Package evaluation of MatrixProductBP on Julia 1.10.8 (92f03a4775*) started at 2025-02-25T15:26:13.984 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 5.09s ################################################################################ # Installation # Installing MatrixProductBP... Resolving package versions... Updating `~/.julia/environments/v1.10/Project.toml` [3d39929c] + MatrixProductBP v0.9.0 Updating `~/.julia/environments/v1.10/Manifest.toml` [7d9f7c33] + Accessors v0.1.41 [79e6a3ab] + Adapt v4.2.0 [66dad0bd] + AliasTables v1.1.3 [dce04be8] + ArgCheck v2.4.0 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.18.0 [198e06fe] + BangBang v0.4.3 [9718e550] + Baselet v0.1.1 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] + CPUSummary v0.2.6 [49dc2e85] + Calculus v0.5.2 [217fe2f1] + CavityTools v1.2.2 [d360d2e6] + ChainRulesCore v1.25.1 [fb6a15b2] + CloseOpenIntervals v0.1.13 [f70d9fcc] + CommonWorldInvalidations v1.0.0 [34da2185] + Compat v4.16.0 [a33af91c] + CompositionsBase v0.1.2 [187b0558] + ConstructionBase v1.5.8 [6add18c4] + ContextVariablesX v0.1.3 [adafc99b] + CpuId v0.3.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.20 [e2d170a0] + DataValueInterfaces v1.0.0 [244e2a9f] + DefineSingletons v0.1.2 [b552c78f] + DiffRules v1.15.1 [31c24e10] + Distributions v0.25.117 [ffbed154] + DocStringExtensions v0.9.3 [cc61a311] + FLoops v0.2.2 [b9860ae5] + FLoopsBase v0.1.1 [9aa1b823] + FastClosures v0.3.2 [1a297f60] + FillArrays v1.13.0 [9c68100b] + FoldsThreads v0.1.2 [069b7b12] + FunctionWrappers v1.1.3 ⌅ [46192b85] + GPUArraysCore v0.1.6 [86223c79] + Graphs v1.12.0 [f0d1745a] + HalfIntegers v1.6.0 [3e5b6fbb] + HostCPUFeatures v0.1.17 [34004b35] + HypergeometricFunctions v0.3.27 [615f187c] + IfElse v0.1.1 [8a731c18] + IndexedGraphs v0.6.1 [d25df0c9] + Inflate v0.1.5 [22cec73e] + InitialValues v0.3.1 [18e54dd8] + IntegerMathUtils v0.1.2 [3587e190] + InverseFunctions v0.1.17 [41ab1584] + InvertedIndices v1.3.1 [92d709cd] + IrrationalConstants v0.2.4 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.0 [b14d175d] + JuliaVariables v0.2.4 [2c470bb0] + Kronecker v0.5.5 ⌅ [0b1a1467] + KrylovKit v0.8.3 [8ac3fa9e] + LRUCache v1.6.1 [10f19ff3] + LayoutPointers v0.1.17 [50d2b5c4] + Lazy v0.15.1 [1fad7336] + LazyStack v0.1.3 [2ab3a3ac] + LogExpFunctions v0.3.29 [aa2f6b4e] + LogarithmicNumbers v1.4.0 [e6f89c97] + LoggingExtras v1.1.0 [bdcacae8] + LoopVectorization v0.12.171 ⌅ [33e6dc65] + MKL v0.7.0 [d8e11817] + MLStyle v0.4.17 ⌅ [bb1c41ca] + MPSKit v0.11.6 [1914dd2f] + MacroTools v0.5.15 [d125e4d3] + ManualMemory v0.1.8 [3d39929c] + MatrixProductBP v0.9.0 [eff96d63] + Measurements v2.12.0 [128add7d] + MicroCollections v0.2.0 [e1d29d7a] + Missings v1.2.0 [77ba4419] + NaNMath v1.1.2 [71a1bf82] + NameResolution v0.1.5 [356022a1] + NamedDims v1.2.2 [6fe1bfb0] + OffsetArrays v1.15.0 ⌅ [77e91f04] + OptimKit v0.3.1 [bac558e1] + OrderedCollections v1.8.0 [90014a1f] + PDMats v0.11.32 [65ce6f38] + PackageExtensionCompat v1.0.2 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [8162dcfd] + PrettyPrint v0.2.0 [27ebfcd6] + Primes v0.5.6 [92933f4c] + ProgressMeter v1.10.2 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [308eb6b3] + RationalRoots v0.2.1 [3cdcf5f2] + RecipesBase v1.3.4 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.0 [79098fc4] + Rmath v0.8.0 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 [efcf1570] + Setfield v1.1.1 [699a6c99] + SimpleTraits v0.9.4 [a2af1166] + SortingAlgorithms v1.2.1 [276daf66] + SpecialFunctions v2.5.0 [171d559e] + SplittablesBase v0.1.15 [aedffcd0] + Static v1.1.1 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.12 [1e83bf80] + StaticArraysCore v1.4.3 [82ae8749] + StatsAPI v1.7.0 [2913bbd2] + StatsBase v0.34.4 [4c63d2b9] + StatsFuns v1.3.2 ⌃ [5e0ebb24] + Strided v2.1.1 ⌅ [4db3bf67] + StridedViews v0.2.2 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.0 [02d47bb6] + TensorCast v0.4.8 ⌅ [07d1fe3e] + TensorKit v0.12.7 ⌃ [11fa318c] + TensorKitManifolds v0.7.0 ⌅ [6aa20fa7] + TensorOperations v4.1.1 [89893e69] + TensorTrains v0.12.1 [8290d209] + ThreadingUtilities v0.5.2 [d94bfb22] + TrackingHeaps v0.1.0 [28d57a85] + Transducers v0.4.84 [24ddb15e] + TransmuteDims v0.1.16 [bc48ee85] + Tullio v0.3.8 [9d95972d] + TupleTools v1.6.0 [3a884ed6] + UnPack v1.0.2 [41fe7b60] + Unzip v0.2.0 ⌅ [409d34a3] + VectorInterface v0.4.9 [3d5dd08c] + VectorizationBase v0.21.71 [9f57e263] + WignerSymbols v2.0.0 ⌅ [1d5cc7b8] + IntelOpenMP_jll v2024.2.1+0 ⌅ [856f044c] + MKL_jll v2024.2.0+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [1317d2d5] + oneTBB_jll v2022.0.0+0 [0dad84c5] + ArgTools v1.1.1 [56f22d72] + Artifacts [2a0f44e3] + Base64 [ade2ca70] + Dates [8ba89e20] + Distributed [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching [9fa8497b] + Future [b77e0a4c] + InteractiveUtils [4af54fe1] + LazyArtifacts [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 [8f399da3] + Libdl [37e2e46d] + LinearAlgebra [56ddb016] + Logging [d6f4376e] + Markdown [a63ad114] + Mmap [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.10.0 [de0858da] + Printf [3fa0cd96] + REPL [9a3f8284] + Random [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization [1a1011a3] + SharedArrays [6462fe0b] + Sockets [2f01184e] + SparseArrays v1.10.0 [10745b16] + Statistics v1.10.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test [cf7118a7] + UUIDs [4ec0a83e] + Unicode [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.4.0+0 [e37daf67] + LibGit2_jll v1.6.4+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.2+1 [14a3606d] + MozillaCACerts_jll v2023.1.10 [4536629a] + OpenBLAS_jll v0.3.23+4 [05823500] + OpenLibm_jll v0.8.1+4 [bea87d4a] + SuiteSparse_jll v7.2.1+1 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.52.0+1 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 8.36s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 148.59s ################################################################################ # Testing # Testing MatrixProductBP Status `/tmp/jl_jD8OSM/Project.toml` [4c88cf16] Aqua v0.8.11 [31c24e10] Distributions v0.25.117 [86223c79] Graphs v1.12.0 [8a731c18] IndexedGraphs v0.6.1 [3d39929c] MatrixProductBP v0.9.0 [89893e69] TensorTrains v0.12.1 [9a3f8284] Random [2f01184e] SparseArrays v1.10.0 [8dfed614] Test Status `/tmp/jl_jD8OSM/Manifest.toml` [7d9f7c33] Accessors v0.1.41 [79e6a3ab] Adapt v4.2.0 [66dad0bd] AliasTables v1.1.3 [4c88cf16] Aqua v0.8.11 [dce04be8] ArgCheck v2.4.0 [ec485272] ArnoldiMethod v0.4.0 [4fba245c] ArrayInterface v7.18.0 [198e06fe] BangBang v0.4.3 [9718e550] Baselet v0.1.1 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] CPUSummary v0.2.6 [49dc2e85] Calculus v0.5.2 [217fe2f1] CavityTools v1.2.2 [d360d2e6] ChainRulesCore v1.25.1 [fb6a15b2] CloseOpenIntervals v0.1.13 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.16.0 [a33af91c] CompositionsBase v0.1.2 [187b0558] ConstructionBase v1.5.8 [6add18c4] ContextVariablesX v0.1.3 [adafc99b] CpuId v0.3.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.20 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [b552c78f] DiffRules v1.15.1 [31c24e10] Distributions v0.25.117 [ffbed154] DocStringExtensions v0.9.3 [cc61a311] FLoops v0.2.2 [b9860ae5] FLoopsBase v0.1.1 [9aa1b823] FastClosures v0.3.2 [1a297f60] FillArrays v1.13.0 [9c68100b] FoldsThreads v0.1.2 [069b7b12] FunctionWrappers v1.1.3 ⌅ [46192b85] GPUArraysCore v0.1.6 [86223c79] Graphs v1.12.0 [f0d1745a] HalfIntegers v1.6.0 [3e5b6fbb] HostCPUFeatures v0.1.17 [34004b35] HypergeometricFunctions v0.3.27 [615f187c] IfElse v0.1.1 [8a731c18] IndexedGraphs v0.6.1 [d25df0c9] Inflate v0.1.5 [22cec73e] InitialValues v0.3.1 [18e54dd8] IntegerMathUtils v0.1.2 [3587e190] InverseFunctions v0.1.17 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.4 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.0 [b14d175d] JuliaVariables v0.2.4 [2c470bb0] Kronecker v0.5.5 ⌅ [0b1a1467] KrylovKit v0.8.3 [8ac3fa9e] LRUCache v1.6.1 [10f19ff3] LayoutPointers v0.1.17 [50d2b5c4] Lazy v0.15.1 [1fad7336] LazyStack v0.1.3 [2ab3a3ac] LogExpFunctions v0.3.29 [aa2f6b4e] LogarithmicNumbers v1.4.0 [e6f89c97] LoggingExtras v1.1.0 [bdcacae8] LoopVectorization v0.12.171 ⌅ [33e6dc65] MKL v0.7.0 [d8e11817] MLStyle v0.4.17 ⌅ [bb1c41ca] MPSKit v0.11.6 [1914dd2f] MacroTools v0.5.15 [d125e4d3] ManualMemory v0.1.8 [3d39929c] MatrixProductBP v0.9.0 [eff96d63] Measurements v2.12.0 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [77ba4419] NaNMath v1.1.2 [71a1bf82] NameResolution v0.1.5 [356022a1] NamedDims v1.2.2 [6fe1bfb0] OffsetArrays v1.15.0 ⌅ [77e91f04] OptimKit v0.3.1 [bac558e1] OrderedCollections v1.8.0 [90014a1f] PDMats v0.11.32 [65ce6f38] PackageExtensionCompat v1.0.2 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [8162dcfd] PrettyPrint v0.2.0 [27ebfcd6] Primes v0.5.6 [92933f4c] ProgressMeter v1.10.2 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [308eb6b3] RationalRoots v0.2.1 [3cdcf5f2] RecipesBase v1.3.4 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.0 [79098fc4] Rmath v0.8.0 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 [efcf1570] Setfield v1.1.1 [699a6c99] SimpleTraits v0.9.4 [a2af1166] SortingAlgorithms v1.2.1 [276daf66] SpecialFunctions v2.5.0 [171d559e] SplittablesBase v0.1.15 [aedffcd0] Static v1.1.1 [0d7ed370] StaticArrayInterface v1.8.0 [90137ffa] StaticArrays v1.9.12 [1e83bf80] StaticArraysCore v1.4.3 [82ae8749] StatsAPI v1.7.0 [2913bbd2] StatsBase v0.34.4 [4c63d2b9] StatsFuns v1.3.2 ⌃ [5e0ebb24] Strided v2.1.1 ⌅ [4db3bf67] StridedViews v0.2.2 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.0 [02d47bb6] TensorCast v0.4.8 ⌅ [07d1fe3e] TensorKit v0.12.7 ⌃ [11fa318c] TensorKitManifolds v0.7.0 ⌅ [6aa20fa7] TensorOperations v4.1.1 [89893e69] TensorTrains v0.12.1 [8290d209] ThreadingUtilities v0.5.2 [d94bfb22] TrackingHeaps v0.1.0 [28d57a85] Transducers v0.4.84 [24ddb15e] TransmuteDims v0.1.16 [bc48ee85] Tullio v0.3.8 [9d95972d] TupleTools v1.6.0 [3a884ed6] UnPack v1.0.2 [41fe7b60] Unzip v0.2.0 ⌅ [409d34a3] VectorInterface v0.4.9 [3d5dd08c] VectorizationBase v0.21.71 [9f57e263] WignerSymbols v2.0.0 ⌅ [1d5cc7b8] IntelOpenMP_jll v2024.2.1+0 ⌅ [856f044c] MKL_jll v2024.2.0+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [1317d2d5] oneTBB_jll v2022.0.0+0 [0dad84c5] ArgTools v1.1.1 [56f22d72] Artifacts [2a0f44e3] Base64 [ade2ca70] Dates [8ba89e20] Distributed [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching [9fa8497b] Future [b77e0a4c] InteractiveUtils [4af54fe1] LazyArtifacts [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 [8f399da3] Libdl [37e2e46d] LinearAlgebra [56ddb016] Logging [d6f4376e] Markdown [a63ad114] Mmap [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.10.0 [de0858da] Printf [3fa0cd96] REPL [9a3f8284] Random [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization [1a1011a3] SharedArrays [6462fe0b] Sockets [2f01184e] SparseArrays v1.10.0 [10745b16] Statistics v1.10.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test [cf7118a7] UUIDs [4ec0a83e] Unicode [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.4.0+0 [e37daf67] LibGit2_jll v1.6.4+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.2+1 [14a3606d] MozillaCACerts_jll v2023.1.10 [4536629a] OpenBLAS_jll v0.3.23+4 [05823500] OpenLibm_jll v0.8.1+4 [bea87d4a] SuiteSparse_jll v7.2.1+1 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.52.0+1 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... Test Summary: | Pass Total Time Aqua | 11 11 1m08.9s Running PopDyn: iter 2 Time: 0:00:00 it: 2/100 ε: 0.000594826355445/1.0e-15     Running PopDyn: iter 5 Time: 0:00:00 it: 5/100 ε: 0.005990738169317/1.0e-15     Running PopDyn: iter 8 Time: 0:00:00 it: 8/100 ε: 0.004280410262719/1.0e-15     Running PopDyn: iter 11 Time: 0:00:00 it: 11/100 ε: 0.03611190868655/1.0e-15     Running PopDyn: iter 14 Time: 0:00:00 it: 14/100 ε: 0.023977502274978/1.0e-15     Running PopDyn: iter 17 Time: 0:00:00 it: 17/100 ε: 0.155274786706015/1.0e-15     Running PopDyn: iter 20 Time: 0:00:01 it: 20/100 ε: 0.092516579402735/1.0e-15     Running PopDyn: iter 23 Time: 0:00:01 it: 23/100 ε: 0.351600298336632/1.0e-15     Running PopDyn: iter 26 Time: 0:00:01 it: 26/100 ε: 0.079269640006446/1.0e-15     Running PopDyn: iter 29 Time: 0:00:01 it: 29/100 ε: 0.089557434472396/1.0e-15     Running PopDyn: iter 32 Time: 0:00:01 it: 32/100 ε: 0.007017307644132/1.0e-15     Running PopDyn: iter 35 Time: 0:00:01 it: 35/100 ε: 0.005159994611398/1.0e-15     Running PopDyn: iter 38 Time: 0:00:01 it: 38/100 ε: 0.000335188599779/1.0e-15     Running PopDyn: iter 41 Time: 0:00:01 it: 41/100 ε: 0.000238140889073/1.0e-15     Running PopDyn: iter 44 Time: 0:00:02 it: 44/100 ε: 1.53178596e-5/1.0e-15     Running PopDyn: iter 47 Time: 0:00:02 it: 47/100 ε: 1.0829903724e-5/1.0e-15     Running PopDyn: iter 50 Time: 0:00:02 it: 50/100 ε: 6.96269581e-7/1.0e-15     Running PopDyn: iter 53 Time: 0:00:02 it: 53/100 ε: 4.91972023e-7/1.0e-15     Running PopDyn: iter 56 Time: 0:00:02 it: 56/100 ε: 3.1587775e-8/1.0e-15     Running PopDyn: iter 59 Time: 0:00:02 it: 59/100 ε: 2.2292829e-8/1.0e-15     Running PopDyn: iter 62 Time: 0:00:02 it: 62/100 ε: 1.434921e-9/1.0e-15     Running PopDyn: iter 65 Time: 0:00:03 it: 65/100 ε: 1.015087e-9/1.0e-15     Running PopDyn: iter 68 Time: 0:00:03 it: 68/100 ε: 6.5233e-11/1.0e-15     Running PopDyn: iter 71 Time: 0:00:03 it: 71/100 ε: 4.5949e-11/1.0e-15     Running PopDyn: iter 74 Time: 0:00:03 it: 74/100 ε: 2.907e-12/1.0e-15     Running PopDyn: iter 77 Time: 0:00:03 it: 77/100 ε: 2.086e-12/1.0e-15     Running PopDyn: iter 80 Time: 0:00:03 it: 80/100 ε: 1.34e-13/1.0e-15     Running PopDyn: iter 83 Time: 0:00:03 it: 83/100 ε: 1.08e-13/1.0e-15     Running PopDyn: iter 86 Time: 0:00:03 it: 86/100 ε: 6.0e-15/1.0e-15  Test Summary: | Pass Total Time Equilibrium | 1 1 0.2s Running MPBP: iter 2 Time: 0:02:04 Δ: 0.4933186766876245 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 7 Time: 0:02:05 Δ: 0.02341246104595962 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 10 Time: 0:02:05 Δ: 0.005799671073017709 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 13 Time: 0:02:05 Δ: 0.0034664624869109595 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 16 Time: 0:02:05 Δ: 0.0011750558203058592 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 19 Time: 0:02:05 Δ: 0.0004864868516920584 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 22 Time: 0:02:05 Δ: 0.0001516245978501196 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 25 Time: 0:02:05 Δ: 5.143014305053484e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 28 Time: 0:02:05 Δ: 2.1340373915990085e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 31 Time: 0:02:06 Δ: 6.79500065281502e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 34 Time: 0:02:06 Δ: 2.396495301315582e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 37 Time: 0:02:06 Δ: 7.539254447408439e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 40 Time: 0:02:06 Δ: 2.0019238555768482e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 43 Time: 0:02:06 Δ: 6.225357096489859e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 46 Time: 0:02:06 Δ: 1.268482807681437e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 49 Time: 0:02:06 Δ: 8.666093620490756e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 52 Time: 0:02:07 Δ: 2.7943998226476197e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 55 Time: 0:02:07 Δ: 1.346623035303196e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 58 Time: 0:02:07 Δ: 4.3047321263145477e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 61 Time: 0:02:07 Δ: 1.603976951258801e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 64 Time: 0:02:07 Δ: 5.519185108937563e-11 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 67 Time: 0:02:07 Δ: 1.7589263379136355e-11 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 70 Time: 0:02:07 Δ: 6.757261417078553e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 73 Time: 0:02:07 Δ: 2.135402965564026e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 76 Time: 0:02:08 Δ: 6.403766406037903e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 79 Time: 0:02:08 Δ: 2.013944566670034e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 82 Time: 0:02:08 Δ: 3.9745984281580604e-14 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 85 Time: 0:02:08 Δ: 1.9539925233402755e-14 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 88 Time: 0:02:08 Δ: 7.993605777301127e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 91 Time: 0:02:08 Δ: 3.552713678800501e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 94 Time: 0:02:08 Δ: 1.1102230246251565e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 97 Time: 0:02:08 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 100 Time: 0:02:09 Δ: 6.661338147750939e-16 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 102 Time: 0:02:18 Δ: 0.5260864054144496 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 103 Time: 0:02:18 Δ: 0.05525748603286029 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 104 Time: 0:02:18 Δ: 0.04494394963084636 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 105 Time: 0:02:18 Δ: 0.01305683433679361 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 106 Time: 0:02:18 Δ: 0.00970213997596936 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 107 Time: 0:02:19 Δ: 0.0020283160543943524 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 108 Time: 0:02:19 Δ: 0.0016775718997119604 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 109 Time: 0:02:19 Δ: 0.00039163536039676927 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 110 Time: 0:02:19 Δ: 0.000350630281132025 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 111 Time: 0:02:19 Δ: 6.882256652684937e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 112 Time: 0:02:19 Δ: 6.112898798216193e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 113 Time: 0:02:20 Δ: 1.2951035044839188e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 114 Time: 0:02:20 Δ: 1.2519248069331468e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 115 Time: 0:02:20 Δ: 2.4629264558928554e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 116 Time: 0:02:20 Δ: 2.2302080353586717e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 117 Time: 0:02:20 Δ: 4.4618194428025504e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 118 Time: 0:02:20 Δ: 4.398875881328479e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 119 Time: 0:02:21 Δ: 8.51396695367157e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 120 Time: 0:02:21 Δ: 7.963854553594274e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 121 Time: 0:02:21 Δ: 1.5516955720329406e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 122 Time: 0:02:21 Δ: 1.5274036258006163e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 123 Time: 0:02:21 Δ: 2.9347493324394236e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 124 Time: 0:02:21 Δ: 2.8276767594093144e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 125 Time: 0:02:22 Δ: 6.112619299614153e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 126 Time: 0:02:22 Δ: 5.283480319917544e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 127 Time: 0:02:22 Δ: 1.2120104919688401e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 128 Time: 0:02:22 Δ: 1.0002088046690005e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 129 Time: 0:02:22 Δ: 2.5907720413442803e-11 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 130 Time: 0:02:22 Δ: 1.8526291611919987e-11 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 131 Time: 0:02:23 Δ: 5.190292640122607e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 132 Time: 0:02:23 Δ: 3.5160763189878708e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 133 Time: 0:02:23 Δ: 1.0722533971829762e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 134 Time: 0:02:23 Δ: 6.52811138479592e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 135 Time: 0:02:23 Δ: 2.142730437526552e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 136 Time: 0:02:23 Δ: 1.2234657731369225e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 137 Time: 0:02:24 Δ: 4.4853010194856324e-14 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 138 Time: 0:02:24 Δ: 2.3092638912203256e-14 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 139 Time: 0:02:24 Δ: 9.103828801926284e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 140 Time: 0:02:24 Δ: 4.884981308350689e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 141 Time: 0:02:24 Δ: 3.552713678800501e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 142 Time: 0:02:24 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 143 Time: 0:02:25 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 144 Time: 0:02:25 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 145 Time: 0:02:25 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 146 Time: 0:02:25 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 147 Time: 0:02:25 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 148 Time: 0:02:25 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 149 Time: 0:02:26 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 150 Time: 0:02:26 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 151 Time: 0:02:26 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 152 Time: 0:02:26 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 153 Time: 0:02:26 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 154 Time: 0:02:26 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 155 Time: 0:02:26 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 156 Time: 0:02:27 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 157 Time: 0:02:27 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 158 Time: 0:02:27 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 159 Time: 0:02:27 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 172 Time: 0:02:31 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 173 Time: 0:02:31 Δ: 8.881784197001252e-16 trunc: ("SVD tolerance", "0.0")  Test Summary: | Pass Total Time Glauber infinite graph | 2 2 2m35.1s Running MPBP: iter 2 Time: 0:00:00 Δ: 0.37742576912570946 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 5 Time: 0:00:00 Δ: 0.0003158340292810369 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 7 Time: 0:00:01 Δ: 3.912362682712001e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 9 Time: 0:00:01 Δ: 9.94778526219875e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 11 Time: 0:00:01 Δ: 3.972884243808039e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 13 Time: 0:00:01 Δ: 1.991740106177531e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 16 Time: 0:00:01 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 18 Time: 0:00:02 Δ: 0.4814217511863865 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 20 Time: 0:00:02 Δ: 0.045793239685444354 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 21 Time: 0:00:02 Δ: 0.004817938416089129 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 22 Time: 0:00:02 Δ: 0.0004655584267228008 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 23 Time: 0:00:02 Δ: 1.4981102886002517e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 24 Time: 0:00:02 Δ: 4.1235162406838555e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 25 Time: 0:00:03 Δ: 6.650030326404988e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 26 Time: 0:00:03 Δ: 4.531440089827754e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 27 Time: 0:00:03 Δ: 1.9680996832249775e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 28 Time: 0:00:03 Δ: 6.826257337166908e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 29 Time: 0:00:03 Δ: 8.015743624412153e-11 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 31 Time: 0:00:03 Δ: 4.4009240696141205e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 32 Time: 0:00:03 Δ: 9.947598300641403e-14 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 34 Time: 0:00:03 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 35 Time: 0:00:04 Δ: 1.1102230246251565e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 36 Time: 0:00:04 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 37 Time: 0:00:04 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 38 Time: 0:00:04 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 39 Time: 0:00:04 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 40 Time: 0:00:04 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 42 Time: 0:00:04 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 44 Time: 0:00:05 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 45 Time: 0:00:05 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 46 Time: 0:00:05 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 47 Time: 0:00:05 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 48 Time: 0:00:05 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 49 Time: 0:00:05 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 51 Time: 0:00:05 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 52 Time: 0:00:05 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 53 Time: 0:00:05 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 55 Time: 0:00:06 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 56 Time: 0:00:06 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 58 Time: 0:00:06 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 60 Time: 0:00:06 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 62 Time: 0:00:06 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 64 Time: 0:00:07 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 66 Time: 0:00:07 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 67 Time: 0:00:07 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 68 Time: 0:00:07 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 70 Time: 0:00:07 Δ: 1.1102230246251565e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 72 Time: 0:00:07 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 74 Time: 0:00:08 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 76 Time: 0:00:08 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 77 Time: 0:00:08 Δ: 3.9968028886505635e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 79 Time: 0:00:08 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 80 Time: 0:00:08 Δ: 1.1102230246251565e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 82 Time: 0:00:08 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 83 Time: 0:00:08 Δ: 3.1086244689504383e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 84 Time: 0:00:09 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 86 Time: 0:00:09 Δ: 3.9968028886505635e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 88 Time: 0:00:09 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 90 Time: 0:00:09 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 92 Time: 0:00:09 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 94 Time: 0:00:10 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 96 Time: 0:00:10 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 98 Time: 0:00:10 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 99 Time: 0:00:10 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 100 Time: 0:00:10 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 102 Time: 0:00:10 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 104 Time: 0:00:11 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 105 Time: 0:00:11 Δ: 3.774758283725532e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 107 Time: 0:00:11 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 108 Time: 0:00:11 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 110 Time: 0:00:11 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 112 Time: 0:00:11 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 114 Time: 0:00:12 Δ: 1.1102230246251565e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 116 Time: 0:00:12 Δ: 3.774758283725532e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 118 Time: 0:00:12 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 120 Time: 0:00:12 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 121 Time: 0:00:12 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 123 Time: 0:00:13 Δ: 3.552713678800501e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 124 Time: 0:00:13 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 125 Time: 0:00:13 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 127 Time: 0:00:13 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 128 Time: 0:00:13 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 129 Time: 0:00:13 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 130 Time: 0:00:13 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 131 Time: 0:00:13 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 132 Time: 0:00:13 Δ: 3.1086244689504383e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 133 Time: 0:00:14 Δ: 3.552713678800501e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 134 Time: 0:00:14 Δ: 3.9968028886505635e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 136 Time: 0:00:14 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 137 Time: 0:00:14 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 138 Time: 0:00:14 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 139 Time: 0:00:14 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 140 Time: 0:00:14 Δ: 3.1086244689504383e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 141 Time: 0:00:14 Δ: 3.1086244689504383e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 142 Time: 0:00:14 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 144 Time: 0:00:15 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 145 Time: 0:00:15 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 147 Time: 0:00:15 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 148 Time: 0:00:15 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 150 Time: 0:00:15 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 151 Time: 0:00:15 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 152 Time: 0:00:15 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 153 Time: 0:00:16 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 155 Time: 0:00:16 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 156 Time: 0:00:16 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 157 Time: 0:00:16 Δ: 1.1102230246251565e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 159 Time: 0:00:16 Δ: 3.1086244689504383e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 160 Time: 0:00:16 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 162 Time: 0:00:16 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 163 Time: 0:00:17 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 164 Time: 0:00:17 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 165 Time: 0:00:17 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 166 Time: 0:00:17 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 167 Time: 0:00:17 Δ: 3.1086244689504383e-15 trunc: ("SVD tolerance", "0.0")  Test Summary: | Pass Total Time Glauber infinite bipartite graph | 2 2 18.9s Computing joint probability 0%| | ETA: 4:59:26 Computing joint probability 100%|████████████████████████| Time: 0:00:01 Computing exact marginals 11%|███ | ETA: 0:00:01 Computing exact marginals 26%|██████▉ | ETA: 0:00:01 Computing exact marginals 47%|████████████▏ | ETA: 0:00:00 Computing exact marginals 66%|█████████████████▎ | ETA: 0:00:00 Computing exact marginals 86%|██████████████████████▍ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 20%|█████▎ | ETA: 0:00:00 Computing exact marginals 40%|██████████▌ | ETA: 0:00:00 Computing exact marginals 60%|███████████████▌ | ETA: 0:00:00 Computing exact marginals 79%|████████████████████▋ | ETA: 0:00:00 Computing exact marginals 99%|█████████████████████████▊| ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 42%|██████████▏ | ETA: 0:00:00 Computing joint probability 85%|████████████████████▍ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 20%|█████▎ | ETA: 0:00:00 Computing exact marginals 40%|██████████▍ | ETA: 0:00:00 Computing exact marginals 60%|███████████████▋ | ETA: 0:00:00 Computing exact marginals 79%|████████████████████▌ | ETA: 0:00:00 Computing exact marginals 97%|█████████████████████████▏| ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Test Summary: | Pass Total Time Glauber ±J small tree | 13 13 2m06.4s Computing joint probability 0%| | ETA: 0:51:47 Computing joint probability 99%|███████████████████████▋| ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 15%|███▉ | ETA: 0:00:01 Computing exact marginals 74%|███████████████████▎ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 71%|██████████████████▌ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 99%|███████████████████████▊| ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 62%|████████████████▏ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 93%|██████████████████████▍ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact pair marginals 9%|█▉ | ETA: 0:00:01 Computing exact pair marginals 23%|████▉ | ETA: 0:00:01 Computing exact pair marginals 38%|███████▉ | ETA: 0:00:00 Computing exact pair marginals 52%|██████████▉ | ETA: 0:00:00 Computing exact pair marginals 67%|██████████████ | ETA: 0:00:00 Computing exact pair marginals 83%|█████████████████▌ | ETA: 0:00:00 Computing exact pair marginals 99%|████████████████████▉| ETA: 0:00:00 Computing exact pair marginals 100%|█████████████████████| Time: 0:00:00 Computing joint probability 92%|██████████████████████▏ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact pair marginals 15%|███▏ | ETA: 0:00:01 Computing exact pair marginals 30%|██████▎ | ETA: 0:00:00 Computing exact pair marginals 45%|█████████▌ | ETA: 0:00:00 Computing exact pair marginals 61%|████████████▊ | ETA: 0:00:00 Computing exact pair marginals 76%|████████████████ | ETA: 0:00:00 Computing exact pair marginals 92%|███████████████████▎ | ETA: 0:00:00 Computing exact pair marginals 100%|█████████████████████| Time: 0:00:00 Computing joint probability 96%|███████████████████████▏| ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact pair marginals 14%|██▉ | ETA: 0:00:01 Computing exact pair marginals 29%|██████ | ETA: 0:00:01 Computing exact pair marginals 44%|█████████▎ | ETA: 0:00:00 Computing exact pair marginals 59%|████████████▍ | ETA: 0:00:00 Computing exact pair marginals 75%|███████████████▋ | ETA: 0:00:00 Computing exact pair marginals 90%|██████████████████▉ | ETA: 0:00:00 Computing exact pair marginals 100%|█████████████████████| Time: 0:00:00 Computing joint probability 47%|███████████▏ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 64%|████████████████▌ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 66%|█████████████████▏ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 99%|███████████████████████▋| ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 65%|████████████████▉ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 94%|██████████████████████▋ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact pair marginals 15%|███▏ | ETA: 0:00:01 Computing exact pair marginals 30%|██████▎ | ETA: 0:00:00 Computing exact pair marginals 45%|█████████▍ | ETA: 0:00:00 Computing exact pair marginals 60%|████████████▌ | ETA: 0:00:00 Computing exact pair marginals 74%|███████████████▋ | ETA: 0:00:00 Computing exact pair marginals 90%|██████████████████▉ | ETA: 0:00:00 Computing exact pair marginals 100%|█████████████████████| Time: 0:00:00 Computing joint probability 99%|███████████████████████▊| ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact pair marginals 17%|███▋ | ETA: 0:00:01 Computing exact pair marginals 33%|██████▉ | ETA: 0:00:00 Computing exact pair marginals 48%|██████████▏ | ETA: 0:00:00 Computing exact pair marginals 63%|█████████████▏ | ETA: 0:00:00 Computing exact pair marginals 78%|████████████████▌ | ETA: 0:00:00 Computing exact pair marginals 94%|███████████████████▊ | ETA: 0:00:00 Computing exact pair marginals 100%|█████████████████████| Time: 0:00:00 Computing joint probability 93%|██████████████████████▎ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 31%|███████▉ | ETA: 0:00:00 Computing exact marginals 86%|██████████████████████▍ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 59%|███████████████▎ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 93%|██████████████████████▍ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 65%|████████████████▉ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Test Summary: | Pass Total Time Glauber small tree | 20 20 1m18.0s Computing joint probability 0%|▏ | ETA: 0:00:39 Computing joint probability 100%|████████████████████████| Time: 0:00:00 WARNING: Method definition f(Any, Any) in module Main at /home/pkgeval/.julia/packages/MatrixProductBP/Hhmig/test/glauber_small_tree.jl:213 overwritten at /home/pkgeval/.julia/packages/MatrixProductBP/Hhmig/test/glauber_small_tree.jl:267. ┌ Warning: #= /home/pkgeval/.julia/packages/Tullio/2zyFP/src/macro.jl:1093 =#: │ `LoopVectorization.check_args` on your inputs failed; running fallback `@inbounds @fastmath` loop instead. │ Use `warn_check_args=false`, e.g. `@turbo warn_check_args=false ...`, to disable this warning. └ @ MatrixProductBP ~/.julia/packages/LoopVectorization/tIJUA/src/condense_loopset.jl:1166 ┌ Warning: Verbosity logging macros are deprecated as they are not compatible with juliac-compiled programs │ caller = withlevel at verbosity.jl:107 [inlined] └ @ Core ~/.julia/packages/LoggingExtras/cFgEq/src/verbosity.jl:107 ┌ Warning: Verbosity logging macros are deprecated as they are not compatible with juliac-compiled programs │ caller = ip:0x0 └ @ Core :-1 ┌ Warning: Verbosity logging macros are deprecated as they are not compatible with juliac-compiled programs │ caller = withlevel at verbosity.jl:107 [inlined] └ @ Core ~/.julia/packages/LoggingExtras/cFgEq/src/verbosity.jl:107 Running MPBP: iter 2 Time: 0:02:37 (78.77 s/it) Δ: 0.31831742959129294 trunc: VUMPS truncation to bond size m'=12     Running MPBP: iter 3 Time: 0:02:45 (55.23 s/it) Δ: 0.18621640701784115 trunc: VUMPS truncation to bond size m'=12     Running MPBP: iter 4 Time: 0:02:53 (43.44 s/it) Δ: 4.440892098500626e-16 trunc: VUMPS truncation to bond size m'=12  Test Summary: | Pass Total Time IntegerGlauber small tree | 17 17 4m37.3s Test Summary: | Pass Total Time MPEM1 | 1 1 14.9s Test Summary: | Pass Total Time MPEM2 | 1 1 10.9s Test Summary: | Pass Total Time MPEM3 | 1 1 3.8s Test Summary: | Pass Total Time periodic MPEM2 | 1 1 6.9s Test Summary: | Pass Total Time periodic MPEM3 | 1 1 7.4s Running MPBP: iter 2 Time: 0:00:24 Δ: 0.25285515521725443 trunc: ("SVD tolerance", "1.0e-6")  Test Summary: | Pass Total Time Message normaliz | 1 1 27.8s Computing joint probability 85%|████████████████████▍ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing joint probability 88%|█████████████████████▎ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 64%|████████████████▌ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 80%|███████████████████▏ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 58%|███████████████▎ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 86%|████████████████████▋ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing joint probability 82%|███████████████████▌ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 58%|███████████████▏ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 89%|█████████████████████▍ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 63%|████████████████▍ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Test Summary: | Pass Total Time Pair observations | 6 6 6.0s Computing joint probability 76%|██████████████████▎ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 63%|████████████████▎ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 69%|██████████████████ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 79%|███████████████████ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 68%|█████████████████▋ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Running MPBP: iter 2 Time: 0:00:06 Δ: 0.705376113542689 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 3 Time: 0:00:06 Δ: 0.015431983668967586 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 4 Time: 0:00:06 Δ: 0.004934758922740201 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 5 Time: 0:00:07 Δ: 0.002906328647664713 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 6 Time: 0:00:07 Δ: 0.0017231288263486189 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 7 Time: 0:00:07 Δ: 0.00027373657600548995 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 8 Time: 0:00:08 Δ: 0.00030857908202119866 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 9 Time: 0:00:08 Δ: 4.796266093332058e-5 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 10 Time: 0:00:08 Δ: 5.969775345882056e-5 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 11 Time: 0:00:09 Δ: 9.255728549595332e-6 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 12 Time: 0:00:09 Δ: 1.1106344552258562e-5 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 13 Time: 0:00:09 Δ: 1.7485109520265496e-6 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 14 Time: 0:00:10 Δ: 2.0314844206836824e-6 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 15 Time: 0:00:10 Δ: 3.2709591013535544e-7 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 16 Time: 0:00:10 Δ: 3.6546413562099644e-7 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 17 Time: 0:00:11 Δ: 6.03582335223507e-8 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 18 Time: 0:00:11 Δ: 6.472639202392827e-8 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 19 Time: 0:00:11 Δ: 1.3028254031155484e-8 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 20 Time: 0:00:12 Δ: 1.1275415712219683e-8 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 21 Time: 0:00:12 Δ: 2.973556512131381e-9 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 22 Time: 0:00:12 Δ: 1.9283989960428016e-9 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 23 Time: 0:00:13 Δ: 6.460010304465413e-10 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 24 Time: 0:00:13 Δ: 3.2283731243865077e-10 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 25 Time: 0:00:13 Δ: 1.3547363231225518e-10 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 26 Time: 0:00:14 Δ: 5.26616528162549e-11 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 27 Time: 0:00:14 Δ: 2.7647439893030423e-11 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 28 Time: 0:00:14 Δ: 8.309575250109447e-12 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 29 Time: 0:00:15 Δ: 5.518474566201803e-12 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 30 Time: 0:00:15 Δ: 1.2532197501968767e-12 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 31 Time: 0:00:15 Δ: 1.0813572259849025e-12 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 32 Time: 0:00:16 Δ: 1.7630341631047486e-13 trunc: ("SVD Matrix size", "10")   Running MPBP: iter 2 Time: 0:00:01 Δ: 0.5904118751349734 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 3 Time: 0:00:03 Δ: 0.005178379580944581 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 4 Time: 0:00:04 Δ: 0.0019635478005404217 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 5 Time: 0:00:05 Δ: 0.00044058452528172865 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 6 Time: 0:00:07 Δ: 6.1031147183365775e-5 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 7 Time: 0:00:08 Δ: 1.052775854071264e-5 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 8 Time: 0:00:09 Δ: 1.493783412298555e-6 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 9 Time: 0:00:11 Δ: 5.674999044025242e-7 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 10 Time: 0:00:12 Δ: 1.5163195699052778e-7 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 11 Time: 0:00:13 Δ: 2.176923863395075e-8 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 12 Time: 0:00:15 Δ: 2.730206505319188e-9 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 13 Time: 0:00:16 Δ: 7.409537428060275e-10 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 14 Time: 0:00:17 Δ: 2.5725266361575905e-10 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 15 Time: 0:00:18 Δ: 4.1354697444262456e-11 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 16 Time: 0:00:20 Δ: 5.156097770964152e-12 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 17 Time: 0:00:21 Δ: 9.194867089945546e-13 trunc: ("SVD Matrix size", "10")   Computing joint probability 74%|█████████████████▉ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 67%|█████████████████▍ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 58%|███████████████▏ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 65%|███████████████▋ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 58%|███████████████ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Test Summary: | Pass Total Time Periodic | 12 12 1m07.8s Marginals from Soft Margin 50%|████████████▌ | ETA: 0:00:02 Marginals from Soft Margin 100%|█████████████████████████| Time: 0:00:01 Pair marginals from Soft Margin 33%|██████▋ | ETA: 0:00:09 Pair marginals from Soft Margin 100%|████████████████████| Time: 0:00:04 Autocorrelations from Soft Margin 50%|█████████ | ETA: 0:00:01 Autocorrelations from Soft Margin 100%|██████████████████| Time: 0:00:01 ┌ Warning: `ExponentialQueue(N::Integer)` is deprecated, use `ExponentialQueue()` instead. │ caller = ip:0x0 └ @ Core :-1 Progress: 0%| | ETA: 0:54:42 Progress: 100%|█████████████████████████████████████████| Time: 0:00:00 Test Summary: | Pass Total Time Sampling | 7 7 26.4s Computing joint probability 0%| | ETA: 0:32:55 Computing joint probability 9%|██▏ | ETA: 0:00:03 Computing joint probability 18%|████▎ | ETA: 0:00:02 Computing joint probability 27%|██████▍ | ETA: 0:00:01 Computing joint probability 35%|████████▌ | ETA: 0:00:01 Computing joint probability 44%|██████████▌ | ETA: 0:00:01 Computing joint probability 53%|████████████▊ | ETA: 0:00:01 Computing joint probability 62%|██████████████▉ | ETA: 0:00:01 Computing joint probability 71%|█████████████████ | ETA: 0:00:00 Computing joint probability 79%|███████████████████ | ETA: 0:00:00 Computing joint probability 88%|█████████████████████▏ | ETA: 0:00:00 Computing joint probability 95%|██████████████████████▉ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:01 Computing joint probability 8%|██ | ETA: 0:00:01 Computing joint probability 16%|████ | ETA: 0:00:01 Computing joint probability 25%|██████ | ETA: 0:00:01 Computing joint probability 34%|████████▏ | ETA: 0:00:01 Computing joint probability 43%|██████████▎ | ETA: 0:00:01 Computing joint probability 51%|████████████▏ | ETA: 0:00:01 Computing joint probability 59%|██████████████▎ | ETA: 0:00:01 Computing joint probability 68%|████████████████▍ | ETA: 0:00:01 Computing joint probability 76%|██████████████████▏ | ETA: 0:00:00 Computing joint probability 83%|████████████████████ | ETA: 0:00:00 Computing joint probability 91%|█████████████████████▉ | ETA: 0:00:00 Computing joint probability 99%|███████████████████████▊| ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:01 Test Summary: | Pass Total Time SIRS small tree | 27 27 34.5s Computing joint probability 42%|██████████▏ | ETA: 0:00:00 Computing joint probability 84%|████████████████████▏ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 19%|█████ | ETA: 0:00:00 Computing exact marginals 39%|██████████ | ETA: 0:00:00 Computing exact marginals 58%|███████████████▏ | ETA: 0:00:00 Computing exact marginals 78%|████████████████████▍ | ETA: 0:00:00 Computing exact marginals 98%|█████████████████████████▋| ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 18%|████▊ | ETA: 0:00:00 Computing exact marginals 36%|█████████▍ | ETA: 0:00:00 Computing exact marginals 54%|██████████████ | ETA: 0:00:00 Computing exact marginals 72%|██████████████████▋ | ETA: 0:00:00 Computing exact marginals 92%|███████████████████████▉ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 28%|██████▊ | ETA: 0:00:00 Computing joint probability 73%|█████████████████▋ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 15%|████ | ETA: 0:00:01 Computing exact marginals 36%|█████████▎ | ETA: 0:00:00 Computing exact marginals 56%|██████████████▋ | ETA: 0:00:00 Computing exact marginals 77%|████████████████████▏ | ETA: 0:00:00 Computing exact marginals 98%|█████████████████████████▌| ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 26%|██████▎ | ETA: 0:00:00 Computing joint probability 66%|███████████████▉ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 20%|█████▎ | ETA: 0:00:00 Computing exact marginals 40%|██████████▍ | ETA: 0:00:00 Computing exact marginals 61%|███████████████▉ | ETA: 0:00:00 Computing exact marginals 82%|█████████████████████▎ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 21%|█████▌ | ETA: 0:00:00 Computing exact marginals 42%|██████████▉ | ETA: 0:00:00 Computing exact marginals 62%|████████████████ | ETA: 0:00:00 Computing exact marginals 82%|█████████████████████▎ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 40%|█████████▌ | ETA: 0:00:00 Computing joint probability 79%|███████████████████ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 20%|█████▏ | ETA: 0:00:00 Computing exact marginals 40%|██████████▌ | ETA: 0:00:00 Computing exact marginals 61%|███████████████▉ | ETA: 0:00:00 Computing exact marginals 81%|█████████████████████▏ | ETA: 0:00:00 Computing exact marginals 99%|█████████████████████████▉| ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Test Summary: | Pass Total Time SIS heterogeneous small tree | 73 73 1m32.5s Running MPBP: iter 2 Time: 0:00:05 Δ: 0.17533453116736242 trunc: ("SVD Matrix size", "3")  Test Summary: | Pass Total Time SIS heterogeneous compare homogeneous | 2 2 7.9s svd_trunc = SVD truncation to bond size m'=10 Running MPBP: iter 2 Time: 0:00:00 Δ: 0.17432295565847689 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 3 Time: 0:00:00 Δ: 0.08604307508038511 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 4 Time: 0:00:00 Δ: 0.026839628259798243 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 5 Time: 0:00:00 Δ: 0.004864653793328344 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 6 Time: 0:00:00 Δ: 0.00047863782386170506 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 7 Time: 0:00:00 Δ: 1.987502578271183e-5 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 9 Time: 0:00:01 Δ: 1.213029676705446e-12 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 11 Time: 0:00:01 Δ: 4.884981308350689e-14 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 12 Time: 0:00:01 Δ: 1.9984014443252818e-15 trunc: ("SVD Matrix size", "10")  Test Summary: | Pass Total Time SIS infinite graph | 1 1 2.1s svd_trunc = SVD truncation to bond size m'=4. Max error 0.0 Computing joint probability 44%|██████████▋ | ETA: 0:00:00 Computing joint probability 88%|█████████████████████▏ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 19%|█████ | ETA: 0:00:00 Computing exact marginals 39%|██████████ | ETA: 0:00:00 Computing exact marginals 59%|███████████████▎ | ETA: 0:00:00 Computing exact marginals 79%|████████████████████▌ | ETA: 0:00:00 Computing exact marginals 99%|█████████████████████████▊| ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 19%|█████ | ETA: 0:00:00 Computing exact marginals 39%|██████████▏ | ETA: 0:00:00 Computing exact marginals 59%|███████████████▎ | ETA: 0:00:00 Computing exact marginals 79%|████████████████████▌ | ETA: 0:00:00 Computing exact marginals 99%|█████████████████████████▋| ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 41%|█████████▉ | ETA: 0:00:00 Computing joint probability 82%|███████████████████▊ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 15%|████ | ETA: 0:00:01 Computing exact marginals 35%|█████████▏ | ETA: 0:00:00 Computing exact marginals 55%|██████████████▎ | ETA: 0:00:00 Computing exact marginals 74%|███████████████████▍ | ETA: 0:00:00 Computing exact marginals 94%|████████████████████████▌ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 43%|██████████▍ | ETA: 0:00:00 Computing joint probability 86%|████████████████████▊ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact pair marginals 4%|▉ | ETA: 0:00:02 Computing exact pair marginals 11%|██▎ | ETA: 0:00:02 Computing exact pair marginals 17%|███▋ | ETA: 0:00:01 Computing exact pair marginals 24%|█████▏ | ETA: 0:00:01 Computing exact pair marginals 31%|██████▌ | ETA: 0:00:01 Computing exact pair marginals 38%|███████▉ | ETA: 0:00:01 Computing exact pair marginals 44%|█████████▎ | ETA: 0:00:01 Computing exact pair marginals 51%|██████████▋ | ETA: 0:00:01 Computing exact pair marginals 58%|████████████▏ | ETA: 0:00:01 Computing exact pair marginals 64%|█████████████▌ | ETA: 0:00:01 Computing exact pair marginals 71%|██████████████▉ | ETA: 0:00:00 Computing exact pair marginals 77%|████████████████▎ | ETA: 0:00:00 Computing exact pair marginals 84%|█████████████████▋ | ETA: 0:00:00 Computing exact pair marginals 91%|███████████████████ | ETA: 0:00:00 Computing exact pair marginals 97%|████████████████████▍| ETA: 0:00:00 Computing exact pair marginals 100%|█████████████████████| Time: 0:00:01 Computing joint probability 35%|████████▍ | ETA: 0:00:00 Computing joint probability 70%|████████████████▉ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 15%|████ | ETA: 0:00:01 Computing exact marginals 35%|█████████▏ | ETA: 0:00:00 Computing exact marginals 55%|██████████████▏ | ETA: 0:00:00 Computing exact marginals 74%|███████████████████▏ | ETA: 0:00:00 Computing exact marginals 92%|████████████████████████ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 20%|█████▏ | ETA: 0:00:00 Computing exact marginals 39%|██████████▎ | ETA: 0:00:00 Computing exact marginals 59%|███████████████▍ | ETA: 0:00:00 Computing exact marginals 79%|████████████████████▌ | ETA: 0:00:00 Computing exact marginals 98%|█████████████████████████▋| ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 35%|████████▍ | ETA: 0:00:00 Computing joint probability 70%|████████████████▉ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 19%|█████ | ETA: 0:00:00 Computing exact marginals 39%|██████████ | ETA: 0:00:00 Computing exact marginals 58%|███████████████▏ | ETA: 0:00:00 Computing exact marginals 78%|████████████████████▎ | ETA: 0:00:00 Computing exact marginals 98%|█████████████████████████▍| ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Running MPBP: iter 2 Time: 0:00:36 Δ: 0.04434081589002381 trunc: VUMPS truncation to bond size m'=10     Running MPBP: iter 3 Time: 0:00:53 Δ: 1.7763568394002505e-15 trunc: VUMPS truncation to bond size m'=10  ┌ Warning: `approximate(ψ::MPSMultiline, toapprox::Tuple{<:MPOMultiline, <:MPSMultiline}, alg::VUMPS, envs...; kwargs...)` is deprecated, use `approximate(ψ, toapprox, VOMPS(; alg.tol, alg.maxiter, alg.finalize, alg.verbosity, alg.alg_gauge, alg.alg_environments), envs...; kwargs...)` instead. │ caller = approximate(ψ::MPSKit.InfiniteMPS{TensorKit.TrivialTensorMap{TensorKit.CartesianSpace, 2, 1, Matrix{Float64}}, TensorKit.TrivialTensorMap{TensorKit.CartesianSpace, 1, 1, Matrix{Float64}}}, toapprox::Tuple{MPSKit.DenseMPO{TensorKit.TrivialTensorMap{TensorKit.CartesianSpace, 2, 2, Matrix{Float64}}}, MPSKit.InfiniteMPS{TensorKit.TrivialTensorMap{TensorKit.CartesianSpace, 2, 1, Matrix{Float64}}, TensorKit.TrivialTensorMap{TensorKit.CartesianSpace, 1, 1, Matrix{Float64}}}}, algorithm::MPSKit.VUMPS{typeof(MPSKit.Defaults._finalize)}, envs::MPSKit.PerMPOInfEnv{MPSKit.MPOMultiline{MPSKit.DenseMPO{TensorKit.TrivialTensorMap{TensorKit.CartesianSpace, 2, 2, Matrix{Float64}}}}, TensorKit.TrivialTensorMap{TensorKit.CartesianSpace, 2, 1, Matrix{Float64}}, MPSKit.MPSMultiline{MPSKit.InfiniteMPS{TensorKit.TrivialTensorMap{TensorKit.CartesianSpace, 2, 1, Matrix{Float64}}, TensorKit.TrivialTensorMap{TensorKit.CartesianSpace, 1, 1, Matrix{Float64}}}}, KrylovKit.Arnoldi{KrylovKit.ModifiedGramSchmidt2, Float64}}) at vomps.jl:5 └ @ MPSKit ~/.julia/packages/MPSKit/o3n7C/src/algorithms/approximate/vomps.jl:5 Running MPBP: iter 2 Time: 0:02:22 Δ: 6.121547713178188e-12 trunc: VUMPS truncation to bond size m'=10     Running MPBP: iter 3 Time: 0:03:21 Δ: 1.333022581206933e-11 trunc: VUMPS truncation to bond size m'=10     Running MPBP: iter 4 Time: 0:04:24 Δ: 9.68625180064464e-12 trunc: VUMPS truncation to bond size m'=10     Running MPBP: iter 5 Time: 0:05:11 Δ: 1.0649703341414352e-11 trunc: VUMPS truncation to bond size m'=10     Running MPBP: iter 6 Time: 0:06:11 Δ: 7.013722935766964e-12 trunc: VUMPS truncation to bond size m'=10     Running MPBP: iter 7 Time: 0:07:09 Δ: 5.981437567470493e-12 trunc: VUMPS truncation to bond size m'=10     Running MPBP: iter 8 Time: 0:08:04 Δ: 8.626432901337466e-12 trunc: VUMPS truncation to bond size m'=10     Running MPBP: iter 9 Time: 0:09:02 Δ: 9.277467682977658e-12 trunc: VUMPS truncation to bond size m'=10     Running MPBP: iter 10 Time: 0:09:56 Δ: 9.271028389434832e-12 trunc: VUMPS truncation to bond size m'=10  Test Summary: | Pass Total Time SIS small tree | 75 75 12m03.9s Testing MatrixProductBP tests passed Testing completed after 1772.66s PkgEval succeeded after 1973.93s