Package evaluation of MoM_AllinOne on Julia 1.10.8 (92f03a4775*) started at 2025-02-25T18:55:01.683 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 5.06s ################################################################################ # Installation # Installing MoM_AllinOne... Resolving package versions... Installed MPIArray4MoMs ─ v0.0.2 Installed MoM_MPI ─────── v0.0.1 Installed MoM_Kernels ─── v0.1.0 Updating `~/.julia/environments/v1.10/Project.toml` [ed5fc19a] + MoM_AllinOne v0.1.0 Updating `~/.julia/environments/v1.10/Manifest.toml` [621f4979] + AbstractFFTs v1.5.0 [398f06c4] + AbstractLattices v0.3.1 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.41 [79e6a3ab] + Adapt v4.2.0 [66dad0bd] + AliasTables v1.1.3 [27a7e980] + Animations v0.4.2 [dce04be8] + ArgCheck v2.4.0 [4fba245c] + ArrayInterface v7.18.0 [a9b6321e] + Atomix v1.1.0 [67c07d97] + Automa v1.1.0 [13072b0f] + AxisAlgorithms v1.1.0 [39de3d68] + AxisArrays v0.4.7 [198e06fe] + BangBang v0.4.3 [9718e550] + Baselet v0.1.1 [0e736298] + Bessels v0.2.8 [fa961155] + CEnum v0.5.0 [336ed68f] + CSV v0.10.15 [159f3aea] + Cairo v1.1.1 ⌃ [13f3f980] + CairoMakie v0.11.9 [082447d4] + ChainRules v1.72.2 [d360d2e6] + ChainRulesCore v1.25.1 [7a955b69] + CircularArrays v1.4.0 [944b1d66] + CodecZlib v0.7.8 [a2cac450] + ColorBrewer v0.4.1 [35d6a980] + ColorSchemes v3.29.0 ⌅ [3da002f7] + ColorTypes v0.11.5 ⌃ [c3611d14] + ColorVectorSpace v0.10.0 ⌅ [03fe91ce] + Colorfy v0.1.6 ⌅ [5ae59095] + Colors v0.12.11 [861a8166] + Combinatorics v1.0.2 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.16.0 [a33af91c] + CompositionsBase v0.1.2 [187b0558] + ConstructionBase v1.5.8 [6add18c4] + ContextVariablesX v0.1.3 [d38c429a] + Contour v0.6.3 ⌅ [b46f11dc] + CoordRefSystems v0.7.4 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [a93c6f00] + DataFrames v1.7.0 [864edb3b] + DataStructures v0.18.20 [e2d170a0] + DataValueInterfaces v1.0.0 [244e2a9f] + DefineSingletons v0.1.2 ⌅ [927a84f5] + DelaunayTriangulation v0.8.12 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [b4f34e82] + Distances v0.10.12 [31c24e10] + Distributions v0.25.117 [ffbed154] + DocStringExtensions v0.9.3 [4e289a0a] + EnumX v1.0.4 [429591f6] + ExactPredicates v2.2.8 [e2ba6199] + ExprTools v0.1.10 [411431e0] + Extents v0.1.5 [7a1cc6ca] + FFTW v1.8.1 [cc61a311] + FLoops v0.2.2 [b9860ae5] + FLoopsBase v0.1.1 [442a2c76] + FastGaussQuadrature v1.0.2 [5789e2e9] + FileIO v1.16.6 [8fc22ac5] + FilePaths v0.8.3 [48062228] + FilePathsBase v0.9.23 [1a297f60] + FillArrays v1.13.0 [6a86dc24] + FiniteDiff v2.27.0 [53c48c17] + FixedPointNumbers v0.8.5 [9c68100b] + FoldsThreads v0.1.2 [1fa38f19] + Format v1.3.7 [f6369f11] + ForwardDiff v0.10.38 [b38be410] + FreeType v4.1.1 [663a7486] + FreeTypeAbstraction v0.10.6 [069b7b12] + FunctionWrappers v1.1.3 [f7f18e0c] + GLFW v3.4.3 ⌅ [e9467ef8] + GLMakie v0.9.9 [0c68f7d7] + GPUArrays v11.2.2 [46192b85] + GPUArraysCore v0.2.0 [92c85e6c] + GSL v1.0.1 [68eda718] + GeoFormatTypes v0.4.4 [cf35fbd7] + GeoInterface v1.4.1 ⌅ [5c1252a2] + GeometryBasics v0.4.11 [a2bd30eb] + Graphics v1.1.3 ⌅ [3955a311] + GridLayoutBase v0.10.2 [42e2da0e] + Grisu v1.0.2 [076d061b] + HashArrayMappedTries v0.2.0 [34004b35] + HypergeometricFunctions v0.3.27 [7869d1d1] + IRTools v0.4.14 [2803e5a7] + ImageAxes v0.6.12 [c817782e] + ImageBase v0.1.7 [a09fc81d] + ImageCore v0.10.5 [82e4d734] + ImageIO v0.6.9 [bc367c6b] + ImageMetadata v0.9.10 [40713840] + IncompleteLU v0.2.1 [9b13fd28] + IndirectArrays v1.0.0 [d25df0c9] + Inflate v0.1.5 [22cec73e] + InitialValues v0.3.1 [842dd82b] + InlineStrings v1.4.3 [18e54dd8] + IntegerMathUtils v0.1.2 [a98d9a8b] + Interpolations v0.15.1 [d1acc4aa] + IntervalArithmetic v0.22.23 [8197267c] + IntervalSets v0.7.10 [3587e190] + InverseFunctions v0.1.17 [41ab1584] + InvertedIndices v1.3.1 [92d709cd] + IrrationalConstants v0.2.4 [f1662d9f] + Isoband v0.1.1 [c8e1da08] + IterTools v1.10.0 [42fd0dbc] + IterativeSolvers v0.9.4 [82899510] + IteratorInterfaceExtensions v1.0.0 [033835bb] + JLD2 v0.5.11 [692b3bcd] + JLLWrappers v1.7.0 [682c06a0] + JSON v0.21.4 [b835a17e] + JpegTurbo v0.1.5 [b14d175d] + JuliaVariables v0.2.4 [63c18a36] + KernelAbstractions v0.9.34 [5ab0869b] + KernelDensity v0.6.9 [929cbde3] + LLVM v9.2.0 [b964fa9f] + LaTeXStrings v1.4.0 [8cdb02fc] + LazyModules v0.3.1 [3db4a2ba] + LegendrePolynomials v0.4.5 [9c8b4983] + LightXML v0.9.1 [d3d80556] + LineSearches v7.3.0 [9b3f67b0] + LinearAlgebraX v0.2.10 [7a12625a] + LinearMaps v3.11.4 [2ab3a3ac] + LogExpFunctions v0.3.29 [d8e11817] + MLStyle v0.4.17 [da04e1cc] + MPI v0.20.22 [b7f3fe35] + MPIArray4MoMs v0.0.2 [3da0fdf6] + MPIPreferences v0.1.11 [1914dd2f] + MacroTools v0.5.15 ⌅ [ee78f7c6] + Makie v0.20.8 ⌅ [20f20a25] + MakieCore v0.7.3 [dbb5928d] + MappedArrays v0.4.2 [299715c1] + MarchingCubes v0.1.11 ⌅ [0a4f8689] + MathTeXEngine v0.5.7 ⌅ [7269a6da] + MeshIO v0.4.13 ⌃ [eacbb407] + Meshes v0.43.5 [128add7d] + MicroCollections v0.2.0 [e1d29d7a] + Missings v1.2.0 [ed5fc19a] + MoM_AllinOne v0.1.0 [84796d1e] + MoM_Basics v0.1.2 [831fc53b] + MoM_Kernels v0.1.0 [307724fd] + MoM_MPI v0.0.1 [cbf82f24] + MoM_Visualizing v0.0.3 [66fc600b] + ModernGL v1.1.8 [7475f97c] + Mods v2.2.6 [e94cdb99] + MosaicViews v0.3.4 [3b2b4ff1] + Multisets v0.4.5 [d41bc354] + NLSolversBase v7.8.3 [77ba4419] + NaNMath v1.1.2 [71a1bf82] + NameResolution v0.1.5 [b8a86587] + NearestNeighbors v0.4.21 [f09324ee] + Netpbm v1.1.1 [510215fc] + Observables v0.5.5 [6fe1bfb0] + OffsetArrays v1.15.0 [52e1d378] + OpenEXR v0.3.3 [429524aa] + Optim v1.11.0 [bac558e1] + OrderedCollections v1.8.0 [90014a1f] + PDMats v0.11.32 [f57f5aa1] + PNGFiles v0.4.4 [19eb6ba3] + Packing v0.5.1 [5432bcbf] + PaddedViews v0.5.12 [d96e819e] + Parameters v0.12.3 [69de0a69] + Parsers v2.8.1 [2ae35dd2] + Permutations v0.4.23 [3bbf5609] + PikaParser v0.6.1 [eebad327] + PkgVersion v0.3.3 [995b91a9] + PlotUtils v1.4.3 [647866c9] + PolygonOps v0.1.2 [f27b6e38] + Polynomials v4.0.17 [2dfb63ee] + PooledArrays v1.4.3 [85a6dd25] + PositiveFactorizations v0.2.4 [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [8162dcfd] + PrettyPrint v0.2.0 [08abe8d2] + PrettyTables v2.4.0 [27ebfcd6] + Primes v0.5.6 ⌅ [92933f4c] + ProgressMeter v1.8.0 [43287f4e] + PtrArrays v1.3.0 [4b34888f] + QOI v1.0.1 [1fd47b50] + QuadGK v2.11.2 [94ee1d12] + Quaternions v0.7.6 [b3c3ace0] + RangeArrays v0.3.2 [c84ed2f1] + Ratios v0.4.5 [c1ae055f] + RealDot v0.1.0 [3cdcf5f2] + RecipesBase v1.3.4 [189a3867] + Reexport v1.2.2 [42d2dcc6] + Referenceables v0.1.3 [05181044] + RelocatableFolders v1.0.1 [ae029012] + Requires v1.3.0 [286e9d63] + RingLists v0.2.9 [79098fc4] + Rmath v0.8.0 [6038ab10] + Rotations v1.7.1 [5eaf0fd0] + RoundingEmulator v0.2.1 [fdea26ae] + SIMD v3.7.1 [7e506255] + ScopedValues v1.3.0 [6c6a2e73] + Scratch v1.2.1 [91c51154] + SentinelArrays v1.4.8 [efcf1570] + Setfield v1.1.1 ⌅ [65257c39] + ShaderAbstractions v0.4.1 [992d4aef] + Showoff v1.0.3 [73760f76] + SignedDistanceFields v0.4.0 [55797a34] + SimpleGraphs v0.8.6 [ec83eff0] + SimplePartitions v0.3.3 [cc47b68c] + SimplePolynomials v0.2.18 [a6525b86] + SimpleRandom v0.3.2 [699a6c99] + SimpleTraits v0.9.4 [45858cf5] + Sixel v0.1.3 [a2af1166] + SortingAlgorithms v1.2.1 [dc90abb0] + SparseInverseSubset v0.1.2 [276daf66] + SpecialFunctions v2.5.0 [171d559e] + SplittablesBase v0.1.15 ⌅ [c5dd0088] + StableHashTraits v1.3.4 [860ef19b] + StableRNGs v1.0.2 [cae243ae] + StackViews v0.1.1 [90137ffa] + StaticArrays v1.9.12 [1e83bf80] + StaticArraysCore v1.4.3 [82ae8749] + StatsAPI v1.7.0 [2913bbd2] + StatsBase v0.34.4 [4c63d2b9] + StatsFuns v1.3.2 [892a3eda] + StringManipulation v0.4.1 ⌅ [09ab397b] + StructArrays v0.6.21 [856f2bd8] + StructTypes v1.11.0 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.0 [62fd8b95] + TensorCore v0.1.1 [ac1d9e8a] + ThreadsX v0.1.12 [731e570b] + TiffImages v0.11.3 [a759f4b9] + TimerOutputs v0.5.27 [3bb67fe8] + TranscodingStreams v0.11.3 [28d57a85] + Transducers v0.4.84 [28dd2a49] + TransformsBase v1.6.0 [981d1d27] + TriplotBase v0.1.0 [9d95972d] + TupleTools v1.6.0 [3a884ed6] + UnPack v1.0.2 [1cfade01] + UnicodeFun v0.4.1 [b8865327] + UnicodePlots v3.7.2 [1986cc42] + Unitful v1.22.0 [013be700] + UnsafeAtomics v0.3.0 [ecbed89c] + WeakKeyIdDicts v0.1.0 [ea10d353] + WeakRefStrings v1.4.2 [e3aaa7dc] + WebP v0.1.3 [efce3f68] + WoodburyMatrices v1.0.0 [76eceee3] + WorkerUtilities v1.6.1 ⌅ [e88e6eb3] + Zygote v0.6.75 [700de1a5] + ZygoteRules v0.2.7 [6e34b625] + Bzip2_jll v1.0.9+0 [4e9b3aee] + CRlibm_jll v1.0.1+0 [83423d85] + Cairo_jll v1.18.2+1 [ee1fde0b] + Dbus_jll v1.14.10+0 [5ae413db] + EarCut_jll v2.2.4+0 [2702e6a9] + EpollShim_jll v0.0.20230411+1 [2e619515] + Expat_jll v2.6.5+0 [b22a6f82] + FFMPEG_jll v7.1.0+0 [f5851436] + FFTW_jll v3.3.10+3 [a3f928ae] + Fontconfig_jll v2.15.0+0 [d7e528f0] + FreeType2_jll v2.13.3+1 [559328eb] + FriBidi_jll v1.0.16+0 [0656b61e] + GLFW_jll v3.4.0+2 [1b77fbbe] + GSL_jll v2.8.0+0 [78b55507] + Gettext_jll v0.21.0+0 [59f7168a] + Giflib_jll v5.2.3+0 [7746bdde] + Glib_jll v2.82.4+0 [3b182d85] + Graphite2_jll v1.3.14+1 [2e76f6c2] + HarfBuzz_jll v8.5.0+0 [e33a78d0] + Hwloc_jll v2.12.0+0 [905a6f67] + Imath_jll v3.1.11+0 [1d5cc7b8] + IntelOpenMP_jll v2025.0.4+0 [aacddb02] + JpegTurbo_jll v3.1.1+0 [c1c5ebd0] + LAME_jll v3.100.2+0 [88015f11] + LERC_jll v4.0.1+0 [dad2f222] + LLVMExtra_jll v0.0.35+0 [1d63c593] + LLVMOpenMP_jll v18.1.7+0 [dd4b983a] + LZO_jll v2.10.3+0 ⌅ [e9f186c6] + Libffi_jll v3.2.2+2 [d4300ac3] + Libgcrypt_jll v1.11.0+0 [7e76a0d4] + Libglvnd_jll v1.7.0+0 [7add5ba3] + Libgpg_error_jll v1.51.1+0 [94ce4f54] + Libiconv_jll v1.18.0+0 [4b2f31a3] + Libmount_jll v2.40.3+0 [89763e89] + Libtiff_jll v4.7.1+0 [38a345b3] + Libuuid_jll v2.40.3+0 [856f044c] + MKL_jll v2025.0.1+1 [7cb0a576] + MPICH_jll v4.3.0+0 [f1f71cc9] + MPItrampoline_jll v5.5.2+0 [9237b28f] + MicrosoftMPI_jll v10.1.4+3 [e7412a2a] + Ogg_jll v1.3.5+1 [18a262bb] + OpenEXR_jll v3.2.4+0 [fe0851c0] + OpenMPI_jll v5.0.7+0 [458c3c95] + OpenSSL_jll v3.0.16+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [91d4177d] + Opus_jll v1.3.3+0 [36c8627f] + Pango_jll v1.56.1+0 ⌅ [30392449] + Pixman_jll v0.43.4+0 [f50d1b31] + Rmath_jll v0.5.1+0 [a2964d1f] + Wayland_jll v1.21.0+2 [2381bf8a] + Wayland_protocols_jll v1.36.0+0 [02c8fc9c] + XML2_jll v2.13.6+1 [aed1982a] + XSLT_jll v1.1.42+0 [ffd25f8a] + XZ_jll v5.6.4+1 [4f6342f7] + Xorg_libX11_jll v1.8.6+3 [0c0b7dd1] + Xorg_libXau_jll v1.0.12+0 [935fb764] + Xorg_libXcursor_jll v1.2.3+0 [a3789734] + Xorg_libXdmcp_jll v1.1.5+0 [1082639a] + Xorg_libXext_jll v1.3.6+3 [d091e8ba] + Xorg_libXfixes_jll v6.0.0+0 [a51aa0fd] + Xorg_libXi_jll v1.8.2+0 [d1454406] + Xorg_libXinerama_jll v1.1.5+0 [ec84b674] + Xorg_libXrandr_jll v1.5.4+0 [ea2f1a96] + Xorg_libXrender_jll v0.9.11+1 [14d82f49] + Xorg_libpthread_stubs_jll v0.1.2+0 [c7cfdc94] + Xorg_libxcb_jll v1.17.0+3 [cc61e674] + Xorg_libxkbfile_jll v1.1.2+1 [35661453] + Xorg_xkbcomp_jll v1.4.6+1 [33bec58e] + Xorg_xkeyboard_config_jll v2.39.0+0 [c5fb5394] + Xorg_xtrans_jll v1.5.1+0 [3161d3a3] + Zstd_jll v1.5.7+1 [9a68df92] + isoband_jll v0.2.3+0 [a4ae2306] + libaom_jll v3.11.0+0 [0ac62f75] + libass_jll v0.15.2+0 [1183f4f0] + libdecor_jll v0.2.2+0 [f638f0a6] + libfdk_aac_jll v2.0.3+0 [b53b4c65] + libpng_jll v1.6.46+0 [075b6546] + libsixel_jll v1.10.5+0 [f27f6e37] + libvorbis_jll v1.3.7+2 [c5f90fcd] + libwebp_jll v1.5.0+0 [1317d2d5] + oneTBB_jll v2022.0.0+0 [1270edf5] + x264_jll v10164.0.1+0 [dfaa095f] + x265_jll v4.1.0+0 [d8fb68d0] + xkbcommon_jll v1.4.1+2 [0dad84c5] + ArgTools v1.1.1 [56f22d72] + Artifacts [2a0f44e3] + Base64 [8bf52ea8] + CRC32c [ade2ca70] + Dates [8ba89e20] + Distributed [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching [9fa8497b] + Future [b77e0a4c] + InteractiveUtils [4af54fe1] + LazyArtifacts [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 [8f399da3] + Libdl [37e2e46d] + LinearAlgebra [56ddb016] + Logging [d6f4376e] + Markdown [a63ad114] + Mmap [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.10.0 [de0858da] + Printf [3fa0cd96] + REPL [9a3f8284] + Random [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization [1a1011a3] + SharedArrays [6462fe0b] + Sockets [2f01184e] + SparseArrays v1.10.0 [10745b16] + Statistics v1.10.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test [cf7118a7] + UUIDs [4ec0a83e] + Unicode [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.4.0+0 [e37daf67] + LibGit2_jll v1.6.4+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.2+1 [14a3606d] + MozillaCACerts_jll v2023.1.10 [4536629a] + OpenBLAS_jll v0.3.23+4 [05823500] + OpenLibm_jll v0.8.1+4 [efcefdf7] + PCRE2_jll v10.42.0+1 [bea87d4a] + SuiteSparse_jll v7.2.1+1 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.52.0+1 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Building MoM_Kernels ──→ `~/.julia/scratchspaces/44cfe95a-1eb2-52ea-b672-e2afdf69b78f/41e73fb32f4161dcbc9c27737de793edf9231134/build.log` Building MPIArray4MoMs → `~/.julia/scratchspaces/44cfe95a-1eb2-52ea-b672-e2afdf69b78f/7c1516a15187f6161e1c7e25a8547a9868d3f75e/build.log` Building MoM_MPI ──────→ `~/.julia/scratchspaces/44cfe95a-1eb2-52ea-b672-e2afdf69b78f/68f427c798119545582d57fa97f13203bfe7e7b8/build.log` Installation completed after 47.43s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... ERROR: LoadError: The following 3 direct dependencies failed to precompile: MoM_Visualizing Failed to precompile MoM_Visualizing [cbf82f24-4841-4ec9-b0f8-e22c06a1387c] to "/home/pkgeval/.julia/compiled/v1.10/MoM_Visualizing/jl_K8nXIJ". ┌ Warning: GLFW couldn't create an OpenGL window. │ This likely means, you don't have an OpenGL capable Graphic Card, │ or you don't have an OpenGL 3.3 capable video driver installed. │ Have a look at the troubleshooting section in the GLMakie readme: │ https://github.com/MakieOrg/Makie.jl/tree/master/GLMakie#troubleshooting-opengl. └ @ GLMakie ~/.julia/packages/GLMakie/QyIWu/src/screen.jl:250 ERROR: LoadError: GLFWError (API_UNAVAILABLE): GLX: No GLXFBConfigs returned Stacktrace: [1] _ErrorCallbackWrapper(code::Int32, description::Cstring) @ GLFW ~/.julia/packages/GLFW/wmoTL/src/callback.jl:43 [2] CreateWindow(width::Int64, height::Int64, title::String, monitor::GLFW.Monitor, share::GLFW.Window) @ GLFW ~/.julia/packages/GLFW/wmoTL/src/glfw3.jl:571 [3] GLFW.Window(; name::String, resolution::Tuple{Int64, Int64}, debugging::Bool, major::Int64, minor::Int64, windowhints::Vector{Tuple{UInt32, Integer}}, contexthints::Vector{Tuple{UInt32, Integer}}, visible::Bool, focus::Bool, fullscreen::Bool, monitor::Nothing, share::GLFW.Window) @ GLFW ~/.julia/packages/GLFW/wmoTL/src/glfw3.jl:404 [4] Window @ ~/.julia/packages/GLFW/wmoTL/src/glfw3.jl:362 [inlined] [5] empty_screen(debugging::Bool; reuse::Bool) @ GLMakie ~/.julia/packages/GLMakie/QyIWu/src/screen.jl:241 [6] empty_screen @ ~/.julia/packages/GLMakie/QyIWu/src/screen.jl:222 [inlined] [7] singleton_screen(debugging::Bool) @ GLMakie ~/.julia/packages/GLMakie/QyIWu/src/screen.jl:329 [8] macro expansion @ ~/.julia/packages/GLMakie/QyIWu/src/precompiles.jl:21 [inlined] [9] macro expansion @ ~/.julia/packages/PrecompileTools/L8A3n/src/workloads.jl:78 [inlined] [10] macro expansion @ ~/.julia/packages/GLMakie/QyIWu/src/precompiles.jl:18 [inlined] [11] macro expansion @ ~/.julia/packages/PrecompileTools/L8A3n/src/workloads.jl:140 [inlined] [12] top-level scope @ ~/.julia/packages/GLMakie/QyIWu/src/precompiles.jl:16 [13] include(mod::Module, _path::String) @ Base ./Base.jl:495 [14] include(x::String) @ GLMakie ~/.julia/packages/GLMakie/QyIWu/src/GLMakie.jl:1 [15] top-level scope @ ~/.julia/packages/GLMakie/QyIWu/src/GLMakie.jl:79 [16] include @ ./Base.jl:495 [inlined] [17] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::String) @ Base ./loading.jl:2292 [18] top-level scope @ stdin:4 in expression starting at /home/pkgeval/.julia/packages/GLMakie/QyIWu/src/precompiles.jl:15 in expression starting at /home/pkgeval/.julia/packages/GLMakie/QyIWu/src/GLMakie.jl:1 in expression starting at stdin:4 ERROR: LoadError: Failed to precompile GLMakie [e9467ef8-e4e7-5192-8a1a-b1aee30e663a] to "/home/pkgeval/.julia/compiled/v1.10/GLMakie/jl_YCBpxv". Stacktrace: [1] error(s::String) @ Base ./error.jl:35 [2] compilecache(pkg::Base.PkgId, path::String, internal_stderr::IO, internal_stdout::IO, keep_loaded_modules::Bool) @ Base ./loading.jl:2539 [3] compilecache @ ./loading.jl:2411 [inlined] [4] (::Base.var"#969#970"{Base.PkgId})() @ Base ./loading.jl:2044 [5] mkpidlock(f::Base.var"#969#970"{Base.PkgId}, at::String, pid::Int32; kwopts::@Kwargs{stale_age::Int64, wait::Bool}) @ FileWatching.Pidfile /opt/julia/share/julia/stdlib/v1.10/FileWatching/src/pidfile.jl:93 [6] #mkpidlock#6 @ /opt/julia/share/julia/stdlib/v1.10/FileWatching/src/pidfile.jl:88 [inlined] [7] trymkpidlock(::Function, ::Vararg{Any}; kwargs::@Kwargs{stale_age::Int64}) @ FileWatching.Pidfile /opt/julia/share/julia/stdlib/v1.10/FileWatching/src/pidfile.jl:111 [8] #invokelatest#2 @ ./essentials.jl:894 [inlined] [9] invokelatest @ ./essentials.jl:889 [inlined] [10] maybe_cachefile_lock(f::Base.var"#969#970"{Base.PkgId}, pkg::Base.PkgId, srcpath::String; stale_age::Int64) @ Base ./loading.jl:3054 [11] maybe_cachefile_lock @ ./loading.jl:3051 [inlined] [12] _require(pkg::Base.PkgId, env::String) @ Base ./loading.jl:2040 [13] __require_prelocked(uuidkey::Base.PkgId, env::String) @ Base ./loading.jl:1882 [14] #invoke_in_world#3 @ ./essentials.jl:926 [inlined] [15] invoke_in_world @ ./essentials.jl:923 [inlined] [16] _require_prelocked(uuidkey::Base.PkgId, env::String) @ Base ./loading.jl:1873 [17] macro expansion @ ./loading.jl:1860 [inlined] [18] macro expansion @ ./lock.jl:267 [inlined] [19] __require(into::Module, mod::Symbol) @ Base ./loading.jl:1823 [20] #invoke_in_world#3 @ ./essentials.jl:926 [inlined] [21] invoke_in_world @ ./essentials.jl:923 [inlined] [22] require(into::Module, mod::Symbol) @ Base ./loading.jl:1816 [23] include @ ./Base.jl:495 [inlined] [24] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing) @ Base ./loading.jl:2292 [25] top-level scope @ stdin:4 in expression starting at /home/pkgeval/.julia/packages/MoM_Visualizing/dWGPT/src/MoM_Visualizing.jl:1 in expression starting at stdin:4 MoM_AllinOne Failed to precompile MoM_AllinOne [ed5fc19a-51e0-403b-bf3b-cfeba61ff831] to "/home/pkgeval/.julia/compiled/v1.10/MoM_AllinOne/jl_vivt2X". ┌ Warning: GLFW couldn't create an OpenGL window. │ This likely means, you don't have an OpenGL capable Graphic Card, │ or you don't have an OpenGL 3.3 capable video driver installed. │ Have a look at the troubleshooting section in the GLMakie readme: │ https://github.com/MakieOrg/Makie.jl/tree/master/GLMakie#troubleshooting-opengl. └ @ GLMakie ~/.julia/packages/GLMakie/QyIWu/src/screen.jl:250 ERROR: LoadError: GLFWError (API_UNAVAILABLE): GLX: No GLXFBConfigs returned Stacktrace: [1] _ErrorCallbackWrapper(code::Int32, description::Cstring) @ GLFW ~/.julia/packages/GLFW/wmoTL/src/callback.jl:43 [2] CreateWindow(width::Int64, height::Int64, title::String, monitor::GLFW.Monitor, share::GLFW.Window) @ GLFW ~/.julia/packages/GLFW/wmoTL/src/glfw3.jl:571 [3] GLFW.Window(; name::String, resolution::Tuple{Int64, Int64}, debugging::Bool, major::Int64, minor::Int64, windowhints::Vector{Tuple{UInt32, Integer}}, contexthints::Vector{Tuple{UInt32, Integer}}, visible::Bool, focus::Bool, fullscreen::Bool, monitor::Nothing, share::GLFW.Window) @ GLFW ~/.julia/packages/GLFW/wmoTL/src/glfw3.jl:404 [4] Window @ ~/.julia/packages/GLFW/wmoTL/src/glfw3.jl:362 [inlined] [5] empty_screen(debugging::Bool; reuse::Bool) @ GLMakie ~/.julia/packages/GLMakie/QyIWu/src/screen.jl:241 [6] empty_screen @ ~/.julia/packages/GLMakie/QyIWu/src/screen.jl:222 [inlined] [7] singleton_screen(debugging::Bool) @ GLMakie ~/.julia/packages/GLMakie/QyIWu/src/screen.jl:329 [8] macro expansion @ ~/.julia/packages/GLMakie/QyIWu/src/precompiles.jl:21 [inlined] [9] macro expansion @ ~/.julia/packages/PrecompileTools/L8A3n/src/workloads.jl:78 [inlined] [10] macro expansion @ ~/.julia/packages/GLMakie/QyIWu/src/precompiles.jl:18 [inlined] [11] macro expansion @ ~/.julia/packages/PrecompileTools/L8A3n/src/workloads.jl:140 [inlined] [12] top-level scope @ ~/.julia/packages/GLMakie/QyIWu/src/precompiles.jl:16 [13] include(mod::Module, _path::String) @ Base ./Base.jl:495 [14] include(x::String) @ GLMakie ~/.julia/packages/GLMakie/QyIWu/src/GLMakie.jl:1 [15] top-level scope @ ~/.julia/packages/GLMakie/QyIWu/src/GLMakie.jl:79 [16] include @ ./Base.jl:495 [inlined] [17] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::String) @ Base ./loading.jl:2292 [18] top-level scope @ stdin:4 in expression starting at /home/pkgeval/.julia/packages/GLMakie/QyIWu/src/precompiles.jl:15 in expression starting at /home/pkgeval/.julia/packages/GLMakie/QyIWu/src/GLMakie.jl:1 in expression starting at stdin:4 ERROR: LoadError: Failed to precompile GLMakie [e9467ef8-e4e7-5192-8a1a-b1aee30e663a] to "/home/pkgeval/.julia/compiled/v1.10/GLMakie/jl_RTkc7v". Stacktrace: [1] error(s::String) @ Base ./error.jl:35 [2] compilecache(pkg::Base.PkgId, path::String, internal_stderr::IO, internal_stdout::IO, keep_loaded_modules::Bool) @ Base ./loading.jl:2539 [3] compilecache @ ./loading.jl:2411 [inlined] [4] (::Base.var"#969#970"{Base.PkgId})() @ Base ./loading.jl:2044 [5] mkpidlock(f::Base.var"#969#970"{Base.PkgId}, at::String, pid::Int32; kwopts::@Kwargs{stale_age::Int64, wait::Bool}) @ FileWatching.Pidfile /opt/julia/share/julia/stdlib/v1.10/FileWatching/src/pidfile.jl:93 [6] #mkpidlock#6 @ /opt/julia/share/julia/stdlib/v1.10/FileWatching/src/pidfile.jl:88 [inlined] [7] trymkpidlock(::Function, ::Vararg{Any}; kwargs::@Kwargs{stale_age::Int64}) @ FileWatching.Pidfile /opt/julia/share/julia/stdlib/v1.10/FileWatching/src/pidfile.jl:111 [8] #invokelatest#2 @ ./essentials.jl:894 [inlined] [9] invokelatest @ ./essentials.jl:889 [inlined] [10] maybe_cachefile_lock(f::Base.var"#969#970"{Base.PkgId}, pkg::Base.PkgId, srcpath::String; stale_age::Int64) @ Base ./loading.jl:3054 [11] maybe_cachefile_lock @ ./loading.jl:3051 [inlined] [12] _require(pkg::Base.PkgId, env::String) @ Base ./loading.jl:2040 [13] __require_prelocked(uuidkey::Base.PkgId, env::String) @ Base ./loading.jl:1882 [14] #invoke_in_world#3 @ ./essentials.jl:926 [inlined] [15] invoke_in_world @ ./essentials.jl:923 [inlined] [16] _require_prelocked(uuidkey::Base.PkgId, env::String) @ Base ./loading.jl:1873 [17] macro expansion @ ./loading.jl:1860 [inlined] [18] macro expansion @ ./lock.jl:267 [inlined] [19] __require(into::Module, mod::Symbol) @ Base ./loading.jl:1823 [20] #invoke_in_world#3 @ ./essentials.jl:926 [inlined] [21] invoke_in_world @ ./essentials.jl:923 [inlined] [22] require(into::Module, mod::Symbol) @ Base ./loading.jl:1816 [23] include @ ./Base.jl:495 [inlined] [24] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::String) @ Base ./loading.jl:2292 [25] top-level scope @ stdin:4 in expression starting at /home/pkgeval/.julia/packages/MoM_Visualizing/dWGPT/src/MoM_Visualizing.jl:1 in expression starting at stdin:4 ERROR: LoadError: Failed to precompile MoM_Visualizing [cbf82f24-4841-4ec9-b0f8-e22c06a1387c] to "/home/pkgeval/.julia/compiled/v1.10/MoM_Visualizing/jl_IhRWdR". Stacktrace: [1] error(s::String) @ Base ./error.jl:35 [2] compilecache(pkg::Base.PkgId, path::String, internal_stderr::IO, internal_stdout::IO, keep_loaded_modules::Bool) @ Base ./loading.jl:2539 [3] compilecache @ ./loading.jl:2411 [inlined] [4] (::Base.var"#969#970"{Base.PkgId})() @ Base ./loading.jl:2044 [5] mkpidlock(f::Base.var"#969#970"{Base.PkgId}, at::String, pid::Int32; kwopts::@Kwargs{stale_age::Int64, wait::Bool}) @ FileWatching.Pidfile /opt/julia/share/julia/stdlib/v1.10/FileWatching/src/pidfile.jl:93 [6] #mkpidlock#6 @ /opt/julia/share/julia/stdlib/v1.10/FileWatching/src/pidfile.jl:88 [inlined] [7] trymkpidlock(::Function, ::Vararg{Any}; kwargs::@Kwargs{stale_age::Int64}) @ FileWatching.Pidfile /opt/julia/share/julia/stdlib/v1.10/FileWatching/src/pidfile.jl:111 [8] #invokelatest#2 @ ./essentials.jl:894 [inlined] [9] invokelatest @ ./essentials.jl:889 [inlined] [10] maybe_cachefile_lock(f::Base.var"#969#970"{Base.PkgId}, pkg::Base.PkgId, srcpath::String; stale_age::Int64) @ Base ./loading.jl:3054 [11] maybe_cachefile_lock @ ./loading.jl:3051 [inlined] [12] _require(pkg::Base.PkgId, env::String) @ Base ./loading.jl:2040 [13] __require_prelocked(uuidkey::Base.PkgId, env::String) @ Base ./loading.jl:1882 [14] #invoke_in_world#3 @ ./essentials.jl:926 [inlined] [15] invoke_in_world @ ./essentials.jl:923 [inlined] [16] _require_prelocked(uuidkey::Base.PkgId, env::String) @ Base ./loading.jl:1873 [17] macro expansion @ ./loading.jl:1860 [inlined] [18] macro expansion @ ./lock.jl:267 [inlined] [19] __require(into::Module, mod::Symbol) @ Base ./loading.jl:1823 [20] #invoke_in_world#3 @ ./essentials.jl:926 [inlined] [21] invoke_in_world @ ./essentials.jl:923 [inlined] [22] require(into::Module, mod::Symbol) @ Base ./loading.jl:1816 [23] include @ ./Base.jl:495 [inlined] [24] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing) @ Base ./loading.jl:2292 [25] top-level scope @ stdin:4 in expression starting at /home/pkgeval/.julia/packages/MoM_AllinOne/sNZtM/src/MoM_AllinOne.jl:1 in expression starting at stdin:4 MoM_MPI Failed to precompile MoM_MPI [307724fd-586d-46f6-8b3d-ea3ff22db83d] to "/home/pkgeval/.julia/compiled/v1.10/MoM_MPI/jl_S0MW3L". ERROR: LoadError: UndefVarError: `MLMFAIterator` not defined Stacktrace: [1] top-level scope @ ~/.julia/packages/MoM_MPI/2WxDv/src/MLFMA/IterateOnOctree.jl:394 [2] include(mod::Module, _path::String) @ Base ./Base.jl:495 [3] include(x::String) @ MoM_MPI ~/.julia/packages/MoM_MPI/2WxDv/src/MoM_MPI.jl:1 [4] top-level scope @ ~/.julia/packages/MoM_MPI/2WxDv/src/MLFMA/MLFMAIterators.jl:5 [5] include(mod::Module, _path::String) @ Base ./Base.jl:495 [6] include(x::String) @ MoM_MPI ~/.julia/packages/MoM_MPI/2WxDv/src/MoM_MPI.jl:1 [7] top-level scope @ ~/.julia/packages/MoM_MPI/2WxDv/src/MLFMA.jl:6 [8] include(mod::Module, _path::String) @ Base ./Base.jl:495 [9] include(x::String) @ MoM_MPI ~/.julia/packages/MoM_MPI/2WxDv/src/MoM_MPI.jl:1 [10] top-level scope @ ~/.julia/packages/MoM_MPI/2WxDv/src/MoM_MPI.jl:29 [11] include @ ./Base.jl:495 [inlined] [12] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing) @ Base ./loading.jl:2292 [13] top-level scope @ stdin:4 in expression starting at /home/pkgeval/.julia/packages/MoM_MPI/2WxDv/src/MLFMA/IterateOnOctree.jl:394 in expression starting at /home/pkgeval/.julia/packages/MoM_MPI/2WxDv/src/MLFMA/MLFMAIterators.jl:5 in expression starting at /home/pkgeval/.julia/packages/MoM_MPI/2WxDv/src/MLFMA.jl:6 in expression starting at /home/pkgeval/.julia/packages/MoM_MPI/2WxDv/src/MoM_MPI.jl:1 in expression starting at stdin:4 in expression starting at /PkgEval.jl/scripts/precompile.jl:37 Precompilation failed after 1129.79s ################################################################################ # Testing # Testing MoM_AllinOne Status `/tmp/jl_UbYqOf/Project.toml` [336ed68f] CSV v0.10.15 ⌃ [13f3f980] CairoMakie v0.11.9 [a93c6f00] DataFrames v1.7.0 [42fd0dbc] IterativeSolvers v0.9.4 [b964fa9f] LaTeXStrings v1.4.0 [b7f3fe35] MPIArray4MoMs v0.0.2 [ed5fc19a] MoM_AllinOne v0.1.0 [84796d1e] MoM_Basics v0.1.2 [831fc53b] MoM_Kernels v0.1.0 [307724fd] MoM_MPI v0.0.1 [cbf82f24] MoM_Visualizing v0.0.3 [189a3867] Reexport v1.2.2 [44cfe95a] Pkg v1.10.0 [8dfed614] Test Status `/tmp/jl_UbYqOf/Manifest.toml` [621f4979] AbstractFFTs v1.5.0 [398f06c4] AbstractLattices v0.3.1 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.41 [79e6a3ab] Adapt v4.2.0 [66dad0bd] AliasTables v1.1.3 [27a7e980] Animations v0.4.2 [dce04be8] ArgCheck v2.4.0 [4fba245c] ArrayInterface v7.18.0 [a9b6321e] Atomix v1.1.0 [67c07d97] Automa v1.1.0 [13072b0f] AxisAlgorithms v1.1.0 [39de3d68] AxisArrays v0.4.7 [198e06fe] BangBang v0.4.3 [9718e550] Baselet v0.1.1 [0e736298] Bessels v0.2.8 [fa961155] CEnum v0.5.0 [336ed68f] CSV v0.10.15 [159f3aea] Cairo v1.1.1 ⌃ [13f3f980] CairoMakie v0.11.9 [082447d4] ChainRules v1.72.2 [d360d2e6] ChainRulesCore v1.25.1 [7a955b69] CircularArrays v1.4.0 [944b1d66] CodecZlib v0.7.8 [a2cac450] ColorBrewer v0.4.1 [35d6a980] ColorSchemes v3.29.0 ⌅ [3da002f7] ColorTypes v0.11.5 ⌃ [c3611d14] ColorVectorSpace v0.10.0 ⌅ [03fe91ce] Colorfy v0.1.6 ⌅ [5ae59095] Colors v0.12.11 [861a8166] Combinatorics v1.0.2 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.16.0 [a33af91c] CompositionsBase v0.1.2 [187b0558] ConstructionBase v1.5.8 [6add18c4] ContextVariablesX v0.1.3 [d38c429a] Contour v0.6.3 ⌅ [b46f11dc] CoordRefSystems v0.7.4 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [a93c6f00] DataFrames v1.7.0 [864edb3b] DataStructures v0.18.20 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 ⌅ [927a84f5] DelaunayTriangulation v0.8.12 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [b4f34e82] Distances v0.10.12 [31c24e10] Distributions v0.25.117 [ffbed154] DocStringExtensions v0.9.3 [4e289a0a] EnumX v1.0.4 [429591f6] ExactPredicates v2.2.8 [e2ba6199] ExprTools v0.1.10 [411431e0] Extents v0.1.5 [7a1cc6ca] FFTW v1.8.1 [cc61a311] FLoops v0.2.2 [b9860ae5] FLoopsBase v0.1.1 [442a2c76] FastGaussQuadrature v1.0.2 [5789e2e9] FileIO v1.16.6 [8fc22ac5] FilePaths v0.8.3 [48062228] FilePathsBase v0.9.23 [1a297f60] FillArrays v1.13.0 [6a86dc24] FiniteDiff v2.27.0 [53c48c17] FixedPointNumbers v0.8.5 [9c68100b] FoldsThreads v0.1.2 [1fa38f19] Format v1.3.7 [f6369f11] ForwardDiff v0.10.38 [b38be410] FreeType v4.1.1 [663a7486] FreeTypeAbstraction v0.10.6 [069b7b12] FunctionWrappers v1.1.3 [f7f18e0c] GLFW v3.4.3 ⌅ [e9467ef8] GLMakie v0.9.9 [0c68f7d7] GPUArrays v11.2.2 [46192b85] GPUArraysCore v0.2.0 [92c85e6c] GSL v1.0.1 [68eda718] GeoFormatTypes v0.4.4 [cf35fbd7] GeoInterface v1.4.1 ⌅ [5c1252a2] GeometryBasics v0.4.11 [a2bd30eb] Graphics v1.1.3 ⌅ [3955a311] GridLayoutBase v0.10.2 [42e2da0e] Grisu v1.0.2 [076d061b] HashArrayMappedTries v0.2.0 [34004b35] HypergeometricFunctions v0.3.27 [7869d1d1] IRTools v0.4.14 [2803e5a7] ImageAxes v0.6.12 [c817782e] ImageBase v0.1.7 [a09fc81d] ImageCore v0.10.5 [82e4d734] ImageIO v0.6.9 [bc367c6b] ImageMetadata v0.9.10 [40713840] IncompleteLU v0.2.1 [9b13fd28] IndirectArrays v1.0.0 [d25df0c9] Inflate v0.1.5 [22cec73e] InitialValues v0.3.1 [842dd82b] InlineStrings v1.4.3 [18e54dd8] IntegerMathUtils v0.1.2 [a98d9a8b] Interpolations v0.15.1 [d1acc4aa] IntervalArithmetic v0.22.23 [8197267c] IntervalSets v0.7.10 [3587e190] InverseFunctions v0.1.17 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.4 [f1662d9f] Isoband v0.1.1 [c8e1da08] IterTools v1.10.0 [42fd0dbc] IterativeSolvers v0.9.4 [82899510] IteratorInterfaceExtensions v1.0.0 [033835bb] JLD2 v0.5.11 [692b3bcd] JLLWrappers v1.7.0 [682c06a0] JSON v0.21.4 [b835a17e] JpegTurbo v0.1.5 [b14d175d] JuliaVariables v0.2.4 [63c18a36] KernelAbstractions v0.9.34 [5ab0869b] KernelDensity v0.6.9 [929cbde3] LLVM v9.2.0 [b964fa9f] LaTeXStrings v1.4.0 [8cdb02fc] LazyModules v0.3.1 [3db4a2ba] LegendrePolynomials v0.4.5 [9c8b4983] LightXML v0.9.1 [d3d80556] LineSearches v7.3.0 [9b3f67b0] LinearAlgebraX v0.2.10 [7a12625a] LinearMaps v3.11.4 [2ab3a3ac] LogExpFunctions v0.3.29 [d8e11817] MLStyle v0.4.17 [da04e1cc] MPI v0.20.22 [b7f3fe35] MPIArray4MoMs v0.0.2 [3da0fdf6] MPIPreferences v0.1.11 [1914dd2f] MacroTools v0.5.15 ⌅ [ee78f7c6] Makie v0.20.8 ⌅ [20f20a25] MakieCore v0.7.3 [dbb5928d] MappedArrays v0.4.2 [299715c1] MarchingCubes v0.1.11 ⌅ [0a4f8689] MathTeXEngine v0.5.7 ⌅ [7269a6da] MeshIO v0.4.13 ⌃ [eacbb407] Meshes v0.43.5 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [ed5fc19a] MoM_AllinOne v0.1.0 [84796d1e] MoM_Basics v0.1.2 [831fc53b] MoM_Kernels v0.1.0 [307724fd] MoM_MPI v0.0.1 [cbf82f24] MoM_Visualizing v0.0.3 [66fc600b] ModernGL v1.1.8 [7475f97c] Mods v2.2.6 [e94cdb99] MosaicViews v0.3.4 [3b2b4ff1] Multisets v0.4.5 [d41bc354] NLSolversBase v7.8.3 [77ba4419] NaNMath v1.1.2 [71a1bf82] NameResolution v0.1.5 [b8a86587] NearestNeighbors v0.4.21 [f09324ee] Netpbm v1.1.1 [510215fc] Observables v0.5.5 [6fe1bfb0] OffsetArrays v1.15.0 [52e1d378] OpenEXR v0.3.3 [429524aa] Optim v1.11.0 [bac558e1] OrderedCollections v1.8.0 [90014a1f] PDMats v0.11.32 [f57f5aa1] PNGFiles v0.4.4 [19eb6ba3] Packing v0.5.1 [5432bcbf] PaddedViews v0.5.12 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.1 [2ae35dd2] Permutations v0.4.23 [3bbf5609] PikaParser v0.6.1 [eebad327] PkgVersion v0.3.3 [995b91a9] PlotUtils v1.4.3 [647866c9] PolygonOps v0.1.2 [f27b6e38] Polynomials v4.0.17 [2dfb63ee] PooledArrays v1.4.3 [85a6dd25] PositiveFactorizations v0.2.4 [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [8162dcfd] PrettyPrint v0.2.0 [08abe8d2] PrettyTables v2.4.0 [27ebfcd6] Primes v0.5.6 ⌅ [92933f4c] ProgressMeter v1.8.0 [43287f4e] PtrArrays v1.3.0 [4b34888f] QOI v1.0.1 [1fd47b50] QuadGK v2.11.2 [94ee1d12] Quaternions v0.7.6 [b3c3ace0] RangeArrays v0.3.2 [c84ed2f1] Ratios v0.4.5 [c1ae055f] RealDot v0.1.0 [3cdcf5f2] RecipesBase v1.3.4 [189a3867] Reexport v1.2.2 [42d2dcc6] Referenceables v0.1.3 [05181044] RelocatableFolders v1.0.1 [ae029012] Requires v1.3.0 [286e9d63] RingLists v0.2.9 [79098fc4] Rmath v0.8.0 [6038ab10] Rotations v1.7.1 [5eaf0fd0] RoundingEmulator v0.2.1 [fdea26ae] SIMD v3.7.1 [7e506255] ScopedValues v1.3.0 [6c6a2e73] Scratch v1.2.1 [91c51154] SentinelArrays v1.4.8 [efcf1570] Setfield v1.1.1 ⌅ [65257c39] ShaderAbstractions v0.4.1 [992d4aef] Showoff v1.0.3 [73760f76] SignedDistanceFields v0.4.0 [55797a34] SimpleGraphs v0.8.6 [ec83eff0] SimplePartitions v0.3.3 [cc47b68c] SimplePolynomials v0.2.18 [a6525b86] SimpleRandom v0.3.2 [699a6c99] SimpleTraits v0.9.4 [45858cf5] Sixel v0.1.3 [a2af1166] SortingAlgorithms v1.2.1 [dc90abb0] SparseInverseSubset v0.1.2 [276daf66] SpecialFunctions v2.5.0 [171d559e] SplittablesBase v0.1.15 ⌅ [c5dd0088] StableHashTraits v1.3.4 [860ef19b] StableRNGs v1.0.2 [cae243ae] StackViews v0.1.1 [90137ffa] StaticArrays v1.9.12 [1e83bf80] StaticArraysCore v1.4.3 [82ae8749] StatsAPI v1.7.0 [2913bbd2] StatsBase v0.34.4 [4c63d2b9] StatsFuns v1.3.2 [892a3eda] StringManipulation v0.4.1 ⌅ [09ab397b] StructArrays v0.6.21 [856f2bd8] StructTypes v1.11.0 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.0 [62fd8b95] TensorCore v0.1.1 [ac1d9e8a] ThreadsX v0.1.12 [731e570b] TiffImages v0.11.3 [a759f4b9] TimerOutputs v0.5.27 [3bb67fe8] TranscodingStreams v0.11.3 [28d57a85] Transducers v0.4.84 [28dd2a49] TransformsBase v1.6.0 [981d1d27] TriplotBase v0.1.0 [9d95972d] TupleTools v1.6.0 [3a884ed6] UnPack v1.0.2 [1cfade01] UnicodeFun v0.4.1 [b8865327] UnicodePlots v3.7.2 [1986cc42] Unitful v1.22.0 [013be700] UnsafeAtomics v0.3.0 [ecbed89c] WeakKeyIdDicts v0.1.0 [ea10d353] WeakRefStrings v1.4.2 [e3aaa7dc] WebP v0.1.3 [efce3f68] WoodburyMatrices v1.0.0 [76eceee3] WorkerUtilities v1.6.1 ⌅ [e88e6eb3] Zygote v0.6.75 [700de1a5] ZygoteRules v0.2.7 [6e34b625] Bzip2_jll v1.0.9+0 [4e9b3aee] CRlibm_jll v1.0.1+0 [83423d85] Cairo_jll v1.18.2+1 [ee1fde0b] Dbus_jll v1.14.10+0 [5ae413db] EarCut_jll v2.2.4+0 [2702e6a9] EpollShim_jll v0.0.20230411+1 [2e619515] Expat_jll v2.6.5+0 [b22a6f82] FFMPEG_jll v7.1.0+0 [f5851436] FFTW_jll v3.3.10+3 [a3f928ae] Fontconfig_jll v2.15.0+0 [d7e528f0] FreeType2_jll v2.13.3+1 [559328eb] FriBidi_jll v1.0.16+0 [0656b61e] GLFW_jll v3.4.0+2 [1b77fbbe] GSL_jll v2.8.0+0 [78b55507] Gettext_jll v0.21.0+0 [59f7168a] Giflib_jll v5.2.3+0 [7746bdde] Glib_jll v2.82.4+0 [3b182d85] Graphite2_jll v1.3.14+1 [2e76f6c2] HarfBuzz_jll v8.5.0+0 [e33a78d0] Hwloc_jll v2.12.0+0 [905a6f67] Imath_jll v3.1.11+0 [1d5cc7b8] IntelOpenMP_jll v2025.0.4+0 [aacddb02] JpegTurbo_jll v3.1.1+0 [c1c5ebd0] LAME_jll v3.100.2+0 [88015f11] LERC_jll v4.0.1+0 [dad2f222] LLVMExtra_jll v0.0.35+0 [1d63c593] LLVMOpenMP_jll v18.1.7+0 [dd4b983a] LZO_jll v2.10.3+0 ⌅ [e9f186c6] Libffi_jll v3.2.2+2 [d4300ac3] Libgcrypt_jll v1.11.0+0 [7e76a0d4] Libglvnd_jll v1.7.0+0 [7add5ba3] Libgpg_error_jll v1.51.1+0 [94ce4f54] Libiconv_jll v1.18.0+0 [4b2f31a3] Libmount_jll v2.40.3+0 [89763e89] Libtiff_jll v4.7.1+0 [38a345b3] Libuuid_jll v2.40.3+0 [856f044c] MKL_jll v2025.0.1+1 [7cb0a576] MPICH_jll v4.3.0+0 [f1f71cc9] MPItrampoline_jll v5.5.2+0 [9237b28f] MicrosoftMPI_jll v10.1.4+3 [e7412a2a] Ogg_jll v1.3.5+1 [18a262bb] OpenEXR_jll v3.2.4+0 [fe0851c0] OpenMPI_jll v5.0.7+0 [458c3c95] OpenSSL_jll v3.0.16+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [91d4177d] Opus_jll v1.3.3+0 [36c8627f] Pango_jll v1.56.1+0 ⌅ [30392449] Pixman_jll v0.43.4+0 [f50d1b31] Rmath_jll v0.5.1+0 [a2964d1f] Wayland_jll v1.21.0+2 [2381bf8a] Wayland_protocols_jll v1.36.0+0 [02c8fc9c] XML2_jll v2.13.6+1 [aed1982a] XSLT_jll v1.1.42+0 [ffd25f8a] XZ_jll v5.6.4+1 [4f6342f7] Xorg_libX11_jll v1.8.6+3 [0c0b7dd1] Xorg_libXau_jll v1.0.12+0 [935fb764] Xorg_libXcursor_jll v1.2.3+0 [a3789734] Xorg_libXdmcp_jll v1.1.5+0 [1082639a] Xorg_libXext_jll v1.3.6+3 [d091e8ba] Xorg_libXfixes_jll v6.0.0+0 [a51aa0fd] Xorg_libXi_jll v1.8.2+0 [d1454406] Xorg_libXinerama_jll v1.1.5+0 [ec84b674] Xorg_libXrandr_jll v1.5.4+0 [ea2f1a96] Xorg_libXrender_jll v0.9.11+1 [14d82f49] Xorg_libpthread_stubs_jll v0.1.2+0 [c7cfdc94] Xorg_libxcb_jll v1.17.0+3 [cc61e674] Xorg_libxkbfile_jll v1.1.2+1 [35661453] Xorg_xkbcomp_jll v1.4.6+1 [33bec58e] Xorg_xkeyboard_config_jll v2.39.0+0 [c5fb5394] Xorg_xtrans_jll v1.5.1+0 [3161d3a3] Zstd_jll v1.5.7+1 [9a68df92] isoband_jll v0.2.3+0 [a4ae2306] libaom_jll v3.11.0+0 [0ac62f75] libass_jll v0.15.2+0 [1183f4f0] libdecor_jll v0.2.2+0 [f638f0a6] libfdk_aac_jll v2.0.3+0 [b53b4c65] libpng_jll v1.6.46+0 [075b6546] libsixel_jll v1.10.5+0 [f27f6e37] libvorbis_jll v1.3.7+2 [c5f90fcd] libwebp_jll v1.5.0+0 [1317d2d5] oneTBB_jll v2022.0.0+0 [1270edf5] x264_jll v10164.0.1+0 [dfaa095f] x265_jll v4.1.0+0 [d8fb68d0] xkbcommon_jll v1.4.1+2 [0dad84c5] ArgTools v1.1.1 [56f22d72] Artifacts [2a0f44e3] Base64 [8bf52ea8] CRC32c [ade2ca70] Dates [8ba89e20] Distributed [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching [9fa8497b] Future [b77e0a4c] InteractiveUtils [4af54fe1] LazyArtifacts [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 [8f399da3] Libdl [37e2e46d] LinearAlgebra [56ddb016] Logging [d6f4376e] Markdown [a63ad114] Mmap [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.10.0 [de0858da] Printf [3fa0cd96] REPL [9a3f8284] Random [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization [1a1011a3] SharedArrays [6462fe0b] Sockets [2f01184e] SparseArrays v1.10.0 [10745b16] Statistics v1.10.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test [cf7118a7] UUIDs [4ec0a83e] Unicode [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.4.0+0 [e37daf67] LibGit2_jll v1.6.4+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.2+1 [14a3606d] MozillaCACerts_jll v2023.1.10 [4536629a] OpenBLAS_jll v0.3.23+4 [05823500] OpenLibm_jll v0.8.1+4 [efcefdf7] PCRE2_jll v10.42.0+1 [bea87d4a] SuiteSparse_jll v7.2.1+1 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.52.0+1 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... Testing MoM_Basics Status `/tmp/jl_T5pzpd/Project.toml` [442a2c76] FastGaussQuadrature v1.0.2 [84796d1e] MoM_Basics v0.1.2 [6fe1bfb0] OffsetArrays v1.15.0 ⌃ [92933f4c] ProgressMeter v1.8.0 [189a3867] Reexport v1.2.2 [6038ab10] Rotations v1.7.1 [90137ffa] StaticArrays v1.9.12 [ac1d9e8a] ThreadsX v0.1.12 [ade2ca70] Dates [37e2e46d] LinearAlgebra [de0858da] Printf [2f01184e] SparseArrays v1.10.0 [10745b16] Statistics v1.10.0 [8dfed614] Test Status `/tmp/jl_T5pzpd/Manifest.toml` [7d9f7c33] Accessors v0.1.41 [79e6a3ab] Adapt v4.2.0 [dce04be8] ArgCheck v2.4.0 [198e06fe] BangBang v0.4.3 [9718e550] Baselet v0.1.1 [a33af91c] CompositionsBase v0.1.2 [187b0558] ConstructionBase v1.5.8 [9a962f9c] DataAPI v1.16.0 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [ffbed154] DocStringExtensions v0.9.3 [442a2c76] FastGaussQuadrature v1.0.2 [22cec73e] InitialValues v0.3.1 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.4 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.0 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.15 [128add7d] MicroCollections v0.2.0 [84796d1e] MoM_Basics v0.1.2 [6fe1bfb0] OffsetArrays v1.15.0 [bac558e1] OrderedCollections v1.8.0 [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 ⌃ [92933f4c] ProgressMeter v1.8.0 [94ee1d12] Quaternions v0.7.6 [c1ae055f] RealDot v0.1.0 [189a3867] Reexport v1.2.2 [42d2dcc6] Referenceables v0.1.3 [ae029012] Requires v1.3.0 [6038ab10] Rotations v1.7.1 [efcf1570] Setfield v1.1.1 [276daf66] SpecialFunctions v2.5.0 [171d559e] SplittablesBase v0.1.15 [90137ffa] StaticArrays v1.9.12 [1e83bf80] StaticArraysCore v1.4.3 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.0 [ac1d9e8a] ThreadsX v0.1.12 [28d57a85] Transducers v0.4.84 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [56f22d72] Artifacts [2a0f44e3] Base64 [ade2ca70] Dates [8ba89e20] Distributed [9fa8497b] Future [b77e0a4c] InteractiveUtils [76f85450] LibGit2 [8f399da3] Libdl [37e2e46d] LinearAlgebra [56ddb016] Logging [d6f4376e] Markdown [ca575930] NetworkOptions v1.2.0 [de0858da] Printf [9a3f8284] Random [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization [6462fe0b] Sockets [2f01184e] SparseArrays v1.10.0 [10745b16] Statistics v1.10.0 [fa267f1f] TOML v1.0.3 [8dfed614] Test [cf7118a7] UUIDs [4ec0a83e] Unicode [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [e37daf67] LibGit2_jll v1.6.4+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.2+1 [4536629a] OpenBLAS_jll v0.3.23+4 [05823500] OpenLibm_jll v0.8.1+4 [bea87d4a] SuiteSparse_jll v7.2.1+1 [8e850b90] libblastrampoline_jll v5.11.0+0 Info Packages marked with ⌃ have new versions available and may be upgradable. Testing Running tests... [ Info: MoMs start with 1 threads. 网格文件处理完毕,共得到 246 个节点、0 个三角形、0 个四面体、100 个六面体 内存 网格文件 0.012 MB 时间 网格文件读取 4.710 s 网格文件处理完毕,共得到 157 个节点、0 个三角形、424 个四面体、0 个六面体 内存 网格文件 0.017 MB 时间 网格文件读取 0.006 s 网格文件处理完毕,共得到 269 个节点、0 个三角形、475 个四面体、50 个六面体 内存 网格文件 0.024 MB 时间 网格文件读取 0.064 s 网格文件处理完毕,共得到 136 个节点、260 个三角形、0 个四面体、0 个六面体 内存 网格文件 0.009 MB 时间 网格文件读取 0.004 s 网格文件处理完毕,共得到 332 个节点、210 个三角形、0 个四面体、100 个六面体 内存 网格文件 0.019 MB 时间 网格文件读取 0.006 s 网格文件处理完毕,共得到 151 个节点、102 个三角形、398 个四面体、0 个六面体 内存 网格文件 0.018 MB 时间 网格文件读取 0.005 s 网格文件处理完毕,共得到 332 个节点、177 个三角形、475 个四面体、50 个六面体 内存 网格文件 0.029 MB 时间 网格文件读取 0.010 s 网格文件处理完毕,共得到 136 个节点、260 个三角形、0 个四面体、0 个六面体 Constructing RWG basis function... Done! 共得到 260 个三角形, 390 个 RWG 基函数。 内存 网格文件 0.009 MB 网格元 0.109 MB 基函数 0.042 MB 时间 构建网格元、基函数 9.597 s 网格文件读取 0.003 s 网格文件处理完毕,共得到 157 个节点、0 个三角形、424 个四面体、0 个六面体 Constructing VIE basis function based on tetrahedras... Done! 共得到 424 个四面体, 1272 个 PWC 基函数。 Constructing VIE basis function based on tetrahedras... Done! 共得到 424 个四面体, 986 个 SWG 基函数。 内存 网格文件 0.017 MB 网格元 0.495 MB 基函数 0.098 MB 时间 构建网格元、基函数 6.058 s 网格文件读取 0.004 s 网格文件处理完毕,共得到 246 个节点、0 个三角形、0 个四面体、100 个六面体 Constructing VIE basis function based on hexahedras... Done! 共得到 100 个六面体, 300 个 PWC 基函数。 Constructing VIE basis function based on hexahedras... Done! 共得到 100 个六面体, 420 个 RBF 基函数。 内存 网格文件 0.012 MB 网格元 0.223 MB 基函数 0.042 MB 时间 构建网格元、基函数 4.603 s 网格文件读取 0.004 s 网格文件处理完毕,共得到 269 个节点、0 个三角形、475 个四面体、50 个六面体 Constructing VIE basis function based on tetrahedras... Done! 共得到 475 个四面体, 1425 个 PWC 基函数。 Constructing VIE basis function based on hexahedras... Done! 共得到 50 个六面体, 150 个 PWC 基函数。 内存 网格文件 0.024 MB 网格元 0.654 MB 基函数 0.060 MB 时间 构建网格元、基函数 0.437 s 网格文件读取 0.008 s 网格文件处理完毕,共得到 151 个节点、102 个三角形、398 个四面体、0 个六面体 Constructing RWG basis function... Done! 共得到 102 个三角形, 139 个 RWG 基函数。 Constructing VIE basis function based on tetrahedras... Done! 共得到 398 个四面体, 932 个 SWG 基函数。 Constructing RWG basis function... Done! 共得到 102 个三角形, 139 个 RWG 基函数。 Constructing VIE basis function based on tetrahedras... Done! 共得到 398 个四面体, 1194 个 PWC 基函数。 内存 网格文件 0.018 MB 网格元 0.506 MB 基函数 0.061 MB 时间 构建网格元、基函数 0.048 s 网格文件读取 0.005 s 网格文件处理完毕,共得到 332 个节点、210 个三角形、0 个四面体、100 个六面体 Constructing RWG basis function... Done! 共得到 210 个三角形, 295 个 RWG 基函数。 Constructing VIE basis function based on hexahedras... Done! 共得到 100 个六面体, 420 个 RBF 基函数。 Constructing RWG basis function... Done! 共得到 210 个三角形, 295 个 RWG 基函数。 Constructing VIE basis function based on hexahedras... Done! 共得到 100 个六面体, 300 个 PWC 基函数。 内存 网格文件 0.019 MB 网格元 0.309 MB 基函数 0.043 MB 时间 构建网格元、基函数 0.009 s 网格文件读取 0.006 s 网格文件处理完毕,共得到 332 个节点、177 个三角形、475 个四面体、50 个六面体 Constructing RWG basis function... Done! 共得到 177 个三角形, 248 个 RWG 基函数。 Constructing VIE basis function based on tetrahedras... Done! 共得到 475 个四面体, 1425 个 PWC 基函数。 Constructing VIE basis function based on hexahedras... Done! 共得到 50 个六面体, 150 个 PWC 基函数。 内存 网格文件 0.029 MB 网格元 0.728 MB 基函数 0.087 MB 时间 构建网格元、基函数 0.021 s 网格文件读取 0.008 s Test Summary: | Pass Total Time MoM_Basics.jl | 62 62 1m30.8s Testing MoM_Basics tests passed Testing MoM_Kernels Status `/tmp/jl_NnPmnK/Project.toml` [cc61a311] FLoops v0.2.2 [442a2c76] FastGaussQuadrature v1.0.2 [9c68100b] FoldsThreads v0.1.2 [92c85e6c] GSL v1.0.1 [40713840] IncompleteLU v0.2.1 [42fd0dbc] IterativeSolvers v0.9.4 [033835bb] JLD2 v0.5.11 [3db4a2ba] LegendrePolynomials v0.4.5 [7a12625a] LinearMaps v3.11.4 [84796d1e] MoM_Basics v0.1.2 [831fc53b] MoM_Kernels v0.1.0 [6fe1bfb0] OffsetArrays v1.15.0 [27ebfcd6] Primes v0.5.6 ⌃ [92933f4c] ProgressMeter v1.8.0 [276daf66] SpecialFunctions v2.5.0 [90137ffa] StaticArrays v1.9.12 [ac1d9e8a] ThreadsX v0.1.12 [b8865327] UnicodePlots v3.7.2 [37e2e46d] LinearAlgebra [44cfe95a] Pkg v1.10.0 [de0858da] Printf [2f01184e] SparseArrays v1.10.0 [10745b16] Statistics v1.10.0 [8dfed614] Test Status `/tmp/jl_NnPmnK/Manifest.toml` [7d9f7c33] Accessors v0.1.41 [79e6a3ab] Adapt v4.2.0 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.4.0 [198e06fe] BangBang v0.4.3 [9718e550] Baselet v0.1.1 [35d6a980] ColorSchemes v3.29.0 ⌅ [3da002f7] ColorTypes v0.11.5 ⌃ [c3611d14] ColorVectorSpace v0.10.0 ⌃ [5ae59095] Colors v0.12.11 [34da2185] Compat v4.16.0 [a33af91c] CompositionsBase v0.1.2 [187b0558] ConstructionBase v1.5.8 [6add18c4] ContextVariablesX v0.1.3 [d38c429a] Contour v0.6.3 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.20 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [ffbed154] DocStringExtensions v0.9.3 [cc61a311] FLoops v0.2.2 [b9860ae5] FLoopsBase v0.1.1 [442a2c76] FastGaussQuadrature v1.0.2 [5789e2e9] FileIO v1.16.6 [53c48c17] FixedPointNumbers v0.8.5 [9c68100b] FoldsThreads v0.1.2 [069b7b12] FunctionWrappers v1.1.3 [92c85e6c] GSL v1.0.1 [40713840] IncompleteLU v0.2.1 [22cec73e] InitialValues v0.3.1 [18e54dd8] IntegerMathUtils v0.1.2 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.4 [42fd0dbc] IterativeSolvers v0.9.4 [82899510] IteratorInterfaceExtensions v1.0.0 [033835bb] JLD2 v0.5.11 [692b3bcd] JLLWrappers v1.7.0 [b14d175d] JuliaVariables v0.2.4 [3db4a2ba] LegendrePolynomials v0.4.5 [7a12625a] LinearMaps v3.11.4 [2ab3a3ac] LogExpFunctions v0.3.29 [d8e11817] MLStyle v0.4.17 [1914dd2f] MacroTools v0.5.15 [299715c1] MarchingCubes v0.1.11 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [84796d1e] MoM_Basics v0.1.2 [831fc53b] MoM_Kernels v0.1.0 [77ba4419] NaNMath v1.1.2 [71a1bf82] NameResolution v0.1.5 [6fe1bfb0] OffsetArrays v1.15.0 [bac558e1] OrderedCollections v1.8.0 [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [8162dcfd] PrettyPrint v0.2.0 [27ebfcd6] Primes v0.5.6 ⌃ [92933f4c] ProgressMeter v1.8.0 [43287f4e] PtrArrays v1.3.0 [94ee1d12] Quaternions v0.7.6 [c1ae055f] RealDot v0.1.0 [3cdcf5f2] RecipesBase v1.3.4 [189a3867] Reexport v1.2.2 [42d2dcc6] Referenceables v0.1.3 [ae029012] Requires v1.3.0 [6038ab10] Rotations v1.7.1 [efcf1570] Setfield v1.1.1 [a2af1166] SortingAlgorithms v1.2.1 [276daf66] SpecialFunctions v2.5.0 [171d559e] SplittablesBase v0.1.15 [90137ffa] StaticArrays v1.9.12 [1e83bf80] StaticArraysCore v1.4.3 [82ae8749] StatsAPI v1.7.0 [2913bbd2] StatsBase v0.34.4 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.0 [62fd8b95] TensorCore v0.1.1 [ac1d9e8a] ThreadsX v0.1.12 [3bb67fe8] TranscodingStreams v0.11.3 [28d57a85] Transducers v0.4.84 [b8865327] UnicodePlots v3.7.2 [1b77fbbe] GSL_jll v2.8.0+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [0dad84c5] ArgTools v1.1.1 [56f22d72] Artifacts [2a0f44e3] Base64 [ade2ca70] Dates [8ba89e20] Distributed [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching [9fa8497b] Future [b77e0a4c] InteractiveUtils [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 [8f399da3] Libdl [37e2e46d] LinearAlgebra [56ddb016] Logging [d6f4376e] Markdown [a63ad114] Mmap [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.10.0 [de0858da] Printf [3fa0cd96] REPL [9a3f8284] Random [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization [6462fe0b] Sockets [2f01184e] SparseArrays v1.10.0 [10745b16] Statistics v1.10.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test [cf7118a7] UUIDs [4ec0a83e] Unicode [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.4.0+0 [e37daf67] LibGit2_jll v1.6.4+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.2+1 [14a3606d] MozillaCACerts_jll v2023.1.10 [4536629a] OpenBLAS_jll v0.3.23+4 [05823500] OpenLibm_jll v0.8.1+4 [bea87d4a] SuiteSparse_jll v7.2.1+1 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.52.0+1 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... [ Info: MoMs start with 1 threads. 网格文件处理完毕,共得到 453 个节点、886 个三角形、0 个四面体、0 个六面体 Constructing RWG basis function... Done! 共得到 886 个三角形, 1329 个 RWG 基函数。 构造八叉树中... 预计算采样点、插值矩阵、相移因子、转移因子等信息中... Calculating translation factors on level 2... 1%| | ETA: 0:08:24 Calculating translation factors on level 2... 100%|██████| Time: 0:00:06 Calculating translation factors on level 3... 14%|▉ | ETA: 0:00:01 Calculating translation factors on level 3... 26%|█▌ | ETA: 0:00:01 Calculating translation factors on level 3... 41%|██▌ | ETA: 0:00:00 Calculating translation factors on level 3... 56%|███▍ | ETA: 0:00:00 Calculating translation factors on level 3... 70%|████▏ | ETA: 0:00:00 Calculating translation factors on level 3... 84%|█████ | ETA: 0:00:00 Calculating translation factors on level 3... 99%|█████▉| ETA: 0:00:00 Calculating translation factors on level 3... 100%|██████| Time: 0:00:00 Calculating translation factors... 67%|███████████▍ | ETA: 0:00:04 Calculating translation factors on level 4... 38%|██▎ | ETA: 0:00:00 Calculating translation factors on level 4... 81%|████▉ | ETA: 0:00:00 Calculating translation factors on level 4... 100%|██████| Time: 0:00:00 Calculating translation factors... 100%|█████████████████| Time: 0:00:07 八叉树构造完毕 [ Info: 基函数按八叉树重新排序中... 计算矩阵近场元CSC格式稀疏矩阵中... Znear (RWG)... 2%|▊ | ETA: 0:03:53 Znear (RWG)... 100%|█████████████████████████████████████| Time: 0:00:05 Aggregating on RWG (EFIE)... 2%|▌ | ETA: 0:00:29 Aggregating on RWG (EFIE)... 100%|███████████████████████| Time: 0:00:00 Pₗ 2%|█ | ETA: 0:17:59 Pₗ 17%|████████▏ | ETA: 0:01:55 Pₗ 29%|██████████████▎ | ETA: 0:00:56 Pₗ 43%|████████████████████▉ | ETA: 0:00:31 Pₗ 58%|████████████████████████████▋ | ETA: 0:00:17 Pₗ 73%|███████████████████████████████████▊ | ETA: 0:00:09 Pₗ 86%|██████████████████████████████████████████▍ | ETA: 0:00:04 Pₗ 100%|█████████████████████████████████████████████████| Time: 0:00:23 ┌ Info: └ Solving with gmres, initial resnorm: 0.098333806. === gmres === rest iter resnorm 1 1 3.29e-02 1 2 1.26e-02 1 3 4.94e-03 1 4 2.35e-03 1 5 1.20e-03 1 6 6.95e-04 1 7 4.28e-04 1 8 2.06e-04 1 9 1.10e-04 1 10 7.20e-05 ⠀⠀⠀⠀⠀⠀⠀⠀⠀Relative ResNorm - Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 10⁰ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠢⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠓⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠉⠢⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⠢⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠢⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠒⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠒⠤⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠢⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⠢⣀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⠢⢄⡀⠀⠀⠀⠀│ 10⁻³⸱¹³⁵⁵⁵ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠢⠤⣀│ └────────────────────────────────────────┘ ⠀1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀10⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌ Info: └ Solving with gmres!, initial resnorm: 0.098333806. === gmres === rest iter resnorm 1 1 3.29e-02 1 2 1.26e-02 1 3 4.94e-03 1 4 2.35e-03 1 5 1.20e-03 1 6 6.95e-04 1 7 4.28e-04 1 8 2.06e-04 1 9 1.10e-04 1 10 7.20e-05 ⠀⠀⠀⠀⠀⠀⠀⠀⠀Relative ResNorm - Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 10⁰ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠢⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠓⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠉⠢⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⠢⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠢⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠒⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠒⠤⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠢⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⠢⣀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⠢⢄⡀⠀⠀⠀⠀│ 10⁻³⸱¹³⁵⁵⁵ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠢⠤⣀│ └────────────────────────────────────────┘ ⠀1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀10⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Calculating J on triangles' gaussquad points (4 × 886) 0% ETA: 0:02:56 Calculating J on triangles' gaussquad points (4 × 886) 100% Time: 0:00:00 Calculating RCS (1441 × 2) 0%| | ETA: 0:23:24 Calculating RCS (1441 × 2) 12%|███ | ETA: 0:00:08 Calculating RCS (1441 × 2) 26%|██████▌ | ETA: 0:00:03 Calculating RCS (1441 × 2) 39%|█████████▊ | ETA: 0:00:02 Calculating RCS (1441 × 2) 52%|█████████████▏ | ETA: 0:00:01 Calculating RCS (1441 × 2) 65%|████████████████▏ | ETA: 0:00:01 Calculating RCS (1441 × 2) 78%|███████████████████▍ | ETA: 0:00:00 Calculating RCS (1441 × 2) 91%|██████████████████████▊ | ETA: 0:00:00 Calculating RCS (1441 × 2) 100%|█████████████████████████| Time: 0:00:01 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(m²)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 1.28977 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠞⡽⣯⠳⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⡇⣿⠀⠹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⢰⠁⡏⡇⠀⠹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⢸⠀⡇⡇⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⡸⠀⡇⢧⠀⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⡇⠀⡇⢸⠀⠀⠀⠘⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡏⠀⠀⠀⠀⡇⠀⡇⢸⠀⠀⠀⠀⢹⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ m² │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⠀⢠⠃⠀⡇⠈⡆⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠁⠀⠀⠀⠀⢸⠀⠀⡇⠀⡇⠀⠀⠀⠀⠈⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⠀⠀⢸⠀⠀⡇⠀⡇⠀⠀⠀⠀⠀⠘⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⠀⠀⠀⡏⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠀⠹⡄⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⣰⠋⠀⠀⠀⠀⠀⠀⠀⢰⠁⠀⠀⡇⠀⠈⡇⠀⠀⠀⠀⠀⠀⠀⠙⣆⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⡸⠀⠀⠀⡇⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠈⠳⣄⠀⠀⠀⠀⠀│ 0.00545086 │⣀⣀⣠⣴⣚⣁⣀⣀⣀⣀⣀⣠⠖⠒⢤⣠⠇⠀⠀⠀⡇⠀⠀⠸⣄⡤⠖⠲⣄⣀⣀⣀⣀⣀⣈⣓⣦⣄⣀⣀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(dB)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 1.10511 │⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⢤⡤⠶⠯⢽⠯⡿⡯⠽⠶⢤⡤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠉⠀⠀⢀⡏⠀⡇⢸⡀⠀⠀⠉⠳⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠞⠁⠀⠀⠀⠀⢸⠀⠀⡇⠀⣇⠀⠀⠀⠀⠈⠳⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡴⠋⠀⠀⠀⠀⠀⠀⡏⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠙⢦⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢀⡞⠁⠀⠀⠀⠀⠀⠀⢠⠇⠀⠀⡇⠀⠘⡄⠀⠀⠀⠀⠀⠀⠈⢳⡀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⡇⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠹⡄⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⡸⠀⠀⠀⡇⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⡄⠀⠀⠀⠀⠀│ dB │⠀⠀⠀⠀⢠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⡄⠀⠀⠀⠀│ │⠀⠀⠀⢀⡞⠀⠀⠀⠀⠀⠀⠀⢠⢦⠀⠀⡇⠀⠀⠀⡇⠀⠀⢸⠀⠀⡴⣄⠀⠀⠀⠀⠀⠀⠀⢱⡀⠀⠀⠀│ │⠀⠀⠀⡼⠀⠀⠀⠀⠀⠀⠀⢀⡇⠈⡇⢀⠇⠀⠀⠀⡇⠀⠀⠘⡄⢸⠁⠸⡀⠀⠀⠀⠀⠀⠀⠀⢧⠀⠀⠀│ │⠀⠀⢰⠃⠀⠀⣠⣄⡀⠀⠀⣸⠀⠀⢱⢸⠀⠀⠀⠀⡇⠀⠀⠀⡇⡞⠀⠀⣇⠀⠀⢀⣠⣄⠀⠀⠈⡆⠀⠀│ │⠀⢀⡏⠀⢀⡞⠁⠀⢳⠀⠀⡇⠀⠀⢸⢸⠀⠀⠀⠀⡇⠀⠀⠀⡇⡇⠀⠀⢸⠀⠀⡞⠀⠈⢳⡀⠀⢸⡀⠀│ │⠀⡼⠀⢀⡞⠀⠀⠀⠀⣇⢰⠁⠀⠀⠘⣼⠀⠀⠀⠀⡇⠀⠀⠀⣧⠇⠀⠀⠈⡇⣸⠁⠀⠀⠀⠱⡀⠀⢧⠀│ │⣰⠃⢠⠎⠀⠀⠀⠀⠀⠘⠚⠀⠀⠀⠀⠏⠀⠀⠀⠀⡇⠀⠀⠀⠹⠀⠀⠀⠀⠙⠃⠀⠀⠀⠀⠀⠹⡄⠘⣆│ -22.6353 │⣀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⣀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Calculating Z (RWG, EFIE) (1329 × 1329) 0%| | ETA: 0:01:33 Calculating Z (RWG, EFIE) (1329 × 1329) 4%|▌ | ETA: 0:00:07 Calculating Z (RWG, EFIE) (1329 × 1329) 10%|█▎ | ETA: 0:00:04 Calculating Z (RWG, EFIE) (1329 × 1329) 16%|█▉ | ETA: 0:00:03 Calculating Z (RWG, EFIE) (1329 × 1329) 22%|██▋ | ETA: 0:00:02 Calculating Z (RWG, EFIE) (1329 × 1329) 28%|███▍ | ETA: 0:00:02 Calculating Z (RWG, EFIE) (1329 × 1329) 36%|████▍ | ETA: 0:00:01 Calculating Z (RWG, EFIE) (1329 × 1329) 45%|█████▍ | ETA: 0:00:01 Calculating Z (RWG, EFIE) (1329 × 1329) 56%|██████▊ | ETA: 0:00:01 Calculating Z (RWG, EFIE) (1329 × 1329) 70%|████████▍ | ETA: 0:00:00 Calculating Z (RWG, EFIE) (1329 × 1329) 100%|████████████| Time: 0:00:01 Solving matrix function with LUD. Calculating RCS (1441 × 2) 13%|███▍ | ETA: 0:00:01 Calculating RCS (1441 × 2) 28%|███████ | ETA: 0:00:01 Calculating RCS (1441 × 2) 43%|██████████▋ | ETA: 0:00:00 Calculating RCS (1441 × 2) 56%|██████████████ | ETA: 0:00:00 Calculating RCS (1441 × 2) 69%|█████████████████▎ | ETA: 0:00:00 Calculating RCS (1441 × 2) 83%|████████████████████▊ | ETA: 0:00:00 Calculating RCS (1441 × 2) 97%|████████████████████████▏| ETA: 0:00:00 Calculating RCS (1441 × 2) 100%|█████████████████████████| Time: 0:00:00 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(m²)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 1.29177 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠞⡽⣯⠳⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⡇⣿⠀⠹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⢰⠁⡏⡇⠀⠹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⢸⠀⡇⡇⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠁⠀⠀⡸⠀⡇⢧⠀⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⡇⠀⡇⢸⠀⠀⠀⠘⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡏⠀⠀⠀⠀⡇⠀⡇⢸⠀⠀⠀⠀⢹⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ m² │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⠀⢠⠃⠀⡇⠈⡆⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠁⠀⠀⠀⠀⢸⠀⠀⡇⠀⡇⠀⠀⠀⠀⠈⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⠀⠀⢸⠀⠀⡇⠀⡇⠀⠀⠀⠀⠀⠘⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⠀⠀⠀⡏⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠀⠹⡄⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⣰⠋⠀⠀⠀⠀⠀⠀⠀⢰⠁⠀⠀⡇⠀⠈⡇⠀⠀⠀⠀⠀⠀⠀⠙⣆⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⡸⠀⠀⠀⡇⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠈⠳⣄⠀⠀⠀⠀⠀│ 0.00552471 │⣀⣀⣠⣴⣚⣁⣀⣀⣀⣀⣀⣠⠖⠲⢤⣠⠇⠀⠀⠀⡇⠀⠀⠸⣄⡤⠖⠲⣄⣀⣀⣀⣀⣀⣈⣓⣦⣄⣀⣀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(dB)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 1.11186 │⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⢤⡤⠶⠯⢽⠯⡿⡯⠽⠶⢤⡤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠉⠀⠀⢀⡏⠀⡇⢸⡀⠀⠀⠉⠳⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠞⠁⠀⠀⠀⠀⢸⠀⠀⡇⠀⡇⠀⠀⠀⠀⠈⠳⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡴⠋⠀⠀⠀⠀⠀⠀⡏⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠙⢦⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢀⡞⠁⠀⠀⠀⠀⠀⠀⢠⠇⠀⠀⡇⠀⠘⡄⠀⠀⠀⠀⠀⠀⠈⢳⡀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢠⠎⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⡇⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠹⡄⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⡸⠀⠀⠀⡇⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⡄⠀⠀⠀⠀⠀│ dB │⠀⠀⠀⠀⢠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⡄⠀⠀⠀⠀│ │⠀⠀⠀⢀⡞⠀⠀⠀⠀⠀⠀⠀⢠⢤⠀⠀⡇⠀⠀⠀⡇⠀⠀⢸⠀⠀⡤⣄⠀⠀⠀⠀⠀⠀⠀⢱⡀⠀⠀⠀│ │⠀⠀⠀⡼⠀⠀⠀⠀⠀⠀⠀⢀⡇⠈⡇⢀⠇⠀⠀⠀⡇⠀⠀⠘⡄⢸⠁⠸⡀⠀⠀⠀⠀⠀⠀⠀⢧⠀⠀⠀│ │⠀⠀⢰⠃⠀⠀⣠⣄⡀⠀⠀⣸⠀⠀⢱⢸⠀⠀⠀⠀⡇⠀⠀⠀⡇⡞⠀⠀⣇⠀⠀⢀⣠⣄⠀⠀⠘⡆⠀⠀│ │⠀⢀⡏⠀⢀⡞⠁⠀⢳⠀⠀⡇⠀⠀⢸⢸⠀⠀⠀⠀⡇⠀⠀⠀⡇⡇⠀⠀⢸⠀⠀⡞⠀⠈⢳⡀⠀⢹⡀⠀│ │⠀⡸⠀⢀⡞⠀⠀⠀⠀⣇⢰⠁⠀⠀⠘⣼⠀⠀⠀⠀⡇⠀⠀⠀⣧⠇⠀⠀⠈⡇⣸⠁⠀⠀⠀⠳⡀⠀⢧⠀│ │⣰⠃⢠⠎⠀⠀⠀⠀⠀⠘⠊⠀⠀⠀⠀⠏⠀⠀⠀⠀⡇⠀⠀⠀⠹⠀⠀⠀⠀⠙⠃⠀⠀⠀⠀⠀⠹⡄⠘⣆│ -22.5769 │⣁⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⣈│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ [ Info: MoMs start with 1 threads. 网格文件处理完毕,共得到 453 个节点、886 个三角形、0 个四面体、0 个六面体 Constructing RWG basis function... Done! 共得到 886 个三角形, 1329 个 RWG 基函数。 构造八叉树中... 预计算采样点、插值矩阵、相移因子、转移因子等信息中... Calculating translation factors on level 2... 5%|▎ | ETA: 0:00:02 Calculating translation factors on level 2... 9%|▌ | ETA: 0:00:02 Calculating translation factors on level 2... 14%|▉ | ETA: 0:00:02 Calculating translation factors on level 2... 19%|█▏ | ETA: 0:00:02 Calculating translation factors on level 2... 24%|█▌ | ETA: 0:00:02 Calculating translation factors on level 2... 29%|█▊ | ETA: 0:00:02 Calculating translation factors on level 2... 34%|██ | ETA: 0:00:01 Calculating translation factors on level 2... 39%|██▍ | ETA: 0:00:01 Calculating translation factors on level 2... 43%|██▋ | ETA: 0:00:01 Calculating translation factors on level 2... 48%|██▉ | ETA: 0:00:01 Calculating translation factors on level 2... 53%|███▏ | ETA: 0:00:01 Calculating translation factors on level 2... 58%|███▌ | ETA: 0:00:01 Calculating translation factors on level 2... 63%|███▊ | ETA: 0:00:01 Calculating translation factors on level 2... 68%|████▏ | ETA: 0:00:01 Calculating translation factors on level 2... 73%|████▍ | ETA: 0:00:01 Calculating translation factors on level 2... 78%|████▋ | ETA: 0:00:00 Calculating translation factors on level 2... 83%|█████ | ETA: 0:00:00 Calculating translation factors on level 2... 88%|█████▎| ETA: 0:00:00 Calculating translation factors on level 2... 93%|█████▋| ETA: 0:00:00 Calculating translation factors on level 2... 98%|█████▉| ETA: 0:00:00 Calculating translation factors on level 2... 100%|██████| Time: 0:00:02 Calculating translation factors on level 3... 14%|▉ | ETA: 0:00:01 Calculating translation factors on level 3... 30%|█▊ | ETA: 0:00:00 Calculating translation factors on level 3... 45%|██▋ | ETA: 0:00:00 Calculating translation factors on level 3... 59%|███▌ | ETA: 0:00:00 Calculating translation factors on level 3... 74%|████▌ | ETA: 0:00:00 Calculating translation factors on level 3... 90%|█████▍| ETA: 0:00:00 Calculating translation factors on level 3... 100%|██████| Time: 0:00:00 Calculating translation factors... 67%|███████████▍ | ETA: 0:00:01 Calculating translation factors on level 4... 47%|██▊ | ETA: 0:00:00 Calculating translation factors on level 4... 92%|█████▌| ETA: 0:00:00 Calculating translation factors on level 4... 100%|██████| Time: 0:00:00 Calculating translation factors... 100%|█████████████████| Time: 0:00:03 八叉树构造完毕 [ Info: 基函数按八叉树重新排序中... 计算矩阵近场元CSC格式稀疏矩阵中... Znear (RWG)... 2%|▊ | ETA: 0:03:14 Znear (RWG)... 100%|█████████████████████████████████████| Time: 0:00:05 Aggregating on RWG (MFIE)... 2%|▌ | ETA: 0:00:34 Aggregating on RWG (MFIE)... 62%|██████████████▍ | ETA: 0:00:00 Aggregating on RWG (MFIE)... 100%|███████████████████████| Time: 0:00:00 Pₗ 14%|██████▋ | ETA: 0:00:01 Pₗ 27%|█████████████▎ | ETA: 0:00:01 Pₗ 39%|██████████████████▉ | ETA: 0:00:00 Pₗ 52%|█████████████████████████▌ | ETA: 0:00:00 Pₗ 68%|█████████████████████████████████▏ | ETA: 0:00:00 Pₗ 81%|███████████████████████████████████████▊ | ETA: 0:00:00 Pₗ 97%|███████████████████████████████████████████████▌ | ETA: 0:00:00 Pₗ 100%|█████████████████████████████████████████████████| Time: 0:00:00 Done! ┌ Info: └ Solving with gmres, initial resnorm: 0.622965. === gmres === rest iter resnorm 1 1 1.57e-01 1 2 7.46e-02 1 3 4.48e-02 1 4 2.35e-02 1 5 1.44e-02 1 6 1.24e-02 1 7 9.67e-03 1 8 8.29e-03 1 9 7.13e-03 1 10 6.27e-03 1 11 6.07e-03 1 12 6.05e-03 1 13 5.93e-03 1 14 4.53e-03 1 15 2.26e-03 1 16 1.02e-03 1 17 3.70e-04 ⠀⠀⠀⠀⠀⠀⠀⠀⠀Relative ResNorm - Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 10⁰ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠘⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠑⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠱⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠒⠤⢄⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠉⠒⠒⠒⠒⠒⠒⠢⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢢⡀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀│ 10⁻³⸱²²⁶¹⁹ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀20⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌ Info: └ Solving with gmres!, initial resnorm: 0.622965. === gmres === rest iter resnorm 1 1 1.57e-01 1 2 7.46e-02 1 3 4.48e-02 1 4 2.35e-02 1 5 1.44e-02 1 6 1.24e-02 1 7 9.67e-03 1 8 8.29e-03 1 9 7.13e-03 1 10 6.27e-03 1 11 6.07e-03 1 12 6.05e-03 1 13 5.93e-03 1 14 4.53e-03 1 15 2.26e-03 1 16 1.02e-03 1 17 3.70e-04 ⠀⠀⠀⠀⠀⠀⠀⠀⠀Relative ResNorm - Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 10⁰ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠘⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠑⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠱⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠒⠤⢄⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠉⠒⠒⠒⠒⠒⠒⠢⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢢⡀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀│ 10⁻³⸱²²⁶¹⁹ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀20⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Calculating RCS (1441 × 2) 13%|███▍ | ETA: 0:00:01 Calculating RCS (1441 × 2) 27%|██████▉ | ETA: 0:00:01 Calculating RCS (1441 × 2) 41%|██████████▍ | ETA: 0:00:00 Calculating RCS (1441 × 2) 55%|█████████████▊ | ETA: 0:00:00 Calculating RCS (1441 × 2) 68%|█████████████████ | ETA: 0:00:00 Calculating RCS (1441 × 2) 82%|████████████████████▍ | ETA: 0:00:00 Calculating RCS (1441 × 2) 95%|███████████████████████▊ | ETA: 0:00:00 Calculating RCS (1441 × 2) 100%|█████████████████████████| Time: 0:00:00 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(m²)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 1.30122 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠞⡽⣯⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⡇⣿⠀⠱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⢰⠃⡏⡇⠀⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡎⠀⠀⢸⠀⡇⡇⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⡸⠀⡇⢣⠀⠀⠈⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⠁⠀⠀⠀⡇⠀⡇⢸⠀⠀⠀⠸⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠇⠀⠀⠀⠀⡇⠀⡇⢸⠀⠀⠀⠀⢹⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ m² │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡎⠀⠀⠀⠀⢠⠃⠀⡇⠈⡆⠀⠀⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜⠀⠀⠀⠀⠀⢸⠀⠀⡇⠀⡇⠀⠀⠀⠀⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠁⠀⠀⠀⠀⠀⢸⠀⠀⡇⠀⣇⠀⠀⠀⠀⠀⠘⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢀⡼⠁⠀⠀⠀⠀⠀⠀⡏⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠈⢦⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⣠⠞⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠀⠈⠳⣄⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⣀⡤⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⢰⠁⠀⠀⡇⠀⠈⡇⠀⠀⠀⠀⠀⠀⠀⠀⠈⠳⢤⣀⠀⠀⠀⠀│ │⠒⠒⠚⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠀⠀⠀⡇⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠙⠒⠒│ 0.000392698 │⣀⣀⣀⣀⡤⠤⠤⠤⣄⣀⣀⡤⠞⠓⢦⣠⠇⠀⠀⠀⡇⠀⠀⠸⣄⡴⠒⠲⢤⣀⣀⣀⡤⠤⠤⣄⣀⣀⣀⣀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(dB)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 1.14349 │⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⣒⡶⠖⠚⠛⡿⠛⡟⢿⠛⠓⠲⢶⣒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠴⠋⠁⠀⠀⠀⢰⠃⠀⡇⠈⣇⠀⠀⠀⠈⠓⢦⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⣀⠴⠋⠁⠀⠀⠀⠀⠀⠀⡏⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠈⠓⢦⣀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⣀⣀⡤⠖⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⢸⠁⠀⠀⡇⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠢⢤⣀⣀⣀⢀│ │⠉⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⡇⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⢦⡀⠀⡇⠀⠀⠀⡇⠀⠀⢸⠀⠀⡤⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⣀⣀⡀⠀⠀⠀⢰⠃⠀⡇⠀⡇⠀⠀⠀⡇⠀⠀⠸⡀⢸⠁⠘⡆⠀⠀⠀⠀⣀⡀⠀⠀⠀⠀⠀│ dB │⠀⠀⠀⢠⠞⠁⠀⠹⡄⠀⠀⡎⠀⠀⢸⢸⠀⠀⠀⠀⡇⠀⠀⠀⡇⡎⠀⠀⢱⠀⠀⢠⠎⠁⠙⢦⡀⠀⠀⠀│ │⠀⠀⢰⠋⠀⠀⠀⠀⢱⠀⢠⠇⠀⠀⢸⢸⠀⠀⠀⠀⡇⠀⠀⠀⡇⡇⠀⠀⠸⡄⠀⡞⠀⠀⠀⠀⢳⡀⠀⠀│ │⠀⢠⠇⠀⠀⠀⠀⠀⠘⡆⢸⠀⠀⠀⠈⣾⠀⠀⠀⠀⡇⠀⠀⠀⡇⡇⠀⠀⠀⡇⢠⠇⠀⠀⠀⠀⠀⢧⠀⠀│ │⠀⡞⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀⠀⠀⣿⠀⠀⠀⠀⡇⠀⠀⠀⣿⠀⠀⠀⠀⢇⢸⠀⠀⠀⠀⠀⠀⠈⡆⠀│ │⢰⠁⠀⠀⠀⠀⠀⠀⠀⢣⡇⠀⠀⠀⠀⡟⠀⠀⠀⠀⡇⠀⠀⠀⢻⠀⠀⠀⠀⢸⡸⠀⠀⠀⠀⠀⠀⠀⢹⠀│ │⡞⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠁⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠘⡆│ │⠇⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠈⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⢇│ -34.0594 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠘⠇⠀⠀⠀⠀⠀⠀⠀⠀⢸│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Calculating Impedance Matrix(1329 × 1329) 0%| | ETA: 0:02:51 Calculating Impedance Matrix(1329 × 1329) 3%|▎ | ETA: 0:00:18 Calculating Impedance Matrix(1329 × 1329) 5%|▌ | ETA: 0:00:12 Calculating Impedance Matrix(1329 × 1329) 7%|▊ | ETA: 0:00:09 Calculating Impedance Matrix(1329 × 1329) 10%|█ | ETA: 0:00:07 Calculating Impedance Matrix(1329 × 1329) 12%|█▎ | ETA: 0:00:06 Calculating Impedance Matrix(1329 × 1329) 15%|█▌ | ETA: 0:00:06 Calculating Impedance Matrix(1329 × 1329) 18%|█▊ | ETA: 0:00:05 Calculating Impedance Matrix(1329 × 1329) 21%|██▏ | ETA: 0:00:05 Calculating Impedance Matrix(1329 × 1329) 24%|██▍ | ETA: 0:00:04 Calculating Impedance Matrix(1329 × 1329) 27%|██▋ | ETA: 0:00:04 Calculating Impedance Matrix(1329 × 1329) 30%|███ | ETA: 0:00:04 Calculating Impedance Matrix(1329 × 1329) 33%|███▎ | ETA: 0:00:03 Calculating Impedance Matrix(1329 × 1329) 37%|███▋ | ETA: 0:00:03 Calculating Impedance Matrix(1329 × 1329) 40%|████ | ETA: 0:00:03 Calculating Impedance Matrix(1329 × 1329) 44%|████▍ | ETA: 0:00:02 Calculating Impedance Matrix(1329 × 1329) 49%|████▉ | ETA: 0:00:02 Calculating Impedance Matrix(1329 × 1329) 53%|█████▍ | ETA: 0:00:02 Calculating Impedance Matrix(1329 × 1329) 58%|█████▉ | ETA: 0:00:02 Calculating Impedance Matrix(1329 × 1329) 64%|██████▍ | ETA: 0:00:01 Calculating Impedance Matrix(1329 × 1329) 71%|███████▏ | ETA: 0:00:01 Calculating Impedance Matrix(1329 × 1329) 82%|████████▏ | ETA: 0:00:01 Calculating Impedance Matrix(1329 × 1329) 100%|██████████| Time: 0:00:02 Done! Solving matrix function with LUD. Calculating RCS (1441 × 2) 13%|███▍ | ETA: 0:00:01 Calculating RCS (1441 × 2) 28%|███████ | ETA: 0:00:01 Calculating RCS (1441 × 2) 42%|██████████▌ | ETA: 0:00:00 Calculating RCS (1441 × 2) 56%|█████████████▉ | ETA: 0:00:00 Calculating RCS (1441 × 2) 69%|█████████████████▎ | ETA: 0:00:00 Calculating RCS (1441 × 2) 83%|████████████████████▋ | ETA: 0:00:00 Calculating RCS (1441 × 2) 96%|████████████████████████ | ETA: 0:00:00 Calculating RCS (1441 × 2) 100%|█████████████████████████| Time: 0:00:00 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(m²)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 1.30664 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠞⡽⣯⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⡇⣿⠀⠱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⢰⠃⡏⡇⠀⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⠀⠀⢸⠀⡇⡇⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⡸⠀⡇⢣⠀⠀⠈⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⠃⠀⠀⠀⡇⠀⡇⢸⠀⠀⠀⠸⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠇⠀⠀⠀⠀⡇⠀⡇⢸⠀⠀⠀⠀⢹⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ m² │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⠀⠀⠀⠀⢠⠃⠀⡇⠈⡆⠀⠀⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⠀⠀⢸⠀⠀⡇⠀⡇⠀⠀⠀⠀⠈⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠁⠀⠀⠀⠀⠀⢸⠀⠀⡇⠀⣇⠀⠀⠀⠀⠀⠘⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢀⡼⠁⠀⠀⠀⠀⠀⠀⡏⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠈⢦⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⣠⠞⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠀⠈⠳⣄⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢀⡠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⢰⠁⠀⠀⡇⠀⠈⡇⠀⠀⠀⠀⠀⠀⠀⠀⠈⠳⣄⣀⠀⠀⠀⠀│ │⠒⠒⠚⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠀⠀⠀⡇⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠙⠒⠒│ 0.000390672 │⣀⣀⣀⣀⡤⠤⠤⠤⣄⣀⣀⡤⠞⠓⢦⣠⠇⠀⠀⠀⡇⠀⠀⠸⣄⡴⠒⠲⢤⣀⣀⣀⡤⠤⠤⣄⣀⣀⣀⣀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(dB)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 1.16154 │⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⣒⡶⠖⠚⠛⡿⠛⡟⢿⠛⠓⠲⢶⣒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠴⠋⠁⠀⠀⠀⢰⠃⠀⡇⠈⣇⠀⠀⠀⠈⠓⢦⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⣀⡴⠊⠁⠀⠀⠀⠀⠀⠀⡏⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠈⠓⢦⣀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⣀⣀⡤⠔⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⢸⠁⠀⠀⡇⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠈⠓⠦⢤⣀⣀⡀⢀│ │⠉⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⡇⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠉│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⢦⡀⠀⡇⠀⠀⠀⡇⠀⠀⢸⠀⠀⡤⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢀⣠⢤⣀⠀⠀⠀⢰⠃⠀⡇⠀⡇⠀⠀⠀⡇⠀⠀⠸⡀⢸⠁⠘⡆⠀⠀⠀⢀⣀⡀⠀⠀⠀⠀⠀│ dB │⠀⠀⠀⣠⠎⠀⠀⠘⡆⠀⠀⡎⠀⠀⢸⢸⠀⠀⠀⠀⡇⠀⠀⠀⡇⡎⠀⠀⢱⠀⠀⢠⠏⠀⠙⢦⡀⠀⠀⠀│ │⠀⠀⣰⠃⠀⠀⠀⠀⢹⠀⢠⠇⠀⠀⢸⢸⠀⠀⠀⠀⡇⠀⠀⠀⡇⡇⠀⠀⠸⡄⠀⡎⠀⠀⠀⠀⢳⡀⠀⠀│ │⠀⢠⠇⠀⠀⠀⠀⠀⠈⡇⢸⠀⠀⠀⠈⣾⠀⠀⠀⠀⡇⠀⠀⠀⣇⡇⠀⠀⠀⡇⢰⠃⠀⠀⠀⠀⠀⢧⠀⠀│ │⠀⡞⠀⠀⠀⠀⠀⠀⠀⡇⣸⠀⠀⠀⠀⣿⠀⠀⠀⠀⡇⠀⠀⠀⣿⠀⠀⠀⠀⢇⢸⠀⠀⠀⠀⠀⠀⠘⡆⠀│ │⢰⠁⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⡿⠀⠀⠀⠀⡇⠀⠀⠀⢻⠀⠀⠀⠀⢸⡎⠀⠀⠀⠀⠀⠀⠀⢹⠀│ │⡞⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠇⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠘⡆│ │⠇⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⠀⠀⠘⠃⠀⠀⠀⠀⠀⠀⠀⠀⣇│ -34.0819 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ [ Info: MoMs start with 1 threads. 网格文件处理完毕,共得到 453 个节点、886 个三角形、0 个四面体、0 个六面体 Constructing RWG basis function... Done! 共得到 886 个三角形, 1329 个 RWG 基函数。 构造八叉树中... 预计算采样点、插值矩阵、相移因子、转移因子等信息中... Calculating translation factors on level 2... 4%|▎ | ETA: 0:00:02 Calculating translation factors on level 2... 9%|▌ | ETA: 0:00:02 Calculating translation factors on level 2... 14%|▉ | ETA: 0:00:02 Calculating translation factors on level 2... 19%|█▏ | ETA: 0:00:02 Calculating translation factors on level 2... 24%|█▌ | ETA: 0:00:02 Calculating translation factors on level 2... 28%|█▊ | ETA: 0:00:02 Calculating translation factors on level 2... 33%|██ | ETA: 0:00:02 Calculating translation factors on level 2... 38%|██▎ | ETA: 0:00:01 Calculating translation factors on level 2... 42%|██▌ | ETA: 0:00:01 Calculating translation factors on level 2... 47%|██▉ | ETA: 0:00:01 Calculating translation factors on level 2... 52%|███▏ | ETA: 0:00:01 Calculating translation factors on level 2... 56%|███▍ | ETA: 0:00:01 Calculating translation factors on level 2... 61%|███▋ | ETA: 0:00:01 Calculating translation factors on level 2... 66%|████ | ETA: 0:00:01 Calculating translation factors on level 2... 71%|████▎ | ETA: 0:00:01 Calculating translation factors on level 2... 76%|████▌ | ETA: 0:00:01 Calculating translation factors on level 2... 80%|████▊ | ETA: 0:00:00 Calculating translation factors on level 2... 85%|█████▏| ETA: 0:00:00 Calculating translation factors on level 2... 90%|█████▍| ETA: 0:00:00 Calculating translation factors on level 2... 95%|█████▊| ETA: 0:00:00 Calculating translation factors on level 2... 100%|██████| ETA: 0:00:00 Calculating translation factors on level 2... 100%|██████| Time: 0:00:02 Calculating translation factors on level 3... 14%|▉ | ETA: 0:00:01 Calculating translation factors on level 3... 29%|█▊ | ETA: 0:00:01 Calculating translation factors on level 3... 45%|██▋ | ETA: 0:00:00 Calculating translation factors on level 3... 60%|███▋ | ETA: 0:00:00 Calculating translation factors on level 3... 75%|████▌ | ETA: 0:00:00 Calculating translation factors on level 3... 90%|█████▍| ETA: 0:00:00 Calculating translation factors on level 3... 100%|██████| Time: 0:00:00 Calculating translation factors... 67%|███████████▍ | ETA: 0:00:02 Calculating translation factors on level 4... 43%|██▋ | ETA: 0:00:00 Calculating translation factors on level 4... 84%|█████▏| ETA: 0:00:00 Calculating translation factors on level 4... 100%|██████| Time: 0:00:00 Calculating translation factors... 100%|█████████████████| Time: 0:00:03 八叉树构造完毕 [ Info: 基函数按八叉树重新排序中... 计算矩阵近场元CSC格式稀疏矩阵中... Znear (RWG)... 2%|▊ | ETA: 0:03:54 Znear (RWG)... 100%|█████████████████████████████████████| Time: 0:00:06 Aggregating on RWG (CFIE)... 2%|▌ | ETA: 0:00:28 Aggregating on RWG (CFIE)... 56%|█████████████ | ETA: 0:00:01 Aggregating on RWG (CFIE)... 100%|███████████████████████| Time: 0:00:01 Pₗ 15%|███████▏ | ETA: 0:00:01 Pₗ 27%|█████████████▎ | ETA: 0:00:01 Pₗ 41%|███████████████████▉ | ETA: 0:00:00 Pₗ 56%|███████████████████████████▌ | ETA: 0:00:00 Pₗ 70%|██████████████████████████████████▎ | ETA: 0:00:00 Pₗ 83%|████████████████████████████████████████▉ | ETA: 0:00:00 Pₗ 97%|███████████████████████████████████████████████▌ | ETA: 0:00:00 Pₗ 100%|█████████████████████████████████████████████████| Time: 0:00:00 ┌ Info: └ Solving with gmres, initial resnorm: 0.17925414. === gmres === rest iter resnorm 1 1 3.22e-02 1 2 8.71e-03 1 3 4.02e-03 1 4 1.48e-03 1 5 4.28e-04 1 6 1.76e-04 ⠀⠀⠀⠀⠀⠀⠀⠀⠀Relative ResNorm - Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 10⁰ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠉⠢⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠑⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠈⠑⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠒⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠢⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠒⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⠢⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠢⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠢⢄⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠒⠤⣀⠀⠀⠀⠀│ 10⁻³⸱⁰⁰⁷⁴² │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠒⠤⣀│ └────────────────────────────────────────┘ ⠀1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀6⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌ Info: └ Solving with gmres!, initial resnorm: 0.17925414. === gmres === rest iter resnorm 1 1 3.22e-02 1 2 8.71e-03 1 3 4.02e-03 1 4 1.48e-03 1 5 4.28e-04 1 6 1.76e-04 ⠀⠀⠀⠀⠀⠀⠀⠀⠀Relative ResNorm - Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 10⁰ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠉⠢⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠑⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠈⠑⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠒⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠢⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠒⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⠢⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠢⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠢⢄⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠒⠤⣀⠀⠀⠀⠀│ 10⁻³⸱⁰⁰⁷⁴² │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠒⠤⣀│ └────────────────────────────────────────┘ ⠀1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀6⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Calculating RCS (1441 × 2) 13%|███▍ | ETA: 0:00:01 Calculating RCS (1441 × 2) 28%|███████ | ETA: 0:00:01 Calculating RCS (1441 × 2) 42%|██████████▌ | ETA: 0:00:00 Calculating RCS (1441 × 2) 56%|██████████████ | ETA: 0:00:00 Calculating RCS (1441 × 2) 69%|█████████████████▎ | ETA: 0:00:00 Calculating RCS (1441 × 2) 83%|████████████████████▊ | ETA: 0:00:00 Calculating RCS (1441 × 2) 97%|████████████████████████▏| ETA: 0:00:00 Calculating RCS (1441 × 2) 100%|█████████████████████████| Time: 0:00:00 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(m²)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 1.08761 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠞⡽⣯⠳⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⡇⣿⠀⠹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡏⠀⢰⠁⡏⡇⠀⠹⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⢸⠀⡇⡇⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠁⠀⠀⡼⠀⡇⢣⠀⠀⠈⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⡇⠀⡇⢸⠀⠀⠀⠘⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡏⠀⠀⠀⠀⡇⠀⡇⢸⠀⠀⠀⠀⢹⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ m² │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⠀⢰⠁⠀⡇⠈⡇⠀⠀⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⠁⠀⠀⠀⠀⢸⠀⠀⡇⠀⡇⠀⠀⠀⠀⠈⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⠀⠀⠀⠀⣸⠀⠀⡇⠀⢇⠀⠀⠀⠀⠀⠘⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⣠⠏⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⢸⡀⠀⠀⠀⠀⠀⠀⠹⣄⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⡴⠃⠀⠀⠀⠀⠀⠀⠀⢸⠁⠀⠀⡇⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠘⢦⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢀⡤⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⡇⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠳⢤⡀⠀⠀⠀⠀│ 5.81634f-5 │⣀⣤⣴⣚⣉⣀⣀⣀⣀⣀⣀⡤⠖⠲⣄⣠⠇⠀⠀⠀⡇⠀⠀⠸⣄⣠⠖⠲⢤⣀⣀⣀⣀⣀⣀⣉⣓⣦⣤⣀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(dB)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 0.364714 │⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⢉⣩⠽⠛⠋⠉⡽⠉⡏⢯⡉⠙⠛⠯⣍⡉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡤⠞⠉⠀⠀⠀⠀⡼⠀⠀⡇⠀⢧⠀⠀⠀⠀⠉⠳⢤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⣠⠖⠉⠀⠀⠀⠀⠀⠀⢠⠃⠀⠀⡇⠀⠘⡆⠀⠀⠀⠀⠀⠀⠉⠳⣄⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⡇⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠈⠳⣄⠀⠀⠀⠀⠀│ │⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⡇⠀⠀⠀⡇⠀⠀⢸⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠈⠳⣄⠀⠀⠀│ │⠀⢠⠞⠁⠀⠀⠀⠀⠀⠀⠀⢰⠋⠙⡆⢰⠃⠀⠀⠀⡇⠀⠀⠈⡆⢠⠋⠙⡆⠀⠀⠀⠀⠀⠀⠀⠈⠳⣄⠀│ │⡴⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⠀⠀⢣⢸⠀⠀⠀⠀⡇⠀⠀⠀⡇⡼⠀⠀⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⢦│ dB │⠁⠀⠀⠀⢀⠴⠒⢦⡀⠀⢸⠁⠀⠀⢸⢸⠀⠀⠀⠀⡇⠀⠀⠀⡇⡇⠀⠀⠀⡇⠀⠀⡴⠒⠦⡀⠀⠀⠀⠀│ │⠀⠀⠀⡴⠋⠀⠀⠀⢧⠀⡜⠀⠀⠀⢸⣸⠀⠀⠀⠀⡇⠀⠀⠀⢇⡇⠀⠀⠀⢳⠀⡸⠀⠀⠀⠙⢦⠀⠀⠀│ │⠀⢀⡞⠁⠀⠀⠀⠀⢸⠀⡇⠀⠀⠀⠸⡇⠀⠀⠀⠀⡇⠀⠀⠀⢸⠇⠀⠀⠀⢸⠀⡇⠀⠀⠀⠀⠈⢳⡀⠀│ │⡠⠋⠀⠀⠀⠀⠀⠀⠀⡇⡇⠀⠀⠀⠀⡇⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⠀⠀⠸⣸⠁⠀⠀⠀⠀⠀⠀⠙⢤│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -42.3535 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡇⠀⠀⠀⠸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Calculating Impedance Matrix(1329 × 1329) 0%| | ETA: 0:02:29 Calculating Impedance Matrix(1329 × 1329) 3%|▎ | ETA: 0:00:16 Calculating Impedance Matrix(1329 × 1329) 5%|▌ | ETA: 0:00:10 Calculating Impedance Matrix(1329 × 1329) 8%|▊ | ETA: 0:00:08 Calculating Impedance Matrix(1329 × 1329) 11%|█ | ETA: 0:00:06 Calculating Impedance Matrix(1329 × 1329) 13%|█▍ | ETA: 0:00:06 Calculating Impedance Matrix(1329 × 1329) 16%|█▋ | ETA: 0:00:05 Calculating Impedance Matrix(1329 × 1329) 19%|█▉ | ETA: 0:00:04 Calculating Impedance Matrix(1329 × 1329) 22%|██▎ | ETA: 0:00:04 Calculating Impedance Matrix(1329 × 1329) 26%|██▋ | ETA: 0:00:04 Calculating Impedance Matrix(1329 × 1329) 29%|██▉ | ETA: 0:00:03 Calculating Impedance Matrix(1329 × 1329) 33%|███▎ | ETA: 0:00:03 Calculating Impedance Matrix(1329 × 1329) 36%|███▋ | ETA: 0:00:03 Calculating Impedance Matrix(1329 × 1329) 40%|████ | ETA: 0:00:03 Calculating Impedance Matrix(1329 × 1329) 44%|████▍ | ETA: 0:00:02 Calculating Impedance Matrix(1329 × 1329) 48%|████▉ | ETA: 0:00:02 Calculating Impedance Matrix(1329 × 1329) 53%|█████▍ | ETA: 0:00:02 Calculating Impedance Matrix(1329 × 1329) 59%|█████▉ | ETA: 0:00:01 Calculating Impedance Matrix(1329 × 1329) 64%|██████▍ | ETA: 0:00:01 Calculating Impedance Matrix(1329 × 1329) 72%|███████▎ | ETA: 0:00:01 Calculating Impedance Matrix(1329 × 1329) 83%|████████▎ | ETA: 0:00:01 Calculating Impedance Matrix(1329 × 1329) 100%|██████████| Time: 0:00:02 Solving matrix function with LUD. Calculating RCS (1441 × 2) 13%|███▍ | ETA: 0:00:01 Calculating RCS (1441 × 2) 28%|██████▉ | ETA: 0:00:01 Calculating RCS (1441 × 2) 42%|██████████▍ | ETA: 0:00:00 Calculating RCS (1441 × 2) 55%|█████████████▊ | ETA: 0:00:00 Calculating RCS (1441 × 2) 68%|█████████████████▏ | ETA: 0:00:00 Calculating RCS (1441 × 2) 82%|████████████████████▌ | ETA: 0:00:00 Calculating RCS (1441 × 2) 96%|████████████████████████ | ETA: 0:00:00 Calculating RCS (1441 × 2) 100%|█████████████████████████| Time: 0:00:00 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(m²)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 1.08019 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠞⡽⣯⠳⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⡇⣿⠀⠹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡏⠀⢰⠁⡏⡇⠀⠹⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⢸⠀⡇⡇⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠁⠀⠀⡼⠀⡇⢣⠀⠀⠈⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⠀⠀⡇⠀⡇⢸⠀⠀⠀⠘⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡏⠀⠀⠀⠀⡇⠀⡇⢸⠀⠀⠀⠀⢹⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ m² │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⠀⢰⠁⠀⡇⠈⡇⠀⠀⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⠁⠀⠀⠀⠀⢸⠀⠀⡇⠀⡇⠀⠀⠀⠀⠈⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⠀⠀⠀⠀⣸⠀⠀⡇⠀⢇⠀⠀⠀⠀⠀⠘⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠀⠹⣄⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⡴⠃⠀⠀⠀⠀⠀⠀⠀⢸⠁⠀⠀⡇⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠘⢦⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢀⡠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⡇⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠳⢤⡀⠀⠀⠀⠀│ 6.99731f-5 │⣀⣤⣴⣚⣉⣀⣀⣀⣀⣀⣀⡤⠖⠲⣄⣠⠇⠀⠀⠀⡇⠀⠀⠸⣄⣠⠖⠲⢤⣀⣀⣀⣀⣀⣀⣉⣓⣦⣤⣀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(dB)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 0.334985 │⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⢉⣩⠽⠛⠋⠉⡽⠉⡏⢯⠉⠙⠛⠯⣍⡉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡤⠞⠉⠀⠀⠀⠀⡼⠁⠀⡇⠀⢧⠀⠀⠀⠀⠉⠳⢤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⣠⠔⠋⠀⠀⠀⠀⠀⠀⢠⠇⠀⠀⡇⠀⠘⡄⠀⠀⠀⠀⠀⠀⠙⠲⣄⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⡸⠀⠀⠀⡇⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠈⠳⣄⠀⠀⠀⠀⠀│ │⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⡇⠀⠀⠀⡇⠀⠀⢸⠀⠀⢀⠀⠀⠀⠀⠀⠀⠀⠈⠳⣄⠀⠀⠀│ │⠀⢀⡜⠁⠀⠀⠀⠀⠀⠀⠀⢠⠏⠹⡄⢠⠃⠀⠀⠀⡇⠀⠀⠘⡆⢠⠏⠹⡄⠀⠀⠀⠀⠀⠀⠀⠈⢳⡀⠀│ │⣰⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⡎⠀⠀⢧⢸⠀⠀⠀⠀⡇⠀⠀⠀⡇⡸⠀⠀⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⣆│ dB │⠁⠀⠀⠀⢀⡤⠶⢤⠀⠀⢸⠁⠀⠀⢸⢸⠀⠀⠀⠀⡇⠀⠀⠀⡇⡇⠀⠀⠈⡇⠀⠀⡤⠶⢤⡀⠀⠀⠀⠈│ │⠀⠀⠀⣰⠋⠀⠀⠈⣇⠀⡼⠀⠀⠀⢸⢸⠀⠀⠀⠀⡇⠀⠀⠀⣇⡇⠀⠀⠀⢧⠀⣸⠁⠀⠀⠹⣄⠀⠀⠀│ │⠀⠀⡼⠁⠀⠀⠀⠀⢸⠀⡇⠀⠀⠀⠸⡏⠀⠀⠀⠀⡇⠀⠀⠀⢸⡇⠀⠀⠀⢸⠀⡇⠀⠀⠀⠀⠘⢦⠀⠀│ │⣠⠞⠀⠀⠀⠀⠀⠀⠈⡆⡇⠀⠀⠀⠀⡇⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⠀⠀⢸⢰⠃⠀⠀⠀⠀⠀⠈⠳⡀│ │⠁⠀⠀⠀⠀⠀⠀⠀⠀⣷⠁⠀⠀⠀⠀⡇⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠉│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⠀⠀⠀⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -41.5507 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 网格文件处理完毕,共得到 504 个节点、0 个三角形、1357 个四面体、0 个六面体 Constructing VIE basis function based on tetrahedras... Done! 共得到 1357 个四面体, 3201 个 SWG 基函数。 [ Info: MoMs start with 1 threads. 构造八叉树中... 预计算采样点、插值矩阵、相移因子、转移因子等信息中... Calculating translation factors on level 2... 3%|▏ | ETA: 0:00:04 Calculating translation factors on level 2... 6%|▍ | ETA: 0:00:04 Calculating translation factors on level 2... 9%|▌ | ETA: 0:00:03 Calculating translation factors on level 2... 12%|▊ | ETA: 0:00:03 Calculating translation factors on level 2... 15%|▉ | ETA: 0:00:03 Calculating translation factors on level 2... 18%|█▏ | ETA: 0:00:03 Calculating translation factors on level 2... 21%|█▎ | ETA: 0:00:03 Calculating translation factors on level 2... 24%|█▌ | ETA: 0:00:03 Calculating translation factors on level 2... 27%|█▋ | ETA: 0:00:03 Calculating translation factors on level 2... 30%|█▉ | ETA: 0:00:02 Calculating translation factors on level 2... 33%|██ | ETA: 0:00:02 Calculating translation factors on level 2... 36%|██▏ | ETA: 0:00:02 Calculating translation factors on level 2... 39%|██▍ | ETA: 0:00:02 Calculating translation factors on level 2... 42%|██▌ | ETA: 0:00:02 Calculating translation factors on level 2... 45%|██▊ | ETA: 0:00:02 Calculating translation factors on level 2... 48%|██▉ | ETA: 0:00:02 Calculating translation factors on level 2... 52%|███▏ | ETA: 0:00:02 Calculating translation factors on level 2... 55%|███▎ | ETA: 0:00:02 Calculating translation factors on level 2... 58%|███▌ | ETA: 0:00:01 Calculating translation factors on level 2... 61%|███▋ | ETA: 0:00:01 Calculating translation factors on level 2... 65%|███▉ | ETA: 0:00:01 Calculating translation factors on level 2... 68%|████▏ | ETA: 0:00:01 Calculating translation factors on level 2... 71%|████▎ | ETA: 0:00:01 Calculating translation factors on level 2... 74%|████▌ | ETA: 0:00:01 Calculating translation factors on level 2... 77%|████▋ | ETA: 0:00:01 Calculating translation factors on level 2... 80%|████▉ | ETA: 0:00:01 Calculating translation factors on level 2... 84%|█████ | ETA: 0:00:01 Calculating translation factors on level 2... 87%|█████▎| ETA: 0:00:00 Calculating translation factors on level 2... 90%|█████▍| ETA: 0:00:00 Calculating translation factors on level 2... 93%|█████▋| ETA: 0:00:00 Calculating translation factors on level 2... 96%|█████▊| ETA: 0:00:00 Calculating translation factors on level 2... 99%|██████| ETA: 0:00:00 Calculating translation factors on level 2... 100%|██████| Time: 0:00:03 Calculating translation factors on level 3... 9%|▋ | ETA: 0:00:01 Calculating translation factors on level 3... 20%|█▏ | ETA: 0:00:01 Calculating translation factors on level 3... 30%|█▊ | ETA: 0:00:01 Calculating translation factors on level 3... 40%|██▍ | ETA: 0:00:01 Calculating translation factors on level 3... 50%|███ | ETA: 0:00:01 Calculating translation factors on level 3... 60%|███▋ | ETA: 0:00:00 Calculating translation factors on level 3... 71%|████▎ | ETA: 0:00:00 Calculating translation factors on level 3... 82%|████▉ | ETA: 0:00:00 Calculating translation factors on level 3... 92%|█████▌| ETA: 0:00:00 Calculating translation factors on level 3... 100%|██████| Time: 0:00:01 Calculating translation factors... 50%|████████▌ | ETA: 0:00:04 Calculating translation factors on level 4... 28%|█▋ | ETA: 0:00:00 Calculating translation factors on level 4... 55%|███▎ | ETA: 0:00:00 Calculating translation factors on level 4... 81%|████▉ | ETA: 0:00:00 Calculating translation factors on level 4... 100%|██████| Time: 0:00:00 Calculating translation factors... 75%|████████████▊ | ETA: 0:00:02 Calculating translation factors on level 5... 63%|███▊ | ETA: 0:00:00 Calculating translation factors on level 5... 100%|██████| Time: 0:00:00 Calculating translation factors... 100%|█████████████████| Time: 0:00:05 八叉树构造完毕 [ Info: 基函数按八叉树重新排序中... 计算矩阵近场元CSC格式稀疏矩阵中... Znear (SWG)... 2%|▋ | ETA: 0:06:36 Znear (SWG)... 42%|███████████████▋ | ETA: 0:00:10 Znear (SWG)... 76%|████████████████████████████ | ETA: 0:00:03 Znear (SWG)... 100%|█████████████████████████████████████| Time: 0:00:09 Aggregating on SWG (EFIE)... 2%|▍ | ETA: 0:00:43 Aggregating on SWG (EFIE)... 85%|███████████████████▋ | ETA: 0:00:00 Aggregating on SWG (EFIE)... 100%|███████████████████████| Time: 0:00:00 Pₗ 5%|██▎ | ETA: 0:00:02 Pₗ 9%|████▎ | ETA: 0:00:02 Pₗ 12%|██████▏ | ETA: 0:00:03 Pₗ 17%|████████▍ | ETA: 0:00:02 Pₗ 21%|██████████▍ | ETA: 0:00:02 Pₗ 24%|███████████▉ | ETA: 0:00:02 Pₗ 28%|█████████████▊ | ETA: 0:00:02 Pₗ 32%|███████████████▊ | ETA: 0:00:02 Pₗ 35%|█████████████████▎ | ETA: 0:00:02 Pₗ 39%|███████████████████▏ | ETA: 0:00:02 Pₗ 43%|█████████████████████ | ETA: 0:00:02 Pₗ 46%|██████████████████████▋ | ETA: 0:00:02 Pₗ 49%|████████████████████████▏ | ETA: 0:00:02 Pₗ 53%|██████████████████████████ | ETA: 0:00:01 Pₗ 57%|████████████████████████████ | ETA: 0:00:01 Pₗ 61%|█████████████████████████████▉ | ETA: 0:00:01 Pₗ 66%|████████████████████████████████▏ | ETA: 0:00:01 Pₗ 70%|██████████████████████████████████▏ | ETA: 0:00:01 Pₗ 73%|████████████████████████████████████ | ETA: 0:00:01 Pₗ 77%|█████████████████████████████████████▉ | ETA: 0:00:01 Pₗ 81%|███████████████████████████████████████▊ | ETA: 0:00:01 Pₗ 85%|█████████████████████████████████████████▊ | ETA: 0:00:00 Pₗ 90%|████████████████████████████████████████████ | ETA: 0:00:00 Pₗ 94%|██████████████████████████████████████████████ | ETA: 0:00:00 Pₗ 97%|███████████████████████████████████████████████▌ | ETA: 0:00:00 Pₗ 100%|█████████████████████████████████████████████████| Time: 0:00:03 Calculating V... 0%| | ETA: 0:14:45 Calculating V... 100%|███████████████████████████████████| Time: 0:00:01 ┌ Info: └ Solving with gmres, initial resnorm: 774.62305. === gmres === rest iter resnorm 1 1 1.46e+01 1 2 9.92e-01 1 3 8.93e-02 ⠀⠀⠀⠀⠀⠀⠀⠀⠀Relative ResNorm - Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 10⁰ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠉⠑⠢⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠈⠉⠒⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠢⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠢⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠢⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠢⠤⣀⠀⠀⠀⠀⠀│ 10⁻³⸱⁹³⁸³⁸ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠢⠤⣀│ └────────────────────────────────────────┘ ⠀1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌ Info: └ Solving with gmres!, initial resnorm: 774.62305. === gmres === rest iter resnorm 1 1 1.46e+01 1 2 9.92e-01 1 3 8.93e-02 ⠀⠀⠀⠀⠀⠀⠀⠀⠀Relative ResNorm - Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 10⁰ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠉⠑⠢⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠈⠉⠒⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠢⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠢⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠢⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠢⠤⣀⠀⠀⠀⠀⠀│ 10⁻³⸱⁹³⁸³⁸ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠢⠤⣀│ └────────────────────────────────────────┘ ⠀1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Calculating RCS (1441 × 2)) 0%| | ETA: 0:14:29 Calculating RCS (1441 × 2)) 7%|█▋ | ETA: 0:00:09 Calculating RCS (1441 × 2)) 14%|███▍ | ETA: 0:00:05 Calculating RCS (1441 × 2)) 21%|█████▏ | ETA: 0:00:03 Calculating RCS (1441 × 2)) 29%|███████ | ETA: 0:00:02 Calculating RCS (1441 × 2)) 37%|████████▉ | ETA: 0:00:02 Calculating RCS (1441 × 2)) 44%|██████████▋ | ETA: 0:00:02 Calculating RCS (1441 × 2)) 51%|████████████▍ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 58%|██████████████ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 65%|███████████████▋ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 73%|█████████████████▍ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 80%|███████████████████▎ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 88%|█████████████████████▏ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 95%|██████████████████████▊ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 100%|████████████████████████| Time: 0:00:02 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(m²)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 6.53345 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠋⠉⠳⡄⠀│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⠙⢦│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠁⠀⠀⠀⠀⠀⠀⠀│ m² │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡇⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⢰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⢀⣠⠏⢀⣀⡤⠴⠒⠋⠉⠉⠉⠉│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⣠⢞⣉⡭⠖⠚⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0.00757533 │⠭⢭⣉⣉⣉⣉⣉⣑⣒⣒⣒⣒⣒⣒⣦⣤⣤⡤⠤⠤⡷⠒⠛⠛⠉⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(dB)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 8.15143 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠉⠉⠉⠉⠉⠑│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠁⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡼⠁⠀⠀⣀⣀⡠⠤⠤⠤⠤│ │⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⡏⠉⠉⠉⠉⣩⠽⠛⢛⣩⠽⠛⠉⠉⠉⠉⠉⠉⠉⠉│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⡴⢃⡤⠞⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠓⠒⠒⠒⠒⠒⠦⠤⢤⣀⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⣠⢴⡾⠞⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ dB │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠙⠒⠲⠤⠤⠤⠤⣤⡿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠲⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠈⠳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡴⠃⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠹⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⡤⠞⠁⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠘⣆⠀⠀⠀⠀⠀⠀⠀⡞⠁⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠘⢦⣀⣀⡀⠀⠀⣸⠁⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢳⡀⢀⡇⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -21.206 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢳⣸⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Calculating Z (SWG, EFIE) (3201 × 3201) 0%| | ETA: 0:04:26 Calculating Z (SWG, EFIE) (3201 × 3201) 1%|▏ | ETA: 0:01:02 Calculating Z (SWG, EFIE) (3201 × 3201) 1%|▏ | ETA: 0:00:45 Calculating Z (SWG, EFIE) (3201 × 3201) 2%|▎ | ETA: 0:00:34 Calculating Z (SWG, EFIE) (3201 × 3201) 3%|▍ | ETA: 0:00:29 Calculating Z (SWG, EFIE) (3201 × 3201) 3%|▍ | ETA: 0:00:29 Calculating Z (SWG, EFIE) (3201 × 3201) 4%|▌ | ETA: 0:00:27 Calculating Z (SWG, EFIE) (3201 × 3201) 5%|▋ | ETA: 0:00:25 Calculating Z (SWG, EFIE) (3201 × 3201) 5%|▋ | ETA: 0:00:24 Calculating Z (SWG, EFIE) (3201 × 3201) 6%|▊ | ETA: 0:00:30 Calculating Z (SWG, EFIE) (3201 × 3201) 7%|▊ | ETA: 0:00:29 Calculating Z (SWG, EFIE) (3201 × 3201) 7%|▉ | ETA: 0:00:27 Calculating Z (SWG, EFIE) (3201 × 3201) 8%|█ | ETA: 0:00:26 Calculating Z (SWG, EFIE) (3201 × 3201) 8%|█ | ETA: 0:00:25 Calculating Z (SWG, EFIE) (3201 × 3201) 9%|█▏ | ETA: 0:00:24 Calculating Z (SWG, EFIE) (3201 × 3201) 10%|█▏ | ETA: 0:00:23 Calculating Z (SWG, EFIE) (3201 × 3201) 11%|█▎ | ETA: 0:00:22 Calculating Z (SWG, EFIE) (3201 × 3201) 11%|█▍ | ETA: 0:00:22 Calculating Z (SWG, EFIE) (3201 × 3201) 12%|█▍ | ETA: 0:00:21 Calculating Z (SWG, EFIE) (3201 × 3201) 12%|█▌ | ETA: 0:00:21 Calculating Z (SWG, EFIE) (3201 × 3201) 13%|█▋ | ETA: 0:00:20 Calculating Z (SWG, EFIE) (3201 × 3201) 14%|█▋ | ETA: 0:00:20 Calculating Z (SWG, EFIE) (3201 × 3201) 15%|█▊ | ETA: 0:00:19 Calculating Z (SWG, EFIE) (3201 × 3201) 15%|█▉ | ETA: 0:00:19 Calculating Z (SWG, EFIE) (3201 × 3201) 16%|█▉ | ETA: 0:00:18 Calculating Z (SWG, EFIE) (3201 × 3201) 17%|██ | ETA: 0:00:18 Calculating Z (SWG, EFIE) (3201 × 3201) 17%|██▏ | ETA: 0:00:18 Calculating Z (SWG, EFIE) (3201 × 3201) 18%|██▎ | ETA: 0:00:17 Calculating Z (SWG, EFIE) (3201 × 3201) 19%|██▎ | ETA: 0:00:17 Calculating Z (SWG, EFIE) (3201 × 3201) 20%|██▍ | ETA: 0:00:16 Calculating Z (SWG, EFIE) (3201 × 3201) 21%|██▌ | ETA: 0:00:16 Calculating Z (SWG, EFIE) (3201 × 3201) 21%|██▋ | ETA: 0:00:16 Calculating Z (SWG, EFIE) (3201 × 3201) 22%|██▋ | ETA: 0:00:15 Calculating Z (SWG, EFIE) (3201 × 3201) 23%|██▊ | ETA: 0:00:15 Calculating Z (SWG, EFIE) (3201 × 3201) 24%|██▉ | ETA: 0:00:14 Calculating Z (SWG, EFIE) (3201 × 3201) 25%|███ | ETA: 0:00:14 Calculating Z (SWG, EFIE) (3201 × 3201) 26%|███▏ | ETA: 0:00:14 Calculating Z (SWG, EFIE) (3201 × 3201) 26%|███▏ | ETA: 0:00:14 Calculating Z (SWG, EFIE) (3201 × 3201) 27%|███▎ | ETA: 0:00:13 Calculating Z (SWG, EFIE) (3201 × 3201) 28%|███▍ | ETA: 0:00:13 Calculating Z (SWG, EFIE) (3201 × 3201) 29%|███▌ | ETA: 0:00:13 Calculating Z (SWG, EFIE) (3201 × 3201) 30%|███▋ | ETA: 0:00:13 Calculating Z (SWG, EFIE) (3201 × 3201) 31%|███▋ | ETA: 0:00:12 Calculating Z (SWG, EFIE) (3201 × 3201) 31%|███▊ | ETA: 0:00:12 Calculating Z (SWG, EFIE) (3201 × 3201) 32%|███▉ | ETA: 0:00:12 Calculating Z (SWG, EFIE) (3201 × 3201) 33%|████ | ETA: 0:00:12 Calculating Z (SWG, EFIE) (3201 × 3201) 34%|████▏ | ETA: 0:00:11 Calculating Z (SWG, EFIE) (3201 × 3201) 35%|████▎ | ETA: 0:00:11 Calculating Z (SWG, EFIE) (3201 × 3201) 36%|████▍ | ETA: 0:00:11 Calculating Z (SWG, EFIE) (3201 × 3201) 37%|████▌ | ETA: 0:00:11 Calculating Z (SWG, EFIE) (3201 × 3201) 38%|████▌ | ETA: 0:00:10 Calculating Z (SWG, EFIE) (3201 × 3201) 39%|████▋ | ETA: 0:00:10 Calculating Z (SWG, EFIE) (3201 × 3201) 40%|████▊ | ETA: 0:00:10 Calculating Z (SWG, EFIE) (3201 × 3201) 41%|████▉ | ETA: 0:00:10 Calculating Z (SWG, EFIE) (3201 × 3201) 42%|█████ | ETA: 0:00:09 Calculating Z (SWG, EFIE) (3201 × 3201) 43%|█████▏ | ETA: 0:00:09 Calculating Z (SWG, EFIE) (3201 × 3201) 44%|█████▎ | ETA: 0:00:09 Calculating Z (SWG, EFIE) (3201 × 3201) 45%|█████▍ | ETA: 0:00:09 Calculating Z (SWG, EFIE) (3201 × 3201) 45%|█████▌ | ETA: 0:00:09 Calculating Z (SWG, EFIE) (3201 × 3201) 46%|█████▋ | ETA: 0:00:08 Calculating Z (SWG, EFIE) (3201 × 3201) 48%|█████▊ | ETA: 0:00:08 Calculating Z (SWG, EFIE) (3201 × 3201) 49%|█████▉ | ETA: 0:00:08 Calculating Z (SWG, EFIE) (3201 × 3201) 50%|██████ | ETA: 0:00:08 Calculating Z (SWG, EFIE) (3201 × 3201) 51%|██████▏ | ETA: 0:00:07 Calculating Z (SWG, EFIE) (3201 × 3201) 52%|██████▎ | ETA: 0:00:07 Calculating Z (SWG, EFIE) (3201 × 3201) 54%|██████▍ | ETA: 0:00:07 Calculating Z (SWG, EFIE) (3201 × 3201) 55%|██████▋ | ETA: 0:00:07 Calculating Z (SWG, EFIE) (3201 × 3201) 56%|██████▊ | ETA: 0:00:06 Calculating Z (SWG, EFIE) (3201 × 3201) 57%|██████▉ | ETA: 0:00:06 Calculating Z (SWG, EFIE) (3201 × 3201) 59%|███████ | ETA: 0:00:06 Calculating Z (SWG, EFIE) (3201 × 3201) 60%|███████▎ | ETA: 0:00:06 Calculating Z (SWG, EFIE) (3201 × 3201) 62%|███████▍ | ETA: 0:00:05 Calculating Z (SWG, EFIE) (3201 × 3201) 63%|███████▋ | ETA: 0:00:05 Calculating Z (SWG, EFIE) (3201 × 3201) 65%|███████▊ | ETA: 0:00:05 Calculating Z (SWG, EFIE) (3201 × 3201) 66%|████████ | ETA: 0:00:04 Calculating Z (SWG, EFIE) (3201 × 3201) 68%|████████▏ | ETA: 0:00:04 Calculating Z (SWG, EFIE) (3201 × 3201) 70%|████████▍ | ETA: 0:00:04 Calculating Z (SWG, EFIE) (3201 × 3201) 72%|████████▋ | ETA: 0:00:04 Calculating Z (SWG, EFIE) (3201 × 3201) 74%|████████▉ | ETA: 0:00:03 Calculating Z (SWG, EFIE) (3201 × 3201) 76%|█████████▏ | ETA: 0:00:03 Calculating Z (SWG, EFIE) (3201 × 3201) 79%|█████████▍ | ETA: 0:00:03 Calculating Z (SWG, EFIE) (3201 × 3201) 81%|█████████▊ | ETA: 0:00:02 Calculating Z (SWG, EFIE) (3201 × 3201) 85%|██████████▏ | ETA: 0:00:02 Calculating Z (SWG, EFIE) (3201 × 3201) 89%|██████████▋ | ETA: 0:00:01 Calculating Z (SWG, EFIE) (3201 × 3201) 97%|███████████▋| ETA: 0:00:00 Calculating Z (SWG, EFIE) (3201 × 3201) 100%|████████████| Time: 0:00:09 Solving matrix function with LUD. Calculating RCS (1441 × 2)) 7%|█▋ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 14%|███▍ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 22%|█████▎ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 29%|███████ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 37%|████████▊ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 44%|██████████▌ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 51%|████████████▎ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 58%|██████████████ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 65%|███████████████▋ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 72%|█████████████████▍ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 80%|███████████████████▏ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 87%|█████████████████████ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 94%|██████████████████████▋ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 100%|████████████████████████| Time: 0:00:01 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(m²)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 0.0338207 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⡽⣯⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⠀⡇⣿⠀⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⢸⠁⡇⡇⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠁⠀⢸⠀⡇⡇⠀⠈⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠇⠀⠀⡞⠀⡇⢱⠀⠀⠘⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⠀⡇⠀⡇⢸⠀⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠁⠀⠀⠀⡇⠀⡇⢸⡀⠀⠀⠈⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ m² │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠇⠀⠀⠀⢸⠀⠀⡇⠀⡇⠀⠀⠀⠸⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⠀⠀⢸⠀⠀⡇⠀⡇⠀⠀⠀⠀⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⠀⠀⡼⠀⠀⡇⠀⢣⠀⠀⠀⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⠃⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠈⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⠃⠀⠀⠀⠀⠀⢀⠇⠀⠀⡇⠀⠸⡄⠀⠀⠀⠀⠀⠘⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⡴⠃⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⡇⠀⠀⡇⠀⠀⠀⠀⠀⠀⠘⢦⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⠀⡇⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠈⠳⣄⠀⠀⠀⠀⠀⠀│ 9.0202f-8 │⣀⣀⣤⡤⠴⠾⢥⣀⣀⣀⣀⠴⠒⠲⣄⣰⠃⠀⠀⠀⡇⠀⠀⠘⣆⣠⠖⠒⠦⣄⣀⣀⣀⡬⠵⠦⢤⣤⣀⣀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(dB)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ -14.7082 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡤⠴⠒⠋⢩⠟⠉⡏⠻⡍⠙⠒⠦⢤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠔⠋⠁⠀⠀⠀⢀⡏⠀⠀⡇⠀⠹⡀⠀⠀⠀⠈⠙⠲⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⢀⡴⠋⠁⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⡇⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⢀⡤⢤⠀⢀⡇⠀⠀⠀⡇⠀⠀⢸⡀⠀⡤⢤⡀⠀⠀⠀⠀⠉⢢⡀⠀⠀⠀⠀│ │⣀⣀⣠⡴⠿⠲⢤⡀⠀⠀⢀⡏⠀⠈⡇⢸⠀⠀⠀⠀⡇⠀⠀⠀⡇⢸⠁⠀⠹⡀⠀⠀⢀⡤⠖⠿⢦⣄⣀⣀│ │⠀⠀⡼⠁⠀⠀⠀⠹⡄⠀⡼⠀⠀⠀⢹⢸⠀⠀⠀⠀⡇⠀⠀⠀⡇⡏⠀⠀⠀⢧⠀⢠⠏⠀⠀⠀⠈⢧⠀⠀│ │⠀⣸⠁⠀⠀⠀⠀⠀⢣⠀⡇⠀⠀⠀⢸⡎⠀⠀⠀⠀⡇⠀⠀⠀⢸⡇⠀⠀⠀⢸⠀⡼⠀⠀⠀⠀⠀⠈⢇⠀│ dB │⢀⠇⠀⠀⠀⠀⠀⠀⢸⢰⠁⠀⠀⠀⢸⡇⠀⠀⠀⠀⡇⠀⠀⠀⢸⡇⠀⠀⠀⠈⡇⡇⠀⠀⠀⠀⠀⠀⠸⡄│ │⢸⠀⠀⠀⠀⠀⠀⠀⠈⣿⠀⠀⠀⠀⠈⡇⠀⠀⠀⠀⡇⠀⠀⠀⢸⠁⠀⠀⠀⠀⣷⠁⠀⠀⠀⠀⠀⠀⠀⡇│ │⡎⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⢹│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⢸│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⡿⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⠀⠀⠀⢻⠀⠀⠀⠀⠀⠀⠀⠀⢸│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⢸│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⡇⠀⠀⠀⠈⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⢸│ -70.4478 │⡇⠀⠀⠀⠀⠀⠀⠀⠀⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠀⠀⠀⠀⠀⠀⠀⠀⢸│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Constructing VIE basis function based on tetrahedras... Done! 共得到 1357 个四面体, 4071 个 PWC 基函数。 [ Info: MoMs start with 1 threads. 构造八叉树中... 预计算采样点、插值矩阵、相移因子、转移因子等信息中... Calculating translation factors on level 2... 3%|▏ | ETA: 0:00:05 Calculating translation factors on level 2... 6%|▍ | ETA: 0:00:04 Calculating translation factors on level 2... 8%|▌ | ETA: 0:00:04 Calculating translation factors on level 2... 11%|▋ | ETA: 0:00:04 Calculating translation factors on level 2... 14%|▉ | ETA: 0:00:03 Calculating translation factors on level 2... 17%|█ | ETA: 0:00:03 Calculating translation factors on level 2... 20%|█▎ | ETA: 0:00:03 Calculating translation factors on level 2... 23%|█▍ | ETA: 0:00:03 Calculating translation factors on level 2... 26%|█▋ | ETA: 0:00:03 Calculating translation factors on level 2... 30%|█▊ | ETA: 0:00:03 Calculating translation factors on level 2... 33%|██ | ETA: 0:00:03 Calculating translation factors on level 2... 35%|██▏ | ETA: 0:00:02 Calculating translation factors on level 2... 39%|██▍ | ETA: 0:00:02 Calculating translation factors on level 2... 42%|██▌ | ETA: 0:00:02 Calculating translation factors on level 2... 45%|██▊ | ETA: 0:00:02 Calculating translation factors on level 2... 48%|██▉ | ETA: 0:00:02 Calculating translation factors on level 2... 51%|███▏ | ETA: 0:00:02 Calculating translation factors on level 2... 54%|███▎ | ETA: 0:00:02 Calculating translation factors on level 2... 58%|███▌ | ETA: 0:00:02 Calculating translation factors on level 2... 61%|███▋ | ETA: 0:00:01 Calculating translation factors on level 2... 64%|███▉ | ETA: 0:00:01 Calculating translation factors on level 2... 67%|████ | ETA: 0:00:01 Calculating translation factors on level 2... 71%|████▎ | ETA: 0:00:01 Calculating translation factors on level 2... 73%|████▍ | ETA: 0:00:01 Calculating translation factors on level 2... 77%|████▋ | ETA: 0:00:01 Calculating translation factors on level 2... 80%|████▊ | ETA: 0:00:01 Calculating translation factors on level 2... 83%|█████ | ETA: 0:00:01 Calculating translation factors on level 2... 85%|█████▏| ETA: 0:00:01 Calculating translation factors on level 2... 88%|█████▎| ETA: 0:00:00 Calculating translation factors on level 2... 91%|█████▌| ETA: 0:00:00 Calculating translation factors on level 2... 94%|█████▋| ETA: 0:00:00 Calculating translation factors on level 2... 97%|█████▉| ETA: 0:00:00 Calculating translation factors on level 2... 100%|██████| Time: 0:00:03 Calculating translation factors on level 3... 9%|▋ | ETA: 0:00:01 Calculating translation factors on level 3... 20%|█▎ | ETA: 0:00:01 Calculating translation factors on level 3... 30%|█▊ | ETA: 0:00:01 Calculating translation factors on level 3... 41%|██▍ | ETA: 0:00:01 Calculating translation factors on level 3... 51%|███▏ | ETA: 0:00:01 Calculating translation factors on level 3... 62%|███▊ | ETA: 0:00:00 Calculating translation factors on level 3... 72%|████▎ | ETA: 0:00:00 Calculating translation factors on level 3... 81%|████▉ | ETA: 0:00:00 Calculating translation factors on level 3... 91%|█████▌| ETA: 0:00:00 Calculating translation factors on level 3... 100%|██████| Time: 0:00:01 Calculating translation factors... 50%|████████▌ | ETA: 0:00:05 Calculating translation factors on level 4... 29%|█▊ | ETA: 0:00:00 Calculating translation factors on level 4... 57%|███▍ | ETA: 0:00:00 Calculating translation factors on level 4... 84%|█████ | ETA: 0:00:00 Calculating translation factors on level 4... 100%|██████| Time: 0:00:00 Calculating translation factors... 75%|████████████▊ | ETA: 0:00:02 Calculating translation factors on level 5... 47%|██▊ | ETA: 0:00:00 Calculating translation factors on level 5... 100%|██████| Time: 0:00:00 Calculating translation factors... 100%|█████████████████| Time: 0:00:05 八叉树构造完毕 [ Info: 基函数按八叉树重新排序中... 计算矩阵近场元CSC格式稀疏矩阵中... Znear (PWC)... 2%|▋ | ETA: 0:05:07 Znear (PWC)... 91%|█████████████████████████████████▉ | ETA: 0:00:01 Znear (PWC)... 100%|█████████████████████████████████████| Time: 0:00:05 Aggregating on PWC (EFIE)... 2%|▍ | ETA: 0:00:27 Aggregating on PWC (EFIE)... 100%|███████████████████████| Time: 0:00:00 Pₗ 3%|█▌ | ETA: 0:00:05 Pₗ 6%|███ | ETA: 0:00:05 Pₗ 9%|████▋ | ETA: 0:00:05 Pₗ 12%|██████▏ | ETA: 0:00:05 Pₗ 16%|███████▋ | ETA: 0:00:05 Pₗ 18%|████████▊ | ETA: 0:00:04 Pₗ 20%|██████████ | ETA: 0:00:04 Pₗ 23%|███████████▏ | ETA: 0:00:04 Pₗ 25%|████████████▎ | ETA: 0:00:04 Pₗ 28%|█████████████▊ | ETA: 0:00:04 Pₗ 31%|███████████████▎ | ETA: 0:00:04 Pₗ 34%|████████████████▌ | ETA: 0:00:04 Pₗ 35%|█████████████████▎ | ETA: 0:00:04 Pₗ 37%|██████████████████ | ETA: 0:00:04 Pₗ 40%|███████████████████▌ | ETA: 0:00:03 Pₗ 42%|████████████████████▋ | ETA: 0:00:03 Pₗ 45%|█████████████████████▉ | ETA: 0:00:03 Pₗ 47%|███████████████████████ | ETA: 0:00:03 Pₗ 49%|████████████████████████▏ | ETA: 0:00:03 Pₗ 52%|█████████████████████████▎ | ETA: 0:00:03 Pₗ 55%|██████████████████████████▊ | ETA: 0:00:03 Pₗ 58%|████████████████████████████▍ | ETA: 0:00:02 Pₗ 61%|█████████████████████████████▉ | ETA: 0:00:02 Pₗ 64%|███████████████████████████████▍ | ETA: 0:00:02 Pₗ 66%|████████████████████████████████▌ | ETA: 0:00:02 Pₗ 69%|█████████████████████████████████▊ | ETA: 0:00:02 Pₗ 71%|██████████████████████████████████▉ | ETA: 0:00:02 Pₗ 73%|████████████████████████████████████ | ETA: 0:00:02 Pₗ 77%|█████████████████████████████████████▌ | ETA: 0:00:01 Pₗ 80%|███████████████████████████████████████ | ETA: 0:00:01 Pₗ 82%|████████████████████████████████████████▎ | ETA: 0:00:01 Pₗ 84%|█████████████████████████████████████████▍ | ETA: 0:00:01 Pₗ 87%|██████████████████████████████████████████▌ | ETA: 0:00:01 Pₗ 89%|███████████████████████████████████████████▋ | ETA: 0:00:01 Pₗ 92%|█████████████████████████████████████████████▏ | ETA: 0:00:00 Pₗ 95%|██████████████████████████████████████████████▊ | ETA: 0:00:00 Pₗ 98%|████████████████████████████████████████████████▎| ETA: 0:00:00 Pₗ 100%|█████████████████████████████████████████████████| Time: 0:00:05 PWC, SWG: Error During Test at /home/pkgeval/.julia/packages/MoM_Kernels/1VYtG/test/runtests.jl:37 Got exception outside of a @test SystemError: opening file "results/2025-02-25/19.22 2.0GHz/InputArgs.txt": No such file or directory Stacktrace: [1] systemerror(p::String, errno::Int32; extrainfo::Nothing) @ Base ./error.jl:176 [2] systemerror @ ./error.jl:175 [inlined] [3] open(fname::String; lock::Bool, read::Bool, write::Nothing, create::Nothing, truncate::Nothing, append::Bool) @ Base ./iostream.jl:293 [4] open @ ./iostream.jl:275 [inlined] [5] open(fname::String, mode::String; lock::Bool) @ Base ./iostream.jl:356 [6] open(fname::String, mode::String) @ Base ./iostream.jl:355 [7] open(::MoM_Kernels.var"#358#367", ::String, ::Vararg{String}; kwargs::@Kwargs{}) @ Base ./io.jl:394 [8] open @ ./io.jl:393 [inlined] [9] sparseApproximateInversePl(Znear::SparseArrays.SparseMatrixCSC{ComplexF32, Int64}, cubes::Vector{MoM_Kernels.CubeInfo{Int64, Float32}}) @ MoM_Kernels ~/.julia/packages/MoM_Kernels/1VYtG/src/MLFMA/Precondition/SAI.jl:127 [10] sparseApproximateInversePl(Znear::SparseArrays.SparseMatrixCSC{ComplexF32, Int64}, level::MoM_Kernels.LevelInfo{Int64, Float32, MoM_Kernels.LagrangeInterpInfo{Int64, Float32}}) @ MoM_Kernels ~/.julia/packages/MoM_Kernels/1VYtG/src/MLFMA/Precondition/SAI.jl:241 [11] test_opt_solving(geosInfo::Vector{TetrahedraInfo{Int64, Float32, ComplexF32}}, bfsInfo::Vector{PWC{Int64, Float32}}; source::Nothing) @ Main ~/.julia/packages/MoM_Kernels/1VYtG/test/Matrix and Solving.jl:38 [12] test_opt_solving(geosInfo::Vector{TetrahedraInfo{Int64, Float32, ComplexF32}}, bfsInfo::Vector{PWC{Int64, Float32}}) @ Main ~/.julia/packages/MoM_Kernels/1VYtG/test/Matrix and Solving.jl:20 [13] macro expansion @ ~/.julia/packages/MoM_Kernels/1VYtG/test/runtests.jl:46 [inlined] [14] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1669 [inlined] [15] macro expansion @ ~/.julia/packages/MoM_Kernels/1VYtG/test/runtests.jl:37 [inlined] [16] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [17] macro expansion @ ~/.julia/packages/MoM_Kernels/1VYtG/test/runtests.jl:33 [inlined] [18] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [19] top-level scope @ ~/.julia/packages/MoM_Kernels/1VYtG/test/runtests.jl:12 [20] include(fname::String) @ Base.MainInclude ./client.jl:494 [21] top-level scope @ none:6 [22] eval @ ./boot.jl:385 [inlined] [23] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [24] _start() @ Base ./client.jl:557 网格文件处理完毕,共得到 453 个节点、0 个三角形、0 个四面体、189 个六面体 Constructing VIE basis function based on hexahedras... Done! 共得到 189 个六面体, 567 个 PWC 基函数。 [ Info: MoMs start with 1 threads. 构造八叉树中... 预计算采样点、插值矩阵、相移因子、转移因子等信息中... Calculating translation factors on level 2... 10%|▋ | ETA: 0:00:01 Calculating translation factors on level 2... 20%|█▏ | ETA: 0:00:01 Calculating translation factors on level 2... 29%|█▊ | ETA: 0:00:01 Calculating translation factors on level 2... 39%|██▍ | ETA: 0:00:01 Calculating translation factors on level 2... 49%|██▉ | ETA: 0:00:01 Calculating translation factors on level 2... 58%|███▌ | ETA: 0:00:00 Calculating translation factors on level 2... 68%|████▏ | ETA: 0:00:00 Calculating translation factors on level 2... 78%|████▋ | ETA: 0:00:00 Calculating translation factors on level 2... 87%|█████▎| ETA: 0:00:00 Calculating translation factors on level 2... 96%|█████▊| ETA: 0:00:00 Calculating translation factors on level 2... 100%|██████| Time: 0:00:01 Calculating translation factors on level 3... 27%|█▋ | ETA: 0:00:00 Calculating translation factors on level 3... 53%|███▎ | ETA: 0:00:00 Calculating translation factors on level 3... 80%|████▊ | ETA: 0:00:00 Calculating translation factors on level 3... 100%|██████| Time: 0:00:00 Calculating translation factors... 67%|███████████▍ | ETA: 0:00:01 Calculating translation factors on level 4... 51%|███ | ETA: 0:00:00 Calculating translation factors on level 4... 100%|██████| Time: 0:00:00 Calculating translation factors... 100%|█████████████████| Time: 0:00:01 八叉树构造完毕 [ Info: 基函数按八叉树重新排序中... 计算矩阵近场元CSC格式稀疏矩阵中... Znear (PWC)... 3%|█▏ | ETA: 0:02:37 Znear (PWC)... 100%|█████████████████████████████████████| Time: 0:00:05 Aggregating on PWC (EFIE)... 3%|▊ | ETA: 0:00:16 Aggregating on PWC (EFIE)... 100%|███████████████████████| Time: 0:00:00 ┌ Info: └ Solving with gmres, initial resnorm: 124.417534. === gmres === rest iter resnorm 1 1 1.98e+00 1 2 4.70e-02 ⠀⠀⠀⠀⠀⠀⠀⠀⠀Relative ResNorm - Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 10⁰ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠉⠑⠢⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠈⠉⠒⠢⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠒⠤⢄⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠒⠢⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠤⢄⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠒⠤⣀⡀⠀⠀⠀⠀⠀│ 10⁻³⸱⁴²³⁰³ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠢⠤⣀│ └────────────────────────────────────────┘ ⠀1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌ Info: └ Solving with gmres!, initial resnorm: 124.417534. === gmres === rest iter resnorm 1 1 1.98e+00 1 2 4.70e-02 ⠀⠀⠀⠀⠀⠀⠀⠀⠀Relative ResNorm - Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 10⁰ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠉⠑⠢⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠈⠉⠒⠢⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠒⠤⢄⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠒⠢⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠤⢄⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠒⠤⣀⡀⠀⠀⠀⠀⠀│ 10⁻³⸱⁴²³⁰³ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠢⠤⣀│ └────────────────────────────────────────┘ ⠀1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Calculating RCS (1441 × 2)) 0%| | ETA: 0:12:00 Calculating RCS (1441 × 2)) 30%|███████▎ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 60%|██████████████▍ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 89%|█████████████████████▌ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 100%|████████████████████████| Time: 0:00:00 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(m²)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 0.723166 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜⠉⠙⢦⠀⠀│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠁⠀⠀⠀⠳⣄│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡇⠀⠀⠀⠀⠀⠈│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠀⠀⠀⠀⠀⠀⠀⠀│ m² │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠁⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⢠⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⠀⠀⠀⢀⣀⣀⣀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⣀⣠⠞⠁⣀⣠⠤⠒⠚⠉⠉⠀⠀⠀│ │⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⣀⡴⣋⣡⠤⠖⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0.00059262 │⠤⠤⣄⣀⣀⣉⣉⣉⣉⣉⣙⣒⣒⣒⣒⣒⣲⠶⠶⠖⡗⠛⠛⠋⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(dB)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ -1.40762 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠚⠉⠉⠉⠉⠉⠓│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠞⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⢀⣰⠋⠀⢀⣀⡤⠤⠖⠒⠒⠒⠒│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⢀⡔⠋⢉⡤⠖⠋⠉⠀⠀⠀⠀⠀⠀⠀⠀│ │⠤⠤⠤⠤⠤⢤⣀⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⣀⡴⣋⡴⠚⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠉⠉⠓⠒⠦⠤⢤⣀⣀⣀⣀⣀⣷⠯⠗⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ dB │⢤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠖⠋⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠋⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠳⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠹⡄⠀⠀⠀⠀⠀⠀⠀⡼⠁⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠘⢦⡀⠀⠀⠀⠀⣸⠁⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠉⠳⡀⠀⢀⡇⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢱⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -32.2722 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⡏⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Calculating Z (PWC)(567 × 567)... 1%|▎ | ETA: 0:00:35 Calculating Z (PWC)(567 × 567)... 30%|█████▍ | ETA: 0:00:01 Calculating Z (PWC)(567 × 567)... 61%|███████████ | ETA: 0:00:00 Calculating Z (PWC)(567 × 567)... 100%|██████████████████| Time: 0:00:00 Solving matrix function with LUD. Calculating RCS (1441 × 2)) 29%|███████ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 58%|█████████████▉ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 86%|████████████████████▋ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 100%|████████████████████████| Time: 0:00:00 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(m²)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 0.00353806 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡜⡽⣯⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⠀⡇⣿⠀⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜⠀⢸⠁⡇⡇⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠁⠀⢸⠀⡇⡇⠀⠈⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠇⠀⠀⡞⠀⡇⢱⠀⠀⠸⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⠀⡇⠀⡇⢸⠀⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠁⠀⠀⠀⡇⠀⡇⠸⡀⠀⠀⠈⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ m² │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠇⠀⠀⠀⢸⠀⠀⡇⠀⡇⠀⠀⠀⠸⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⠀⠀⢸⠀⠀⡇⠀⡇⠀⠀⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡸⠁⠀⠀⠀⠀⡜⠀⠀⡇⠀⢳⠀⠀⠀⠀⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⠃⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠘⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⠃⠀⠀⠀⠀⠀⢀⠇⠀⠀⡇⠀⠸⡄⠀⠀⠀⠀⠀⠘⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⣰⠃⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⡇⠀⠀⡇⠀⠀⠀⠀⠀⠀⠘⢆⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⠀⡇⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠈⠳⣄⠀⠀⠀⠀⠀⠀│ 4.27f-18 │⣀⣀⣀⣠⠴⠾⣅⣀⣀⣀⣠⠴⠒⠲⣄⣰⠃⠀⠀⠀⡇⠀⠀⠘⣆⣠⠖⠒⠦⣄⣀⣀⣀⣨⠷⠦⣄⣀⣀⣀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(dB)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ -24.5123 │⠀⠀⠀⠀⠀⠀⠀⣀⣀⡤⠤⠖⠒⠚⠉⠉⣩⠟⠋⠉⡏⠙⠻⣍⠉⠉⠓⠒⠲⠤⢤⣀⣀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 0.0° │⣀⣀⣀⣠⣴⣞⣉⡁⠀⠀⢀⡴⠒⠲⣄⢰⠃⠀⠀⠀⡇⠀⠀⠘⡆⣠⠖⠒⠦⡀⠀⠀⢈⣉⣳⣦⣄⣀⣀⣀│ ϕ = 90.0° │⢀⡴⠋⠀⠀⠀⠀⠉⢧⢠⠏⠀⠀⠀⢸⡎⠀⠀⠀⠀⡇⠀⠀⠀⢹⡇⠀⠀⠀⠹⡄⡼⠉⠀⠀⠀⠀⠙⢦⡀│ │⡼⠀⠀⠀⠀⠀⠀⠀⠘⡾⠀⠀⠀⠀⠈⡇⠀⠀⠀⠀⡇⠀⠀⠀⢸⠁⠀⠀⠀⠀⢷⠃⠀⠀⠀⠀⠀⠀⠀⢣│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⢸│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⢸│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⡇⠀⠀⠀⠈⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⢸│ dB │⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸│ -173.696 │⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Constructing VIE basis function based on hexahedras... Done! 共得到 189 个六面体, 790 个 RBF 基函数。 [ Info: MoMs start with 1 threads. 构造八叉树中... 预计算采样点、插值矩阵、相移因子、转移因子等信息中... Calculating translation factors on level 2... 7%|▍ | ETA: 0:00:01 Calculating translation factors on level 2... 16%|█ | ETA: 0:00:01 Calculating translation factors on level 2... 26%|█▌ | ETA: 0:00:01 Calculating translation factors on level 2... 35%|██▏ | ETA: 0:00:01 Calculating translation factors on level 2... 45%|██▊ | ETA: 0:00:01 Calculating translation factors on level 2... 54%|███▎ | ETA: 0:00:01 Calculating translation factors on level 2... 64%|███▉ | ETA: 0:00:00 Calculating translation factors on level 2... 74%|████▍ | ETA: 0:00:00 Calculating translation factors on level 2... 84%|█████ | ETA: 0:00:00 Calculating translation factors on level 2... 95%|█████▋| ETA: 0:00:00 Calculating translation factors on level 2... 100%|██████| Time: 0:00:01 Calculating translation factors on level 3... 26%|█▌ | ETA: 0:00:00 Calculating translation factors on level 3... 53%|███▏ | ETA: 0:00:00 Calculating translation factors on level 3... 79%|████▊ | ETA: 0:00:00 Calculating translation factors on level 3... 100%|██████| Time: 0:00:00 Calculating translation factors... 67%|███████████▍ | ETA: 0:00:01 Calculating translation factors on level 4... 54%|███▎ | ETA: 0:00:00 Calculating translation factors on level 4... 100%|██████| Time: 0:00:00 Calculating translation factors... 100%|█████████████████| Time: 0:00:01 八叉树构造完毕 [ Info: 基函数按八叉树重新排序中... 计算矩阵近场元CSC格式稀疏矩阵中... Znear (RBF)... 2%|▋ | ETA: 0:11:39 Znear (RBF)... 23%|████████▋ | ETA: 0:00:40 Znear (RBF)... 44%|████████████████▎ | ETA: 0:00:17 Znear (RBF)... 59%|██████████████████████ | ETA: 0:00:10 Znear (RBF)... 77%|████████████████████████████▋ | ETA: 0:00:05 Znear (RBF)... 95%|███████████████████████████████████ | ETA: 0:00:01 Znear (RBF)... 100%|█████████████████████████████████████| Time: 0:00:17 Aggregating on RBF (EFIE)... 2%|▍ | ETA: 0:00:49 Aggregating on RBF (EFIE)... 100%|███████████████████████| Time: 0:00:00 ok! Pₗ 80%|███████████████████████████████████████▍ | ETA: 0:00:00 Pₗ 100%|█████████████████████████████████████████████████| Time: 0:00:00 ┌ Info: └ Solving with gmres, initial resnorm: 90.703606. === gmres === rest iter resnorm 1 1 1.51e+00 1 2 4.53e-02 ⠀⠀⠀⠀⠀⠀⠀⠀⠀Relative ResNorm - Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 10⁰ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠉⠒⠢⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠈⠉⠒⠢⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠤⢄⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠒⠤⢄⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠒⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠢⠤⣀⡀⠀⠀⠀⠀⠀│ 10⁻³⸱³⁰¹³⁴ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠢⠤⣀│ └────────────────────────────────────────┘ ⠀1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌ Info: └ Solving with gmres!, initial resnorm: 90.703606. === gmres === rest iter resnorm 1 1 1.51e+00 1 2 4.53e-02 ⠀⠀⠀⠀⠀⠀⠀⠀⠀Relative ResNorm - Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 10⁰ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠉⠒⠢⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠈⠉⠒⠢⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠤⢄⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠒⠤⢄⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠒⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠢⠤⣀⡀⠀⠀⠀⠀⠀│ 10⁻³⸱³⁰¹³⁴ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠢⠤⣀│ └────────────────────────────────────────┘ ⠀1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀2⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Calculating RCS (1441 × 2)) 28%|██████▊ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 56%|█████████████▍ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 83%|███████████████████▉ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 100%|████████████████████████| Time: 0:00:00 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(m²)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 1.23241 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡴⠋⠉⠲⡄⠀│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⠘⠢│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠁⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡇⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀│ m² │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠇⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⣸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⣠⠃⠀⢀⣀⡤⠴⠒⠒⠋⠉⠉│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⣀⡴⢚⣉⡥⠖⠚⠉⠀⠀⠀⠀⠀⠀⠀⠀│ 0.00116511 │⠭⠭⢍⣉⣉⣉⣉⣓⣒⣒⣒⣒⣲⣤⣤⣤⣤⣤⡤⠤⡧⠶⠶⠚⠓⠋⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(dB)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 0.907544 │⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⡗⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⣲⠞⠛⠛⠛⠛⠛⠛│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⠁⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⢀⡞⠀⠀⠀⢀⣀⣠⠤⠤⠤⠤│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢀⡤⠖⠋⣀⡤⠖⠋⠉⠀⠀⠀⠀⠀⠀│ │⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⡰⠋⣀⡴⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠉⠉⠉⠉⠙⠒⠲⠤⢄⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢀⣠⢞⡥⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ dB │⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠓⠲⠤⢤⣀⣀⣀⣀⣷⠯⠖⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠈⠑⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠋⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠳⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠞⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠘⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠏⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠉⠓⠲⡄⠀⠀⠀⢠⠞⠁⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⡄⠀⢠⠏⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢳⠀⡼⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -29.3363 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣦⠇⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Calculating Z (RBF, EFIE) (790 × 790)... 1%|▏ | ETA: 0:00:34 Calculating Z (RBF, EFIE) (790 × 790)... 3%|▍ | ETA: 0:00:15 Calculating Z (RBF, EFIE) (790 × 790)... 6%|▋ | ETA: 0:00:10 Calculating Z (RBF, EFIE) (790 × 790)... 8%|▉ | ETA: 0:00:08 Calculating Z (RBF, EFIE) (790 × 790)... 11%|█▎ | ETA: 0:00:07 Calculating Z (RBF, EFIE) (790 × 790)... 14%|█▋ | ETA: 0:00:06 Calculating Z (RBF, EFIE) (790 × 790)... 17%|█▉ | ETA: 0:00:05 Calculating Z (RBF, EFIE) (790 × 790)... 20%|██▏ | ETA: 0:00:05 Calculating Z (RBF, EFIE) (790 × 790)... 22%|██▌ | ETA: 0:00:04 Calculating Z (RBF, EFIE) (790 × 790)... 25%|██▊ | ETA: 0:00:04 Calculating Z (RBF, EFIE) (790 × 790)... 29%|███▏ | ETA: 0:00:04 Calculating Z (RBF, EFIE) (790 × 790)... 32%|███▌ | ETA: 0:00:03 Calculating Z (RBF, EFIE) (790 × 790)... 35%|███▉ | ETA: 0:00:03 Calculating Z (RBF, EFIE) (790 × 790)... 38%|████▎ | ETA: 0:00:03 Calculating Z (RBF, EFIE) (790 × 790)... 41%|████▌ | ETA: 0:00:03 Calculating Z (RBF, EFIE) (790 × 790)... 44%|████▉ | ETA: 0:00:03 Calculating Z (RBF, EFIE) (790 × 790)... 48%|█████▎ | ETA: 0:00:02 Calculating Z (RBF, EFIE) (790 × 790)... 51%|█████▋ | ETA: 0:00:02 Calculating Z (RBF, EFIE) (790 × 790)... 56%|██████▏ | ETA: 0:00:02 Calculating Z (RBF, EFIE) (790 × 790)... 60%|██████▋ | ETA: 0:00:02 Calculating Z (RBF, EFIE) (790 × 790)... 65%|███████▏ | ETA: 0:00:01 Calculating Z (RBF, EFIE) (790 × 790)... 69%|███████▋ | ETA: 0:00:01 Calculating Z (RBF, EFIE) (790 × 790)... 76%|████████▍ | ETA: 0:00:01 Calculating Z (RBF, EFIE) (790 × 790)... 82%|█████████ | ETA: 0:00:01 Calculating Z (RBF, EFIE) (790 × 790)... 88%|█████████▋ | ETA: 0:00:00 Calculating Z (RBF, EFIE) (790 × 790)... 95%|██████████▌| ETA: 0:00:00 Calculating Z (RBF, EFIE) (790 × 790)... 100%|███████████| Time: 0:00:03 Solving matrix function with LUD. Calculating RCS (1441 × 2)) 27%|██████▌ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 55%|█████████████▏ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 81%|███████████████████▌ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 100%|████████████████████████| Time: 0:00:00 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(m²)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 0.00406231 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡜⡽⣯⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⠀⡇⣿⠀⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜⠀⢸⠁⡇⡇⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠁⠀⢸⠀⡇⡇⠀⠈⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠇⠀⠀⡞⠀⡇⢱⠀⠀⠸⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⠀⡇⠀⡇⢸⠀⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠁⠀⠀⠀⡇⠀⡇⠸⡀⠀⠀⠈⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ m² │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠇⠀⠀⠀⢸⠀⠀⡇⠀⡇⠀⠀⠀⠸⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⠀⠀⢸⠀⠀⡇⠀⡇⠀⠀⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠁⠀⠀⠀⠀⡜⠀⠀⡇⠀⢳⠀⠀⠀⠀⠈⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠘⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠇⠀⠀⠀⠀⠀⢀⠇⠀⠀⡇⠀⠸⡄⠀⠀⠀⠀⠀⠘⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⣰⠃⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⡇⠀⠀⡇⠀⠀⠀⠀⠀⠀⠘⣆⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⠀⡇⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠈⠳⣄⠀⠀⠀⠀⠀⠀│ 7.52262f-19 │⣀⣀⣀⣠⠴⠾⣅⣀⣀⣀⣠⠴⠒⠲⣄⣰⠃⠀⠀⠀⡇⠀⠀⠘⣆⣠⠖⠒⠦⣄⣀⣀⣀⣨⠷⠦⣄⣀⣀⣀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(dB)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ -23.9123 │⠀⠀⠀⠀⠀⠀⠀⣀⣠⠤⠴⠒⠒⠚⠉⠉⣩⠟⠋⠉⡏⠉⠻⣍⠉⠉⠓⠒⠒⠦⠤⣄⣀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 0.0° │⣀⣀⣠⡤⠶⠾⢭⣁⠀⠀⣠⠖⠒⠒⣆⢰⠃⠀⠀⠀⡇⠀⠀⠘⡆⣠⠒⠒⠲⣄⠀⠀⣈⡭⠷⠶⢤⣄⣀⣀│ ϕ = 90.0° │⢀⡞⠉⠀⠀⠀⠀⠈⢳⢰⠃⠀⠀⠀⢸⡏⠀⠀⠀⠀⡇⠀⠀⠀⢹⡇⠀⠀⠀⠘⡆⡞⠁⠀⠀⠀⠀⠉⢳⡀│ │⡞⠀⠀⠀⠀⠀⠀⠀⠈⡞⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡇⠀⠀⠀⢸⠁⠀⠀⠀⠀⢳⠃⠀⠀⠀⠀⠀⠀⠀⢳│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⢸│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⢸│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⢸│ dB │⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸│ -181.236 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 网格文件处理完毕,共得到 493 个节点、0 个三角形、741 个四面体、91 个六面体 Constructing VIE basis function based on tetrahedras... Done! 共得到 741 个四面体, 2223 个 PWC 基函数。 Constructing VIE basis function based on hexahedras... Done! 共得到 91 个六面体, 273 个 PWC 基函数。 [ Info: MoMs start with 1 threads. 构造八叉树中... 预计算采样点、插值矩阵、相移因子、转移因子等信息中... Calculating translation factors on level 2... 8%|▌ | ETA: 0:00:02 Calculating translation factors on level 2... 16%|█ | ETA: 0:00:01 Calculating translation factors on level 2... 24%|█▌ | ETA: 0:00:01 Calculating translation factors on level 2... 32%|█▉ | ETA: 0:00:01 Calculating translation factors on level 2... 41%|██▍ | ETA: 0:00:01 Calculating translation factors on level 2... 49%|███ | ETA: 0:00:01 Calculating translation factors on level 2... 57%|███▍ | ETA: 0:00:01 Calculating translation factors on level 2... 65%|███▉ | ETA: 0:00:00 Calculating translation factors on level 2... 73%|████▍ | ETA: 0:00:00 Calculating translation factors on level 2... 81%|████▉ | ETA: 0:00:00 Calculating translation factors on level 2... 90%|█████▍| ETA: 0:00:00 Calculating translation factors on level 2... 98%|█████▉| ETA: 0:00:00 Calculating translation factors on level 2... 100%|██████| Time: 0:00:01 Calculating translation factors on level 3... 26%|█▌ | ETA: 0:00:00 Calculating translation factors on level 3... 51%|███▏ | ETA: 0:00:00 Calculating translation factors on level 3... 77%|████▋ | ETA: 0:00:00 Calculating translation factors on level 3... 100%|██████| Time: 0:00:00 Calculating translation factors... 67%|███████████▍ | ETA: 0:00:01 Calculating translation factors on level 4... 61%|███▋ | ETA: 0:00:00 Calculating translation factors on level 4... 100%|██████| Time: 0:00:00 Calculating translation factors... 100%|█████████████████| Time: 0:00:01 八叉树构造完毕 [ Info: 基函数按八叉树重新排序中... 计算矩阵近场元CSC格式稀疏矩阵中... Znear (PWC + PWC)... 2%|▋ | ETA: 0:03:42 Znear (PWC + PWC)... 100%|███████████████████████████████| Time: 0:00:05 Aggregating on PWC (EFIE)... 2%|▌ | ETA: 0:00:21 Aggregating on PWC (EFIE)... 100%|███████████████████████| Time: 0:00:00 Aggregating on PWC (EFIE)... 2%|▌ | ETA: 0:00:22 Aggregating on PWC (EFIE)... 100%|███████████████████████| Time: 0:00:00 Pₗ 4%|██ | ETA: 0:00:03 Pₗ 7%|███▌ | ETA: 0:00:04 Pₗ 9%|████▌ | ETA: 0:00:04 Pₗ 11%|█████▌ | ETA: 0:00:04 Pₗ 13%|██████▋ | ETA: 0:00:04 Pₗ 16%|████████▏ | ETA: 0:00:04 Pₗ 25%|████████████▏ | ETA: 0:00:04 Pₗ 28%|█████████████▋ | ETA: 0:00:04 Pₗ 30%|██████████████▋ | ETA: 0:00:03 Pₗ 32%|███████████████▋ | ETA: 0:00:03 Pₗ 51%|████████████████████████▊ | ETA: 0:00:02 Pₗ 66%|████████████████████████████████▍ | ETA: 0:00:01 Pₗ 70%|██████████████████████████████████▍ | ETA: 0:00:01 Pₗ 73%|███████████████████████████████████▉ | ETA: 0:00:01 Pₗ 76%|█████████████████████████████████████▍ | ETA: 0:00:01 Pₗ 78%|██████████████████████████████████████▍ | ETA: 0:00:01 Pₗ 80%|███████████████████████████████████████▍ | ETA: 0:00:01 Pₗ 84%|████████████████████████████████████████▉ | ETA: 0:00:01 Pₗ 100%|█████████████████████████████████████████████████| Time: 0:00:03 ┌ Info: └ Solving with gmres, initial resnorm: 739.5561. === gmres === rest iter resnorm 1 1 1.31e+01 1 2 8.17e-01 1 3 6.59e-02 ⠀⠀⠀⠀⠀⠀⠀⠀⠀Relative ResNorm - Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 10⁰ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠢⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠈⠑⠒⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠉⠒⠢⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠢⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠒⠤⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠒⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠒⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠒⠤⣀⡀⠀⠀⠀⠀│ 10⁻⁴⸱⁰⁵⁰²⁷ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠒⠤⣀│ └────────────────────────────────────────┘ ⠀1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌ Info: └ Solving with gmres!, initial resnorm: 739.5561. === gmres === rest iter resnorm 1 1 1.31e+01 1 2 8.17e-01 1 3 6.59e-02 ⠀⠀⠀⠀⠀⠀⠀⠀⠀Relative ResNorm - Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 10⁰ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠢⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠈⠑⠒⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠉⠒⠢⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠢⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠒⠤⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠒⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠒⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠒⠤⣀⡀⠀⠀⠀⠀│ 10⁻⁴⸱⁰⁵⁰²⁷ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠒⠤⣀│ └────────────────────────────────────────┘ ⠀1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Calculating RCS (1441 × 2)) 0%| | ETA: 0:20:05 Calculating RCS (1441 × 2)) 11%|██▋ | ETA: 0:00:08 Calculating RCS (1441 × 2)) 22%|█████▏ | ETA: 0:00:04 Calculating RCS (1441 × 2)) 33%|███████▉ | ETA: 0:00:02 Calculating RCS (1441 × 2)) 44%|██████████▋ | ETA: 0:00:02 Calculating RCS (1441 × 2)) 55%|█████████████▏ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 65%|███████████████▊ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 76%|██████████████████▎ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 87%|████████████████████▉ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 98%|███████████████████████▌| ETA: 0:00:00 Calculating RCS (1441 × 2)) 100%|████████████████████████| Time: 0:00:01 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(m²)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 4.47339 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠎⠉⠙⢦⠀⠀│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡏⠀⠀⠀⠈⠳⣄│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⠀⠀⠀⠘│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠇⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠇⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠀⠀⠀⠀⠀⠀⠀⠀⠀│ m² │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⢀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⢠⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⢀⡎⠀⠀⠀⠀⠀⠀⠀⢀⣀⣀⣀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⢠⠞⠀⠀⠀⢀⣠⠴⠒⠋⠉⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⣰⠋⢀⣠⠴⠚⠉⠀⠀⠀⠀⠀⠀⠀⠀│ │⠤⠤⠤⠤⠤⠤⠤⣄⣀⣀⣀⣀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢀⣀⣤⣾⠵⠚⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0.00483949 │⠲⠤⠤⠤⣄⣀⣀⣀⣀⣀⣀⣈⣉⣉⣉⣩⠵⠶⠖⠚⡏⠉⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(dB)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 6.50637 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠖⠋⠉⠉⠉⠉⠙⠒│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⢀⡼⠁⠀⠀⠀⠀⠀⣀⣀⣀⣀⣀│ │⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⡗⠒⠒⠒⠒⢒⡶⠛⠒⣒⡲⠶⠒⠛⠛⠓⠒⠒⠒⠒│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⣠⢏⣠⠴⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠉⠉⠉⠉⠙⠒⠒⠒⠦⠤⢄⣀⡀⠀⠀⠀⠀⠀⠀⠀⡇⣀⣤⣾⠗⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠉⠓⠒⠦⠤⠤⡤⡟⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ dB │⠳⢤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠙⢦⠀⠀⠀⠀⠀⠀⠀⢀⡞⠁⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠈⢳⡀⠀⠀⠀⠀⢀⡏⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠹⡄⠀⠀⠀⡜⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢳⡀⠀⢰⠃⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⠀⡜⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -23.152 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⣤⠇⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Calculating Z (PWC)(2496 × 2496) 0%| | ETA: 0:02:40 Calculating Z (PWC)(2496 × 2496) 4%|▊ | ETA: 0:00:14 Calculating Z (PWC)(2496 × 2496) 7%|█▍ | ETA: 0:00:08 Calculating Z (PWC)(2496 × 2496) 11%|██▏ | ETA: 0:00:06 Calculating Z (PWC)(2496 × 2496) 16%|███ | ETA: 0:00:05 Calculating Z (PWC)(2496 × 2496) 20%|███▉ | ETA: 0:00:04 Calculating Z (PWC)(2496 × 2496) 25%|████▊ | ETA: 0:00:03 Calculating Z (PWC)(2496 × 2496) 30%|█████▊ | ETA: 0:00:03 Calculating Z (PWC)(2496 × 2496) 35%|██████▊ | ETA: 0:00:02 Calculating Z (PWC)(2496 × 2496) 41%|███████▊ | ETA: 0:00:02 Calculating Z (PWC)(2496 × 2496) 47%|█████████ | ETA: 0:00:02 Calculating Z (PWC)(2496 × 2496) 55%|██████████▍ | ETA: 0:00:01 Calculating Z (PWC)(2496 × 2496) 64%|████████████▏ | ETA: 0:00:01 Calculating Z (PWC)(2496 × 2496) 75%|██████████████▎ | ETA: 0:00:01 Calculating Z (PWC)(2496 × 2496) 94%|█████████████████▉ | ETA: 0:00:00 Calculating Z (PWC)(2496 × 2496) 100%|███████████████████| Time: 0:00:01 Calculating Z (PWC)(2496 × 2496)... 2%|▍ | ETA: 0:00:20 Calculating Z (PWC)(2496 × 2496)... 100%|████████████████| Time: 0:00:00 Calculating Z (PWC)(2496 × 2496)... 2%|▍ | ETA: 0:00:12 Calculating Z (PWC)(2496 × 2496)... 21%|███▍ | ETA: 0:00:01 Calculating Z (PWC)(2496 × 2496)... 37%|██████ | ETA: 0:00:01 Calculating Z (PWC)(2496 × 2496)... 55%|████████▊ | ETA: 0:00:00 Calculating Z (PWC)(2496 × 2496)... 73%|███████████▋ | ETA: 0:00:00 Calculating Z (PWC)(2496 × 2496)... 90%|██████████████▍ | ETA: 0:00:00 Calculating Z (PWC)(2496 × 2496)... 100%|████████████████| Time: 0:00:00 Solving matrix function with LUD. Calculating RCS (1441 × 2)) 10%|██▍ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 20%|████▊ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 32%|███████▋ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 43%|██████████▎ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 54%|████████████▉ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 64%|███████████████▍ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 75%|██████████████████ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 86%|████████████████████▌ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 96%|███████████████████████▏| ETA: 0:00:00 Calculating RCS (1441 × 2)) 100%|████████████████████████| Time: 0:00:00 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(m²)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 0.0150407 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡜⡟⣯⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⢠⠃⣿⡀⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⢸⠀⡇⡇⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠁⠀⡎⠀⡇⢇⠀⠈⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠇⠀⠀⡇⠀⡇⢸⠀⠀⠸⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⢰⠃⠀⡇⢸⡀⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠁⠀⠀⢸⠀⠀⡇⠀⡇⠀⠀⠈⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ m² │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠇⠀⠀⠀⡜⠀⠀⡇⠀⡇⠀⠀⠀⠸⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⠀⠀⡇⠀⠀⡇⠀⢹⠀⠀⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠁⠀⠀⠀⢠⠃⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⠃⠀⠀⠀⠀⢸⠀⠀⠀⡇⠀⠀⡇⠀⠀⠀⠀⠘⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⠃⠀⠀⠀⠀⠀⡏⠀⠀⠀⡇⠀⠀⢣⠀⠀⠀⠀⠀⠘⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⡴⠃⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⡇⠀⠀⠸⡄⠀⠀⠀⠀⠀⠘⢦⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⣀⡠⠏⠀⠀⠀⠀⡇⠀⠀⠀⠙⠤⣄⡀⠀⠀⠀⠈⠳⣄⠀⠀⠀⠀⠀⠀│ 8.04275f-9 │⣤⣤⣤⡤⠴⠾⠥⣄⣀⣀⣀⡴⠋⠁⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠙⠦⣀⣀⣀⣠⠬⠷⠦⢤⣤⣤⣤│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(dB)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ -18.2273 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣠⠤⠖⠚⠉⡽⠋⠉⡏⠻⣍⠉⠓⠲⠤⣄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⣀⡴⠚⠉⠀⠀⠀⢀⡞⠁⠀⠀⡇⠀⠈⢣⡀⠀⠀⠀⠉⠓⢦⣀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⢀⡤⠚⠁⠀⠀⠀⢀⣠⠴⠋⠀⠀⠀⠀⡇⠀⠀⠀⠙⠢⢤⣀⠀⠀⠀⠈⠓⢤⡀⠀⠀⠀⠀⠀│ │⣀⣀⣠⢤⡴⣏⡀⠀⠀⠀⠀⣰⠋⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠈⢦⠀⠀⠀⠀⣀⡽⢦⡤⠤⠤⠤│ │⠀⠀⣠⠏⠀⠀⠈⢳⡀⠀⢰⠃⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠘⡆⠀⢀⡞⠁⠀⠀⠹⣄⠀⠀│ │⠀⢰⠃⠀⠀⠀⠀⠀⢧⠀⡞⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⢹⠀⡼⠀⠀⠀⠀⠀⠘⡆⠀│ │⢀⡏⠀⠀⠀⠀⠀⠀⢸⣀⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠸⣄⡇⠀⠀⠀⠀⠀⠀⢹⡀│ dB │⢸⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⡇│ │⡞⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⢱│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⢸│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⢸│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⢸│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸│ │⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸│ -80.946 │⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 网格文件处理完毕,共得到 504 个节点、390 个三角形、1357 个四面体、0 个六面体 Constructing RWG basis function... Done! 共得到 390 个三角形, 551 个 RWG 基函数。 Constructing VIE basis function based on tetrahedras... Done! 共得到 1357 个四面体, 3201 个 SWG 基函数。 [ Info: MoMs start with 1 threads. 构造八叉树中... 预计算采样点、插值矩阵、相移因子、转移因子等信息中... Calculating translation factors on level 2... 3%|▎ | ETA: 0:00:03 Calculating translation factors on level 2... 5%|▍ | ETA: 0:00:04 Calculating translation factors on level 2... 8%|▌ | ETA: 0:00:04 Calculating translation factors on level 2... 11%|▋ | ETA: 0:00:03 Calculating translation factors on level 2... 14%|▉ | ETA: 0:00:03 Calculating translation factors on level 2... 16%|█ | ETA: 0:00:03 Calculating translation factors on level 2... 19%|█▏ | ETA: 0:00:03 Calculating translation factors on level 2... 22%|█▍ | ETA: 0:00:03 Calculating translation factors on level 2... 26%|█▌ | ETA: 0:00:03 Calculating translation factors on level 2... 29%|█▊ | ETA: 0:00:03 Calculating translation factors on level 2... 32%|█▉ | ETA: 0:00:03 Calculating translation factors on level 2... 34%|██▏ | ETA: 0:00:03 Calculating translation factors on level 2... 37%|██▎ | ETA: 0:00:02 Calculating translation factors on level 2... 40%|██▍ | ETA: 0:00:02 Calculating translation factors on level 2... 43%|██▋ | ETA: 0:00:02 Calculating translation factors on level 2... 46%|██▊ | ETA: 0:00:02 Calculating translation factors on level 2... 49%|██▉ | ETA: 0:00:02 Calculating translation factors on level 2... 52%|███▏ | ETA: 0:00:02 Calculating translation factors on level 2... 55%|███▎ | ETA: 0:00:02 Calculating translation factors on level 2... 57%|███▍ | ETA: 0:00:02 Calculating translation factors on level 2... 60%|███▋ | ETA: 0:00:02 Calculating translation factors on level 2... 63%|███▊ | ETA: 0:00:01 Calculating translation factors on level 2... 65%|███▉ | ETA: 0:00:01 Calculating translation factors on level 2... 68%|████▏ | ETA: 0:00:01 Calculating translation factors on level 2... 71%|████▎ | ETA: 0:00:01 Calculating translation factors on level 2... 73%|████▍ | ETA: 0:00:01 Calculating translation factors on level 2... 76%|████▌ | ETA: 0:00:01 Calculating translation factors on level 2... 79%|████▊ | ETA: 0:00:01 Calculating translation factors on level 2... 82%|████▉ | ETA: 0:00:01 Calculating translation factors on level 2... 85%|█████▏| ETA: 0:00:01 Calculating translation factors on level 2... 88%|█████▎| ETA: 0:00:00 Calculating translation factors on level 2... 91%|█████▍| ETA: 0:00:00 Calculating translation factors on level 2... 93%|█████▋| ETA: 0:00:00 Calculating translation factors on level 2... 96%|█████▊| ETA: 0:00:00 Calculating translation factors on level 2... 99%|█████▉| ETA: 0:00:00 Calculating translation factors on level 2... 100%|██████| Time: 0:00:03 Calculating translation factors on level 3... 8%|▌ | ETA: 0:00:01 Calculating translation factors on level 3... 19%|█▏ | ETA: 0:00:01 Calculating translation factors on level 3... 29%|█▊ | ETA: 0:00:01 Calculating translation factors on level 3... 39%|██▍ | ETA: 0:00:01 Calculating translation factors on level 3... 49%|███ | ETA: 0:00:01 Calculating translation factors on level 3... 59%|███▌ | ETA: 0:00:00 Calculating translation factors on level 3... 69%|████▏ | ETA: 0:00:00 Calculating translation factors on level 3... 79%|████▊ | ETA: 0:00:00 Calculating translation factors on level 3... 90%|█████▍| ETA: 0:00:00 Calculating translation factors on level 3... 100%|██████| Time: 0:00:01 Calculating translation factors... 50%|████████▌ | ETA: 0:00:05 Calculating translation factors on level 4... 27%|█▋ | ETA: 0:00:00 Calculating translation factors on level 4... 52%|███▏ | ETA: 0:00:00 Calculating translation factors on level 4... 78%|████▋ | ETA: 0:00:00 Calculating translation factors on level 4... 100%|██████| Time: 0:00:00 Calculating translation factors... 75%|████████████▊ | ETA: 0:00:02 Calculating translation factors on level 5... 59%|███▌ | ETA: 0:00:00 Calculating translation factors on level 5... 100%|██████| Time: 0:00:00 Calculating translation factors... 100%|█████████████████| Time: 0:00:05 八叉树构造完毕 [ Info: 基函数按八叉树重新排序中... 计算矩阵近场元CSC格式稀疏矩阵中... Znear (SWG)... 2%|▋ | ETA: 0:01:40 Znear (SWG)... 53%|███████████████████▋ | ETA: 0:00:03 Znear (SWG)... 77%|████████████████████████████▋ | ETA: 0:00:01 Znear (SWG)... 100%|█████████████████████████████████████| Time: 0:00:05 Znear (RWG + SWG)... 2%|▌ | ETA: 0:02:51 Znear (RWG + SWG)... 77%|███████████████████████▊ | ETA: 0:00:01 Znear (RWG + SWG)... 100%|███████████████████████████████| Time: 0:00:04 Aggregating on SWG (EFIE)... 2%|▍ | ETA: 0:00:39 Aggregating on SWG (EFIE)... 87%|████████████████████ | ETA: 0:00:00 Aggregating on SWG (EFIE)... 100%|███████████████████████| Time: 0:00:00 Pₗ 3%|█▌ | ETA: 0:00:04 Pₗ 7%|███▌ | ETA: 0:00:04 Pₗ 9%|████▋ | ETA: 0:00:04 Pₗ 12%|██████▏ | ETA: 0:00:04 Pₗ 16%|████████ | ETA: 0:00:04 Pₗ 19%|█████████▎ | ETA: 0:00:04 Pₗ 23%|███████████▏ | ETA: 0:00:03 Pₗ 25%|████████████▎ | ETA: 0:00:03 Pₗ 28%|█████████████▊ | ETA: 0:00:03 Pₗ 30%|██████████████▉ | ETA: 0:00:03 Pₗ 33%|████████████████▏ | ETA: 0:00:03 Pₗ 35%|█████████████████▎ | ETA: 0:00:03 Pₗ 38%|██████████████████▍ | ETA: 0:00:03 Pₗ 41%|████████████████████▎ | ETA: 0:00:03 Pₗ 44%|█████████████████████▌ | ETA: 0:00:03 Pₗ 47%|███████████████████████ | ETA: 0:00:02 Pₗ 51%|████████████████████████▉ | ETA: 0:00:02 Pₗ 53%|██████████████████████████ | ETA: 0:00:02 Pₗ 55%|███████████████████████████▏ | ETA: 0:00:02 Pₗ 58%|████████████████████████████▍ | ETA: 0:00:02 Pₗ 61%|█████████████████████████████▉ | ETA: 0:00:02 Pₗ 64%|███████████████████████████████▍ | ETA: 0:00:02 Pₗ 67%|████████████████████████████████▉ | ETA: 0:00:02 Pₗ 70%|██████████████████████████████████▌ | ETA: 0:00:01 Pₗ 73%|███████████████████████████████████▋ | ETA: 0:00:01 Pₗ 76%|█████████████████████████████████████▏ | ETA: 0:00:01 Pₗ 79%|██████████████████████████████████████▋ | ETA: 0:00:01 Pₗ 82%|████████████████████████████████████████▎ | ETA: 0:00:01 Pₗ 84%|█████████████████████████████████████████▍ | ETA: 0:00:01 Pₗ 87%|██████████████████████████████████████████▌ | ETA: 0:00:01 Pₗ 89%|███████████████████████████████████████████▋ | ETA: 0:00:01 Pₗ 92%|█████████████████████████████████████████████▏ | ETA: 0:00:00 Pₗ 96%|███████████████████████████████████████████████▏ | ETA: 0:00:00 Pₗ 98%|████████████████████████████████████████████████▎| ETA: 0:00:00 Pₗ 100%|█████████████████████████████████████████████████| Time: 0:00:04 ┌ Info: └ Solving with gmres, initial resnorm: 1121.8461. === gmres === rest iter resnorm 1 1 5.18e+02 1 2 2.49e+02 1 3 1.60e+02 1 4 9.95e+01 1 5 6.61e+01 1 6 4.42e+01 1 7 2.74e+01 1 8 1.92e+01 1 9 1.51e+01 1 10 1.28e+01 1 11 1.16e+01 1 12 1.03e+01 1 13 9.44e+00 1 14 8.52e+00 1 15 7.89e+00 1 16 7.08e+00 1 17 6.36e+00 1 18 5.74e+00 1 19 5.31e+00 1 20 4.90e+00 1 21 4.56e+00 1 22 4.20e+00 1 23 3.87e+00 1 24 3.58e+00 1 25 3.22e+00 1 26 2.90e+00 1 27 2.60e+00 1 28 2.40e+00 1 29 2.25e+00 1 30 2.08e+00 1 31 1.90e+00 1 32 1.78e+00 1 33 1.67e+00 1 34 1.59e+00 1 35 1.47e+00 1 36 1.34e+00 1 37 1.19e+00 1 38 1.09e+00 ⠀⠀⠀⠀⠀⠀⠀⠀⠀Relative ResNorm - Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 10⁰ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠈⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠈⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢣⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢣⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠑⠒⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠤⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠒⠤⢄⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠒⠢⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠢⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀│ 10⁻³⸱⁰¹²⁴² │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠑⠒⠤⣀⡀⠀│ └────────────────────────────────────────┘ ⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀40⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌ Info: └ Solving with gmres!, initial resnorm: 1121.8461. === gmres === rest iter resnorm 1 1 5.18e+02 1 2 2.49e+02 1 3 1.60e+02 1 4 9.95e+01 1 5 6.61e+01 1 6 4.42e+01 1 7 2.74e+01 1 8 1.92e+01 1 9 1.51e+01 1 10 1.28e+01 1 11 1.16e+01 1 12 1.03e+01 1 13 9.44e+00 1 14 8.52e+00 1 15 7.89e+00 1 16 7.08e+00 1 17 6.36e+00 1 18 5.74e+00 1 19 5.31e+00 1 20 4.90e+00 1 21 4.56e+00 1 22 4.20e+00 1 23 3.87e+00 1 24 3.58e+00 1 25 3.22e+00 1 26 2.90e+00 1 27 2.60e+00 1 28 2.40e+00 1 29 2.25e+00 1 30 2.08e+00 1 31 1.90e+00 1 32 1.78e+00 1 33 1.67e+00 1 34 1.59e+00 1 35 1.47e+00 1 36 1.34e+00 1 37 1.19e+00 1 38 1.09e+00 ⠀⠀⠀⠀⠀⠀⠀⠀⠀Relative ResNorm - Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 10⁰ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠈⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠈⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢣⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢣⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠑⠒⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠤⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠒⠤⢄⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠒⠢⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠢⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀│ 10⁻³⸱⁰¹²⁴² │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠑⠒⠤⣀⡀⠀│ └────────────────────────────────────────┘ ⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀40⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Calculating RCS (1441 × 2)) 0%| | ETA: 0:12:14 Calculating RCS (1441 × 2)) 6%|█▍ | ETA: 0:00:10 Calculating RCS (1441 × 2)) 12%|██▊ | ETA: 0:00:05 Calculating RCS (1441 × 2)) 18%|████▎ | ETA: 0:00:04 Calculating RCS (1441 × 2)) 24%|█████▊ | ETA: 0:00:03 Calculating RCS (1441 × 2)) 31%|███████▍ | ETA: 0:00:02 Calculating RCS (1441 × 2)) 37%|████████▉ | ETA: 0:00:02 Calculating RCS (1441 × 2)) 43%|██████████▎ | ETA: 0:00:02 Calculating RCS (1441 × 2)) 49%|███████████▋ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 54%|█████████████ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 60%|██████████████▍ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 66%|███████████████▊ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 71%|█████████████████▏ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 78%|██████████████████▋ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 84%|████████████████████▏ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 89%|█████████████████████▌ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 95%|██████████████████████▉ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 100%|████████████████████████| Time: 0:00:02 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(m²)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 119.65 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠏⢱⡀⠀⠀⠀│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠀⠀⢧⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠘⡆⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⢳⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠈⣇⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⠀⠀⠀⠀⠀⠘⠦│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀│ m² │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠁⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⡀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⡞⠙⣆⠀⡞⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⣀⣀⠀⠀⠀⣠⢤⡀⠀⡇⡴⠲⡄⠀⣸⠁⠀⠘⠶⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 1.09763 │⣉⣉⣩⠭⠭⠝⠛⠛⠛⠛⠒⠲⠬⠷⣤⣜⣁⣀⣹⣄⣿⣡⠤⠽⠴⠓⠒⠒⠒⠲⠤⠤⢤⣀⣀⣀⣀⣀⣀⣀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(dB)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 20.7791 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⠉⠉⠳⣄⠀⠀│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⠀⠀⠈⠙⠒│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠁⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠁⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⡞⠙⡆⠀⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢀⣀⠀⠀⢰⠃⠀⢹⣠⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀│ dB │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣄⡀⠀⠀⠀⣰⢲⡀⠀⡇⡜⠸⡄⠀⡸⠀⠀⠀⠛⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⣀⣀⣀⣀⣀⣀⣀⡀⢀⡼⠁⠀⢱⡀⠀⢀⡇⠀⣇⠀⣇⠇⠀⣇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢀⡤⠟⠙⠒⢤⡀⠀⣇⠀⢸⠀⠀⢸⠀⣿⠀⠀⢸⢠⣇⡠⢤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠙⢦⣸⡀⡏⠀⠀⢸⡀⣿⠀⢀⡼⣿⠁⠀⠀⠀⠙⠲⣄⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⢠⠞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⣷⠃⠀⠀⠀⡇⡇⢠⠞⠀⠁⠀⠀⠀⠀⠀⠀⠈⢧⡀⠀⠀⠀⠀⠀⠀│ │⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⢦⠀⠀⠀⡇⣷⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⡄⠀⠀⠀⠀⠀│ │⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⡀⢀⣵⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⣆⠀⠀⠀⠀│ 0.404548 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠉⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢣⣀⣀⡴│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Calculating Z (RWG, EFIE) (3752 × 3752) 31%|███▊ | ETA: 0:00:00 Calculating Z (RWG, EFIE) (3752 × 3752) 100%|████████████| Time: 0:00:00 Calculating Z (SWG, EFIE) (3752 × 3752) 0%| | ETA: 0:04:16 Calculating Z (SWG, EFIE) (3752 × 3752) 1%|▏ | ETA: 0:00:55 Calculating Z (SWG, EFIE) (3752 × 3752) 2%|▏ | ETA: 0:00:39 Calculating Z (SWG, EFIE) (3752 × 3752) 2%|▎ | ETA: 0:00:31 Calculating Z (SWG, EFIE) (3752 × 3752) 3%|▍ | ETA: 0:00:27 Calculating Z (SWG, EFIE) (3752 × 3752) 4%|▌ | ETA: 0:00:25 Calculating Z (SWG, EFIE) (3752 × 3752) 4%|▌ | ETA: 0:00:24 Calculating Z (SWG, EFIE) (3752 × 3752) 5%|▋ | ETA: 0:00:23 Calculating Z (SWG, EFIE) (3752 × 3752) 6%|▋ | ETA: 0:00:22 Calculating Z (SWG, EFIE) (3752 × 3752) 6%|▊ | ETA: 0:00:21 Calculating Z (SWG, EFIE) (3752 × 3752) 7%|▉ | ETA: 0:00:21 Calculating Z (SWG, EFIE) (3752 × 3752) 7%|▉ | ETA: 0:00:20 Calculating Z (SWG, EFIE) (3752 × 3752) 8%|█ | ETA: 0:00:20 Calculating Z (SWG, EFIE) (3752 × 3752) 9%|█ | ETA: 0:00:20 Calculating Z (SWG, EFIE) (3752 × 3752) 9%|█▏ | ETA: 0:00:19 Calculating Z (SWG, EFIE) (3752 × 3752) 10%|█▎ | ETA: 0:00:19 Calculating Z (SWG, EFIE) (3752 × 3752) 11%|█▎ | ETA: 0:00:18 Calculating Z (SWG, EFIE) (3752 × 3752) 11%|█▍ | ETA: 0:00:18 Calculating Z (SWG, EFIE) (3752 × 3752) 12%|█▍ | ETA: 0:00:18 Calculating Z (SWG, EFIE) (3752 × 3752) 13%|█▌ | ETA: 0:00:17 Calculating Z (SWG, EFIE) (3752 × 3752) 13%|█▋ | ETA: 0:00:18 Calculating Z (SWG, EFIE) (3752 × 3752) 14%|█▋ | ETA: 0:00:17 Calculating Z (SWG, EFIE) (3752 × 3752) 14%|█▊ | ETA: 0:00:17 Calculating Z (SWG, EFIE) (3752 × 3752) 15%|█▉ | ETA: 0:00:17 Calculating Z (SWG, EFIE) (3752 × 3752) 16%|█▉ | ETA: 0:00:17 Calculating Z (SWG, EFIE) (3752 × 3752) 16%|██ | ETA: 0:00:16 Calculating Z (SWG, EFIE) (3752 × 3752) 17%|██ | ETA: 0:00:19 Calculating Z (SWG, EFIE) (3752 × 3752) 18%|██▏ | ETA: 0:00:19 Calculating Z (SWG, EFIE) (3752 × 3752) 18%|██▎ | ETA: 0:00:18 Calculating Z (SWG, EFIE) (3752 × 3752) 19%|██▎ | ETA: 0:00:18 Calculating Z (SWG, EFIE) (3752 × 3752) 20%|██▍ | ETA: 0:00:18 Calculating Z (SWG, EFIE) (3752 × 3752) 20%|██▌ | ETA: 0:00:17 Calculating Z (SWG, EFIE) (3752 × 3752) 21%|██▌ | ETA: 0:00:17 Calculating Z (SWG, EFIE) (3752 × 3752) 22%|██▋ | ETA: 0:00:18 Calculating Z (SWG, EFIE) (3752 × 3752) 23%|██▊ | ETA: 0:00:18 Calculating Z (SWG, EFIE) (3752 × 3752) 23%|██▊ | ETA: 0:00:17 Calculating Z (SWG, EFIE) (3752 × 3752) 24%|██▉ | ETA: 0:00:17 Calculating Z (SWG, EFIE) (3752 × 3752) 25%|███ | ETA: 0:00:17 Calculating Z (SWG, EFIE) (3752 × 3752) 26%|███▏ | ETA: 0:00:16 Calculating Z (SWG, EFIE) (3752 × 3752) 27%|███▎ | ETA: 0:00:16 Calculating Z (SWG, EFIE) (3752 × 3752) 27%|███▎ | ETA: 0:00:15 Calculating Z (SWG, EFIE) (3752 × 3752) 28%|███▍ | ETA: 0:00:15 Calculating Z (SWG, EFIE) (3752 × 3752) 29%|███▌ | ETA: 0:00:15 Calculating Z (SWG, EFIE) (3752 × 3752) 30%|███▋ | ETA: 0:00:15 Calculating Z (SWG, EFIE) (3752 × 3752) 31%|███▋ | ETA: 0:00:14 Calculating Z (SWG, EFIE) (3752 × 3752) 31%|███▊ | ETA: 0:00:14 Calculating Z (SWG, EFIE) (3752 × 3752) 32%|███▉ | ETA: 0:00:14 Calculating Z (SWG, EFIE) (3752 × 3752) 33%|████ | ETA: 0:00:13 Calculating Z (SWG, EFIE) (3752 × 3752) 34%|████▏ | ETA: 0:00:13 Calculating Z (SWG, EFIE) (3752 × 3752) 35%|████▏ | ETA: 0:00:13 Calculating Z (SWG, EFIE) (3752 × 3752) 36%|████▎ | ETA: 0:00:12 Calculating Z (SWG, EFIE) (3752 × 3752) 37%|████▍ | ETA: 0:00:12 Calculating Z (SWG, EFIE) (3752 × 3752) 38%|████▌ | ETA: 0:00:12 Calculating Z (SWG, EFIE) (3752 × 3752) 38%|████▋ | ETA: 0:00:12 Calculating Z (SWG, EFIE) (3752 × 3752) 39%|████▊ | ETA: 0:00:11 Calculating Z (SWG, EFIE) (3752 × 3752) 40%|████▉ | ETA: 0:00:11 Calculating Z (SWG, EFIE) (3752 × 3752) 41%|█████ | ETA: 0:00:11 Calculating Z (SWG, EFIE) (3752 × 3752) 42%|█████▏ | ETA: 0:00:10 Calculating Z (SWG, EFIE) (3752 × 3752) 43%|█████▎ | ETA: 0:00:10 Calculating Z (SWG, EFIE) (3752 × 3752) 44%|█████▍ | ETA: 0:00:10 Calculating Z (SWG, EFIE) (3752 × 3752) 45%|█████▌ | ETA: 0:00:10 Calculating Z (SWG, EFIE) (3752 × 3752) 47%|█████▋ | ETA: 0:00:09 Calculating Z (SWG, EFIE) (3752 × 3752) 48%|█████▊ | ETA: 0:00:09 Calculating Z (SWG, EFIE) (3752 × 3752) 49%|█████▉ | ETA: 0:00:09 Calculating Z (SWG, EFIE) (3752 × 3752) 50%|██████ | ETA: 0:00:08 Calculating Z (SWG, EFIE) (3752 × 3752) 51%|██████▏ | ETA: 0:00:08 Calculating Z (SWG, EFIE) (3752 × 3752) 52%|██████▎ | ETA: 0:00:08 Calculating Z (SWG, EFIE) (3752 × 3752) 53%|██████▍ | ETA: 0:00:08 Calculating Z (SWG, EFIE) (3752 × 3752) 54%|██████▌ | ETA: 0:00:07 Calculating Z (SWG, EFIE) (3752 × 3752) 56%|██████▊ | ETA: 0:00:07 Calculating Z (SWG, EFIE) (3752 × 3752) 57%|██████▉ | ETA: 0:00:07 Calculating Z (SWG, EFIE) (3752 × 3752) 59%|███████ | ETA: 0:00:06 Calculating Z (SWG, EFIE) (3752 × 3752) 60%|███████▎ | ETA: 0:00:06 Calculating Z (SWG, EFIE) (3752 × 3752) 61%|███████▍ | ETA: 0:00:06 Calculating Z (SWG, EFIE) (3752 × 3752) 63%|███████▌ | ETA: 0:00:06 Calculating Z (SWG, EFIE) (3752 × 3752) 64%|███████▊ | ETA: 0:00:05 Calculating Z (SWG, EFIE) (3752 × 3752) 66%|███████▉ | ETA: 0:00:05 Calculating Z (SWG, EFIE) (3752 × 3752) 68%|████████▏ | ETA: 0:00:05 Calculating Z (SWG, EFIE) (3752 × 3752) 69%|████████▍ | ETA: 0:00:04 Calculating Z (SWG, EFIE) (3752 × 3752) 71%|████████▌ | ETA: 0:00:04 Calculating Z (SWG, EFIE) (3752 × 3752) 73%|████████▊ | ETA: 0:00:04 Calculating Z (SWG, EFIE) (3752 × 3752) 75%|█████████ | ETA: 0:00:03 Calculating Z (SWG, EFIE) (3752 × 3752) 77%|█████████▎ | ETA: 0:00:03 Calculating Z (SWG, EFIE) (3752 × 3752) 79%|█████████▌ | ETA: 0:00:03 Calculating Z (SWG, EFIE) (3752 × 3752) 82%|█████████▉ | ETA: 0:00:02 Calculating Z (SWG, EFIE) (3752 × 3752) 86%|██████████▎ | ETA: 0:00:02 Calculating Z (SWG, EFIE) (3752 × 3752) 91%|██████████▉ | ETA: 0:00:01 Calculating Z (SWG, EFIE) (3752 × 3752) 100%|████████████| Time: 0:00:10 Calculating Z (RWG + SWG) (3752 × 3752)... 1%| | ETA: 0:01:00 Calculating Z (RWG + SWG) (3752 × 3752)... 3%|▎ | ETA: 0:00:13 Calculating Z (RWG + SWG) (3752 × 3752)... 6%|▌ | ETA: 0:00:08 Calculating Z (RWG + SWG) (3752 × 3752)... 9%|▊ | ETA: 0:00:07 Calculating Z (RWG + SWG) (3752 × 3752)... 12%|█ | ETA: 0:00:06 Calculating Z (RWG + SWG) (3752 × 3752)... 14%|█▎ | ETA: 0:00:05 Calculating Z (RWG + SWG) (3752 × 3752)... 17%|█▌ | ETA: 0:00:05 Calculating Z (RWG + SWG) (3752 × 3752)... 20%|█▊ | ETA: 0:00:04 Calculating Z (RWG + SWG) (3752 × 3752)... 23%|██ | ETA: 0:00:04 Calculating Z (RWG + SWG) (3752 × 3752)... 26%|██▎ | ETA: 0:00:04 Calculating Z (RWG + SWG) (3752 × 3752)... 28%|██▌ | ETA: 0:00:04 Calculating Z (RWG + SWG) (3752 × 3752)... 31%|██▊ | ETA: 0:00:03 Calculating Z (RWG + SWG) (3752 × 3752)... 34%|███ | ETA: 0:00:03 Calculating Z (RWG + SWG) (3752 × 3752)... 36%|███▎ | ETA: 0:00:03 Calculating Z (RWG + SWG) (3752 × 3752)... 39%|███▌ | ETA: 0:00:03 Calculating Z (RWG + SWG) (3752 × 3752)... 42%|███▊ | ETA: 0:00:03 Calculating Z (RWG + SWG) (3752 × 3752)... 45%|████ | ETA: 0:00:02 Calculating Z (RWG + SWG) (3752 × 3752)... 48%|████▎ | ETA: 0:00:02 Calculating Z (RWG + SWG) (3752 × 3752)... 51%|████▌ | ETA: 0:00:02 Calculating Z (RWG + SWG) (3752 × 3752)... 53%|████▊ | ETA: 0:00:02 Calculating Z (RWG + SWG) (3752 × 3752)... 56%|█████ | ETA: 0:00:02 Calculating Z (RWG + SWG) (3752 × 3752)... 58%|█████▎ | ETA: 0:00:02 Calculating Z (RWG + SWG) (3752 × 3752)... 61%|█████▌ | ETA: 0:00:02 Calculating Z (RWG + SWG) (3752 × 3752)... 64%|█████▊ | ETA: 0:00:02 Calculating Z (RWG + SWG) (3752 × 3752)... 67%|██████ | ETA: 0:00:01 Calculating Z (RWG + SWG) (3752 × 3752)... 70%|██████▎ | ETA: 0:00:01 Calculating Z (RWG + SWG) (3752 × 3752)... 73%|██████▌ | ETA: 0:00:01 Calculating Z (RWG + SWG) (3752 × 3752)... 75%|██████▊ | ETA: 0:00:01 Calculating Z (RWG + SWG) (3752 × 3752)... 78%|███████ | ETA: 0:00:01 Calculating Z (RWG + SWG) (3752 × 3752)... 81%|███████▎ | ETA: 0:00:01 Calculating Z (RWG + SWG) (3752 × 3752)... 83%|███████▌ | ETA: 0:00:01 Calculating Z (RWG + SWG) (3752 × 3752)... 86%|███████▊ | ETA: 0:00:01 Calculating Z (RWG + SWG) (3752 × 3752)... 89%|████████ | ETA: 0:00:00 Calculating Z (RWG + SWG) (3752 × 3752)... 92%|████████▎| ETA: 0:00:00 Calculating Z (RWG + SWG) (3752 × 3752)... 95%|████████▌| ETA: 0:00:00 Calculating Z (RWG + SWG) (3752 × 3752)... 98%|████████▉| ETA: 0:00:00 Calculating Z (RWG + SWG) (3752 × 3752)... 100%|█████████| Time: 0:00:04 Solving matrix function with LUD. Calculating RCS (1441 × 2)) 6%|█▍ | ETA: 0:00:02 Calculating RCS (1441 × 2)) 11%|██▊ | ETA: 0:00:02 Calculating RCS (1441 × 2)) 17%|████▏ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 24%|█████▋ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 30%|███████▏ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 36%|████████▊ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 42%|██████████▏ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 48%|███████████▌ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 54%|█████████████ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 60%|██████████████▍ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 66%|███████████████▊ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 72%|█████████████████▎ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 78%|██████████████████▋ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 84%|████████████████████▏ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 90%|█████████████████████▌ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 95%|██████████████████████▉ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 100%|████████████████████████| Time: 0:00:01 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(m²)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 1.21408 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠞⡽⣯⠳⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠋⠀⡇⣿⠀⠙⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠇⠀⢸⠁⡇⡇⠀⠘⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠏⠀⠀⢸⠀⡇⡇⠀⠀⠹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⠀⡜⠀⡇⢱⠀⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠁⠀⠀⠀⡇⠀⡇⢸⠀⠀⠀⠈⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⠀⡇⠀⡇⢸⡀⠀⠀⠀⠘⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ m² │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡏⠀⠀⠀⠀⢸⠀⠀⡇⠀⡇⠀⠀⠀⠀⠹⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⠀⠀⠀⢸⠀⠀⡇⠀⡇⠀⠀⠀⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠁⠀⠀⠀⠀⠀⡼⠀⠀⡇⠀⢣⠀⠀⠀⠀⠀⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡸⠁⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⡼⠁⠀⠀⠀⠀⠀⠀⢀⡇⠀⠀⡇⠀⠸⡀⠀⠀⠀⠀⠀⠀⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢀⡜⠁⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⡇⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠈⢳⡀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⠀⡇⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀│ 0.00440694 │⣀⣀⣤⣔⣋⣀⣀⣀⣀⣀⣀⡤⠖⠲⣄⣰⠃⠀⠀⠀⡇⠀⠀⠘⣆⣠⠖⠲⢤⣀⣀⣀⣀⣀⣀⣙⣲⣤⣀⣀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(dB)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 0.842481 │⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⣤⡴⠶⠯⣽⠯⡿⣯⠽⠶⢦⣤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡤⠚⠁⠀⠀⢠⠇⠀⡇⠸⡄⠀⠀⠈⠓⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡴⠋⠀⠀⠀⠀⠀⡸⠀⠀⡇⠀⢧⠀⠀⠀⠀⠀⠙⢦⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢠⠞⠁⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠈⠳⣄⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⡰⠃⠀⠀⠀⠀⠀⠀⠀⢸⠁⠀⠀⡇⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠘⢦⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⡼⠁⠀⠀⠀⠀⠀⠀⠀⠀⣸⠀⠀⠀⡇⠀⠀⣇⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⡜⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢳⡀⠀⠀⠀⠀│ dB │⠀⠀⠀⠀⡼⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢧⠀⠀⠀⠀│ │⠀⠀⠀⣸⠁⠀⠀⠀⠀⠀⠀⠀⡤⢄⠀⢠⠃⠀⠀⠀⡇⠀⠀⠈⡆⠀⣠⢤⠀⠀⠀⠀⠀⠀⠀⠈⢇⠀⠀⠀│ │⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⢸⠁⠘⡄⢸⠀⠀⠀⠀⡇⠀⠀⠀⡇⢠⠇⠈⣇⠀⠀⠀⠀⠀⠀⠀⠘⡆⠀⠀│ │⠀⠀⡞⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⢸⠀⠀⠀⠀⡇⠀⠀⠀⡇⢸⠀⠀⢸⡀⠀⠀⠀⠀⠀⠀⠀⢱⠀⠀│ │⠀⢸⠁⠀⢀⠞⠉⠙⣆⠀⢸⠀⠀⠀⢹⣸⠀⠀⠀⠀⡇⠀⠀⠀⢇⡎⠀⠀⠀⣇⠀⣰⠋⠉⠳⡄⠀⠈⡇⠀│ │⠀⡏⠀⣠⠏⠀⠀⠀⠘⢦⠇⠀⠀⠀⢸⡇⠀⠀⠀⠀⡇⠀⠀⠀⢸⡇⠀⠀⠀⠸⣴⠃⠀⠀⠀⠹⣄⠀⢹⠀│ │⣸⠁⣰⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠇⠀⠀⠀⠀⡇⠀⠀⠀⠸⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣆⠀⣇│ -23.5586 │⣃⡼⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⣘│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Constructing RWG basis function... Done! 共得到 390 个三角形, 551 个 RWG 基函数。 Constructing VIE basis function based on tetrahedras... Done! 共得到 1357 个四面体, 4071 个 PWC 基函数。 [ Info: MoMs start with 1 threads. 构造八叉树中... 预计算采样点、插值矩阵、相移因子、转移因子等信息中... Calculating translation factors on level 2... 3%|▏ | ETA: 0:00:03 Calculating translation factors on level 2... 5%|▍ | ETA: 0:00:04 Calculating translation factors on level 2... 8%|▌ | ETA: 0:00:04 Calculating translation factors on level 2... 11%|▋ | ETA: 0:00:04 Calculating translation factors on level 2... 13%|▊ | ETA: 0:00:04 Calculating translation factors on level 2... 16%|█ | ETA: 0:00:04 Calculating translation factors on level 2... 19%|█▏ | ETA: 0:00:04 Calculating translation factors on level 2... 22%|█▍ | ETA: 0:00:03 Calculating translation factors on level 2... 25%|█▌ | ETA: 0:00:03 Calculating translation factors on level 2... 28%|█▊ | ETA: 0:00:03 Calculating translation factors on level 2... 31%|█▉ | ETA: 0:00:03 Calculating translation factors on level 2... 34%|██▏ | ETA: 0:00:03 Calculating translation factors on level 2... 37%|██▎ | ETA: 0:00:03 Calculating translation factors on level 2... 41%|██▍ | ETA: 0:00:03 Calculating translation factors on level 2... 43%|██▋ | ETA: 0:00:02 Calculating translation factors on level 2... 47%|██▊ | ETA: 0:00:02 Calculating translation factors on level 2... 49%|███ | ETA: 0:00:02 Calculating translation factors on level 2... 53%|███▏ | ETA: 0:00:02 Calculating translation factors on level 2... 55%|███▍ | ETA: 0:00:02 Calculating translation factors on level 2... 59%|███▌ | ETA: 0:00:02 Calculating translation factors on level 2... 61%|███▋ | ETA: 0:00:02 Calculating translation factors on level 2... 65%|███▉ | ETA: 0:00:01 Calculating translation factors on level 2... 67%|████ | ETA: 0:00:01 Calculating translation factors on level 2... 71%|████▎ | ETA: 0:00:01 Calculating translation factors on level 2... 73%|████▍ | ETA: 0:00:01 Calculating translation factors on level 2... 77%|████▋ | ETA: 0:00:01 Calculating translation factors on level 2... 80%|████▊ | ETA: 0:00:01 Calculating translation factors on level 2... 83%|█████ | ETA: 0:00:01 Calculating translation factors on level 2... 86%|█████▏| ETA: 0:00:01 Calculating translation factors on level 2... 89%|█████▍| ETA: 0:00:00 Calculating translation factors on level 2... 92%|█████▌| ETA: 0:00:00 Calculating translation factors on level 2... 95%|█████▊| ETA: 0:00:00 Calculating translation factors on level 2... 98%|█████▉| ETA: 0:00:00 Calculating translation factors on level 2... 100%|██████| Time: 0:00:04 Calculating translation factors on level 3... 8%|▌ | ETA: 0:00:01 Calculating translation factors on level 3... 17%|█ | ETA: 0:00:01 Calculating translation factors on level 3... 27%|█▋ | ETA: 0:00:01 Calculating translation factors on level 3... 36%|██▏ | ETA: 0:00:01 Calculating translation factors on level 3... 47%|██▉ | ETA: 0:00:01 Calculating translation factors on level 3... 58%|███▌ | ETA: 0:00:00 Calculating translation factors on level 3... 69%|████▏ | ETA: 0:00:00 Calculating translation factors on level 3... 79%|████▊ | ETA: 0:00:00 Calculating translation factors on level 3... 89%|█████▍| ETA: 0:00:00 Calculating translation factors on level 3... 98%|█████▉| ETA: 0:00:00 Calculating translation factors on level 3... 100%|██████| Time: 0:00:01 Calculating translation factors... 50%|████████▌ | ETA: 0:00:05 Calculating translation factors on level 4... 22%|█▎ | ETA: 0:00:00 Calculating translation factors on level 4... 48%|██▉ | ETA: 0:00:00 Calculating translation factors on level 4... 74%|████▌ | ETA: 0:00:00 Calculating translation factors on level 4... 96%|█████▊| ETA: 0:00:00 Calculating translation factors on level 4... 100%|██████| Time: 0:00:00 Calculating translation factors... 75%|████████████▊ | ETA: 0:00:02 Calculating translation factors on level 5... 56%|███▍ | ETA: 0:00:00 Calculating translation factors on level 5... 100%|██████| Time: 0:00:00 Calculating translation factors... 100%|█████████████████| Time: 0:00:05 八叉树构造完毕 [ Info: 基函数按八叉树重新排序中... 计算矩阵近场元CSC格式稀疏矩阵中... Znear (PWC)... 23%|████████▋ | ETA: 0:00:03 Znear (PWC)... 100%|█████████████████████████████████████| Time: 0:00:01 Znear (RWG + PWC)... 2%|▌ | ETA: 0:05:17 Znear (RWG + PWC)... 100%|███████████████████████████████| Time: 0:00:05 Pₗ 2%|█▏ | ETA: 0:00:05 Pₗ 3%|█▌ | ETA: 0:00:07 Pₗ 5%|██▋ | ETA: 0:00:07 Pₗ 7%|███▌ | ETA: 0:00:07 Pₗ 9%|████▎ | ETA: 0:00:07 Pₗ 10%|█████ | ETA: 0:00:07 Pₗ 12%|█████▊ | ETA: 0:00:07 Pₗ 13%|██████▌ | ETA: 0:00:06 Pₗ 16%|███████▋ | ETA: 0:00:06 Pₗ 18%|████████▊ | ETA: 0:00:06 Pₗ 20%|█████████▋ | ETA: 0:00:06 Pₗ 21%|██████████▍ | ETA: 0:00:06 Pₗ 23%|███████████▏ | ETA: 0:00:06 Pₗ 24%|███████████▉ | ETA: 0:00:06 Pₗ 26%|████████████▋ | ETA: 0:00:06 Pₗ 27%|█████████████▍ | ETA: 0:00:05 Pₗ 29%|██████████████▏ | ETA: 0:00:05 Pₗ 30%|██████████████▉ | ETA: 0:00:05 Pₗ 32%|███████████████▊ | ETA: 0:00:05 Pₗ 34%|████████████████▌ | ETA: 0:00:05 Pₗ 35%|█████████████████▎ | ETA: 0:00:05 Pₗ 38%|██████████████████▊ | ETA: 0:00:05 Pₗ 40%|███████████████████▌ | ETA: 0:00:05 Pₗ 41%|████████████████████▎ | ETA: 0:00:04 Pₗ 43%|█████████████████████ | ETA: 0:00:04 Pₗ 45%|█████████████████████▉ | ETA: 0:00:04 Pₗ 46%|██████████████████████▋ | ETA: 0:00:04 Pₗ 48%|███████████████████████▍ | ETA: 0:00:04 Pₗ 51%|████████████████████████▉ | ETA: 0:00:04 Pₗ 52%|█████████████████████████▋ | ETA: 0:00:04 Pₗ 54%|██████████████████████████▍ | ETA: 0:00:04 Pₗ 55%|███████████████████████████▏ | ETA: 0:00:03 Pₗ 58%|████████████████████████████▍ | ETA: 0:00:03 Pₗ 60%|█████████████████████████████▌ | ETA: 0:00:03 Pₗ 62%|██████████████████████████████▎ | ETA: 0:00:03 Pₗ 64%|███████████████████████████████▍ | ETA: 0:00:03 Pₗ 67%|████████████████████████████████▉ | ETA: 0:00:03 Pₗ 70%|██████████████████████████████████▏ | ETA: 0:00:02 Pₗ 71%|██████████████████████████████████▉ | ETA: 0:00:02 Pₗ 73%|███████████████████████████████████▋ | ETA: 0:00:02 Pₗ 74%|████████████████████████████████████▍ | ETA: 0:00:02 Pₗ 76%|█████████████████████████████████████▏ | ETA: 0:00:02 Pₗ 77%|█████████████████████████████████████▉ | ETA: 0:00:02 Pₗ 79%|██████████████████████████████████████▋ | ETA: 0:00:02 Pₗ 80%|███████████████████████████████████████▍ | ETA: 0:00:01 Pₗ 82%|████████████████████████████████████████▎ | ETA: 0:00:01 Pₗ 84%|█████████████████████████████████████████ | ETA: 0:00:01 Pₗ 85%|█████████████████████████████████████████▊ | ETA: 0:00:01 Pₗ 88%|██████████████████████████████████████████▉ | ETA: 0:00:01 Pₗ 89%|███████████████████████████████████████████▋ | ETA: 0:00:01 Pₗ 92%|█████████████████████████████████████████████▏ | ETA: 0:00:01 Pₗ 95%|██████████████████████████████████████████████▊ | ETA: 0:00:00 Pₗ 98%|███████████████████████████████████████████████▉ | ETA: 0:00:00 Pₗ 100%|█████████████████████████████████████████████████| Time: 0:00:07 RWG + SWG, RWG + PWC: Error During Test at /home/pkgeval/.julia/packages/MoM_Kernels/1VYtG/test/runtests.jl:108 Got exception outside of a @test SystemError: opening file "results/2025-02-25/19.25 2.0GHz/InputArgs.txt": No such file or directory Stacktrace: [1] systemerror(p::String, errno::Int32; extrainfo::Nothing) @ Base ./error.jl:176 [2] systemerror @ ./error.jl:175 [inlined] [3] open(fname::String; lock::Bool, read::Bool, write::Nothing, create::Nothing, truncate::Nothing, append::Bool) @ Base ./iostream.jl:293 [4] open @ ./iostream.jl:275 [inlined] [5] open(fname::String, mode::String; lock::Bool) @ Base ./iostream.jl:356 [6] open(fname::String, mode::String) @ Base ./iostream.jl:355 [7] open(::MoM_Kernels.var"#358#367", ::String, ::Vararg{String}; kwargs::@Kwargs{}) @ Base ./io.jl:394 [8] open @ ./io.jl:393 [inlined] [9] sparseApproximateInversePl(Znear::SparseArrays.SparseMatrixCSC{ComplexF32, Int64}, cubes::Vector{MoM_Kernels.CubeInfo{Int64, Float32}}) @ MoM_Kernels ~/.julia/packages/MoM_Kernels/1VYtG/src/MLFMA/Precondition/SAI.jl:127 [10] sparseApproximateInversePl(Znear::SparseArrays.SparseMatrixCSC{ComplexF32, Int64}, level::MoM_Kernels.LevelInfo{Int64, Float32, MoM_Kernels.LagrangeInterpInfo{Int64, Float32}}) @ MoM_Kernels ~/.julia/packages/MoM_Kernels/1VYtG/src/MLFMA/Precondition/SAI.jl:241 [11] test_opt_solving(geosInfo::Vector{AbstractVector}, bfsInfo::Vector{Vector}; source::Nothing) @ Main ~/.julia/packages/MoM_Kernels/1VYtG/test/Matrix and Solving.jl:38 [12] test_opt_solving(geosInfo::Vector{AbstractVector}, bfsInfo::Vector{Vector}) @ Main ~/.julia/packages/MoM_Kernels/1VYtG/test/Matrix and Solving.jl:20 [13] macro expansion @ ~/.julia/packages/MoM_Kernels/1VYtG/test/runtests.jl:117 [inlined] [14] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1669 [inlined] [15] macro expansion @ ~/.julia/packages/MoM_Kernels/1VYtG/test/runtests.jl:108 [inlined] [16] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [17] macro expansion @ ~/.julia/packages/MoM_Kernels/1VYtG/test/runtests.jl:103 [inlined] [18] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [19] top-level scope @ ~/.julia/packages/MoM_Kernels/1VYtG/test/runtests.jl:12 [20] include(fname::String) @ Base.MainInclude ./client.jl:494 [21] top-level scope @ none:6 [22] eval @ ./boot.jl:385 [inlined] [23] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [24] _start() @ Base ./client.jl:557 网格文件处理完毕,共得到 615 个节点、390 个三角形、0 个四面体、189 个六面体 Constructing RWG basis function... Done! 共得到 390 个三角形, 551 个 RWG 基函数。 Constructing VIE basis function based on hexahedras... Done! 共得到 189 个六面体, 567 个 PWC 基函数。 [ Info: MoMs start with 1 threads. 构造八叉树中... 预计算采样点、插值矩阵、相移因子、转移因子等信息中... Calculating translation factors on level 2... 11%|▋ | ETA: 0:00:01 Calculating translation factors on level 2... 21%|█▎ | ETA: 0:00:01 Calculating translation factors on level 2... 30%|█▊ | ETA: 0:00:01 Calculating translation factors on level 2... 42%|██▌ | ETA: 0:00:01 Calculating translation factors on level 2... 52%|███▏ | ETA: 0:00:01 Calculating translation factors on level 2... 64%|███▉ | ETA: 0:00:00 Calculating translation factors on level 2... 75%|████▌ | ETA: 0:00:00 Calculating translation factors on level 2... 84%|█████ | ETA: 0:00:00 Calculating translation factors on level 2... 94%|█████▋| ETA: 0:00:00 Calculating translation factors on level 2... 100%|██████| Time: 0:00:01 Calculating translation factors on level 3... 21%|█▎ | ETA: 0:00:00 Calculating translation factors on level 3... 48%|██▉ | ETA: 0:00:00 Calculating translation factors on level 3... 75%|████▌ | ETA: 0:00:00 Calculating translation factors on level 3... 100%|██████| ETA: 0:00:00 Calculating translation factors on level 3... 100%|██████| Time: 0:00:00 Calculating translation factors... 67%|███████████▍ | ETA: 0:00:01 Calculating translation factors on level 4... 42%|██▌ | ETA: 0:00:00 Calculating translation factors on level 4... 98%|█████▉| ETA: 0:00:00 Calculating translation factors on level 4... 100%|██████| Time: 0:00:00 Calculating translation factors... 100%|█████████████████| Time: 0:00:01 八叉树构造完毕 [ Info: 基函数按八叉树重新排序中... 计算矩阵近场元CSC格式稀疏矩阵中... Znear (RWG + PWC)... 2%|▌ | ETA: 0:05:08 Znear (RWG + PWC)... 100%|███████████████████████████████| Time: 0:00:05 Pₗ 38%|██████████████████▊ | ETA: 0:00:00 Pₗ 74%|████████████████████████████████████▍ | ETA: 0:00:00 Pₗ 100%|█████████████████████████████████████████████████| Time: 0:00:00 ┌ Info: └ Solving with gmres, initial resnorm: 80.282005. === gmres === rest iter resnorm 1 1 3.16e+01 1 2 1.98e+01 1 3 1.41e+01 1 4 1.10e+01 1 5 8.91e+00 1 6 7.14e+00 1 7 5.60e+00 1 8 4.66e+00 1 9 3.97e+00 1 10 3.50e+00 1 11 3.15e+00 1 12 2.92e+00 1 13 2.66e+00 1 14 2.46e+00 1 15 2.20e+00 1 16 2.03e+00 1 17 1.91e+00 1 18 1.83e+00 1 19 1.76e+00 1 20 1.72e+00 1 21 1.69e+00 1 22 1.66e+00 1 23 1.63e+00 1 24 1.60e+00 1 25 1.57e+00 1 26 1.54e+00 1 27 1.50e+00 1 28 1.46e+00 1 29 1.40e+00 1 30 1.36e+00 1 31 1.30e+00 1 32 1.24e+00 1 33 1.19e+00 1 34 1.15e+00 1 35 1.12e+00 1 36 1.08e+00 1 37 1.05e+00 1 38 1.01e+00 1 39 9.82e-01 1 40 9.57e-01 1 41 9.27e-01 1 42 8.95e-01 1 43 8.73e-01 1 44 8.50e-01 1 45 8.28e-01 1 46 8.03e-01 1 47 7.69e-01 1 48 7.35e-01 1 49 7.06e-01 1 50 6.84e-01 1 51 6.60e-01 1 52 6.31e-01 1 53 5.98e-01 1 54 5.70e-01 1 55 5.52e-01 1 56 5.34e-01 1 57 5.15e-01 1 58 4.93e-01 1 59 4.72e-01 1 60 4.45e-01 1 61 4.19e-01 1 62 3.97e-01 1 63 3.74e-01 1 64 3.56e-01 1 65 3.37e-01 1 66 3.18e-01 1 67 3.08e-01 1 68 2.99e-01 1 69 2.90e-01 1 70 2.80e-01 1 71 2.71e-01 1 72 2.61e-01 1 73 2.53e-01 1 74 2.44e-01 1 75 2.35e-01 1 76 2.27e-01 1 77 2.18e-01 1 78 2.09e-01 1 79 1.97e-01 1 80 1.84e-01 1 81 1.71e-01 1 82 1.61e-01 1 83 1.47e-01 1 84 1.33e-01 1 85 1.24e-01 1 86 1.16e-01 1 87 1.09e-01 1 88 1.02e-01 1 89 9.74e-02 1 90 9.36e-02 1 91 9.04e-02 1 92 8.74e-02 1 93 8.30e-02 1 94 7.83e-02 ⠀⠀⠀⠀⠀⠀⠀⠀⠀Relative ResNorm - Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 10⁰ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠘⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⢱⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⢣⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠉⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠈⠑⠒⠒⠤⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠓⠢⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠓⠤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠓⠢⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠓⢄⠀⠀⠀⠀⠀⠀│ 10⁻³⸱⁰¹⁰⁹⁹ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⠢⢄⡀⠀⠀│ └────────────────────────────────────────┘ ⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀100⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌ Info: └ Solving with gmres!, initial resnorm: 80.282005. === gmres === rest iter resnorm 1 1 3.16e+01 1 2 1.98e+01 1 3 1.41e+01 1 4 1.10e+01 1 5 8.91e+00 1 6 7.14e+00 1 7 5.60e+00 1 8 4.66e+00 1 9 3.97e+00 1 10 3.50e+00 1 11 3.15e+00 1 12 2.92e+00 1 13 2.66e+00 1 14 2.46e+00 1 15 2.20e+00 1 16 2.03e+00 1 17 1.91e+00 1 18 1.83e+00 1 19 1.76e+00 1 20 1.72e+00 1 21 1.69e+00 1 22 1.66e+00 1 23 1.63e+00 1 24 1.60e+00 1 25 1.57e+00 1 26 1.54e+00 1 27 1.50e+00 1 28 1.46e+00 1 29 1.40e+00 1 30 1.36e+00 1 31 1.30e+00 1 32 1.24e+00 1 33 1.19e+00 1 34 1.15e+00 1 35 1.12e+00 1 36 1.08e+00 1 37 1.05e+00 1 38 1.01e+00 1 39 9.82e-01 1 40 9.57e-01 1 41 9.27e-01 1 42 8.95e-01 1 43 8.73e-01 1 44 8.50e-01 1 45 8.28e-01 1 46 8.03e-01 1 47 7.69e-01 1 48 7.35e-01 1 49 7.06e-01 1 50 6.84e-01 1 51 6.60e-01 1 52 6.31e-01 1 53 5.98e-01 1 54 5.70e-01 1 55 5.52e-01 1 56 5.34e-01 1 57 5.15e-01 1 58 4.93e-01 1 59 4.72e-01 1 60 4.45e-01 1 61 4.19e-01 1 62 3.97e-01 1 63 3.74e-01 1 64 3.56e-01 1 65 3.37e-01 1 66 3.18e-01 1 67 3.08e-01 1 68 2.99e-01 1 69 2.90e-01 1 70 2.80e-01 1 71 2.71e-01 1 72 2.61e-01 1 73 2.53e-01 1 74 2.44e-01 1 75 2.35e-01 1 76 2.27e-01 1 77 2.18e-01 1 78 2.09e-01 1 79 1.97e-01 1 80 1.84e-01 1 81 1.71e-01 1 82 1.61e-01 1 83 1.47e-01 1 84 1.33e-01 1 85 1.24e-01 1 86 1.16e-01 1 87 1.09e-01 1 88 1.02e-01 1 89 9.74e-02 1 90 9.36e-02 1 91 9.04e-02 1 92 8.74e-02 1 93 8.30e-02 1 94 7.83e-02 ⠀⠀⠀⠀⠀⠀⠀⠀⠀Relative ResNorm - Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 10⁰ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠘⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⢱⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⢣⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠉⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠈⠑⠒⠒⠤⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠓⠢⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠓⠤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠓⠢⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠓⢄⠀⠀⠀⠀⠀⠀│ 10⁻³⸱⁰¹⁰⁹⁹ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⠢⢄⡀⠀⠀│ └────────────────────────────────────────┘ ⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀100⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Epoch⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Calculating RCS (1441 × 2)) 0%| | ETA: 0:04:55 Calculating RCS (1441 × 2)) 15%|███▌ | ETA: 0:00:02 Calculating RCS (1441 × 2)) 29%|███████▏ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 44%|██████████▋ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 59%|██████████████▏ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 73%|█████████████████▋ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 88%|█████████████████████▏ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 100%|████████████████████████| Time: 0:00:00 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(m²)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 176.332 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠹⡄⠀⠀⠀│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠇⠀⢣⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠸⡄⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⠀⢇⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⢸⡀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠇⠀⠀⠀⠀⢇⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠘⣆│ m² │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⢀⡿⡄⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⢸⠀⢇⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀│ │⠀⢀⡤⠖⠲⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢰⢲⠀⠀⠀⡎⠀⢸⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀│ │⠚⠉⠀⠀⠀⠹⡄⠀⠀⠀⠀⡤⢤⠀⠀⠀⢰⠻⡀⠀⡇⡞⠈⡆⠀⠀⡇⠀⠘⡆⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢹⡀⠀⠀⢰⠃⠘⡆⠀⠀⡏⠀⣇⠀⣇⠇⠀⢧⠀⢸⠁⠀⠀⡇⠀⡜⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢧⠀⢀⠏⠀⠀⢳⠀⢰⠁⠀⢸⠀⣿⠀⠀⢸⠀⣸⠀⠀⠀⢸⢀⡇⠀⠀⠀⠀⠀⠀⠀⠀│ 0.232817 │⠤⠤⠤⠤⠤⠤⠤⠬⠷⠾⠤⢤⣀⣈⣇⣎⣀⣀⣈⣇⣏⣀⣀⣈⣧⡧⠤⠤⠤⠬⠿⠤⠤⠤⠤⠤⠤⠤⠤⠤│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(dB)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 22.4633 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡴⠋⠉⠙⢦⡀⠀│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⣀⡀⠀⠀⠀⡸⠁⠀⠀⠀⠀⠙⠒│ ϕ = 90.0° │⠀⢀⣠⠤⢤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢠⢤⠀⠀⠀⡼⠀⢳⠀⠀⢠⠇⠀⠀⠀⠀⠀⠀⠀│ │⠉⠉⠀⠀⠀⠘⢆⠀⠀⠀⢀⡖⢲⡀⠀⠀⡸⠙⡆⠀⡇⡏⠈⡇⠀⢀⠇⠀⠈⡇⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠘⡆⠀⠀⡼⠀⠀⣇⠀⢀⡇⠀⢳⠀⣷⠃⠀⢹⠀⢸⠀⠀⠀⢣⠀⡏⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢹⠀⢠⠇⠀⠀⢸⠀⢸⠀⠀⢸⠀⣿⠀⠀⢸⠀⡸⠀⠀⠀⢸⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠘⡆⣸⠀⠀⠀⠘⡄⡸⠀⠀⠈⡇⡟⠀⠀⠈⡆⡇⠀⠀⠀⠘⣾⠀⠀⠀⠀⠀⠀⠀⠀⠀│ dB │⣀⣀⣀⣀⣀⠀⠀⠀⢳⠇⠀⠀⠀⠀⡇⡇⠀⠀⠀⡇⡇⠀⠀⠀⡇⡇⠀⠀⠀⠀⠿⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠈⠉⠉⠙⠒⠦⢤⣀⠀⠀⡇⡇⠀⠀⠀⡇⡇⠀⠀⠀⣇⣧⠤⠖⠒⠋⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠓⠦⣵⠇⠀⠀⠀⡇⡇⢀⡠⠖⣏⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠙⠦⠤⠤⢽⡗⠉⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⢼⡧⠤⠤⠤⢽⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -6.32985 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Calculating Z (RWG, EFIE) (1118 × 1118) 36%|████▎ | ETA: 0:00:00 Calculating Z (RWG, EFIE) (1118 × 1118) 100%|████████████| Time: 0:00:00 Calculating Z (PWC)(1118 × 1118)... 25%|████ | ETA: 0:00:00 Calculating Z (PWC)(1118 × 1118)... 60%|█████████▋ | ETA: 0:00:00 Calculating Z (PWC)(1118 × 1118)... 100%|████████████████| Time: 0:00:00 Calculating Z (RWG + PWC) (1118 × 1118)... 1%| | ETA: 0:01:16 Calculating Z (RWG + PWC) (1118 × 1118)... 31%|██▊ | ETA: 0:00:01 Calculating Z (RWG + PWC) (1118 × 1118)... 61%|█████▌ | ETA: 0:00:00 Calculating Z (RWG + PWC) (1118 × 1118)... 88%|████████ | ETA: 0:00:00 Calculating Z (RWG + PWC) (1118 × 1118)... 100%|█████████| Time: 0:00:00 Solving matrix function with LUD. Calculating RCS (1441 × 2)) 15%|███▋ | ETA: 0:00:01 Calculating RCS (1441 × 2)) 31%|███████▍ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 47%|███████████▏ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 61%|██████████████▊ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 79%|███████████████████ | ETA: 0:00:00 Calculating RCS (1441 × 2)) 97%|███████████████████████▎| ETA: 0:00:00 Calculating RCS (1441 × 2)) 100%|████████████████████████| Time: 0:00:00 ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(m²)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 1.3045 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠞⡽⣯⠳⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⠋⠀⡇⣿⠀⠙⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⢸⠁⡇⡇⠀⠘⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⠀⢸⠀⡇⡇⠀⠀⠹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⠀⡞⠀⡇⢱⠀⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠁⠀⠀⠀⡇⠀⡇⢸⠀⠀⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⠀⡇⠀⡇⢸⡀⠀⠀⠀⠘⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ m² │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠏⠀⠀⠀⠀⢸⠀⠀⡇⠀⡇⠀⠀⠀⠀⠹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⠀⠀⠀⢸⠀⠀⡇⠀⡇⠀⠀⠀⠀⠀⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⠀⠀⠀⡜⠀⠀⡇⠀⢳⠀⠀⠀⠀⠀⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⠁⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⡼⠁⠀⠀⠀⠀⠀⠀⢀⠇⠀⠀⡇⠀⠸⡄⠀⠀⠀⠀⠀⠀⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢀⡞⠁⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⡇⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠈⢳⡀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢀⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⠀⠀⡇⠀⠀⢱⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀│ 0.00166022 │⣀⣀⣤⣖⣋⣀⣀⣀⣀⣀⣀⡤⠖⠲⣄⣰⠃⠀⠀⠀⡇⠀⠀⠘⣆⣠⠖⠲⢤⣀⣀⣀⣀⣀⣀⣙⣲⣤⣀⣀│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀RCS(dB)(θϕ)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 1.15444 │⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⢤⣤⠴⠾⠭⣽⠯⡿⢯⠭⠷⠦⣤⡤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤│ ϕ = 0.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠖⠉⠀⠀⠀⢰⠃⠀⡇⠘⡆⠀⠀⠀⠉⠳⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ ϕ = 90.0° │⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⠁⠀⠀⠀⠀⠀⡎⠀⠀⡇⠀⢹⠀⠀⠀⠀⠀⠈⠳⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢠⠞⠁⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⡇⠀⠘⡆⠀⠀⠀⠀⠀⠀⠈⠳⣄⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⡴⠃⠀⠀⠀⠀⠀⠀⠀⠀⣸⠀⠀⠀⡇⠀⠀⣇⠀⠀⠀⠀⠀⠀⠀⠀⠘⢦⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢀⡜⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢳⡀⠀⠀⠀⠀│ │⠀⠀⠀⢀⡞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⡇⠀⠀⢸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢳⡀⠀⠀⠀│ dB │⠀⠀⠀⡼⠀⠀⠀⠀⠀⠀⠀⢠⠞⢳⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⡇⠀⡞⠳⡄⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀│ │⠀⠀⣸⠁⠀⠀⠀⠀⠀⠀⠀⡞⠀⠈⡇⢸⠀⠀⠀⠀⡇⠀⠀⠀⡇⢸⠁⠀⢳⠀⠀⠀⠀⠀⠀⠀⠈⣇⠀⠀│ │⠀⢠⠇⠀⠀⠀⣀⣀⡀⠀⣸⠁⠀⠀⢣⣸⠀⠀⠀⠀⡇⠀⠀⠀⢇⡜⠀⠀⠈⣇⠀⢀⣀⣀⠀⠀⠀⠸⡄⠀│ │⠀⡼⠀⠀⢠⠞⠁⠀⠳⣤⠇⠀⠀⠀⢸⡇⠀⠀⠀⠀⡇⠀⠀⠀⢸⡇⠀⠀⠀⠸⣤⠞⠀⠀⠳⡄⠀⠀⢧⠀│ │⢠⠇⠀⢠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠃⠀⠀⠀⠀⡇⠀⠀⠀⠘⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⡄⠀⠸⡄│ │⡼⠀⢠⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⡄⠀⢧│ │⠁⢀⡞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⡄⠈│ -27.7983 │⣠⠞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⣄│ └────────────────────────────────────────┘ ⠀-90⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀90⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀θ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Constructing RWG basis function... Done! 共得到 390 个三角形, 551 个 RWG 基函数。 Constructing VIE basis function based on hexahedras... Done! 共得到 189 个六面体, 790 个 RBF 基函数。 [ Info: MoMs start with 1 threads. 构造八叉树中... 预计算采样点、插值矩阵、相移因子、转移因子等信息中... Calculating translation factors on level 2... 11%|▋ | ETA: 0:00:01 Calculating translation factors on level 2... 21%|█▎ | ETA: 0:00:01 Calculating translation factors on level 2... 29%|█▊ | ETA: 0:00:01 Calculating translation factors on level 2... 41%|██▌ | ETA: 0:00:01 Calculating translation factors on level 2... 52%|███▏ | ETA: 0:00:01 Calculating translation factors on level 2... 60%|███▋ | ETA: 0:00:00 Calculating translation factors on level 2... 74%|████▍ | ETA: 0:00:00 Calculating translation factors on level 2... 85%|█████▏| ETA: 0:00:00 Calculating translation factors on level 2... 100%|██████| Time: 0:00:01 Calculating translation factors on level 3... 25%|█▌ | ETA: 0:00:00 Calculating translation factors on level 3... 49%|███ | ETA: 0:00:00 Calculating translation factors on level 3... 79%|████▊ | ETA: 0:00:00 Calculating translation factors on level 3... 100%|██████| Time: 0:00:00 Calculating translation factors... 67%|███████████▍ | ETA: 0:00:01 Calculating translation factors on level 4... 61%|███▋ | ETA: 0:00:00 Calculating translation factors on level 4... 100%|██████| Time: 0:00:00 Calculating translation factors... 100%|█████████████████| Time: 0:00:01 八叉树构造完毕 [ Info: 基函数按八叉树重新排序中... 计算矩阵近场元CSC格式稀疏矩阵中... Znear (RBF)... 2%|▋ | ETA: 0:01:12 Znear (RBF)... 17%|██████▍ | ETA: 0:00:11 Znear (RBF)... 34%|████████████▊ | ETA: 0:00:06 Znear (RBF)... 57%|█████████████████████▏ | ETA: 0:00:03 Znear (RBF)... 76%|████████████████████████████ | ETA: 0:00:02 Znear (RBF)... 95%|███████████████████████████████████ | ETA: 0:00:00 Znear (RBF)... 100%|█████████████████████████████████████| Time: 0:00:06 Znear (RWG + RBF)... 2%|▌ | ETA: 0:03:02 Znear (RWG + RBF)... 100%|███████████████████████████████| Time: 0:00:03 Aggregating on RBF (EFIE)... 2%|▍ | ETA: 0:00:42 Aggregating on RBF (EFIE)... 100%|███████████████████████| Time: 0:00:00 ok! Pₗ 23%|███████████▌ | ETA: 0:00:00 Pₗ 46%|██████████████████████▋ | ETA: 0:00:00 Pₗ 73%|███████████████████████████████████▋ | ETA: 0:00:00 Pₗ 100%|█████████████████████████████████████████████████| Time: 0:00:00 RWG + SWG, RWG + PWC: Error During Test at /home/pkgeval/.julia/packages/MoM_Kernels/1VYtG/test/runtests.jl:134 Got exception outside of a @test SystemError: opening file "results/2025-02-25/19.26 2.0GHz/InputArgs.txt": No such file or directory Stacktrace: [1] systemerror(p::String, errno::Int32; extrainfo::Nothing) @ Base ./error.jl:176 [2] systemerror @ ./error.jl:175 [inlined] [3] open(fname::String; lock::Bool, read::Bool, write::Nothing, create::Nothing, truncate::Nothing, append::Bool) @ Base ./iostream.jl:293 [4] open @ ./iostream.jl:275 [inlined] [5] open(fname::String, mode::String; lock::Bool) @ Base ./iostream.jl:356 [6] open(fname::String, mode::String) @ Base ./iostream.jl:355 [7] open(::MoM_Kernels.var"#358#367", ::String, ::Vararg{String}; kwargs::@Kwargs{}) @ Base ./io.jl:394 [8] open @ ./io.jl:393 [inlined] [9] sparseApproximateInversePl(Znear::SparseArrays.SparseMatrixCSC{ComplexF32, Int64}, cubes::Vector{MoM_Kernels.CubeInfo{Int64, Float32}}) @ MoM_Kernels ~/.julia/packages/MoM_Kernels/1VYtG/src/MLFMA/Precondition/SAI.jl:127 [10] sparseApproximateInversePl(Znear::SparseArrays.SparseMatrixCSC{ComplexF32, Int64}, level::MoM_Kernels.LevelInfo{Int64, Float32, MoM_Kernels.LagrangeInterpInfo{Int64, Float32}}) @ MoM_Kernels ~/.julia/packages/MoM_Kernels/1VYtG/src/MLFMA/Precondition/SAI.jl:241 [11] test_opt_solving(geosInfo::Vector{AbstractVector}, bfsInfo::Vector{Vector}; source::Nothing) @ Main ~/.julia/packages/MoM_Kernels/1VYtG/test/Matrix and Solving.jl:38 [12] test_opt_solving(geosInfo::Vector{AbstractVector}, bfsInfo::Vector{Vector}) @ Main ~/.julia/packages/MoM_Kernels/1VYtG/test/Matrix and Solving.jl:20 [13] macro expansion @ ~/.julia/packages/MoM_Kernels/1VYtG/test/runtests.jl:143 [inlined] [14] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1669 [inlined] [15] macro expansion @ ~/.julia/packages/MoM_Kernels/1VYtG/test/runtests.jl:134 [inlined] [16] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [17] macro expansion @ ~/.julia/packages/MoM_Kernels/1VYtG/test/runtests.jl:129 [inlined] [18] macro expansion @ /opt/julia/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] [19] top-level scope @ ~/.julia/packages/MoM_Kernels/1VYtG/test/runtests.jl:12 [20] include(fname::String) @ Base.MainInclude ./client.jl:494 [21] top-level scope @ none:6 [22] eval @ ./boot.jl:385 [inlined] [23] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [24] _start() @ Base ./client.jl:557 Test Summary: | Pass Error Total Time MoM_Kernels.jl | 137 3 140 8m38.0s Triangle, RWG | 39 39 3m49.4s Terahedron, PWC and SWG | 19 1 20 1m23.4s PWC, SWG | 13 13 54.6s PWC, SWG | 5 1 6 28.8s Hexadron, PWC and RBF | 27 27 1m03.6s Tetra + Hexadron, PWC | 14 14 30.9s Tri + Tetra, RWG + SWG, RWG + PWC | 19 1 20 1m20.0s RWG + SWG, RWG + PWC | 13 13 57.4s RWG + SWG, RWG + PWC | 5 1 6 22.5s Tri + Hexa, RWG + PWC, RWG + RBF | 19 1 20 29.8s RWG + SWG, RWG + PWC | 13 13 14.2s RWG + SWG, RWG + PWC | 5 1 6 15.6s ERROR: LoadError: Some tests did not pass: 137 passed, 0 failed, 3 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/MoM_Kernels/1VYtG/test/runtests.jl:9 ERROR: LoadError: Package MoM_Kernels errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.10/Pkg/src/Types.jl:70 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:2034 [3] test @ /opt/julia/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:1915 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::Base.PipeEndpoint}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:444 [5] test(pkgs::Vector{Pkg.Types.PackageSpec}; io::Base.PipeEndpoint, kwargs::@Kwargs{}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:159 [6] test(pkgs::Vector{Pkg.Types.PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:148 [7] test @ /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:147 [inlined] [8] test @ /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:146 [inlined] [9] top-level scope @ ~/.julia/packages/MoM_AllinOne/sNZtM/test/runtests.jl:4 [10] include(fname::String) @ Base.MainInclude ./client.jl:494 [11] top-level scope @ none:6 in expression starting at /home/pkgeval/.julia/packages/MoM_AllinOne/sNZtM/test/runtests.jl:3 Testing failed after 657.55s ERROR: LoadError: Package MoM_AllinOne errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.10/Pkg/src/Types.jl:70 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:2034 [3] test @ /opt/julia/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:1915 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{Pkg.Types.PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::Base.PipeEndpoint}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:444 [5] test(pkgs::Vector{Pkg.Types.PackageSpec}; io::Base.PipeEndpoint, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:159 [6] test @ /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:147 [inlined] [7] #test#74 @ /opt/julia/share/julia/stdlib/v1.10/Pkg/src/API.jl:146 [inlined] [8] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 1924.64s: package fails to precompile