStreams ~/.julia/packages/TranscodingStreams/O3BYF/src/buffer.jl:43 length(!Matched::LibGit2.GitStatus) @ LibGit2 /opt/julia/share/julia/stdlib/v1.10/LibGit2/src/status.jl:21 length(!Matched::RegexMatch) @ Base regex.jl:291 ... Stacktrace: [1] run_lamem_save_grid(ParamFile::String, cores::Int64; verbose::Bool, directory::String) @ LaMEM.Run ~/.julia/packages/LaMEM/M6C0P/src/run_lamem_save_grid.jl:92 [2] run_lamem_save_grid @ ~/.julia/packages/LaMEM/M6C0P/src/run_lamem_save_grid.jl:76 [inlined] [3] create_initialsetup(model::Model, cores::Int64, args::String; verbose::Bool) @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/Model.jl:296 [4] create_initialsetup @ ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/Model.jl:273 [inlined] [5] run_lamem(model::Model, cores::Int64, args::String; wait::Bool) @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/Model.jl:200 [6] run_lamem(model::Model, cores::Int64, args::String) @ LaMEM.LaMEM_Model ~/.julia/packages/LaMEM/M6C0P/src/LaMEM_ModelGeneration/Model.jl:195 [7] top-level scope @ ~/.julia/packages/LaMEM/M6C0P/example_scripts/TM_Subduction_example.jl:244 [8] include(fname::String) @ Base.MainInclude ./client.jl:494 [9] macro expansion @ ~/.julia/packages/LaMEM/M6C0P/test/test_examples.jl:35 [inlined] [10] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [11] macro expansion @ ~/.julia/packages/LaMEM/M6C0P/test/test_examples.jl:34 [inlined] [12] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [13] top-level scope @ ~/.julia/packages/LaMEM/M6C0P/test/test_examples.jl:6 [14] include(fname::String) @ Base.MainInclude ./client.jl:494 [15] macro expansion @ ~/.julia/packages/LaMEM/M6C0P/test/runtests.jl:14 [inlined] [16] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [17] top-level scope @ ~/.julia/packages/LaMEM/M6C0P/test/runtests.jl:6 [18] include(fname::String) @ Base.MainInclude ./client.jl:494 [19] top-level scope @ none:6 [20] eval @ ./boot.jl:385 [inlined] [21] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [22] _start() @ Base ./client.jl:557 ┌ Warning: Module LaMEM with build ID ffffffff-ffff-ffff-f156-fb2ae5d1c0b4 is missing from the cache. │ This may mean LaMEM [2e889f3d-35ce-4a77-8ea2-858aecb630f7] does not support precompilation but is imported by a module that does. └ @ Base loading.jl:2018 Adding Plots.jl plotting extensions for LaMEM Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 2000. [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+07 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 1. [Myr] Maximum number of steps : 50 Time step : 0.04 [Myr] Minimum time step : 0.004 [Myr] Maximum time step : 0.2 [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 1 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [16, 16, 16] Number of cells : 4096 Number of faces : 13056 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-1., -1., -1.] Upper coordinate bounds [ex, ey, ez] : [1., 1., 1.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 1 -- sphere (dens) : rho = 3200. [kg/m^3] (diff) : eta = 1e+23 [Pa*s] Bd = 5e-24 [1/Pa/s] Phase ID : 0 -- matrix (dens) : rho = 3000. [kg/m^3] (diff) : eta = 1e+20 [Pa*s] Bd = 5e-21 [1/Pa/s] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Passive Tracers are active @ Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.0307161 sec) -------------------------------------------------------------------------- -------------------------------------------------------------------------- Passive Tracers: Initial coordinate Box x = [Left,Right] : -1.000000, 1.000000 Initial coordinate Box y = [Front,Back] : -1.000000, 1.000000 Initial coordinate Box z = [Bot, Top] : -1.000000, 1.000000 # of tracers in [x,y,z] direction : [100, 1, 100] Total # of tracers : 10000 Tracer advection activation type : Always active -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ -------------------------------------------------------------------------- Passive Tracers output parameters: Write Passive tracers pvd file -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 3.664918676663e+02 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 2.215613387327e-09 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 2.58711 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.300037785756e-10 |Div|_2 = 2.197695050567e-09 Momentum: |mRes|_2 = 2.812101470692e-10 -------------------------------------------------------------------------- Saving output ... done (0.00662315 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.04000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.082829273721e+03 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 9.002885850221e-05 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 2.35397 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.741679978688e-10 |Div|_2 = 4.173398077089e-09 Momentum: |mRes|_2 = 9.002885840548e-05 -------------------------------------------------------------------------- Actual time step : 0.04400 [Myr] -------------------------------------------------------------------------- Advection Passive tracers ... Currently active tracers : 10000 done (0.00184981 sec) -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.2055e-02 s -------------------------------------------------------------------------- Saving output ... done (0.00670489 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.04400000 [Myr] Tentative time step : 0.04400000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.324213934454e+02 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.462458915117e-06 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 2.42156 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 6.819866997521e-10 |Div|_2 = 2.940635640205e-09 Momentum: |mRes|_2 = 3.462457666389e-06 -------------------------------------------------------------------------- Actual time step : 0.04840 [Myr] -------------------------------------------------------------------------- Advection Passive tracers ... Currently active tracers : 10000 done (0.00189624 sec) -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.1563e-02 s -------------------------------------------------------------------------- Saving output ... done (0.0067458 sec) -------------------------------------------------------------------------- ================================= STEP 3 ================================= -------------------------------------------------------------------------- Current time : 0.09240000 [Myr] Tentative time step : 0.04840000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 5.165563003467e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 2.089079940882e-06 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 2.47166 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 8.574193490624e-10 |Div|_2 = 2.610060920587e-09 Momentum: |mRes|_2 = 2.089078310398e-06 -------------------------------------------------------------------------- Actual time step : 0.05324 [Myr] -------------------------------------------------------------------------- Advection Passive tracers ... Currently active tracers : 10000 done (0.00175713 sec) -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.1739e-02 s -------------------------------------------------------------------------- Saving output ... done (0.00791535 sec) -------------------------------------------------------------------------- ================================= STEP 4 ================================= -------------------------------------------------------------------------- Current time : 0.14564000 [Myr] Tentative time step : 0.05324000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 3.593494674489e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 7.251421534051e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 2.39112 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 8.308498975623e-10 |Div|_2 = 3.434028191940e-09 Momentum: |mRes|_2 = 7.251340221610e-07 -------------------------------------------------------------------------- Actual time step : 0.05856 [Myr] -------------------------------------------------------------------------- Advection Passive tracers ... Currently active tracers : 10000 done (0.00186563 sec) -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.2599e-02 s -------------------------------------------------------------------------- Saving output ... done (0.0066958 sec) -------------------------------------------------------------------------- ================================= STEP 5 ================================= -------------------------------------------------------------------------- Current time : 0.20420400 [Myr] Tentative time step : 0.05856400 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 8.629420757250e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 4.050131976791e-06 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 2.44487 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 8.256838745710e-10 |Div|_2 = 3.498013790468e-09 Momentum: |mRes|_2 = 4.050130466210e-06 -------------------------------------------------------------------------- Actual time step : 0.06442 [Myr] -------------------------------------------------------------------------- Advection Passive tracers ... Currently active tracers : 10000 done (0.00173005 sec) -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.1591e-02 s -------------------------------------------------------------------------- Saving output ... done (0.00696024 sec) -------------------------------------------------------------------------- ================================= STEP 6 ================================= -------------------------------------------------------------------------- Current time : 0.26862440 [Myr] Tentative time step : 0.06442040 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.907965097930e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 4.576690420797e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 2.38155 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.582154427562e-10 |Div|_2 = 2.601437557826e-09 Momentum: |mRes|_2 = 4.576616486016e-07 -------------------------------------------------------------------------- Actual time step : 0.07086 [Myr] -------------------------------------------------------------------------- Advection Passive tracers ... Currently active tracers : 10000 done (0.00180421 sec) -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.3644e-02 s -------------------------------------------------------------------------- Saving output ... done (0.313079 sec) -------------------------------------------------------------------------- ================================= STEP 7 ================================= -------------------------------------------------------------------------- Current time : 0.33948684 [Myr] Tentative time step : 0.07086244 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 9.190965994971e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.397810426894e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 2.44802 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.782584496679e-10 |Div|_2 = 5.395537714107e-10 Momentum: |mRes|_2 = 1.397800013488e-07 -------------------------------------------------------------------------- Actual time step : 0.07795 [Myr] -------------------------------------------------------------------------- Advection Passive tracers ... Currently active tracers : 10000 done (0.00196245 sec) -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.1565e-02 s -------------------------------------------------------------------------- Saving output ... done (0.0069017 sec) -------------------------------------------------------------------------- ================================= STEP 8 ================================= -------------------------------------------------------------------------- Current time : 0.41743552 [Myr] Tentative time step : 0.07794868 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.389821845717e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 6.117285484745e-08 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 2.35803 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.277297465868e-10 |Div|_2 = 1.416385545135e-09 Momentum: |mRes|_2 = 6.115645527804e-08 -------------------------------------------------------------------------- Actual time step : 0.08574 [Myr] -------------------------------------------------------------------------- Advection Passive tracers ... Currently active tracers : 10000 done (0.00181485 sec) -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.2160e-02 s -------------------------------------------------------------------------- Saving output ... done (0.00678626 sec) -------------------------------------------------------------------------- ================================= STEP 9 ================================= -------------------------------------------------------------------------- Current time : 0.50317908 [Myr] Tentative time step : 0.08574355 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 3.734976103562e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.735393580882e-06 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 2.37843 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.824010405886e-10 |Div|_2 = 1.768443077894e-09 Momentum: |mRes|_2 = 1.735392679821e-06 -------------------------------------------------------------------------- Actual time step : 0.09432 [Myr] -------------------------------------------------------------------------- Advection Passive tracers ... Currently active tracers : 10000 done (0.00204265 sec) -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.2050e-02 s -------------------------------------------------------------------------- Saving output ... done (0.00699273 sec) -------------------------------------------------------------------------- ================================ STEP 10 ================================= -------------------------------------------------------------------------- Current time : 0.59749698 [Myr] Tentative time step : 0.09431791 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 3.541052347654e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.765103611401e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 2.39573 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.858312358161e-10 |Div|_2 = 4.181829320776e-10 Momentum: |mRes|_2 = 1.765098657663e-07 -------------------------------------------------------------------------- Actual time step : 0.10375 [Myr] -------------------------------------------------------------------------- Advection Passive tracers ... Currently active tracers : 10000 done (0.00167189 sec) -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.1750e-02 s -------------------------------------------------------------------------- Saving output ... done (0.00966781 sec) -------------------------------------------------------------------------- ================================ STEP 11 ================================= -------------------------------------------------------------------------- Current time : 0.70124668 [Myr] Tentative time step : 0.10374970 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 2.318442870748e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 2.392975683453e-08 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 2.39347 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.805268062116e-10 |Div|_2 = 6.040526611389e-10 Momentum: |mRes|_2 = 2.392213164712e-08 -------------------------------------------------------------------------- Actual time step : 0.11412 [Myr] -------------------------------------------------------------------------- Advection Passive tracers ... Currently active tracers : 10000 done (0.00147373 sec) -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.1731e-02 s -------------------------------------------------------------------------- Saving output ... done (0.0112969 sec) -------------------------------------------------------------------------- ================================ STEP 12 ================================= -------------------------------------------------------------------------- Current time : 0.81537135 [Myr] Tentative time step : 0.11412467 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.557663543994e-01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 5.365906079124e-09 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 2.27125 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.694067191555e-12 |Div|_2 = 1.182768370003e-11 Momentum: |mRes|_2 = 5.365893043649e-09 -------------------------------------------------------------------------- Actual time step : 0.12554 [Myr] -------------------------------------------------------------------------- Advection Passive tracers ... Currently active tracers : 10000 done (0.00126012 sec) -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 7.6073e-03 s -------------------------------------------------------------------------- Saving output ... done (0.479201 sec) -------------------------------------------------------------------------- ================================ STEP 13 ================================= -------------------------------------------------------------------------- Current time : 0.94090849 [Myr] Tentative time step : 0.12553714 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 6.861612717370e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.834167056638e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 2.25011 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.909923239869e-10 |Div|_2 = 6.288988749242e-10 Momentum: |mRes|_2 = 1.834156274770e-07 -------------------------------------------------------------------------- Actual time step : 0.13809 [Myr] -------------------------------------------------------------------------- Advection Passive tracers ... Currently active tracers : 10000 done (0.0016049 sec) -------------------------------------------------------------------------- Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 1.1292e-02 s -------------------------------------------------------------------------- Saving output ... done (0.309748 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 36.2199 (sec) -------------------------------------------------------------------------- Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 1e+06 [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+09 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 5. [Myr] Maximum number of steps : 200 Time step : 0.01 [Myr] Minimum time step : 1e-05 [Myr] Maximum time step : 0.1 [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 5 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [32, 1, 32] Number of cells : 1024 Number of faces : 4160 Maximum cell aspect ratio : 1.56250 Lower coordinate bounds [bx, by, bz] : [-50., -1., -50.] Upper coordinate bounds [ex, ey, ez] : [50., 1., 20.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- Air (dens) : rho = 50. [kg/m^3] (diff) : eta = 1e+19 [Pa*s] Bd = 5e-20 [1/Pa/s] (plast) : ch = 1e+07 [Pa] Phase ID : 1 -- crust (dens) : rho = 2700. [kg/m^3] (diff) : eta = 1e+21 [Pa*s] Bd = 5e-22 [1/Pa/s] (plast) : ch = 3e+07 [Pa] fr = 20. [deg] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Free surface parameters: Sticky air phase ID : 0 Initial surface level : 10. [km] Erosion model : prescribed rate with given level Sedimentation model : none Correct marker phases @ Maximum surface slope : 40. [deg] -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Warning: True pressure-dependent rheology requires open top boundary (Vd, Vn, Vp, fr, Kb, beta, p_litho_visc, p_litho_plast, open_top_bound) Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.00710246 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ Accumulated Plastic Strain (APS) @ Plastic dissipation @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 7.723483539004e+02 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 2.044419511759e-05 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0314719 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.665657274183e-08 |Div|_2 = 2.922396668616e-07 Momentum: |mRes|_2 = 2.044210630007e-05 -------------------------------------------------------------------------- Saving output ... done (0.110362 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.01000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 3.809392698503e-04 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.209198080500e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.0183481 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.485380468909e-19 |Div|_2 = 2.610774057723e-18 Momentum: |mRes|_2 = 1.209198080497e-12 -------------------------------------------------------------------------- Actual time step : 0.01100 [Myr] -------------------------------------------------------------------------- Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Topography is (9.989000e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.5851e-03 s -------------------------------------------------------------------------- Saving output ... done (0.00186558 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.01100000 [Myr] Tentative time step : 0.01100000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 5.229010285717e-01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 9.618275184872e-05 1 MMFD ||F||/||F0||=1.839406e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 9.977113317220e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0568643 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.106003428440e-18 |Div|_2 = 2.530575493835e-17 Momentum: |mRes|_2 = 9.977113314011e-13 -------------------------------------------------------------------------- Actual time step : 0.01210 [Myr] -------------------------------------------------------------------------- Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Topography is (9.976900e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.5004e-03 s -------------------------------------------------------------------------- ================================= STEP 3 ================================= -------------------------------------------------------------------------- Current time : 0.02310000 [Myr] Tentative time step : 0.01210000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 5.751911314281e-01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 1.087086476696e-04 1 MMFD ||F||/||F0||=1.889957e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 1.174776370256e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.052765 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.965874144306e-18 |Div|_2 = 4.774415117514e-17 Momentum: |mRes|_2 = 1.174776369285e-12 -------------------------------------------------------------------------- Actual time step : 0.01331 [Myr] -------------------------------------------------------------------------- Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Topography is (9.963590e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.3780e-03 s -------------------------------------------------------------------------- ================================= STEP 4 ================================= -------------------------------------------------------------------------- Current time : 0.03641000 [Myr] Tentative time step : 0.01331000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 6.327102445719e-01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 1.230969872585e-04 1 MMFD ||F||/||F0||=1.945551e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 1.347004042197e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0513849 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 7.671259518952e-18 |Div|_2 = 9.237541222720e-17 Momentum: |mRes|_2 = 1.347004039029e-12 -------------------------------------------------------------------------- Actual time step : 0.01464 [Myr] -------------------------------------------------------------------------- Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Topography is (9.948949e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.3938e-03 s -------------------------------------------------------------------------- ================================= STEP 5 ================================= -------------------------------------------------------------------------- Current time : 0.05105100 [Myr] Tentative time step : 0.01464100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 6.959812690284e-01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 1.396618351418e-04 1 MMFD ||F||/||F0||=2.006690e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 1.125681170034e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0533164 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.504713014691e-17 |Div|_2 = 1.814743317160e-16 Momentum: |mRes|_2 = 1.125681155406e-12 -------------------------------------------------------------------------- Actual time step : 0.01611 [Myr] -------------------------------------------------------------------------- Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Topography is (9.932844e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.3249e-03 s -------------------------------------------------------------------------- Saving output ... done (0.00173134 sec) -------------------------------------------------------------------------- ================================= STEP 6 ================================= -------------------------------------------------------------------------- Current time : 0.06715610 [Myr] Tentative time step : 0.01610510 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 7.655793959319e-01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 1.587754245416e-04 1 MMFD ||F||/||F0||=2.073925e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 1.307184343930e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0525781 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.915926802349e-17 |Div|_2 = 3.520350671003e-16 Momentum: |mRes|_2 = 1.307184296528e-12 -------------------------------------------------------------------------- Actual time step : 0.01772 [Myr] -------------------------------------------------------------------------- Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Topography is (9.915128e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.3812e-03 s -------------------------------------------------------------------------- ================================= STEP 7 ================================= -------------------------------------------------------------------------- Current time : 0.08487171 [Myr] Tentative time step : 0.01771561 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 8.421373355243e-01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 1.808795627172e-04 1 MMFD ||F||/||F0||=2.147863e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 1.681011930406e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0520707 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.540429922264e-17 |Div|_2 = 6.695337031823e-16 Momentum: |mRes|_2 = 1.681011797071e-12 -------------------------------------------------------------------------- Actual time step : 0.01949 [Myr] -------------------------------------------------------------------------- Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Topography is (9.895641e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.3399e-03 s -------------------------------------------------------------------------- ================================= STEP 8 ================================= -------------------------------------------------------------------------- Current time : 0.10435888 [Myr] Tentative time step : 0.01948717 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 9.263510690762e-01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 2.064993488760e-04 1 MMFD ||F||/||F0||=2.229169e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 1.660761859668e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0522908 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.041714638395e-16 |Div|_2 = 1.259538725506e-15 Momentum: |mRes|_2 = 1.660761382045e-12 -------------------------------------------------------------------------- Actual time step : 0.02144 [Myr] -------------------------------------------------------------------------- Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Topography is (9.874205e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.2798e-03 s -------------------------------------------------------------------------- ================================= STEP 9 ================================= -------------------------------------------------------------------------- Current time : 0.12579477 [Myr] Tentative time step : 0.02143589 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.018986175984e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 2.362596651556e-04 1 MMFD ||F||/||F0||=2.318576e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 2.471588870227e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0512585 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.899823167557e-16 |Div|_2 = 2.296727611458e-15 Momentum: |mRes|_2 = 2.471587803108e-12 -------------------------------------------------------------------------- Actual time step : 0.02358 [Myr] -------------------------------------------------------------------------- Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Topography is (9.850626e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.3700e-03 s -------------------------------------------------------------------------- ================================ STEP 10 ================================= -------------------------------------------------------------------------- Current time : 0.14937425 [Myr] Tentative time step : 0.02357948 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.120884793581e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 2.709050160747e-04 1 MMFD ||F||/||F0||=2.416885e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 3.413636250060e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0529572 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.426265766610e-16 |Div|_2 = 4.145093000790e-15 Momentum: |mRes|_2 = 3.413633733418e-12 -------------------------------------------------------------------------- Actual time step : 0.02594 [Myr] -------------------------------------------------------------------------- Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Topography is (9.824688e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.2835e-03 s -------------------------------------------------------------------------- Saving output ... done (0.00157224 sec) -------------------------------------------------------------------------- ================================ STEP 11 ================================= -------------------------------------------------------------------------- Current time : 0.17531167 [Myr] Tentative time step : 0.02593742 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.232973272938e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 3.113234044373e-04 1 MMFD ||F||/||F0||=2.524981e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 5.208251607646e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0508402 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.735618433125e-16 |Div|_2 = 6.941483390532e-15 Momentum: |mRes|_2 = 5.208246981889e-12 -------------------------------------------------------------------------- Actual time step : 0.02853 [Myr] -------------------------------------------------------------------------- Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Topography is (9.796157e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.5154e-03 s -------------------------------------------------------------------------- ================================ STEP 12 ================================= -------------------------------------------------------------------------- Current time : 0.20384284 [Myr] Tentative time step : 0.02853117 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.356270600229e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 3.585750619506e-04 1 MMFD ||F||/||F0||=2.643831e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 6.382959387562e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0491178 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.087307455303e-16 |Div|_2 = 1.100274615325e-14 Momentum: |mRes|_2 = 6.382949904460e-12 -------------------------------------------------------------------------- Actual time step : 0.03138 [Myr] -------------------------------------------------------------------------- Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Topography is (9.764773e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.3685e-03 s -------------------------------------------------------------------------- ================================ STEP 13 ================================= -------------------------------------------------------------------------- Current time : 0.23522712 [Myr] Tentative time step : 0.03138428 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.491897660250e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 4.139270279614e-04 1 MMFD ||F||/||F0||=2.774500e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 1.038902931149e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0505767 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.321659345050e-15 |Div|_2 = 1.601180421862e-14 Momentum: |mRes|_2 = 1.038901697260e-11 -------------------------------------------------------------------------- Actual time step : 0.03452 [Myr] -------------------------------------------------------------------------- Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Topography is (9.730250e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.3339e-03 s -------------------------------------------------------------------------- ================================ STEP 14 ================================= -------------------------------------------------------------------------- Current time : 0.26974983 [Myr] Tentative time step : 0.03452271 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.641087426269e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 4.788947890598e-04 1 MMFD ||F||/||F0||=2.918155e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 1.457299471065e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0501765 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.826932711242e-15 |Div|_2 = 2.215562796320e-14 Momentum: |mRes|_2 = 1.457297786881e-11 -------------------------------------------------------------------------- Actual time step : 0.03797 [Myr] -------------------------------------------------------------------------- Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Topography is (9.692275e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.5373e-03 s -------------------------------------------------------------------------- ================================ STEP 15 ================================= -------------------------------------------------------------------------- Current time : 0.30772482 [Myr] Tentative time step : 0.03797498 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.805196168890e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 5.552923876926e-04 1 MMFD ||F||/||F0||=3.076078e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 2.089240770849e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0530196 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.391024199466e-15 |Div|_2 = 2.903913833897e-14 Momentum: |mRes|_2 = 2.089238752718e-11 -------------------------------------------------------------------------- Actual time step : 0.04177 [Myr] -------------------------------------------------------------------------- Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Topography is (9.650503e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.2932e-03 s -------------------------------------------------------------------------- Saving output ... done (0.0017949 sec) -------------------------------------------------------------------------- ================================ STEP 16 ================================= -------------------------------------------------------------------------- Current time : 0.34949730 [Myr] Tentative time step : 0.04177248 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.985715785771e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 6.452927474471e-04 1 MMFD ||F||/||F0||=3.249673e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 2.646141355986e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0530566 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.027553307377e-15 |Div|_2 = 3.684464791845e-14 Momentum: |mRes|_2 = 2.646138790876e-11 -------------------------------------------------------------------------- Actual time step : 0.04595 [Myr] -------------------------------------------------------------------------- Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Topography is (9.604553e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.7714e-03 s -------------------------------------------------------------------------- ================================ STEP 17 ================================= -------------------------------------------------------------------------- Current time : 0.39544703 [Myr] Tentative time step : 0.04594973 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 2.184287364342e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.042008758968e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.025113 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.159686802134e-11 |Div|_2 = 1.416861861430e-10 Momentum: |mRes|_2 = 1.042007795685e-07 -------------------------------------------------------------------------- Actual time step : 0.05054 [Myr] -------------------------------------------------------------------------- Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Topography is (9.554008e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.6086e-03 s -------------------------------------------------------------------------- ================================ STEP 18 ================================= -------------------------------------------------------------------------- Current time : 0.44599173 [Myr] Tentative time step : 0.05054470 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 2.402716281729e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.222841764006e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0250414 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.307374084935e-11 |Div|_2 = 1.606482985943e-10 Momentum: |mRes|_2 = 1.222840708764e-07 -------------------------------------------------------------------------- Actual time step : 0.05560 [Myr] -------------------------------------------------------------------------- Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Topography is (9.498409e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.5188e-03 s -------------------------------------------------------------------------- ================================ STEP 19 ================================= -------------------------------------------------------------------------- Current time : 0.50159090 [Myr] Tentative time step : 0.05559917 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 2.642987926428e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.438762895191e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.024736 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.485872710160e-11 |Div|_2 = 1.843391403960e-10 Momentum: |mRes|_2 = 1.438761714283e-07 -------------------------------------------------------------------------- Actual time step : 0.06116 [Myr] -------------------------------------------------------------------------- Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Topography is (9.437250e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.3269e-03 s -------------------------------------------------------------------------- ================================ STEP 20 ================================= -------------------------------------------------------------------------- Current time : 0.56274999 [Myr] Tentative time step : 0.06115909 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 2.907286739208e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.697200907176e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0244876 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.710192460912e-11 |Div|_2 = 2.156977501078e-10 Momentum: |mRes|_2 = 1.697199536521e-07 -------------------------------------------------------------------------- Actual time step : 0.06727 [Myr] -------------------------------------------------------------------------- Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Topography is (9.369975e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.2914e-03 s -------------------------------------------------------------------------- Saving output ... done (0.00169215 sec) -------------------------------------------------------------------------- ================================ STEP 21 ================================= -------------------------------------------------------------------------- Current time : 0.63002499 [Myr] Tentative time step : 0.06727500 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.781428747096e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.050784625324e-06 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0242666 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.664640152121e-09 |Div|_2 = 1.093781914946e-08 Momentum: |mRes|_2 = 1.050727696851e-06 -------------------------------------------------------------------------- Actual time step : 0.07400 [Myr] -------------------------------------------------------------------------- Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Topography is (9.295972e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.5017e-03 s -------------------------------------------------------------------------- ================================ STEP 22 ================================= -------------------------------------------------------------------------- Current time : 0.70402749 [Myr] Tentative time step : 0.07400250 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.118812267826e-06 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 1.146263029870e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.0248345 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.478746703889e-17 |Div|_2 = 2.548273633243e-16 Momentum: |mRes|_2 = 1.146263001544e-12 -------------------------------------------------------------------------- Actual time step : 0.08140 [Myr] -------------------------------------------------------------------------- Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Topography is (9.214570e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.7197e-03 s -------------------------------------------------------------------------- ================================ STEP 23 ================================= -------------------------------------------------------------------------- Current time : 0.78543024 [Myr] Tentative time step : 0.08140275 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.153144382778e-12 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 8.601044868401e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.0251929 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.135796236018e-22 |Div|_2 = 1.978952008566e-21 Momentum: |mRes|_2 = 8.601044868401e-13 -------------------------------------------------------------------------- Actual time step : 0.08954 [Myr] -------------------------------------------------------------------------- Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Topography is (9.125027e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.7853e-03 s -------------------------------------------------------------------------- ================================ STEP 24 ================================= -------------------------------------------------------------------------- Current time : 0.87497327 [Myr] Tentative time step : 0.08954302 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 8.604242310196e-13 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 4.451661956456e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.0263774 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.560947770423e-22 |Div|_2 = 1.695574618895e-21 Momentum: |mRes|_2 = 4.451661956456e-13 -------------------------------------------------------------------------- Actual time step : 0.09850 [Myr] -------------------------------------------------------------------------- Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Topography is (9.026529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.6450e-03 s -------------------------------------------------------------------------- ================================ STEP 25 ================================= -------------------------------------------------------------------------- Current time : 0.97347059 [Myr] Tentative time step : 0.09849733 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.709916298010e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.338396206144e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0261327 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 6.277649275580e-12 |Div|_2 = 8.773360011349e-11 Momentum: |mRes|_2 = 1.338395918591e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Topography is (8.926529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.2323e-03 s -------------------------------------------------------------------------- Saving output ... done (0.00177404 sec) -------------------------------------------------------------------------- ================================ STEP 26 ================================= -------------------------------------------------------------------------- Current time : 1.07347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753645952931e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.781918574516e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0249356 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.752367471857e-11 |Div|_2 = 2.446177696723e-10 Momentum: |mRes|_2 = 3.781917783411e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Topography is (8.826529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.3931e-03 s -------------------------------------------------------------------------- ================================ STEP 27 ================================= -------------------------------------------------------------------------- Current time : 1.17347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753646381147e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.799010254716e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0246175 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.760199479003e-11 |Div|_2 = 2.453278199359e-10 Momentum: |mRes|_2 = 3.799009462592e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Topography is (8.726529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.4280e-03 s -------------------------------------------------------------------------- ================================ STEP 28 ================================= -------------------------------------------------------------------------- Current time : 1.27347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753646384492e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.816034505082e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0243619 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.768853451477e-11 |Div|_2 = 2.461384966648e-10 Momentum: |mRes|_2 = 3.816033711272e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Topography is (8.626529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.3447e-03 s -------------------------------------------------------------------------- ================================ STEP 29 ================================= -------------------------------------------------------------------------- Current time : 1.37347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753646387818e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.832970080513e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0243241 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.778461137486e-11 |Div|_2 = 2.470702480035e-10 Momentum: |mRes|_2 = 3.832969284215e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Topography is (8.526529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.3913e-03 s -------------------------------------------------------------------------- ================================ STEP 30 ================================= -------------------------------------------------------------------------- Current time : 1.47347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753646391118e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.849760706200e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0239667 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.789177811042e-11 |Div|_2 = 2.481483333904e-10 Momentum: |mRes|_2 = 3.849759906441e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Topography is (8.426529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.3631e-03 s -------------------------------------------------------------------------- Saving output ... done (0.00186641 sec) -------------------------------------------------------------------------- ================================ STEP 31 ================================= -------------------------------------------------------------------------- Current time : 1.57347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753646394381e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.866318488220e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0246921 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.801181146024e-11 |Div|_2 = 2.494034676313e-10 Momentum: |mRes|_2 = 3.866317683810e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Topography is (8.326529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.3882e-03 s -------------------------------------------------------------------------- ================================ STEP 32 ================================= -------------------------------------------------------------------------- Current time : 1.67347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753646397590e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.882406034520e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.024272 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.814644682539e-11 |Div|_2 = 2.508694167270e-10 Momentum: |mRes|_2 = 3.882405223998e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Topography is (8.226529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.5738e-03 s -------------------------------------------------------------------------- ================================ STEP 33 ================================= -------------------------------------------------------------------------- Current time : 1.77347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753646400699e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.897328079317e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0277562 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.829601885453e-11 |Div|_2 = 2.525662374189e-10 Momentum: |mRes|_2 = 3.897327260939e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Topography is (8.126529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.8582e-03 s -------------------------------------------------------------------------- ================================ STEP 34 ================================= -------------------------------------------------------------------------- Current time : 1.87347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753646403581e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 2.779605390357e-03 1 MMFD ||F||/||F0||=5.847312e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 2.229319231234e-10 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0573508 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.052362225222e-14 |Div|_2 = 1.450711934548e-13 Momentum: |mRes|_2 = 2.229318759214e-10 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Topography is (8.026529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.9020e-03 s -------------------------------------------------------------------------- ================================ STEP 35 ================================= -------------------------------------------------------------------------- Current time : 1.97347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753645713906e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 2.777742187518e-03 1 MMFD ||F||/||F0||=5.843393e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 2.001542723060e-10 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0571496 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.523258872170e-15 |Div|_2 = 1.311732683584e-13 Momentum: |mRes|_2 = 2.001542293231e-10 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Topography is (7.926529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.3505e-03 s -------------------------------------------------------------------------- Saving output ... done (0.00190707 sec) -------------------------------------------------------------------------- ================================ STEP 36 ================================= -------------------------------------------------------------------------- Current time : 2.07347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753645713940e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 2.775872877187e-03 1 MMFD ||F||/||F0||=5.839461e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 8.327003402355e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0504763 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.993300016091e-15 |Div|_2 = 5.498732934956e-14 Momentum: |mRes|_2 = 8.327001586812e-11 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Topography is (7.826529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.3560e-03 s -------------------------------------------------------------------------- ================================ STEP 37 ================================= -------------------------------------------------------------------------- Current time : 2.17347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753645714142e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 2.773995158696e-03 1 MMFD ||F||/||F0||=5.835511e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 2.184743676913e-10 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0553141 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.060580968327e-14 |Div|_2 = 1.461303044317e-13 Momentum: |mRes|_2 = 2.184743188204e-10 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Topography is (7.726529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.2013e-03 s -------------------------------------------------------------------------- ================================ STEP 38 ================================= -------------------------------------------------------------------------- Current time : 2.27347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753645713901e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 2.772106269743e-03 1 MMFD ||F||/||F0||=5.831537e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 2.293125691195e-10 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0494986 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.125213085394e-14 |Div|_2 = 1.553553835346e-13 Momentum: |mRes|_2 = 2.293125164942e-10 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Topography is (7.626529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.4764e-03 s -------------------------------------------------------------------------- ================================ STEP 39 ================================= -------------------------------------------------------------------------- Current time : 2.37347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753645713881e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.996319201238e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.024849 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.011135874350e-11 |Div|_2 = 2.789791632282e-10 Momentum: |mRes|_2 = 3.996318227475e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Topography is (7.526529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.2501e-03 s -------------------------------------------------------------------------- ================================ STEP 40 ================================= -------------------------------------------------------------------------- Current time : 2.47347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753646421677e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 4.012779424187e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.024361 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.073117564038e-11 |Div|_2 = 2.900013525055e-10 Momentum: |mRes|_2 = 4.012778376275e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Topography is (7.426529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.5900e-03 s -------------------------------------------------------------------------- Saving output ... done (0.00183718 sec) -------------------------------------------------------------------------- ================================ STEP 41 ================================= -------------------------------------------------------------------------- Current time : 2.57347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753646424379e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 4.027752948412e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0240143 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.156004347902e-11 |Div|_2 = 3.060754751755e-10 Momentum: |mRes|_2 = 4.027751785453e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Topography is (7.326529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.4906e-03 s -------------------------------------------------------------------------- ================================ STEP 42 ================================= -------------------------------------------------------------------------- Current time : 2.67347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753646426605e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 4.041129534540e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0257523 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.287405394040e-11 |Div|_2 = 3.310230089513e-10 Momentum: |mRes|_2 = 4.041128178778e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Topography is (7.226529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.5069e-03 s -------------------------------------------------------------------------- ================================ STEP 43 ================================= -------------------------------------------------------------------------- Current time : 2.77347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 2.146410356177e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.660951497075e-06 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0255477 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.779608991371e-09 |Div|_2 = 1.761752849615e-08 Momentum: |mRes|_2 = 1.660858060860e-06 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Topography is (7.126529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.6822e-03 s -------------------------------------------------------------------------- ================================ STEP 44 ================================= -------------------------------------------------------------------------- Current time : 2.87347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.660951497075e-06 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 1.154715729653e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.0259103 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.020362617650e-17 |Div|_2 = 2.101221482559e-16 Momentum: |mRes|_2 = 1.154715710535e-12 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Topography is (7.026529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.9617e-03 s -------------------------------------------------------------------------- ================================ STEP 45 ================================= -------------------------------------------------------------------------- Current time : 2.97347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.154715729653e-12 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 8.191306532451e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.0247779 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.091853943780e-22 |Div|_2 = 1.155808607186e-21 Momentum: |mRes|_2 = 8.191306532451e-13 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Topography is (6.926529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.4928e-03 s -------------------------------------------------------------------------- Saving output ... done (0.00244691 sec) -------------------------------------------------------------------------- ================================ STEP 46 ================================= -------------------------------------------------------------------------- Current time : 3.07347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 8.191306532451e-13 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 6.654227741969e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.0299719 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.856487381537e-22 |Div|_2 = 8.159376455297e-22 Momentum: |mRes|_2 = 6.654227741969e-13 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Topography is (6.826529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.2885e-03 s -------------------------------------------------------------------------- ================================ STEP 47 ================================= -------------------------------------------------------------------------- Current time : 3.17347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 2.304128348389e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.787338954473e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0245634 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 6.856300489121e-12 |Div|_2 = 1.072497280841e-10 Momentum: |mRes|_2 = 1.787338632696e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Topography is (6.726529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.7187e-03 s -------------------------------------------------------------------------- ================================ STEP 48 ================================= -------------------------------------------------------------------------- Current time : 3.27347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753646028400e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.704094833242e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0242113 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.420427538865e-11 |Div|_2 = 2.217972035582e-10 Momentum: |mRes|_2 = 3.704094169194e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Topography is (6.626529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.4803e-03 s -------------------------------------------------------------------------- ================================ STEP 49 ================================= -------------------------------------------------------------------------- Current time : 3.37347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753646365517e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.720684514644e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0252154 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.426926909722e-11 |Div|_2 = 2.224044479942e-10 Momentum: |mRes|_2 = 3.720683849931e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Topography is (6.526529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.4234e-03 s -------------------------------------------------------------------------- ================================ STEP 50 ================================= -------------------------------------------------------------------------- Current time : 3.47347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753646368757e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.737208116143e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0255154 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.434113192014e-11 |Div|_2 = 2.231042122100e-10 Momentum: |mRes|_2 = 3.737207450198e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Topography is (6.426529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.4139e-03 s -------------------------------------------------------------------------- Saving output ... done (0.00214475 sec) -------------------------------------------------------------------------- ================================ STEP 51 ================================= -------------------------------------------------------------------------- Current time : 3.57347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753646371980e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.753635155572e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0250638 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.442096650568e-11 |Div|_2 = 2.239160826161e-10 Momentum: |mRes|_2 = 3.753634487707e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Topography is (6.326529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 3.0189e-03 s -------------------------------------------------------------------------- ================================ STEP 52 ================================= -------------------------------------------------------------------------- Current time : 3.67347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753646375179e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.769919376748e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0256658 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.451007773577e-11 |Div|_2 = 2.248645248253e-10 Momentum: |mRes|_2 = 3.769918706123e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Topography is (6.226529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.5418e-03 s -------------------------------------------------------------------------- ================================ STEP 53 ================================= -------------------------------------------------------------------------- Current time : 3.77347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753646378343e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.785954056354e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0253683 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.460993778788e-11 |Div|_2 = 2.259792377330e-10 Momentum: |mRes|_2 = 3.785953381932e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Topography is (6.126529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.4084e-03 s -------------------------------------------------------------------------- ================================ STEP 54 ================================= -------------------------------------------------------------------------- Current time : 3.87347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753646381461e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.801487307231e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0244272 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.472195765881e-11 |Div|_2 = 2.272930607804e-10 Momentum: |mRes|_2 = 3.801486627732e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Topography is (6.026529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.4217e-03 s -------------------------------------------------------------------------- ================================ STEP 55 ================================= -------------------------------------------------------------------------- Current time : 3.97347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753646384469e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.815725808667e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0238828 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.484610738506e-11 |Div|_2 = 2.288229768708e-10 Momentum: |mRes|_2 = 3.815725122560e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Topography is (5.926529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.8824e-03 s -------------------------------------------------------------------------- Saving output ... done (0.00176768 sec) -------------------------------------------------------------------------- ================================ STEP 56 ================================= -------------------------------------------------------------------------- Current time : 4.07347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753646387226e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 2.719936983167e-03 1 MMFD ||F||/||F0||=5.721791e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 2.142994758026e-10 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0530338 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 8.317874901047e-15 |Div|_2 = 1.279986496914e-13 Momentum: |mRes|_2 = 2.142994375766e-10 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Topography is (5.826529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.8984e-03 s -------------------------------------------------------------------------- ================================ STEP 57 ================================= -------------------------------------------------------------------------- Current time : 4.17347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753645713935e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 2.718042249778e-03 1 MMFD ||F||/||F0||=5.717806e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 1.818328005585e-10 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0549861 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 7.169963263737e-15 |Div|_2 = 1.102410135407e-13 Momentum: |mRes|_2 = 1.818327671402e-10 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Topography is (5.726529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.4193e-03 s -------------------------------------------------------------------------- ================================ STEP 58 ================================= -------------------------------------------------------------------------- Current time : 4.27347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753645713988e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 2.716139023080e-03 1 MMFD ||F||/||F0||=5.713802e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 1.221401147640e-10 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0543496 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.873431897677e-15 |Div|_2 = 7.491440606076e-14 Momentum: |mRes|_2 = 1.221400917897e-10 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Topography is (5.626529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.7058e-03 s -------------------------------------------------------------------------- ================================ STEP 59 ================================= -------------------------------------------------------------------------- Current time : 4.37347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753645714094e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 2.714224254207e-03 1 MMFD ||F||/||F0||=5.709774e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 2.115709291257e-10 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.053989 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 8.499438908467e-15 |Div|_2 = 1.307709304836e-13 Momentum: |mRes|_2 = 2.115708887112e-10 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Topography is (5.526529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.3140e-03 s -------------------------------------------------------------------------- ================================ STEP 60 ================================= -------------------------------------------------------------------------- Current time : 4.47347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753645713938e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 2.712294046634e-03 1 MMFD ||F||/||F0||=5.705713e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 2.179275419417e-10 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.0523174 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 8.965591925027e-15 |Div|_2 = 1.383193329735e-13 Momentum: |mRes|_2 = 2.179274980458e-10 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Topography is (5.426529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.4267e-03 s -------------------------------------------------------------------------- Saving output ... done (0.00184295 sec) -------------------------------------------------------------------------- ================================ STEP 61 ================================= -------------------------------------------------------------------------- Current time : 4.57347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753645713929e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.912242449556e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0267451 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.637546409289e-11 |Div|_2 = 2.541534955932e-10 Momentum: |mRes|_2 = 3.912241624019e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Topography is (5.326529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.4559e-03 s -------------------------------------------------------------------------- ================================ STEP 62 ================================= -------------------------------------------------------------------------- Current time : 4.67347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753646404883e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.928039517890e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0261064 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.690148879384e-11 |Div|_2 = 2.651056760597e-10 Momentum: |mRes|_2 = 3.928038623283e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Topography is (5.226529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.8529e-03 s -------------------------------------------------------------------------- ================================ STEP 63 ================================= -------------------------------------------------------------------------- Current time : 4.77347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753646407464e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.942408222348e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0270755 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.760976527127e-11 |Div|_2 = 2.813412810938e-10 Momentum: |mRes|_2 = 3.942407218483e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Topography is (5.126529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.3758e-03 s -------------------------------------------------------------------------- ================================ STEP 64 ================================= -------------------------------------------------------------------------- Current time : 4.87347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.753646409577e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 3.955151780512e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0260655 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.351626185769e-11 |Div|_2 = 3.069681871490e-10 Momentum: |mRes|_2 = 3.955150589287e-07 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Topography is (5.026529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.4632e-03 s -------------------------------------------------------------------------- ================================ STEP 65 ================================= -------------------------------------------------------------------------- Current time : 4.97347059 [Myr] Tentative time step : 0.10000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 2.086989155971e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 1.575818368951e-06 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.0253878 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.722037044873e-09 |Div|_2 = 1.694959120056e-08 Momentum: |mRes|_2 = 1.575727210935e-06 -------------------------------------------------------------------------- Actual time step : 0.10000 [Myr] -------------------------------------------------------------------------- Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Topography is (4.926529e+00 [km]). Applying erosion at constant rate (0.100000 [cm/yr]) to internal free surface. Applying erosion at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 2.4479e-03 s -------------------------------------------------------------------------- Saving output ... done (0.00181021 sec) -------------------------------------------------------------------------- =========================== SOLUTION IS DONE! ============================ -------------------------------------------------------------------------- Total solution time : 7.72009 (sec) -------------------------------------------------------------------------- Saved file: Model3D.vts Writing LaMEM marker file -> ./markers/mdb.00000000.dat cores_compute = 1 -------------------------------------------------------------------------- Lithosphere and Mantle Evolution Model Compiled: Date: Jan 1 1970 - Time: 00:00:00 Version : 2.1.4 -------------------------------------------------------------------------- STAGGERED-GRID FINITE DIFFERENCE CANONICAL IMPLEMENTATION -------------------------------------------------------------------------- Parsing input file : output.dat Finished parsing input file -------------------------------------------------------------------------- Scaling parameters: Temperature : 1000. [C/K] Length : 1e+06 [m] Viscosity : 1e+20 [Pa*s] Stress : 1e+09 [Pa] -------------------------------------------------------------------------- Time stepping parameters: Simulation end time : 5. [Myr] Maximum number of steps : 200 Time step : 0.01 [Myr] Minimum time step : 1e-05 [Myr] Maximum time step : 0.1 [Myr] Time step increase factor : 0.1 CFL criterion : 0.5 CFLMAX (fixed time steps) : 0.8 Output every [n] steps : 5 Output [n] initial steps : 1 Save restart every [n] steps : 100 -------------------------------------------------------------------------- Grid parameters: Total number of cpu : 1 Processor grid [nx, ny, nz] : [1, 1, 1] Fine grid cells [nx, ny, nz] : [50, 1, 50] Number of cells : 2500 Number of faces : 10100 Maximum cell aspect ratio : 1.00000 Lower coordinate bounds [bx, by, bz] : [-50., -1., -50.] Upper coordinate bounds [ex, ey, ez] : [50., 1., 50.] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Material parameters: -------------------------------------------------------------------------- Phase ID : 0 -- Air (dens) : rho = 50. [kg/m^3] (diff) : eta = 1e+19 [Pa*s] Bd = 5e-20 [1/Pa/s] (plast) : ch = 1e+07 [Pa] Phase ID : 1 -- crust (dens) : rho = 2700. [kg/m^3] (diff) : eta = 1e+21 [Pa*s] Bd = 5e-22 [1/Pa/s] (plast) : ch = 3e+07 [Pa] fr = 20. [deg] -------------------------------------------------------------------------- -------------------------------------------------------------------------- Free surface parameters: Sticky air phase ID : 0 Initial surface level : -25. [km] Erosion model : none Sedimentation model : prescribed rate with given level Number of sediment layers : 1 Correct marker phases @ Maximum surface slope : 40. [deg] -------------------------------------------------------------------------- Boundary condition parameters: No-slip boundary mask [lt rt ft bk bm tp] : 0 0 0 0 0 0 Top boundary temperature : 0. [C] Bottom boundary temperature : 1300. [C] -------------------------------------------------------------------------- Warning: True pressure-dependent rheology requires open top boundary (Vd, Vn, Vp, fr, Kb, beta, p_litho_visc, p_litho_plast, open_top_bound) Solution parameters & controls: Gravity [gx, gy, gz] : [0., 0., -9.81] [m/s^2] Surface stabilization (FSSA) : 1. Compute initial guess @ Use lithostatic pressure for creep @ Enforce zero average pressure on top @ Limit pressure at first iteration @ Reference viscosity (initial guess) : 1e+20 [Pa*s] Max. melt fraction (viscosity, density) : 1. Rheology iteration number : 25 Rheology iteration tolerance : 1e-06 Ground water level type : none -------------------------------------------------------------------------- Advection parameters: Advection scheme : Runge-Kutta 2-nd order Periodic marker advection : 0 0 0 Marker setup scheme : binary files (MATLAB) Velocity interpolation scheme : STAG (linear) Marker control type : subgrid Markers per cell [nx, ny, nz] : [3, 3, 3] Marker distribution type : random noise -------------------------------------------------------------------------- Loading markers in parallel from file(s) <./markers/mdb> ... done (0.0176542 sec) -------------------------------------------------------------------------- Output parameters: Output file name : output Write .pvd file : yes Phase @ Density @ Total effective viscosity @ Creep effective viscosity @ Velocity @ Pressure @ Temperature @ Deviatoric stress second invariant @ Deviatoric strain rate second invariant @ Accumulated Plastic Strain (APS) @ Plastic dissipation @ -------------------------------------------------------------------------- Preconditioner parameters: Matrix type : monolithic Penalty parameter (pgamma) : 1.000000e+04 Preconditioner type : user-defined -------------------------------------------------------------------------- Solver parameters specified: Outermost Krylov solver : gmres Solver type : serial direct/lu Solver package : petsc -------------------------------------------------------------------------- ============================== INITIAL GUESS ============================= -------------------------------------------------------------------------- 0 SNES Function norm 6.393044702118e+02 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 2.413649416428e-05 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 1 SNES solution time : 0.119467 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.200897975778e-08 |Div|_2 = 1.660173010745e-07 Momentum: |mRes|_2 = 2.413592320169e-05 -------------------------------------------------------------------------- Saving output ... done (0.00381664 sec) -------------------------------------------------------------------------- ================================= STEP 1 ================================= -------------------------------------------------------------------------- Current time : 0.00000000 [Myr] Tentative time step : 0.01000000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 2.737185888950e-04 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 7.909405401951e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.0766011 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.941791100812e-20 |Div|_2 = 2.648466724691e-19 Momentum: |mRes|_2 = 7.909405401950e-13 -------------------------------------------------------------------------- Actual time step : 0.01100 [Myr] -------------------------------------------------------------------------- Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation to internal free surface. Phase that is currently being sedimented is 1 Applying sedimentation at constant rate (0.500000 [cm/yr]) to internal free surface. Applying sedimentation at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 7.2696e-03 s -------------------------------------------------------------------------- Saving output ... done (0.00300439 sec) -------------------------------------------------------------------------- ================================= STEP 2 ================================= -------------------------------------------------------------------------- Current time : 0.01100000 [Myr] Tentative time step : 0.01100000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 3.574518750000e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 5.570749594412e-04 1 MMFD ||F||/||F0||=1.558461e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 8.105712740231e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.157036 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.628519439703e-19 |Div|_2 = 4.784081921007e-18 Momentum: |mRes|_2 = 8.105712740090e-13 -------------------------------------------------------------------------- Actual time step : 0.01210 [Myr] -------------------------------------------------------------------------- Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation to internal free surface. Phase that is currently being sedimented is 1 Applying sedimentation at constant rate (0.500000 [cm/yr]) to internal free surface. Applying sedimentation at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 6.8804e-03 s -------------------------------------------------------------------------- ================================= STEP 3 ================================= -------------------------------------------------------------------------- Current time : 0.02310000 [Myr] Tentative time step : 0.01210000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 3.931970625000e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 6.217537768742e-04 1 MMFD ||F||/||F0||=1.581278e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 9.815103006560e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.165915 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 6.893071014070e-19 |Div|_2 = 2.019858400112e-17 Momentum: |mRes|_2 = 9.815103004482e-13 -------------------------------------------------------------------------- Actual time step : 0.01331 [Myr] -------------------------------------------------------------------------- Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation to internal free surface. Phase that is currently being sedimented is 1 Applying sedimentation at constant rate (0.500000 [cm/yr]) to internal free surface. Applying sedimentation at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 7.0567e-03 s -------------------------------------------------------------------------- ================================= STEP 4 ================================= -------------------------------------------------------------------------- Current time : 0.03641000 [Myr] Tentative time step : 0.01331000 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.325167687500e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 6.948114520452e-04 1 MMFD ||F||/||F0||=1.606438e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 1.474618623561e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.15273 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 2.280279642912e-18 |Div|_2 = 6.657390196669e-17 Momentum: |mRes|_2 = 1.474618622058e-12 -------------------------------------------------------------------------- Actual time step : 0.01464 [Myr] -------------------------------------------------------------------------- Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation to internal free surface. Phase that is currently being sedimented is 1 Applying sedimentation at constant rate (0.500000 [cm/yr]) to internal free surface. Applying sedimentation at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 7.4246e-03 s -------------------------------------------------------------------------- ================================= STEP 5 ================================= -------------------------------------------------------------------------- Current time : 0.05105100 [Myr] Tentative time step : 0.01464100 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 4.757684456250e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 7.774960333450e-04 1 MMFD ||F||/||F0||=1.634190e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 1.229873759688e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.155128 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 6.782738974948e-18 |Div|_2 = 1.972891308420e-16 Momentum: |mRes|_2 = 1.229873743864e-12 -------------------------------------------------------------------------- Actual time step : 0.01611 [Myr] -------------------------------------------------------------------------- Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation to internal free surface. Phase that is currently being sedimented is 1 Applying sedimentation at constant rate (0.500000 [cm/yr]) to internal free surface. Applying sedimentation at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 6.7788e-03 s -------------------------------------------------------------------------- Saving output ... done (0.00301519 sec) -------------------------------------------------------------------------- ================================= STEP 6 ================================= -------------------------------------------------------------------------- Current time : 0.06715610 [Myr] Tentative time step : 0.01610510 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 5.233452901875e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 8.712694273999e-04 1 MMFD ||F||/||F0||=1.664808e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 1.980090592368e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.168186 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.736094906320e-17 |Div|_2 = 5.030690098929e-16 Momentum: |mRes|_2 = 1.980090528462e-12 -------------------------------------------------------------------------- Actual time step : 0.01772 [Myr] -------------------------------------------------------------------------- Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation to internal free surface. Phase that is currently being sedimented is 1 Applying sedimentation at constant rate (0.500000 [cm/yr]) to internal free surface. Applying sedimentation at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 8.1887e-03 s -------------------------------------------------------------------------- ================================= STEP 7 ================================= -------------------------------------------------------------------------- Current time : 0.08487171 [Myr] Tentative time step : 0.01771561 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 5.756798192062e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 9.778484495800e-04 1 MMFD ||F||/||F0||=1.698598e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 3.077044639322e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.174309 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.224430373049e-17 |Div|_2 = 1.219593113430e-15 Momentum: |mRes|_2 = 3.077044397628e-12 -------------------------------------------------------------------------- Actual time step : 0.01949 [Myr] -------------------------------------------------------------------------- Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation to internal free surface. Phase that is currently being sedimented is 1 Applying sedimentation at constant rate (0.500000 [cm/yr]) to internal free surface. Applying sedimentation at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 7.9386e-03 s -------------------------------------------------------------------------- ================================= STEP 8 ================================= -------------------------------------------------------------------------- Current time : 0.10435888 [Myr] Tentative time step : 0.01948717 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 6.332478011267e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 1.099254429716e-03 1 MMFD ||F||/||F0||=1.735899e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 5.802078258043e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.156398 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 9.377977893964e-17 |Div|_2 = 2.697889144902e-15 Momentum: |mRes|_2 = 5.802077630802e-12 -------------------------------------------------------------------------- Actual time step : 0.02144 [Myr] -------------------------------------------------------------------------- Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation to internal free surface. Phase that is currently being sedimented is 1 Applying sedimentation at constant rate (0.500000 [cm/yr]) to internal free surface. Applying sedimentation at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 8.4130e-03 s -------------------------------------------------------------------------- ================================= STEP 9 ================================= -------------------------------------------------------------------------- Current time : 0.12579477 [Myr] Tentative time step : 0.02143589 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 6.965725812390e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 1.237873265152e-03 1 MMFD ||F||/||F0||=1.777092e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 9.703045482016e-12 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.156505 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.887771382971e-16 |Div|_2 = 5.412451633288e-15 Momentum: |mRes|_2 = 9.703043972458e-12 -------------------------------------------------------------------------- Actual time step : 0.02358 [Myr] -------------------------------------------------------------------------- Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation to internal free surface. Phase that is currently being sedimented is 1 Applying sedimentation at constant rate (0.500000 [cm/yr]) to internal free surface. Applying sedimentation at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 6.9278e-03 s -------------------------------------------------------------------------- ================================ STEP 10 ================================= -------------------------------------------------------------------------- Current time : 0.14937425 [Myr] Tentative time step : 0.02357948 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 7.662298393624e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 1.396528263531e-03 1 MMFD ||F||/||F0||=1.822597e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 1.630020986564e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.147578 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 3.358031128665e-16 |Div|_2 = 9.597041729495e-15 Momentum: |mRes|_2 = 1.630020704043e-11 -------------------------------------------------------------------------- Actual time step : 0.02594 [Myr] -------------------------------------------------------------------------- Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation to internal free surface. Phase that is currently being sedimented is 1 Applying sedimentation at constant rate (0.500000 [cm/yr]) to internal free surface. Applying sedimentation at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 6.8987e-03 s -------------------------------------------------------------------------- Saving output ... done (0.00293265 sec) -------------------------------------------------------------------------- ================================ STEP 11 ================================= -------------------------------------------------------------------------- Current time : 0.17531167 [Myr] Tentative time step : 0.02593742 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 8.428528232978e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 1.578568656468e-03 1 MMFD ||F||/||F0||=1.872888e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 2 SNES Function norm 2.119068779225e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 2 SNES solution time : 0.217934 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.542541590545e-12 |Div|_2 = 1.294400678386e-10 Momentum: |mRes|_2 = 2.119068383893e-07 -------------------------------------------------------------------------- Actual time step : 0.02853 [Myr] -------------------------------------------------------------------------- Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation to internal free surface. Phase that is currently being sedimented is 1 Applying sedimentation at constant rate (0.500000 [cm/yr]) to internal free surface. Applying sedimentation at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 7.3161e-03 s -------------------------------------------------------------------------- ================================ STEP 12 ================================= -------------------------------------------------------------------------- Current time : 0.20384284 [Myr] Tentative time step : 0.02853117 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 8.022627154999e+00 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 1.546978365004e-03 1 MMFD ||F||/||F0||=1.928269e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 2 SNES Function norm 2.077873730058e-07 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < rtol*||F_initial|| Number of iterations : 2 SNES solution time : 0.143329 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 4.333885978226e-12 |Div|_2 = 1.231809114418e-10 Momentum: |mRes|_2 = 2.077873364937e-07 -------------------------------------------------------------------------- Actual time step : 0.03138 [Myr] -------------------------------------------------------------------------- Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation to internal free surface. Phase that is currently being sedimented is 1 Applying sedimentation at constant rate (0.500000 [cm/yr]) to internal free surface. Applying sedimentation at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 6.7517e-03 s -------------------------------------------------------------------------- ================================ STEP 13 ================================= -------------------------------------------------------------------------- Current time : 0.23522712 [Myr] Tentative time step : 0.03138428 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 2.141077963088e-07 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm 5.648011532687e-13 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 1 SNES solution time : 0.0751878 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.365915719871e-22 |Div|_2 = 1.519183996506e-20 Momentum: |mRes|_2 = 5.648011532687e-13 -------------------------------------------------------------------------- Actual time step : 0.03452 [Myr] -------------------------------------------------------------------------- Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation to internal free surface. Phase that is currently being sedimented is 1 Applying sedimentation at constant rate (0.500000 [cm/yr]) to internal free surface. Applying sedimentation at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 6.8679e-03 s -------------------------------------------------------------------------- ================================ STEP 14 ================================= -------------------------------------------------------------------------- Current time : 0.26974983 [Myr] Tentative time step : 0.03452271 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 2.266564449274e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 4.726128155180e-03 1 MMFD ||F||/||F0||=2.085151e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 8.767999874851e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.163149 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 5.585712124086e-15 |Div|_2 = 6.322437502279e-14 Momentum: |mRes|_2 = 8.767997595356e-11 -------------------------------------------------------------------------- Actual time step : 0.03797 [Myr] -------------------------------------------------------------------------- Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation to internal free surface. Phase that is currently being sedimented is 1 Applying sedimentation at constant rate (0.500000 [cm/yr]) to internal free surface. Applying sedimentation at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 7.0090e-03 s -------------------------------------------------------------------------- ================================ STEP 15 ================================= -------------------------------------------------------------------------- Current time : 0.30772482 [Myr] Tentative time step : 0.03797498 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.234020818581e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 2.670207904565e-03 1 MMFD ||F||/||F0||=2.163827e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 4.664100652677e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.1595 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 1.840782074414e-15 |Div|_2 = 2.857548674357e-14 Momentum: |mRes|_2 = 4.664099777311e-11 -------------------------------------------------------------------------- Actual time step : 0.04177 [Myr] -------------------------------------------------------------------------- Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation model (1) to internal free surface. Applying sedimentation to internal free surface. Phase that is currently being sedimented is 1 Applying sedimentation at constant rate (0.500000 [cm/yr]) to internal free surface. Applying sedimentation at constant level (0.000000e+00 [km]) to internal free surface. Performing marker control (subgrid algorithm) Marker control [0]: (subgrid) cloned 0 markers and merged 0 markers in 6.8819e-03 s -------------------------------------------------------------------------- Saving output ... done (0.00328378 sec) -------------------------------------------------------------------------- ================================ STEP 16 ================================= -------------------------------------------------------------------------- Current time : 0.34949730 [Myr] Tentative time step : 0.04177248 [Myr] -------------------------------------------------------------------------- 0 SNES Function norm 1.357422900445e+01 0 PICARD ||F||/||F0||=1.000000e+00 Linear js_ solve converged due to CONVERGED_RTOL iterations 1 1 SNES Function norm 3.055187726179e-03 1 MMFD ||F||/||F0||=2.250727e-04 Linear js_ solve converged due to CONVERGED_RTOL iterations 2 2 SNES Function norm 3.389775634779e-11 -------------------------------------------------------------------------- SNES Convergence Reason : ||F|| < atol Number of iterations : 2 SNES solution time : 0.158169 (sec) -------------------------------------------------------------------------- Residual summary: Continuity: |Div|_inf = 8.689190214869e-16 |Div|_2 = 1.883795804163e-14 Momentum: |mRes|_2 = 3 PkgEval terminated after 1455.75s: test log exceeded the size limit