Package evaluation of Optim on Julia 1.10.8 (92f03a4775*) started at 2025-02-25T10:06:29.241 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 5.36s ################################################################################ # Installation # Installing Optim... Resolving package versions... Updating `~/.julia/environments/v1.10/Project.toml` [429524aa] + Optim v1.11.0 Updating `~/.julia/environments/v1.10/Manifest.toml` [79e6a3ab] + Adapt v4.2.0 [66dad0bd] + AliasTables v1.1.3 [4fba245c] + ArrayInterface v7.18.0 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.16.0 [187b0558] + ConstructionBase v1.5.8 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.20 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [ffbed154] + DocStringExtensions v0.9.3 [1a297f60] + FillArrays v1.13.0 [6a86dc24] + FiniteDiff v2.27.0 [f6369f11] + ForwardDiff v0.10.38 [92d709cd] + IrrationalConstants v0.2.4 [692b3bcd] + JLLWrappers v1.7.0 [d3d80556] + LineSearches v7.3.0 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.15 [e1d29d7a] + Missings v1.2.0 [d41bc354] + NLSolversBase v7.8.3 [77ba4419] + NaNMath v1.1.2 [429524aa] + Optim v1.11.0 [bac558e1] + OrderedCollections v1.8.0 [d96e819e] + Parameters v0.12.3 [85a6dd25] + PositiveFactorizations v0.2.4 [21216c6a] + Preferences v1.4.3 [43287f4e] + PtrArrays v1.3.0 [ae029012] + Requires v1.3.0 [efcf1570] + Setfield v1.1.1 [a2af1166] + SortingAlgorithms v1.2.1 [276daf66] + SpecialFunctions v2.5.0 [1e83bf80] + StaticArraysCore v1.4.3 [82ae8749] + StatsAPI v1.7.0 [2913bbd2] + StatsBase v0.34.4 [3a884ed6] + UnPack v1.0.2 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [56f22d72] + Artifacts [2a0f44e3] + Base64 [ade2ca70] + Dates [8ba89e20] + Distributed [9fa8497b] + Future [b77e0a4c] + InteractiveUtils [76f85450] + LibGit2 [8f399da3] + Libdl [37e2e46d] + LinearAlgebra [d6f4376e] + Markdown [ca575930] + NetworkOptions v1.2.0 [de0858da] + Printf [9a3f8284] + Random [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization [6462fe0b] + Sockets [2f01184e] + SparseArrays v1.10.0 [10745b16] + Statistics v1.10.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs [4ec0a83e] + Unicode [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [e37daf67] + LibGit2_jll v1.6.4+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.2+1 [4536629a] + OpenBLAS_jll v0.3.23+4 [05823500] + OpenLibm_jll v0.8.1+4 [bea87d4a] + SuiteSparse_jll v7.2.1+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 Installation completed after 6.37s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 13.25s ################################################################################ # Testing # Testing Optim Status `/tmp/jl_6MDtg4/Project.toml` [34da2185] Compat v4.16.0 [31c24e10] Distributions v0.25.117 [1a297f60] FillArrays v1.13.0 [f6369f11] ForwardDiff v0.10.38 [d3d80556] LineSearches v7.3.0 [b8f27783] MathOptInterface v1.37.0 [eff96d63] Measurements v2.12.0 [d41bc354] NLSolversBase v7.8.3 [77ba4419] NaNMath v1.1.2 [429524aa] Optim v1.11.0 [cec144fc] OptimTestProblems v2.0.3 [d96e819e] Parameters v0.12.3 [85a6dd25] PositiveFactorizations v0.2.4 [731186ca] RecursiveArrayTools v3.30.0 [860ef19b] StableRNGs v1.0.2 [2913bbd2] StatsBase v0.34.4 [37e2e46d] LinearAlgebra [de0858da] Printf [9a3f8284] Random [2f01184e] SparseArrays v1.10.0 [8dfed614] Test Status `/tmp/jl_6MDtg4/Manifest.toml` [7d9f7c33] Accessors v0.1.41 [79e6a3ab] Adapt v4.2.0 [66dad0bd] AliasTables v1.1.3 [4fba245c] ArrayInterface v7.18.0 [6e4b80f9] BenchmarkTools v1.6.0 [49dc2e85] Calculus v0.5.2 [523fee87] CodecBzip2 v0.8.5 [944b1d66] CodecZlib v0.7.8 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.16.0 [a33af91c] CompositionsBase v0.1.2 [187b0558] ConstructionBase v1.5.8 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.20 [e2d170a0] DataValueInterfaces v1.0.0 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [31c24e10] Distributions v0.25.117 [ffbed154] DocStringExtensions v0.9.3 [e2ba6199] ExprTools v0.1.10 [1a297f60] FillArrays v1.13.0 [6a86dc24] FiniteDiff v2.27.0 [f6369f11] ForwardDiff v0.10.38 [46192b85] GPUArraysCore v0.2.0 [34004b35] HypergeometricFunctions v0.3.27 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.4 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.0 [682c06a0] JSON v0.21.4 [0f8b85d8] JSON3 v1.14.1 [d3d80556] LineSearches v7.3.0 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.15 [b8f27783] MathOptInterface v1.37.0 [eff96d63] Measurements v2.12.0 [e1d29d7a] Missings v1.2.0 [d8a4904e] MutableArithmetics v1.6.4 [d41bc354] NLSolversBase v7.8.3 [77ba4419] NaNMath v1.1.2 [429524aa] Optim v1.11.0 [cec144fc] OptimTestProblems v2.0.3 [bac558e1] OrderedCollections v1.8.0 [90014a1f] PDMats v0.11.32 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.1 [85a6dd25] PositiveFactorizations v0.2.4 [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [3cdcf5f2] RecipesBase v1.3.4 [731186ca] RecursiveArrayTools v3.30.0 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.0 [79098fc4] Rmath v0.8.0 [7e49a35a] RuntimeGeneratedFunctions v0.5.13 [efcf1570] Setfield v1.1.1 [a2af1166] SortingAlgorithms v1.2.1 [276daf66] SpecialFunctions v2.5.0 [860ef19b] StableRNGs v1.0.2 [1e83bf80] StaticArraysCore v1.4.3 [82ae8749] StatsAPI v1.7.0 [2913bbd2] StatsBase v0.34.4 [4c63d2b9] StatsFuns v1.3.2 [856f2bd8] StructTypes v1.11.0 [2efcf032] SymbolicIndexingInterface v0.3.38 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.0 [3bb67fe8] TranscodingStreams v0.11.3 [3a884ed6] UnPack v1.0.2 [6e34b625] Bzip2_jll v1.0.9+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [56f22d72] Artifacts [2a0f44e3] Base64 [ade2ca70] Dates [8ba89e20] Distributed [9fa8497b] Future [b77e0a4c] InteractiveUtils [76f85450] LibGit2 [8f399da3] Libdl [37e2e46d] LinearAlgebra [56ddb016] Logging [d6f4376e] Markdown [a63ad114] Mmap [ca575930] NetworkOptions v1.2.0 [de0858da] Printf [9abbd945] Profile [9a3f8284] Random [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization [6462fe0b] Sockets [2f01184e] SparseArrays v1.10.0 [10745b16] Statistics v1.10.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [8dfed614] Test [cf7118a7] UUIDs [4ec0a83e] Unicode [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [e37daf67] LibGit2_jll v1.6.4+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.2+1 [4536629a] OpenBLAS_jll v0.3.23+4 [05823500] OpenLibm_jll v0.8.1+4 [bea87d4a] SuiteSparse_jll v7.2.1+1 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 Testing Running tests... ./special/bigfloat/initial_convergence.jl 19.773526 seconds (8.76 M allocations: 592.101 MiB, 3.53% gc time, 99.90% compilation time) Test Summary: | Time special | None 19.9s ./general/api.jl 15.160444 seconds (7.44 M allocations: 503.618 MiB, 3.04% gc time, 99.18% compilation time) ./general/callables.jl 0.274897 seconds (78.25 k allocations: 4.185 MiB, 94.72% compilation time) ./general/callbacks.jl 5.552362 seconds (2.03 M allocations: 141.018 MiB, 0.63% gc time, 98.80% compilation time) ./general/convergence.jl 0.324609 seconds (126.64 k allocations: 8.632 MiB, 3.40% gc time, 91.55% compilation time) ./general/default_solvers.jl 0.230683 seconds (195.78 k allocations: 13.901 MiB, 96.39% compilation time) ./general/deprecate.jl 0.000244 seconds (89 allocations: 6.578 KiB) ./general/initial_convergence.jl 3.235824 seconds (1.20 M allocations: 81.944 MiB, 0.82% gc time, 99.61% compilation time) ./general/objective_types.jl 7.527077 seconds (5.20 M allocations: 357.575 MiB, 1.98% gc time, 98.86% compilation time) ./general/Optim.jl Skipping Optim.Optimizer 1.191104 seconds (420.02 k allocations: 26.438 MiB, 2.00% gc time, 88.97% compilation time) ./general/optimize.jl 3.870288 seconds (4.05 M allocations: 267.056 MiB, 13.67% gc time, 98.20% compilation time) ./general/type_stability.jl 18.244217 seconds (7.59 M allocations: 500.569 MiB, 3.57% gc time, 99.80% compilation time) ./general/types.jl 7.098878 seconds (2.11 M allocations: 143.536 MiB, 1.05% gc time, 99.54% compilation time) ./general/counter.jl 15.521477 seconds (3.90 M allocations: 254.271 MiB, 0.91% gc time, 99.55% compilation time) ./general/maximize.jl 2.876180 seconds (1.01 M allocations: 65.389 MiB, 1.22% gc time, 95.09% compilation time) Test Summary: | Pass Total Time general | 2349 2349 1m21.1s ./univariate/optimize/interface.jl WARNING: Method definition (::Main.yObj)(Any) in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/test/univariate/optimize/interface.jl:9 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/test/univariate/optimize/interface.jl:14. 8.271575 seconds (2.84 M allocations: 196.091 MiB, 1.69% gc time, 99.87% compilation time) ./univariate/optimize/optimize.jl 0.015793 seconds (3.61 k allocations: 203.398 KiB, 0.01% compilation time) ./univariate/solvers/golden_section.jl 0 6.754903e-01 0.000000e+00 6.283185e+00 1 -6.754903e-01 2.399963e+00 6.283185e+00 2 -9.961710e-01 3.883222e+00 6.283185e+00 3.128022 seconds (927.89 k allocations: 63.881 MiB, 13.85% gc time, 96.92% compilation time) ./univariate/solvers/brent.jl 0 6.754903e-01 0.000000e+00 6.283185e+00 initial 1 -6.754903e-01 2.399963e+00 6.283185e+00 lower 2 -9.961710e-01 3.883222e+00 6.283185e+00 lower 2.147296 seconds (895.87 k allocations: 63.892 MiB, 0.61% gc time, 95.03% compilation time) ./univariate/dual.jl 3.098630 seconds (1.63 M allocations: 104.904 MiB, 1.78% gc time, 99.73% compilation time) Test Summary: | Pass Total Time univariate | 56 56 16.7s ./multivariate/optimize/interface.jl 9.400086 seconds (2.93 M allocations: 200.810 MiB, 0.92% gc time, 98.60% compilation time) ./multivariate/optimize/optimize.jl 12.677438 seconds (3.61 M allocations: 241.137 MiB, 1.03% gc time, 95.96% compilation time) ./multivariate/optimize/inplace.jl 0.696013 seconds (188.11 k allocations: 12.328 MiB, 97.88% compilation time) ./multivariate/solvers/constrained/fminbox.jl 20.801310 seconds (8.33 M allocations: 601.250 MiB, 3.37% gc time, 97.75% compilation time) ./multivariate/solvers/constrained/ipnewton/interface.jl 25.297559 seconds (7.91 M allocations: 522.345 MiB, 1.03% gc time, 99.86% compilation time) ./multivariate/solvers/constrained/ipnewton/constraints.jl Iter Lagrangian value Function value Gradient norm |==constr.| μ 0 1.325355e+05 -1.131426e-16 8.836323e+04 1.325355e+05 2.72e-04 * c: [6.0] * time: 1.740478243826124e9 * g(x): [88357.23479296362, -66267.7444111528] * x: [12.0, 14.0] * gtilde(x): [88357.23474122555, -66267.74465259715] * h(x): [3.572390764231408e-5 0.019671531709867046; 0.019671531709867046 0.0002749782775992128] * α: 1.0 * bstate: BarrierStateVars{Float64}: slack_x: [7.0, 3.0, 9.0, 1.0] slack_c: Float64[] λx: [3.880355485284997e-5, 9.054162798998327e-5, 3.0180542663327756e-5, 0.0002716248839699498] λc: Float64[] λxE: Float64[] λcE: [-22089.248217532382] * bgrad: BarrierStateVars{Float64}: slack_x: [0.0, 0.0, 0.0, 0.0] slack_c: Float64[] λx: [0.0, 0.0, 0.0, 0.0] λc: Float64[] λxE: Float64[] λcE: [-6.0] |gx| = 110446.43458463406, |Hstepx + gx| = 0.0 |gE| = 6.0, |HstepλE + gE| = 4.822439976237547e-7 L0 = 132535.48788140537, L1 = -265071.0104107117, L2 = 265070.98919730965 α = 0.5345893752019844, value: (132535.48788140537, 28708.106124992642, -9168.657958215685), slope: (-265071.0104107117, -123366.36791592586, -123366.87591154999) 1 2.870811e+04 -1.351385e-02 4.112536e+04 2.870812e+04 2.72e-05 * c: [2.792463601897886] * time: 1.740478248221673e9 * g(x): [41122.539199239945, -30841.711823299735] * x: [11.947365900474471, 14.999] * gtilde(x): [41122.53914938217, -30841.712339447375] * h(x): [0.0009609917249249723 0.01003740594764946; 0.01003740594764946 0.5435018277008664] * α: 0.5345893752019844 * bstate: BarrierStateVars{Float64}: slack_x: [6.9473659004744714, 3.0526340995255286, 9.999, 0.0010000000000000009] slack_c: Float64[] λx: [3.909532487685986e-5, 8.895310230370721e-5, 2.6830502427698376e-5, 0.0005429781430559297] λc: Float64[] λxE: Float64[] λcE: [-10280.570603701372] * bgrad: BarrierStateVars{Float64}: slack_x: [3.5185571340610974e-5, 8.005505310704233e-5, 2.4113981935949704e-5, -0.026619510253939025] slack_c: Float64[] λx: [0.0, 0.0, 0.0, 5.551115123125783e-16] λc: Float64[] λxE: Float64[] λcE: [-2.792463601897886] |gx| = 51403.05872340371, |Hstepx + gx| = 0.0 |gE| = 2.792463601897886, |HstepλE + gE| = 8.828777797731391e-8 L0 = 28708.105745855242, L1 = -57416.67519353334, L2 = 57416.673811543704 α = 0.0030311605533831793, value: (28708.105745855242, 28534.330365267975, 28534.06658490219), slope: (-57416.67519353334, -57242.63077740227, -57242.63603676932) 2 2.853433e+04 -1.427745e-02 4.100078e+04 2.853434e+04 2.30e-04 * c: [2.783999196788521] * time: 1.740478248222204e9 * g(x): [40997.890180479895, -30748.22564305577] * x: [11.944389097184102, 14.997852397315963] * gtilde(x): [40997.890130861626, -30748.225616838263] * h(x): [0.001013181536545749 0.010048653607865754; 0.010048653607865754 0.0008059471382789342] * α: 0.0030311605533831793 * bstate: BarrierStateVars{Float64}: slack_x: [6.944389097184102, 3.0556109028158978, 9.997852397315963, 0.0021476026840380733] slack_c: Float64[] λx: [3.9005423302972634e-5, 8.862369917582548e-5, 2.6760488460467503e-5, 5.42978143055887e-7] λc: Float64[] λxE: Float64[] λcE: [-10249.40835266136] * bgrad: BarrierStateVars{Float64}: slack_x: [5.8321850641475e-6, 1.3231942413964042e-5, 3.718752616694407e-6, -0.10726691187101653] slack_c: Float64[] λx: [0.0, -4.440892098500626e-16, 0.0, 1.2754554357119474e-15] λc: Float64[] λxE: Float64[] λcE: [-2.783999196788521] 39.100352 seconds (10.22 M allocations: 681.523 MiB, 1.94% gc time, 94.22% compilation time) ./multivariate/solvers/constrained/ipnewton/counter.jl WARNING: Method definition fcounter() in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/test/general/counter.jl:7 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/test/multivariate/solvers/constrained/ipnewton/counter.jl:7. WARNING: Method definition fcounter(Bool) in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/test/general/counter.jl:7 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/test/multivariate/solvers/constrained/ipnewton/counter.jl:7. WARNING: Method definition gcounter() in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/test/general/counter.jl:17 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/test/multivariate/solvers/constrained/ipnewton/counter.jl:17. WARNING: Method definition gcounter(Bool) in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/test/general/counter.jl:17 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/test/multivariate/solvers/constrained/ipnewton/counter.jl:17. WARNING: Method definition hcounter() in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/test/general/counter.jl:27 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/test/multivariate/solvers/constrained/ipnewton/counter.jl:27. WARNING: Method definition hcounter(Bool) in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/test/general/counter.jl:27 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/test/multivariate/solvers/constrained/ipnewton/counter.jl:27. 0.321008 seconds (52.26 k allocations: 3.387 MiB, 92.00% compilation time) ./multivariate/solvers/constrained/ipnewton/ipnewton_unconstrained.jl 6.827781 seconds (6.38 M allocations: 554.254 MiB, 3.93% gc time, 96.59% compilation time) ./multivariate/solvers/constrained/samin.jl ================================================================================ SAMIN results ==> Normal convergence <== total number of objective function evaluations: 22701 Obj. value: 0.0000000000 parameter search width -2.80512 0.00000 3.13131 0.00000 ================================================================================ 3.171199 seconds (1.70 M allocations: 107.616 MiB, 0.79% gc time, 99.06% compilation time) ./multivariate/solvers/first_order/accelerated_gradient_descent.jl 4.969947 seconds (5.44 M allocations: 1.241 GiB, 2.12% gc time, 79.14% compilation time) ./multivariate/solvers/first_order/adam_adamax.jl 7.695460 seconds (5.62 M allocations: 1.032 GiB, 1.75% gc time, 88.35% compilation time) ./multivariate/solvers/first_order/bfgs.jl 10.821927 seconds (10.42 M allocations: 1.639 GiB, 2.13% gc time, 82.55% compilation time) ./multivariate/solvers/first_order/cg.jl 11.412515 seconds (3.18 M allocations: 576.863 MiB, 6.24% gc time, 89.02% compilation time) ./multivariate/solvers/first_order/gradient_descent.jl 19.257162 seconds (66.17 M allocations: 11.659 GiB, 1.95% gc time, 8.47% compilation time) ./multivariate/solvers/first_order/l_bfgs.jl 2.638022 seconds (7.01 M allocations: 1.291 GiB, 2.82% gc time, 34.06% compilation time) ./multivariate/solvers/first_order/momentum_gradient_descent.jl 2.920552 seconds (6.28 M allocations: 1.807 GiB, 2.52% gc time, 46.33% compilation time) ./multivariate/solvers/first_order/ngmres.jl ┌ Warning: Use caution. N-GMRES/O-ACCEL has only been tested with Gradient Descent and L-BFGS preconditioning. └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/first_order/ngmres.jl:210 35.029296 seconds (20.62 M allocations: 3.313 GiB, 0.86% gc time, 88.69% compilation time) ./multivariate/solvers/second_order/newton.jl 29.062046 seconds (44.16 M allocations: 10.502 GiB, 1.98% gc time, 56.85% compilation time) ./multivariate/solvers/second_order/newton_trust_region.jl ┌ Warning: Terminated early due to NaN in Hessian. └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/optimize/optimize.jl:102 23.425332 seconds (41.23 M allocations: 8.403 GiB, 2.09% gc time, 30.84% compilation time) ./multivariate/solvers/second_order/krylov_trust_region.jl 0.497924 seconds (131.25 k allocations: 44.128 MiB, 2.78% gc time, 77.97% compilation time) ./multivariate/solvers/zeroth_order/grid_search.jl 0.245416 seconds (16.24 k allocations: 1.008 MiB, 96.77% compilation time) ./multivariate/solvers/zeroth_order/nelder_mead.jl 1.599527 seconds (1.41 M allocations: 95.984 MiB, 2.75% gc time, 99.09% compilation time) ./multivariate/solvers/zeroth_order/particle_swarm.jl Iter Function value Gradient norm 0 1.000000e+00 NaN * time: 8.487701416015625e-5 * x: [0.0, 0.0] 1 1.000000e+00 NaN * time: 0.510329008102417 * x: [0.0, 0.0] 2 1.000000e+00 NaN * time: 0.5105748176574707 * x: [0.0, 0.0] 3 1.000000e+00 NaN * time: 0.5107879638671875 * x: [0.0, 0.0] 4 6.083684e-01 NaN * time: 0.5109570026397705 * x: [0.23897368559260812, 0.07419856886452963] 5 6.083684e-01 NaN * time: 0.5110058784484863 * x: [0.23897368559260812, 0.07419856886452963] 6 6.083684e-01 NaN * time: 0.5110490322113037 * x: [0.23897368559260812, 0.07419856886452963] 7 6.083684e-01 NaN * time: 0.5110950469970703 * x: [0.23897368559260812, 0.07419856886452963] 8 6.083684e-01 NaN * time: 0.5111358165740967 * x: [0.23897368559260812, 0.07419856886452963] 9 6.083684e-01 NaN * time: 0.5111789703369141 * x: [0.23897368559260812, 0.07419856886452963] 10 6.083684e-01 NaN * time: 0.5112190246582031 * x: [0.23897368559260812, 0.07419856886452963] 11 6.083684e-01 NaN * time: 0.511260986328125 * x: [0.23897368559260812, 0.07419856886452963] 12 6.083684e-01 NaN * time: 0.5113029479980469 * x: [0.23897368559260812, 0.07419856886452963] 13 6.083684e-01 NaN * time: 0.5113458633422852 * x: [0.23897368559260812, 0.07419856886452963] 14 5.598872e-01 NaN * time: 0.511389970779419 * x: [0.253564013166804, 0.05907889338238893] 15 5.598872e-01 NaN * time: 0.5114359855651855 * x: [0.253564013166804, 0.05907889338238893] 16 5.598872e-01 NaN * time: 0.5114798545837402 * x: [0.253564013166804, 0.05907889338238893] 17 5.598872e-01 NaN * time: 0.5115199089050293 * x: [0.253564013166804, 0.05907889338238893] 18 5.562575e-01 NaN * time: 0.5115618705749512 * x: [0.2659891862047778, 0.057526912339148174] 19 5.562575e-01 NaN * time: 0.5116028785705566 * x: [0.2659891862047778, 0.057526912339148174] 20 5.533510e-01 NaN * time: 0.5116429328918457 * x: [0.2670868284516839, 0.058611643733057744] 21 5.521910e-01 NaN * time: 0.5116839408874512 * x: [0.2630373575877413, 0.059661278575635565] 22 5.521910e-01 NaN * time: 0.511725902557373 * x: [0.2630373575877413, 0.059661278575635565] 23 5.509314e-01 NaN * time: 0.5117688179016113 * x: [0.2641301397188243, 0.06005549520957907] 24 5.504905e-01 NaN * time: 0.5118088722229004 * x: [0.26525605202856156, 0.06004485388048433] 25 5.503370e-01 NaN * time: 0.5118520259857178 * x: [0.26570641695245645, 0.06004059734884643] 26 5.502792e-01 NaN * time: 0.5118980407714844 * x: [0.2658865629220144, 0.06003889473619127] 27 5.502473e-01 NaN * time: 0.511962890625 * x: [0.2659889322538237, 0.06003792721346364] 28 5.502348e-01 NaN * time: 0.5120019912719727 * x: [0.2660298799865474, 0.06003754020437259] 29 5.502294e-01 NaN * time: 0.5120420455932617 * x: [0.2660475257526359, 0.06003737342903631] 30 5.502270e-01 NaN * time: 0.5120868682861328 * x: [0.266055301584755, 0.06003729993735508] 31 5.502260e-01 NaN * time: 0.5121309757232666 * x: [0.26605860516754587, 0.06003726871422041] 32 5.502256e-01 NaN * time: 0.5121738910675049 * x: [0.26605992660066224, 0.06003725622496654] 33 5.502255e-01 NaN * time: 0.5122189521789551 * x: [0.2660604575300883, 0.06003725120699605] 34 5.502254e-01 NaN * time: 0.512260913848877 * x: [0.26606078849386666, 0.06003724807895983] 35 5.502253e-01 NaN * time: 0.5123028755187988 * x: [0.2660609715714071, 0.060037246348640036] 36 5.502253e-01 NaN * time: 0.5123488903045654 * x: [0.266061051599646, 0.06003724559226956] 37 5.502253e-01 NaN * time: 0.512394905090332 * x: [0.2660610951055206, 0.06003724518108272] 38 5.502253e-01 NaN * time: 0.5124390125274658 * x: [0.26606111250787046, 0.06003724501660798] 39 5.502253e-01 NaN * time: 0.51249098777771 * x: [0.2660611194688104, 0.06003724495081809] 40 5.502253e-01 NaN * time: 0.5125348567962646 * x: [0.2660611227835685, 0.06003724491948933] 41 5.502253e-01 NaN * time: 0.5125808715820312 * x: [0.2660611241094718, 0.060037244906957825] 42 5.502253e-01 NaN * time: 0.5126488208770752 * x: [0.26606112471488796, 0.06003724490123586] 43 5.502253e-01 NaN * time: 0.5126969814300537 * x: [0.2660611249593439, 0.06003724489892544] 44 5.502253e-01 NaN * time: 0.512739896774292 * x: [0.26606112505956114, 0.06003724489797826] 45 5.502253e-01 NaN * time: 0.5127828121185303 * x: [0.2660611251075841, 0.06003724489752438] 46 5.502253e-01 NaN * time: 0.5128250122070312 * x: [0.2660611251276215, 0.060037244897335] 47 5.296367e-01 NaN * time: 0.5128688812255859 * x: [0.27575462126357053, 0.06889546216845208] 48 5.049057e-01 NaN * time: 0.512915849685669 * x: [0.29761073908755753, 0.0778227312087507] 49 4.966246e-01 NaN * time: 0.5129799842834473 * x: [0.30640220491445025, 0.08141366082064762] 50 4.795572e-01 NaN * time: 0.5130269527435303 * x: [0.3213270933119956, 0.08948148126520782] 51 4.642470e-01 NaN * time: 0.5130739212036133 * x: [0.32695399990497553, 0.0962894317885372] 52 4.536052e-01 NaN * time: 0.5131180286407471 * x: [0.33207548049696733, 0.1016242272530344] 53 4.280885e-01 NaN * time: 0.5131618976593018 * x: [0.35351483775850284, 0.11490030626603666] 54 4.280885e-01 NaN * time: 0.5132098197937012 * x: [0.35351483775850284, 0.11490030626603666] 55 4.171347e-01 NaN * time: 0.513253927230835 * x: [0.35944694619790923, 0.12093986380739136] 56 4.133259e-01 NaN * time: 0.5132989883422852 * x: [0.3597950473335863, 0.12356731958501871] 57 4.133259e-01 NaN * time: 0.5133459568023682 * x: [0.3597950473335863, 0.12356731958501871] 58 3.949335e-01 NaN * time: 0.513394832611084 * x: [0.4417626919622754, 0.22401680572167604] 59 2.834557e-01 NaN * time: 0.5134420394897461 * x: [0.4676942727736627, 0.21976883907858658] 60 2.423223e-01 NaN * time: 0.5134868621826172 * x: [0.5077621826152934, 0.2573301058974752] 61 2.219864e-01 NaN * time: 0.5135338306427002 * x: [0.5305984921709426, 0.2855950696752941] 62 2.098095e-01 NaN * time: 0.5135788917541504 * x: [0.5425403862939883, 0.2966742281417494] 63 2.039162e-01 NaN * time: 0.513624906539917 * x: [0.5500943771628155, 0.3064782299078919] 64 1.985164e-01 NaN * time: 0.5136699676513672 * x: [0.555003004784354, 0.3102510243228318] 65 1.962072e-01 NaN * time: 0.5137178897857666 * x: [0.5572674804294254, 0.31194380351503664] 66 1.953240e-01 NaN * time: 0.5137619972229004 * x: [0.5581732706874539, 0.3126209151919186] 67 1.946499e-01 NaN * time: 0.5138058662414551 * x: [0.5588393595833947, 0.3128232280244901] 68 1.942705e-01 NaN * time: 0.513847827911377 * x: [0.5592438623065801, 0.3129661526513027] 69 1.940057e-01 NaN * time: 0.5138900279998779 * x: [0.5595401440783568, 0.3129970500784035] 70 1.939019e-01 NaN * time: 0.5141439437866211 * x: [0.5596622119630894, 0.31300977979696587] 71 1.889618e-01 NaN * time: 0.5142199993133545 * x: [0.565303608729613, 0.31966246135699133] 72 1.889525e-01 NaN * time: 0.5142688751220703 * x: [0.5668117908095296, 0.31766938905410463] 73 1.889525e-01 NaN * time: 0.5143158435821533 * x: [0.5668117908095296, 0.31766938905410463] 74 1.878557e-01 NaN * time: 0.5143609046936035 * x: [0.5673851717863142, 0.3192799866228009] 75 1.876595e-01 NaN * time: 0.5144059658050537 * x: [0.5671158065061624, 0.3199747091239824] 76 1.874481e-01 NaN * time: 0.5144510269165039 * x: [0.5673152324325995, 0.32032349171694213] 77 1.873341e-01 NaN * time: 0.5144999027252197 * x: [0.5674394319338145, 0.32048596834266463] 78 1.872167e-01 NaN * time: 0.5145468711853027 * x: [0.5676119807337133, 0.3205793159553568] 79 1.871703e-01 NaN * time: 0.5145919322967529 * x: [0.5676811143535655, 0.3206167167276239] 80 1.870387e-01 NaN * time: 0.5146389007568359 * x: [0.5678034001240533, 0.3208362018715974] 81 1.869606e-01 NaN * time: 0.5146868228912354 * x: [0.5678939068204275, 0.32093852855781313] 82 1.868848e-01 NaN * time: 0.5147359371185303 * x: [0.5679524385696183, 0.32108772810038805] 83 1.868490e-01 NaN * time: 0.5147819519042969 * x: [0.5679779898217143, 0.32116384765169115] 84 1.868101e-01 NaN * time: 0.5148289203643799 * x: [0.56799336222626, 0.3212733522358808] 85 1.867619e-01 NaN * time: 0.5148780345916748 * x: [0.5680049479423687, 0.3214370986600422] 86 1.867314e-01 NaN * time: 0.5149438381195068 * x: [0.5680044364487561, 0.3215744782328977] 87 1.866999e-01 NaN * time: 0.5149970054626465 * x: [0.5680088357034672, 0.3217199287080749] 88 1.866824e-01 NaN * time: 0.5150418281555176 * x: [0.5680162549198307, 0.3217913355569622] 89 1.866751e-01 NaN * time: 0.5150918960571289 * x: [0.5680194583259065, 0.32182216699823224] 90 1.866652e-01 NaN * time: 0.5151419639587402 * x: [0.5680271747123854, 0.32185056034607373] 91 1.866597e-01 NaN * time: 0.5151898860931396 * x: [0.5680328178004581, 0.32186090919669047] 92 1.866575e-01 NaN * time: 0.5152368545532227 * x: [0.5680350750356872, 0.32186504873693716] 93 1.866514e-01 NaN * time: 0.5152850151062012 * x: [0.568041700985377, 0.3218750954334655] 94 1.866473e-01 NaN * time: 0.5153329372406006 * x: [0.5680467776115957, 0.3218788485089485] 95 1.758511e-01 NaN * time: 0.5153839588165283 * x: [0.5817925938376084, 0.34157071103687897] 96 1.737976e-01 NaN * time: 0.5154328346252441 * x: [0.5893585027306213, 0.3401523891778444] 97 1.737976e-01 NaN * time: 0.5154809951782227 * x: [0.5893585027306213, 0.3401523891778444] 98 1.721844e-01 NaN * time: 0.5155279636383057 * x: [0.5867325046478338, 0.3405208306644402] 99 1.717152e-01 NaN * time: 0.515578031539917 * x: [0.5946960498912492, 0.34503558948823726] 100 1.717152e-01 NaN * time: 0.5156269073486328 * x: [0.5946960498912492, 0.34503558948823726] 101 1.688771e-01 NaN * time: 0.5156779289245605 * x: [0.5894306103070114, 0.34918886024929957] 102 1.648058e-01 NaN * time: 0.5157270431518555 * x: [0.594042080336518, 0.3526865176766907] 103 1.630557e-01 NaN * time: 0.5157759189605713 * x: [0.5963794553359115, 0.35445934434040466] 104 1.622656e-01 NaN * time: 0.5158178806304932 * x: [0.5975436675285278, 0.3553423632902209] 105 1.602818e-01 NaN * time: 0.515861988067627 * x: [0.6004088833157377, 0.35802354572414424] 106 1.592090e-01 NaN * time: 0.5159080028533936 * x: [0.601817782358715, 0.3596156579617638] 107 1.514494e-01 NaN * time: 0.5159800052642822 * x: [0.6124039254988985, 0.3715475838500436] 108 1.514494e-01 NaN * time: 0.516028881072998 * x: [0.6124039254988985, 0.3715475838500436] 109 1.509815e-01 NaN * time: 0.5160770416259766 * x: [0.6142629532406225, 0.37264095808506925] 110 1.461875e-01 NaN * time: 0.5161218643188477 * x: [0.6177816145933288, 0.3806710453058068] 111 1.436963e-01 NaN * time: 0.5161700248718262 * x: [0.6211423372915671, 0.3870950818117244] 112 1.412149e-01 NaN * time: 0.5162220001220703 * x: [0.6242921971239509, 0.38897549982083185] 113 1.398034e-01 NaN * time: 0.5162739753723145 * x: [0.6264487394432696, 0.3908166957954036] 114 1.393149e-01 NaN * time: 0.5163228511810303 * x: [0.628163381144548, 0.3913451476905688] 115 1.388722e-01 NaN * time: 0.5163748264312744 * x: [0.6290013082686043, 0.3921324642022297] 116 1.374045e-01 NaN * time: 0.5164270401000977 * x: [0.6301167813656036, 0.39947799640934833] 117 1.363537e-01 NaN * time: 0.5164778232574463 * x: [0.6309198546645557, 0.3969043610507785] 118 1.355868e-01 NaN * time: 0.5165259838104248 * x: [0.6317818581966196, 0.399296558158943] 119 1.353477e-01 NaN * time: 0.5165739059448242 * x: [0.6321801379867209, 0.4004018480176046] 120 1.352646e-01 NaN * time: 0.5166239738464355 * x: [0.6323576546657936, 0.400894485078281] 121 1.352075e-01 NaN * time: 0.5166699886322021 * x: [0.6330853104809114, 0.3983864519093105] 122 1.345883e-01 NaN * time: 0.5167179107666016 * x: [0.6341682650755306, 0.3994209430180072] 123 1.330400e-01 NaN * time: 0.5167689323425293 * x: [0.6362971719612097, 0.4021168979450032] 124 1.323026e-01 NaN * time: 0.5168190002441406 * x: [0.6363349985976471, 0.405631958070177] 125 1.306066e-01 NaN * time: 0.5168719291687012 * x: [0.6393513643790502, 0.4110922238419662] 126 1.294126e-01 NaN * time: 0.5169219970703125 * x: [0.6411148996609881, 0.4135064206485911] 127 1.257537e-01 NaN * time: 0.5169899463653564 * x: [0.6456880492205636, 0.4154409858978521] 128 1.251359e-01 NaN * time: 0.5170388221740723 * x: [0.6478390859738332, 0.4163509322922458] 129 1.251359e-01 NaN * time: 0.5170869827270508 * x: [0.6478390859738332, 0.4163509322922458] 130 1.249116e-01 NaN * time: 0.5171349048614502 * x: [0.647704727919202, 0.4166936262477547] 131 1.249116e-01 NaN * time: 0.5171828269958496 * x: [0.647704727919202, 0.4166936262477547] 132 1.249116e-01 NaN * time: 0.5172309875488281 * x: [0.647704727919202, 0.4166936262477547] 133 1.247520e-01 NaN * time: 0.5172779560089111 * x: [0.6481812084883266, 0.4170155820195496] 134 1.241956e-01 NaN * time: 0.5173258781433105 * x: [0.6479428638751269, 0.41824448084805815] 135 1.235191e-01 NaN * time: 0.5173778533935547 * x: [0.649111711249932, 0.4193547362247182] 136 1.231900e-01 NaN * time: 0.5174260139465332 * x: [0.6497047672094984, 0.4199180634665478] 137 1.229735e-01 NaN * time: 0.517474889755249 * x: [0.6499266451216661, 0.42034995028994787] 138 1.226847e-01 NaN * time: 0.5175259113311768 * x: [0.6499182980462319, 0.42126476949969077] 139 1.224789e-01 NaN * time: 0.5175769329071045 * x: [0.6504385193488286, 0.42138012839831795] 140 1.223344e-01 NaN * time: 0.5176289081573486 * x: [0.6505446244124002, 0.42174082049500616] 141 1.221827e-01 NaN * time: 0.5176818370819092 * x: [0.6507849107122544, 0.42199947266738363] 142 1.218506e-01 NaN * time: 0.5177299976348877 * x: [0.6524664939990099, 0.42243977672950883] 143 1.214806e-01 NaN * time: 0.5177829265594482 * x: [0.6528800573689073, 0.42310859550053714] 144 1.213238e-01 NaN * time: 0.5178380012512207 * x: [0.6530566472279412, 0.42339417836665133] 145 1.211511e-01 NaN * time: 0.5178878307342529 * x: [0.6530922315984384, 0.4236902687497053] 146 1.186678e-01 NaN * time: 0.5180859565734863 * x: [0.655768955257221, 0.42871859869219214] 147 1.171937e-01 NaN * time: 0.5181529521942139 * x: [0.6585861865196144, 0.436246414236367] 148 1.159057e-01 NaN * time: 0.5181999206542969 * x: [0.660473457481829, 0.4387300062224945] 149 1.136739e-01 NaN * time: 0.5182468891143799 * x: [0.6636121288710082, 0.44265512286960046] 150 1.127152e-01 NaN * time: 0.5182919502258301 * x: [0.6659920657063041, 0.4469423281996782] 151 1.120031e-01 NaN * time: 0.5183358192443848 * x: [0.6669157389348541, 0.4480291971880874] 152 1.110886e-01 NaN * time: 0.5183858871459961 * x: [0.6676664039833954, 0.44831404484192794] 153 1.107452e-01 NaN * time: 0.5184369087219238 * x: [0.6681659603028403, 0.44895844677247726] 154 1.103819e-01 NaN * time: 0.5184838771820068 * x: [0.6683399960820304, 0.4486366894171537] 155 1.102339e-01 NaN * time: 0.5185298919677734 * x: [0.668494348506971, 0.4487229791352571] 156 1.100763e-01 NaN * time: 0.5185749530792236 * x: [0.668706224170862, 0.4489588896454146] 157 1.098426e-01 NaN * time: 0.5186219215393066 * x: [0.6688740902040045, 0.4488005984486652] 158 1.096725e-01 NaN * time: 0.5186729431152344 * x: [0.6690649864186612, 0.44889118175493714] 159 1.089106e-01 NaN * time: 0.5187258720397949 * x: [0.6710283491094109, 0.4476556124106068] 160 1.087423e-01 NaN * time: 0.5187759399414062 * x: [0.6712396209084853, 0.44799569950905876] 161 1.087149e-01 NaN * time: 0.5188260078430176 * x: [0.6703142874233905, 0.44979231826065946] 162 1.085757e-01 NaN * time: 0.5188758373260498 * x: [0.6705180346285137, 0.44917846642360515] 163 1.082148e-01 NaN * time: 0.5189208984375 * x: [0.6710797077811519, 0.44983616340579635] 164 1.078175e-01 NaN * time: 0.5190038681030273 * x: [0.6728880104110213, 0.4499230488142831] 165 1.073951e-01 NaN * time: 0.5190529823303223 * x: [0.6731273936867, 0.45075665167212836] 166 1.071836e-01 NaN * time: 0.5191018581390381 * x: [0.6735287071621949, 0.4511911939463724] 167 1.069377e-01 NaN * time: 0.5191478729248047 * x: [0.673562061920109, 0.45174694569389007] 168 1.068201e-01 NaN * time: 0.5191960334777832 * x: [0.6734846798630826, 0.4521400705095493] 169 1.067552e-01 NaN * time: 0.5192408561706543 * x: [0.6734952592158893, 0.45237181645411145] 170 1.067260e-01 NaN * time: 0.5192849636077881 * x: [0.6735006078927446, 0.45248898186041314] 171 1.066607e-01 NaN * time: 0.5193300247192383 * x: [0.6736162821230197, 0.45259953368668504] 172 1.061508e-01 NaN * time: 0.5193779468536377 * x: [0.6750992104374389, 0.45332940887565537] 173 1.059477e-01 NaN * time: 0.5194230079650879 * x: [0.675272528393549, 0.4537574508199643] 174 1.055788e-01 NaN * time: 0.5194690227508545 * x: [0.6765878441411083, 0.45463526809826077] 175 1.053918e-01 NaN * time: 0.5195188522338867 * x: [0.6770193347878665, 0.4550760547063693] 176 1.051407e-01 NaN * time: 0.5195670127868652 * x: [0.6772607629950238, 0.4555515496164254] 177 1.049624e-01 NaN * time: 0.5196149349212646 * x: [0.6768763902341469, 0.455808842268151] 178 1.048393e-01 NaN * time: 0.5196628570556641 * x: [0.677633752752142, 0.456155504260651] 179 1.046412e-01 NaN * time: 0.5197079181671143 * x: [0.6777059056368911, 0.4565145649654206] 180 1.045360e-01 NaN * time: 0.5197508335113525 * x: [0.6778386465740268, 0.4567300695087466] 181 1.044447e-01 NaN * time: 0.5197930335998535 * x: [0.6774690153525033, 0.45691863221461027] 182 1.043513e-01 NaN * time: 0.5198369026184082 * x: [0.6774853625143492, 0.45715442282309193] 183 1.042602e-01 NaN * time: 0.519881010055542 * x: [0.6775159705499861, 0.45740226826202324] 184 1.041611e-01 NaN * time: 0.5199229717254639 * x: [0.677595789249307, 0.4576641812751176] 185 1.040102e-01 NaN * time: 0.5199840068817139 * x: [0.6777722386199084, 0.45803568218970364] 186 1.038435e-01 NaN * time: 0.5200278759002686 * x: [0.6779514163299796, 0.4584856707530812] 187 1.036845e-01 NaN * time: 0.5200738906860352 * x: [0.6781374417138782, 0.45892690098149386] 188 1.034319e-01 NaN * time: 0.5201230049133301 * x: [0.6785487244118302, 0.45942361452386254] 189 1.032346e-01 NaN * time: 0.5201699733734131 * x: [0.6788214443880555, 0.4599099384103055] 190 1.031091e-01 NaN * time: 0.5202159881591797 * x: [0.6790978412426104, 0.46002994415750154] 191 1.028762e-01 NaN * time: 0.5202639102935791 * x: [0.6793864770881783, 0.46065416725457076] 192 1.026166e-01 NaN * time: 0.5203118324279785 * x: [0.6798628925120445, 0.46107840012112145] 193 1.024724e-01 NaN * time: 0.5203549861907959 * x: [0.6800141653744529, 0.46151695572211365] 194 1.022895e-01 NaN * time: 0.5204010009765625 * x: [0.6803165294331845, 0.46187174621774785] 195 1.021189e-01 NaN * time: 0.5204470157623291 * x: [0.6805771531166962, 0.4622473368721821] 196 1.019122e-01 NaN * time: 0.5204949378967285 * x: [0.6808141309857731, 0.46293676563080005] 197 1.017494e-01 NaN * time: 0.5205428600311279 * x: [0.6810273536405591, 0.463557084442725] 198 1.016335e-01 NaN * time: 0.5205898284912109 * x: [0.6812326030250886, 0.46362082640234936] 199 1.014986e-01 NaN * time: 0.5206358432769775 * x: [0.6814262880231272, 0.4640346398023781] 200 1.014148e-01 NaN * time: 0.5206828117370605 * x: [0.6815627697130172, 0.4641738077926185] 201 1.013676e-01 NaN * time: 0.5207250118255615 * x: [0.6816414312646414, 0.4642420390460846] 202 1.013138e-01 NaN * time: 0.5207688808441162 * x: [0.6817396763404948, 0.4642773908663652] 203 1.012665e-01 NaN * time: 0.5208108425140381 * x: [0.681876035004222, 0.4641573121784457] 204 1.012271e-01 NaN * time: 0.5208549499511719 * x: [0.681979604244731, 0.46414704680888486] 205 1.011876e-01 NaN * time: 0.5208969116210938 * x: [0.6820618424711746, 0.4641938131491888] 206 1.010736e-01 NaN * time: 0.5209560394287109 * x: [0.6822386559291634, 0.4644427629517165] 207 1.009850e-01 NaN * time: 0.521000862121582 * x: [0.6825099720491242, 0.46445958901132717] 208 1.009006e-01 NaN * time: 0.521047830581665 * x: [0.6826796321517306, 0.46460809274063636] 209 1.007845e-01 NaN * time: 0.5210950374603271 * x: [0.682916107356998, 0.4648177578420418] 210 1.006824e-01 NaN * time: 0.5211389064788818 * x: [0.6831288777361672, 0.46500640562468826] 211 1.005704e-01 NaN * time: 0.5211830139160156 * x: [0.6832681645458064, 0.46526989475260355] 212 1.004918e-01 NaN * time: 0.5212278366088867 * x: [0.683250907930803, 0.46555978134983644] 213 1.004061e-01 NaN * time: 0.5212719440460205 * x: [0.6834384533557231, 0.46569223360715567] 214 1.003166e-01 NaN * time: 0.5213139057159424 * x: [0.683470270758086, 0.4660111038057437] 215 1.002130e-01 NaN * time: 0.521359920501709 * x: [0.6836245865097491, 0.4662488534613893] 216 1.000903e-01 NaN * time: 0.5214018821716309 * x: [0.6837868882482795, 0.4665666228923774] 217 9.991243e-02 NaN * time: 0.5214450359344482 * x: [0.6840872343614753, 0.46691916479305007] 218 9.972944e-02 NaN * time: 0.5214889049530029 * x: [0.6843531144915938, 0.46735693021817165] 219 9.954772e-02 NaN * time: 0.5215358734130859 * x: [0.6845748904044201, 0.46790306556839945] 220 9.925078e-02 NaN * time: 0.5215809345245361 * x: [0.6849986036802898, 0.4687240542400149] 221 9.901356e-02 NaN * time: 0.5216269493103027 * x: [0.6853500710315091, 0.4694050588962924] 222 9.891752e-02 NaN * time: 0.5216758251190186 * x: [0.6854959342958026, 0.46968768418657625] 223 9.882414e-02 NaN * time: 0.5217199325561523 * x: [0.6856719551814573, 0.46967676577034223] 224 9.863618e-02 NaN * time: 0.5217669010162354 * x: [0.6859584982584629, 0.4701634095108753] 225 9.841044e-02 NaN * time: 0.521812915802002 * x: [0.6865002794835426, 0.47014963078070526] 226 9.822759e-02 NaN * time: 0.5218608379364014 * x: [0.6869713905648686, 0.4703783191832195] 227 9.809233e-02 NaN * time: 0.5219099521636963 * x: [0.6872346764422691, 0.47064777984337924] 228 9.792587e-02 NaN * time: 0.5219769477844238 * x: [0.6876746702281232, 0.4709502754903578] 229 9.775572e-02 NaN * time: 0.5220239162445068 * x: [0.6877708555149129, 0.4713896058123552] 230 9.755066e-02 NaN * time: 0.5220699310302734 * x: [0.6882207259104467, 0.4717921193453349] 231 9.721205e-02 NaN * time: 0.5221178531646729 * x: [0.6885873013626805, 0.47262216589379963] 232 9.681647e-02 NaN * time: 0.5221660137176514 * x: [0.6891200783101196, 0.4735820736562261] 233 9.649455e-02 NaN * time: 0.5222129821777344 * x: [0.689564900678952, 0.47438351307059223] 234 9.589591e-02 NaN * time: 0.522258996963501 * x: [0.6904422104822173, 0.4758744721757224] 235 9.514643e-02 NaN * time: 0.522305965423584 * x: [0.691654636431111, 0.4775520713751528] 236 9.414057e-02 NaN * time: 0.5223498344421387 * x: [0.6932597250387877, 0.4798950820720251] 237 9.311344e-02 NaN * time: 0.5223939418792725 * x: [0.694951238188682, 0.4821911160348978] 238 9.229610e-02 NaN * time: 0.5224399566650391 * x: [0.6965217734832491, 0.4837387662776573] 239 9.139788e-02 NaN * time: 0.5224850177764893 * x: [0.6976900296134736, 0.4865152732191357] 240 9.051136e-02 NaN * time: 0.5225298404693604 * x: [0.6991839782606127, 0.48839912795671514] 241 8.979366e-02 NaN * time: 0.5225729942321777 * x: [0.700916049546561, 0.4894327545348472] 242 8.927867e-02 NaN * time: 0.5226168632507324 * x: [0.70135294983011, 0.4909546259345275] 243 8.863664e-02 NaN * time: 0.5226600170135498 * x: [0.7023235857025607, 0.4927545261525088] 244 8.795107e-02 NaN * time: 0.5227038860321045 * x: [0.7034679144419497, 0.49531204589185474] 245 8.748978e-02 NaN * time: 0.5227479934692383 * x: [0.7044975329996267, 0.49761319388772013] 246 8.719972e-02 NaN * time: 0.522791862487793 * x: [0.705423940191741, 0.49968366944159787] 247 8.636645e-02 NaN * time: 0.5228369235992432 * x: [0.7061438092392648, 0.4990263006587615] 248 8.607284e-02 NaN * time: 0.5228848457336426 * x: [0.7066345245057319, 0.4996411579769077] 249 8.606726e-02 NaN * time: 0.5230088233947754 * x: [0.7069508808208326, 0.4984030694789995] 250 8.588107e-02 NaN * time: 0.5230679512023926 * x: [0.7074842947931086, 0.4987574174754915] 251 8.581800e-02 NaN * time: 0.5231149196624756 * x: [0.7074401976973833, 0.49896577546620857] 252 8.567607e-02 NaN * time: 0.5231609344482422 * x: [0.7075384831010193, 0.4994176855984002] 253 8.558735e-02 NaN * time: 0.5232088565826416 * x: [0.7076172791274095, 0.49972376137697827] 254 8.554532e-02 NaN * time: 0.5232589244842529 * x: [0.7076571742902074, 0.499878730397299] 255 8.537846e-02 NaN * time: 0.5233030319213867 * x: [0.7079649311774517, 0.5002449423279718] 256 8.521248e-02 NaN * time: 0.5233478546142578 * x: [0.7081096972542853, 0.5017733288085455] 257 8.510647e-02 NaN * time: 0.5233910083770752 * x: [0.708343419878018, 0.5010953824800618] 258 8.489642e-02 NaN * time: 0.5234320163726807 * x: [0.7086813300158888, 0.5016828328883438] 259 8.466610e-02 NaN * time: 0.5234739780426025 * x: [0.7092439203835641, 0.5019000078159479] 260 8.455241e-02 NaN * time: 0.523521900177002 * x: [0.7094144262966255, 0.5022084924434483] 261 8.443268e-02 NaN * time: 0.5235719680786133 * x: [0.7096733034928142, 0.50244001127432] 262 8.417914e-02 NaN * time: 0.5236148834228516 * x: [0.7099160455469413, 0.5045325101119149] 263 8.355969e-02 NaN * time: 0.5236608982086182 * x: [0.7109359182601168, 0.5055580657981542] 264 8.304714e-02 NaN * time: 0.52370285987854 * x: [0.7118314499862978, 0.5064585876398778] 265 8.259062e-02 NaN * time: 0.5237488746643066 * x: [0.7126359968996588, 0.5074958584445836] 266 8.216557e-02 NaN * time: 0.5237929821014404 * x: [0.7133582053059987, 0.5090231540086015] 267 8.149095e-02 NaN * time: 0.5238380432128906 * x: [0.7145613451069717, 0.510201368108015] 268 8.067226e-02 NaN * time: 0.5238819122314453 * x: [0.716076034096958, 0.5119938709125377] 269 7.978760e-02 NaN * time: 0.5239529609680176 * x: [0.717543568448071, 0.5151129426027895] 270 7.910050e-02 NaN * time: 0.5239968299865723 * x: [0.7189159859959265, 0.515879590384671] 271 7.862522e-02 NaN * time: 0.5240378379821777 * x: [0.7198698372418135, 0.5169784519239752] 272 7.816318e-02 NaN * time: 0.5240819454193115 * x: [0.7206456395564085, 0.5182151376904041] 273 7.789987e-02 NaN * time: 0.5241248607635498 * x: [0.7210910299670372, 0.5189251226581805] 274 7.764612e-02 NaN * time: 0.5241680145263672 * x: [0.7215841866759594, 0.51954026494576] 275 7.724317e-02 NaN * time: 0.5242109298706055 * x: [0.7223127635262221, 0.5205826183780137] 276 7.665141e-02 NaN * time: 0.5242528915405273 * x: [0.7232082895603991, 0.5224157435722022] 277 7.606994e-02 NaN * time: 0.5242960453033447 * x: [0.7242371288450244, 0.5240216806166517] 278 7.538774e-02 NaN * time: 0.524338960647583 * x: [0.7256602041709781, 0.5254628254513203] 279 7.496930e-02 NaN * time: 0.5243849754333496 * x: [0.7263739126240215, 0.5286093448795517] 280 7.375812e-02 NaN * time: 0.5244319438934326 * x: [0.7284158066798291, 0.5306282895616077] 281 7.274635e-02 NaN * time: 0.5244748592376709 * x: [0.7302922694180787, 0.5331244607907987] 282 7.188887e-02 NaN * time: 0.5245199203491211 * x: [0.7321793805583743, 0.5348178306081854] 283 7.132206e-02 NaN * time: 0.524561882019043 * x: [0.7336004983793293, 0.5362898943788998] 284 7.084339e-02 NaN * time: 0.5246069431304932 * x: [0.7352265539982858, 0.5378407194465751] 285 7.041899e-02 NaN * time: 0.5246529579162598 * x: [0.7356460658931075, 0.5388599831560436] 286 7.013487e-02 NaN * time: 0.5246968269348145 * x: [0.7357147664476353, 0.5395786037494766] 287 6.996453e-02 NaN * time: 0.5247399806976318 * x: [0.7359149681197962, 0.5400754421229176] 288 6.987572e-02 NaN * time: 0.5247838497161865 * x: [0.7359025834219456, 0.5404200069523171] 289 6.983483e-02 NaN * time: 0.5248270034790039 * x: [0.7359236394830889, 0.5405911007661554] 290 6.980934e-02 NaN * time: 0.5248689651489258 * x: [0.736606961432711, 0.5405078763445501] 291 6.977483e-02 NaN * time: 0.5249078273773193 * x: [0.7361879672882772, 0.5406383909937955] 292 6.976250e-02 NaN * time: 0.5249698162078857 * x: [0.736324324331989, 0.5406319503500037] 293 6.843389e-02 NaN * time: 0.5250070095062256 * x: [0.7456024035416935, 0.5498272449886502] 294 6.843389e-02 NaN * time: 0.5250439643859863 * x: [0.7456024035416935, 0.5498272449886502] 295 6.843389e-02 NaN * time: 0.5250818729400635 * x: [0.7456024035416935, 0.5498272449886502] 296 6.843389e-02 NaN * time: 0.5251259803771973 * x: [0.7456024035416935, 0.5498272449886502] 297 6.843389e-02 NaN * time: 0.5251688957214355 * x: [0.7456024035416935, 0.5498272449886502] 298 6.843389e-02 NaN * time: 0.5252139568328857 * x: [0.7456024035416935, 0.5498272449886502] 299 6.843389e-02 NaN * time: 0.525256872177124 * x: [0.7456024035416935, 0.5498272449886502] 300 6.559667e-02 NaN * time: 0.5252988338470459 * x: [0.7444256949890838, 0.5525009556279428] Iter Function value Gradient norm 0 1.000000e+00 NaN * time: 6.508827209472656e-5 * x: [0.0, 0.0] 1 1.000000e+00 NaN * time: 0.042643070220947266 * x: [0.0, 0.0] 2 5.015982e-01 NaN * time: 0.04271411895751953 * x: [0.4848539607057712, 0.1864806069968562] 3 5.015982e-01 NaN * time: 0.042762041091918945 * x: [0.4848539607057712, 0.1864806069968562] 4 3.340541e-01 NaN * time: 0.04280591011047363 * x: [0.8075058719304893, 0.7065634499666376] 5 7.503458e-02 NaN * time: 0.04285001754760742 * x: [0.7965099453207382, 0.6527655889097546] 6 7.714480e-03 NaN * time: 0.0428929328918457 * x: [0.9276402474538046, 0.8654949290859205] 7 7.714480e-03 NaN * time: 0.042936086654663086 * x: [0.9276402474538046, 0.8654949290859205] 8 7.714480e-03 NaN * time: 0.04297995567321777 * x: [0.9276402474538046, 0.8654949290859205] 9 7.714480e-03 NaN * time: 0.04302191734313965 * x: [0.9276402474538046, 0.8654949290859205] 10 7.714480e-03 NaN * time: 0.04306292533874512 * x: [0.9276402474538046, 0.8654949290859205] 11 7.714480e-03 NaN * time: 0.0431060791015625 * x: [0.9276402474538046, 0.8654949290859205] 12 7.714480e-03 NaN * time: 0.04314708709716797 * x: [0.9276402474538046, 0.8654949290859205] 13 7.714480e-03 NaN * time: 0.043189048767089844 * x: [0.9276402474538046, 0.8654949290859205] 14 7.714480e-03 NaN * time: 0.04323101043701172 * x: [0.9276402474538046, 0.8654949290859205] 15 7.714480e-03 NaN * time: 0.04327201843261719 * x: [0.9276402474538046, 0.8654949290859205] 16 7.714480e-03 NaN * time: 0.043315887451171875 * x: [0.9276402474538046, 0.8654949290859205] 17 7.714480e-03 NaN * time: 0.043356895446777344 * x: [0.9276402474538046, 0.8654949290859205] 18 5.455560e-03 NaN * time: 0.04339790344238281 * x: [0.9261501931186452, 0.8576212949065058] 19 5.455560e-03 NaN * time: 0.04345393180847168 * x: [0.9261501931186452, 0.8576212949065058] 20 5.455560e-03 NaN * time: 0.043495893478393555 * x: [0.9261501931186452, 0.8576212949065058] 21 5.455560e-03 NaN * time: 0.04353904724121094 * x: [0.9261501931186452, 0.8576212949065058] 22 5.455560e-03 NaN * time: 0.043586015701293945 * x: [0.9261501931186452, 0.8576212949065058] 23 5.335527e-03 NaN * time: 0.043630123138427734 * x: [0.9269788066126184, 0.8591044463043894] 24 5.294727e-03 NaN * time: 0.043673038482666016 * x: [0.927347032407409, 0.8603759223700791] 25 5.294727e-03 NaN * time: 0.04371500015258789 * x: [0.927347032407409, 0.8603759223700791] 26 5.294727e-03 NaN * time: 0.043756961822509766 * x: [0.927347032407409, 0.8603759223700791] 27 5.249139e-03 NaN * time: 0.04379892349243164 * x: [0.9276546839080443, 0.8601521363442224] 28 5.249139e-03 NaN * time: 0.04384112358093262 * x: [0.9276546839080443, 0.8601521363442224] 29 5.249139e-03 NaN * time: 0.0438840389251709 * x: [0.9276546839080443, 0.8601521363442224] 30 5.245099e-03 NaN * time: 0.04392504692077637 * x: [0.927658615293744, 0.8602066635217287] 31 5.241215e-03 NaN * time: 0.04396796226501465 * x: [0.927710971971368, 0.860253797770869] 32 5.239599e-03 NaN * time: 0.04400897026062012 * x: [0.9277350485642819, 0.8602754727926686] 33 5.238936e-03 NaN * time: 0.0440521240234375 * x: [0.927745428997649, 0.8602848178075686] 34 5.238675e-03 NaN * time: 0.044094085693359375 * x: [0.9277495913099878, 0.8602885649411852] 35 5.238570e-03 NaN * time: 0.044137001037597656 * x: [0.9277512892933113, 0.8602900935555404] 36 5.238516e-03 NaN * time: 0.04417896270751953 * x: [0.9277521565794039, 0.8602908743323318] 37 5.238494e-03 NaN * time: 0.044222116470336914 * x: [0.9277525114934152, 0.860291193844688] 38 5.238484e-03 NaN * time: 0.044265031814575195 * x: [0.927752672779947, 0.8602913390433506] 39 5.238480e-03 NaN * time: 0.04430699348449707 * x: [0.9277527396052263, 0.8602913992029999] 40 5.238479e-03 NaN * time: 0.04435300827026367 * x: [0.927752766335338, 0.8602914232668596] 41 5.238478e-03 NaN * time: 0.04439806938171387 * x: [0.9277527771712536, 0.8602914330219237] 42 5.238478e-03 NaN * time: 0.044465065002441406 * x: [0.9277527818981897, 0.8602914372773615] 43 5.238478e-03 NaN * time: 0.044508934020996094 * x: [0.9277527838251938, 0.8602914390121524] 44 5.238477e-03 NaN * time: 0.04454994201660156 * x: [0.9277527845959954, 0.8602914397060688] 45 5.238477e-03 NaN * time: 0.04459095001220703 * x: [0.9277527850767515, 0.8602914401388708] 46 5.238477e-03 NaN * time: 0.044634103775024414 * x: [0.9277527855093155, 0.8602914405282878] 47 5.238477e-03 NaN * time: 0.04467511177062988 * x: [0.9277527857278762, 0.8602914407250477] 48 5.238477e-03 NaN * time: 0.04471611976623535 * x: [0.9277527858461839, 0.8602914408315545] 49 5.238477e-03 NaN * time: 0.04475808143615723 * x: [0.9277527859202883, 0.8602914408982671] 50 5.238477e-03 NaN * time: 0.04480099678039551 * x: [0.9277527859500425, 0.8602914409250535] 51 5.238477e-03 NaN * time: 0.044847965240478516 * x: [0.9277527859627406, 0.8602914409364849] 52 5.238477e-03 NaN * time: 0.04489898681640625 * x: [0.9277527859681889, 0.8602914409413898] 53 5.238477e-03 NaN * time: 0.044944047927856445 * x: [0.9277527859703683, 0.8602914409433517] 54 5.238477e-03 NaN * time: 0.04499101638793945 * x: [0.9277527859712407, 0.8602914409441371] 55 5.238477e-03 NaN * time: 0.04503607749938965 * x: [0.9277527859716913, 0.8602914409445428] 56 5.238477e-03 NaN * time: 0.04508090019226074 * x: [0.9277527859718716, 0.8602914409447051] 57 5.238477e-03 NaN * time: 0.045124053955078125 * x: [0.9277527859719437, 0.8602914409447701] 58 5.238477e-03 NaN * time: 0.045165061950683594 * x: [0.927752785971974, 0.8602914409447974] 59 5.238477e-03 NaN * time: 0.04520392417907715 * x: [0.92775278597199, 0.8602914409448118] 60 5.238477e-03 NaN * time: 0.0452420711517334 * x: [0.9277527859719974, 0.8602914409448185] 61 5.238477e-03 NaN * time: 0.04527997970581055 * x: [0.9277527859720008, 0.8602914409448216] 62 5.238477e-03 NaN * time: 0.04531693458557129 * x: [0.9277527859720022, 0.8602914409448228] 63 5.238477e-03 NaN * time: 0.04535198211669922 * x: [0.9277527859720027, 0.8602914409448232] 64 5.238477e-03 NaN * time: 0.04538989067077637 * x: [0.9277527859720031, 0.8602914409448235] 65 5.238477e-03 NaN * time: 0.04544711112976074 * x: [0.9277527859720032, 0.8602914409448236] 66 5.238477e-03 NaN * time: 0.045491933822631836 * x: [0.9277527859720033, 0.8602914409448237] 67 5.238477e-03 NaN * time: 0.04553508758544922 * x: [0.9277527859720033, 0.8602914409448237] 68 5.238477e-03 NaN * time: 0.04558110237121582 * x: [0.9277527859720033, 0.8602914409448237] 69 5.238477e-03 NaN * time: 0.0456240177154541 * x: [0.9277527859720033, 0.8602914409448237] 70 5.238477e-03 NaN * time: 0.045664072036743164 * x: [0.9277527859720033, 0.8602914409448237] 71 5.238477e-03 NaN * time: 0.045703887939453125 * x: [0.9277527859720033, 0.8602914409448237] 72 5.238477e-03 NaN * time: 0.045744895935058594 * x: [0.9277527859720033, 0.8602914409448237] 73 5.238477e-03 NaN * time: 0.04578590393066406 * x: [0.9277527859720033, 0.8602914409448237] 74 5.238477e-03 NaN * time: 0.04582810401916504 * x: [0.9277527859720033, 0.8602914409448237] 75 5.238477e-03 NaN * time: 0.045870065689086914 * x: [0.9277527859720033, 0.8602914409448237] 76 5.238477e-03 NaN * time: 0.045912981033325195 * x: [0.9277527859720033, 0.8602914409448237] 77 5.238477e-03 NaN * time: 0.04595494270324707 * x: [0.9277527859720033, 0.8602914409448237] 78 5.238477e-03 NaN * time: 0.045996904373168945 * x: [0.9277527859720033, 0.8602914409448237] 79 5.238477e-03 NaN * time: 0.04604005813598633 * x: [0.9277527859720033, 0.8602914409448237] 80 5.238477e-03 NaN * time: 0.04608511924743652 * x: [0.9277527859720033, 0.8602914409448237] 81 5.238477e-03 NaN * time: 0.04612898826599121 * x: [0.9277527859720033, 0.8602914409448237] 82 5.238477e-03 NaN * time: 0.04617190361022949 * x: [0.9277527859720033, 0.8602914409448237] 83 5.238477e-03 NaN * time: 0.04621696472167969 * x: [0.9277527859720033, 0.8602914409448237] 84 5.238477e-03 NaN * time: 0.04626011848449707 * x: [0.9277527859720033, 0.8602914409448237] 85 5.238477e-03 NaN * time: 0.04630303382873535 * x: [0.9277527859720033, 0.8602914409448237] 86 5.238477e-03 NaN * time: 0.04634499549865723 * x: [0.9277527859720033, 0.8602914409448237] 87 5.238477e-03 NaN * time: 0.046386003494262695 * x: [0.9277527859720033, 0.8602914409448237] 88 5.238477e-03 NaN * time: 0.04644489288330078 * x: [0.9277527859720033, 0.8602914409448237] 89 5.238477e-03 NaN * time: 0.04648995399475098 * x: [0.9277527859720033, 0.8602914409448237] 90 5.238477e-03 NaN * time: 0.04653310775756836 * x: [0.9277527859720033, 0.8602914409448237] 91 5.238477e-03 NaN * time: 0.046575069427490234 * x: [0.9277527859720033, 0.8602914409448237] 92 5.235535e-03 NaN * time: 0.046617984771728516 * x: [0.9277320845987334, 0.8603278795380576] 93 5.235535e-03 NaN * time: 0.046662092208862305 * x: [0.9277320845987334, 0.8603278795380576] 94 5.234721e-03 NaN * time: 0.046705007553100586 * x: [0.9277184139671135, 0.8603437546930732] 95 5.233285e-03 NaN * time: 0.04674792289733887 * x: [0.9277128698651057, 0.8603708938927044] 96 5.232788e-03 NaN * time: 0.04679298400878906 * x: [0.9277106522143316, 0.8603817496213664] 97 5.232600e-03 NaN * time: 0.04683709144592285 * x: [0.9277097506135528, 0.8603861630905794] 98 5.225035e-03 NaN * time: 0.04688000679016113 * x: [0.927737608255906, 0.8605186935064959] 99 5.225035e-03 NaN * time: 0.046922922134399414 * x: [0.927737608255906, 0.8605186935064959] 100 5.222471e-03 NaN * time: 0.04696393013000488 * x: [0.9277466469022484, 0.8605751289991079] 101 5.221812e-03 NaN * time: 0.04700493812561035 * x: [0.9277605868197146, 0.860558610683071] 102 5.221541e-03 NaN * time: 0.04704594612121582 * x: [0.9277719996748992, 0.8605450868477056] 103 5.221494e-03 NaN * time: 0.047087907791137695 * x: [0.9277797893054581, 0.86053585640716] 104 5.219385e-03 NaN * time: 0.04713106155395508 * x: [0.9277832179779945, 0.8605786787928998] 105 5.217095e-03 NaN * time: 0.04717302322387695 * x: [0.927806612811914, 0.8605968492883846] 106 5.215600e-03 NaN * time: 0.04721689224243164 * x: [0.9278226539764544, 0.8606093082743665] 107 5.212483e-03 NaN * time: 0.04726290702819824 * x: [0.9278437674514035, 0.8606499088486382] 108 5.211257e-03 NaN * time: 0.04730701446533203 * x: [0.9278600854655219, 0.860658071390351] 109 5.210725e-03 NaN * time: 0.04734992980957031 * x: [0.9278676159840455, 0.8606618382808023] 110 5.209985e-03 NaN * time: 0.047395944595336914 * x: [0.9278749179145854, 0.8606697791819004] 111 5.209027e-03 NaN * time: 0.04745602607727051 * x: [0.9278792146213866, 0.8606838134967786] 112 5.208625e-03 NaN * time: 0.047499895095825195 * x: [0.9278810259165123, 0.8606897297222295] 113 5.207971e-03 NaN * time: 0.047544002532958984 * x: [0.927884067746902, 0.8606993413070599] 114 5.207576e-03 NaN * time: 0.04758906364440918 * x: [0.9278845605523243, 0.8607063283236217] 115 5.207332e-03 NaN * time: 0.047634124755859375 * x: [0.9278843337371581, 0.8607112166478353] 116 5.206806e-03 NaN * time: 0.04767894744873047 * x: [0.9278852026424642, 0.8607207071687947] 117 5.206599e-03 NaN * time: 0.04772496223449707 * x: [0.9278855502073564, 0.8607245034074312] 118 5.206508e-03 NaN * time: 0.04776906967163086 * x: [0.927885656005421, 0.8607262423686541] 119 5.206316e-03 NaN * time: 0.047811031341552734 * x: [0.9278860359411033, 0.8607297675265382] 120 5.206231e-03 NaN * time: 0.0478520393371582 * x: [0.927886204633505, 0.8607313327055341] 121 5.206197e-03 NaN * time: 0.04789590835571289 * x: [0.9278862721104657, 0.8607319587771325] 122 5.206140e-03 NaN * time: 0.04794001579284668 * x: [0.9278863950111498, 0.8607329965369556] 123 5.206095e-03 NaN * time: 0.04798293113708496 * x: [0.9278864031161801, 0.8607339260687109] 124 5.206074e-03 NaN * time: 0.048027992248535156 * x: [0.9278864068190501, 0.8607343507352601] 125 5.206048e-03 NaN * time: 0.04807400703430176 * x: [0.9278864151812423, 0.8607348954481334] 126 5.206024e-03 NaN * time: 0.04811692237854004 * x: [0.9278863932211012, 0.8607354323461711] 127 5.206014e-03 NaN * time: 0.04815793037414551 * x: [0.9278863844370449, 0.8607356471053862] 128 5.206010e-03 NaN * time: 0.04820108413696289 * x: [0.9278863809234222, 0.8607357330090722] 129 5.206008e-03 NaN * time: 0.04824399948120117 * x: [0.927886379241277, 0.8607357741354236] 130 5.206003e-03 NaN * time: 0.04828596115112305 * x: [0.9278863800335528, 0.8607358853913983] 131 5.206000e-03 NaN * time: 0.04832792282104492 * x: [0.9278863873965766, 0.8607359447420939] 132 5.205998e-03 NaN * time: 0.048371076583862305 * x: [0.9278863915703404, 0.8607359783853076] 133 5.205995e-03 NaN * time: 0.0484158992767334 * x: [0.9278863922225357, 0.8607360335166043] 134 5.205994e-03 NaN * time: 0.048475027084350586 * x: [0.9278863925719284, 0.8607360605308843] 135 5.205992e-03 NaN * time: 0.04852008819580078 * x: [0.9278863914781545, 0.8607361071995043] 136 5.205990e-03 NaN * time: 0.04856300354003906 * x: [0.9278863906802536, 0.8607361412439613] 137 5.205989e-03 NaN * time: 0.04860496520996094 * x: [0.9278863894788829, 0.8607361658184868] 138 5.205988e-03 NaN * time: 0.048645973205566406 * x: [0.9278863881241008, 0.8607361995962417] 139 5.205987e-03 NaN * time: 0.048690080642700195 * x: [0.9278863873460224, 0.8607362189954841] 140 5.205986e-03 NaN * time: 0.04873204231262207 * x: [0.9278863866270185, 0.8607362272641265] 141 5.205986e-03 NaN * time: 0.048774003982543945 * x: [0.9278863863059993, 0.8607362334746915] 142 5.205986e-03 NaN * time: 0.048815011978149414 * x: [0.9278863865537771, 0.8607362367389204] 143 5.205986e-03 NaN * time: 0.048857927322387695 * x: [0.9278863863792498, 0.8607362401803156] 144 5.205986e-03 NaN * time: 0.048902034759521484 * x: [0.9278863862829627, 0.8607362425649934] 145 5.205985e-03 NaN * time: 0.04894590377807617 * x: [0.9278863863261229, 0.8607362447409647] 146 5.205985e-03 NaN * time: 0.04898810386657715 * x: [0.9278863863483101, 0.8607362458595647] 147 5.205985e-03 NaN * time: 0.04903006553649902 * x: [0.9278863863793598, 0.8607362467110984] 148 5.205985e-03 NaN * time: 0.04907393455505371 * x: [0.9278863863968616, 0.8607362471817432] 149 5.205985e-03 NaN * time: 0.04911398887634277 * x: [0.9278863863960227, 0.8607362474988665] 150 5.205985e-03 NaN * time: 0.04915904998779297 * x: [0.9278863864042397, 0.8607362477467123] 151 5.205985e-03 NaN * time: 0.049204111099243164 * x: [0.9278863864033664, 0.8607362479149807] 152 5.205985e-03 NaN * time: 0.04924798011779785 * x: [0.9278863864027418, 0.860736248052863] 153 5.205985e-03 NaN * time: 0.04929089546203613 * x: [0.9278863864004188, 0.8607362481224421] 154 5.205985e-03 NaN * time: 0.04933309555053711 * x: [0.9278863863993398, 0.860736248179307] 155 5.205985e-03 NaN * time: 0.04937291145324707 * x: [0.9278863863988539, 0.860736248204922] 156 5.205985e-03 NaN * time: 0.04941511154174805 * x: [0.9278863863980832, 0.8607362482257742] 157 5.205985e-03 NaN * time: 0.04953408241271973 * x: [0.9278863863980472, 0.8607362482580103] 158 5.205985e-03 NaN * time: 0.049581050872802734 * x: [0.9278863863980308, 0.860736248272707] 159 5.205985e-03 NaN * time: 0.04962491989135742 * x: [0.9278863863980222, 0.8607362482804154] 160 5.205985e-03 NaN * time: 0.049668073654174805 * x: [0.9278863863980182, 0.8607362482839742] 161 5.205985e-03 NaN * time: 0.049710988998413086 * x: [0.9278863863980166, 0.8607362482855103] 162 5.205985e-03 NaN * time: 0.04975390434265137 * x: [0.9278863863979511, 0.8607362482997756] 163 5.205985e-03 NaN * time: 0.04979705810546875 * x: [0.9278863863979413, 0.8607362483116471] 164 5.205985e-03 NaN * time: 0.04983997344970703 * x: [0.9278863863979371, 0.8607362483167771] 165 5.205985e-03 NaN * time: 0.04988288879394531 * x: [0.9278863863979468, 0.860736248334294] 166 5.205985e-03 NaN * time: 0.0499269962310791 * x: [0.9278863863979331, 0.8607362483511577] 167 5.205985e-03 NaN * time: 0.04996895790100098 * x: [0.9278863863979275, 0.8607362483579032] 168 5.205985e-03 NaN * time: 0.050009965896606445 * x: [0.9278863863979253, 0.8607362483606014] 169 5.205985e-03 NaN * time: 0.05005192756652832 * x: [0.9278863863979244, 0.8607362483616806] 170 5.205985e-03 NaN * time: 0.05009293556213379 * x: [0.9278863863979282, 0.8607362483629936] 171 5.205985e-03 NaN * time: 0.05013394355773926 * x: [0.9278863863979292, 0.8607362483640156] 172 5.205985e-03 NaN * time: 0.05017495155334473 * x: [0.9278863863979323, 0.8607362483645767] 173 5.205985e-03 NaN * time: 0.050215959548950195 * x: [0.9278863863979331, 0.8607362483649899] 174 5.205985e-03 NaN * time: 0.05025792121887207 * x: [0.9278863863979336, 0.8607362483653115] 175 5.205985e-03 NaN * time: 0.0503079891204834 * x: [0.9278863863979352, 0.8607362483654724] 176 5.205985e-03 NaN * time: 0.05034995079040527 * x: [0.9278863863979354, 0.8607362483655646] 177 3.702059e-03 NaN * time: 0.050393104553222656 * x: [0.9694082053274959, 0.9450117373617135] 178 3.702059e-03 NaN * time: 0.05045008659362793 * x: [0.9694082053274959, 0.9450117373617135] 179 3.702059e-03 NaN * time: 0.05049300193786621 * x: [0.9694082053274959, 0.9450117373617135] 180 3.702059e-03 NaN * time: 0.05053591728210449 * x: [0.9694082053274959, 0.9450117373617135] 181 1.172946e-03 NaN * time: 0.050579071044921875 * x: [0.9708661953196754, 0.9407807036045512] 182 1.172946e-03 NaN * time: 0.05062103271484375 * x: [0.9708661953196754, 0.9407807036045512] 183 8.539381e-04 NaN * time: 0.050662994384765625 * x: [0.9709454276116538, 0.9424224553885527] 184 8.539381e-04 NaN * time: 0.050704002380371094 * x: [0.9709454276116538, 0.9424224553885527] 185 8.539381e-04 NaN * time: 0.05074501037597656 * x: [0.9709454276116538, 0.9424224553885527] 186 8.539381e-04 NaN * time: 0.05078601837158203 * x: [0.9709454276116538, 0.9424224553885527] 187 8.539381e-04 NaN * time: 0.0508270263671875 * x: [0.9709454276116538, 0.9424224553885527] 188 8.539381e-04 NaN * time: 0.05086994171142578 * x: [0.9709454276116538, 0.9424224553885527] 189 8.539381e-04 NaN * time: 0.050911903381347656 * x: [0.9709454276116538, 0.9424224553885527] 190 8.539381e-04 NaN * time: 0.050952911376953125 * x: [0.9709454276116538, 0.9424224553885527] 191 8.539381e-04 NaN * time: 0.0509951114654541 * x: [0.9709454276116538, 0.9424224553885527] 192 8.539381e-04 NaN * time: 0.05103802680969238 * x: [0.9709454276116538, 0.9424224553885527] 193 8.539381e-04 NaN * time: 0.051080942153930664 * x: [0.9709454276116538, 0.9424224553885527] 194 8.539381e-04 NaN * time: 0.05112290382385254 * x: [0.9709454276116538, 0.9424224553885527] 195 8.539381e-04 NaN * time: 0.05116391181945801 * x: [0.9709454276116538, 0.9424224553885527] 196 8.459188e-04 NaN * time: 0.051206111907958984 * x: [0.9709424446631351, 0.942854821568732] 197 8.459188e-04 NaN * time: 0.05124807357788086 * x: [0.9709424446631351, 0.942854821568732] 198 8.443409e-04 NaN * time: 0.05129098892211914 * x: [0.9709454014590921, 0.9426935963012788] 199 8.443409e-04 NaN * time: 0.05133390426635742 * x: [0.9709454014590921, 0.9426935963012788] 200 8.443409e-04 NaN * time: 0.051377058029174805 * x: [0.9709454014590921, 0.9426935963012788] 201 8.443409e-04 NaN * time: 0.05141901969909668 * x: [0.9709454014590921, 0.9426935963012788] 202 8.443409e-04 NaN * time: 0.051477909088134766 * x: [0.9709454014590921, 0.9426935963012788] 203 8.443409e-04 NaN * time: 0.051518917083740234 * x: [0.9709454014590921, 0.9426935963012788] 204 8.443409e-04 NaN * time: 0.0515599250793457 * x: [0.9709454014590921, 0.9426935963012788] 205 8.443409e-04 NaN * time: 0.05160212516784668 * x: [0.9709454014590921, 0.9426935963012788] 206 4.081612e-04 NaN * time: 0.051644086837768555 * x: [0.9835648132570776, 0.9685746707863543] 207 4.081612e-04 NaN * time: 0.05168604850769043 * x: [0.9835648132570776, 0.9685746707863543] 208 4.081612e-04 NaN * time: 0.051728010177612305 * x: [0.9835648132570776, 0.9685746707863543] 209 2.244712e-04 NaN * time: 0.051770925521850586 * x: [0.9853155342538625, 0.9705494197470087] 210 2.244712e-04 NaN * time: 0.05181288719177246 * x: [0.9853155342538625, 0.9705494197470087] 211 2.244712e-04 NaN * time: 0.05185508728027344 * x: [0.9853155342538625, 0.9705494197470087] 212 2.244712e-04 NaN * time: 0.05189704895019531 * x: [0.9853155342538625, 0.9705494197470087] 213 2.244712e-04 NaN * time: 0.05193901062011719 * x: [0.9853155342538625, 0.9705494197470087] 214 2.244712e-04 NaN * time: 0.05198097229003906 * x: [0.9853155342538625, 0.9705494197470087] 215 2.244712e-04 NaN * time: 0.05202507972717285 * x: [0.9853155342538625, 0.9705494197470087] 216 2.244712e-04 NaN * time: 0.05206799507141113 * x: [0.9853155342538625, 0.9705494197470087] 217 2.244712e-04 NaN * time: 0.0521090030670166 * x: [0.9853155342538625, 0.9705494197470087] 218 2.244353e-04 NaN * time: 0.05215001106262207 * x: [0.9850808818733996, 0.9705205514210441] 219 2.213104e-04 NaN * time: 0.052191972732543945 * x: [0.9851267249416852, 0.9705056665230368] 220 2.206080e-04 NaN * time: 0.05223202705383301 * x: [0.985148266244536, 0.9704986722247084] 221 2.204570e-04 NaN * time: 0.05227303504943848 * x: [0.9851574861631949, 0.9704956785867604] 222 2.204150e-04 NaN * time: 0.05231499671936035 * x: [0.9851621113582386, 0.9704941768208651] 223 2.204033e-04 NaN * time: 0.05235600471496582 * x: [0.9851642475515222, 0.9704934832150413] 224 2.203997e-04 NaN * time: 0.0523989200592041 * x: [0.9851651638913924, 0.9704931856864067] 225 2.203985e-04 NaN * time: 0.052468061447143555 * x: [0.9851655481618272, 0.9704930609166991] 226 2.203980e-04 NaN * time: 0.05251002311706543 * x: [0.9851657276349474, 0.9704930026431325] 227 2.203977e-04 NaN * time: 0.05255293846130371 * x: [0.9851658127642059, 0.9704929750023054] 228 2.203976e-04 NaN * time: 0.052594900131225586 * x: [0.9851658554365574, 0.9704929611469151] 229 2.203976e-04 NaN * time: 0.05263710021972656 * x: [0.9851658726886912, 0.9704929555452776] 230 2.203975e-04 NaN * time: 0.052681922912597656 * x: [0.9851658802770185, 0.970492953081405] 231 2.203975e-04 NaN * time: 0.05272412300109863 * x: [0.9851658833810414, 0.9704929520735522] 232 2.203975e-04 NaN * time: 0.05276608467102051 * x: [0.9851658846263985, 0.9704929516691942] 233 2.203975e-04 NaN * time: 0.05280804634094238 * x: [0.9851658851284146, 0.9704929515061934] 234 2.203975e-04 NaN * time: 0.052850961685180664 * x: [0.98516588533062, 0.9704929514405388] 235 2.199373e-04 NaN * time: 0.05289196968078613 * x: [0.9851934347929734, 0.970522261253203] 236 2.199373e-04 NaN * time: 0.0529329776763916 * x: [0.9851934347929734, 0.970522261253203] 237 2.198096e-04 NaN * time: 0.05297493934631348 * x: [0.9851983108424694, 0.970530880458079] 238 2.195816e-04 NaN * time: 0.05301690101623535 * x: [0.9851908516471468, 0.9705489789827183] 239 2.193709e-04 NaN * time: 0.05306100845336914 * x: [0.9851904832470065, 0.9705781214738003] 240 2.192856e-04 NaN * time: 0.05310392379760742 * x: [0.9851986864548433, 0.9705709885248359] 241 2.190910e-04 NaN * time: 0.053147077560424805 * x: [0.9852033907467946, 0.9705868190418733] 242 2.190224e-04 NaN * time: 0.05318808555603027 * x: [0.9852040366998371, 0.9705950782011881] 243 2.189186e-04 NaN * time: 0.053227901458740234 * x: [0.9852075053020909, 0.970602096672802] 244 2.188771e-04 NaN * time: 0.05327010154724121 * x: [0.9852088927429924, 0.9706049040614475] 245 2.188596e-04 NaN * time: 0.053312063217163086 * x: [0.9852094775200548, 0.9706060873165205] 246 2.188518e-04 NaN * time: 0.053353071212768555 * x: [0.9852097392495354, 0.970606616907634] 247 2.188486e-04 NaN * time: 0.053392887115478516 * x: [0.9852098439413276, 0.9706068287440793] 248 2.188366e-04 NaN * time: 0.05345511436462402 * x: [0.9852102088228789, 0.970607746017477] 249 2.188292e-04 NaN * time: 0.05349898338317871 * x: [0.9852104881559722, 0.9706081598185943] 250 2.188262e-04 NaN * time: 0.05354189872741699 * x: [0.9852105998892096, 0.9706083253390412] 251 2.188221e-04 NaN * time: 0.053585052490234375 * x: [0.9852107238915764, 0.970608633077914] 252 2.188203e-04 NaN * time: 0.053626060485839844 * x: [0.9852107596862999, 0.9706088246929414] 253 2.188182e-04 NaN * time: 0.05366706848144531 * x: [0.9852108141374578, 0.9706090142997936] 254 2.188166e-04 NaN * time: 0.0537109375 * x: [0.9852108639181058, 0.9706091261798485] 255 2.188160e-04 NaN * time: 0.053752899169921875 * x: [0.9852108838308596, 0.9706091709329822] 256 2.143236e-04 NaN * time: 0.05379605293273926 * x: [0.985455231194953, 0.9709554809571382] 257 2.136292e-04 NaN * time: 0.05383801460266113 * x: [0.985714080918928, 0.9713233523139476] 258 2.133613e-04 NaN * time: 0.05387997627258301 * x: [0.9854270908572809, 0.9711661337069628] 259 2.133613e-04 NaN * time: 0.05392289161682129 * x: [0.9854270908572809, 0.9711661337069628] 260 2.133124e-04 NaN * time: 0.053965091705322266 * x: [0.9858523381789559, 0.9715421191662165] 261 2.085778e-04 NaN * time: 0.054006099700927734 * x: [0.9855625220043306, 0.9713704990384734] 262 2.048045e-04 NaN * time: 0.05404806137084961 * x: [0.9857274264207321, 0.9715537651790765] 263 2.044371e-04 NaN * time: 0.054090023040771484 * x: [0.9857933881872927, 0.9716270716353178] 264 1.990967e-04 NaN * time: 0.054132938385009766 * x: [0.9860692186288267, 0.9721082261973596] 265 1.929925e-04 NaN * time: 0.05417609214782715 * x: [0.9861886525097303, 0.9724184187425506] 266 1.906967e-04 NaN * time: 0.05421900749206543 * x: [0.9862405429776826, 0.9725531881748382] 267 1.897762e-04 NaN * time: 0.054258108139038086 * x: [0.9862628459277696, 0.9726111131857346] 268 1.894192e-04 NaN * time: 0.054299116134643555 * x: [0.9862717671078044, 0.9726342831900932] 269 1.766495e-04 NaN * time: 0.05434012413024902 * x: [0.9868096520440315, 0.9739565131839107] 270 1.766495e-04 NaN * time: 0.0543820858001709 * x: [0.9868096520440315, 0.9739565131839107] 271 1.766495e-04 NaN * time: 0.054435014724731445 * x: [0.9868096520440315, 0.9739565131839107] 272 1.705173e-04 NaN * time: 0.054479122161865234 * x: [0.9869812207578161, 0.9742333553176723] 273 1.669086e-04 NaN * time: 0.054518938064575195 * x: [0.987083587294471, 0.9743613675088317] 274 1.657031e-04 NaN * time: 0.05456209182739258 * x: [0.987127505951417, 0.9744162890065414] 275 1.651566e-04 NaN * time: 0.05460500717163086 * x: [0.9871503860275213, 0.9744449011758276] 276 1.648844e-04 NaN * time: 0.054646968841552734 * x: [0.9871627585921579, 0.9744603734108094] 277 1.315562e-04 NaN * time: 0.0546879768371582 * x: [0.9887507465395591, 0.9778518812416181] 278 1.315562e-04 NaN * time: 0.05472993850708008 * x: [0.9887507465395591, 0.9778518812416181] 279 1.315562e-04 NaN * time: 0.05477190017700195 * x: [0.9887507465395591, 0.9778518812416181] 280 1.315562e-04 NaN * time: 0.054815053939819336 * x: [0.9887507465395591, 0.9778518812416181] 281 1.315562e-04 NaN * time: 0.054856061935424805 * x: [0.9887507465395591, 0.9778518812416181] 282 1.315562e-04 NaN * time: 0.05489802360534668 * x: [0.9887507465395591, 0.9778518812416181] 283 1.315562e-04 NaN * time: 0.05493903160095215 * x: [0.9887507465395591, 0.9778518812416181] 284 1.258209e-04 NaN * time: 0.05498194694519043 * x: [0.988807779491059, 0.977666316485289] 285 1.258209e-04 NaN * time: 0.05502510070800781 * x: [0.988807779491059, 0.977666316485289] 286 1.258209e-04 NaN * time: 0.055068016052246094 * x: [0.988807779491059, 0.977666316485289] 287 1.258209e-04 NaN * time: 0.05510902404785156 * x: [0.988807779491059, 0.977666316485289] 288 1.258209e-04 NaN * time: 0.05515003204345703 * x: [0.988807779491059, 0.977666316485289] 289 1.189834e-04 NaN * time: 0.055191993713378906 * x: [0.9890964518934962, 0.9782808020443354] 290 1.123973e-04 NaN * time: 0.05523395538330078 * x: [0.9894634690847496, 0.9789205336713447] 291 1.101093e-04 NaN * time: 0.05527496337890625 * x: [0.9896213417935641, 0.979195714690864] 292 1.092262e-04 NaN * time: 0.055316925048828125 * x: [0.9896892659796008, 0.9793141103711811] 293 1.088466e-04 NaN * time: 0.0553591251373291 * x: [0.9897200105845539, 0.979367699948501] 294 1.086703e-04 NaN * time: 0.05540108680725098 * x: [0.9897346435367965, 0.9793932060080787] 295 1.030332e-04 NaN * time: 0.05545496940612793 * x: [0.98996486320446, 0.9801830484792879] 296 1.030332e-04 NaN * time: 0.05549812316894531 * x: [0.98996486320446, 0.9801830484792879] 297 1.020773e-04 NaN * time: 0.05553889274597168 * x: [0.9900229426355593, 0.980304662993923] 298 1.020773e-04 NaN * time: 0.055581092834472656 * x: [0.9900229426355593, 0.980304662993923] 299 1.009793e-04 NaN * time: 0.05562400817871094 * x: [0.9899520243902619, 0.9800182155442687] 300 1.009793e-04 NaN * time: 0.05566596984863281 * x: [0.9899520243902619, 0.9800182155442687] 2.115106 seconds (663.61 k allocations: 42.003 MiB, 97.55% compilation time) ./multivariate/solvers/zeroth_order/simulated_annealing.jl Iter Function value Gradient norm 1 1.000000e+00 NaN * time: 8.606910705566406e-5 * x: [0.0, 0.0] 2 1.000000e+00 NaN * time: 0.042062997817993164 * x: [0.0, 0.0] 3 1.000000e+00 NaN * time: 0.042112112045288086 * x: [0.0, 0.0] 4 1.000000e+00 NaN * time: 0.04214620590209961 * x: [0.0, 0.0] 5 1.000000e+00 NaN * time: 0.04218006134033203 * x: [0.0, 0.0] 6 1.000000e+00 NaN * time: 0.04221320152282715 * x: [0.0, 0.0] 7 1.000000e+00 NaN * time: 0.042249202728271484 * x: [0.0, 0.0] 8 1.000000e+00 NaN * time: 0.042283058166503906 * x: [0.0, 0.0] 9 1.000000e+00 NaN * time: 0.04231715202331543 * x: [0.0, 0.0] 10 1.000000e+00 NaN * time: 0.042353153228759766 * x: [0.0, 0.0] 11 1.000000e+00 NaN * time: 0.04238700866699219 * x: [0.0, 0.0] 0.190703 seconds (617.91 k allocations: 10.455 MiB, 52.81% compilation time) ./multivariate/array.jl 127.796996 seconds (19.60 M allocations: 1.219 GiB, 0.84% gc time, 99.53% compilation time) ./multivariate/extrapolate.jl 9.781777 seconds (2.98 M allocations: 237.541 MiB, 4.17% gc time, 98.92% compilation time) ./multivariate/lsthrow.jl 4.410638 seconds (739.49 k allocations: 51.409 MiB, 0.55% gc time, 99.06% compilation time) ./multivariate/precon.jl 15.002012 seconds (24.42 M allocations: 16.760 GiB, 10.11% gc time, 12.29% compilation time) ./multivariate/manifolds.jl WARNING: Method definition (::Main.var"#fprod#433"{fmanif, n})(Any) in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/test/multivariate/manifolds.jl:35 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/test/multivariate/manifolds.jl:45. WARNING: Method definition (::Main.var"#gprod!#434"{gmanif!, n})(Any, Any) in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/test/multivariate/manifolds.jl:36 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/test/multivariate/manifolds.jl:46. 131.762620 seconds (18.23 M allocations: 1.177 GiB, 0.45% gc time, 99.89% compilation time) ./multivariate/complex.jl 18.714621 seconds (5.21 M allocations: 347.081 MiB, 0.91% gc time, 99.37% compilation time) ./multivariate/fdtime.jl 10.264177 seconds (29.11 M allocations: 7.415 GiB, 5.37% gc time, 14.88% compilation time) ./multivariate/arbitrary_precision.jl ┌ Warning: Terminated early due to NaN in gradient. └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/optimize/optimize.jl:98 22.662571 seconds (13.92 M allocations: 774.343 MiB, 1.63% gc time, 92.40% compilation time) ./multivariate/successive_f_tol.jl 0.193961 seconds (42.87 k allocations: 3.081 MiB, 91.95% compilation time) ./multivariate/f_increase.jl 0.142228 seconds (12.30 k allocations: 814.531 KiB, 88.46% compilation time) ./multivariate/measurements.jl 10.438328 seconds (2.22 M allocations: 148.443 MiB, 0.73% gc time, 58.61% compilation time) Test Summary: | Pass Broken Total Time multivariate | 211970 73 212043 10m21.3s Literate examples WARNING: using NLSolversBase.gradient in module Main conflicts with an existing identifier. WARNING: using NLSolversBase.hessian in module Main conflicts with an existing identifier. ┌ Warning: Initial guess is not an interior point └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:116 Stacktrace: [1] initial_state(method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}, d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{typeof(con_c!), typeof(con_jacobian!), typeof(con_h!), Float64}, initial_x::Vector{Float64}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:117 [2] optimize @ ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/interior.jl:229 [inlined] [3] optimize(d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{typeof(con_c!), typeof(con_jacobian!), typeof(con_h!), Float64}, initial_x::Vector{Float64}, method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/interior.jl:229 [4] top-level scope @ ~/.julia/packages/Optim/HvjCd/docs/src/examples/ipnewton_basics.jl:172 [5] include @ ./client.jl:494 [inlined] [6] #450 @ ~/.julia/packages/Optim/HvjCd/test/examples.jl:11 [inlined] [7] cd(f::var"#450#453"{String, String}, dir::String) @ Base.Filesystem ./file.jl:112 [8] #449 @ ~/.julia/packages/Optim/HvjCd/test/examples.jl:10 [inlined] [9] mktempdir(fn::var"#449#452"{String, String}, parent::String; prefix::String) @ Base.Filesystem ./file.jl:766 [10] mktempdir(fn::Function, parent::String) @ Base.Filesystem ./file.jl:762 [11] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/examples.jl:9 [inlined] [12] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [13] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/examples.jl:9 [inlined] [14] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [15] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/examples.jl:2 [16] include @ ./client.jl:494 [inlined] [17] macro expansion @ ./timing.jl:279 [inlined] [18] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:269 [19] include(fname::String) @ Base.MainInclude ./client.jl:494 [20] top-level scope @ none:6 [21] eval @ ./boot.jl:385 [inlined] [22] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [23] _start() @ Base ./client.jl:557 parameter estimates:[2.836642512088644, 3.053452125511052, 0.37218117584627275] t-statsitics: [48.02654897758058, 45.515682746940136, 8.94427190999916] WARNING: Method definition con_c!(Any, Any) in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/docs/src/examples/ipnewton_basics.jl:139 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/docs/src/examples/rasch.jl:171. WARNING: Method definition con_jacobian!(Any, Any) in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/docs/src/examples/ipnewton_basics.jl:140 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/docs/src/examples/rasch.jl:172. WARNING: Method definition con_h!(Any, Any, Any) in module Main at /home/pkgeval/.julia/packages/Optim/HvjCd/docs/src/examples/ipnewton_basics.jl:145 overwritten at /home/pkgeval/.julia/packages/Optim/HvjCd/docs/src/examples/rasch.jl:175. Test Summary: | Pass Total Time Literate examples | 20 20 19.6s 19.779981 seconds (7.19 M allocations: 493.676 MiB, 1.71% gc time, 96.12% compilation time: 6% of which was recompilation) Test Summary: | Pass Total Time show method for options | 1 1 0.4s ┌ Warning: Initial guess is not an interior point └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:116 Stacktrace: [1] initial_state(method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}, d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#10"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#11"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#12"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:117 [2] optimize(d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#10"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#11"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#12"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}, method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/interior.jl:229 [3] optimize!(model::OptimMOIExt.Optimizer{Float64}) @ OptimMOIExt ~/.julia/packages/Optim/HvjCd/ext/OptimMOIExt.jl:365 [4] optimize!(dest::OptimMOIExt.Optimizer{Float64}, src::MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}) @ MathOptInterface ~/.julia/packages/MathOptInterface/jN9gE/src/MathOptInterface.jl:122 [5] optimize!(m::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}) @ MathOptInterface.Utilities ~/.julia/packages/MathOptInterface/jN9gE/src/Utilities/cachingoptimizer.jl:323 [6] test_nonlinear_constraint_log(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jN9gE/src/Test/test_nonlinear.jl:1880 [7] macro expansion @ ~/.julia/packages/MathOptInterface/jN9gE/src/Test/Test.jl:275 [inlined] [8] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [9] runtests(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}; include::Vector{String}, exclude::Vector{String}, warn_unsupported::Bool, verbose::Bool, exclude_tests_after::VersionNumber) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jN9gE/src/Test/Test.jl:270 [10] test_MOI_Test() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:33 [11] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [inlined] [12] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [13] runtests() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [14] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:77 [15] include(fname::String) @ Base.MainInclude ./client.jl:494 [16] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [inlined] [17] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [18] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [19] include(fname::String) @ Base.MainInclude ./client.jl:494 [20] top-level scope @ none:6 [21] eval @ ./boot.jl:385 [inlined] [22] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [23] _start() @ Base ./client.jl:557 test_nonlinear_constraint_log: Test Failed at /home/pkgeval/.julia/packages/MathOptInterface/jN9gE/src/Test/test_nonlinear.jl:1884 Expression: ≈(x_val, T(2), config) Evaluated: ≈(NaN, 2.0, MathOptInterface.Test.Config{Float64}(1.0e-6, 1.0e-6, MathOptInterface.LOCALLY_SOLVED, MathOptInterface.INFEASIBLE, Any[MathOptInterface.ConstraintBasisStatus, MathOptInterface.VariableBasisStatus, MathOptInterface.ConstraintName, MathOptInterface.VariableName, MathOptInterface.ObjectiveBound, MathOptInterface.DualObjectiveValue, MathOptInterface.SolverVersion, MathOptInterface.ConstraintDual])) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:672 [inlined] [2] test_nonlinear_constraint_log(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jN9gE/src/Test/test_nonlinear.jl:1884 [3] macro expansion @ ~/.julia/packages/MathOptInterface/jN9gE/src/Test/Test.jl:275 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [5] runtests(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}; include::Vector{String}, exclude::Vector{String}, warn_unsupported::Bool, verbose::Bool, exclude_tests_after::VersionNumber) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jN9gE/src/Test/Test.jl:270 test_nonlinear_constraint_log: Test Failed at /home/pkgeval/.julia/packages/MathOptInterface/jN9gE/src/Test/test_nonlinear.jl:1885 Expression: ≈(t_val, log(x_val), config) Evaluated: ≈(NaN, NaN, MathOptInterface.Test.Config{Float64}(1.0e-6, 1.0e-6, MathOptInterface.LOCALLY_SOLVED, MathOptInterface.INFEASIBLE, Any[MathOptInterface.ConstraintBasisStatus, MathOptInterface.VariableBasisStatus, MathOptInterface.ConstraintName, MathOptInterface.VariableName, MathOptInterface.ObjectiveBound, MathOptInterface.DualObjectiveValue, MathOptInterface.SolverVersion, MathOptInterface.ConstraintDual])) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:672 [inlined] [2] test_nonlinear_constraint_log(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jN9gE/src/Test/test_nonlinear.jl:1885 [3] macro expansion @ ~/.julia/packages/MathOptInterface/jN9gE/src/Test/Test.jl:275 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [5] runtests(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}; include::Vector{String}, exclude::Vector{String}, warn_unsupported::Bool, verbose::Bool, exclude_tests_after::VersionNumber) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jN9gE/src/Test/Test.jl:270 test_nonlinear_constraint_log: Test Failed at /home/pkgeval/.julia/packages/MathOptInterface/jN9gE/src/Test/test_nonlinear.jl:1886 Expression: ≈(MOI.get(model, MOI.ObjectiveValue()), t_val, config) Evaluated: ≈(NaN, NaN, MathOptInterface.Test.Config{Float64}(1.0e-6, 1.0e-6, MathOptInterface.LOCALLY_SOLVED, MathOptInterface.INFEASIBLE, Any[MathOptInterface.ConstraintBasisStatus, MathOptInterface.VariableBasisStatus, MathOptInterface.ConstraintName, MathOptInterface.VariableName, MathOptInterface.ObjectiveBound, MathOptInterface.DualObjectiveValue, MathOptInterface.SolverVersion, MathOptInterface.ConstraintDual])) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:672 [inlined] [2] test_nonlinear_constraint_log(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jN9gE/src/Test/test_nonlinear.jl:1886 [3] macro expansion @ ~/.julia/packages/MathOptInterface/jN9gE/src/Test/Test.jl:275 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [5] runtests(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}; include::Vector{String}, exclude::Vector{String}, warn_unsupported::Bool, verbose::Bool, exclude_tests_after::VersionNumber) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jN9gE/src/Test/Test.jl:270 ┌ Warning: Initial guess is not an interior point └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:116 Stacktrace: [1] initial_state(method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}, d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#10"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#11"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#12"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:117 [2] optimize(d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#10"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#11"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#12"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}, method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/interior.jl:229 [3] optimize!(model::OptimMOIExt.Optimizer{Float64}) @ OptimMOIExt ~/.julia/packages/Optim/HvjCd/ext/OptimMOIExt.jl:365 [4] optimize!(dest::OptimMOIExt.Optimizer{Float64}, src::MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}) @ MathOptInterface ~/.julia/packages/MathOptInterface/jN9gE/src/MathOptInterface.jl:122 [5] optimize!(m::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}) @ MathOptInterface.Utilities ~/.julia/packages/MathOptInterface/jN9gE/src/Utilities/cachingoptimizer.jl:323 [6] test_nonlinear_constraint_scalar_affine_function(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jN9gE/src/Test/test_nonlinear.jl:1956 [7] macro expansion @ ~/.julia/packages/MathOptInterface/jN9gE/src/Test/Test.jl:275 [inlined] [8] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [9] runtests(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}; include::Vector{String}, exclude::Vector{String}, warn_unsupported::Bool, verbose::Bool, exclude_tests_after::VersionNumber) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jN9gE/src/Test/Test.jl:270 [10] test_MOI_Test() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:33 [11] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [inlined] [12] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [13] runtests() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [14] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:77 [15] include(fname::String) @ Base.MainInclude ./client.jl:494 [16] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [inlined] [17] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [18] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [19] include(fname::String) @ Base.MainInclude ./client.jl:494 [20] top-level scope @ none:6 [21] eval @ ./boot.jl:385 [inlined] [22] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [23] _start() @ Base ./client.jl:557 test_nonlinear_constraint_scalar_affine_function: Test Failed at /home/pkgeval/.julia/packages/MathOptInterface/jN9gE/src/Test/test_nonlinear.jl:1957 Expression: ≈(MOI.get(model, MOI.ObjectiveValue()), T(6), config) Evaluated: ≈(NaN, 6.0, MathOptInterface.Test.Config{Float64}(1.0e-6, 1.0e-6, MathOptInterface.LOCALLY_SOLVED, MathOptInterface.INFEASIBLE, Any[MathOptInterface.ConstraintBasisStatus, MathOptInterface.VariableBasisStatus, MathOptInterface.ConstraintName, MathOptInterface.VariableName, MathOptInterface.ObjectiveBound, MathOptInterface.DualObjectiveValue, MathOptInterface.SolverVersion, MathOptInterface.ConstraintDual])) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:672 [inlined] [2] test_nonlinear_constraint_scalar_affine_function(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jN9gE/src/Test/test_nonlinear.jl:1957 [3] macro expansion @ ~/.julia/packages/MathOptInterface/jN9gE/src/Test/Test.jl:275 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [5] runtests(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}; include::Vector{String}, exclude::Vector{String}, warn_unsupported::Bool, verbose::Bool, exclude_tests_after::VersionNumber) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jN9gE/src/Test/Test.jl:270 ┌ Warning: Initial guess is not an interior point └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:116 Stacktrace: [1] initial_state(method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}, d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#10"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#11"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#12"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:117 [2] optimize(d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#10"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#11"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#12"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}, method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/interior.jl:229 [3] optimize!(model::OptimMOIExt.Optimizer{Float64}) @ OptimMOIExt ~/.julia/packages/Optim/HvjCd/ext/OptimMOIExt.jl:365 [4] optimize!(dest::OptimMOIExt.Optimizer{Float64}, src::MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}) @ MathOptInterface ~/.julia/packages/MathOptInterface/jN9gE/src/MathOptInterface.jl:122 [5] optimize!(m::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}) @ MathOptInterface.Utilities ~/.julia/packages/MathOptInterface/jN9gE/src/Utilities/cachingoptimizer.jl:323 [6] test_nonlinear_quadratic_1(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jN9gE/src/Test/test_nonlinear.jl:2001 [7] macro expansion @ ~/.julia/packages/MathOptInterface/jN9gE/src/Test/Test.jl:275 [inlined] [8] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [9] runtests(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}; include::Vector{String}, exclude::Vector{String}, warn_unsupported::Bool, verbose::Bool, exclude_tests_after::VersionNumber) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jN9gE/src/Test/Test.jl:270 [10] test_MOI_Test() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:33 [11] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [inlined] [12] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [13] runtests() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [14] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:77 [15] include(fname::String) @ Base.MainInclude ./client.jl:494 [16] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [inlined] [17] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [18] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [19] include(fname::String) @ Base.MainInclude ./client.jl:494 [20] top-level scope @ none:6 [21] eval @ ./boot.jl:385 [inlined] [22] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [23] _start() @ Base ./client.jl:557 ┌ Warning: Initial guess is not an interior point └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:116 Stacktrace: [1] initial_state(method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}, d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#10"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#11"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#12"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:117 [2] optimize(d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#10"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#11"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#12"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}, method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/interior.jl:229 [3] optimize!(model::OptimMOIExt.Optimizer{Float64}) @ OptimMOIExt ~/.julia/packages/Optim/HvjCd/ext/OptimMOIExt.jl:365 [4] optimize!(dest::OptimMOIExt.Optimizer{Float64}, src::MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}) @ MathOptInterface ~/.julia/packages/MathOptInterface/jN9gE/src/MathOptInterface.jl:122 [5] optimize!(m::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}) @ MathOptInterface.Utilities ~/.julia/packages/MathOptInterface/jN9gE/src/Utilities/cachingoptimizer.jl:323 [6] test_nonlinear_quadratic_2(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jN9gE/src/Test/test_nonlinear.jl:2050 [7] macro expansion @ ~/.julia/packages/MathOptInterface/jN9gE/src/Test/Test.jl:275 [inlined] [8] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [9] runtests(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}; include::Vector{String}, exclude::Vector{String}, warn_unsupported::Bool, verbose::Bool, exclude_tests_after::VersionNumber) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jN9gE/src/Test/Test.jl:270 [10] test_MOI_Test() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:33 [11] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [inlined] [12] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [13] runtests() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [14] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:77 [15] include(fname::String) @ Base.MainInclude ./client.jl:494 [16] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [inlined] [17] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [18] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [19] include(fname::String) @ Base.MainInclude ./client.jl:494 [20] top-level scope @ none:6 [21] eval @ ./boot.jl:385 [inlined] [22] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [23] _start() @ Base ./client.jl:557 ┌ Warning: Initial guess is not an interior point └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:116 Stacktrace: [1] initial_state(method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}, d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#10"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#11"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#12"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:117 [2] optimize(d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#10"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#11"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#12"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}, method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/interior.jl:229 [3] optimize!(model::OptimMOIExt.Optimizer{Float64}) @ OptimMOIExt ~/.julia/packages/Optim/HvjCd/ext/OptimMOIExt.jl:365 [4] optimize!(dest::OptimMOIExt.Optimizer{Float64}, src::MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}) @ MathOptInterface ~/.julia/packages/MathOptInterface/jN9gE/src/MathOptInterface.jl:122 [5] optimize!(m::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}) @ MathOptInterface.Utilities ~/.julia/packages/MathOptInterface/jN9gE/src/Utilities/cachingoptimizer.jl:323 [6] test_nonlinear_quadratic_3(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jN9gE/src/Test/test_nonlinear.jl:2099 [7] macro expansion @ ~/.julia/packages/MathOptInterface/jN9gE/src/Test/Test.jl:275 [inlined] [8] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [9] runtests(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}; include::Vector{String}, exclude::Vector{String}, warn_unsupported::Bool, verbose::Bool, exclude_tests_after::VersionNumber) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jN9gE/src/Test/Test.jl:270 [10] test_MOI_Test() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:33 [11] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [inlined] [12] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [13] runtests() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [14] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:77 [15] include(fname::String) @ Base.MainInclude ./client.jl:494 [16] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [inlined] [17] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [18] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [19] include(fname::String) @ Base.MainInclude ./client.jl:494 [20] top-level scope @ none:6 [21] eval @ ./boot.jl:385 [inlined] [22] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [23] _start() @ Base ./client.jl:557 ┌ Warning: Initial guess is not an interior point └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:116 Stacktrace: [1] initial_state(method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}, d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#10"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#11"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#12"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:117 [2] optimize(d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#10"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#11"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#12"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}, method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/interior.jl:229 [3] optimize!(model::OptimMOIExt.Optimizer{Float64}) @ OptimMOIExt ~/.julia/packages/Optim/HvjCd/ext/OptimMOIExt.jl:365 [4] optimize!(dest::OptimMOIExt.Optimizer{Float64}, src::MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}) @ MathOptInterface ~/.julia/packages/MathOptInterface/jN9gE/src/MathOptInterface.jl:122 [5] optimize!(m::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}) @ MathOptInterface.Utilities ~/.julia/packages/MathOptInterface/jN9gE/src/Utilities/cachingoptimizer.jl:323 [6] test_nonlinear_quadratic_4(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jN9gE/src/Test/test_nonlinear.jl:2147 [7] macro expansion @ ~/.julia/packages/MathOptInterface/jN9gE/src/Test/Test.jl:275 [inlined] [8] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [9] runtests(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}; include::Vector{String}, exclude::Vector{String}, warn_unsupported::Bool, verbose::Bool, exclude_tests_after::VersionNumber) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jN9gE/src/Test/Test.jl:270 [10] test_MOI_Test() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:33 [11] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [inlined] [12] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [13] runtests() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [14] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:77 [15] include(fname::String) @ Base.MainInclude ./client.jl:494 [16] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [inlined] [17] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [18] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [19] include(fname::String) @ Base.MainInclude ./client.jl:494 [20] top-level scope @ none:6 [21] eval @ ./boot.jl:385 [inlined] [22] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [23] _start() @ Base ./client.jl:557 test_nonlinear_with_scalar_quadratic_function_with_off_diag: Error During Test at /home/pkgeval/.julia/packages/MathOptInterface/jN9gE/src/Test/Test.jl:269 Got exception outside of a @test No nonlinear objective. Stacktrace: [1] error(s::String) @ Base ./error.jl:35 [2] eval_objective_gradient(d::MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator, g::Vector{Float64}, x::Vector{Float64}) @ MathOptInterface.Nonlinear.ReverseAD ~/.julia/packages/MathOptInterface/jN9gE/src/Nonlinear/ReverseAD/mathoptinterface_api.jl:188 [3] eval_objective_gradient @ ~/.julia/packages/MathOptInterface/jN9gE/src/Nonlinear/evaluator.jl:162 [inlined] [4] (::OptimMOIExt.var"#g!#5"{Float64, OptimMOIExt.Optimizer{Float64}, Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}})(G::Vector{Float64}, x::Vector{Float64}) @ OptimMOIExt ~/.julia/packages/Optim/HvjCd/ext/OptimMOIExt.jl:256 [5] (::NLSolversBase.var"#fg!#8"{OptimMOIExt.var"#f#4"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#g!#5"{Float64, OptimMOIExt.Optimizer{Float64}, Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}})(gx::Vector{Float64}, x::Vector{Float64}) @ NLSolversBase ~/.julia/packages/NLSolversBase/kavn7/src/objective_types/abstract.jl:13 [6] value_gradient!!(obj::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, x::Vector{Float64}) @ NLSolversBase ~/.julia/packages/NLSolversBase/kavn7/src/interface.jl:82 [7] value_gradient!(obj::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, x::Vector{Float64}) @ NLSolversBase ~/.julia/packages/NLSolversBase/kavn7/src/interface.jl:69 [8] initial_state(method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}, d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#10"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#11"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#12"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/ipnewton.jl:125 [9] optimize(d::TwiceDifferentiable{Float64, Vector{Float64}, Matrix{Float64}, Vector{Float64}}, constraints::TwiceDifferentiableConstraints{OptimMOIExt.var"#c!#10"{MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#jacobian!#11"{Float64, Vector{Float64}, Vector{Tuple{Int64, Int64}}, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, OptimMOIExt.var"#con_hessian!#12"{Float64, MathOptInterface.Nonlinear.Evaluator{MathOptInterface.Nonlinear.ReverseAD.NLPEvaluator}}, Float64}, initial_x::Vector{Float64}, method::IPNewton{typeof(Optim.backtrack_constrained_grad), Symbol}, options::Optim.Options{Float64, Nothing}) @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/ipnewton/interior.jl:229 [10] optimize!(model::OptimMOIExt.Optimizer{Float64}) @ OptimMOIExt ~/.julia/packages/Optim/HvjCd/ext/OptimMOIExt.jl:365 [11] optimize!(dest::OptimMOIExt.Optimizer{Float64}, src::MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}) @ MathOptInterface ~/.julia/packages/MathOptInterface/jN9gE/src/MathOptInterface.jl:122 [12] optimize!(m::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}) @ MathOptInterface.Utilities ~/.julia/packages/MathOptInterface/jN9gE/src/Utilities/cachingoptimizer.jl:323 [13] test_nonlinear_with_scalar_quadratic_function_with_off_diag(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jN9gE/src/Test/test_nonlinear.jl:1834 [14] macro expansion @ ~/.julia/packages/MathOptInterface/jN9gE/src/Test/Test.jl:275 [inlined] [15] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [16] runtests(model::MathOptInterface.Utilities.CachingOptimizer{OptimMOIExt.Optimizer{Float64}, MathOptInterface.Utilities.UniversalFallback{MathOptInterface.Utilities.Model{Float64}}}, config::MathOptInterface.Test.Config{Float64}; include::Vector{String}, exclude::Vector{String}, warn_unsupported::Bool, verbose::Bool, exclude_tests_after::VersionNumber) @ MathOptInterface.Test ~/.julia/packages/MathOptInterface/jN9gE/src/Test/Test.jl:270 [17] test_MOI_Test() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:33 [18] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [inlined] [19] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [20] runtests() @ Main.TestOptim ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:12 [21] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/MOI_wrapper.jl:77 [22] include(fname::String) @ Base.MainInclude ./client.jl:494 [23] macro expansion @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [inlined] [24] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [25] top-level scope @ ~/.julia/packages/Optim/HvjCd/test/runtests.jl:282 [26] include(fname::String) @ Base.MainInclude ./client.jl:494 [27] top-level scope @ none:6 [28] eval @ ./boot.jl:385 [inlined] [29] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [30] _start() @ Base ./client.jl:557 ┌ Warning: Initial position cannot be on the boundary of the box. Moving elements to the interior. │ Element indices affected: [1] └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/fminbox.jl:314 ┌ Warning: Initial position cannot be on the boundary of the box. Moving elements to the interior. │ Element indices affected: [1] └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/fminbox.jl:314 ┌ Warning: Initial position cannot be on the boundary of the box. Moving elements to the interior. │ Element indices affected: [1] └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/fminbox.jl:314 ┌ Warning: Initial position cannot be on the boundary of the box. Moving elements to the interior. │ Element indices affected: [1] └ @ Optim ~/.julia/packages/Optim/HvjCd/src/multivariate/solvers/constrained/fminbox.jl:314 Test Summary: | Pass Fail Error Total Time MOI wrapper | 561 4 1 566 16m28.4s test_MOI_Test | 559 4 1 564 15m37.5s test_DualObjectiveValue_Max_ScalarAffine_LessThan | None 17.1s test_DualObjectiveValue_Max_VariableIndex_LessThan | None 0.5s test_DualObjectiveValue_Min_ScalarAffine_GreaterThan | None 0.7s test_DualObjectiveValue_Min_VariableIndex_GreaterThan | None 0.2s test_HermitianPSDCone_basic | None 2.5s test_HermitianPSDCone_min_t | None 0.6s test_NormNuclearCone_VectorAffineFunction_with_transform | None 2.3s test_NormNuclearCone_VectorAffineFunction_without_transform | None 0.0s test_NormNuclearCone_VectorOfVariables_with_transform | None 0.5s test_NormNuclearCone_VectorOfVariables_without_transform | None 0.0s test_NormSpectralCone_VectorAffineFunction_with_transform | None 2.0s test_NormSpectralCone_VectorAffineFunction_without_transform | None 0.0s test_NormSpectralCone_VectorOfVariables_with_transform | None 0.1s test_NormSpectralCone_VectorOfVariables_without_transform | None 0.0s test_add_constrained_variables_vector | 6 6 0.4s test_add_parameter | None 0.7s test_attribute_AbsoluteGapTolerance | None 0.1s test_attribute_NodeLimit | None 0.1s test_attribute_NumberThreads | None 0.1s test_attribute_ObjectiveLimit | None 0.1s test_attribute_RelativeGapTolerance | None 0.1s test_attribute_Silent | 4 4 0.1s test_attribute_SolutionLimit | None 0.1s test_attribute_SolverName | 1 1 0.1s test_attribute_SolverVersion | None 0.1s test_attribute_TimeLimitSec | 4 4 0.5s test_attribute_after_empty | 4 4 0.1s test_attribute_unsupported_constraint | 2 2 0.6s test_basic_ScalarAffineFunction_EqualTo | None 3.4s test_basic_ScalarAffineFunction_GreaterThan | None 2.8s test_basic_ScalarAffineFunction_Integer | None 3.4s test_basic_ScalarAffineFunction_Interval | None 3.5s test_basic_ScalarAffineFunction_LessThan | None 2.9s test_basic_ScalarAffineFunction_Semicontinuous | None 3.8s test_basic_ScalarAffineFunction_Semiinteger | None 3.6s test_basic_ScalarAffineFunction_ZeroOne | None 3.7s test_basic_ScalarNonlinearFunction_EqualTo | 19 19 4.4s test_basic_ScalarNonlinearFunction_GreaterThan | 19 19 3.5s test_basic_ScalarNonlinearFunction_Integer | None 3.9s test_basic_ScalarNonlinearFunction_Interval | None 3.8s test_basic_ScalarNonlinearFunction_LessThan | 19 19 3.9s test_basic_ScalarNonlinearFunction_Semicontinuous | None 4.0s test_basic_ScalarNonlinearFunction_Semiinteger | None 3.9s test_basic_ScalarNonlinearFunction_ZeroOne | None 3.7s test_basic_ScalarQuadraticFunction_EqualTo | None 4.3s test_basic_ScalarQuadraticFunction_GreaterThan | None 3.3s test_basic_ScalarQuadraticFunction_Integer | None 3.5s test_basic_ScalarQuadraticFunction_Interval | None 3.5s test_basic_ScalarQuadraticFunction_LessThan | None 3.4s test_basic_ScalarQuadraticFunction_Semicontinuous | None 3.6s test_basic_ScalarQuadraticFunction_Semiinteger | None 3.5s test_basic_ScalarQuadraticFunction_ZeroOne | None 3.6s test_basic_VariableIndex_EqualTo | 16 16 1.2s test_basic_VariableIndex_GreaterThan | 16 16 1.2s test_basic_VariableIndex_Integer | None 1.3s test_basic_VariableIndex_Interval | 16 16 1.3s test_basic_VariableIndex_LessThan | 16 16 1.3s test_basic_VariableIndex_Semicontinuous | None 1.3s test_basic_VariableIndex_Semiinteger | None 1.3s test_basic_VariableIndex_ZeroOne | None 1.2s test_basic_VectorAffineFunction_AllDifferent | None 4.3s test_basic_VectorAffineFunction_BinPacking | None 4.3s test_basic_VectorAffineFunction_Circuit | None 4.2s test_basic_VectorAffineFunction_Complements | None 4.1s test_basic_VectorAffineFunction_CountAtLeast | None 4.4s test_basic_VectorAffineFunction_CountBelongs | None 4.2s test_basic_VectorAffineFunction_CountDistinct | None 4.0s test_basic_VectorAffineFunction_CountGreaterThan | None 4.0s test_basic_VectorAffineFunction_Cumulative | None 4.0s test_basic_VectorAffineFunction_DualExponentialCone | None 4.0s test_basic_VectorAffineFunction_DualPowerCone | None 4.0s test_basic_VectorAffineFunction_ExponentialCone | None 4.0s test_basic_VectorAffineFunction_GeometricMeanCone | None 4.0s test_basic_VectorAffineFunction_HermitianPositiveSemidefiniteConeTriangle | None 3.3s test_basic_VectorAffineFunction_HyperRectangle | None 4.1s test_basic_VectorAffineFunction_Indicator_GreaterThan | None 3.9s test_basic_VectorAffineFunction_Indicator_LessThan | None 3.9s test_basic_VectorAffineFunction_LogDetConeSquare | None 4.0s test_basic_VectorAffineFunction_LogDetConeTriangle | None 4.1s test_basic_VectorAffineFunction_Nonnegatives | None 4.0s test_basic_VectorAffineFunction_Nonpositives | None 4.1s test_basic_VectorAffineFunction_NormCone | None 4.0s test_basic_VectorAffineFunction_NormInfinityCone | None 4.0s test_basic_VectorAffineFunction_NormNuclearCone | None 3.2s test_basic_VectorAffineFunction_NormOneCone | None 4.0s test_basic_VectorAffineFunction_NormSpectralCone | None 3.2s test_basic_VectorAffineFunction_Path | None 4.3s test_basic_VectorAffineFunction_PositiveSemidefiniteConeSquare | None 4.0s test_basic_VectorAffineFunction_PositiveSemidefiniteConeTriangle | None 4.0s test_basic_VectorAffineFunction_PowerCone | None 4.0s test_basic_VectorAffineFunction_RelativeEntropyCone | None 4.0s test_basic_VectorAffineFunction_RootDetConeSquare | None 4.0s test_basic_VectorAffineFunction_RootDetConeTriangle | None 3.9s test_basic_VectorAffineFunction_RotatedSecondOrderCone | None 4.0s test_basic_VectorAffineFunction_SOS1 | None 4.3s test_basic_VectorAffineFunction_SOS2 | None 4.1s test_basic_VectorAffineFunction_ScaledPositiveSemidefiniteConeTriangle | None 3.9s test_basic_VectorAffineFunction_SecondOrderCone | None 4.0s test_basic_VectorAffineFunction_Table | None 4.1s test_basic_VectorAffineFunction_Zeros | None 3.9s test_basic_VectorNonlinearFunction_AllDifferent | None 4.4s test_basic_VectorNonlinearFunction_BinPacking | None 3.9s test_basic_VectorNonlinearFunction_Circuit | None 3.7s test_basic_VectorNonlinearFunction_Complements | None 3.7s test_basic_VectorNonlinearFunction_CountAtLeast | None 3.9s test_basic_VectorNonlinearFunction_CountBelongs | None 3.8s test_basic_VectorNonlinearFunction_CountDistinct | None 3.8s test_basic_VectorNonlinearFunction_CountGreaterThan | None 3.8s test_basic_VectorNonlinearFunction_Cumulative | None 3.7s test_basic_VectorNonlinearFunction_DualExponentialCone | None 3.8s test_basic_VectorNonlinearFunction_DualPowerCone | None 3.7s test_basic_VectorNonlinearFunction_ExponentialCone | None 3.7s test_basic_VectorNonlinearFunction_GeometricMeanCone | None 3.8s test_basic_VectorNonlinearFunction_HermitianPositiveSemidefiniteConeTriangle | None 3.7s test_basic_VectorNonlinearFunction_HyperRectangle | None 3.9s test_basic_VectorNonlinearFunction_LogDetConeSquare | None 3.7s test_basic_VectorNonlinearFunction_LogDetConeTriangle | None 3.8s test_basic_VectorNonlinearFunction_Nonnegatives | None 3.8s test_basic_VectorNonlinearFunction_Nonpositives | None 3.7s test_basic_VectorNonlinearFunction_NormCone | None 3.8s test_basic_VectorNonlinearFunction_NormInfinityCone | None 3.9s test_basic_VectorNonlinearFunction_NormNuclearCone | None 3.9s test_basic_VectorNonlinearFunction_NormOneCone | None 3.9s test_basic_VectorNonlinearFunction_NormSpectralCone | None 3.8s test_basic_VectorNonlinearFunction_Path | None 4.1s test_basic_VectorNonlinearFunction_PositiveSemidefiniteConeSquare | None 4.0s test_basic_VectorNonlinearFunction_PositiveSemidefiniteConeTriangle | None 4.1s test_basic_VectorNonlinearFunction_PowerCone | None 4.1s test_basic_VectorNonlinearFunction_RelativeEntropyCone | None 4.1s test_basic_VectorNonlinearFunction_RootDetConeSquare | None 4.0s test_basic_VectorNonlinearFunction_RootDetConeTriangle | None 4.3s test_basic_VectorNonlinearFunction_RotatedSecondOrderCone | None 4.0s test_basic_VectorNonlinearFunction_SOS1 | None 4.2s test_basic_VectorNonlinearFunction_SOS2 | None 4.1s test_basic_VectorNonlinearFunction_ScaledPositiveSemidefiniteConeTriangle | None 4.3s test_basic_VectorNonlinearFunction_SecondOrderCone | None 4.1s test_basic_VectorNonlinearFunction_Table | None 4.8s test_basic_VectorNonlinearFunction_Zeros | None 4.1s test_basic_VectorOfVariables_AllDifferent | None 3.1s test_basic_VectorOfVariables_BinPacking | None 3.2s test_basic_VectorOfVariables_Circuit | None 3.9s test_basic_VectorOfVariables_Complements | None 3.2s test_basic_VectorOfVariables_CountAtLeast | None 3.4s test_basic_VectorOfVariables_CountBelongs | None 3.3s test_basic_VectorOfVariables_CountDistinct | None 3.3s test_basic_VectorOfVariables_CountGreaterThan | None 3.5s test_basic_VectorOfVariables_Cumulative | None 3.3s test_basic_VectorOfVariables_DualExponentialCone | None 3.1s test_basic_VectorOfVariables_DualPowerCone | None 3.2s test_basic_VectorOfVariables_ExponentialCone | None 3.1s test_basic_VectorOfVariables_GeometricMeanCone | None 3.0s test_basic_VectorOfVariables_HermitianPositiveSemidefiniteConeTriangle | None 3.2s test_basic_VectorOfVariables_HyperRectangle | None 3.3s test_basic_VectorOfVariables_LogDetConeSquare | None 3.2s test_basic_VectorOfVariables_LogDetConeTriangle | None 3.2s test_basic_VectorOfVariables_Nonnegatives | None 3.0s test_basic_VectorOfVariables_Nonpositives | None 3.2s test_basic_VectorOfVariables_NormCone | None 3.2s test_basic_VectorOfVariables_NormInfinityCone | None 3.2s test_basic_VectorOfVariables_NormNuclearCone | None 2.3s test_basic_VectorOfVariables_NormOneCone | None 3.3s test_basic_VectorOfVariables_NormSpectralCone | None 2.3s test_basic_VectorOfVariables_Path | None 3.5s test_basic_VectorOfVariables_PositiveSemidefiniteConeSquare | None 3.2s test_basic_VectorOfVariables_PositiveSemidefiniteConeTriangle | None 3.2s test_basic_VectorOfVariables_PowerCone | None 3.2s test_basic_VectorOfVariables_RelativeEntropyCone | None 3.1s test_basic_VectorOfVariables_RootDetConeSquare | None 3.2s test_basic_VectorOfVariables_RootDetConeTriangle | None 3.2s test_basic_VectorOfVariables_RotatedSecondOrderCone | None 3.2s test_basic_VectorOfVariables_SOS1 | None 3.2s test_basic_VectorOfVariables_SOS2 | None 3.2s test_basic_VectorOfVariables_ScaledPositiveSemidefiniteConeTriangle | None 3.2s test_basic_VectorOfVariables_SecondOrderCone | None 3.2s test_basic_VectorOfVariables_Table | None 3.3s test_basic_VectorOfVariables_Zeros | None 3.2s test_basic_VectorQuadraticFunction_AllDifferent | None 5.4s test_basic_VectorQuadraticFunction_BinPacking | None 4.7s test_basic_VectorQuadraticFunction_Circuit | None 4.5s test_basic_VectorQuadraticFunction_Complements | None 3.3s test_basic_VectorQuadraticFunction_CountAtLeast | None 3.3s test_basic_VectorQuadraticFunction_CountBelongs | None 3.3s test_basic_VectorQuadraticFunction_CountDistinct | None 4.4s test_basic_VectorQuadraticFunction_CountGreaterThan | None 4.5s test_basic_VectorQuadraticFunction_Cumulative | None 4.3s test_basic_VectorQuadraticFunction_DualExponentialCone | None 4.5s test_basic_VectorQuadraticFunction_DualPowerCone | None 4.4s test_basic_VectorQuadraticFunction_ExponentialCone | None 3.8s test_basic_VectorQuadraticFunction_GeometricMeanCone | None 4.4s test_basic_VectorQuadraticFunction_HermitianPositiveSemidefiniteConeTriangle | None 4.4s test_basic_VectorQuadraticFunction_HyperRectangle | None 4.5s test_basic_VectorQuadraticFunction_LogDetConeSquare | None 4.4s test_basic_VectorQuadraticFunction_LogDetConeTriangle | None 3.8s test_basic_VectorQuadraticFunction_Nonnegatives | None 4.2s test_basic_VectorQuadraticFunction_Nonpositives | None 4.2s test_basic_VectorQuadraticFunction_NormCone | None 4.3s test_basic_VectorQuadraticFunction_NormInfinityCone | None 4.4s test_basic_VectorQuadraticFunction_NormNuclearCone | None 4.4s test_basic_VectorQuadraticFunction_NormOneCone | None 4.5s test_basic_VectorQuadraticFunction_NormSpectralCone | None 4.5s test_basic_VectorQuadraticFunction_Path | None 4.5s test_basic_VectorQuadraticFunction_PositiveSemidefiniteConeSquare | None 4.2s test_basic_VectorQuadraticFunction_PositiveSemidefiniteConeTriangle | None 4.5s test_basic_VectorQuadraticFunction_PowerCone | None 4.3s test_basic_VectorQuadraticFunction_RelativeEntropyCone | None 4.4s test_basic_VectorQuadraticFunction_RootDetConeSquare | None 3.9s test_basic_VectorQuadraticFunction_RootDetConeTriangle | None 4.1s test_basic_VectorQuadraticFunction_RotatedSecondOrderCone | None 4.5s test_basic_VectorQuadraticFunction_SOS1 | None 4.4s test_basic_VectorQuadraticFunction_SOS2 | None 4.6s test_basic_VectorQuadraticFunction_ScaledPositiveSemidefiniteConeTriangle | None 4.5s test_basic_VectorQuadraticFunction_SecondOrderCone | None 4.6s test_basic_VectorQuadraticFunction_Table | None 4.0s test_basic_VectorQuadraticFunction_Zeros | None 3.8s test_conic_DualExponentialCone_VectorAffineFunction | None 4.7s test_conic_DualExponentialCone_VectorOfVariables | None 0.0s test_conic_DualPowerCone_VectorAffineFunction | None 1.7s test_conic_DualPowerCone_VectorOfVariables | None 0.0s test_conic_Exponential_VectorAffineFunction | None 1.2s test_conic_Exponential_VectorOfVariables | None 0.0s test_conic_Exponential_hard | None 1.9s test_conic_Exponential_hard_2 | None 2.5s test_conic_GeometricMeanCone_VectorAffineFunction | None 1.2s test_conic_GeometricMeanCone_VectorAffineFunction_2 | None 1.5s test_conic_GeometricMeanCone_VectorAffineFunction_3 | None 0.6s test_conic_GeometricMeanCone_VectorOfVariables | None 0.0s test_conic_GeometricMeanCone_VectorOfVariables_2 | None 0.0s test_conic_GeometricMeanCone_VectorOfVariables_3 | None 0.0s test_conic_HermitianPositiveSemidefiniteConeTriangle_1 | None 1.4s test_conic_HermitianPositiveSemidefiniteConeTriangle_2 | None 0.5s test_conic_LogDetConeSquare | None 0.7s test_conic_LogDetConeSquare_VectorAffineFunction | None 2.1s test_conic_LogDetConeSquare_VectorOfVariables | None 0.0s test_conic_LogDetConeTriangle | None 0.5s test_conic_LogDetConeTriangle_VectorAffineFunction | None 1.6s test_conic_LogDetConeTriangle_VectorOfVariables | None 0.0s test_conic_NormCone | None 0.4s test_conic_NormInfinityCone_3 | None 0.8s test_conic_NormInfinityCone_INFEASIBLE | None 0.3s test_conic_NormInfinityCone_VectorAffineFunction | None 1.4s test_conic_NormInfinityCone_VectorOfVariables | None 0.0s test_conic_NormNuclearCone | None 0.5s test_conic_NormNuclearCone_2 | None 0.3s test_conic_NormOneCone | None 0.9s test_conic_NormOneCone_INFEASIBLE | None 0.3s test_conic_NormOneCone_VectorAffineFunction | None 1.4s test_conic_NormOneCone_VectorOfVariables | None 0.0s test_conic_NormSpectralCone | None 0.5s test_conic_NormSpectralCone_2 | None 0.3s test_conic_PositiveSemidefiniteConeSquare_3 | None 0.6s test_conic_PositiveSemidefiniteConeSquare_VectorAffineFunction | None 1.1s test_conic_PositiveSemidefiniteConeSquare_VectorAffineFunction_2 | None 2.0s test_conic_PositiveSemidefiniteConeSquare_VectorOfVariables | None 0.0s test_conic_PositiveSemidefiniteConeSquare_VectorOfVariables_2 | None 0.0s test_conic_PositiveSemidefiniteConeTriangle | None 1.8s test_conic_PositiveSemidefiniteConeTriangle_3 | None 0.4s test_conic_PositiveSemidefiniteConeTriangle_4 | None 1.4s test_conic_PositiveSemidefiniteConeTriangle_VectorAffineFunction | None 0.8s test_conic_PositiveSemidefiniteConeTriangle_VectorAffineFunction_2 | None 1.6s test_conic_PositiveSemidefiniteConeTriangle_VectorOfVariables | None 0.0s test_conic_PositiveSemidefiniteConeTriangle_VectorOfVariables_2 | None 0.1s test_conic_PowerCone_VectorAffineFunction | None 0.9s test_conic_PowerCone_VectorOfVariables | None 0.0s test_conic_RelativeEntropyCone | None 0.5s test_conic_RootDetConeSquare | None 0.5s test_conic_RootDetConeSquare_VectorAffineFunction | None 1.4s test_conic_RootDetConeSquare_VectorOfVariables | None 0.0s test_conic_RootDetConeTriangle | None 0.5s test_conic_RootDetConeTriangle_VectorAffineFunction | None 1.3s test_conic_RootDetConeTriangle_VectorOfVariables | None 0.0s test_conic_RotatedSecondOrderCone_INFEASIBLE | None 1.1s test_conic_RotatedSecondOrderCone_INFEASIBLE_2 | None 2.9s test_conic_RotatedSecondOrderCone_VectorAffineFunction | None 1.4s test_conic_RotatedSecondOrderCone_VectorOfVariables | None 0.0s test_conic_RotatedSecondOrderCone_out_of_order | None 0.3s test_conic_ScaledPositiveSemidefiniteConeTriangle_VectorAffineFunction | None 0.6s test_conic_SecondOrderCone_INFEASIBLE | None 0.2s test_conic_SecondOrderCone_Nonnegatives | None 2.3s test_conic_SecondOrderCone_Nonpositives | None 0.0s test_conic_SecondOrderCone_VectorAffineFunction | None 1.3s test_conic_SecondOrderCone_VectorOfVariables | None 0.0s test_conic_SecondOrderCone_negative_initial_bound | None 0.5s test_conic_SecondOrderCone_negative_post_bound | None 0.1s test_conic_SecondOrderCone_negative_post_bound_2 | None 0.2s test_conic_SecondOrderCone_negative_post_bound_3 | None 0.2s test_conic_SecondOrderCone_no_initial_bound | None 0.1s test_conic_SecondOrderCone_nonnegative_initial_bound | None 0.2s test_conic_SecondOrderCone_nonnegative_post_bound | None 0.1s test_conic_SecondOrderCone_out_of_order | None 0.8s test_conic_empty_matrix | None 0.1s test_conic_linear_INFEASIBLE | None 0.1s test_conic_linear_INFEASIBLE_2 | None 0.2s test_conic_linear_VectorAffineFunction | None 1.1s test_conic_linear_VectorAffineFunction_2 | None 2.9s test_conic_linear_VectorOfVariables | None 0.0s test_conic_linear_VectorOfVariables_2 | None 0.0s test_constraint_ConstraintDualStart | None 0.9s test_constraint_ConstraintPrimalStart | None 0.6s test_constraint_Indicator_ACTIVATE_ON_ONE | None 0.1s test_constraint_Indicator_ACTIVATE_ON_ZERO | None 1.2s test_constraint_Indicator_ConstraintName | None 0.1s test_constraint_PrimalStart_DualStart_SecondOrderCone | None 1.5s test_constraint_ScalarAffineFunction_EqualTo | None 0.3s test_constraint_ScalarAffineFunction_GreaterThan | None 0.3s test_constraint_ScalarAffineFunction_Interval | None 0.5s test_constraint_ScalarAffineFunction_LessThan | None 0.3s test_constraint_ScalarAffineFunction_duplicate | None 0.5s test_constraint_VectorAffineFunction_duplicate | None 1.1s test_constraint_ZeroOne_bounds | None 0.2s test_constraint_ZeroOne_bounds_2 | None 0.0s test_constraint_ZeroOne_bounds_3 | None 0.1s test_constraint_get_ConstraintIndex | 7 7 1.1s test_constraint_qcp_duplicate_diagonal | None 0.4s test_constraint_qcp_duplicate_off_diagonal | None 0.5s test_cpsat_AllDifferent | None 0.7s test_cpsat_BinPacking | None 1.0s test_cpsat_Circuit | None 0.2s test_cpsat_CountAtLeast | None 0.2s test_cpsat_CountBelongs | None 0.3s test_cpsat_CountDistinct | None 0.2s test_cpsat_CountGreaterThan | None 0.3s test_cpsat_Cumulative | None 0.9s test_cpsat_Path | None 0.9s test_cpsat_ReifiedAllDifferent | None 1.4s test_cpsat_Table | None 0.3s test_infeasible_MAX_SENSE | None 0.4s test_infeasible_MAX_SENSE_offset | None 0.1s test_infeasible_MIN_SENSE | None 0.1s test_infeasible_MIN_SENSE_offset | None 0.1s test_infeasible_affine_MAX_SENSE | None 0.3s test_infeasible_affine_MAX_SENSE_offset | None 0.1s test_infeasible_affine_MIN_SENSE | None 0.1s test_infeasible_affine_MIN_SENSE_offset | None 0.1s test_linear_DUAL_INFEASIBLE | None 0.5s test_linear_DUAL_INFEASIBLE_2 | None 0.4s test_linear_FEASIBILITY_SENSE | None 0.7s test_linear_HyperRectangle_VectorAffineFunction | None 0.4s test_linear_HyperRectangle_VectorOfVariables | None 0.2s test_linear_INFEASIBLE | None 0.3s test_linear_INFEASIBLE_2 | None 0.3s test_linear_Indicator_ON_ONE | 1 1 0.7s test_linear_Indicator_ON_ZERO | None 1.5s test_linear_Indicator_constant_term | None 0.4s test_linear_Indicator_integration | None 0.4s test_linear_Interval_inactive | None 0.7s test_linear_LessThan_and_GreaterThan | None 1.0s test_linear_SOS1_integration | None 1.1s test_linear_SOS2_integration | None 1.4s test_linear_Semicontinuous_integration | None 2.2s test_linear_Semiinteger_integration | None 0.0s test_linear_VariablePrimalStart_partial | None 0.5s test_linear_VectorAffineFunction | None 1.0s test_linear_VectorAffineFunction_empty_row | None 0.6s test_linear_add_constraints | None 0.8s test_linear_complex_Zeros | None 2.2s test_linear_complex_Zeros_duplicate | None 0.3s test_linear_inactive_bounds | None 0.8s test_linear_integer_integration | None 1.1s test_linear_integer_knapsack | None 0.7s test_linear_integer_solve_twice | None 0.5s test_linear_integration | None 13.2s test_linear_integration_2 | None 1.1s test_linear_integration_Interval | None 2.0s test_linear_integration_delete_variables | None 4.2s test_linear_integration_modification | None 1.6s test_linear_modify_GreaterThan_and_LessThan_constraints | None 1.2s test_linear_open_intervals | None 0.1s test_linear_transform | None 0.5s test_linear_variable_open_intervals | 1 1 4.3s test_model_ListOfConstraintAttributesSet | 2 2 0.7s test_model_ListOfConstraintsWithAttributeSet | 1 1 0.4s test_model_ListOfVariablesWithAttributeSet | 1 1 0.3s test_model_LowerBoundAlreadySet | 4 4 0.3s test_model_ModelFilter_AbstractConstraintAttribute | None 2.4s test_model_ModelFilter_AbstractModelAttribute | 1 1 1.1s test_model_ModelFilter_AbstractVariableAttribute | 2 2 0.6s test_model_ModelFilter_ListOfConstraintIndices | 10 10 0.9s test_model_ModelFilter_ListOfConstraintTypesPresent | 3 3 1.3s test_model_Name | 7 7 0.1s test_model_Name_VariableName_ConstraintName | 20 20 4.6s test_model_ScalarAffineFunction_ConstraintName | 5 5 0.2s test_model_ScalarFunctionConstantNotZero | None 0.1s test_model_UpperBoundAlreadySet | 4 4 0.2s test_model_VariableIndex_ConstraintName | 1 1 0.0s test_model_VariableName | 6 6 0.2s test_model_VariablePrimalStart | 3 3 0.2s test_model_add_constrained_variable_tuple | 6 6 0.2s test_model_copy_to_UnsupportedAttribute | 6 6 3.9s test_model_copy_to_UnsupportedConstraint | 2 2 2.1s test_model_default_DualStatus | 1 1 0.0s test_model_default_ObjectiveSense | 1 1 0.0s test_model_default_PrimalStatus | 1 1 0.0s test_model_default_TerminationStatus | 1 1 0.0s test_model_delete | 64 64 5.8s test_model_duplicate_ScalarAffineFunction_ConstraintName | 6 6 0.5s test_model_duplicate_VariableName | 6 6 0.2s test_model_empty | 3 3 0.7s test_model_is_valid | 4 4 0.9s test_model_ordered_indices | 12 12 0.4s test_model_show | 1 1 1.2s test_model_supports_constraint_ScalarAffineFunction_EqualTo | None 0.0s test_model_supports_constraint_VariableIndex_EqualTo | 2 2 0.1s test_model_supports_constraint_VectorOfVariables_Nonnegatives | None 0.1s test_modification_affine_deletion_edge_cases | None 0.7s test_modification_coef_scalar_objective | 8 8 0.1s test_modification_coef_scalaraffine_lessthan | None 0.0s test_modification_const_scalar_objective | 8 8 0.3s test_modification_const_vectoraffine_nonpos | None 0.4s test_modification_const_vectoraffine_zeros | None 0.7s test_modification_constraint_scalarquadraticcoefficientchange | None 1.2s test_modification_func_scalaraffine_lessthan | None 0.4s test_modification_func_vectoraffine_nonneg | None 0.6s test_modification_incorrect | None 0.5s test_modification_incorrect_VariableIndex | 3 3 0.3s test_modification_mathoptinterface_issue_2452 | None 0.2s test_modification_multirow_vectoraffine_nonpos | None 0.8s test_modification_objective_scalarquadraticcoefficientchange | 5 5 2.9s test_modification_set_function_single_variable | 1 1 0.1s test_modification_set_scalaraffine_lessthan | None 0.2s test_modification_set_singlevariable_lessthan | 13 13 0.5s test_multiobjective_vector_affine_function | 2 2 0.7s test_multiobjective_vector_affine_function_delete | 3 3 0.4s test_multiobjective_vector_affine_function_delete_vector | 3 3 0.3s test_multiobjective_vector_affine_function_modify | 3 3 0.3s test_multiobjective_vector_nonlinear | 2 2 0.6s test_multiobjective_vector_nonlinear_delete | 3 3 0.2s test_multiobjective_vector_nonlinear_delete_vector | 3 3 0.2s test_multiobjective_vector_nonlinear_modify | 3 3 0.4s test_multiobjective_vector_of_variables | 2 2 0.3s test_multiobjective_vector_of_variables_delete | 3 3 0.1s test_multiobjective_vector_of_variables_delete_all | 4 4 0.1s test_multiobjective_vector_of_variables_delete_vector | 4 4 0.1s test_multiobjective_vector_quadratic_function | 2 2 3.4s test_multiobjective_vector_quadratic_function_delete | 3 3 0.4s test_multiobjective_vector_quadratic_function_delete_vector | 3 3 0.2s test_multiobjective_vector_quadratic_function_modify | 3 3 0.8s test_nonlinear_Feasibility_internal | 9 9 0.5s test_nonlinear_HS071_internal | 11 11 1.0s test_nonlinear_InvalidEvaluator_internal | 3 3 0.1s test_nonlinear_constraint_log | 3 3 6 5.6s test_nonlinear_constraint_scalar_affine_function | 1 1 1.0s test_nonlinear_constraint_uminus | 2 2 0.1s test_nonlinear_duals | None 2.0s test_nonlinear_expression_hs110 | 2 2 2.0s test_nonlinear_expression_multivariate_function | None 0.3s test_nonlinear_expression_overrides_objective | None 0.3s test_nonlinear_expression_quartic | 2 2 0.1s test_nonlinear_expression_univariate_function | None 0.1s test_nonlinear_hs071 | 9 9 0.9s test_nonlinear_hs071_NLPBlockDual | None 0.8s test_nonlinear_hs071_hessian_vector_product | 9 9 0.0s test_nonlinear_hs071_no_hessian | 9 9 0.0s test_nonlinear_invalid | None 0.0s test_nonlinear_mixed_complementarity | None 0.4s test_nonlinear_objective | 1 1 0.3s test_nonlinear_objective_and_moi_objective_test | 1 1 0.2s test_nonlinear_qp_complementarity_constraint | None 0.7s test_nonlinear_quadratic_1 | 4 4 1.7s test_nonlinear_quadratic_2 | 4 4 0.5s test_nonlinear_quadratic_3 | 4 4 0.6s test_nonlinear_quadratic_4 | 4 4 0.5s test_nonlinear_vector_complements | None 0.9s test_nonlinear_with_scalar_quadratic_function_with_off_diag | 1 1 2 2.1s test_nonlinear_without_objective | 1 1 0.3s test_objective_ObjectiveFunction_blank | 2 2 0.1s test_objective_ObjectiveSense_FEASIBILITY_SENSE | 1 1 0.0s test_objective_ObjectiveSense_MAX_SENSE | 1 1 0.0s test_objective_ObjectiveSense_MIN_SENSE | 1 1 0.0s test_objective_ObjectiveSense_in_ListOfModelAttributesSet | 2 2 0.1s test_objective_ScalarAffineFunction_in_ListOfModelAttributesSet | 2 2 0.1s test_objective_ScalarQuadraticFunction_in_ListOfModelAttributesSet | 2 2 0.1s test_objective_VariableIndex_in_ListOfModelAttributesSet | 2 2 0.1s test_objective_get_ObjectiveFunction_ScalarAffineFunction | 5 5 0.7s test_objective_set_via_modify | 2 2 0.3s test_quadratic_Integer_SecondOrderCone | None 0.6s test_quadratic_SecondOrderCone_basic | None 1.0s test_quadratic_constraint_GreaterThan | None 1.4s test_quadratic_constraint_LessThan | None 0.0s test_quadratic_constraint_basic | None 0.4s test_quadratic_constraint_integration | None 0.7s test_quadratic_constraint_minimize | None 0.4s test_quadratic_duplicate_terms | None 1.5s test_quadratic_integration | None 0.8s test_quadratic_nonconvex_constraint_basic | None 0.5s test_quadratic_nonconvex_constraint_integration | None 0.6s test_quadratic_nonhomogeneous | None 1.2s test_solve_DualStatus_INFEASIBILITY_CERTIFICATE_EqualTo_lower | None 0.2s test_solve_DualStatus_INFEASIBILITY_CERTIFICATE_EqualTo_upper | None 0.2s test_solve_DualStatus_INFEASIBILITY_CERTIFICATE_GreaterThan | None 0.2s test_solve_DualStatus_INFEASIBILITY_CERTIFICATE_Interval_lower | None 0.2s test_solve_DualStatus_INFEASIBILITY_CERTIFICATE_Interval_upper | None 0.2s test_solve_DualStatus_INFEASIBILITY_CERTIFICATE_LessThan | None 0.2s test_solve_DualStatus_INFEASIBILITY_CERTIFICATE_VariableIndex_LessThan | None 0.2s test_solve_DualStatus_INFEASIBILITY_CERTIFICATE_VariableIndex_LessThan_max | None 0.2s test_solve_ObjectiveBound_MAX_SENSE_IP | None 0.1s test_solve_ObjectiveBound_MAX_SENSE_LP | None 0.1s test_solve_ObjectiveBound_MIN_SENSE_IP | None 0.1s test_solve_ObjectiveBound_MIN_SENSE_LP | None 0.1s test_solve_SOS2_add_and_delete | None 1.0s test_solve_VariableIndex_ConstraintDual_MAX_SENSE | None 0.1s test_solve_VariableIndex_ConstraintDual_MIN_SENSE | None 0.1s test_solve_conflict_EqualTo | None 0.4s test_solve_conflict_NOT_IN_CONFLICT | None 0.2s test_solve_conflict_affine_affine | None 0.2s test_solve_conflict_bound_bound | None 0.1s test_solve_conflict_feasible | None 0.1s test_solve_conflict_invalid_interval | None 0.1s test_solve_conflict_two_affine | None 0.1s test_solve_conflict_zeroone | None 0.1s test_solve_conflict_zeroone_2 | None 0.1s test_solve_optimize_twice | None 0.1s test_unbounded_MAX_SENSE | None 0.1s test_unbounded_MAX_SENSE_offset | None 0.2s test_unbounded_MIN_SENSE | None 0.2s test_unbounded_MIN_SENSE_offset | None 0.1s test_variable_VariableName | 4 4 0.1s test_variable_add_variable | 3 3 0.1s test_variable_add_variables | 2 2 0.1s test_variable_delete | 3 3 0.1s test_variable_delete_Nonnegatives | None 0.4s test_variable_delete_Nonnegatives_row | None 0.3s test_variable_delete_SecondOrderCone | None 0.3s test_variable_delete_variables | 9 9 0.3s test_variable_get_VariableIndex | 2 2 0.1s test_variable_solve_Integer_with_lower_bound | None 0.2s test_variable_solve_Integer_with_upper_bound | None 0.0s test_variable_solve_ZeroOne_with_0_upper_bound | None 0.1s test_variable_solve_ZeroOne_with_1_lower_bound | None 0.0s test_variable_solve_ZeroOne_with_bounds_then_delete | None 0.1s test_variable_solve_ZeroOne_with_upper_bound | None 0.0s test_variable_solve_with_lowerbound | 7 7 0.6s test_variable_solve_with_upperbound | 9 9 0.1s test_SolverName | 1 1 0.0s test_supports_incremental_interface | 1 1 0.0s ERROR: LoadError: Some tests did not pass: 561 passed, 4 failed, 1 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/Optim/HvjCd/test/runtests.jl:281 Testing failed after 1756.77s ERROR: LoadError: Package Optim errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.10/Pkg/src/Types.jl:70 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:2034 [3] test @ /opt/julia/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:1915 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::Base.PipeEndpoint}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:444 [5] test(pkgs::Vector{Pkg.Types.PackageSpec}; io::Base.PipeEndpoint, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:159 [6] test @ /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:147 [inlined] [7] #test#74 @ /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:146 [inlined] [8] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 1838.95s: package tests unexpectedly errored