Package evaluation of Groebner on Julia 1.10.8 (92f03a4775*) started at 2025-02-25T06:32:42.882 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 3.41s ################################################################################ # Installation # Installing Groebner... Resolving package versions... Updating `~/.julia/environments/v1.10/Project.toml` [0b43b601] + Groebner v0.9.0 Updating `~/.julia/environments/v1.10/Manifest.toml` [c3fe647b] + AbstractAlgebra v0.44.8 [a9b6321e] + Atomix v1.1.0 [861a8166] + Combinatorics v1.0.2 [0b43b601] + Groebner v0.9.0 [18e54dd8] + IntegerMathUtils v0.1.2 [692b3bcd] + JLLWrappers v1.7.0 [1914dd2f] + MacroTools v0.5.15 [2edaba10] + Nemo v0.48.4 [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [27ebfcd6] + Primes v0.5.6 [fb686558] + RandomExtensions v0.4.4 [013be700] + UnsafeAtomics v0.3.0 [e134572f] + FLINT_jll v300.100.301+0 ⌅ [656ef2d0] + OpenBLAS32_jll v0.3.24+0 [56f22d72] + Artifacts [ade2ca70] + Dates [8f399da3] + Libdl [37e2e46d] + LinearAlgebra [56ddb016] + Logging [de0858da] + Printf [9a3f8284] + Random [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization [2f01184e] + SparseArrays v1.10.0 [fa267f1f] + TOML v1.0.3 [4ec0a83e] + Unicode [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [781609d7] + GMP_jll v6.2.1+6 [3a97d323] + MPFR_jll v4.2.0+1 [4536629a] + OpenBLAS_jll v0.3.23+4 [bea87d4a] + SuiteSparse_jll v7.2.1+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 3.92s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 60.1s ################################################################################ # Testing # Testing Groebner Status `/tmp/jl_H6rQfy/Project.toml` [c3fe647b] AbstractAlgebra v0.44.8 [a9b6321e] Atomix v1.1.0 [6e4b80f9] BenchmarkTools v1.6.0 [861a8166] Combinatorics v1.0.2 [7c1d4256] DynamicPolynomials v0.6.1 [0b43b601] Groebner v0.9.0 [2edaba10] Nemo v0.48.4 [aea7be01] PrecompileTools v1.2.1 [27ebfcd6] Primes v0.5.6 [b77e0a4c] InteractiveUtils [56ddb016] Logging [de0858da] Printf [9a3f8284] Random [8dfed614] Test Status `/tmp/jl_H6rQfy/Manifest.toml` [c3fe647b] AbstractAlgebra v0.44.8 [a9b6321e] Atomix v1.1.0 [6e4b80f9] BenchmarkTools v1.6.0 [d360d2e6] ChainRulesCore v1.25.1 [861a8166] Combinatorics v1.0.2 [34da2185] Compat v4.16.0 [864edb3b] DataStructures v0.18.20 [7c1d4256] DynamicPolynomials v0.6.1 [0b43b601] Groebner v0.9.0 [18e54dd8] IntegerMathUtils v0.1.2 [692b3bcd] JLLWrappers v1.7.0 [682c06a0] JSON v0.21.4 [1914dd2f] MacroTools v0.5.15 [102ac46a] MultivariatePolynomials v0.5.7 [d8a4904e] MutableArithmetics v1.6.4 [2edaba10] Nemo v0.48.4 [bac558e1] OrderedCollections v1.8.0 [69de0a69] Parsers v2.8.1 [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [27ebfcd6] Primes v0.5.6 [fb686558] RandomExtensions v0.4.4 [189a3867] Reexport v1.2.2 [013be700] UnsafeAtomics v0.3.0 [e134572f] FLINT_jll v300.100.301+0 ⌅ [656ef2d0] OpenBLAS32_jll v0.3.24+0 [56f22d72] Artifacts [2a0f44e3] Base64 [ade2ca70] Dates [9fa8497b] Future [b77e0a4c] InteractiveUtils [8f399da3] Libdl [37e2e46d] LinearAlgebra [56ddb016] Logging [d6f4376e] Markdown [a63ad114] Mmap [de0858da] Printf [9abbd945] Profile [9a3f8284] Random [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization [2f01184e] SparseArrays v1.10.0 [10745b16] Statistics v1.10.0 [fa267f1f] TOML v1.0.3 [8dfed614] Test [cf7118a7] UUIDs [4ec0a83e] Unicode [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [781609d7] GMP_jll v6.2.1+6 [3a97d323] MPFR_jll v4.2.0+1 [4536629a] OpenBLAS_jll v0.3.23+4 [bea87d4a] SuiteSparse_jll v7.2.1+1 [8e850b90] libblastrampoline_jll v5.11.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... WARNING: Method definition invariants_enabled() in module Groebner at /home/pkgeval/.julia/packages/Groebner/4DKc7/src/Groebner.jl:28 overwritten in module Main at /home/pkgeval/.julia/packages/Groebner/4DKc7/test/runtests.jl:11. Julia Version 1.10.8 Commit 92f03a4775* (2025-02-20 09:30 UTC) Platform Info: OS: Linux (x86_64-linux-gnu) CPU: 128 × AMD EPYC 7502 32-Core Processor WORD_SIZE: 64 LIBM: libopenlibm LLVM: libLLVM-15.0.7 (ORCJIT, znver2) Threads: 1 default, 0 interactive, 1 GC (on 1 virtual cores) Environment: JULIA_CPU_THREADS = 1 JULIA_NUM_PRECOMPILE_TASKS = 1 JULIA_PKG_PRECOMPILE_AUTO = 0 JULIA_PKGEVAL = true JULIA_DEPOT_PATH = /home/pkgeval/.julia:/usr/local/share/julia: JULIA_NUM_THREADS = 1 JULIA_LOAD_PATH = @:/tmp/jl_H6rQfy 5.122210 seconds (2.80 M allocations: 183.615 MiB, 1.25% gc time, 97.57% compilation time) 1.678518 seconds (757.12 k allocations: 51.671 MiB, 1.38% gc time, 98.32% compilation time) 3.583721 seconds (2.00 M allocations: 130.249 MiB, 0.73% gc time, 96.97% compilation time) 4.108365 seconds (1.80 M allocations: 122.385 MiB, 1.37% gc time, 97.54% compilation time: <1% of which was recompilation) 17.515158 seconds (6.66 M allocations: 452.787 MiB, 3.18% gc time, 98.70% compilation time) ┌ Warning: Groebner.jl does not have a native implementation for the given field: Finite field F_10715086071862673209484250490600018105614048117055336074437503883703510511249361224931983788156958581275946729175531468251871452856923140435984577574698574803934567774824230985421074605062371141877954182153046474983581941267398767559165543946077062914571196477686542167660429831652624386837205668069673. │ Falling back to a generic implementation (may be slow). │ If this is unexpected, please consider submitting a GitHub issue. └ @ Groebner ~/.julia/packages/Groebner/4DKc7/src/input_output/AbstractAlgebra.jl:80 ┌ Info: Possible overflow of exponent vector detected. └ Restarting with at least 32 bits per exponent. ┌ Info: Possible overflow of exponent vector detected. └ Restarting with at least 32 bits per exponent. ┌ Info: Possible overflow of exponent vector detected. └ Restarting with at least 32 bits per exponent. ┌ Info: Two blocks of the product ordering intersect by their variables. │ Block 1: Lex(x6,x2,x1,x5) └ Block 2: Lex(x4,x1,x3) ┌ Info: Two blocks of the product ordering intersect by their variables. │ Block 1: Lex(6,2,1,5) └ Block 2: Lex(4,1,3) [ Info: GB contains polynomials of lengths: [551, 6468, 8836, 11781, 15264, 20228, 26695, 31513, 33570, 35969, 39531, 39772, 48050, 49682, 57703, 60664, 65751] ┌ Info: Variables: └ n = 64 ┌ Info: Variables: └ n = 100 ┌ Info: Variables: └ n = 101 ┌ Info: Variables: └ n = 127 ┌ Info: Variables: └ n = 128 ┌ Info: Variables: └ n = 256 ┌ Info: Variables: └ n = 257 ┌ Info: Possible overflow of exponent vector detected. └ Restarting with at least 32 bits per exponent. [ Info: Testing multi-threading over Zp using 1 threads [ Info: Testing multi-threading over QQ using 1 threads [ Info: Producing 15552 small random tests for groebner. This may take a minute 1080.381247 seconds (518.55 M allocations: 45.154 GiB, 2.31% gc time, 93.80% compilation time) Recorded 1 traces with IDs: Any[(UInt32, 42)] Showing only one. # Trace of F4 recorded in 0.0 s (0.02 MiB). ring : Z[x1,...,x2] mod 2147483647 input : 2 polynomials output: 2 polynomials apply : 1 / 0 (success/fail) # Parameters input order : DegRevLex() output order : DegRevLex() homogenize : false permute : false monom. type : Groebner.PackedTuple1{UInt64, UInt8} coeff. type : UInt32 arithmetic : Groebner.SpecializedArithmeticZp{UInt64, UInt32, true} # F4 statistics iterations : 1 hashtable : 4 / 1024 filled matrix largest : (0, 0) matrix up-rows : 2 (100.0 % useful) matrix low-rows: 0 (NaN % useful) pair degrees : pair count : ┌ Info: Possible overflow of exponent vector detected. └ Restarting with at least 32 bits per exponent. Recorded 1 traces with IDs: Any[(UInt32, 42)] Showing only one. # Trace of F4 recorded in 0.0 s (0.02 MiB). ring : Z[x1,...,x2] mod 2147483647 input : 2 polynomials output: 3 polynomials apply : 0 / 0 (success/fail) # Parameters input order : DegRevLex() output order : DegRevLex() homogenize : false permute : false monom. type : Vector{UInt64} coeff. type : UInt32 arithmetic : Groebner.SpecializedArithmeticZp{UInt64, UInt32, true} # F4 statistics iterations : 3 hashtable : 13 / 1024 filled matrix largest : (0, 0) matrix up-rows : 6 (66.67 % useful) matrix low-rows: 2 (50.0 % useful) pair degrees : 2000,2000 pair count : 1,1 Recorded 1 traces with IDs: Any[(UInt64, 42)] Showing only one. # Trace of F4 recorded in 0.0 s (0.02 MiB). ring : Z[x1,...,x2] mod 4611686018427388039 input : 2 polynomials output: 3 polynomials apply : 0 / 0 (success/fail) # Parameters input order : DegRevLex() output order : DegRevLex() homogenize : false permute : false monom. type : Vector{UInt64} coeff. type : UInt64 arithmetic : Groebner.SpecializedArithmeticZp{UInt128, UInt64, false} # F4 statistics iterations : 3 hashtable : 13 / 1024 filled matrix largest : (0, 0) matrix up-rows : 6 (66.67 % useful) matrix low-rows: 2 (50.0 % useful) pair degrees : 2000,2000 pair count : 1,1 [ Info: Trace might be corrupted. Recovering... ┌ Info: Stress testing groebner_apply! on: │ primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 1031, 1048583, 134217689, 134217757] │ boot = 10 │ system = └ AbstractAlgebra.Generic.MPoly{Rational{BigInt}}[x*y + y, x*y + x + y] [ Info: Apply (expectedly) failed in 1052 / 1820 cases. ┌ Info: Stress testing groebner_apply! on: │ primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 1031, 1048583, 134217689, 134217757] │ boot = 10 │ system = └ AbstractAlgebra.Generic.MPoly{Rational{BigInt}}[z1 + z2 + z3 + z4 + z5, z1*z2 + z2*z3 + z3*z4 + z1*z5 + z4*z5, z1*z2*z3 + z2*z3*z4 + z1*z2*z5 + z1*z4*z5 + z3*z4*z5, z1*z2*z3*z4 + z1*z2*z3*z5 + z1*z2*z4*z5 + z1*z3*z4*z5 + z2*z3*z4*z5, z1*z2*z3*z4*z5 - 1] [ Info: Apply (expectedly) failed in 1724 / 1820 cases. 131.813833 seconds (82.25 M allocations: 6.565 GiB, 1.99% gc time, 88.57% compilation time) 7.291561 seconds (17.82 M allocations: 662.553 MiB, 4.55% gc time, 62.98% compilation time) [ Info: Producing 1728 tests for normal form. This may take a minute 22.452298 seconds (11.96 M allocations: 1.036 GiB, 1.87% gc time, 68.36% compilation time) 62.423379 seconds (16.02 M allocations: 1.197 GiB, 0.76% gc time, 98.88% compilation time) 32.570795 seconds (11.16 M allocations: 756.360 MiB, 0.66% gc time, 99.67% compilation time) [ Info: Testing frontend: DynamicPolynomials.jl 36.747910 seconds (14.59 M allocations: 990.908 MiB, 1.39% gc time, 99.13% compilation time: 1% of which was recompilation) [ Info: Testing frontend: Nemo.jl 67.048120 seconds (26.05 M allocations: 1.740 GiB, 1.00% gc time, 99.56% compilation time: 1% of which was recompilation) 1.299471 seconds (647.90 k allocations: 44.125 MiB, 96.03% compilation time: 22% of which was recompilation) 22.272088 seconds (1.80 M allocations: 595.994 MiB, 1.15% gc time, 4.24% compilation time: 5% of which was recompilation) Test Summary: | Pass Total Time All tests | 51338 51338 24m57.7s arithmetic in Zp | 23955 23955 2.4s arithmetic in Zp x 4 | 2000 2000 0.8s exponent vector | 131 131 0.9s packed exponent tuple-1 | 89 89 0.4s packed exponent tuple-2 | 96 96 0.3s packed exponent tuple-3 | 101 101 0.9s packed exponent tuple-4 | 95 95 0.4s monom arithmetic | 170 170 1.8s monom division mask | 96 96 0.6s monom hash linearity | 206 206 0.9s monom orders: Lex, DegLex, DegRevLex | 407 407 2.9s monoms, variable permutation | 72 72 6.7s monom orders: WeightedOrdering | 65 65 3.6s monom orders: ProductOrdering | 36 36 2.3s monom orders: MatrixOrdering | 13 13 1.6s groebner basic | 12 12 23.1s groebner low level | 41 41 2m30.4s groebner generic | 32 32 1m49.1s groebner reduced=false | 6 6 2.8s groebner ground fields | 176 176 1m44.5s groebner modular | 264 264 45.4s groebner output sorted | 15 15 0.1s monomial overflow | 32 32 7.8s groebner reduced=true | 3 3 2.7s groebner certify | 7 7 13.0s groebner orderings | 1850 1850 2m19.0s groebner parent rings | 12 12 13.7s groebner monoms | 24 24 13.4s groebner zeros | 12 12 0.0s isgroebner zeros | 15 15 1.4s normalform zeros | 15 15 1.6s normalform checks | 4 4 0.0s groebner arithmetic | 16 16 28.3s groebner linear algebra | 10 10 0.0s groebner modular-hard problems | 17 17 14.4s groebner strange example | 1 1 7.7s groebner many variables | 52 52 45.0s groebner large exponents | 142 142 4.5s homogenization, basic | 111 111 1m56.0s homogenization, orderings | 352 352 3m09.0s groebner, change matrix | 72 72 9.4s groebner, multi-threading, Zp | 24 24 5.4s groebner, multi-threading, QQ | 22 22 3.3s groebner random stress tests | 13944 13944 19.0s learn & apply, same field | 139 139 8.3s learn & apply, different fields | 461 461 30.2s learn & apply, generic | 1 1 0.1s learn & apply, orderings | 88 88 13.4s learn & apply, copy trace | 4 4 1.2s learn & apply, tricky | 31 31 5.2s learn & apply low level | 15 15 11.9s learn & apply, stress | None 11.1s learn & apply, in batches | 17 17 39.6s learn & apply low level, in batches | 7 7 10.5s isgroebner | 22 22 4.1s isgroebner orderings | 5 5 1.9s isgroebner certify | 68 68 0.2s normalform | 19 19 1.0s normalform many variables | 6 6 5.0s normalform orderings | 4 4 2.0s normalform of an array | 24 24 0.3s normalform random stress tests | 4878 4878 13.4s leading term | 8 8 2.5s leading ideal | 8 8 33.1s quotient basis | 17 17 16.0s dimension | 8 8 9.6s AbstractAlgebra.jl, univariate | 12 12 1.7s AbstractAlgebra.jl, input-output | 166 166 28.4s DynamicPolynomials.jl input-output | 44 44 18.6s Nemo.jl, univariate | 25 25 7.5s Nemo.jl, generic | 6 6 41.9s Nemo.jl, input-output | 418 418 15.0s output type inferred | 10 10 0.5s regression, SI.jl normalform | 5 5 0.0s regression, ordering of empty | 4 4 0.0s regression, SI.jl cmp | 1 1 0.5s regression, column order in normalform | 1 1 0.1s regression, tracing invariants | 1 1 21.6s 1497.933937 seconds (715.26 M allocations: 59.611 GiB, 2.08% gc time, 92.22% compilation time: <1% of which was recompilation) Testing Groebner tests passed Testing completed after 1512.1s PkgEval succeeded after 1588.83s