Package evaluation of JudiLing on Julia 1.10.9 (96dc2d8c45*) started at 2025-06-06T20:46:49.261 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 5.21s ################################################################################ # Installation # Installing JudiLing... Resolving package versions... Updating `~/.julia/environments/v1.10/Project.toml` [b43a184b] + JudiLing v0.12.0 Updating `~/.julia/environments/v1.10/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 ⌅ [15f4f7f2] + AutoHashEquals v0.2.0 [fbb218c0] + BSON v0.3.9 ⌅ [6e4b80f9] + BenchmarkTools v1.5.0 [d1d4a3ce] + BitFlags v0.1.9 [336ed68f] + CSV v0.10.15 [944b1d66] + CodecZlib v0.7.8 [34da2185] + Compat v4.16.0 [f0e56b4a] + ConcurrentUtilities v2.5.0 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [124859b0] + DataDeps v0.7.13 [a93c6f00] + DataFrames v1.7.0 [2e981812] + DataLoaders v0.1.3 [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [8bb1440f] + DelimitedFiles v1.9.1 [b4f34e82] + Distances v0.10.12 [31c24e10] + Distributions v0.25.120 ⌅ [ffbed154] + DocStringExtensions v0.8.6 [c5bfea45] + Embeddings v0.4.6 [460bff9d] + ExceptionUnwrapping v0.1.11 [48062228] + FilePathsBase v0.9.24 [1a297f60] + FillArrays v1.13.0 [92fee26a] + GZip v0.6.2 ⌅ [91feb7a0] + GoogleDrive v0.1.3 [cd3eb016] + HTTP v1.10.16 [34004b35] + HypergeometricFunctions v0.3.28 [842dd82b] + InlineStrings v1.4.3 [41ab1584] + InvertedIndices v1.3.1 [92d709cd] + IrrationalConstants v0.2.4 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.0 [682c06a0] + JSON v0.21.4 [b43a184b] + JudiLing v0.12.0 [b964fa9f] + LaTeXStrings v1.4.0 ⌅ [7f8f8fb0] + LearnBase v0.3.0 [2ab3a3ac] + LogExpFunctions v0.3.29 [e6f89c97] + LoggingExtras v1.1.0 ⌃ [9920b226] + MLDataPattern v0.5.4 [66a33bbf] + MLLabelUtils v0.5.7 [dbb5928d] + MappedArrays v0.4.2 [739be429] + MbedTLS v1.1.9 [e1d29d7a] + Missings v1.2.0 [4d8831e6] + OpenSSL v1.5.0 [bac558e1] + OrderedCollections v1.8.1 [90014a1f] + PDMats v0.11.35 [d96e819e] + Parameters v0.12.3 [69de0a69] + Parsers v2.8.3 [2dfb63ee] + PooledArrays v1.4.3 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [08abe8d2] + PrettyTables v2.4.0 [92933f4c] + ProgressMeter v1.10.4 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [3cdcf5f2] + RecipesBase v1.3.4 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.8.0 [6c6a2e73] + Scratch v1.2.1 [91c51154] + SentinelArrays v1.4.8 [777ac1f9] + SimpleBufferStream v1.2.0 [a2af1166] + SortingAlgorithms v1.2.1 [276daf66] + SpecialFunctions v2.5.1 [82ae8749] + StatsAPI v1.7.1 ⌅ [2913bbd2] + StatsBase v0.33.21 [4c63d2b9] + StatsFuns v1.5.0 [892a3eda] + StringManipulation v0.4.1 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 ⌅ [b189fb0b] + ThreadPools v1.2.1 [3bb67fe8] + TranscodingStreams v0.11.3 [5c2747f8] + URIs v1.5.2 [3a884ed6] + UnPack v1.0.2 [ea10d353] + WeakRefStrings v1.4.2 [76eceee3] + WorkerUtilities v1.6.1 [458c3c95] + OpenSSL_jll v3.5.0+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [0dad84c5] + ArgTools v1.1.1 [56f22d72] + Artifacts [2a0f44e3] + Base64 [ade2ca70] + Dates [8ba89e20] + Distributed [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching [9fa8497b] + Future [b77e0a4c] + InteractiveUtils [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 [8f399da3] + Libdl [37e2e46d] + LinearAlgebra [56ddb016] + Logging [d6f4376e] + Markdown [a63ad114] + Mmap [ca575930] + NetworkOptions v1.2.0 [de0858da] + Printf [9abbd945] + Profile [9a3f8284] + Random [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization [6462fe0b] + Sockets [2f01184e] + SparseArrays v1.10.0 [10745b16] + Statistics v1.10.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [8dfed614] + Test [cf7118a7] + UUIDs [4ec0a83e] + Unicode [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.4.0+0 [e37daf67] + LibGit2_jll v1.6.4+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.2+1 [14a3606d] + MozillaCACerts_jll v2023.1.10 [4536629a] + OpenBLAS_jll v0.3.23+4 [05823500] + OpenLibm_jll v0.8.5+0 [bea87d4a] + SuiteSparse_jll v7.2.1+1 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.52.0+1 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 8.56s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 495.23s ################################################################################ # Testing # Testing JudiLing Status `/tmp/jl_mlhI4m/Project.toml` [336ed68f] CSV v0.10.15 [8f4d0f93] Conda v1.10.2 [a93c6f00] DataFrames v1.7.0 [2e981812] DataLoaders v0.1.3 [587475ba] Flux v0.16.4 [b43a184b] JudiLing v0.12.0 [438e738f] PyCall v1.96.4 [1bc83da4] SafeTestsets v0.1.0 [37e2e46d] LinearAlgebra [2f01184e] SparseArrays v1.10.0 [8dfed614] Test Status `/tmp/jl_mlhI4m/Manifest.toml` [621f4979] AbstractFFTs v1.5.0 [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.3.0 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.5.0 [a9b6321e] Atomix v1.1.1 ⌅ [15f4f7f2] AutoHashEquals v0.2.0 [fbb218c0] BSON v0.3.9 [198e06fe] BangBang v0.4.4 [9718e550] Baselet v0.1.1 ⌅ [6e4b80f9] BenchmarkTools v1.5.0 [d1d4a3ce] BitFlags v0.1.9 [336ed68f] CSV v0.10.15 [082447d4] ChainRules v1.72.4 [d360d2e6] ChainRulesCore v1.25.1 [944b1d66] CodecZlib v0.7.8 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.16.0 [a33af91c] CompositionsBase v0.1.2 [f0e56b4a] ConcurrentUtilities v2.5.0 [8f4d0f93] Conda v1.10.2 [187b0558] ConstructionBase v1.5.8 [6add18c4] ContextVariablesX v0.1.3 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [124859b0] DataDeps v0.7.13 [a93c6f00] DataFrames v1.7.0 [2e981812] DataLoaders v0.1.3 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [8bb1440f] DelimitedFiles v1.9.1 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [b4f34e82] Distances v0.10.12 [31c24e10] Distributions v0.25.120 ⌅ [ffbed154] DocStringExtensions v0.8.6 [c5bfea45] Embeddings v0.4.6 [f151be2c] EnzymeCore v0.8.11 [460bff9d] ExceptionUnwrapping v0.1.11 [cc61a311] FLoops v0.2.2 [b9860ae5] FLoopsBase v0.1.1 [48062228] FilePathsBase v0.9.24 [1a297f60] FillArrays v1.13.0 [587475ba] Flux v0.16.4 [f6369f11] ForwardDiff v1.0.1 [d9f16b24] Functors v0.5.2 [46192b85] GPUArraysCore v0.2.0 [92fee26a] GZip v0.6.2 ⌅ [91feb7a0] GoogleDrive v0.1.3 [cd3eb016] HTTP v1.10.16 [076d061b] HashArrayMappedTries v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [7869d1d1] IRTools v0.4.14 [22cec73e] InitialValues v0.3.1 [842dd82b] InlineStrings v1.4.3 [3587e190] InverseFunctions v0.1.17 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.4 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.0 [682c06a0] JSON v0.21.4 [b43a184b] JudiLing v0.12.0 [b14d175d] JuliaVariables v0.2.4 [63c18a36] KernelAbstractions v0.9.34 [b964fa9f] LaTeXStrings v1.4.0 ⌅ [7f8f8fb0] LearnBase v0.3.0 [2ab3a3ac] LogExpFunctions v0.3.29 [e6f89c97] LoggingExtras v1.1.0 [c2834f40] MLCore v1.0.0 [7e8f7934] MLDataDevices v1.10.0 ⌃ [9920b226] MLDataPattern v0.5.4 [66a33bbf] MLLabelUtils v0.5.7 [d8e11817] MLStyle v0.4.17 [f1d291b0] MLUtils v0.4.8 [1914dd2f] MacroTools v0.5.16 [dbb5928d] MappedArrays v0.4.2 [739be429] MbedTLS v1.1.9 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [872c559c] NNlib v0.9.30 [77ba4419] NaNMath v1.1.3 [71a1bf82] NameResolution v0.1.5 [0b1bfda6] OneHotArrays v0.2.10 [4d8831e6] OpenSSL v1.5.0 [3bd65402] Optimisers v0.4.6 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.35 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.3 [2dfb63ee] PooledArrays v1.4.3 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [8162dcfd] PrettyPrint v0.2.0 [08abe8d2] PrettyTables v2.4.0 [33c8b6b6] ProgressLogging v0.1.4 [92933f4c] ProgressMeter v1.10.4 [43287f4e] PtrArrays v1.3.0 [438e738f] PyCall v1.96.4 [1fd47b50] QuadGK v2.11.2 [c1ae055f] RealDot v0.1.0 [3cdcf5f2] RecipesBase v1.3.4 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.8.0 [1bc83da4] SafeTestsets v0.1.0 [7e506255] ScopedValues v1.3.0 [6c6a2e73] Scratch v1.2.1 [91c51154] SentinelArrays v1.4.8 [efcf1570] Setfield v1.1.2 [605ecd9f] ShowCases v0.1.0 [777ac1f9] SimpleBufferStream v1.2.0 [699a6c99] SimpleTraits v0.9.4 [a2af1166] SortingAlgorithms v1.2.1 [dc90abb0] SparseInverseSubset v0.1.2 [276daf66] SpecialFunctions v2.5.1 [171d559e] SplittablesBase v0.1.15 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [82ae8749] StatsAPI v1.7.1 ⌅ [2913bbd2] StatsBase v0.33.21 [4c63d2b9] StatsFuns v1.5.0 [892a3eda] StringManipulation v0.4.1 [09ab397b] StructArrays v0.7.1 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 ⌅ [b189fb0b] ThreadPools v1.2.1 [3bb67fe8] TranscodingStreams v0.11.3 [28d57a85] Transducers v0.4.84 [5c2747f8] URIs v1.5.2 [3a884ed6] UnPack v1.0.2 [013be700] UnsafeAtomics v0.3.0 [81def892] VersionParsing v1.3.0 [ea10d353] WeakRefStrings v1.4.2 [76eceee3] WorkerUtilities v1.6.1 [e88e6eb3] Zygote v0.7.8 [700de1a5] ZygoteRules v0.2.7 [458c3c95] OpenSSL_jll v3.5.0+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [0dad84c5] ArgTools v1.1.1 [56f22d72] Artifacts [2a0f44e3] Base64 [ade2ca70] Dates [8ba89e20] Distributed [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching [9fa8497b] Future [b77e0a4c] InteractiveUtils [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 [8f399da3] Libdl [37e2e46d] LinearAlgebra [56ddb016] Logging [d6f4376e] Markdown [a63ad114] Mmap [ca575930] NetworkOptions v1.2.0 [de0858da] Printf [9abbd945] Profile [9a3f8284] Random [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization [6462fe0b] Sockets [2f01184e] SparseArrays v1.10.0 [10745b16] Statistics v1.10.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [8dfed614] Test [cf7118a7] UUIDs [4ec0a83e] Unicode [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.4.0+0 [e37daf67] LibGit2_jll v1.6.4+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.2+1 [14a3606d] MozillaCACerts_jll v2023.1.10 [4536629a] OpenBLAS_jll v0.3.23+4 [05823500] OpenLibm_jll v0.8.5+0 [bea87d4a] SuiteSparse_jll v7.2.1+1 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.52.0+1 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... [ Info: Running `conda config --set pip_interop_enabled true --file /home/pkgeval/.julia/conda/3/x86_64/condarc-julia.yml` in root environment [ Info: Running `pip install -U pyndl` in root environment Collecting pyndl Downloading pyndl-1.2.3.tar.gz (38 kB) Installing build dependencies: started Installing build dependencies: finished with status 'done' Getting requirements to build wheel: started Getting requirements to build wheel: finished with status 'done' Preparing metadata (pyproject.toml): started Preparing metadata (pyproject.toml): finished with status 'done' Collecting Cython>=3.0.0 (from pyndl) Using cached cython-3.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.5 kB) Collecting netCDF4>=1.6.0 (from pyndl) Downloading netCDF4-1.7.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.8 kB) Requirement already satisfied: numpy>=1.24.1 in /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/site-packages (from pyndl) (2.2.6) Collecting pandas>=1.4.3 (from pyndl) Downloading pandas-2.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (91 kB) Collecting scipy>=1.13.0 (from pyndl) Downloading scipy-1.15.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (61 kB) Requirement already satisfied: setuptools>=69.2.0 in /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/site-packages (from pyndl) (80.1.0) Collecting toml>=0.10.2 (from pyndl) Downloading toml-0.10.2-py2.py3-none-any.whl.metadata (7.1 kB) Collecting xarray>=2022.6.0 (from pyndl) Downloading xarray-2025.4.0-py3-none-any.whl.metadata (12 kB) Collecting cftime (from netCDF4>=1.6.0->pyndl) Downloading cftime-1.6.4.post1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (8.7 kB) Requirement already satisfied: certifi in /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/site-packages (from netCDF4>=1.6.0->pyndl) (2025.4.26) Collecting python-dateutil>=2.8.2 (from pandas>=1.4.3->pyndl) Downloading python_dateutil-2.9.0.post0-py2.py3-none-any.whl.metadata (8.4 kB) Collecting pytz>=2020.1 (from pandas>=1.4.3->pyndl) Downloading pytz-2025.2-py2.py3-none-any.whl.metadata (22 kB) Collecting tzdata>=2022.7 (from pandas>=1.4.3->pyndl) Downloading tzdata-2025.2-py2.py3-none-any.whl.metadata (1.4 kB) Collecting six>=1.5 (from python-dateutil>=2.8.2->pandas>=1.4.3->pyndl) Downloading six-1.17.0-py2.py3-none-any.whl.metadata (1.7 kB) Requirement already satisfied: packaging>=23.2 in /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/site-packages (from xarray>=2022.6.0->pyndl) (25.0) Using cached cython-3.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB) Downloading netCDF4-1.7.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 9.3/9.3 MB 118.8 MB/s eta 0:00:00 Downloading pandas-2.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.0 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 12.0/12.0 MB 13.5 MB/s eta 0:00:00 Downloading python_dateutil-2.9.0.post0-py2.py3-none-any.whl (229 kB) Downloading pytz-2025.2-py2.py3-none-any.whl (509 kB) Downloading scipy-1.15.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (37.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 37.3/37.3 MB 76.2 MB/s eta 0:00:00 Downloading six-1.17.0-py2.py3-none-any.whl (11 kB) Downloading toml-0.10.2-py2.py3-none-any.whl (16 kB) Downloading tzdata-2025.2-py2.py3-none-any.whl (347 kB) Downloading xarray-2025.4.0-py3-none-any.whl (1.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.3/1.3 MB 75.8 MB/s eta 0:00:00 Downloading cftime-1.6.4.post1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.4/1.4 MB 77.8 MB/s eta 0:00:00 Building wheels for collected packages: pyndl Building wheel for pyndl (pyproject.toml): started Building wheel for pyndl (pyproject.toml): finished with status 'done' Created wheel for pyndl: filename=pyndl-1.2.3-cp312-cp312-manylinux_2_36_x86_64.whl size=406919 sha256=e44317fe677df1dfd8d16107c0ae28d018927c19273b6b0b5184bcd961823de4 Stored in directory: /home/pkgeval/.cache/pip/wheels/37/dc/89/1716df4b978655ffe855f598b4364aa2b139465240707ecdd2 Successfully built pyndl Installing collected packages: pytz, tzdata, toml, six, scipy, Cython, cftime, python-dateutil, netCDF4, pandas, xarray, pyndl Successfully installed Cython-3.1.1 cftime-1.6.4.post1 netCDF4-1.7.2 pandas-2.3.0 pyndl-1.2.3 python-dateutil-2.9.0.post0 pytz-2025.2 scipy-1.15.3 six-1.17.0 toml-0.10.2 tzdata-2025.2 xarray-2025.4.0 /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=469) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=469) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=469) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=469) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=469) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=469) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=469) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=469) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=469) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=469) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=469) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=469) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=469) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=469) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=469) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() /home/pkgeval/.julia/conda/3/x86_64/lib/python3.12/multiprocessing/popen_fork.py:66: DeprecationWarning: This process (pid=469) is multi-threaded, use of fork() may lead to deadlocks in the child. self.pid = os.fork() making adjacency matrix... Test Summary: | Pass Total Time pyndl tests | 13 13 4m17.4s Test Summary: | Pass Total Time input tests | 27 27 10.7s Test Summary: | Pass Total Time cholesky tests | 10 10 15.6s Test Summary: | Pass Total Time frequency tests | 3 3 10.1s 6×7 DataFrame Row │ Data #vo voc oco coo oo# oca │ String15 Int64 Int64 Int64 Int64 Int64 Int64 ─────┼──────────────────────────────────────────────────── 1 │ vocoo 1 1 1 1 1 0 2 │ vocaas 1 1 0 0 0 1 3 │ vocat 1 1 0 0 0 1 4 │ vocaamus 1 1 0 0 0 1 5 │ vocaatis 1 1 0 0 0 1 6 │ vocant 1 1 0 0 0 1 6×7 DataFrame Row │ Data S1 S2 S3 S4 S5 S6 │ String15 Float64 Float64 Float64 Float64 Float64 Float64 ─────┼──────────────────────────────────────────────────────────────────────── 1 │ vocoo 15.2465 -20.8614 15.5945 -9.9225 0.401251 4.89594 2 │ vocaas 20.8716 -21.4455 19.1184 -8.76425 -5.05156 10.7338 3 │ vocat 22.2822 -29.0044 9.79204 -5.54939 -1.81678 4.56271 4 │ vocaamus 16.8365 -17.9527 8.56939 -8.22765 9.02656 -0.0304184 5 │ vocaatis 19.8971 -19.9789 10.4833 -6.74136 1.33763 3.6688 6 │ vocant 19.9549 -26.7096 7.54822 -4.31259 5.78011 -3.90409 6×7 DataFrame Row │ Data #vo voc oco coo oo# oca │ String Float64 Float64 Float64 Float64 Float64 Float64 ─────┼─────────────────────────────────────────────────────────────────────────────────────── 1 │ S1 -0.0013789 -0.0013789 -0.0236124 -0.0132235 -0.0104839 0.0222335 2 │ S2 -0.0026455 -0.0026455 0.00430249 0.000297545 0.00463446 -0.00694799 3 │ S3 -0.00144289 -0.00144289 -0.0191179 -0.00532917 -0.00962582 0.017675 4 │ S4 -0.00136834 -0.00136834 0.00155156 0.00289332 0.00965301 -0.00291989 5 │ S5 -0.0029053 -0.0029053 -0.0173081 -0.00290699 0.0789402 0.0144028 6 │ S6 0.00240335 0.00240335 0.0128883 -0.00295148 0.0262302 -0.0104849 6×7 DataFrame Row │ Data #vo voc oco coo oo# oca │ String15 Float64 Float64 Float64 Float64 Float64 Float64 ─────┼────────────────────────────────────────────────────────────────────────────── 1 │ vocoo 0.988967 0.988967 0.863576 0.866626 0.870662 0.125391 2 │ vocaas 1.00248 1.00248 -0.0441335 -0.0335163 -0.0380084 1.04661 3 │ vocat 1.00099 1.00099 0.00415934 -0.0184501 0.00873488 0.996827 4 │ vocaamus 0.998959 0.998959 0.00745898 0.0163423 0.0557051 0.9915 5 │ vocaatis 1.01121 1.01121 0.0806596 0.0566645 -0.0173351 0.93055 6 │ vocant 0.995747 0.995747 0.0018249 -0.0189341 -0.0549372 0.993922 6×7 DataFrame Row │ Data S1 S2 S3 S4 S5 S6 │ String Float64 Float64 Float64 Float64 Float64 Float64 ─────┼───────────────────────────────────────────────────────────────────────── 1 │ #vo 5.72851 -7.76108 3.50812 -2.02855 -0.436928 1.589 2 │ voc 5.72851 -7.76108 3.50812 -2.02855 -0.436928 1.589 3 │ oco 1.42971 -3.03506 1.62505 -1.31801 -0.234167 0.88857 4 │ coo 0.820988 0.0194814 1.3853 -0.821628 -0.0331436 0.0733962 5 │ oo# 1.52235 -2.32403 5.54024 -3.70934 1.54308 0.754508 6 │ oca 4.29879 -4.72601 1.88307 -0.710533 -0.202761 0.70043 6×7 DataFrame Row │ Data S1 S2 S3 S4 S5 S6 │ String15 Float64 Float64 Float64 Float64 Float64 Float64 ─────┼────────────────────────────────────────────────────────────────────── 1 │ vocoo 15.2301 -20.8618 15.5668 -9.90607 0.401914 4.89447 2 │ vocaas 21.1856 -21.497 18.7376 -8.27066 -6.04744 10.5077 3 │ vocat 22.2289 -28.9307 9.79305 -5.54923 -1.80306 4.54154 4 │ vocaamus 16.8829 -18.2816 7.83294 -8.25267 8.51863 -1.95153 5 │ vocaatis 19.7887 -19.1196 10.4814 -6.73917 1.86 3.5266 6 │ vocant 20.6622 -26.5988 5.84833 -5.02826 4.97536 -3.94895 6×7 DataFrame Row │ Data #vo voc oco coo oo# oca │ String Int64 Int64 Int64 Int64 Int64 Int64 ─────┼────────────────────────────────────────────────── 1 │ #vo 0 1 0 0 0 0 2 │ voc 0 0 1 0 0 1 3 │ oco 0 0 0 1 0 0 4 │ coo 0 0 0 0 1 0 5 │ oo# 0 0 0 0 0 0 6 │ oca 0 0 0 0 0 0 6×7 DataFrame Row │ Data vocoo vocaas vocat vocaamus vocaatis vocant │ String15 Float64 Float64 Float64 Float64 Float64 Float64 ─────┼────────────────────────────────────────────────────────────────────── 1 │ vocoo 0.942801 0.383536 0.412454 0.369812 0.402581 0.36661 2 │ vocaas 0.322266 0.951594 0.523392 0.633262 0.574722 0.487659 3 │ vocat 0.380784 0.564788 0.964372 0.485519 0.462794 0.538526 4 │ vocaamus 0.292915 0.525256 0.449793 0.975419 0.493892 0.377126 5 │ vocaatis 0.325229 0.574494 0.47668 0.480103 0.948104 0.405212 6 │ vocant 0.330508 0.509389 0.522855 0.442543 0.400384 0.98746 6×7 DataFrame Row │ Data vocoo vocaas vocat vocaamus vocaatis vocant │ String15 Int64 Int64 Int64 Int64 Int64 Int64 ─────┼──────────────────────────────────────────────────────────── 1 │ vocoo 1 0 0 0 0 0 2 │ vocaas 0 1 0 0 0 0 3 │ vocat 0 0 1 0 0 0 4 │ vocaamus 0 0 0 1 0 0 5 │ vocaatis 0 0 0 0 1 0 6 │ vocant 0 0 0 0 0 1 Test Summary: | Time display tests | None 27.8s ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:556 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:556 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:556 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:556 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:556 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:556 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: You set k=1. Note that if there are duplicate vectors in the S/C matrix, it is not guaranteed that eval_SC_loose with k=1 gives the same result as eval_SC. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:728 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: You set k=1. Note that if there are duplicate vectors in the S/C matrix, it is not guaranteed that eval_SC_loose with k=1 gives the same result as eval_SC. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:728 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: You set k=1. Note that if there are duplicate vectors in the S/C matrix, it is not guaranteed that eval_SC_loose with k=1 gives the same result as eval_SC. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:728 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: You set k=1. Note that if there are duplicate vectors in the S/C matrix, it is not guaranteed that eval_SC_loose with k=1 gives the same result as eval_SC. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:728 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: You set k=1. Note that if there are duplicate vectors in the S/C matrix, it is not guaranteed that eval_SC_loose with k=1 gives the same result as eval_SC. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:728 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: You set k=1. Note that if there are duplicate vectors in the S/C matrix, it is not guaranteed that eval_SC_loose with k=1 gives the same result as eval_SC. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:728 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: You set k=1. Note that if there are duplicate vectors in the S/C matrix, it is not guaranteed that eval_SC_loose with k=1 gives the same result as eval_SC. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:728 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: You set k=1. Note that if there are duplicate vectors in the S/C matrix, it is not guaranteed that eval_SC_loose with k=1 gives the same result as eval_SC. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:728 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: eval_SC_loose: You set k=1. Note that if there are duplicate vectors in the S/C matrix, it is not guaranteed that eval_SC_loose with k=1 gives the same result as eval_SC. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:728 ┌ Warning: eval_SC_loose: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:726 ┌ Warning: accuracy_comprehension: This dataset contains homophones/homographs. Note that some of the results on the correctness of comprehended base/inflections may be misleading. See documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:88 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 Test Summary: | Pass Total Time eval tests | 150 150 33.2s Test Summary: |Time find_path tests | None 3.3s Test Summary: | Pass Total Time make_adjacency_matrix tests | 7 7 0.4s true Test Summary: | Pass Total Time make_cue_matrix tests | 21 21 4.1s true Test Summary: | Pass Total Time make_semantic_matrix tests | 72 72 5.1s Test Summary: |Time make_yt_matrix tests | None 0.0s Test Summary: | Pass Total Time output_matrix tests | 10 10 10.7s Test Summary: |Time preprocess tests | None 0.7s ┌ Warning: test_combo: test_combo is deprecated. While it will remain in the package it is no longer actively maintained. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/test_combo.jl:132 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: eval_SC: The C or S matrix contains duplicate vectors (usually because of homophones/homographs). Supplying the dataset and target column is recommended for a realistic evaluation. See the documentation of this function for more information. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/eval.jl:263 ┌ Warning: test_combo: test_combo is deprecated. While it will remain in the package it is no longer actively maintained. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/test_combo.jl:132 ┌ Warning: test_combo: test_combo is deprecated. While it will remain in the package it is no longer actively maintained. └ @ JudiLing ~/.julia/packages/JudiLing/TmEZc/src/test_combo.jl:132 Test Summary: | Time test_combo tests | None 14.1s Test Summary: | Pass Total Time wh tests | 5 5 6.3s Setting up model... ┌ Warning: No functional GPU backend found! Defaulting to CPU. │ │ 1. If no GPU is available, nothing needs to be done. Set `MLDATADEVICES_SILENCE_WARN_NO_GPU=1` to silence this warning. │ 2. If GPU is available, load the corresponding trigger package. │ a. `CUDA.jl` and `cuDNN.jl` (or just `LuxCUDA.jl`) for NVIDIA CUDA Support. │ b. `AMDGPU.jl` for AMD GPU ROCM Support. │ c. `Metal.jl` for Apple Metal GPU Support. (Experimental) │ d. `oneAPI.jl` for Intel oneAPI GPU Support. (Experimental) └ @ MLDataDevices.Internal ~/.julia/packages/MLDataDevices/gyWcF/src/internal.jl:112 model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Progress: 2%|▉ | ETA: 1:00:37 Training loss: 136.2665052702724   Progress: 68%|███████████████████████████▉ | ETA: 0:00:36 Training loss: 9.867303707987764   Progress: 97%|███████████████████████████████████████▊ | ETA: 0:00:02 Training loss: 4.787791317238355   Progress: 100%|█████████████████████████████████████████| Time: 0:01:17 Training loss: 4.482754494799172 Setting up model... model = Chain(Dense(200 => 1000, relu), Dense(1000 => 33)) Setting up data structures... Setting up optimizer... Training... ┌ Warning: Layer with Float32 parameters got Float64 input. │ The input will be converted, but any earlier layers may be very slow. │ layer = Dense(200 => 1000, relu) # 201_000 parameters │ summary(x) = "200×3 Matrix{Float64}" └ @ Flux ~/.julia/packages/Flux/9PibT/src/layers/stateless.jl:60 Progress: 2%|▉ | ETA: 0:18:21 Training loss: 7.5811825   Progress: 5%|██ | ETA: 0:07:09 Training loss: 10.196899   Progress: 11%|████▌ | ETA: 0:03:04 Training loss: 5.2658377   Progress: 17%|███████ | ETA: 0:01:51 Training loss: 2.9981523   Progress: 23%|█████████▍ | ETA: 0:01:17 Training loss: 0.49689454   Progress: 27%|███████████▏ | ETA: 0:01:02 Training loss: 0.86902696   Progress: 33%|█████████████▌ | ETA: 0:00:47 Training loss: 0.43341818   Progress: 39%|████████████████ | ETA: 0:00:36 Training loss: 0.04718313   Progress: 45%|██████████████████▌ | ETA: 0:00:29 Training loss: 0.07518856   Progress: 50%|████████████████████▌ | ETA: 0:00:23 Training loss: 0.083399534   Progress: 56%|███████████████████████ | ETA: 0:00:19 Training loss: 0.014791426   Progress: 62%|█████████████████████████▍ | ETA: 0:00:15 Training loss: 0.0053788233   Progress: 68%|███████████████████████████▉ | ETA: 0:00:11 Training loss: 0.010124475   Progress: 74%|██████████████████████████████▍ | ETA: 0:00:08 Training loss: 0.0077873045   Progress: 79%|████████████████████████████████▍ | ETA: 0:00:06 Training loss: 0.001863128   Progress: 85%|██████████████████████████████████▉ | ETA: 0:00:04 Training loss: 0.0005050049   Progress: 91%|█████████████████████████████████████▎ | ETA: 0:00:02 Training loss: 0.00042934442   Progress: 97%|███████████████████████████████████████▊ | ETA: 0:00:01 Training loss: 0.00047823263   Progress: 100%|█████████████████████████████████████████| Time: 0:00:24 Training loss: 0.00021136894 Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Progress: 2%|▉ | ETA: 0:01:37 Training loss: 136.2665052702724 Validation loss: 115.86517105004413 Validation accuracy: 0.0       Progress: 6%|██▌ | ETA: 0:00:33 Training loss: 132.4684527797079 Validation loss: 113.29363121553904 Validation accuracy: 0.0       Progress: 12%|████▉ | ETA: 0:00:16 Training loss: 124.63243619206405 Validation loss: 108.62710541167057 Validation accuracy: 0.0       Progress: 18%|███████▍ | ETA: 0:00:11 Training loss: 112.87174311991774 Validation loss: 102.53156873624178 Validation accuracy: 0.0       Progress: 24%|█████████▉ | ETA: 0:00:08 Training loss: 96.83207622425155 Validation loss: 95.01265586130752 Validation accuracy: 0.0       Progress: 30%|████████████▎ | ETA: 0:00:06 Training loss: 77.5164189566794 Validation loss: 86.82330804982135 Validation accuracy: 0.0       Progress: 36%|██████████████▊ | ETA: 0:00:05 Training loss: 57.32190033082655 Validation loss: 79.39037711557003 Validation accuracy: 0.0       Progress: 42%|█████████████████▎ | ETA: 0:00:04 Training loss: 39.36171454198027 Validation loss: 74.12727042852254 Validation accuracy: 0.0       Progress: 48%|███████████████████▋ | ETA: 0:00:03 Training loss: 26.004763411832396 Validation loss: 71.54354842648513 Validation accuracy: 0.0       Progress: 54%|██████████████████████▏ | ETA: 0:00:03 Training loss: 17.773431847257562 Validation loss: 70.61899491860629 Validation accuracy: 0.0       Progress: 60%|████████████████████████▋ | ETA: 0:00:02 Training loss: 13.26558732911634 Validation loss: 69.89658054179256 Validation accuracy: 0.0       Progress: 66%|███████████████████████████ | ETA: 0:00:02 Training loss: 10.567456292792862 Validation loss: 68.88451947536134 Validation accuracy: 0.0       Progress: 71%|█████████████████████████████▏ | ETA: 0:00:01 Training loss: 8.944534006313967 Validation loss: 68.01005601068312 Validation accuracy: 0.0       Progress: 76%|███████████████████████████████▏ | ETA: 0:00:01 Training loss: 7.70186050904711 Validation loss: 67.37432145035565 Validation accuracy: 0.0       Progress: 82%|█████████████████████████████████▋ | ETA: 0:00:01 Training loss: 6.617918412801383 Validation loss: 66.98341018660076 Validation accuracy: 0.0       Progress: 88%|████████████████████████████████████▏ | ETA: 0:00:01 Training loss: 5.8038710635679776 Validation loss: 66.82953156795053 Validation accuracy: 0.0       Progress: 98%|████████████████████████████████████████▏| ETA: 0:00:00 Training loss: 4.68441067248936 Validation loss: 66.83195878820192 Validation accuracy: 0.0       Progress: 100%|█████████████████████████████████████████| Time: 0:00:03 Training loss: 4.482754494799172 Validation loss: 66.82992221533729 Validation accuracy: 0.0 Setting up model... model = Chain(Dense(200 => 1000, relu), Dense(1000 => 33)) Setting up data structures... Setting up optimizer... Training... Progress: 2%|▉ | ETA: 0:01:42 Training loss: 7.5811825 Validation loss: 23.51899 Validation accuracy: 0.0       Progress: 12%|████▉ | ETA: 0:00:16 Training loss: 2.565964 Validation loss: 12.933725 Validation accuracy: 0.1667       Progress: 18%|███████▍ | ETA: 0:00:11 Training loss: 2.6577294 Validation loss: 11.145438 Validation accuracy: 0.1667       Progress: 22%|█████████ | ETA: 0:00:09 Training loss: 0.22706257 Validation loss: 11.18486 Validation accuracy: 0.0       Progress: 43%|█████████████████▋ | ETA: 0:00:04 Training loss: 0.18405329 Validation loss: 10.173693 Validation accuracy: 0.0       Progress: 49%|████████████████████▏ | ETA: 0:00:03 Training loss: 0.061197184 Validation loss: 9.859112 Validation accuracy: 0.3333       Progress: 59%|████████████████████████▎ | ETA: 0:00:02 Training loss: 0.0360049 Validation loss: 9.891784 Validation accuracy: 0.0       Progress: 67%|███████████████████████████▌ | ETA: 0:00:02 Training loss: 0.015207298 Validation loss: 9.792053 Validation accuracy: 0.1667       Progress: 88%|████████████████████████████████████▏ | ETA: 0:00:00 Training loss: 0.0017720652 Validation loss: 9.8058815 Validation accuracy: 0.1667       Progress: 100%|█████████████████████████████████████████| Time: 0:00:03 Training loss: 0.00021136894 Validation loss: 9.807112 Validation accuracy: 0.1667 Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Progress: 2%|▉ | ETA: 0:00:12 Training loss: 136.1213472638287 Training accuracy: 1.0     Progress: 7%|██▉ | ETA: 0:00:05 Training loss: 130.90522223800596 Training accuracy: 0.6667     Progress: 12%|████▉ | ETA: 0:00:04 Training loss: 123.66804593318746 Training accuracy: 0.6667     Progress: 16%|██████▌ | ETA: 0:00:03 Training loss: 115.82574409596637 Training accuracy: 0.6667     Progress: 21%|████████▋ | ETA: 0:00:03 Training loss: 103.21192548573232 Training accuracy: 0.6667     Progress: 26%|██████████▋ | ETA: 0:00:02 Training loss: 87.85728761675198 Training accuracy: 0.6667     Progress: 30%|████████████▎ | ETA: 0:00:02 Training loss: 74.31560057358351 Training accuracy: 0.6667     Progress: 35%|██████████████▍ | ETA: 0:00:02 Training loss: 57.1748201854465 Training accuracy: 0.6667     Progress: 40%|████████████████▍ | ETA: 0:00:02 Training loss: 41.60115899682283 Training accuracy: 0.6667     Progress: 45%|██████████████████▌ | ETA: 0:00:02 Training loss: 29.18566498670933 Training accuracy: 0.6667     Progress: 49%|████████████████████▏ | ETA: 0:00:02 Training loss: 22.05147669051846 Training accuracy: 0.6667     Progress: 54%|██████████████████████▏ | ETA: 0:00:01 Training loss: 16.313097272574446 Training accuracy: 0.6667     Progress: 58%|███████████████████████▊ | ETA: 0:00:01 Training loss: 13.477971417963358 Training accuracy: 1.0     Progress: 62%|█████████████████████████▍ | ETA: 0:00:01 Training loss: 11.477471547898434 Training accuracy: 1.0     Progress: 67%|███████████████████████████▌ | ETA: 0:00:01 Training loss: 9.579723855840518 Training accuracy: 1.0     Progress: 72%|█████████████████████████████▌ | ETA: 0:00:01 Training loss: 8.118820029624434 Training accuracy: 1.0     Progress: 77%|███████████████████████████████▋ | ETA: 0:00:01 Training loss: 7.028107372335075 Training accuracy: 1.0     Progress: 82%|█████████████████████████████████▋ | ETA: 0:00:01 Training loss: 6.214182462467888 Training accuracy: 1.0     Progress: 87%|███████████████████████████████████▋ | ETA: 0:00:00 Training loss: 5.548927267289371 Training accuracy: 1.0     Progress: 92%|█████████████████████████████████████▊ | ETA: 0:00:00 Training loss: 4.955227436456474 Training accuracy: 1.0     Progress: 97%|███████████████████████████████████████▊ | ETA: 0:00:00 Training loss: 4.408801973289663 Training accuracy: 1.0     Progress: 100%|█████████████████████████████████████████| Time: 0:00:02 Training loss: 4.102810598396507 Training accuracy: 1.0 Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Progress: 4%|█▋ | ETA: 0:00:02 Training loss: 134.49369142400806 Validation loss: 114.56899233891377 Validation accuracy: 0.0 Training accuracy: 1.0         Progress: 9%|███▊ | ETA: 0:00:02 Training loss: 128.917892696126 Validation loss: 111.23754326811604 Validation accuracy: 0.0 Training accuracy: 1.0         Progress: 14%|█████▊ | ETA: 0:00:02 Training loss: 120.98858253019013 Validation loss: 107.0512484173436 Validation accuracy: 0.0 Training accuracy: 0.6667         Progress: 19%|███████▊ | ETA: 0:00:02 Training loss: 110.16628513878496 Validation loss: 101.80345259359518 Validation accuracy: 0.0 Training accuracy: 0.6667         Progress: 23%|█████████▍ | ETA: 0:00:02 Training loss: 99.38955491372346 Validation loss: 96.86521731289909 Validation accuracy: 0.0 Training accuracy: 0.6667         Progress: 28%|███████████▌ | ETA: 0:00:02 Training loss: 83.73960330516623 Validation loss: 90.10042168858412 Validation accuracy: 0.0 Training accuracy: 0.3333         Progress: 33%|█████████████▌ | ETA: 0:00:02 Training loss: 66.81382182203734 Validation loss: 83.38330700427642 Validation accuracy: 0.0 Training accuracy: 0.3333         Progress: 38%|███████████████▋ | ETA: 0:00:01 Training loss: 50.3355786812004 Validation loss: 77.59134662440538 Validation accuracy: 0.0 Training accuracy: 0.3333         Progress: 43%|█████████████████▋ | ETA: 0:00:01 Training loss: 36.084791819678316 Validation loss: 73.4670764718591 Validation accuracy: 0.0 Training accuracy: 0.3333         Progress: 48%|███████████████████▋ | ETA: 0:00:01 Training loss: 25.314888090613085 Validation loss: 71.20043107629996 Validation accuracy: 0.0 Training accuracy: 0.6667         Progress: 53%|█████████████████████▊ | ETA: 0:00:01 Training loss: 18.269171252618744 Validation loss: 70.20489158077123 Validation accuracy: 0.0 Training accuracy: 0.6667         Progress: 58%|███████████████████████▊ | ETA: 0:00:01 Training loss: 14.091848856928761 Validation loss: 69.54265021435296 Validation accuracy: 0.0 Training accuracy: 1.0         Progress: 63%|█████████████████████████▉ | ETA: 0:00:01 Training loss: 11.494091077735341 Validation loss: 68.78285109965965 Validation accuracy: 0.0 Training accuracy: 1.0         Progress: 68%|███████████████████████████▉ | ETA: 0:00:01 Training loss: 9.627027476197219 Validation loss: 67.96395126960313 Validation accuracy: 0.0 Training accuracy: 1.0         Progress: 73%|█████████████████████████████▉ | ETA: 0:00:01 Training loss: 8.1843208328254 Validation loss: 67.24319767391658 Validation accuracy: 0.0 Training accuracy: 1.0         Progress: 78%|████████████████████████████████ | ETA: 0:00:00 Training loss: 7.094575534648743 Validation loss: 66.77968123954241 Validation accuracy: 0.0 Training accuracy: 1.0         Progress: 84%|██████████████████████████████████▌ | ETA: 0:00:00 Training loss: 6.145555867099783 Validation loss: 66.55809571607949 Validation accuracy: 0.0 Training accuracy: 1.0         Progress: 89%|████████████████████████████████████▌ | ETA: 0:00:00 Training loss: 5.511636071363488 Validation loss: 66.50833337755533 Validation accuracy: 0.0 Training accuracy: 1.0         Progress: 100%|█████████████████████████████████████████| Time: 0:00:02 Training loss: 4.313025460671513 Validation loss: 66.537312151915 Validation accuracy: 0.0 Training accuracy: 1.0 Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Progress: 2%|▉ | ETA: 0:00:06 Training loss: 136.2665052702724 Training accuracy: 1.0     Progress: 6%|██▌ | ETA: 0:00:04 Training loss: 132.4684527797079 Training accuracy: 1.0     Progress: 11%|████▌ | ETA: 0:00:03 Training loss: 126.18584994190641 Training accuracy: 1.0     Progress: 16%|██████▌ | ETA: 0:00:02 Training loss: 117.27420305866508 Training accuracy: 0.6667     Progress: 22%|█████████ | ETA: 0:00:02 Training loss: 102.61912377014526 Training accuracy: 0.6667     Progress: 28%|███████████▌ | ETA: 0:00:02 Training loss: 84.1947632063882 Training accuracy: 0.6667     Progress: 33%|█████████████▌ | ETA: 0:00:02 Training loss: 67.3383769995764 Training accuracy: 0.6667     Progress: 39%|████████████████ | ETA: 0:00:01 Training loss: 47.87754748035555 Training accuracy: 0.6667     Progress: 44%|██████████████████ | ETA: 0:00:01 Training loss: 34.329452295658875 Training accuracy: 0.6667     Progress: 49%|████████████████████▏ | ETA: 0:00:01 Training loss: 24.294027552586996 Training accuracy: 0.6667     Progress: 54%|██████████████████████▏ | ETA: 0:00:01 Training loss: 17.773431847257562 Training accuracy: 0.6667     Progress: 59%|████████████████████████▎ | ETA: 0:00:01 Training loss: 13.847665068473782 Training accuracy: 1.0     Progress: 64%|██████████████████████████▎ | ETA: 0:00:01 Training loss: 11.349522587968652 Training accuracy: 1.0     Progress: 69%|████████████████████████████▎ | ETA: 0:00:01 Training loss: 9.543733087898282 Training accuracy: 1.0     Progress: 74%|██████████████████████████████▍ | ETA: 0:00:01 Training loss: 8.157322318122155 Training accuracy: 1.0     Progress: 79%|████████████████████████████████▍ | ETA: 0:00:00 Training loss: 7.113125882242806 Training accuracy: 1.0     Progress: 84%|██████████████████████████████████▌ | ETA: 0:00:00 Training loss: 6.3262308384091765 Training accuracy: 1.0     Progress: 89%|████████████████████████████████████▌ | ETA: 0:00:00 Training loss: 5.682227675346057 Training accuracy: 1.0     Progress: 94%|██████████████████████████████████████▌ | ETA: 0:00:00 Training loss: 5.108680811532662 Training accuracy: 1.0     Progress: 99%|████████████████████████████████████████▋| ETA: 0:00:00 Training loss: 4.5827585391573 Training accuracy: 1.0     Progress: 100%|█████████████████████████████████████████| Time: 0:00:02 Training loss: 4.482754494799172 Training accuracy: 1.0 Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Progress: 3%|█▎ | ETA: 0:00:04 Training loss: 135.36709303400983 Training accuracy: 1.0     Progress: 7%|██▉ | ETA: 0:00:03 Training loss: 131.38567017181032 Training accuracy: 1.0     Progress: 11%|████▌ | ETA: 0:00:03 Training loss: 126.18584994190641 Training accuracy: 1.0     Progress: 16%|██████▌ | ETA: 0:00:03 Training loss: 117.27420305866508 Training accuracy: 0.6667     Progress: 21%|████████▋ | ETA: 0:00:02 Training loss: 105.3576064632318 Training accuracy: 0.6667     Progress: 25%|██████████▎ | ETA: 0:00:04 Training loss: 93.7922497225252 Training accuracy: 0.6667     Progress: 26%|██████████▋ | ETA: 0:00:04 Training loss: 90.66557981385432 Training accuracy: 0.6667     Progress: 27%|███████████▏ | ETA: 0:00:04 Training loss: 87.46331542853757 Training accuracy: 0.6667     Progress: 31%|████████████▊ | ETA: 0:00:04 Training loss: 74.13098245001538 Training accuracy: 0.6667     Progress: 34%|██████████████ | ETA: 0:00:03 Training loss: 63.96088977036146 Training accuracy: 0.6667     Progress: 38%|███████████████▋ | ETA: 0:00:03 Training loss: 50.93859374630417 Training accuracy: 0.6667     Progress: 43%|█████████████████▋ | ETA: 0:00:03 Training loss: 36.77646524993327 Training accuracy: 0.6667     Progress: 48%|███████████████████▋ | ETA: 0:00:02 Training loss: 26.004763411832396 Training accuracy: 0.6667     Progress: 53%|█████████████████████▊ | ETA: 0:00:02 Training loss: 18.83126268919119 Training accuracy: 0.6667     Progress: 58%|███████████████████████▊ | ETA: 0:00:02 Training loss: 14.485045419158766 Training accuracy: 1.0     Progress: 62%|█████████████████████████▍ | ETA: 0:00:02 Training loss: 12.237004811681919 Training accuracy: 1.0     Progress: 65%|██████████████████████████▋ | ETA: 0:00:02 Training loss: 10.947032814573426 Training accuracy: 1.0     Progress: 68%|███████████████████████████▉ | ETA: 0:00:01 Training loss: 9.867303707987764 Training accuracy: 1.0     Progress: 71%|█████████████████████████████▏ | ETA: 0:00:01 Training loss: 8.944534006313967 Training accuracy: 1.0     Progress: 73%|█████████████████████████████▉ | ETA: 0:00:01 Training loss: 8.405613313483148 Training accuracy: 1.0     Progress: 76%|███████████████████████████████▏ | ETA: 0:00:01 Training loss: 7.70186050904711 Training accuracy: 1.0     Progress: 79%|████████████████████████████████▍ | ETA: 0:00:01 Training loss: 7.113125882242806 Training accuracy: 1.0     Progress: 82%|█████████████████████████████████▋ | ETA: 0:00:01 Training loss: 6.617918412801383 Training accuracy: 1.0     Progress: 87%|███████████████████████████████████▋ | ETA: 0:00:01 Training loss: 5.928623288983933 Training accuracy: 1.0     Progress: 92%|█████████████████████████████████████▊ | ETA: 0:00:00 Training loss: 5.331857688099792 Training accuracy: 1.0     Progress: 97%|███████████████████████████████████████▊ | ETA: 0:00:00 Training loss: 4.787791317238355 Training accuracy: 1.0     Progress: 100%|█████████████████████████████████████████| Time: 0:00:04 Training loss: 4.482754494799172 Training accuracy: 1.0 Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Progress: 2%|▉ | ETA: 0:00:16 Training loss: 136.2665052702724 Validation loss: 115.86517105004413 Validation accuracy: 0.0       Progress: 4%|█▋ | ETA: 0:00:12 Training loss: 134.44507860186903 Validation loss: 114.61150784561661 Validation accuracy: 0.0       Progress: 6%|██▌ | ETA: 0:00:10 Training loss: 132.4684527797079 Validation loss: 113.29363121553904 Validation accuracy: 0.0       Progress: 9%|███▊ | ETA: 0:00:08 Training loss: 128.97529734102713 Validation loss: 111.1156261786436 Validation accuracy: 0.0       Progress: 12%|████▉ | ETA: 0:00:07 Training loss: 124.63243619206405 Validation loss: 108.62710541167057 Validation accuracy: 0.0       Progress: 16%|██████▌ | ETA: 0:00:06 Training loss: 117.27420305866508 Validation loss: 104.73628984640311 Validation accuracy: 0.0       Progress: 18%|███████▍ | ETA: 0:00:06 Training loss: 112.87174311991774 Validation loss: 102.53156873624178 Validation accuracy: 0.0       Progress: 19%|███████▊ | ETA: 0:00:06 Training loss: 110.48681725334359 Validation loss: 101.36780305491814 Validation accuracy: 0.0       Progress: 21%|████████▋ | ETA: 0:00:06 Training loss: 105.3576064632318 Validation loss: 98.92197601252431 Validation accuracy: 0.0       Progress: 25%|██████████▎ | ETA: 0:00:05 Training loss: 93.7922497225252 Validation loss: 93.66342961165343 Validation accuracy: 0.0       Progress: 29%|███████████▉ | ETA: 0:00:04 Training loss: 80.87493713900922 Validation loss: 88.17909633094159 Validation accuracy: 0.0       Progress: 34%|██████████████ | ETA: 0:00:04 Training loss: 63.96088977036146 Validation loss: 81.68532763010089 Validation accuracy: 0.0       Progress: 37%|███████████████▏ | ETA: 0:00:03 Training loss: 54.091555746467975 Validation loss: 78.33228520943987 Validation accuracy: 0.0       Progress: 41%|████████████████▊ | ETA: 0:00:03 Training loss: 42.07916442778076 Validation loss: 74.81446732861167 Validation accuracy: 0.0       Progress: 45%|██████████████████▌ | ETA: 0:00:03 Training loss: 32.02662253311591 Validation loss: 72.52924053385858 Validation accuracy: 0.0       Progress: 50%|████████████████████▌ | ETA: 0:00:02 Training loss: 22.727475472414458 Validation loss: 71.13403701041706 Validation accuracy: 0.0       Progress: 55%|██████████████████████▌ | ETA: 0:00:02 Training loss: 16.82038018830378 Validation loss: 70.51383878131317 Validation accuracy: 0.0       Progress: 60%|████████████████████████▋ | ETA: 0:00:02 Training loss: 13.26558732911634 Validation loss: 69.89658054179256 Validation accuracy: 0.0       Progress: 65%|██████████████████████████▋ | ETA: 0:00:01 Training loss: 10.947032814573426 Validation loss: 69.06487738219474 Validation accuracy: 0.0       Progress: 70%|████████████████████████████▊ | ETA: 0:00:01 Training loss: 9.236278321559821 Validation loss: 68.17248166695094 Validation accuracy: 0.0       Progress: 75%|██████████████████████████████▊ | ETA: 0:00:01 Training loss: 7.922924271112943 Validation loss: 67.47676382485899 Validation accuracy: 0.0       Progress: 80%|████████████████████████████████▊ | ETA: 0:00:01 Training loss: 6.93898635003974 Validation loss: 67.07832340290747 Validation accuracy: 0.0       Progress: 85%|██████████████████████████████████▉ | ETA: 0:00:01 Training loss: 6.1892119805382 Validation loss: 66.8830797519387 Validation accuracy: 0.0       Progress: 90%|████████████████████████████████████▉ | ETA: 0:00:00 Training loss: 5.56314002808457 Validation loss: 66.81656975939126 Validation accuracy: 0.0       Progress: 100%|█████████████████████████████████████████| Time: 0:00:03 Training loss: 4.482754494799172 Validation loss: 66.82992221533729 Validation accuracy: 0.0 Setting up model... model = Chain(Dense(32 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Progress: 0%|▏ | ETA: 0:00:34 Training loss: 130.30597718300876 Validation loss: 116.70842663679167 Validation accuracy: 0.0       Progress: 1%|▎ | ETA: 0:00:32 Training loss: 126.2125394293636 Validation loss: 114.35983623037835 Validation accuracy: 0.0       Progress: 1%|▌ | ETA: 0:00:26 Training loss: 117.66180645211794 Validation loss: 110.03665288008646 Validation accuracy: 0.0       Progress: 2%|▊ | ETA: 0:00:25 Training loss: 107.598461132978 Validation loss: 105.46017013971846 Validation accuracy: 0.0       Progress: 2%|█ | ETA: 0:00:26 Training loss: 94.79979257940589 Validation loss: 99.99689580793937 Validation accuracy: 0.0       Progress: 3%|█▏ | ETA: 0:00:25 Training loss: 79.69898529608318 Validation loss: 93.93433795384918 Validation accuracy: 0.0       Progress: 3%|█▍ | ETA: 0:00:24 Training loss: 60.07016535515083 Validation loss: 86.66658245625223 Validation accuracy: 0.0       Progress: 4%|█▋ | ETA: 0:00:24 Training loss: 44.342567614914444 Validation loss: 81.41768409494587 Validation accuracy: 0.0       Progress: 4%|█▊ | ETA: 0:00:26 Training loss: 35.92998707342488 Validation loss: 78.86927670139927 Validation accuracy: 0.0       Progress: 5%|█▉ | ETA: 0:00:26 Training loss: 26.486377593120366 Validation loss: 76.22183209213455 Validation accuracy: 0.0       Progress: 5%|██▏ | ETA: 0:00:25 Training loss: 17.847286042647635 Validation loss: 73.98895182199135 Validation accuracy: 0.0       Progress: 6%|██▎ | ETA: 0:00:25 Training loss: 13.242250360053214 Validation loss: 72.86819227036263 Validation accuracy: 0.0       Progress: 6%|██▍ | ETA: 0:00:25 Training loss: 10.131823264335916 Validation loss: 72.08429883922399 Validation accuracy: 0.0       Progress: 6%|██▋ | ETA: 0:00:25 Training loss: 7.96642705191731 Validation loss: 71.41018246036612 Validation accuracy: 0.0       Progress: 7%|██▉ | ETA: 0:00:24 Training loss: 5.722850213842897 Validation loss: 70.48567270023185 Validation accuracy: 0.0       Progress: 7%|███ | ETA: 0:00:24 Training loss: 4.446047781316614 Validation loss: 69.91419849393185 Validation accuracy: 0.0       Progress: 8%|███▎ | ETA: 0:00:24 Training loss: 3.544159062215111 Validation loss: 69.63045404731903 Validation accuracy: 0.0       Progress: 8%|███▌ | ETA: 0:00:24 Training loss: 2.781026749990539 Validation loss: 69.55534984776378 Validation accuracy: 0.0       Progress: 10%|████▎ | ETA: 0:00:20 Training loss: 1.4255376901443961 Validation loss: 69.80036222395323 Validation accuracy: 0.0   Setting up model... model = Chain(Dense(32 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Progress: 10%|████▏ | ETA: 0:00:01 Training loss: 121.50433915477697 Validation loss: 112.01351192135031 Validation accuracy: 0.0   Setting up model... model = Chain(Dense(32 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Setting up model... model = Chain(Dense(32 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Progress: 0%|▎ | ETA: 0:00:23 Training loss: 127.94594780431525 Validation loss: 115.32043880165149 Validation accuracy: 0.0       Progress: 1%|▎ | ETA: 0:00:42 Training loss: 126.8364142496813 Validation loss: 114.69254724031236 Validation accuracy: 0.0       Progress: 1%|▌ | ETA: 0:00:31 Training loss: 118.38799206001478 Validation loss: 110.35233759639344 Validation accuracy: 0.0       Progress: 2%|▊ | ETA: 0:00:28 Training loss: 108.4053399105727 Validation loss: 105.77266512126039 Validation accuracy: 0.0       Progress: 2%|▉ | ETA: 0:00:27 Training loss: 95.59816926047436 Validation loss: 100.27346089598593 Validation accuracy: 0.0       Progress: 3%|█▏ | ETA: 0:00:25 Training loss: 80.4147683818764 Validation loss: 94.1561931882468 Validation accuracy: 0.0       Progress: 3%|█▎ | ETA: 0:00:26 Training loss: 63.88160659503384 Validation loss: 87.97343631988694 Validation accuracy: 0.0       Progress: 4%|█▌ | ETA: 0:00:26 Training loss: 50.78506325044279 Validation loss: 83.4588274055411 Validation accuracy: 0.0       Progress: 4%|█▊ | ETA: 0:00:25 Training loss: 33.468720854142255 Validation loss: 78.16791633176959 Validation accuracy: 0.0       Progress: 5%|█▉ | ETA: 0:00:28 Training loss: 24.509766037263592 Validation loss: 75.73932106959812 Validation accuracy: 0.0       Progress: 5%|██▏ | ETA: 0:00:27 Training loss: 16.58409609912089 Validation loss: 73.72964006428799 Validation accuracy: 0.0       Progress: 6%|██▍ | ETA: 0:00:26 Training loss: 10.971926919612853 Validation loss: 72.34085615830374 Validation accuracy: 0.0       Progress: 6%|██▌ | ETA: 0:00:26 Training loss: 8.683795524335453 Validation loss: 71.65293772351781 Validation accuracy: 0.0       Progress: 7%|██▊ | ETA: 0:00:26 Training loss: 6.656698785808782 Validation loss: 70.85263178944935 Validation accuracy: 0.0       Progress: 7%|██▉ | ETA: 0:00:25 Training loss: 5.203014149162232 Validation loss: 70.19740773853468 Validation accuracy: 0.0       Progress: 8%|███▏ | ETA: 0:00:25 Training loss: 3.9978918967769657 Validation loss: 69.75639956947161 Validation accuracy: 0.0       Progress: 8%|███▍ | ETA: 0:00:24 Training loss: 3.2932993857412582 Validation loss: 69.66543208947208 Validation accuracy: 0.0   Setting up model... model = Chain(Dense(200 => 1000, relu), Dense(1000 => 33)) Setting up data structures... Setting up optimizer... Training... Progress: 4%|█▋ | ETA: 0:00:02 Training loss: 4.560597 Validation loss: 17.054298 Validation accuracy: 0.0       Progress: 14%|█████▊ | ETA: 0:00:02 Training loss: 1.1150882 Validation loss: 9.177487 Validation accuracy: 0.1667       Progress: 21%|████████▋ | ETA: 0:00:01 Training loss: 0.12699752 Validation loss: 8.74733 Validation accuracy: 0.1667       Progress: 32%|█████████████▏ | ETA: 0:00:01 Training loss: 0.05359718 Validation loss: 8.747374 Validation accuracy: 0.1667       Progress: 45%|██████████████████▌ | ETA: 0:00:01 Training loss: 0.005135334 Validation loss: 8.647752 Validation accuracy: 0.1667       Progress: 58%|███████████████████████▊ | ETA: 0:00:01 Training loss: 0.00045644012 Validation loss: 8.678925 Validation accuracy: 0.1667       Progress: 71%|█████████████████████████████▏ | ETA: 0:00:00 Training loss: 0.00026214911 Validation loss: 8.688626 Validation accuracy: 0.1667       Progress: 84%|██████████████████████████████████▌ | ETA: 0:00:00 Training loss: 0.00017187285 Validation loss: 8.69294 Validation accuracy: 0.1667       Progress: 97%|███████████████████████████████████████▊ | ETA: 0:00:00 Training loss: 0.00022659957 Validation loss: 8.68286 Validation accuracy: 0.1667       Progress: 100%|█████████████████████████████████████████| Time: 0:00:01 Training loss: 0.0001907741 Validation loss: 8.669787 Validation accuracy: 0.1667 Setting up model... model = Chain(Dense(200 => 1000, relu), Dense(1000 => 33)) Setting up data structures... Setting up optimizer... Training... Progress: 1%|▋ | ETA: 0:00:08 Training loss: 2.6269414 Validation loss: 15.354151 Validation accuracy: 0.0       Progress: 4%|█▊ | ETA: 0:00:06 Training loss: 0.3468826 Validation loss: 9.326255 Validation accuracy: 0.0       Progress: 6%|██▌ | ETA: 0:00:06 Training loss: 0.12488964 Validation loss: 8.761371 Validation accuracy: 0.3333       Progress: 8%|███▍ | ETA: 0:00:06 Training loss: 0.16834666 Validation loss: 8.756347 Validation accuracy: 0.0       Progress: 10%|████ | ETA: 0:00:06 Training loss: 0.06244321 Validation loss: 8.481704 Validation accuracy: 0.1667       Progress: 11%|████▋ | ETA: 0:00:06 Training loss: 0.013513142 Validation loss: 8.5036 Validation accuracy: 0.0       Progress: 16%|██████▍ | ETA: 0:00:05 Training loss: 0.00079214014 Validation loss: 8.456418 Validation accuracy: 0.1667       Progress: 20%|████████▎ | ETA: 0:00:04 Training loss: 0.00017902686 Validation loss: 8.453789 Validation accuracy: 0.1667       Progress: 24%|██████████ | ETA: 0:00:03 Training loss: 6.0792718e-5 Validation loss: 8.4506645 Validation accuracy: 0.1667       Progress: 28%|███████████▋ | ETA: 0:00:03 Training loss: 7.1943223e-6 Validation loss: 8.452883 Validation accuracy: 0.1667       Progress: 33%|█████████████▌ | ETA: 0:00:03 Training loss: 3.8685337e-7 Validation loss: 8.452515 Validation accuracy: 0.1667       Progress: 37%|███████████████▎ | ETA: 0:00:02 Training loss: 1.3960127e-8 Validation loss: 8.452314 Validation accuracy: 0.1667       Progress: 41%|█████████████████ | ETA: 0:00:02 Training loss: 7.035273e-9 Validation loss: 8.452298 Validation accuracy: 0.1667       Progress: 46%|██████████████████▊ | ETA: 0:00:02 Training loss: 7.1240847e-10 Validation loss: 8.452299 Validation accuracy: 0.1667       Progress: 50%|████████████████████▌ | ETA: 0:00:02 Training loss: 7.097672e-11 Validation loss: 8.452295 Validation accuracy: 0.1667       Progress: 54%|██████████████████████▏ | ETA: 0:00:02 Training loss: 3.470783e-12 Validation loss: 8.452295 Validation accuracy: 0.1667       Progress: 58%|████████████████████████ | ETA: 0:00:01 Training loss: 1.1734079e-12 Validation loss: 8.452295 Validation accuracy: 0.1667       Progress: 63%|█████████████████████████▊ | ETA: 0:00:01 Training loss: 3.3563793e-13 Validation loss: 8.452296 Validation accuracy: 0.1667       Progress: 67%|███████████████████████████▌ | ETA: 0:00:01 Training loss: 2.3237567e-13 Validation loss: 8.452295 Validation accuracy: 0.1667       Progress: 71%|█████████████████████████████▎ | ETA: 0:00:01 Training loss: 1.9273377e-13 Validation loss: 8.452296 Validation accuracy: 0.1667       Progress: 75%|██████████████████████████████▉ | ETA: 0:00:01 Training loss: 2.2299702e-13 Validation loss: 8.452295 Validation accuracy: 0.1667       Progress: 80%|████████████████████████████████▋ | ETA: 0:00:01 Training loss: 3.3090154e-13 Validation loss: 8.452295 Validation accuracy: 0.1667       Progress: 84%|██████████████████████████████████▌ | ETA: 0:00:00 Training loss: 3.0054954e-13 Validation loss: 8.452295 Validation accuracy: 0.1667       Progress: 88%|████████████████████████████████████▎ | ETA: 0:00:00 Training loss: 2.809176e-13 Validation loss: 8.452295 Validation accuracy: 0.1667       Progress: 93%|██████████████████████████████████████ | ETA: 0:00:00 Training loss: 3.9719828e-13 Validation loss: 8.452297 Validation accuracy: 0.1667       Progress: 97%|███████████████████████████████████████▊ | ETA: 0:00:00 Training loss: 2.5166246e-13 Validation loss: 8.452295 Validation accuracy: 0.1667       Progress: 100%|█████████████████████████████████████████| Time: 0:00:02 Training loss: 2.7676104e-13 Validation loss: 8.452294 Validation accuracy: 0.1667 Setting up model... model = Chain(Dense(200 => 1000, relu), Dense(1000 => 33)) Setting up data structures... Setting up optimizer... Training... Progress: 4%|█▋ | ETA: 0:00:02 Training loss: 54.025524 Validation loss: 45.068626 Validation accuracy: 0.0       Progress: 10%|████▏ | ETA: 0:00:02 Training loss: 47.286404 Validation loss: 41.713417 Validation accuracy: 0.0       Progress: 15%|██████▏ | ETA: 0:00:02 Training loss: 42.13684 Validation loss: 39.11458 Validation accuracy: 0.0       Progress: 21%|████████▋ | ETA: 0:00:02 Training loss: 36.516342 Validation loss: 36.235867 Validation accuracy: 0.0       Progress: 26%|██████████▋ | ETA: 0:00:02 Training loss: 32.27714 Validation loss: 34.040215 Validation accuracy: 0.0       Progress: 32%|█████████████▏ | ETA: 0:00:02 Training loss: 27.715899 Validation loss: 31.64441 Validation accuracy: 0.0       Progress: 38%|███████████████▋ | ETA: 0:00:01 Training loss: 23.701069 Validation loss: 29.502163 Validation accuracy: 0.0       Progress: 44%|██████████████████ | ETA: 0:00:01 Training loss: 20.198547 Validation loss: 27.596813 Validation accuracy: 0.0       Progress: 50%|████████████████████▌ | ETA: 0:00:01 Training loss: 17.161314 Validation loss: 25.912556 Validation accuracy: 0.0       Progress: 56%|███████████████████████ | ETA: 0:00:01 Training loss: 14.535844 Validation loss: 24.425785 Validation accuracy: 0.0       Progress: 61%|█████████████████████████ | ETA: 0:00:01 Training loss: 12.632589 Validation loss: 23.325317 Validation accuracy: 0.0       Progress: 67%|███████████████████████████▌ | ETA: 0:00:01 Training loss: 10.662196 Validation loss: 22.1551 Validation accuracy: 0.0       Progress: 73%|█████████████████████████████▉ | ETA: 0:00:01 Training loss: 8.987706 Validation loss: 21.132452 Validation accuracy: 0.0       Progress: 79%|████████████████████████████████▍ | ETA: 0:00:00 Training loss: 7.570599 Validation loss: 20.241508 Validation accuracy: 0.0       Progress: 85%|██████████████████████████████████▉ | ETA: 0:00:00 Training loss: 6.375654 Validation loss: 19.464432 Validation accuracy: 0.0       Progress: 91%|█████████████████████████████████████▎ | ETA: 0:00:00 Training loss: 5.3748693 Validation loss: 18.786255 Validation accuracy: 0.0       Progress: 96%|███████████████████████████████████████▍ | ETA: 0:00:00 Training loss: 4.6686864 Validation loss: 18.285307 Validation accuracy: 0.0       Progress: 100%|█████████████████████████████████████████| Time: 0:00:02 Training loss: 4.177827 Validation loss: 17.926912 Validation accuracy: 0.0 Setting up model... model = Chain(Dense(200 => 1000, relu), Dense(1000 => 33)) Setting up data structures... Setting up optimizer... Training... Progress: 8%|███▎ | ETA: 0:00:01 Training loss: 0.22502066 Validation loss: 432.53284 Validation accuracy: 0.0       Progress: 28%|███████████▌ | ETA: 0:00:01 Training loss: 0.40910915 Validation loss: 2079.6416 Validation accuracy: 0.0       Progress: 50%|████████████████████▌ | ETA: 0:00:00 Training loss: 0.44546428 Validation loss: 2529.4536 Validation accuracy: 0.0       Progress: 71%|█████████████████████████████▏ | ETA: 0:00:00 Training loss: 0.4475012 Validation loss: 2588.7903 Validation accuracy: 0.0       Progress: 93%|██████████████████████████████████████▏ | ETA: 0:00:00 Training loss: 0.44463715 Validation loss: 2596.69 Validation accuracy: 0.0       Progress: 100%|█████████████████████████████████████████| Time: 0:00:00 Training loss: 0.44346893 Validation loss: 2597.2239 Validation accuracy: 0.0 Setting up model... model = Chain(Dense(200 => 200, relu), Dense(200 => 33)) Setting up data structures... Setting up optimizer... Training... Progress: 16%|██████▌ | ETA: 0:00:01 Training loss: 3.3205967 Validation loss: 25.720486 Validation accuracy: 0.1667       Progress: 41%|████████████████▊ | ETA: 0:00:00 Training loss: 0.28152734 Validation loss: 23.526012 Validation accuracy: 0.1667       Progress: 78%|████████████████████████████████ | ETA: 0:00:00 Training loss: 0.0076413127 Validation loss: 23.434101 Validation accuracy: 0.1667       Progress: 100%|█████████████████████████████████████████| Time: 0:00:00 Training loss: 0.0005761981 Validation loss: 23.385372 Validation accuracy: 0.1667 ┌ Warning: `Flux.params(m...)` is deprecated. Use `Flux.trainable(model)` for parameter collection, │ and the explicit `gradient(m -> loss(m, x, y), model)` for gradient computation. └ @ Flux ~/.julia/packages/Flux/9PibT/src/deprecations.jl:93 Setting up model... model = Chain(Dense(200 => 500), Dense(500 => 500), Dense(500 => 33)) Setting up data structures... Setting up optimizer... Training... Progress: 2%|▉ | ETA: 0:03:03 Training loss: 299.4347 Validation loss: 91.25949 Validation accuracy: 0.1667       Progress: 4%|█▋ | ETA: 0:01:32 Training loss: 32.32986 Validation loss: 69.628555 Validation accuracy: 0.3333       Progress: 9%|███▊ | ETA: 0:00:40 Training loss: 9.262344 Validation loss: 43.417393 Validation accuracy: 0.3333       Progress: 16%|██████▌ | ETA: 0:00:22 Training loss: 1.6595192 Validation loss: 42.42592 Validation accuracy: 0.3333       Progress: 28%|███████████▌ | ETA: 0:00:11 Training loss: 2.1273224 Validation loss: 42.27439 Validation accuracy: 0.3333       Progress: 42%|█████████████████▎ | ETA: 0:00:06 Training loss: 0.78921324 Validation loss: 41.045143 Validation accuracy: 0.3333       Progress: 53%|█████████████████████▊ | ETA: 0:00:04 Training loss: 0.22962157 Validation loss: 41.321064 Validation accuracy: 0.3333       Progress: 63%|█████████████████████████▉ | ETA: 0:00:03 Training loss: 0.03263381 Validation loss: 41.121563 Validation accuracy: 0.3333       Progress: 77%|███████████████████████████████▋ | ETA: 0:00:01 Training loss: 0.017973408 Validation loss: 41.18965 Validation accuracy: 0.3333       Progress: 92%|█████████████████████████████████████▊ | ETA: 0:00:00 Training loss: 0.0038019957 Validation loss: 41.100536 Validation accuracy: 0.3333       Progress: 100%|█████████████████████████████████████████| Time: 0:00:04 Training loss: 0.0018686217 Validation loss: 41.11145 Validation accuracy: 0.3333 Setting up model... model = Chain(Dense(200 => 1000, relu), Dense(1000 => 33), σ) Setting up data structures... Setting up optimizer... Training... Progress: 2%|▉ | ETA: 0:16:24 Training loss: 0.39982933 Validation loss: 1.9041343 Validation accuracy: 0.0       Progress: 24%|█████████▉ | ETA: 0:01:04 Training loss: 0.00021143521 Validation loss: 3.9656239 Validation accuracy: 0.0       Progress: 46%|██████████████████▉ | ETA: 0:00:24 Training loss: 1.7977669e-5 Validation loss: 4.0029426 Validation accuracy: 0.0       Progress: 68%|███████████████████████████▉ | ETA: 0:00:10 Training loss: 8.4851845e-6 Validation loss: 4.016413 Validation accuracy: 0.0       Progress: 88%|████████████████████████████████████▏ | ETA: 0:00:03 Training loss: 5.7109055e-6 Validation loss: 4.024231 Validation accuracy: 0.0       Progress: 100%|█████████████████████████████████████████| Time: 0:00:20 Training loss: 4.923299e-6 Validation loss: 4.02695 Validation accuracy: 0.0 Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up data structures... Setting up optimizer... Training... Progress: 3%|█▎ | ETA: 0:00:03 Training loss: 135.33196816308538   Progress: 7%|██▉ | ETA: 0:00:03 Training loss: 131.31764822547876   Progress: 13%|█████▍ | ETA: 0:00:02 Training loss: 122.78921984408221   Progress: 19%|███████▊ | ETA: 0:00:02 Training loss: 110.2044851575516   Progress: 25%|██████████▎ | ETA: 0:00:02 Training loss: 93.40924013521067   Progress: 30%|████████████▎ | ETA: 0:00:02 Training loss: 76.98598969102862   Progress: 35%|██████████████▍ | ETA: 0:00:01 Training loss: 59.898995071958595   Progress: 41%|████████████████▊ | ETA: 0:00:01 Training loss: 41.127068541206185   Progress: 47%|███████████████████▎ | ETA: 0:00:01 Training loss: 26.84907119983161   Progress: 53%|█████████████████████▊ | ETA: 0:00:01 Training loss: 18.01171160590189   Progress: 59%|████████████████████████▎ | ETA: 0:00:01 Training loss: 13.298281799532438   Progress: 65%|██████████████████████████▋ | ETA: 0:00:01 Training loss: 10.540325130555008   Progress: 71%|█████████████████████████████▏ | ETA: 0:00:01 Training loss: 8.583882225259948   Progress: 77%|███████████████████████████████▋ | ETA: 0:00:00 Training loss: 7.167844719213046   Progress: 83%|██████████████████████████████████ | ETA: 0:00:00 Training loss: 6.173659580727615   Progress: 89%|████████████████████████████████████▌ | ETA: 0:00:00 Training loss: 5.4028674033669715   Progress: 95%|███████████████████████████████████████ | ETA: 0:00:00 Training loss: 4.726881465727874   Progress: 100%|█████████████████████████████████████████| Time: 0:00:01 Training loss: 4.211690263599279 Setting up model... model = Chain(Dense(200 => 1000, relu), Dense(1000 => 33)) Setting up data structures... Setting up optimizer... Training... Progress: 6%|██▌ | ETA: 0:00:02 Training loss: 1.4823678   Progress: 12%|████▉ | ETA: 0:00:02 Training loss: 1.4483393   Progress: 17%|███████ | ETA: 0:00:04 Training loss: 3.2049088   Progress: 23%|█████████▍ | ETA: 0:00:05 Training loss: 1.017323   Progress: 29%|███████████▉ | ETA: 0:00:04 Training loss: 0.062901184   Progress: 35%|██████████████▍ | ETA: 0:00:03 Training loss: 0.26175955   Progress: 41%|████████████████▊ | ETA: 0:00:03 Training loss: 0.23198485   Progress: 47%|███████████████████▎ | ETA: 0:00:02 Training loss: 0.054310355   Progress: 53%|█████████████████████▊ | ETA: 0:00:02 Training loss: 0.007344324   Progress: 59%|████████████████████████▎ | ETA: 0:00:01 Training loss: 0.01982338   Progress: 65%|██████████████████████████▋ | ETA: 0:00:01 Training loss: 0.019408174   Progress: 71%|█████████████████████████████▏ | ETA: 0:00:01 Training loss: 0.009110675   Progress: 77%|███████████████████████████████▋ | ETA: 0:00:01 Training loss: 0.0024544592   Progress: 83%|██████████████████████████████████ | ETA: 0:00:01 Training loss: 0.00048670341   Progress: 89%|████████████████████████████████████▌ | ETA: 0:00:00 Training loss: 0.0003716756   Progress: 95%|███████████████████████████████████████ | ETA: 0:00:00 Training loss: 0.00043942704   Progress: 100%|█████████████████████████████████████████| Time: 0:00:02 Training loss: 0.00052282447 Making fac C ========== Timestep 1 Calculating Yt... Calculating Mt... Auto mode: Sparsity: 0.0101010101010101 Returning a sparse matrix format Calculating Ythat... Sparsity: 0.030303030303030304 Finding paths... ========== Timestep 2 average 1.0 of paths currently Calculating Yt... Calculating Mt... Auto mode: Sparsity: 0.0101010101010101 Returning a sparse matrix format Calculating Ythat... Sparsity: 0.030303030303030304 Finding paths... ========== Timestep 3 average 1.0 of paths currently Calculating Yt... Calculating Mt... Auto mode: Sparsity: 0.0202020202020202 Returning a sparse matrix format Calculating Ythat... Sparsity: 0.06060606060606061 Finding paths... ========== Timestep 4 average 1.0 of paths currently Calculating Yt... Calculating Mt... Auto mode: Sparsity: 0.030303030303030304 Returning a sparse matrix format Calculating Ythat... Sparsity: 0.09090909090909091 Finding paths... ========== Timestep 5 average 1.0 of paths currently Calculating Yt... Calculating Mt... Auto mode: Sparsity: 0.030303030303030304 Returning a sparse matrix format Calculating Ythat... Sparsity: 0.09090909090909091 Finding paths... ========== Timestep 6 average 0.3333333333333333 of paths currently Calculating Yt... Calculating Mt... Auto mode: Sparsity: 0.0101010101010101 Returning a sparse matrix format Calculating Ythat... Sparsity: 0.030303030303030304 Finding paths... ========== Timestep 7 average 0.0 of paths currently Calculating Yt... Calculating Mt... Auto mode: Sparsity: 0.0 Returning a sparse matrix format Calculating Ythat... Sparsity: 0.0 Finding paths... Evaluating paths... average 1.0 of paths to evaluate Progress: 67%|███████████████████████████▍ | ETA: 0:00:00 Progress: 100%|█████████████████████████████████████████| Time: 0:00:00 Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up optimizer... Setting up data for evaluation... Setting up data loader... Training... Progress: 67%|███████████████████████████▍ | ETA: 0:00:04 Step loss: 131.14099893438816 Overall loss: 135.85572493843063 Overall accuracy: 0.3333       Progress: 100%|█████████████████████████████████████████| Time: 0:00:07 Step loss: 146.49485746489026 Overall loss: 135.1610744416433 Overall accuracy: 0.3333 Done! Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up optimizer... Setting up data for evaluation... Setting up data loader... Training... Progress: 67%|███████████████████████████▍ | ETA: 0:00:00 Step loss: 130.16812457299167 Overall loss: 134.46400128629588 Overall accuracy: 0.3333       Progress: 100%|█████████████████████████████████████████| Time: 0:00:00 Step loss: 144.39176453339 Overall loss: 132.97095160544072 Overall accuracy: 0.6667 Done! Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up optimizer... Setting up data for evaluation... Setting up data loader... Training... Progress: 42%|█████████████████▏ | ETA: 0:00:00 Step loss: 144.80990708280137 Overall loss: 133.3798196402762 Overall accuracy: 0.3333       Progress: 83%|██████████████████████████████████▏ | ETA: 0:00:00 Step loss: 139.4693479892524 Overall loss: 129.0605202619283 Overall accuracy: 0.6667       Progress: 100%|█████████████████████████████████████████| Time: 0:00:00 Step loss: 136.7197594604057 Overall loss: 126.98830851273253 Overall accuracy: 0.6667 Done! Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up optimizer... Setting up data for evaluation... Setting up data loader... Training... Progress: 56%|██████████████████████▊ | ETA: 0:00:00 Step loss: 129.1634043054313 Overall loss: 133.49724543761405 Overall accuracy: 1.0       Progress: 100%|█████████████████████████████████████████| Time: 0:00:00 Step loss: 125.3289995899268 Overall loss: 130.24475423530154 Overall accuracy: 0.3333 Done! Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up optimizer... Setting up data for evaluation... Setting up data loader... Training... Done! Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up optimizer... Setting up data for evaluation... Setting up data loader... Training... Progress: 67%|███████████████████████████▍ | ETA: 0:00:00 Step loss: 136.2665052695647 Overall loss: 135.36709303725198 Overall accuracy: 1.0       Progress: 100%|█████████████████████████████████████████| Time: 0:00:00 Step loss: 135.36709303725198 Overall loss: 134.44507860114422 Overall accuracy: 1.0 Done! Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up optimizer... Setting up data for evaluation... Setting up data loader... Training... Progress: 44%|██████████████████▎ | ETA: 0:00:00 Step loss: 130.16812457299167 Overall loss: 134.46400128629588 Overall accuracy: 0.3333       Progress: 100%|█████████████████████████████████████████| Time: 0:00:00 Step loss: 142.00239555793692 Overall loss: 130.4477443735128 Overall accuracy: 0.6667 Done! Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up optimizer... Setting up data for evaluation... Setting up data loader... Training... Progress: 44%|██████████████████▎ | ETA: 0:00:00 Step loss: 145.65858509349266 Overall loss: 134.1443622338372 Overall accuracy: 0.3333       Progress: 100%|█████████████████████████████████████████| Time: 0:00:00 Step loss: 140.70036382302956 Overall loss: 130.01272937505908 Overall accuracy: 0.6667 Done! WARNING: Method definition compute_target_corr(Any, Any, Any, Any, Any, Any, Any) in module ##deep learning tests#253 at /home/pkgeval/.julia/packages/JudiLing/TmEZc/test/deep_learning_tests.jl:619 overwritten at /home/pkgeval/.julia/packages/JudiLing/TmEZc/test/deep_learning_tests.jl:666. Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up optimizer... Setting up data for evaluation... Setting up data loader... Training... Progress: 60%|████████████████████████▋ | ETA: 0:00:00 Step loss: 137.822301324285 Overall loss: 137.14627030622287 Overall accuracy: 1.0   Done! WARNING: Method definition compute_target_corr(Any, Any, Any, Any, Any, Any, Any) in module ##deep learning tests#253 at /home/pkgeval/.julia/packages/JudiLing/TmEZc/test/deep_learning_tests.jl:666 overwritten at /home/pkgeval/.julia/packages/JudiLing/TmEZc/test/deep_learning_tests.jl:691. Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up optimizer... Setting up data for evaluation... Setting up data loader... Training... Progress: 33%|█████████████▋ | ETA: 0:00:00 Step loss: 147.07400355839548 Overall loss: 135.57267106773455 Overall accuracy: 0.6667       Progress: 89%|████████████████████████████████████▌ | ETA: 0:00:00 Step loss: 127.15713376054177 Overall loss: 131.94698821988962 Overall accuracy: 0.6667       Progress: 100%|█████████████████████████████████████████| Time: 0:00:00 Step loss: 142.87674765216178 Overall loss: 131.10236280057742 Overall accuracy: 0.6667 Done! Setting up model... model = Chain(Dense(33 => 1000, relu), Dense(1000 => 200)) Setting up optimizer... Setting up data for evaluation... Setting up data loader... Training... Done! Test Summary: | Pass Total Time deep learning tests | 96 96 6m35.2s Testing JudiLing tests passed Testing completed after 779.59s PkgEval succeeded after 1346.84s