Package evaluation of ClusteredLowRankSolver on Julia 1.10.9 (96dc2d8c45*) started at 2025-06-06T15:44:03.254 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 5.18s ################################################################################ # Installation # Installing ClusteredLowRankSolver... Resolving package versions... Updating `~/.julia/environments/v1.10/Project.toml` [cadeb640] + ClusteredLowRankSolver v1.0.15 Updating `~/.julia/environments/v1.10/Manifest.toml` ⌅ [c3fe647b] + AbstractAlgebra v0.44.13 [fb37089c] + Arblib v1.4.0 ⌅ [0a1fb500] + BlockDiagonals v0.1.42 [d360d2e6] + ChainRulesCore v1.25.1 [cadeb640] + ClusteredLowRankSolver v1.0.15 [861a8166] + Combinatorics v1.0.3 [34da2185] + Compat v4.16.0 [ffbed154] + DocStringExtensions v0.9.4 [1a297f60] + FillArrays v1.13.0 [26cc04aa] + FiniteDifferences v0.12.32 [14197337] + GenericLinearAlgebra v0.3.17 [076d061b] + HashArrayMappedTries v0.2.0 [92d709cd] + IrrationalConstants v0.2.4 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.0 [0b1a1467] + KrylovKit v0.9.5 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 ⌅ [2edaba10] + Nemo v0.48.4 [65ce6f38] + PackageExtensionCompat v1.0.2 ⌅ [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [fb686558] + RandomExtensions v0.4.4 [708f8203] + Richardson v1.4.2 [af85af4c] + RowEchelon v0.2.1 [7e506255] + ScopedValues v1.3.0 [276daf66] + SpecialFunctions v2.5.1 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [409d34a3] + VectorInterface v0.5.0 [e134572f] + FLINT_jll v300.200.201+0 ⌅ [656ef2d0] + OpenBLAS32_jll v0.3.24+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [56f22d72] + Artifacts [ade2ca70] + Dates [8f399da3] + Libdl [37e2e46d] + LinearAlgebra [56ddb016] + Logging [de0858da] + Printf [9a3f8284] + Random [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization [2f01184e] + SparseArrays v1.10.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs [4ec0a83e] + Unicode [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [781609d7] + GMP_jll v6.2.1+6 [3a97d323] + MPFR_jll v4.2.0+1 [4536629a] + OpenBLAS_jll v0.3.23+4 [05823500] + OpenLibm_jll v0.8.5+0 [bea87d4a] + SuiteSparse_jll v7.2.1+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 8.39s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 87.36s ################################################################################ # Testing # Testing ClusteredLowRankSolver Status `/tmp/jl_kYR7t6/Project.toml` ⌅ [c3fe647b] AbstractAlgebra v0.44.13 [cadeb640] ClusteredLowRankSolver v1.0.15 ⌅ [2edaba10] Nemo v0.48.4 [1fd47b50] QuadGK v2.11.2 [276daf66] SpecialFunctions v2.5.1 [9a3f8284] Random [8dfed614] Test Status `/tmp/jl_kYR7t6/Manifest.toml` ⌅ [c3fe647b] AbstractAlgebra v0.44.13 [fb37089c] Arblib v1.4.0 ⌅ [0a1fb500] BlockDiagonals v0.1.42 [d360d2e6] ChainRulesCore v1.25.1 [cadeb640] ClusteredLowRankSolver v1.0.15 [861a8166] Combinatorics v1.0.3 [34da2185] Compat v4.16.0 [864edb3b] DataStructures v0.18.22 [ffbed154] DocStringExtensions v0.9.4 [1a297f60] FillArrays v1.13.0 [26cc04aa] FiniteDifferences v0.12.32 [14197337] GenericLinearAlgebra v0.3.17 [076d061b] HashArrayMappedTries v0.2.0 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.0 [0b1a1467] KrylovKit v0.9.5 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 ⌅ [2edaba10] Nemo v0.48.4 [bac558e1] OrderedCollections v1.8.1 [65ce6f38] PackageExtensionCompat v1.0.2 ⌅ [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [1fd47b50] QuadGK v2.11.2 [fb686558] RandomExtensions v0.4.4 [708f8203] Richardson v1.4.2 [af85af4c] RowEchelon v0.2.1 [7e506255] ScopedValues v1.3.0 [276daf66] SpecialFunctions v2.5.1 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [409d34a3] VectorInterface v0.5.0 [e134572f] FLINT_jll v300.200.201+0 ⌅ [656ef2d0] OpenBLAS32_jll v0.3.24+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [56f22d72] Artifacts [2a0f44e3] Base64 [ade2ca70] Dates [b77e0a4c] InteractiveUtils [8f399da3] Libdl [37e2e46d] LinearAlgebra [56ddb016] Logging [d6f4376e] Markdown [de0858da] Printf [9a3f8284] Random [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization [2f01184e] SparseArrays v1.10.0 [fa267f1f] TOML v1.0.3 [8dfed614] Test [cf7118a7] UUIDs [4ec0a83e] Unicode [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [781609d7] GMP_jll v6.2.1+6 [3a97d323] MPFR_jll v4.2.0+1 [4536629a] OpenBLAS_jll v0.3.23+4 [05823500] OpenLibm_jll v0.8.5+0 [bea87d4a] SuiteSparse_jll v7.2.1+1 [8e850b90] libblastrampoline_jll v5.11.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 27.5 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 1.95e+10 7.42e-01 7.10e-01 3.00e-01 2 29.1 3.995e+19 1.999e+11 -2.907e+09 1.03e+00 2.58e+09 2.58e-01 5.65e+09 7.46e-01 7.17e-01 3.00e-01 3 29.1 1.576e+19 3.079e+11 -4.779e+09 1.03e+00 6.53e+08 6.53e-02 1.60e+09 7.32e-01 7.31e-01 3.00e-01 4 29.1 6.100e+18 4.277e+11 -6.725e+09 1.03e+00 1.75e+08 1.75e-02 4.31e+08 7.20e-01 7.22e-01 3.00e-01 5 29.1 2.433e+18 5.963e+11 -9.362e+09 1.03e+00 4.92e+07 4.92e-03 1.20e+08 7.11e-01 7.14e-01 3.00e-01 6 29.1 9.953e+17 8.401e+11 -1.309e+10 1.03e+00 1.42e+07 1.42e-03 3.42e+07 7.07e-01 7.10e-01 3.00e-01 7 29.1 4.128e+17 1.191e+12 -1.842e+10 1.03e+00 4.16e+06 4.16e-04 9.93e+06 7.05e-01 7.07e-01 3.00e-01 8 29.1 1.725e+17 1.693e+12 -2.598e+10 1.03e+00 1.23e+06 1.23e-04 2.91e+06 7.04e-01 7.06e-01 3.00e-01 9 29.2 7.238e+16 2.410e+12 -3.671e+10 1.03e+00 3.64e+05 3.64e-05 8.56e+05 7.03e-01 7.05e-01 3.00e-01 10 29.2 3.044e+16 3.431e+12 -5.194e+10 1.03e+00 1.08e+05 1.08e-05 2.53e+05 7.03e-01 7.04e-01 3.00e-01 11 29.2 1.281e+16 4.886e+12 -7.353e+10 1.03e+00 3.20e+04 3.20e-06 7.48e+04 7.03e-01 7.04e-01 3.00e-01 12 29.2 5.398e+15 6.956e+12 -1.042e+11 1.03e+00 9.51e+03 9.51e-07 2.21e+04 7.03e-01 7.04e-01 3.00e-01 13 29.2 2.275e+15 9.899e+12 -1.476e+11 1.03e+00 2.82e+03 2.82e-07 6.55e+03 7.03e-01 7.04e-01 3.00e-01 14 29.2 9.587e+14 1.407e+13 -2.094e+11 1.03e+00 8.38e+02 8.38e-08 1.94e+03 7.04e-01 7.05e-01 3.00e-01 15 29.2 4.036e+14 1.993e+13 -2.971e+11 1.03e+00 2.48e+02 2.48e-08 5.71e+02 7.06e-01 7.09e-01 3.00e-01 16 29.2 1.692e+14 2.789e+13 -4.222e+11 1.03e+00 7.31e+01 7.31e-09 1.66e+02 7.12e-01 7.22e-01 3.00e-01 17 29.2 7.003e+13 3.756e+13 -6.021e+11 1.03e+00 2.10e+01 2.10e-09 4.62e+01 7.31e-01 7.65e-01 3.00e-01 18 29.2 2.773e+13 4.485e+13 -8.676e+11 1.04e+00 5.66e+00 5.66e-10 1.08e+01 7.79e-01 9.17e-01 3.00e-01 19 29.2 9.540e+12 3.941e+13 -1.292e+12 1.07e+00 1.25e+00 1.25e-10 8.99e-01 9.22e-01 1.00e+00 3.00e-01 20 29.3 2.995e+12 1.720e+13 -1.811e+12 1.24e+00 9.79e-02 9.79e-12 5.10e-52 1.00e+00 1.00e+00 3.00e-01 21 29.3 8.988e+11 4.388e+12 -1.903e+12 2.53e+00 6.85e-65 1.90e-65 1.19e-51 1.00e+00 1.00e+00 3.00e-01 22 29.3 2.696e+11 1.339e+12 -5.487e+11 2.39e+00 1.46e-65 0.00e+00 3.32e-52 8.90e-01 8.90e-01 1.00e-01 23 29.3 5.361e+10 2.688e+11 -1.065e+11 2.31e+00 3.56e-66 0.00e+00 5.77e-53 8.70e-01 8.70e-01 1.00e-01 24 29.3 1.161e+10 5.819e+10 -2.310e+10 2.32e+00 7.42e-67 5.93e-67 6.52e-54 8.52e-01 8.52e-01 1.00e-01 25 29.3 2.713e+09 1.355e+10 -5.443e+09 2.34e+00 2.94e-67 5.56e-68 9.13e-55 8.36e-01 8.36e-01 1.00e-01 26 29.3 6.711e+08 3.370e+09 -1.328e+09 2.30e+00 4.17e-68 1.85e-68 1.46e-55 8.30e-01 8.30e-01 1.00e-01 27 29.3 1.696e+08 8.422e+08 -3.452e+08 2.39e+00 1.29e-68 0.00e+00 2.49e-56 8.10e-01 8.10e-01 1.00e-01 28 29.3 4.599e+07 2.340e+08 -8.791e+07 2.20e+00 3.48e-69 8.69e-70 4.73e-57 8.18e-01 8.18e-01 1.00e-01 29 29.4 1.213e+07 5.873e+07 -2.619e+07 2.61e+00 1.16e-69 7.24e-71 8.60e-58 7.63e-01 7.63e-01 1.00e-01 30 29.4 3.798e+06 2.001e+07 -6.576e+06 1.98e+00 3.62e-70 7.24e-71 2.04e-58 8.24e-01 8.24e-01 1.00e-01 31 29.4 9.800e+05 4.616e+06 -2.245e+06 2.89e+00 1.09e-70 2.26e-71 3.57e-59 7.75e-01 7.75e-01 1.00e-01 32 29.4 2.963e+05 1.559e+06 -5.151e+05 1.99e+00 3.62e-71 2.26e-72 8.04e-60 8.39e-01 8.39e-01 1.00e-01 33 29.4 7.263e+04 3.436e+05 -1.649e+05 2.85e+00 8.01e-72 1.13e-72 1.30e-60 7.97e-01 7.97e-01 1.00e-01 34 29.4 2.051e+04 1.063e+05 -3.733e+04 2.08e+00 1.68e-72 1.13e-72 2.63e-61 8.41e-01 8.41e-01 1.00e-01 35 29.4 4.988e+03 2.366e+04 -1.125e+04 2.81e+00 3.76e-73 3.89e-73 4.18e-62 8.01e-01 8.01e-01 1.00e-01 36 29.4 1.393e+03 7.141e+03 -2.612e+03 2.15e+00 5.18e-74 8.84e-74 8.33e-63 8.38e-01 8.38e-01 1.00e-01 37 29.4 3.422e+02 1.603e+03 -7.929e+02 2.96e+00 3.98e-74 2.65e-74 1.35e-63 7.97e-01 7.97e-01 1.00e-01 38 29.4 9.665e+01 4.860e+02 -1.905e+02 2.29e+00 8.84e-75 9.40e-75 2.73e-64 8.39e-01 8.39e-01 1.00e-01 39 29.4 2.366e+01 1.051e+02 -6.048e+01 3.71e+00 1.24e-75 2.14e-75 4.39e-65 8.03e-01 8.03e-01 1.00e-01 40 29.4 6.562e+00 2.998e+01 -1.595e+01 3.28e+00 4.15e-76 5.53e-76 8.66e-66 8.57e-01 8.57e-01 1.00e-01 41 29.5 1.499e+00 4.629e+00 -5.866e+00 8.49e+00 7.77e-77 1.04e-76 1.24e-66 8.75e-01 8.75e-01 1.00e-01 42 29.5 3.183e-01 -4.666e-01 -2.695e+00 7.05e-01 3.45e-77 3.45e-77 1.54e-67 9.64e-01 9.64e-01 1.00e-01 43 29.5 4.224e-02 -1.900e+00 -2.195e+00 7.22e-02 2.59e-77 2.59e-77 5.60e-69 9.83e-01 9.83e-01 1.00e-01 44 29.5 4.861e-03 -2.089e+00 -2.123e+00 8.08e-03 8.64e-78 2.59e-77 9.38e-71 9.97e-01 9.97e-01 1.00e-01 45 29.5 5.004e-04 -2.110e+00 -2.114e+00 8.29e-04 8.64e-78 2.59e-77 3.07e-73 9.99e-01 9.99e-01 1.00e-01 46 29.5 5.050e-05 -2.113e+00 -2.113e+00 8.37e-05 8.64e-78 2.59e-77 7.32e-75 1.00e+00 1.00e+00 1.00e-01 47 29.5 5.060e-06 -2.113e+00 -2.113e+00 8.38e-06 8.64e-78 4.32e-77 1.52e-75 1.00e+00 1.00e+00 1.00e-01 48 29.5 5.062e-07 -2.113e+00 -2.113e+00 8.39e-07 1.73e-77 3.45e-77 1.98e-74 1.00e+00 1.00e+00 1.00e-01 49 29.5 5.063e-08 -2.113e+00 -2.113e+00 8.39e-08 8.64e-78 3.45e-77 2.17e-74 1.00e+00 1.00e+00 1.00e-01 50 29.5 5.063e-09 -2.113e+00 -2.113e+00 8.39e-09 1.73e-77 3.45e-77 1.66e-74 1.00e+00 1.00e+00 1.00e-01 51 29.5 5.064e-10 -2.113e+00 -2.113e+00 8.39e-10 8.64e-78 1.73e-77 2.40e-74 1.00e+00 1.00e+00 1.00e-01 52 29.5 5.064e-11 -2.113e+00 -2.113e+00 8.39e-11 1.73e-77 2.59e-77 2.14e-73 1.00e+00 1.00e+00 1.00e-01 53 29.6 5.065e-12 -2.113e+00 -2.113e+00 8.39e-12 8.64e-78 2.59e-77 8.84e-74 1.00e+00 1.00e+00 1.00e-01 54 29.6 5.066e-13 -2.113e+00 -2.113e+00 8.39e-13 1.73e-77 3.45e-77 8.07e-73 1.00e+00 1.00e+00 1.00e-01 55 29.6 5.066e-14 -2.113e+00 -2.113e+00 8.39e-14 8.64e-78 2.59e-77 3.57e-73 1.00e+00 1.00e+00 1.00e-01 56 29.6 5.067e-15 -2.113e+00 -2.113e+00 8.39e-15 1.73e-77 3.45e-77 6.59e-73 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 29.618200 seconds (1.51 M allocations: 72.899 MiB, 0.46% gc time, 98.17% compilation time: <1% of which was recompilation) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:-2.112913881423601867395001699959856015811404606419575396373456802744824008707768 Dual objective:-2.112913881423605414322106478580349712657277191215988717353433235418789776294782 Duality gap:8.393449292852464718447400418095105196767784494891885112137022854077847673365019e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.2 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 2.10e+11 7.15e-01 8.46e-01 3.00e-01 2 0.4 4.213e+19 -7.841e+09 2.996e+11 1.05e+00 2.85e+09 2.85e-01 3.23e+10 7.79e-01 1.00e+00 3.00e-01 3 0.5 1.478e+19 1.359e+09 5.379e+11 9.95e-01 6.29e+08 6.29e-02 3.37e-65 8.20e-01 1.00e+00 3.00e-01 4 0.7 4.264e+18 4.397e+08 8.578e+11 9.99e-01 1.13e+08 1.13e-02 1.94e-64 8.92e-01 1.00e+00 3.00e-01 5 0.8 7.344e+17 4.931e+07 1.370e+12 1.00e+00 1.22e+07 1.22e-03 3.42e-64 8.98e-01 1.00e+00 3.00e-01 6 1.0 1.198e+17 4.867e+06 2.189e+12 1.00e+00 1.24e+06 1.24e-04 5.16e-64 8.95e-01 1.00e+00 3.00e-01 7 1.1 2.010e+16 5.242e+05 3.499e+12 1.00e+00 1.30e+05 1.30e-05 9.57e-64 8.99e-01 1.00e+00 3.00e-01 8 1.3 3.262e+15 5.203e+04 5.596e+12 1.00e+00 1.32e+04 1.32e-06 1.67e-63 8.97e-01 1.00e+00 3.00e-01 9 1.4 5.394e+14 5.483e+03 8.950e+12 1.00e+00 1.37e+03 1.37e-07 2.50e-63 8.99e-01 1.00e+00 3.00e-01 10 1.5 8.742e+13 5.525e+02 1.430e+13 1.00e+00 1.38e+02 1.38e-08 3.75e-63 8.99e-01 1.00e+00 3.00e-01 11 1.7 1.453e+13 6.378e+01 2.266e+13 1.00e+00 1.40e+01 1.40e-09 7.63e-63 8.96e-01 1.00e+00 3.00e-01 12 1.8 2.995e+12 1.385e+01 3.308e+13 1.00e+00 1.45e+00 1.45e-10 1.14e-62 8.80e-01 1.00e+00 3.00e-01 13 2.0 1.001e+12 9.125e+00 2.897e+13 1.00e+00 1.74e-01 1.74e-11 9.80e-63 8.85e-01 1.00e+00 3.00e-01 14 2.1 3.229e+11 8.728e+00 1.226e+13 1.00e+00 2.01e-02 2.01e-12 1.31e-62 8.77e-01 1.00e+00 3.00e-01 15 2.3 9.802e+10 8.791e+00 3.989e+12 1.00e+00 2.47e-03 2.47e-13 2.53e-63 1.00e+00 1.00e+00 3.00e-01 16 2.4 2.964e+10 8.979e+00 1.245e+12 1.00e+00 1.73e-77 2.59e-77 6.39e-64 1.00e+00 1.00e+00 3.00e-01 17 2.6 8.892e+09 9.036e+00 3.735e+11 1.00e+00 3.45e-77 2.59e-77 2.37e-65 9.97e-01 9.97e-01 1.00e-01 18 2.7 9.112e+08 9.041e+00 3.827e+10 1.00e+00 5.18e-77 1.73e-77 2.19e-66 1.00e+00 1.00e+00 1.00e-01 19 2.8 9.113e+07 9.046e+00 3.828e+09 1.00e+00 5.18e-77 1.73e-77 8.53e-67 1.00e+00 1.00e+00 1.00e-01 20 3.0 9.114e+06 9.050e+00 3.828e+08 1.00e+00 4.32e-77 1.73e-77 2.14e-68 1.00e+00 1.00e+00 1.00e-01 21 3.1 9.115e+05 9.054e+00 3.828e+07 1.00e+00 5.18e-77 1.73e-77 2.32e-69 1.00e+00 1.00e+00 1.00e-01 22 3.3 9.116e+04 9.058e+00 3.829e+06 1.00e+00 3.45e-77 4.32e-77 2.54e-70 1.00e+00 1.00e+00 1.00e-01 23 3.4 9.117e+03 9.061e+00 3.829e+05 1.00e+00 3.45e-77 1.73e-77 5.89e-71 1.00e+00 1.00e+00 1.00e-01 24 3.6 9.119e+02 9.064e+00 3.831e+04 1.00e+00 5.18e-77 3.45e-77 7.36e-72 1.00e+00 1.00e+00 1.00e-01 25 3.7 9.150e+01 9.069e+00 3.852e+03 9.95e-01 6.05e-77 2.59e-77 6.72e-73 9.96e-01 9.96e-01 1.00e-01 26 3.9 9.449e+00 9.090e+00 4.059e+02 9.56e-01 4.32e-77 1.73e-77 1.24e-73 9.67e-01 9.67e-01 1.00e-01 27 4.0 1.226e+00 9.266e+00 6.076e+01 7.35e-01 3.45e-77 1.73e-77 2.14e-75 8.41e-01 8.41e-01 1.00e-01 28 4.2 2.984e-01 1.028e+01 2.281e+01 3.79e-01 8.64e-77 1.73e-77 2.51e-75 7.57e-01 7.57e-01 1.00e-01 29 4.3 9.520e-02 1.184e+01 1.584e+01 1.44e-01 8.64e-77 2.59e-77 3.70e-75 5.18e-01 5.18e-01 1.00e-01 30 4.4 5.085e-02 1.263e+01 1.477e+01 7.79e-02 6.05e-77 2.59e-77 9.32e-75 6.13e-01 6.13e-01 1.00e-01 31 4.6 2.281e-02 1.280e+01 1.376e+01 3.61e-02 3.45e-77 2.59e-77 8.86e-75 8.46e-01 8.46e-01 1.00e-01 32 4.7 5.434e-03 1.307e+01 1.330e+01 8.65e-03 1.01e-76 2.59e-77 1.46e-74 8.46e-01 8.46e-01 1.00e-01 33 4.9 1.296e-03 1.314e+01 1.319e+01 2.07e-03 6.29e-77 2.59e-77 6.77e-74 8.17e-01 8.17e-01 1.00e-01 34 5.0 3.428e-04 1.315e+01 1.317e+01 5.47e-04 6.91e-77 2.59e-77 1.95e-73 8.07e-01 8.07e-01 1.00e-01 35 5.2 9.373e-05 1.316e+01 1.316e+01 1.50e-04 8.10e-77 2.59e-77 8.68e-73 7.58e-01 7.58e-01 1.00e-01 36 5.3 2.978e-05 1.316e+01 1.316e+01 4.75e-05 6.40e-77 2.59e-77 1.02e-72 8.83e-01 8.83e-01 1.00e-01 37 5.4 6.117e-06 1.316e+01 1.316e+01 9.76e-06 4.68e-77 2.59e-77 1.45e-72 8.72e-01 8.72e-01 1.00e-01 38 5.6 1.315e-06 1.316e+01 1.316e+01 2.10e-06 6.91e-77 2.59e-77 8.35e-73 9.01e-01 9.01e-01 1.00e-01 39 5.7 2.486e-07 1.316e+01 1.316e+01 3.97e-07 3.62e-77 2.59e-77 1.33e-71 9.70e-01 9.70e-01 1.00e-01 40 5.9 3.166e-08 1.316e+01 1.316e+01 5.05e-08 9.68e-77 2.59e-77 2.18e-71 9.98e-01 9.98e-01 1.00e-01 41 6.0 3.233e-09 1.316e+01 1.316e+01 5.16e-09 6.67e-77 2.59e-77 1.93e-71 9.98e-01 9.98e-01 1.00e-01 42 6.2 3.293e-10 1.316e+01 1.316e+01 5.26e-10 8.05e-77 2.59e-77 2.92e-71 1.00e+00 1.00e+00 1.00e-01 43 6.3 3.302e-11 1.316e+01 1.316e+01 5.27e-11 6.91e-77 2.59e-77 1.61e-71 1.00e+00 1.00e+00 1.00e-01 44 6.4 3.302e-12 1.316e+01 1.316e+01 5.27e-12 6.38e-77 2.59e-77 1.99e-71 1.00e+00 1.00e+00 1.00e-01 45 6.6 3.303e-13 1.316e+01 1.316e+01 5.27e-13 5.19e-77 2.59e-77 2.85e-71 1.00e+00 1.00e+00 1.00e-01 46 6.7 3.303e-14 1.316e+01 1.316e+01 5.27e-14 6.69e-77 2.59e-77 2.02e-71 1.00e+00 1.00e+00 1.00e-01 47 6.9 3.304e-15 1.316e+01 1.316e+01 5.27e-15 5.17e-77 1.73e-77 1.97e-71 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 6.887314 seconds (17.48 M allocations: 897.134 MiB, 8.35% gc time, 1.72% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:13.15831434739029878109919942493226884887741814701275677112539346157872288541885 Dual objective:13.15831434739031265724026563051884156154323334892939616976678991434265587806866 Duality gap:5.272765454549901273217538844490006577191137334433159636504370154373149698082316e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.2 1.000e+20 1.585e-02 1.585e-02 0.00e+00 1.00e+10 3.02e+20 8.43e+10 7.03e-01 7.57e-01 3.00e-01 2 0.4 4.190e+19 -2.320e+10 -2.620e+08 9.78e-01 2.97e+09 8.99e+19 2.04e+10 7.89e-01 7.78e-01 3.00e-01 3 0.6 1.306e+19 -4.643e+10 -1.742e+09 9.28e-01 6.28e+08 1.90e+19 4.53e+09 8.17e-01 7.43e-01 3.00e-01 4 0.9 3.686e+18 -7.438e+10 -1.494e+09 9.61e-01 1.15e+08 3.48e+18 1.17e+09 8.25e-01 8.15e-01 3.00e-01 5 1.1 9.725e+17 -1.038e+11 1.515e+08 1.00e+00 2.01e+07 6.09e+17 2.16e+08 7.94e-01 7.63e-01 3.00e-01 6 1.3 3.020e+17 -1.438e+11 3.329e+09 1.05e+00 4.16e+06 1.26e+17 5.11e+07 7.09e-01 7.99e-01 3.00e-01 7 1.5 1.203e+17 -1.906e+11 1.626e+10 1.19e+00 1.21e+06 3.65e+16 1.03e+07 7.49e-01 8.14e-01 3.00e-01 8 1.7 4.286e+16 -2.882e+11 3.009e+10 1.23e+00 3.03e+05 9.15e+15 1.92e+06 7.63e-01 8.17e-01 3.00e-01 9 2.0 1.468e+16 -4.788e+11 5.004e+10 1.23e+00 7.18e+04 2.17e+15 3.51e+05 7.82e-01 6.89e-01 3.00e-01 10 2.2 4.729e+15 -8.435e+11 8.455e+10 1.22e+00 1.57e+04 4.74e+14 1.09e+05 6.46e-01 6.36e-01 3.00e-01 11 2.4 2.321e+15 -1.155e+12 1.377e+11 1.27e+00 5.54e+03 1.67e+14 3.98e+04 6.72e-01 6.11e-01 3.00e-01 12 2.6 1.063e+15 -1.592e+12 1.951e+11 1.28e+00 1.81e+03 5.49e+13 1.55e+04 5.62e-01 9.01e-01 3.00e-01 13 2.8 6.779e+14 -2.021e+12 2.787e+11 1.32e+00 7.94e+02 2.40e+13 1.53e+03 8.24e-01 9.11e-01 3.00e-01 14 3.1 1.835e+14 -5.984e+12 4.300e+11 1.15e+00 1.40e+02 4.23e+12 1.36e+02 8.55e-01 1.00e+00 3.00e-01 15 3.3 4.247e+13 -1.546e+13 6.864e+11 1.09e+00 2.03e+01 6.13e+11 7.65e-48 8.97e-01 1.00e+00 3.00e-01 16 3.5 7.181e+12 -1.302e+13 1.093e+12 1.18e+00 2.08e+00 6.30e+10 1.76e-48 8.89e-01 1.00e+00 3.00e-01 17 3.7 1.329e+12 -3.359e+12 1.724e+12 3.11e+00 2.31e-01 6.99e+09 5.55e-48 8.33e-01 1.00e+00 3.00e-01 18 3.9 3.857e+11 -8.933e+11 2.306e+12 2.26e+00 3.86e-02 1.17e+09 7.21e-48 7.07e-01 1.00e+00 3.00e-01 19 4.2 1.766e+11 -3.434e+11 1.375e+12 1.67e+00 1.13e-02 3.42e+08 1.13e-47 8.44e-01 8.41e-01 3.00e-01 20 4.4 4.903e+10 -9.837e+10 7.115e+11 1.32e+00 1.77e-03 5.34e+07 4.54e-47 8.56e-01 1.00e+00 3.00e-01 21 4.6 1.622e+10 -2.672e+10 4.770e+11 1.12e+00 2.54e-04 7.67e+06 5.34e-47 7.71e-01 1.00e+00 3.00e-01 22 4.8 5.589e+09 -9.867e+09 1.839e+11 1.11e+00 5.81e-05 1.76e+06 2.54e-48 8.65e-01 8.10e-01 3.00e-01 23 5.0 2.102e+09 -2.786e+09 8.647e+10 1.07e+00 7.86e-06 2.38e+05 4.74e-48 7.54e-01 1.00e+00 3.00e-01 24 5.3 6.491e+08 -1.160e+09 2.539e+10 1.10e+00 1.93e-06 5.84e+04 2.39e-49 9.04e-01 9.19e-01 3.00e-01 25 5.5 2.210e+08 -2.876e+08 9.863e+09 1.06e+00 1.86e-07 5.62e+03 1.80e-48 9.41e-01 1.00e+00 3.00e-01 26 5.7 6.517e+07 -7.947e+07 3.067e+09 1.05e+00 1.11e-08 3.34e+02 1.81e-47 1.00e+00 1.00e+00 3.00e-01 27 5.9 1.954e+07 -1.955e+07 9.380e+08 1.04e+00 1.53e-63 7.88e-44 1.72e-47 1.00e+00 1.00e+00 3.00e-01 28 6.1 5.862e+06 -5.862e+06 2.814e+08 1.04e+00 1.67e-63 1.56e-43 5.04e-48 1.00e+00 1.00e+00 1.00e-01 29 6.3 5.873e+05 -5.873e+05 2.819e+07 1.04e+00 1.84e-63 5.94e-44 8.52e-50 1.00e+00 1.00e+00 1.00e-01 30 6.6 5.874e+04 -5.874e+04 2.819e+06 1.04e+00 1.27e-63 6.38e-45 3.07e-50 1.00e+00 1.00e+00 1.00e-01 31 6.8 5.874e+03 -5.874e+03 2.820e+05 1.04e+00 1.40e-63 4.39e-43 2.22e-52 1.00e+00 1.00e+00 1.00e-01 32 7.0 5.875e+02 -5.874e+02 2.820e+04 1.04e+00 1.31e-63 1.48e-43 8.66e-53 1.00e+00 1.00e+00 1.00e-01 33 7.2 5.876e+01 -5.866e+01 2.821e+03 1.04e+00 1.66e-63 3.00e-43 5.90e-54 1.00e+00 1.00e+00 1.00e-01 34 7.4 5.883e+00 -5.788e+00 2.825e+02 1.04e+00 1.89e-63 1.06e-43 7.19e-55 9.99e-01 9.99e-01 1.00e-01 35 7.7 5.954e-01 -4.995e-01 2.867e+01 1.04e+00 1.30e-63 4.99e-43 1.43e-55 9.88e-01 9.88e-01 1.00e-01 36 7.9 6.616e-02 3.259e-02 3.274e+00 9.80e-01 1.53e-63 1.50e-43 4.33e-55 9.22e-01 9.22e-01 1.00e-01 37 8.1 1.126e-02 1.068e-01 6.584e-01 5.52e-01 1.75e-63 1.85e-43 1.67e-55 8.48e-01 8.48e-01 1.00e-01 38 8.3 2.667e-03 1.882e-01 3.188e-01 1.31e-01 1.11e-63 8.53e-43 1.61e-55 8.38e-01 8.38e-01 1.00e-01 39 8.5 6.553e-04 2.394e-01 2.715e-01 3.21e-02 1.64e-63 8.78e-43 2.65e-56 8.06e-01 8.06e-01 1.00e-01 40 8.8 1.798e-04 2.495e-01 2.583e-01 8.81e-03 1.12e-63 2.83e-43 2.22e-56 8.23e-01 8.23e-01 1.00e-01 41 9.0 4.661e-05 2.526e-01 2.549e-01 2.28e-03 2.09e-63 1.77e-42 1.77e-56 7.89e-01 7.89e-01 1.00e-01 42 9.2 1.350e-05 2.534e-01 2.540e-01 6.61e-04 3.78e-63 1.14e-42 1.95e-55 7.75e-01 7.75e-01 1.00e-01 43 9.4 4.080e-06 2.536e-01 2.538e-01 2.00e-04 3.02e-63 6.89e-43 7.67e-55 7.61e-01 7.61e-01 1.00e-01 44 9.6 1.286e-06 2.537e-01 2.538e-01 6.30e-05 1.60e-63 1.20e-42 6.81e-55 9.61e-01 9.61e-01 1.00e-01 45 9.9 1.739e-07 2.537e-01 2.537e-01 8.52e-06 1.82e-63 4.04e-43 1.87e-54 9.60e-01 9.60e-01 1.00e-01 46 10.1 2.369e-08 2.537e-01 2.537e-01 1.16e-06 1.28e-63 5.37e-43 5.92e-55 9.77e-01 9.77e-01 1.00e-01 47 10.3 2.854e-09 2.537e-01 2.537e-01 1.40e-07 1.41e-63 3.25e-43 1.20e-54 9.93e-01 9.93e-01 1.00e-01 48 10.5 3.031e-10 2.537e-01 2.537e-01 1.49e-08 2.33e-63 2.45e-43 2.35e-54 9.99e-01 9.99e-01 1.00e-01 49 10.7 3.050e-11 2.537e-01 2.537e-01 1.49e-09 2.20e-63 9.23e-43 7.46e-55 1.00e+00 1.00e+00 1.00e-01 50 11.0 3.050e-12 2.537e-01 2.537e-01 1.49e-10 1.45e-63 3.90e-43 6.78e-55 1.00e+00 1.00e+00 1.00e-01 51 11.2 3.051e-13 2.537e-01 2.537e-01 1.49e-11 1.97e-63 5.86e-43 1.13e-54 1.00e+00 1.00e+00 1.00e-01 52 11.4 3.051e-14 2.537e-01 2.537e-01 1.49e-12 1.41e-63 1.12e-42 4.00e-55 1.00e+00 1.00e+00 1.00e-01 53 11.6 3.051e-15 2.537e-01 2.537e-01 1.50e-13 1.04e-63 9.56e-43 1.71e-54 1.00e+00 1.00e+00 1.00e-01 54 11.8 3.052e-16 2.537e-01 2.537e-01 1.50e-14 1.25e-63 5.89e-43 8.59e-55 1.00e+00 1.00e+00 1.00e-01 55 12.0 3.052e-17 2.537e-01 2.537e-01 1.50e-15 1.89e-63 8.95e-43 8.16e-55 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 12.049555 seconds (27.23 M allocations: 1.280 GiB, 6.28% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:0.2537404272210647350181371131503682543294522655605460816614955571847496189032814 Dual objective:0.2537404272210648845779792000763537124640667560310020045227617107334183035153388 Duality gap:1.495598420869259854581346144904704559228612661535486686846120573405278296594931e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 1.6 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 8.43e+10 6.32e-01 5.24e-01 3.00e-01 2 2.9 5.118e+19 7.190e+07 1.164e+10 9.88e-01 3.68e+09 3.68e-01 4.01e+10 6.36e-01 6.99e-01 3.00e-01 3 4.3 2.570e+19 6.028e+07 2.506e+10 9.95e-01 1.34e+09 1.34e-01 1.21e+10 7.82e-01 7.56e-01 3.00e-01 4 5.6 8.263e+18 1.502e+07 4.098e+10 9.99e-01 2.93e+08 2.93e-02 2.94e+09 8.07e-01 8.00e-01 3.00e-01 5 7.0 2.367e+18 3.547e+06 6.396e+10 1.00e+00 5.64e+07 5.64e-03 5.87e+08 8.04e-01 7.46e-01 3.00e-01 6 8.3 7.008e+17 8.038e+05 9.568e+10 1.00e+00 1.11e+07 1.11e-03 1.49e+08 8.14e-01 7.81e-01 3.00e-01 7 9.7 1.972e+17 1.837e+05 1.446e+11 1.00e+00 2.06e+06 2.06e-04 3.27e+07 7.79e-01 7.96e-01 3.00e-01 8 11.0 6.361e+16 4.687e+04 2.206e+11 1.00e+00 4.56e+05 4.56e-05 6.67e+06 7.28e-01 7.70e-01 3.00e-01 9 12.3 2.470e+16 1.204e+04 3.288e+11 1.00e+00 1.24e+05 1.24e-05 1.54e+06 7.29e-01 7.91e-01 3.00e-01 10 13.6 9.586e+15 3.109e+03 5.041e+11 1.00e+00 3.37e+04 3.37e-06 3.21e+05 7.58e-01 7.85e-01 3.00e-01 11 15.0 3.375e+15 7.627e+02 8.164e+11 1.00e+00 8.17e+03 8.17e-07 6.90e+04 6.24e-01 7.24e-01 3.00e-01 12 16.3 1.763e+15 3.251e+02 1.508e+12 1.00e+00 3.07e+03 3.07e-07 1.91e+04 5.66e-01 4.74e-01 3.00e-01 13 17.6 1.006e+15 3.029e+02 2.709e+12 1.00e+00 1.33e+03 1.33e-07 1.00e+04 6.70e-01 6.86e-01 3.00e-01 14 18.9 4.647e+14 3.925e+02 4.272e+12 1.00e+00 4.40e+02 4.40e-08 3.14e+03 5.67e-01 6.23e-01 3.00e-01 15 20.2 2.709e+14 6.587e+02 6.050e+12 1.00e+00 1.91e+02 1.91e-08 1.18e+03 4.25e-01 9.14e-01 3.00e-01 16 21.6 2.367e+14 6.300e+01 9.859e+12 1.00e+00 1.10e+02 1.10e-08 1.01e+02 7.83e-01 1.00e+00 3.00e-01 17 23.0 8.205e+13 7.894e+01 1.584e+13 1.00e+00 2.37e+01 2.37e-09 5.68e-58 8.13e-01 1.00e+00 3.00e-01 18 24.3 2.463e+13 1.886e+01 2.504e+13 1.00e+00 4.43e+00 4.43e-10 2.02e-57 8.84e-01 1.00e+00 3.00e-01 19 25.6 4.808e+12 2.447e+00 3.732e+13 1.00e+00 5.16e-01 5.16e-11 3.72e-57 8.88e-01 1.00e+00 3.00e-01 20 27.0 1.084e+12 3.495e-01 3.941e+13 1.00e+00 5.77e-02 5.77e-12 4.34e-57 8.56e-01 1.00e+00 3.00e-01 21 28.3 3.431e+11 1.295e-01 2.400e+13 1.00e+00 8.33e-03 8.33e-13 4.11e-57 8.25e-01 1.00e+00 3.00e-01 22 29.6 1.158e+11 9.545e-02 1.061e+13 1.00e+00 1.46e-03 1.46e-13 5.26e-58 8.40e-01 8.07e-01 3.00e-01 23 30.9 4.557e+10 8.306e-02 4.818e+12 1.00e+00 2.34e-04 2.34e-14 1.21e-58 7.20e-01 1.00e+00 3.00e-01 24 32.2 1.417e+10 8.217e-02 1.436e+12 1.00e+00 6.54e-05 6.54e-15 4.78e-60 8.96e-01 8.18e-01 3.00e-01 25 33.6 5.688e+09 7.650e-02 6.445e+11 1.00e+00 6.79e-06 6.79e-16 1.46e-59 9.34e-01 1.00e+00 3.00e-01 26 35.0 1.690e+09 7.658e-02 1.988e+11 1.00e+00 4.49e-07 4.49e-17 2.99e-59 1.00e+00 1.00e+00 3.00e-01 27 36.3 5.061e+08 7.648e-02 6.022e+10 1.00e+00 2.59e-74 2.90e-51 9.69e-59 1.00e+00 1.00e+00 3.00e-01 28 37.7 1.518e+08 7.648e-02 1.807e+10 1.00e+00 2.93e-74 2.40e-51 1.52e-58 1.00e+00 1.00e+00 1.00e-01 29 39.0 1.524e+07 7.648e-02 1.814e+09 1.00e+00 2.79e-74 5.06e-51 1.55e-60 1.00e+00 1.00e+00 1.00e-01 30 40.4 1.524e+06 7.649e-02 1.814e+08 1.00e+00 2.60e-74 3.65e-51 3.10e-61 1.00e+00 1.00e+00 1.00e-01 31 41.7 1.525e+05 7.649e-02 1.814e+07 1.00e+00 3.15e-74 7.36e-51 5.04e-62 1.00e+00 1.00e+00 1.00e-01 32 43.1 1.525e+04 7.649e-02 1.814e+06 1.00e+00 4.34e-74 5.93e-51 3.62e-63 1.00e+00 1.00e+00 1.00e-01 33 44.4 1.525e+03 7.649e-02 1.815e+05 1.00e+00 3.07e-74 2.81e-51 6.00e-64 1.00e+00 1.00e+00 1.00e-01 34 45.8 1.525e+02 7.649e-02 1.815e+04 1.00e+00 2.64e-74 2.90e-51 1.10e-65 1.00e+00 1.00e+00 1.00e-01 35 47.1 1.529e+01 7.653e-02 1.820e+03 1.00e+00 3.84e-74 7.02e-51 1.22e-66 9.97e-01 9.97e-01 1.00e-01 36 48.5 1.564e+00 7.692e-02 1.862e+02 9.99e-01 3.69e-74 1.91e-51 3.41e-67 9.76e-01 9.76e-01 1.00e-01 37 49.8 1.897e-01 8.062e-02 2.266e+01 9.93e-01 3.08e-74 3.48e-51 2.37e-68 8.77e-01 8.77e-01 1.00e-01 38 51.2 3.990e-02 1.073e-01 4.856e+00 9.57e-01 2.22e-74 3.33e-51 3.22e-68 9.21e-01 9.21e-01 1.00e-01 39 52.6 6.811e-03 1.612e-01 9.718e-01 7.15e-01 4.08e-74 7.18e-51 8.64e-69 8.71e-01 8.71e-01 1.00e-01 40 53.9 1.473e-03 2.059e-01 3.812e-01 1.75e-01 2.61e-74 4.30e-51 4.20e-69 8.63e-01 8.63e-01 1.00e-01 41 55.3 3.291e-04 2.437e-01 2.829e-01 3.92e-02 3.42e-74 1.12e-50 3.44e-69 8.93e-01 8.93e-01 1.00e-01 42 56.6 6.458e-05 2.517e-01 2.594e-01 7.69e-03 4.79e-74 1.00e-50 3.29e-69 8.48e-01 8.48e-01 1.00e-01 43 58.0 1.529e-05 2.532e-01 2.550e-01 1.82e-03 3.87e-74 7.00e-51 1.35e-67 8.38e-01 8.38e-01 1.00e-01 44 59.3 3.758e-06 2.536e-01 2.540e-01 4.47e-04 7.05e-74 6.24e-51 5.51e-67 8.60e-01 8.60e-01 1.00e-01 45 60.7 8.506e-07 2.537e-01 2.538e-01 1.01e-04 4.72e-74 3.06e-51 2.34e-66 9.32e-01 9.32e-01 1.00e-01 46 62.1 1.372e-07 2.537e-01 2.538e-01 1.63e-05 3.83e-74 8.05e-51 8.98e-67 9.60e-01 9.60e-01 1.00e-01 47 63.4 1.861e-08 2.537e-01 2.537e-01 2.21e-06 5.72e-74 3.33e-51 5.08e-67 9.53e-01 9.53e-01 1.00e-01 48 64.8 2.646e-09 2.537e-01 2.537e-01 3.15e-07 5.08e-74 4.51e-51 1.07e-66 9.65e-01 9.65e-01 1.00e-01 49 66.2 3.469e-10 2.537e-01 2.537e-01 4.13e-08 5.47e-74 7.11e-51 1.16e-66 9.73e-01 9.73e-01 1.00e-01 50 67.5 4.314e-11 2.537e-01 2.537e-01 5.13e-09 5.84e-74 4.66e-51 5.14e-66 9.75e-01 9.75e-01 1.00e-01 51 68.9 5.269e-12 2.537e-01 2.537e-01 6.27e-10 5.41e-74 5.28e-51 3.42e-65 9.79e-01 9.79e-01 1.00e-01 52 70.2 6.243e-13 2.537e-01 2.537e-01 7.43e-11 4.35e-74 6.92e-51 7.39e-64 9.96e-01 9.96e-01 1.00e-01 53 71.6 6.487e-14 2.537e-01 2.537e-01 7.72e-12 5.20e-74 4.63e-51 1.49e-63 1.00e+00 1.00e+00 1.00e-01 54 72.9 6.490e-15 2.537e-01 2.537e-01 7.72e-13 7.58e-74 1.47e-50 6.45e-63 1.00e+00 1.00e+00 1.00e-01 55 74.3 6.492e-16 2.537e-01 2.537e-01 7.73e-14 8.10e-74 1.46e-50 2.72e-62 1.00e+00 1.00e+00 1.00e-01 56 75.7 6.493e-17 2.537e-01 2.537e-01 7.73e-15 6.60e-74 1.14e-50 9.31e-61 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 75.781469 seconds (163.58 M allocations: 8.291 GiB, 6.29% gc time, 0.19% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:0.25374042722106457028048712955990164046604967044551012663568368061530374162236677667709295948 Dual objective:0.25374042722106534302553129619879178418653563240530158649070456270511236356738207343034829667 Duality gap:7.7274504416663889014372048596195979145985502088208980862194501529675325533718921330629848446e-16 [ Info: Creating the univariate constraint [ Info: Constructing trivariate constraint iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.4 1.000e+06 1.000e+00 5.001e+03 1.00e+00 1.00e+03 0.00e+00 1.12e+06 6.53e-01 5.28e-01 3.00e-01 2 1.0 5.015e+05 5.164e+02 3.088e+03 7.13e-01 3.47e+02 0.00e+00 5.30e+05 4.22e-01 6.07e-01 3.00e-01 3 1.5 3.499e+05 6.688e+02 8.065e+03 8.47e-01 2.00e+02 0.00e+00 2.08e+05 5.84e-01 4.21e-01 3.00e-01 4 2.1 2.030e+05 5.414e+02 1.758e+04 9.40e-01 8.32e+01 0.00e+00 1.20e+05 4.22e-01 9.53e-01 3.00e-01 5 2.7 1.588e+05 3.876e+02 6.630e+04 9.88e-01 4.81e+01 0.00e+00 5.61e+03 7.78e-01 1.00e+00 3.00e-01 6 3.2 5.705e+04 1.104e+02 1.123e+05 9.98e-01 1.07e+01 0.00e+00 1.06e-67 8.24e-01 1.00e+00 3.00e-01 7 3.7 1.728e+04 2.822e+01 1.690e+05 1.00e+00 1.88e+00 0.00e+00 9.64e-68 8.75e-01 1.00e+00 3.00e-01 8 4.3 4.993e+03 1.126e+01 1.883e+05 1.00e+00 2.35e-01 0.00e+00 5.08e-67 8.48e-01 9.86e-01 3.00e-01 9 4.8 1.681e+03 9.036e+00 9.790e+04 1.00e+00 3.57e-02 0.00e+00 2.54e-66 8.19e-01 1.00e+00 3.00e-01 10 5.4 5.450e+02 8.700e+00 3.672e+04 1.00e+00 6.44e-03 0.00e+00 1.34e-66 8.33e-01 1.00e+00 3.00e-01 11 5.9 1.723e+02 8.588e+00 1.271e+04 9.99e-01 1.08e-03 0.00e+00 4.17e-66 1.00e+00 1.00e+00 3.00e-01 12 6.5 5.146e+01 8.519e+00 4.074e+03 9.96e-01 1.02e-73 0.00e+00 6.06e-67 1.00e+00 1.00e+00 3.00e-01 13 7.0 1.544e+01 8.502e+00 1.228e+03 9.86e-01 2.74e-73 0.00e+00 1.23e-68 9.92e-01 9.92e-01 1.00e-01 14 7.6 1.654e+00 8.507e+00 1.392e+02 8.85e-01 2.20e-73 0.00e+00 3.24e-70 9.78e-01 9.78e-01 1.00e-01 15 8.1 1.981e-01 8.562e+00 2.421e+01 4.77e-01 8.12e-74 0.00e+00 1.01e-69 8.60e-01 8.60e-01 1.00e-01 16 8.7 4.484e-02 8.877e+00 1.242e+01 1.66e-01 1.42e-73 0.00e+00 2.43e-69 8.02e-01 8.02e-01 1.00e-01 17 9.2 1.245e-02 9.486e+00 1.047e+01 4.93e-02 1.43e-73 0.00e+00 1.14e-69 7.62e-01 7.62e-01 1.00e-01 18 9.8 3.917e-03 9.841e+00 1.015e+01 1.55e-02 6.74e-74 0.00e+00 5.17e-70 7.52e-01 7.52e-01 1.00e-01 19 10.3 1.267e-03 9.941e+00 1.004e+01 5.01e-03 1.27e-73 0.00e+00 4.04e-70 8.14e-01 8.14e-01 1.00e-01 20 10.9 3.392e-04 9.983e+00 1.001e+01 1.34e-03 7.24e-74 0.00e+00 3.46e-70 7.89e-01 7.89e-01 1.00e-01 21 11.4 9.835e-05 9.995e+00 1.000e+01 3.89e-04 7.41e-74 0.00e+00 5.37e-70 9.42e-01 9.42e-01 1.00e-01 22 11.9 1.496e-05 9.999e+00 1.000e+01 5.91e-05 1.32e-73 0.00e+00 2.06e-70 9.79e-01 9.79e-01 1.00e-01 23 12.5 1.780e-06 1.000e+01 1.000e+01 7.03e-06 9.89e-74 0.00e+00 1.49e-70 9.89e-01 9.89e-01 1.00e-01 24 13.0 1.951e-07 1.000e+01 1.000e+01 7.71e-07 7.78e-74 0.00e+00 4.35e-70 9.97e-01 9.97e-01 1.00e-01 25 13.6 2.009e-08 1.000e+01 1.000e+01 7.94e-08 2.03e-73 0.00e+00 5.87e-70 1.00e+00 1.00e+00 1.00e-01 26 14.1 2.016e-09 1.000e+01 1.000e+01 7.96e-09 1.29e-73 0.00e+00 3.85e-70 1.00e+00 1.00e+00 1.00e-01 27 14.7 2.017e-10 1.000e+01 1.000e+01 7.97e-10 1.12e-73 0.00e+00 2.23e-70 1.00e+00 1.00e+00 1.00e-01 28 15.2 2.017e-11 1.000e+01 1.000e+01 7.97e-11 1.44e-73 0.00e+00 7.62e-70 1.00e+00 1.00e+00 1.00e-01 29 15.8 2.017e-12 1.000e+01 1.000e+01 7.97e-12 4.15e-74 0.00e+00 5.12e-70 1.00e+00 1.00e+00 1.00e-01 30 16.3 2.018e-13 1.000e+01 1.000e+01 7.97e-13 1.73e-73 0.00e+00 4.48e-70 1.00e+00 1.00e+00 1.00e-01 31 16.8 2.018e-14 1.000e+01 1.000e+01 7.97e-14 5.86e-74 0.00e+00 7.26e-71 1.00e+00 1.00e+00 1.00e-01 32 17.4 2.018e-15 1.000e+01 1.000e+01 7.97e-15 1.75e-73 0.00e+00 1.67e-70 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 17.486670 seconds (41.42 M allocations: 2.036 GiB, 6.72% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:9.999999999999988697828762980687239877476483286545720202621339677268199676728914 Dual objective:10.0000000000000046419631866560701898706163171007474720848203859230095025755514 Duality gap:7.972067211837694129777881032820096917604476111296258202022511043773237342544146e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.0 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 2.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.0 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 0.00e+00 2.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.0 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 2.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.0 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 2.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.0 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 0.00e+00 2.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.0 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 2.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.0 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 2.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.0 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 2.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.0 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 0.00e+00 1.99e+02 1.00e+00 9.05e-01 3.00e-01 10 0.0 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 1.90e+01 1.00e+00 9.47e-01 3.00e-01 11 0.0 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e+00 3.00e-01 12 0.1 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 3.00e-01 13 0.1 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 14 0.1 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 15 0.1 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 16 0.1 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 17 0.1 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 18 0.1 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 19 0.1 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 20 0.1 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.1 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 22 0.1 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 4.91e-91 9.98e-01 9.98e-01 1.00e-01 23 0.1 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 0.00e+00 0.00e+00 9.78e-01 9.78e-01 1.00e-01 24 0.1 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 0.00e+00 1.47e-90 8.86e-01 8.86e-01 1.00e-01 25 0.1 2.642e-01 1.213e+00 6.845e-01 2.78e-01 0.00e+00 0.00e+00 4.91e-91 9.25e-01 9.25e-01 1.00e-01 26 0.1 4.423e-02 1.057e+00 9.685e-01 4.37e-02 9.82e-91 0.00e+00 9.82e-91 9.82e-01 9.82e-01 1.00e-01 27 0.1 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 0.00e+00 9.82e-91 9.90e-01 9.90e-01 1.00e-01 28 0.1 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 0.00e+00 1.47e-90 9.98e-01 9.98e-01 1.00e-01 29 0.1 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 30 0.1 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.1 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.1 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 33 0.1 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 34 0.1 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.1 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 36 0.1 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 37 0.1 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 38 0.1 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 0.00e+00 2.45e-90 1.00e+00 1.00e+00 1.00e-01 39 0.1 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.108905 seconds (69.02 k allocations: 4.781 MiB, 51.55% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279668 Dual objective:0.9999999999999994308276721633712720975914346046825898890655777243547660499609509826264801335 Duality gap:5.691723278366352070451840708486824389848583387797514538933756972301949865323277923806982379e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.0 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 1.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.0 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 8.43e-81 1.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.0 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 1.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.0 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 1.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.0 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 3.37e-80 1.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.0 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 1.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.0 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 1.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.0 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 1.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.0 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 2.70e-79 9.95e+01 1.00e+00 9.05e-01 3.00e-01 10 0.0 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 9.50e+00 1.00e+00 9.47e-01 3.00e-01 11 0.0 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 5.00e-01 1.00e+00 1.00e+00 3.00e-01 12 0.0 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 5.40e-79 0.00e+00 1.00e+00 1.00e+00 3.00e-01 13 0.0 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 14 0.0 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 1.35e-79 2.45e-91 1.00e+00 1.00e+00 1.00e-01 15 0.0 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 1.69e-80 1.23e-90 1.00e+00 1.00e+00 1.00e-01 16 0.1 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 17 0.1 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 2.64e-82 1.23e-90 1.00e+00 1.00e+00 1.00e-01 18 0.1 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 1.65e-83 9.82e-91 1.00e+00 1.00e+00 1.00e-01 19 0.1 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 1.03e-84 7.36e-91 1.00e+00 1.00e+00 1.00e-01 20 0.1 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.1 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 1.61e-86 4.91e-91 1.00e+00 1.00e+00 1.00e-01 22 0.1 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 7.36e-91 9.98e-01 9.98e-01 1.00e-01 23 0.1 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 1.10e-88 9.82e-91 9.78e-01 9.78e-01 1.00e-01 24 0.1 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 1.77e-89 4.91e-91 8.86e-01 8.86e-01 1.00e-01 25 0.1 2.642e-01 1.213e+00 6.845e-01 2.78e-01 9.82e-91 9.82e-91 1.47e-90 9.25e-01 9.25e-01 1.00e-01 26 0.1 4.423e-02 1.057e+00 9.685e-01 4.37e-02 4.91e-91 9.82e-91 1.47e-90 9.82e-01 9.82e-01 1.00e-01 27 0.1 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 9.82e-91 4.91e-91 9.90e-01 9.90e-01 1.00e-01 28 0.1 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 9.82e-91 2.45e-90 9.98e-01 9.98e-01 1.00e-01 29 0.1 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 1.96e-90 4.91e-91 1.00e+00 1.00e+00 1.00e-01 30 0.1 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.1 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 9.82e-91 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.1 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 33 0.1 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 34 0.1 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 9.82e-91 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.1 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 36 0.1 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 9.82e-91 4.91e-91 1.00e+00 1.00e+00 1.00e-01 37 0.1 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 38 0.1 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 1.96e-90 1.96e-90 1.00e+00 1.00e+00 1.00e-01 39 0.1 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 9.82e-91 1.58e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.090971 seconds (73.69 k allocations: 5.023 MiB, 50.38% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279658 Dual objective:0.99999999999999943082767216337127209759143460468258988906557772435476604996095098262648013301 Duality gap:5.6917232783663520704518407084868243898485833877975145389337569723019498653208233770743335244e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.0 1.000e+20 1.000e+00 7.000e+10 1.00e+00 1.00e+10 0.00e+00 7.05e+10 6.66e-01 6.95e-01 3.00e-01 2 0.1 4.559e+19 1.338e+10 7.193e+10 6.86e-01 3.34e+09 0.00e+00 2.15e+10 7.05e-01 7.53e-01 3.00e-01 3 0.1 1.822e+19 2.640e+10 9.901e+10 5.79e-01 9.85e+08 0.00e+00 5.31e+09 6.16e-01 7.88e-01 3.00e-01 4 0.1 8.970e+18 3.260e+10 1.789e+11 6.92e-01 3.78e+08 0.00e+00 1.12e+09 7.73e-01 1.00e+00 3.00e-01 5 0.1 3.189e+18 1.238e+10 3.561e+11 9.33e-01 8.58e+07 0.00e+00 5.77e-143 8.40e-01 1.00e+00 3.00e-01 6 0.1 8.172e+17 2.052e+09 5.731e+11 9.93e-01 1.37e+07 0.00e+00 2.26e-141 8.95e-01 1.00e+00 3.00e-01 7 0.2 1.367e+17 2.121e+08 9.202e+11 1.00e+00 1.44e+06 0.00e+00 2.50e-141 8.90e-01 1.00e+00 3.00e-01 8 0.2 2.412e+16 2.361e+07 1.476e+12 1.00e+00 1.58e+05 0.00e+00 6.67e-141 8.97e-01 1.00e+00 3.00e-01 9 0.2 3.957e+15 2.403e+06 2.364e+12 1.00e+00 1.62e+04 0.00e+00 1.08e-140 8.94e-01 1.00e+00 3.00e-01 10 0.2 6.738e+14 2.573e+05 3.785e+12 1.00e+00 1.73e+03 0.00e+00 8.06e-141 8.99e-01 1.00e+00 3.00e-01 11 0.2 1.095e+14 2.604e+04 6.056e+12 1.00e+00 1.75e+02 0.00e+00 2.52e-141 8.99e-01 1.00e+00 3.00e-01 12 0.3 1.816e+13 2.738e+03 9.636e+12 1.00e+00 1.76e+01 0.00e+00 3.08e-140 9.13e-01 1.00e+00 3.00e-01 13 0.3 3.342e+12 3.449e+02 1.456e+13 1.00e+00 1.53e+00 0.00e+00 8.57e-141 1.00e+00 1.00e+00 3.00e-01 14 0.3 1.007e+12 1.188e+02 1.410e+13 1.00e+00 1.91e-152 0.00e+00 9.72e-141 1.00e+00 1.00e+00 3.00e-01 15 0.3 3.022e+11 1.198e+02 4.231e+12 1.00e+00 9.55e-153 0.00e+00 2.46e-141 9.99e-01 9.99e-01 1.00e-01 16 0.3 3.062e+10 1.199e+02 4.287e+11 1.00e+00 9.55e-153 0.00e+00 1.05e-141 1.00e+00 1.00e+00 1.00e-01 17 0.4 3.063e+09 1.200e+02 4.288e+10 1.00e+00 9.55e-153 0.00e+00 5.49e-143 1.00e+00 1.00e+00 1.00e-01 18 0.4 3.063e+08 1.201e+02 4.288e+09 1.00e+00 9.55e-153 0.00e+00 8.23e-144 1.00e+00 1.00e+00 1.00e-01 19 0.4 3.063e+07 1.202e+02 4.289e+08 1.00e+00 9.55e-153 0.00e+00 1.29e-145 1.00e+00 1.00e+00 1.00e-01 20 0.4 3.064e+06 1.202e+02 4.289e+07 1.00e+00 9.55e-153 0.00e+00 1.06e-146 1.00e+00 1.00e+00 1.00e-01 21 0.4 3.064e+05 1.203e+02 4.290e+06 1.00e+00 1.91e-152 0.00e+00 1.64e-147 1.00e+00 1.00e+00 1.00e-01 22 0.5 3.065e+04 1.203e+02 4.292e+05 9.99e-01 9.55e-153 0.00e+00 1.23e-147 1.00e+00 1.00e+00 1.00e-01 23 0.5 3.075e+03 1.204e+02 4.317e+04 9.94e-01 5.97e-154 0.00e+00 1.73e-149 9.97e-01 9.97e-01 1.00e-01 24 0.5 3.167e+02 1.211e+02 4.554e+03 9.48e-01 9.55e-153 0.00e+00 1.91e-150 9.70e-01 9.70e-01 1.00e-01 25 0.5 4.021e+01 1.274e+02 6.904e+02 6.88e-01 9.55e-153 0.00e+00 2.78e-150 8.70e-01 8.70e-01 1.00e-01 26 0.5 8.743e+00 1.689e+02 2.913e+02 2.66e-01 1.91e-152 0.00e+00 1.17e-150 9.15e-01 9.15e-01 1.00e-01 27 0.6 1.547e+00 2.316e+02 2.532e+02 4.47e-02 3.82e-152 0.00e+00 7.76e-152 9.82e-01 9.82e-01 1.00e-01 28 0.6 1.800e-01 2.389e+02 2.414e+02 5.25e-03 1.91e-152 0.00e+00 5.64e-151 9.89e-01 9.89e-01 1.00e-01 29 0.6 1.986e-02 2.399e+02 2.401e+02 5.79e-04 3.82e-152 0.00e+00 9.25e-151 9.97e-01 9.97e-01 1.00e-01 30 0.6 2.030e-03 2.400e+02 2.400e+02 5.92e-05 4.77e-153 0.00e+00 3.81e-151 1.00e+00 1.00e+00 1.00e-01 31 0.6 2.034e-04 2.400e+02 2.400e+02 5.93e-06 1.91e-152 0.00e+00 2.61e-151 1.00e+00 1.00e+00 1.00e-01 32 0.6 2.035e-05 2.400e+02 2.400e+02 5.93e-07 1.91e-152 0.00e+00 1.92e-150 1.00e+00 1.00e+00 1.00e-01 33 0.7 2.035e-06 2.400e+02 2.400e+02 5.94e-08 1.91e-152 0.00e+00 2.45e-151 1.00e+00 1.00e+00 1.00e-01 34 0.7 2.035e-07 2.400e+02 2.400e+02 5.94e-09 1.91e-152 0.00e+00 5.85e-152 1.00e+00 1.00e+00 1.00e-01 35 0.7 2.035e-08 2.400e+02 2.400e+02 5.94e-10 1.91e-152 0.00e+00 1.11e-150 1.00e+00 1.00e+00 1.00e-01 36 0.7 2.036e-09 2.400e+02 2.400e+02 5.94e-11 1.91e-152 0.00e+00 1.22e-150 1.00e+00 1.00e+00 1.00e-01 37 0.7 2.036e-10 2.400e+02 2.400e+02 5.94e-12 1.91e-152 0.00e+00 8.77e-152 1.00e+00 1.00e+00 1.00e-01 38 0.8 2.036e-11 2.400e+02 2.400e+02 5.94e-13 3.82e-152 0.00e+00 1.00e-150 1.00e+00 1.00e+00 1.00e-01 39 0.8 2.036e-12 2.400e+02 2.400e+02 5.94e-14 1.91e-152 0.00e+00 8.31e-151 1.00e+00 1.00e+00 1.00e-01 40 0.8 2.036e-13 2.400e+02 2.400e+02 5.94e-15 1.91e-152 0.00e+00 1.74e-150 1.00e+00 1.00e+00 1.00e-01 41 0.8 2.037e-14 2.400e+02 2.400e+02 5.94e-16 1.91e-152 0.00e+00 3.61e-151 1.00e+00 1.00e+00 1.00e-01 42 0.8 2.037e-15 2.400e+02 2.400e+02 5.94e-17 1.91e-152 0.00e+00 5.02e-150 1.00e+00 1.00e+00 1.00e-01 43 0.9 2.037e-16 2.400e+02 2.400e+02 5.94e-18 1.91e-152 0.00e+00 2.42e-150 1.00e+00 1.00e+00 1.00e-01 44 0.9 2.037e-17 2.400e+02 2.400e+02 5.94e-19 1.91e-152 0.00e+00 9.86e-150 1.00e+00 1.00e+00 1.00e-01 45 0.9 2.037e-18 2.400e+02 2.400e+02 5.94e-20 1.91e-152 0.00e+00 7.30e-149 1.00e+00 1.00e+00 1.00e-01 46 0.9 2.038e-19 2.400e+02 2.400e+02 5.94e-21 3.82e-152 0.00e+00 1.28e-148 1.00e+00 1.00e+00 1.00e-01 47 0.9 2.038e-20 2.400e+02 2.400e+02 5.94e-22 3.82e-152 0.00e+00 1.10e-148 1.00e+00 1.00e+00 1.00e-01 48 1.0 2.038e-21 2.400e+02 2.400e+02 5.94e-23 1.91e-152 0.00e+00 1.52e-148 1.00e+00 1.00e+00 1.00e-01 49 1.0 2.038e-22 2.400e+02 2.400e+02 5.94e-24 3.82e-152 0.00e+00 3.08e-148 1.00e+00 1.00e+00 1.00e-01 50 1.0 2.038e-23 2.400e+02 2.400e+02 5.95e-25 1.91e-152 0.00e+00 3.03e-147 1.00e+00 1.00e+00 1.00e-01 51 1.0 2.039e-24 2.400e+02 2.400e+02 5.95e-26 1.91e-152 0.00e+00 5.91e-147 1.00e+00 1.00e+00 1.00e-01 52 1.0 2.039e-25 2.400e+02 2.400e+02 5.95e-27 1.91e-152 0.00e+00 1.09e-147 1.00e+00 1.00e+00 1.00e-01 53 1.1 2.039e-26 2.400e+02 2.400e+02 5.95e-28 1.91e-152 0.00e+00 1.85e-147 1.00e+00 1.00e+00 1.00e-01 54 1.1 2.039e-27 2.400e+02 2.400e+02 5.95e-29 1.91e-152 0.00e+00 5.47e-146 1.00e+00 1.00e+00 1.00e-01 55 1.1 2.039e-28 2.400e+02 2.400e+02 5.95e-30 5.73e-152 0.00e+00 8.70e-147 1.00e+00 1.00e+00 1.00e-01 56 1.1 2.040e-29 2.400e+02 2.400e+02 5.95e-31 1.91e-152 0.00e+00 5.34e-146 1.00e+00 1.00e+00 1.00e-01 57 1.1 2.040e-30 2.400e+02 2.400e+02 5.95e-32 3.82e-152 0.00e+00 2.35e-145 1.00e+00 1.00e+00 1.00e-01 58 1.1 2.040e-31 2.400e+02 2.400e+02 5.95e-33 1.91e-152 0.00e+00 2.26e-145 1.00e+00 1.00e+00 1.00e-01 59 1.2 2.040e-32 2.400e+02 2.400e+02 5.95e-34 1.91e-152 0.00e+00 7.39e-145 1.00e+00 1.00e+00 1.00e-01 60 1.2 2.040e-33 2.400e+02 2.400e+02 5.95e-35 1.91e-152 0.00e+00 1.75e-144 1.00e+00 1.00e+00 1.00e-01 61 1.2 2.041e-34 2.400e+02 2.400e+02 5.95e-36 1.91e-152 0.00e+00 1.02e-144 1.00e+00 1.00e+00 1.00e-01 62 1.2 2.041e-35 2.400e+02 2.400e+02 5.95e-37 1.91e-152 0.00e+00 1.03e-143 1.00e+00 1.00e+00 1.00e-01 63 1.2 2.041e-36 2.400e+02 2.400e+02 5.95e-38 1.91e-152 0.00e+00 2.23e-144 1.00e+00 1.00e+00 1.00e-01 64 1.3 2.041e-37 2.400e+02 2.400e+02 5.95e-39 9.55e-153 0.00e+00 3.14e-143 1.00e+00 1.00e+00 1.00e-01 65 1.3 2.041e-38 2.400e+02 2.400e+02 5.95e-40 9.55e-153 0.00e+00 6.60e-143 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 1.283341 seconds (2.74 M allocations: 136.976 MiB, 14.69% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:239.999999999999999999999999999999999999985708394440670421164475050299937122800326911634846259096444941761370653677778440360801269590365221096273610640795491 Dual objective:240.000000000000000000000000000000000000014291605559329578835524949700062877199708326695847667034829260561518853315442245285326124336618538756205004218284834 Duality gap:5.95483564972065784813539570835953216653779480437529332049673308336420825784662558877920337872566231656475374158392878798104030595170703447229868576788021182e-41 ** Starting computation of basis transformations ** Block 3 of size 1 x 1 Block 6 of size 1 x 1 Block 1 of size 1 x 1 Block 4 of size 1 x 1 Block 0 of size 1 x 1 Block 0 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 2 of size 1 x 1 Block 5 of size 1 x 1 Block B of size 3 x 3 Block B has 2 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block A of size 4 x 4 Block A has 4 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 ** Finished computation of basis transformations (8.724814012s) ** ** Transforming the problem and the solution ** (17.831216333s) ** Projection the solution into the affine space ** Reducing the system from 7 columns to 7 columns Constructing the linear system... (6.470380527s) Preprocessing to get an integer system... (6.7339e-5s) Finding the pivots of A using RREF mod p... (0.000385926 6.7499e-5 s) Solving the system of size 7 x 7 using the pseudoinverse... 0.683239235s ** Finished projection into affine space (9.532207405s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.192763886) [ Info: Creating the univariate constraint [ Info: Constructing trivariate constraint iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.4 1.000e+06 1.000e+00 5.001e+03 1.00e+00 1.00e+03 0.00e+00 1.12e+06 6.53e-01 5.28e-01 3.00e-01 2 1.0 5.015e+05 5.164e+02 3.088e+03 7.13e-01 3.47e+02 0.00e+00 5.30e+05 4.22e-01 6.07e-01 3.00e-01 3 1.6 3.499e+05 6.688e+02 8.065e+03 8.47e-01 2.00e+02 0.00e+00 2.08e+05 5.84e-01 4.21e-01 3.00e-01 4 2.1 2.030e+05 5.414e+02 1.758e+04 9.40e-01 8.32e+01 0.00e+00 1.20e+05 4.22e-01 9.53e-01 3.00e-01 5 2.7 1.588e+05 3.876e+02 6.630e+04 9.88e-01 4.81e+01 0.00e+00 5.61e+03 7.78e-01 1.00e+00 3.00e-01 6 3.2 5.705e+04 1.104e+02 1.123e+05 9.98e-01 1.07e+01 0.00e+00 1.06e-67 8.24e-01 1.00e+00 3.00e-01 7 3.8 1.728e+04 2.822e+01 1.690e+05 1.00e+00 1.88e+00 0.00e+00 9.64e-68 8.75e-01 1.00e+00 3.00e-01 8 4.3 4.993e+03 1.126e+01 1.883e+05 1.00e+00 2.35e-01 0.00e+00 5.08e-67 8.48e-01 9.86e-01 3.00e-01 9 4.9 1.681e+03 9.036e+00 9.790e+04 1.00e+00 3.57e-02 0.00e+00 2.54e-66 8.19e-01 1.00e+00 3.00e-01 10 5.5 5.450e+02 8.700e+00 3.672e+04 1.00e+00 6.44e-03 0.00e+00 1.34e-66 8.33e-01 1.00e+00 3.00e-01 11 6.0 1.723e+02 8.588e+00 1.271e+04 9.99e-01 1.08e-03 0.00e+00 4.17e-66 1.00e+00 1.00e+00 3.00e-01 12 6.6 5.146e+01 8.519e+00 4.074e+03 9.96e-01 1.02e-73 0.00e+00 6.06e-67 1.00e+00 1.00e+00 3.00e-01 13 7.1 1.544e+01 8.502e+00 1.228e+03 9.86e-01 2.74e-73 0.00e+00 1.23e-68 9.92e-01 9.92e-01 1.00e-01 14 7.7 1.654e+00 8.507e+00 1.392e+02 8.85e-01 2.20e-73 0.00e+00 3.24e-70 9.78e-01 9.78e-01 1.00e-01 15 8.3 1.981e-01 8.562e+00 2.421e+01 4.77e-01 8.12e-74 0.00e+00 1.01e-69 8.60e-01 8.60e-01 1.00e-01 16 8.8 4.484e-02 8.877e+00 1.242e+01 1.66e-01 1.42e-73 0.00e+00 2.43e-69 8.02e-01 8.02e-01 1.00e-01 17 9.4 1.245e-02 9.486e+00 1.047e+01 4.93e-02 1.43e-73 0.00e+00 1.14e-69 7.62e-01 7.62e-01 1.00e-01 18 10.0 3.917e-03 9.841e+00 1.015e+01 1.55e-02 6.74e-74 0.00e+00 5.17e-70 7.52e-01 7.52e-01 1.00e-01 19 10.6 1.267e-03 9.941e+00 1.004e+01 5.01e-03 1.27e-73 0.00e+00 4.04e-70 8.14e-01 8.14e-01 1.00e-01 20 11.1 3.392e-04 9.983e+00 1.001e+01 1.34e-03 7.24e-74 0.00e+00 3.46e-70 7.89e-01 7.89e-01 1.00e-01 21 11.7 9.835e-05 9.995e+00 1.000e+01 3.89e-04 7.41e-74 0.00e+00 5.37e-70 9.42e-01 9.42e-01 1.00e-01 22 12.3 1.496e-05 9.999e+00 1.000e+01 5.91e-05 1.32e-73 0.00e+00 2.06e-70 9.79e-01 9.79e-01 1.00e-01 23 12.9 1.780e-06 1.000e+01 1.000e+01 7.03e-06 9.89e-74 0.00e+00 1.49e-70 9.89e-01 9.89e-01 1.00e-01 24 13.4 1.951e-07 1.000e+01 1.000e+01 7.71e-07 7.78e-74 0.00e+00 4.35e-70 9.97e-01 9.97e-01 1.00e-01 25 14.0 2.009e-08 1.000e+01 1.000e+01 7.94e-08 2.03e-73 0.00e+00 5.87e-70 1.00e+00 1.00e+00 1.00e-01 26 14.6 2.016e-09 1.000e+01 1.000e+01 7.96e-09 1.29e-73 0.00e+00 3.85e-70 1.00e+00 1.00e+00 1.00e-01 27 15.1 2.017e-10 1.000e+01 1.000e+01 7.97e-10 1.12e-73 0.00e+00 2.23e-70 1.00e+00 1.00e+00 1.00e-01 28 15.7 2.017e-11 1.000e+01 1.000e+01 7.97e-11 1.44e-73 0.00e+00 7.62e-70 1.00e+00 1.00e+00 1.00e-01 29 16.2 2.017e-12 1.000e+01 1.000e+01 7.97e-12 4.15e-74 0.00e+00 5.12e-70 1.00e+00 1.00e+00 1.00e-01 30 16.8 2.018e-13 1.000e+01 1.000e+01 7.97e-13 1.73e-73 0.00e+00 4.48e-70 1.00e+00 1.00e+00 1.00e-01 31 17.4 2.018e-14 1.000e+01 1.000e+01 7.97e-14 5.86e-74 0.00e+00 7.26e-71 1.00e+00 1.00e+00 1.00e-01 32 17.9 2.018e-15 1.000e+01 1.000e+01 7.97e-15 1.75e-73 0.00e+00 1.67e-70 1.00e+00 1.00e+00 1.00e-01 33 18.5 2.018e-16 1.000e+01 1.000e+01 7.97e-16 6.08e-74 0.00e+00 2.13e-70 1.00e+00 1.00e+00 1.00e-01 34 19.0 2.018e-17 1.000e+01 1.000e+01 7.97e-17 1.03e-73 0.00e+00 3.83e-70 1.00e+00 1.00e+00 1.00e-01 35 19.6 2.019e-18 1.000e+01 1.000e+01 7.97e-18 9.45e-74 0.00e+00 2.30e-70 1.00e+00 1.00e+00 1.00e-01 36 20.2 2.019e-19 1.000e+01 1.000e+01 7.97e-19 3.98e-74 0.00e+00 8.37e-70 1.00e+00 1.00e+00 1.00e-01 37 20.7 2.019e-20 1.000e+01 1.000e+01 7.98e-20 1.12e-73 0.00e+00 2.61e-69 1.00e+00 1.00e+00 1.00e-01 38 21.3 2.019e-21 1.000e+01 1.000e+01 7.98e-21 6.91e-74 0.00e+00 2.78e-69 1.00e+00 1.00e+00 1.00e-01 39 21.8 2.019e-22 1.000e+01 1.000e+01 7.98e-22 2.09e-73 0.00e+00 1.77e-69 1.00e+00 1.00e+00 1.00e-01 40 22.4 2.020e-23 1.000e+01 1.000e+01 7.98e-23 3.26e-74 0.00e+00 2.22e-68 1.00e+00 1.00e+00 1.00e-01 41 22.9 2.020e-24 1.000e+01 1.000e+01 7.98e-24 7.41e-74 0.00e+00 2.44e-68 1.00e+00 1.00e+00 1.00e-01 42 23.5 2.020e-25 1.000e+01 1.000e+01 7.98e-25 8.18e-74 0.00e+00 4.39e-68 1.00e+00 1.00e+00 1.00e-01 43 24.0 2.020e-26 1.000e+01 1.000e+01 7.98e-26 3.51e-74 0.00e+00 1.22e-67 1.00e+00 1.00e+00 1.00e-01 44 24.6 2.020e-27 1.000e+01 1.000e+01 7.98e-27 3.92e-74 0.00e+00 9.42e-68 1.00e+00 1.00e+00 1.00e-01 45 25.2 2.021e-28 1.000e+01 1.000e+01 7.98e-28 4.31e-74 0.00e+00 6.81e-67 1.00e+00 1.00e+00 1.00e-01 46 25.8 2.021e-29 1.000e+01 1.000e+01 7.98e-29 1.95e-73 0.00e+00 7.47e-67 1.00e+00 1.00e+00 1.00e-01 47 26.3 2.021e-30 1.000e+01 1.000e+01 7.98e-30 1.55e-73 0.00e+00 7.95e-67 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 26.373295 seconds (60.80 M allocations: 2.987 GiB, 6.81% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:9.999999999999999999999999999988680863295008436833819664546322945335036725038421 Dual objective:10.00000000000000000000000000000464893114669296344325263779882502540994272899198 Duality gap:7.984033925842263304716486626253702794826491859520144403250637881615537005227784e-31 ** Starting computation of basis transformations ** Block (:trivariatesos, 4, 3) of size 1 x 1 Block (:F, 4) of size 1 x 1 Block (:F, 4) has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block (:trivariatesos, 2, 2) of size 1 x 1 Block (:trivariatesos, 1, 2) of size 2 x 2 Block (:trivariatesos, 4, 1) of size 2 x 2 Block (:F, 3) of size 2 x 2 Block (:F, 3) has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block (:trivariatesos, 5, 3) of size 3 x 3 Block (:trivariatesos, 5, 3) has 2 kernel vectors. The maximum numerator and denominator are 1 and 2 After reduction, the maximum number of the basis transformation matrix is 2 Block (:trivariatesos, 3, 3) of size 3 x 3 Block (:trivariatesos, 3, 3) has 1 kernel vectors. The maximum numerator and denominator are 7 and 6 After reduction, the maximum number of the basis transformation matrix is 7 Block (:F, 2) of size 3 x 3 Block (:F, 2) has 1 kernel vectors. The maximum numerator and denominator are 1 and 2 After reduction, the maximum number of the basis transformation matrix is 2 Block (:trivariatesos, 5, 1) of size 4 x 4 Block (:trivariatesos, 5, 1) has 3 kernel vectors. The maximum numerator and denominator are 1 and 6 After reduction, the maximum number of the basis transformation matrix is 3 Block (:univariatesos, 2) of size 4 x 4 Block (:univariatesos, 2) has 1 kernel vectors. The maximum numerator and denominator are 22 and 27 After reduction, the maximum number of the basis transformation matrix is 27 Block (:F, 1) of size 4 x 4 Block (:trivariatesos, 3, 1) of size 4 x 4 Block (:trivariatesos, 3, 1) has 1 kernel vectors. The maximum numerator and denominator are 49 and 36 After reduction, the maximum number of the basis transformation matrix is 49 Block (:univariatesos, 1) of size 5 x 5 Block (:univariatesos, 1) has 2 kernel vectors. The maximum numerator and denominator are 35 and 81 After reduction, the maximum number of the basis transformation matrix is 81 Block (:F, 0) of size 5 x 5 Block (:F, 0) has 1 kernel vectors. The maximum numerator and denominator are 23 and 144 After reduction, the maximum number of the basis transformation matrix is 144 Block (:trivariatesos, 2, 3) of size 6 x 6 Block (:trivariatesos, 2, 3) has 2 kernel vectors. The maximum numerator and denominator are 13 and 36 After reduction, the maximum number of the basis transformation matrix is 36 Block (:trivariatesos, 2, 1) of size 7 x 7 Block (:trivariatesos, 2, 1) has 2 kernel vectors. The maximum numerator and denominator are 67 and 36 After reduction, the maximum number of the basis transformation matrix is 66 Block (:trivariatesos, 1, 1) of size 11 x 11 Block (:trivariatesos, 1, 1) has 3 kernel vectors. The maximum numerator and denominator are 49 and 432 After reduction, the maximum number of the basis transformation matrix is 432 Block (:trivariatesos, 1, 3) of size 11 x 11 Block (:trivariatesos, 1, 3) has 2 kernel vectors. The maximum numerator and denominator are 67 and 72 After reduction, the maximum number of the basis transformation matrix is 72 ** Finished computation of basis transformations (4.303557822s) ** ** Transforming the problem and the solution ** (4.886590281s) ** Projection the solution into the affine space ** Reducing the system from 161 columns to 161 columns Constructing the linear system... (2.079148644s) Preprocessing to get an integer system... (0.011389888s) Finding the pivots of A using RREF mod p... (0.015637226 0.006843712 s) Solving the system of size 50 x 52 using the pseudoinverse... 0.238047101s ** Finished projection into affine space (3.214344587s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.224565803) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 1.000e+00 1.900e+11 1.00e+00 1.00e+10 0.00e+00 2.18e+11 3.69e-01 5.95e-01 3.00e-01 2 0.2 6.494e+19 1.223e+10 1.739e+11 8.69e-01 6.31e+09 0.00e+00 8.84e+10 7.31e-01 6.03e-01 3.00e-01 3 0.3 2.817e+19 3.102e+10 2.208e+11 7.54e-01 1.70e+09 0.00e+00 3.51e+10 6.85e-01 7.10e-01 3.00e-01 4 0.5 1.230e+19 3.546e+10 3.600e+11 8.21e-01 5.34e+08 0.00e+00 1.02e+10 5.57e-01 1.00e+00 3.00e-01 5 0.6 8.216e+18 2.178e+10 8.065e+11 9.47e-01 2.37e+08 0.00e+00 1.51e-78 7.69e-01 1.00e+00 3.00e-01 6 0.7 3.035e+18 5.560e+09 1.290e+12 9.91e-01 5.47e+07 0.00e+00 1.04e-77 8.01e-01 1.00e+00 3.00e-01 7 0.8 9.665e+17 1.150e+09 2.064e+12 9.99e-01 1.09e+07 0.00e+00 3.47e-77 8.65e-01 1.00e+00 3.00e-01 8 0.9 2.092e+17 1.573e+08 3.302e+12 1.00e+00 1.47e+06 0.00e+00 9.67e-77 8.98e-01 1.00e+00 3.00e-01 9 1.0 3.428e+16 1.603e+07 5.284e+12 1.00e+00 1.51e+05 0.00e+00 3.21e-76 8.88e-01 1.00e+00 3.00e-01 10 1.1 6.127e+15 1.797e+06 8.453e+12 1.00e+00 1.68e+04 0.00e+00 2.65e-76 8.99e-01 1.00e+00 3.00e-01 11 1.2 9.935e+14 1.816e+05 1.352e+13 1.00e+00 1.71e+03 0.00e+00 5.55e-76 8.93e-01 1.00e+00 3.00e-01 12 1.3 1.699e+14 1.946e+04 2.163e+13 1.00e+00 1.82e+02 0.00e+00 7.12e-76 9.00e-01 1.00e+00 3.00e-01 13 1.4 2.794e+13 2.009e+03 3.442e+13 1.00e+00 1.82e+01 0.00e+00 3.29e-75 8.98e-01 1.00e+00 3.00e-01 14 1.5 5.597e+12 2.662e+02 5.231e+13 1.00e+00 1.86e+00 0.00e+00 5.65e-76 8.79e-01 1.00e+00 3.00e-01 15 1.6 2.030e+12 9.171e+01 5.562e+13 1.00e+00 2.25e-01 0.00e+00 1.23e-75 7.97e-01 1.00e+00 3.00e-01 16 1.7 7.056e+11 7.350e+01 2.417e+13 1.00e+00 4.58e-02 0.00e+00 3.21e-76 8.24e-01 1.00e+00 3.00e-01 17 1.8 2.136e+11 7.073e+01 7.703e+12 1.00e+00 8.06e-03 0.00e+00 5.84e-77 1.00e+00 1.00e+00 3.00e-01 18 1.9 6.305e+10 6.979e+01 2.396e+12 1.00e+00 6.28e-89 0.00e+00 1.15e-75 1.00e+00 1.00e+00 3.00e-01 19 2.0 1.891e+10 6.985e+01 7.188e+11 1.00e+00 3.14e-89 0.00e+00 7.58e-75 9.94e-01 9.94e-01 1.00e-01 20 2.2 1.996e+09 6.986e+01 7.583e+10 1.00e+00 6.28e-89 0.00e+00 1.59e-76 1.00e+00 1.00e+00 1.00e-01 21 2.3 2.003e+08 6.986e+01 7.613e+09 1.00e+00 6.28e-89 0.00e+00 2.01e-77 1.00e+00 1.00e+00 1.00e-01 22 2.4 2.005e+07 6.987e+01 7.618e+08 1.00e+00 6.28e-89 0.00e+00 1.31e-78 1.00e+00 1.00e+00 1.00e-01 23 2.5 2.005e+06 6.987e+01 7.619e+07 1.00e+00 6.28e-89 0.00e+00 1.46e-79 1.00e+00 1.00e+00 1.00e-01 24 2.6 2.005e+05 6.988e+01 7.620e+06 1.00e+00 6.28e-89 0.00e+00 3.27e-80 1.00e+00 1.00e+00 1.00e-01 25 2.7 2.006e+04 6.988e+01 7.622e+05 1.00e+00 6.28e-89 0.00e+00 7.83e-82 1.00e+00 1.00e+00 1.00e-01 26 2.8 2.007e+03 6.989e+01 7.635e+04 9.98e-01 3.14e-89 0.00e+00 1.06e-82 9.99e-01 9.99e-01 1.00e-01 27 2.9 2.026e+02 6.998e+01 7.768e+03 9.82e-01 6.28e-89 0.00e+00 1.54e-83 9.90e-01 9.90e-01 1.00e-01 28 3.0 2.205e+01 7.086e+01 9.087e+02 8.55e-01 6.28e-89 0.00e+00 3.30e-84 9.26e-01 9.26e-01 1.00e-01 29 3.1 3.666e+00 7.788e+01 2.172e+02 4.72e-01 6.28e-89 0.00e+00 1.01e-83 8.10e-01 8.10e-01 1.00e-01 30 3.2 9.925e-01 1.015e+02 1.392e+02 1.57e-01 6.28e-89 0.00e+00 3.02e-84 6.72e-01 6.72e-01 1.00e-01 31 3.3 3.920e-01 1.120e+02 1.269e+02 6.23e-02 6.28e-89 0.00e+00 3.51e-84 8.04e-01 8.04e-01 1.00e-01 32 3.4 1.082e-01 1.179e+02 1.220e+02 1.71e-02 3.14e-89 0.00e+00 1.48e-84 8.72e-01 8.72e-01 1.00e-01 33 3.5 2.330e-02 1.195e+02 1.204e+02 3.69e-03 6.28e-89 0.00e+00 2.85e-84 9.67e-01 9.67e-01 1.00e-01 34 3.6 3.027e-03 1.199e+02 1.201e+02 4.79e-04 3.14e-89 0.00e+00 1.64e-84 9.83e-01 9.83e-01 1.00e-01 35 3.8 3.477e-04 1.200e+02 1.200e+02 5.51e-05 6.28e-89 0.00e+00 2.16e-84 9.94e-01 9.94e-01 1.00e-01 36 3.9 3.680e-05 1.200e+02 1.200e+02 5.83e-06 1.26e-88 0.00e+00 1.31e-84 9.99e-01 9.99e-01 1.00e-01 37 4.0 3.724e-06 1.200e+02 1.200e+02 5.90e-07 6.28e-89 0.00e+00 2.12e-84 1.00e+00 1.00e+00 1.00e-01 38 4.1 3.730e-07 1.200e+02 1.200e+02 5.91e-08 6.28e-89 0.00e+00 1.02e-84 1.00e+00 1.00e+00 1.00e-01 39 4.2 3.731e-08 1.200e+02 1.200e+02 5.91e-09 6.28e-89 0.00e+00 3.66e-84 1.00e+00 1.00e+00 1.00e-01 40 4.3 3.732e-09 1.200e+02 1.200e+02 5.91e-10 1.26e-88 0.00e+00 1.81e-84 1.00e+00 1.00e+00 1.00e-01 41 4.4 3.732e-10 1.200e+02 1.200e+02 5.91e-11 6.28e-89 0.00e+00 2.82e-84 1.00e+00 1.00e+00 1.00e-01 42 4.5 3.733e-11 1.200e+02 1.200e+02 5.91e-12 6.28e-89 0.00e+00 3.37e-84 1.00e+00 1.00e+00 1.00e-01 43 4.6 3.733e-12 1.200e+02 1.200e+02 5.91e-13 3.14e-89 0.00e+00 4.05e-84 1.00e+00 1.00e+00 1.00e-01 44 4.7 3.733e-13 1.200e+02 1.200e+02 5.91e-14 3.14e-89 0.00e+00 6.83e-84 1.00e+00 1.00e+00 1.00e-01 45 4.8 3.734e-14 1.200e+02 1.200e+02 5.91e-15 6.28e-89 0.00e+00 1.13e-84 1.00e+00 1.00e+00 1.00e-01 46 4.9 3.734e-15 1.200e+02 1.200e+02 5.91e-16 6.28e-89 0.00e+00 2.24e-84 1.00e+00 1.00e+00 1.00e-01 47 5.0 3.735e-16 1.200e+02 1.200e+02 5.91e-17 1.26e-88 0.00e+00 7.86e-83 1.00e+00 1.00e+00 1.00e-01 48 5.1 3.735e-17 1.200e+02 1.200e+02 5.91e-18 1.89e-88 0.00e+00 2.10e-83 1.00e+00 1.00e+00 1.00e-01 49 5.2 3.735e-18 1.200e+02 1.200e+02 5.91e-19 6.28e-89 0.00e+00 1.06e-82 1.00e+00 1.00e+00 1.00e-01 50 5.3 3.736e-19 1.200e+02 1.200e+02 5.91e-20 6.28e-89 0.00e+00 6.58e-83 1.00e+00 1.00e+00 1.00e-01 51 5.4 3.736e-20 1.200e+02 1.200e+02 5.92e-21 6.28e-89 0.00e+00 4.42e-82 1.00e+00 1.00e+00 1.00e-01 52 5.6 3.736e-21 1.200e+02 1.200e+02 5.92e-22 1.26e-88 0.00e+00 9.41e-82 1.00e+00 1.00e+00 1.00e-01 53 5.7 3.737e-22 1.200e+02 1.200e+02 5.92e-23 6.28e-89 0.00e+00 2.60e-82 1.00e+00 1.00e+00 1.00e-01 54 5.8 3.737e-23 1.200e+02 1.200e+02 5.92e-24 6.28e-89 0.00e+00 3.43e-81 1.00e+00 1.00e+00 1.00e-01 55 5.9 3.738e-24 1.200e+02 1.200e+02 5.92e-25 1.26e-88 0.00e+00 5.61e-81 1.00e+00 1.00e+00 1.00e-01 56 6.0 3.738e-25 1.200e+02 1.200e+02 5.92e-26 6.28e-89 0.00e+00 1.64e-80 1.00e+00 1.00e+00 1.00e-01 57 6.1 3.738e-26 1.200e+02 1.200e+02 5.92e-27 6.28e-89 0.00e+00 4.11e-80 1.00e+00 1.00e+00 1.00e-01 58 6.2 3.739e-27 1.200e+02 1.200e+02 5.92e-28 6.28e-89 0.00e+00 2.86e-80 1.00e+00 1.00e+00 1.00e-01 59 6.3 3.739e-28 1.200e+02 1.200e+02 5.92e-29 3.14e-89 0.00e+00 6.13e-80 1.00e+00 1.00e+00 1.00e-01 60 6.4 3.739e-29 1.200e+02 1.200e+02 5.92e-30 3.19e-89 0.00e+00 1.03e-79 1.00e+00 1.00e+00 1.00e-01 61 6.5 3.740e-30 1.200e+02 1.200e+02 5.92e-31 6.28e-89 0.00e+00 4.57e-79 1.00e+00 1.00e+00 1.00e-01 62 6.6 3.740e-31 1.200e+02 1.200e+02 5.92e-32 1.26e-88 0.00e+00 2.16e-78 1.00e+00 1.00e+00 1.00e-01 63 6.7 3.741e-32 1.200e+02 1.200e+02 5.92e-33 3.14e-89 0.00e+00 6.70e-79 1.00e+00 1.00e+00 1.00e-01 64 6.8 3.741e-33 1.200e+02 1.200e+02 5.92e-34 6.28e-89 0.00e+00 1.20e-78 1.00e+00 1.00e+00 1.00e-01 65 6.9 3.741e-34 1.200e+02 1.200e+02 5.92e-35 1.26e-88 0.00e+00 1.18e-77 1.00e+00 1.00e+00 1.00e-01 66 7.0 3.742e-35 1.200e+02 1.200e+02 5.92e-36 1.26e-88 0.00e+00 1.28e-77 1.00e+00 1.00e+00 1.00e-01 67 7.2 3.742e-36 1.200e+02 1.200e+02 5.92e-37 1.26e-88 0.00e+00 2.05e-77 1.00e+00 1.00e+00 1.00e-01 68 7.3 3.742e-37 1.200e+02 1.200e+02 5.93e-38 6.28e-89 0.00e+00 8.36e-77 1.00e+00 1.00e+00 1.00e-01 69 7.4 3.743e-38 1.200e+02 1.200e+02 5.93e-39 6.28e-89 0.00e+00 6.43e-77 1.00e+00 1.00e+00 1.00e-01 70 7.5 3.743e-39 1.200e+02 1.200e+02 5.93e-40 6.28e-89 0.00e+00 2.97e-76 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 7.486983 seconds (21.31 M allocations: 1.050 GiB, 10.33% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:119.99999999999999999999999999999999999999176427167606683527965030363373174562692565324923316 Dual objective:120.00000000000000000000000000000000000000598962059922411979661796099364963954411151921400526 Duality gap:5.9272287179822018820698572332991224654941662902975812131535298798355013568151311032701235123e-41 ** Starting computation of basis transformations ** Block 14 of size 1 x 1 Block 3 of size 1 x 1 Block 17 of size 1 x 1 Block 6 of size 1 x 1 Block 9 of size 1 x 1 Block 12 of size 1 x 1 Block 12 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 1 of size 1 x 1 Block 15 of size 1 x 1 Block 4 of size 1 x 1 Block 18 of size 1 x 1 Block 0 of size 1 x 1 Block 0 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 7 of size 1 x 1 Block 10 of size 1 x 1 Block 13 of size 1 x 1 Block 2 of size 1 x 1 Block 16 of size 1 x 1 Block 5 of size 1 x 1 Block 8 of size 1 x 1 Block 11 of size 1 x 1 Block B of size 9 x 9 Block B has 6 kernel vectors. The maximum numerator and denominator are 18 and 2 After reduction, the maximum number of the basis transformation matrix is 10 Block A of size 10 x 10 Block A has 8 kernel vectors. The maximum numerator and denominator are 12 and 1 After reduction, the maximum number of the basis transformation matrix is 1 ** Finished computation of basis transformations (5.44005178s) ** ** Transforming the problem and the solution ** (6.780573963s) ** Projection the solution into the affine space ** Reducing the system from 26 columns to 26 columns Constructing the linear system... (1.773453089s) Computing an approximate solution in the extension field... (0.462805221s) Preprocessing to get an integer system... (0.004494436s) Finding the pivots of A using RREF mod p... (0.003991101 0.003690004 s) Solving the system of size 38 x 40 using the pseudoinverse... 0.023128903s ** Finished projection into affine space (4.008682338s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.198611898) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 1.000e+00 7.000e+10 1.00e+00 1.00e+10 0.00e+00 7.05e+10 6.66e-01 6.95e-01 3.00e-01 2 0.1 4.559e+19 1.338e+10 7.193e+10 6.86e-01 3.34e+09 0.00e+00 2.15e+10 7.05e-01 7.53e-01 3.00e-01 3 0.1 1.822e+19 2.640e+10 9.901e+10 5.79e-01 9.85e+08 0.00e+00 5.31e+09 6.16e-01 7.88e-01 3.00e-01 4 0.1 8.970e+18 3.260e+10 1.789e+11 6.92e-01 3.78e+08 0.00e+00 1.12e+09 7.73e-01 1.00e+00 3.00e-01 5 0.1 3.189e+18 1.238e+10 3.561e+11 9.33e-01 8.58e+07 0.00e+00 2.15e-142 8.40e-01 1.00e+00 3.00e-01 6 0.1 8.172e+17 2.052e+09 5.731e+11 9.93e-01 1.37e+07 0.00e+00 7.28e-142 8.95e-01 1.00e+00 3.00e-01 7 0.2 1.367e+17 2.121e+08 9.202e+11 1.00e+00 1.44e+06 0.00e+00 4.00e-141 8.90e-01 1.00e+00 3.00e-01 8 0.2 2.412e+16 2.361e+07 1.476e+12 1.00e+00 1.58e+05 0.00e+00 4.06e-141 8.97e-01 1.00e+00 3.00e-01 9 0.2 3.957e+15 2.403e+06 2.364e+12 1.00e+00 1.62e+04 0.00e+00 7.81e-141 8.94e-01 1.00e+00 3.00e-01 10 0.2 6.738e+14 2.573e+05 3.785e+12 1.00e+00 1.73e+03 0.00e+00 5.62e-141 8.99e-01 1.00e+00 3.00e-01 11 0.2 1.095e+14 2.604e+04 6.056e+12 1.00e+00 1.75e+02 0.00e+00 1.80e-141 8.99e-01 1.00e+00 3.00e-01 12 0.2 1.816e+13 2.738e+03 9.636e+12 1.00e+00 1.76e+01 0.00e+00 1.10e-140 9.13e-01 1.00e+00 3.00e-01 13 0.3 3.342e+12 3.449e+02 1.456e+13 1.00e+00 1.53e+00 0.00e+00 5.81e-140 1.00e+00 1.00e+00 3.00e-01 14 0.3 1.007e+12 1.188e+02 1.410e+13 1.00e+00 1.91e-152 0.00e+00 2.68e-140 1.00e+00 1.00e+00 3.00e-01 15 0.3 3.022e+11 1.198e+02 4.231e+12 1.00e+00 1.91e-152 0.00e+00 3.30e-141 9.99e-01 9.99e-01 1.00e-01 16 0.3 3.062e+10 1.199e+02 4.287e+11 1.00e+00 9.55e-153 0.00e+00 1.45e-142 1.00e+00 1.00e+00 1.00e-01 17 0.3 3.063e+09 1.200e+02 4.288e+10 1.00e+00 4.77e-153 0.00e+00 1.70e-143 1.00e+00 1.00e+00 1.00e-01 18 0.3 3.063e+08 1.201e+02 4.288e+09 1.00e+00 9.55e-153 0.00e+00 1.31e-143 1.00e+00 1.00e+00 1.00e-01 19 0.4 3.063e+07 1.202e+02 4.289e+08 1.00e+00 9.55e-153 0.00e+00 1.80e-145 1.00e+00 1.00e+00 1.00e-01 20 0.4 3.064e+06 1.202e+02 4.289e+07 1.00e+00 2.86e-152 0.00e+00 2.50e-146 1.00e+00 1.00e+00 1.00e-01 21 0.4 3.064e+05 1.203e+02 4.290e+06 1.00e+00 9.55e-153 0.00e+00 1.24e-146 1.00e+00 1.00e+00 1.00e-01 22 0.4 3.065e+04 1.203e+02 4.292e+05 9.99e-01 9.55e-153 0.00e+00 3.59e-148 1.00e+00 1.00e+00 1.00e-01 23 0.4 3.075e+03 1.204e+02 4.317e+04 9.94e-01 9.55e-153 0.00e+00 1.05e-149 9.97e-01 9.97e-01 1.00e-01 24 0.4 3.167e+02 1.211e+02 4.554e+03 9.48e-01 9.55e-153 0.00e+00 1.23e-149 9.70e-01 9.70e-01 1.00e-01 25 0.5 4.021e+01 1.274e+02 6.904e+02 6.88e-01 1.91e-152 0.00e+00 1.14e-150 8.70e-01 8.70e-01 1.00e-01 26 0.5 8.743e+00 1.689e+02 2.913e+02 2.66e-01 9.55e-153 0.00e+00 4.99e-151 9.15e-01 9.15e-01 1.00e-01 27 0.5 1.547e+00 2.316e+02 2.532e+02 4.47e-02 1.91e-152 0.00e+00 2.94e-151 9.82e-01 9.82e-01 1.00e-01 28 0.5 1.800e-01 2.389e+02 2.414e+02 5.25e-03 1.91e-152 0.00e+00 9.79e-151 9.89e-01 9.89e-01 1.00e-01 29 0.5 1.986e-02 2.399e+02 2.401e+02 5.79e-04 1.91e-152 0.00e+00 7.52e-152 9.97e-01 9.97e-01 1.00e-01 30 0.6 2.030e-03 2.400e+02 2.400e+02 5.92e-05 1.91e-152 0.00e+00 2.05e-151 1.00e+00 1.00e+00 1.00e-01 31 0.6 2.034e-04 2.400e+02 2.400e+02 5.93e-06 1.91e-152 0.00e+00 1.05e-150 1.00e+00 1.00e+00 1.00e-01 32 0.6 2.035e-05 2.400e+02 2.400e+02 5.93e-07 1.91e-152 0.00e+00 1.19e-150 1.00e+00 1.00e+00 1.00e-01 33 0.6 2.035e-06 2.400e+02 2.400e+02 5.94e-08 3.82e-152 0.00e+00 2.45e-151 1.00e+00 1.00e+00 1.00e-01 34 0.6 2.035e-07 2.400e+02 2.400e+02 5.94e-09 3.82e-152 0.00e+00 1.23e-150 1.00e+00 1.00e+00 1.00e-01 35 0.6 2.035e-08 2.400e+02 2.400e+02 5.94e-10 1.91e-152 0.00e+00 1.21e-150 1.00e+00 1.00e+00 1.00e-01 36 0.7 2.036e-09 2.400e+02 2.400e+02 5.94e-11 1.91e-152 0.00e+00 2.45e-151 1.00e+00 1.00e+00 1.00e-01 37 0.7 2.036e-10 2.400e+02 2.400e+02 5.94e-12 1.91e-152 0.00e+00 1.84e-151 1.00e+00 1.00e+00 1.00e-01 38 0.7 2.036e-11 2.400e+02 2.400e+02 5.94e-13 1.91e-152 0.00e+00 1.02e-150 1.00e+00 1.00e+00 1.00e-01 39 0.7 2.036e-12 2.400e+02 2.400e+02 5.94e-14 1.91e-152 0.00e+00 7.25e-151 1.00e+00 1.00e+00 1.00e-01 40 0.7 2.036e-13 2.400e+02 2.400e+02 5.94e-15 1.91e-152 0.00e+00 2.13e-150 1.00e+00 1.00e+00 1.00e-01 41 0.7 2.037e-14 2.400e+02 2.400e+02 5.94e-16 9.55e-153 0.00e+00 4.32e-150 1.00e+00 1.00e+00 1.00e-01 42 0.8 2.037e-15 2.400e+02 2.400e+02 5.94e-17 1.91e-152 0.00e+00 1.82e-151 1.00e+00 1.00e+00 1.00e-01 43 0.8 2.037e-16 2.400e+02 2.400e+02 5.94e-18 9.55e-153 0.00e+00 1.13e-149 1.00e+00 1.00e+00 1.00e-01 44 0.8 2.037e-17 2.400e+02 2.400e+02 5.94e-19 1.91e-152 0.00e+00 3.63e-149 1.00e+00 1.00e+00 1.00e-01 45 0.8 2.037e-18 2.400e+02 2.400e+02 5.94e-20 1.91e-152 0.00e+00 1.94e-149 1.00e+00 1.00e+00 1.00e-01 46 0.8 2.038e-19 2.400e+02 2.400e+02 5.94e-21 1.91e-152 0.00e+00 1.67e-149 1.00e+00 1.00e+00 1.00e-01 47 0.9 2.038e-20 2.400e+02 2.400e+02 5.94e-22 9.55e-153 0.00e+00 2.83e-148 1.00e+00 1.00e+00 1.00e-01 48 0.9 2.038e-21 2.400e+02 2.400e+02 5.94e-23 1.91e-152 0.00e+00 6.92e-148 1.00e+00 1.00e+00 1.00e-01 49 0.9 2.038e-22 2.400e+02 2.400e+02 5.94e-24 1.91e-152 0.00e+00 4.29e-148 1.00e+00 1.00e+00 1.00e-01 50 0.9 2.038e-23 2.400e+02 2.400e+02 5.95e-25 1.91e-152 0.00e+00 1.76e-147 1.00e+00 1.00e+00 1.00e-01 51 0.9 2.039e-24 2.400e+02 2.400e+02 5.95e-26 3.82e-152 0.00e+00 4.60e-147 1.00e+00 1.00e+00 1.00e-01 52 0.9 2.039e-25 2.400e+02 2.400e+02 5.95e-27 1.91e-152 0.00e+00 1.87e-146 1.00e+00 1.00e+00 1.00e-01 53 1.0 2.039e-26 2.400e+02 2.400e+02 5.95e-28 1.91e-152 0.00e+00 1.47e-146 1.00e+00 1.00e+00 1.00e-01 54 1.0 2.039e-27 2.400e+02 2.400e+02 5.95e-29 1.91e-152 0.00e+00 3.95e-146 1.00e+00 1.00e+00 1.00e-01 55 1.0 2.039e-28 2.400e+02 2.400e+02 5.95e-30 1.91e-152 0.00e+00 1.26e-146 1.00e+00 1.00e+00 1.00e-01 56 1.0 2.040e-29 2.400e+02 2.400e+02 5.95e-31 1.91e-152 0.00e+00 5.63e-146 1.00e+00 1.00e+00 1.00e-01 57 1.0 2.040e-30 2.400e+02 2.400e+02 5.95e-32 3.82e-152 0.00e+00 3.18e-145 1.00e+00 1.00e+00 1.00e-01 58 1.1 2.040e-31 2.400e+02 2.400e+02 5.95e-33 3.82e-152 0.00e+00 3.88e-145 1.00e+00 1.00e+00 1.00e-01 59 1.1 2.040e-32 2.400e+02 2.400e+02 5.95e-34 1.91e-152 0.00e+00 5.49e-145 1.00e+00 1.00e+00 1.00e-01 60 1.1 2.040e-33 2.400e+02 2.400e+02 5.95e-35 1.91e-152 0.00e+00 7.64e-145 1.00e+00 1.00e+00 1.00e-01 61 1.1 2.041e-34 2.400e+02 2.400e+02 5.95e-36 1.91e-152 0.00e+00 2.76e-144 1.00e+00 1.00e+00 1.00e-01 62 1.1 2.041e-35 2.400e+02 2.400e+02 5.95e-37 1.91e-152 0.00e+00 8.37e-144 1.00e+00 1.00e+00 1.00e-01 63 1.1 2.041e-36 2.400e+02 2.400e+02 5.95e-38 9.55e-153 0.00e+00 1.45e-143 1.00e+00 1.00e+00 1.00e-01 64 1.2 2.041e-37 2.400e+02 2.400e+02 5.95e-39 1.91e-152 0.00e+00 2.92e-143 1.00e+00 1.00e+00 1.00e-01 65 1.2 2.041e-38 2.400e+02 2.400e+02 5.95e-40 1.91e-152 0.00e+00 4.94e-143 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 1.187009 seconds (2.74 M allocations: 136.979 MiB, 19.92% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:239.999999999999999999999999999999999999985708469320769999322987426806722590420696424285764120096636890240337026668799140129542132424280269825944339510688416 Dual objective:240.000000000000000000000000000000000000014291530679230000677012573193277409579338813675672092080504102103274823792399452983674642939004827767399759914919111 Duality gap:5.9548044496791669487552388305322539913838311228974941633056691381120410674167314074543364447776977041692421061052676245728044049015651171572515166002276323e-41 [ Info: Empty constraint found and removed. [ Info: Empty constraint found and removed. [ Info: The coefficient for the PSD variable 1 has an empty decomposition in a constraint, so we remove it from that constraint. [ Info: The matrix variable 1 is not used in any constraint and will be removed. Test Summary: | Pass Total Time ClusteredLowRankSolver.jl | 36 36 8m16.8s Testing ClusteredLowRankSolver tests passed Testing completed after 511.03s PkgEval succeeded after 615.58s