Package evaluation of QuasiNewtonMethods on Julia 1.10.8 (92f03a4775*) started at 2025-02-25T08:49:30.608 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 3.7s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.10/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.10/Manifest.toml` [79e6a3ab] + Adapt v4.2.0 [4fba245c] + ArrayInterface v7.18.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.16.0 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.3 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.171 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.15.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.0 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.2 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.71 [56f22d72] + Artifacts [2a0f44e3] + Base64 [ade2ca70] + Dates [76f85450] + LibGit2 [8f399da3] + Libdl [37e2e46d] + LinearAlgebra [d6f4376e] + Markdown [ca575930] + NetworkOptions v1.2.0 [de0858da] + Printf [9a3f8284] + Random [ea8e919c] + SHA v0.7.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs [4ec0a83e] + Unicode [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [e37daf67] + LibGit2_jll v1.6.4+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.2+1 [4536629a] + OpenBLAS_jll v0.3.23+4 [8e850b90] + libblastrampoline_jll v5.11.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 3.87s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 100.39s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_hRz1k3/Project.toml` [4c88cf16] Aqua v0.8.11 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test Status `/tmp/jl_hRz1k3/Manifest.toml` [79e6a3ab] Adapt v4.2.0 [4c88cf16] Aqua v0.8.11 [4fba245c] ArrayInterface v7.18.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.16.0 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.3 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.171 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.28 [6fe1bfb0] OffsetArrays v1.15.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.0 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.2 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.71 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.10 [0dad84c5] ArgTools v1.1.1 [56f22d72] Artifacts [2a0f44e3] Base64 [ade2ca70] Dates [8ba89e20] Distributed [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching [b77e0a4c] InteractiveUtils [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 [8f399da3] Libdl [37e2e46d] LinearAlgebra [56ddb016] Logging [d6f4376e] Markdown [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.10.0 [de0858da] Printf [3fa0cd96] REPL [9a3f8284] Random [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization [6462fe0b] Sockets [2f01184e] SparseArrays v1.10.0 [10745b16] Statistics v1.10.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test [cf7118a7] UUIDs [4ec0a83e] Unicode [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.4.0+0 [e37daf67] LibGit2_jll v1.6.4+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.2+1 [14a3606d] MozillaCACerts_jll v2023.1.10 [4536629a] OpenBLAS_jll v0.3.23+4 [bea87d4a] SuiteSparse_jll v7.2.1+1 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.52.0+1 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. QuasiNewtonMethods [64452400-c6f4-4a1d-a4f6-ad403655768a] does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] QuasiNewtonMethods [64452400-c6f4-4a1d-a4f6-ad403655768a] extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/epbUr/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Test [8dfed614-e22c-5e08-85e1-65c5234f0b40]]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:672 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/epbUr/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/epbUr/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/epbUr/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/epbUr/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [6.348568337699589e-10, 1.2727867648720803e-9] QuasiNewtonMethods.optimum(state) .- 1 = [-1.457434173346428e-11, -2.95969915242722e-11] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [-3.2294167340296553e-12, -4.3725023601837165e-12, -9.919665089341834e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-7.189471240565126e-12, -1.3729017922514686e-11, 1.2119194536808209e-12] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [1.7820411812863313e-11, 1.4978907003637687e-11, 3.2898350710297564e-11, 3.334643672303628e-11] QuasiNewtonMethods.optimum(state) .- 1 = [6.055933532422841e-11, -2.7855495687845178e-12, 1.197983934275726e-10, -5.837330618874148e-12] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [2.0367263431353422e-11, 7.619682662607374e-11, 3.413158644605119e-11, 1.602433741254572e-10, 6.716627254377272e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.9207968549039833e-11, -9.740197537411177e-11, -3.679634374975649e-11, -2.0821311341734372e-10, 2.5657254099087368e-12] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [-8.954814667561095e-11, 1.3813306054544228e-10, 7.867462237243217e-11, -1.9283441510253851e-10, 2.784494856911124e-10, 1.7292833831561438e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-4.990896584899929e-12, -1.658628789868999e-11, -5.565770067050835e-12, -1.2136625038294824e-11, -3.6912695122737205e-11, 5.70898883722748e-12] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [6.300315824603331e-11, -9.867373584881989e-11, 1.6474910324859593e-10, 1.2148726469263238e-10, -1.828012186066985e-10, 3.17839976560208e-10, -4.4932058074209635e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.1406120492551963e-10, -1.0294920471665137e-10, -8.770584258854797e-11, 2.0870594141797483e-10, -2.0816626200570454e-10, -1.7137102847897268e-10, -7.393473611116974e-10] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [2.7309932093544376e-11, -3.0109248427834245e-13, 7.658096379259405e-12, -7.040845684258557e-11, 5.170130989995414e-11, 4.14890344302421e-12, 9.624745445080407e-12, -1.3781209506902314e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.8383072841743342e-11, -4.985345469776803e-12, 1.9069856804776464e-11, 3.714184515501984e-11, -3.4383940139548486e-11, 2.2737367544323206e-13, 3.773115153649087e-11, 7.612199759421401e-11] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [1.8674839452614833e-11, -1.199449428668231e-10, 9.151568391985165e-11, 1.233679824963474e-11, 3.097810896690589e-11, -2.4948698662541346e-10, 1.6672130342954006e-10, 3.284128524683183e-11, -6.474043523496675e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-2.425881717726952e-11, 1.4770695777599485e-10, 4.186291313601487e-10, -2.8952440445095817e-10, -3.407951698619627e-11, 3.185425256901908e-10, 8.310154786528301e-10, -5.878856290664203e-10, 1.500013446786852e-10] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [3.861866382237622e-11, 1.0978484787926845e-10, -2.019862055391286e-11, -3.080313781822497e-11, 3.313660457138212e-11, 7.53848095058629e-11, 2.324160863764746e-10, -4.318412294423979e-11, -5.652978085635141e-11, 6.657430162704259e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.775783964319544e-10, -1.0814549256110695e-10, -1.7381873718136376e-11, -4.457889613007637e-11, 2.8515634298287296e-10, -3.5649205809562545e-10, -2.2194057702762393e-10, -3.7366776339808894e-11, -7.807821056360353e-11, 5.542053482798792e-10] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [5.576761274994624e-11, 9.080514118409155e-12, 5.203415476273676e-11, 8.522138550404179e-11, -5.6312954299642115e-11, 1.0310308162786441e-10, 8.854028621385623e-12, 9.442424619976464e-11, 1.6757573106929158e-10, -1.0549772166967841e-10, -2.5035862272204668e-11] QuasiNewtonMethods.optimum(state) .- 1 = [2.9294122683154455e-11, 8.253486782905384e-11, -2.3767432466570426e-10, -1.93763005640335e-10, 7.930389678278971e-11, 5.711808803710028e-11, 1.511766267725534e-10, -4.763885952385749e-10, -3.85297238558735e-10, 1.5899392913354404e-10, -3.899325307088475e-12] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [-8.358547187725662e-11, -6.251632544973518e-11, 2.4420021560445093e-11, 8.865574940841725e-12, -2.3463231357823133e-11, 1.4736434295059553e-11, -1.6332657448714372e-10, -1.2140177751973624e-10, 2.5414781390509233e-11, 1.2703171847761041e-11, -5.3840709668406816e-11, 3.9605208002058134e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.125388836622278e-12, 1.9200419032472382e-11, 3.0353719537856705e-11, -2.1558088647566365e-11, -4.308697842958509e-11, 2.6054713941903174e-12, 1.0680345496894006e-13, 3.835554096554006e-11, 6.447176126300747e-11, -4.491196303746392e-11, -8.842326870706074e-11, 1.460387366591931e-12] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [-1.3657186492821438e-11, -4.587752400198042e-11, 6.015365983103038e-11, 7.2657435623568745e-12, 2.3497648271586513e-11, -3.9752201530518505e-11, -3.80441234071327e-11, -9.085376895257014e-11, 1.1381584563707747e-10, 7.703171434059186e-12, 4.101408102030746e-11, -7.556166803368569e-11, 2.9956481739645824e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-5.216294063359328e-11, -9.393041899841137e-12, 2.744027227663537e-12, -5.791034318747279e-12, -8.01714250542318e-12, 8.61599680490599e-12, -1.0078571310856432e-10, -1.975908325846376e-11, 8.392841976956333e-12, -1.416788908414901e-11, -1.4451440044638275e-11, 1.727351595093296e-11, 4.476419235288631e-12] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [1.5228351912810467e-10, 1.6342482922482304e-13, -3.226718892079816e-11, 1.7156720488742394e-11, -1.3840761869943208e-10, -7.081335517966636e-12, 4.569833400580592e-11, 3.0239988291214104e-10, 1.368549717994938e-11, -6.212397263283265e-11, 4.4550363398343507e-11, -2.8830238196775326e-10, -2.209976646128098e-11, 9.385936472483536e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.3035328372268395e-10, 3.806555071150797e-11, -1.029831775412049e-10, -1.9545731699821545e-10, -8.213085767039274e-11, -1.375228819711083e-10, -7.972511539833249e-13, 2.7369795319032164e-10, 7.564415760441534e-11, -2.217638295221036e-10, -4.021037947055106e-10, -1.6727597085264279e-10, -2.652174035944199e-10, 4.742872761198669e-13] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [7.251177436273792e-11, 3.4173330831777093e-11, -1.792263004674055e-10, -2.575128998927312e-10, 3.125528724723381e-10, -1.1507339525707039e-10, 2.0221913032969496e-10, 1.4601875264474984e-10, 6.746070368990331e-11, -3.6427194594068624e-10, -5.16575893172444e-10, 6.267950602989458e-10, -2.3226698342426744e-10, 4.1177350418308833e-10, 8.990808098019443e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.0889789070489542e-10, 2.061084636295618e-11, 9.120482147295661e-12, 7.253131428797133e-11, -1.0663447902459211e-10, 5.183853346579781e-11, -8.627809577888002e-11, -2.2274959654566828e-10, 3.638511714143533e-11, 2.4288127065119625e-11, 1.376498914851254e-10, -2.1757884383077908e-10, 1.0555445406623676e-10, -1.7230028515058393e-10, 4.2796877153250534e-12] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [-7.75327579916052e-11, 3.692757211126718e-11, -5.8108295952763456e-11, -1.876687694135626e-11, 5.995737240027665e-11, -7.384692857215214e-11, 3.454569963423637e-11, -5.114753065527111e-11, -1.6294376958825296e-10, 6.81179557204814e-11, -1.174188524188935e-10, -4.7742809705653144e-11, 1.2048895214888944e-10, -1.4233780820660513e-10, 6.264122554000551e-11, -1.1843515057563536e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.6841972261261162e-11, 2.0473622797112512e-11, -7.332134899229459e-11, -4.682787491105955e-11, -1.2292167284044808e-11, 2.355404760123747e-11, -8.708456178396773e-11, -5.3072324313063746e-11, -3.524502911744776e-11, 3.8553160663923336e-11, -1.539163241304209e-10, -9.406397882827378e-11, -2.701316947906207e-11, 5.093636623598741e-11, -1.82007520166394e-10, -1.0589618071321638e-10] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [-9.844480786114218e-11, -3.90784071768735e-11, -1.6211587627878998e-11, 5.099698441313194e-12, 1.3076428828640019e-11, -1.1734047067335496e-10, 8.627831782348494e-11, 2.0816792734024148e-10, -1.9765045156105998e-10, -7.616396402454484e-11, -3.247047075660703e-11, -1.124766946247746e-12, 3.192801578677518e-11, -2.203711657600138e-10, 1.6888201948006554e-10, 4.3128300930561636e-10, -9.992007221626409e-16] QuasiNewtonMethods.optimum(state) .- 1 = [1.1794787369012738e-11, -9.657830091214237e-13, -4.2350234430443834e-11, 4.831690603168681e-13, -1.3160961209734978e-10, -7.276590441307462e-11, 4.3664627469297557e-11, 1.1169065672334e-11, 2.9798163936334277e-11, -2.466915560717098e-13, -8.41681169205799e-11, 8.90154616683958e-12, -2.5616209153866976e-10, -1.3984735591776598e-10, 8.922462768623518e-11, 1.6375123479406284e-11, -6.000755448098971e-13] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [7.8026474170656e-13, 8.22675261247241e-12, -7.188138972935576e-12, 6.91744439507147e-11, 5.955458348694265e-12, 5.624167798146118e-12, 1.717248565569207e-11, 2.318589764627177e-11, -4.71600536400274e-12, 2.3778756741421603e-12, 1.7336798663336594e-11, -1.5920043061612432e-11, 1.2866885334972267e-10, 9.413358981191777e-12, 1.3665069076296277e-11, 3.363576084325359e-11, 4.578004642041833e-11, -2.51643150761538e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-8.393952199980959e-12, 2.8259616868808735e-12, 4.3296477514331855e-11, -1.1831646773430293e-11, -4.0460967909439205e-11, -1.0663470106919704e-11, -5.470623953840459e-12, 1.0054401755610343e-11, -4.0267233991642115e-11, -1.5057399771478686e-11, 8.962608433193964e-12, 8.600320455798283e-11, -2.2501778218497748e-11, -8.090206282673762e-11, -2.06522576817747e-11, -1.3373191443122323e-11, 1.8526069567315062e-11, -8.317335709051576e-11] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [1.2195111587232077e-10, -4.649336471373999e-11, -5.916911405279279e-11, -4.019451438352917e-12, -1.097524293669494e-10, 6.407163688493256e-11, 2.6615154524733953e-11, 2.4478419291540376e-11, 2.653477437775109e-11, 2.5100677092382284e-10, -8.864753375803502e-11, -1.2042877806095476e-10, -6.939449015419541e-12, -2.085162043030664e-10, 1.2109757641098895e-10, 5.1253667976425277e-11, 4.930367225597365e-11, 5.7556182042617365e-11, -3.735234344048877e-12] QuasiNewtonMethods.optimum(state) .- 1 = [3.228171063796026e-10, 1.3252288155740644e-11, 2.1568569152918826e-10, 5.359757082601391e-11, 8.566436449086723e-11, 2.0647972220899646e-10, -2.5937363368200295e-11, -9.204137452201167e-11, -3.190825381693685e-11, 6.328952917300512e-10, 1.6732171204125734e-11, 4.3997716581145596e-10, 1.1828471535579865e-10, 1.8308665694632964e-10, 4.131286424069458e-10, -2.805811138983927e-11, -2.086867345596488e-10, -6.883060787998829e-11, 7.2686301422209e-12] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [-3.885931576519397e-10, -3.5955072252846776e-10, -3.596456465970732e-12, 7.578249139328364e-11, 9.543188461691443e-11, -2.105388086093285e-10, 1.1078715722590005e-10, -4.1362757663421235e-10, 1.6573853400814187e-11, 4.017934873701279e-10, -8.020486497173351e-10, -7.291633963291133e-10, -6.6101568663157195e-12, 1.461939458380357e-10, 1.6665402391424777e-10, -4.2576042691422344e-10, 2.3127921799925844e-10, -8.111666893739766e-10, 3.330113962363157e-11, 8.176797017256376e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-3.0657698601999073e-12, -3.5954572652485695e-12, -1.3693379763424218e-11, -5.335754060808995e-11, 2.162181544917985e-11, 8.044676036433884e-13, -3.3029134982598407e-12, 6.09734485124136e-13, 1.1500134178277222e-11, -1.600297672155193e-11, -5.218270260343161e-12, -6.473266367379438e-12, -2.7038482564023525e-11, -1.0685963225398609e-10, 4.2968073543647733e-11, 1.1122214260694818e-12, -7.094103082749825e-12, 3.163913575576771e-12, 2.3153923223162565e-11, -3.3129277099419596e-11] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [-6.662437268545318e-11, -1.615255706965968e-10, -7.562184212162038e-11, -1.2032908003334342e-10, -1.6431189742149854e-11, 4.601430347861424e-12, -8.970268972063877e-11, 1.1395107080147682e-11, 2.850957248057284e-10, -2.388820252718915e-10, -1.2676848459847179e-10, -3.2858959997383863e-10, -1.5436218969711035e-10, -2.3809398896901257e-10, -3.4185321240443045e-11, 4.500844141830385e-12, -1.8294454839917762e-10, 2.385935893300939e-11, 5.626399346425615e-10, -4.900649885897224e-10, -1.6459056340067946e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.7073720215421417e-10, 1.0479617174041778e-11, -6.092892856912613e-11, -7.624190168087353e-11, -7.660283518617916e-11, -9.895195773879095e-12, 2.8245850103303383e-11, 5.364841904054174e-11, 3.584266217160348e-11, -1.6776025013598428e-11, -3.4095104517462005e-10, 2.67645905438485e-11, -1.2284173678267507e-10, -1.627964429928852e-10, -1.511469838177959e-10, -2.595390569126721e-11, 5.102740452400667e-11, 1.1075385053516129e-10, 7.256417688950023e-11, -3.485645105882895e-11, 1.9516166460675777e-11] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [-1.5835799338503875e-10, 2.009634680888439e-10, 7.097300525060746e-11, -2.782710728510551e-10, 1.274431671305365e-10, -2.3825608153060784e-11, 2.0349433249577942e-10, -1.5977663636590478e-11, -1.4823176019973516e-10, -1.1450229653320321e-10, 1.8195134288134795e-10, -3.208469046001028e-10, 4.07411659963941e-10, 1.3845080637509e-10, -5.332329022778026e-10, 2.3991497677400275e-10, -4.609612691552911e-11, 4.2808578903930083e-10, -2.3048563058125637e-11, -2.9042401816781194e-10, -2.2400370447428486e-10, 3.7531178165295387e-10] QuasiNewtonMethods.optimum(state) .- 1 = [7.846367999775339e-11, 3.657496527864623e-11, -3.207956122963651e-11, 3.2231994850917545e-12, -5.1483040053312834e-11, 1.1403766819739758e-11, 1.0330758470900037e-10, -7.818423686245524e-11, -6.75342004541335e-11, -6.067213398353033e-11, -8.606348966821997e-11, 1.6262835522695696e-10, 7.726042028366464e-11, -6.427214316317986e-11, 6.541434061091422e-12, -1.131046367675026e-10, 1.8615331498494925e-11, 2.1046253628753675e-10, -1.5818346632556768e-10, -1.3557466260749607e-10, -1.1664647026066177e-10, -1.7432988386190118e-10] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [1.0695888619238758e-11, -6.262323992700658e-12, 1.3962164757685969e-12, -1.0935252703347942e-11, -4.905631456608717e-12, -1.6138201885951275e-12, -4.6349590832051035e-12, -3.155253835984695e-12, 9.590994665131802e-12, 1.0511591597150982e-12, 3.0897506775318107e-12, 2.1613599798797622e-11, -1.2705281271507829e-11, 2.774447338538266e-12, -2.15473194842275e-11, -9.73476854682076e-12, -3.063327369545732e-12, -9.689915536625904e-12, -6.1158855757526e-12, 1.8186785410989614e-11, 1.7226220450083929e-12, 5.605516051332415e-12, -2.6515456497122614e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.7558732245959163e-11, 5.4296567242317906e-12, -9.101941422784421e-12, -1.8827162051593405e-11, -1.3130607712241726e-12, -4.320099833421409e-11, -3.5991210012298325e-12, 6.740163982499325e-12, -2.8222424397483792e-11, 1.0077494394522546e-11, 2.1219692669660617e-11, -3.3793856601960215e-11, 1.2052359110725774e-11, -1.968880614100499e-11, -3.480471466588142e-11, -3.3953950762111162e-12, -8.68980443158307e-11, -5.856981566410013e-12, 1.4064749365161333e-11, -6.042844002962511e-11, 2.0589530080883378e-11, 4.554046029170422e-11, 1.6853185513809876e-13] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [-1.5362489058645679e-10, 2.336535409597218e-10, -5.5100146667541594e-11, -1.8895129905160957e-10, 1.3132872567211962e-10, 9.264700118194469e-11, 1.3145773358758106e-10, -3.64296370847228e-11, -1.4311118956555902e-10, 5.6391114000575726e-11, 1.5386647511661522e-10, 1.61496815920259e-10, -3.3102653951289085e-10, 4.830338351524688e-10, -9.84933246073183e-11, -3.882113519537711e-10, 2.64761101931299e-10, 1.8920132127675515e-10, 2.6410695852518984e-10, -8.046707744568948e-11, -2.7857904871808614e-10, 1.081459366503168e-10, 3.08685077499149e-10, 3.139857263079193e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-4.71636063537062e-11, -4.065936476393972e-11, -3.2240876635114546e-11, -7.898481868551244e-11, 3.5842440126998554e-12, -3.21637161349031e-11, 3.5528691100239485e-11, -2.8338664748162046e-11, 1.9305890219811772e-11, -1.3670398146814478e-11, 6.336886571034483e-11, -1.035038721397541e-11, -9.226985842047952e-11, -8.124356742911232e-11, -6.560851861792116e-11, -1.600286569924947e-10, 5.483391518623648e-12, -5.5664139964051174e-11, 7.310063665499911e-11, -5.614997355962714e-11, 4.073696935336102e-11, -2.5100588274540314e-11, 1.3015122313220218e-10, -2.2818857914330692e-11] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 2m29.9s Method ambiguity | 1 1 4.7s Unbound type parameters | 1 1 0.4s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.3s Stale dependencies | 1 1 4.8s Compat bounds | 3 1 4 7.0s julia | 1 1 0.0s QuasiNewtonMethods [64452400-c6f4-4a1d-a4f6-ad403655768a] deps | 1 1 0.4s QuasiNewtonMethods [64452400-c6f4-4a1d-a4f6-ad403655768a] extras | 1 1 6.6s QuasiNewtonMethods [64452400-c6f4-4a1d-a4f6-ad403655768a] weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 11.6s ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 160.73s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.10/Pkg/src/Types.jl:70 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:2034 [3] test @ /opt/julia/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:1915 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::Base.PipeEndpoint}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:444 [5] test(pkgs::Vector{Pkg.Types.PackageSpec}; io::Base.PipeEndpoint, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:159 [6] test @ /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:147 [inlined] [7] #test#74 @ /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:146 [inlined] [8] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 280.27s: package has test failures