Package evaluation of GradientRobustMultiPhysics on Julia 1.10.8 (92f03a4775*) started at 2025-02-25T15:11:03.360 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 5.29s ################################################################################ # Installation # Installing GradientRobustMultiPhysics... Resolving package versions... Updating `~/.julia/environments/v1.10/Project.toml` [0802c0ca] + GradientRobustMultiPhysics v0.12.0 Updating `~/.julia/environments/v1.10/Manifest.toml` [47edcb42] + ADTypes v1.13.0 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.41 [79e6a3ab] + Adapt v4.2.0 [66dad0bd] + AliasTables v1.1.3 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.18.0 [4c555306] + ArrayLayouts v1.11.1 [13072b0f] + AxisAlgorithms v1.1.0 [e2ed5e7c] + Bijections v0.1.9 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] + CPUSummary v0.2.6 [d360d2e6] + ChainRulesCore v1.25.1 [fb6a15b2] + CloseOpenIntervals v0.1.13 [944b1d66] + CodecZlib v0.7.8 [35d6a980] + ColorSchemes v3.29.0 ⌅ [3da002f7] + ColorTypes v0.11.5 ⌃ [c3611d14] + ColorVectorSpace v0.10.0 ⌅ [5ae59095] + Colors v0.12.11 [861a8166] + Combinatorics v1.0.2 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [f70d9fcc] + CommonWorldInvalidations v1.0.0 [34da2185] + Compat v4.16.0 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 [2569d6c7] + ConcreteStructs v0.2.3 ⌅ [187b0558] + ConstructionBase v1.5.6 [adafc99b] + CpuId v0.3.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.20 [e2d170a0] + DataValueInterfaces v1.0.0 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [31c24e10] + Distributions v0.25.117 [ffbed154] + DocStringExtensions v0.9.3 [5b8099bc] + DomainSets v0.7.15 ⌅ [7c1d4256] + DynamicPolynomials v0.5.7 [fdbdab4c] + ElasticArrays v1.2.12 [4e289a0a] + EnumX v1.0.4 [e2ba6199] + ExprTools v0.1.10 [55351af7] + ExproniconLite v0.10.14 ⌅ [cfc395e8] + ExtendableGrids v0.9.17 [95c220a8] + ExtendableSparse v1.7.0 [411431e0] + Extents v0.1.5 [29a986be] + FastLapackInterface v2.0.4 [1a297f60] + FillArrays v1.13.0 [6a86dc24] + FiniteDiff v2.27.0 [53c48c17] + FixedPointNumbers v0.8.5 [1fa38f19] + Format v1.3.7 [f6369f11] + ForwardDiff v0.10.38 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [68eda718] + GeoFormatTypes v0.4.4 [cf35fbd7] + GeoInterface v1.4.1 ⌅ [5c1252a2] + GeometryBasics v0.4.11 [0802c0ca] + GradientRobustMultiPhysics v0.12.0 [86223c79] + Graphs v1.12.0 ⌃ [5eed8a63] + GridVisualize v1.6.0 ⌅ [5573ae12] + GridVisualizeTools v1.1.1 [3e5b6fbb] + HostCPUFeatures v0.1.17 [34004b35] + HypergeometricFunctions v0.3.27 [ac1192a8] + HypertextLiteral v0.9.5 [88f59080] + ILUZero v0.2.0 [615f187c] + IfElse v0.1.1 [d25df0c9] + Inflate v0.1.5 [a98d9a8b] + Interpolations v0.15.1 [8197267c] + IntervalSets v0.7.10 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.4 [c8e1da08] + IterTools v1.10.0 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.0 [ae98c720] + Jieko v0.2.1 [ef3ab10e] + KLU v0.6.0 [ba0b0d4f] + Krylov v0.9.10 [b964fa9f] + LaTeXStrings v1.4.0 [2ee39098] + LabelledArrays v1.16.0 ⌅ [984bce1d] + LambertW v0.4.6 [23fbe1c1] + Latexify v0.16.6 [10f19ff3] + LayoutPointers v0.1.17 [5078a376] + LazyArrays v2.6.0 [9c8b4983] + LightXML v0.9.1 ⌅ [7ed4a6bd] + LinearSolve v2.39.0 [2ab3a3ac] + LogExpFunctions v0.3.29 [bdcacae8] + LoopVectorization v0.12.171 [1914dd2f] + MacroTools v0.5.15 [d125e4d3] + ManualMemory v0.1.8 [e1d29d7a] + Missings v1.2.0 [2e0e35c7] + Moshi v0.3.5 [102ac46a] + MultivariatePolynomials v0.5.7 [d8a4904e] + MutableArithmetics v1.6.4 [77ba4419] + NaNMath v1.1.2 [510215fc] + Observables v0.5.5 [6fe1bfb0] + OffsetArrays v1.15.0 [bac558e1] + OrderedCollections v1.8.0 [90014a1f] + PDMats v0.11.32 [65ce6f38] + PackageExtensionCompat v1.0.2 [f517fe37] + Polyester v0.7.16 [1d0040c9] + PolyesterWeave v0.2.2 [d236fae5] + PreallocationTools v0.4.25 [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [c84ed2f1] + Ratios v0.4.5 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.30.0 [f2c3362d] + RecursiveFactorization v0.2.23 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.0 [79098fc4] + Rmath v0.8.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.13 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 [0bca4576] + SciMLBase v2.75.0 [c0aeaf25] + SciMLOperators v0.3.12 [53ae85a6] + SciMLStructures v1.6.1 [efcf1570] + Setfield v1.1.1 [699a6c99] + SimpleTraits v0.9.4 [a2af1166] + SortingAlgorithms v1.2.1 [47a9eef4] + SparseDiffTools v2.23.1 [e56a9233] + Sparspak v0.3.9 [276daf66] + SpecialFunctions v2.5.0 [aedffcd0] + Static v1.1.1 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.12 [1e83bf80] + StaticArraysCore v1.4.3 [82ae8749] + StatsAPI v1.7.0 [2913bbd2] + StatsBase v0.34.4 [4c63d2b9] + StatsFuns v1.3.2 [7792a7ef] + StrideArraysCore v0.5.7 ⌅ [09ab397b] + StructArrays v0.6.21 [2efcf032] + SymbolicIndexingInterface v0.3.38 ⌃ [19f23fe9] + SymbolicLimits v0.2.1 ⌅ [d1185830] + SymbolicUtils v2.1.3 ⌅ [0c5d862f] + Symbolics v5.36.0 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.0 [62fd8b95] + TensorCore v0.1.1 ⌅ [8ea1fca8] + TermInterface v0.4.1 [8290d209] + ThreadingUtilities v0.5.2 [a759f4b9] + TimerOutputs v0.5.27 [3bb67fe8] + TranscodingStreams v0.11.3 [d5829a12] + TriangularSolve v0.2.1 [410a4b4d] + Tricks v0.1.10 [3a884ed6] + UnPack v1.0.2 [a7c27f48] + Unityper v0.1.6 [4004b06d] + VTKBase v1.0.1 [3d5dd08c] + VectorizationBase v0.21.71 [19fa3120] + VertexSafeGraphs v0.2.0 [efce3f68] + WoodburyMatrices v1.0.0 [64499a7a] + WriteVTK v1.21.1 [5ae413db] + EarCut_jll v2.2.4+0 [1d5cc7b8] + IntelOpenMP_jll v2025.0.4+0 [94ce4f54] + Libiconv_jll v1.18.0+0 [856f044c] + MKL_jll v2025.0.1+1 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [02c8fc9c] + XML2_jll v2.13.6+1 [1317d2d5] + oneTBB_jll v2022.0.0+0 [0dad84c5] + ArgTools v1.1.1 [56f22d72] + Artifacts [2a0f44e3] + Base64 [ade2ca70] + Dates [8ba89e20] + Distributed [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching [9fa8497b] + Future [b77e0a4c] + InteractiveUtils [4af54fe1] + LazyArtifacts [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 [8f399da3] + Libdl [37e2e46d] + LinearAlgebra [56ddb016] + Logging [d6f4376e] + Markdown [a63ad114] + Mmap [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.10.0 [de0858da] + Printf [3fa0cd96] + REPL [9a3f8284] + Random [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization [1a1011a3] + SharedArrays [6462fe0b] + Sockets [2f01184e] + SparseArrays v1.10.0 [10745b16] + Statistics v1.10.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test [cf7118a7] + UUIDs [4ec0a83e] + Unicode [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.4.0+0 [e37daf67] + LibGit2_jll v1.6.4+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.2+1 [14a3606d] + MozillaCACerts_jll v2023.1.10 [4536629a] + OpenBLAS_jll v0.3.23+4 [05823500] + OpenLibm_jll v0.8.1+4 [bea87d4a] + SuiteSparse_jll v7.2.1+1 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.52.0+1 [3f19e933] + p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 8.69s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 390.69s ################################################################################ # Testing # Testing GradientRobustMultiPhysics Status `/tmp/jl_tGMswU/Project.toml` ⌅ [cfc395e8] ExtendableGrids v0.9.17 [95c220a8] ExtendableSparse v1.7.0 [0802c0ca] GradientRobustMultiPhysics v0.12.0 ⌃ [5eed8a63] GridVisualize v1.6.0 ⌃ [57bfcd06] SimplexGridFactory v1.0.1 [f7e6ffb2] Triangulate v2.4.0 [8dfed614] Test Status `/tmp/jl_tGMswU/Manifest.toml` [47edcb42] ADTypes v1.13.0 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.41 [79e6a3ab] Adapt v4.2.0 [66dad0bd] AliasTables v1.1.3 [ec485272] ArnoldiMethod v0.4.0 [4fba245c] ArrayInterface v7.18.0 [4c555306] ArrayLayouts v1.11.1 [13072b0f] AxisAlgorithms v1.1.0 [e2ed5e7c] Bijections v0.1.9 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] CPUSummary v0.2.6 [d360d2e6] ChainRulesCore v1.25.1 [fb6a15b2] CloseOpenIntervals v0.1.13 [944b1d66] CodecZlib v0.7.8 [35d6a980] ColorSchemes v3.29.0 ⌅ [3da002f7] ColorTypes v0.11.5 ⌃ [c3611d14] ColorVectorSpace v0.10.0 ⌅ [5ae59095] Colors v0.12.11 [861a8166] Combinatorics v1.0.2 [38540f10] CommonSolve v0.2.4 [bbf7d656] CommonSubexpressions v0.3.1 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.16.0 [b152e2b5] CompositeTypes v0.1.4 [a33af91c] CompositionsBase v0.1.2 [2569d6c7] ConcreteStructs v0.2.3 ⌅ [187b0558] ConstructionBase v1.5.6 [adafc99b] CpuId v0.3.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.20 [e2d170a0] DataValueInterfaces v1.0.0 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [31c24e10] Distributions v0.25.117 [ffbed154] DocStringExtensions v0.9.3 [5b8099bc] DomainSets v0.7.15 ⌅ [7c1d4256] DynamicPolynomials v0.5.7 [fdbdab4c] ElasticArrays v1.2.12 [4e289a0a] EnumX v1.0.4 [e2ba6199] ExprTools v0.1.10 [55351af7] ExproniconLite v0.10.14 ⌅ [cfc395e8] ExtendableGrids v0.9.17 [95c220a8] ExtendableSparse v1.7.0 [411431e0] Extents v0.1.5 [29a986be] FastLapackInterface v2.0.4 [5789e2e9] FileIO v1.16.6 [1a297f60] FillArrays v1.13.0 [6a86dc24] FiniteDiff v2.27.0 [53c48c17] FixedPointNumbers v0.8.5 [1fa38f19] Format v1.3.7 [f6369f11] ForwardDiff v0.10.38 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 [46192b85] GPUArraysCore v0.2.0 [68eda718] GeoFormatTypes v0.4.4 [cf35fbd7] GeoInterface v1.4.1 ⌅ [5c1252a2] GeometryBasics v0.4.11 [0802c0ca] GradientRobustMultiPhysics v0.12.0 [86223c79] Graphs v1.12.0 ⌃ [5eed8a63] GridVisualize v1.6.0 ⌅ [5573ae12] GridVisualizeTools v1.1.1 [3e5b6fbb] HostCPUFeatures v0.1.17 [34004b35] HypergeometricFunctions v0.3.27 [ac1192a8] HypertextLiteral v0.9.5 [88f59080] ILUZero v0.2.0 [615f187c] IfElse v0.1.1 [d25df0c9] Inflate v0.1.5 [a98d9a8b] Interpolations v0.15.1 [8197267c] IntervalSets v0.7.10 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.0 [ae98c720] Jieko v0.2.1 [ef3ab10e] KLU v0.6.0 [ba0b0d4f] Krylov v0.9.10 [b964fa9f] LaTeXStrings v1.4.0 [2ee39098] LabelledArrays v1.16.0 ⌅ [984bce1d] LambertW v0.4.6 [23fbe1c1] Latexify v0.16.6 [10f19ff3] LayoutPointers v0.1.17 [5078a376] LazyArrays v2.6.0 [9c8b4983] LightXML v0.9.1 ⌅ [7ed4a6bd] LinearSolve v2.39.0 [2ab3a3ac] LogExpFunctions v0.3.29 [bdcacae8] LoopVectorization v0.12.171 [1914dd2f] MacroTools v0.5.15 [d125e4d3] ManualMemory v0.1.8 ⌅ [7269a6da] MeshIO v0.4.13 [e1d29d7a] Missings v1.2.0 [2e0e35c7] Moshi v0.3.5 [102ac46a] MultivariatePolynomials v0.5.7 [d8a4904e] MutableArithmetics v1.6.4 [77ba4419] NaNMath v1.1.2 [510215fc] Observables v0.5.5 [6fe1bfb0] OffsetArrays v1.15.0 [bac558e1] OrderedCollections v1.8.0 [90014a1f] PDMats v0.11.32 [65ce6f38] PackageExtensionCompat v1.0.2 [f517fe37] Polyester v0.7.16 [1d0040c9] PolyesterWeave v0.2.2 [d236fae5] PreallocationTools v0.4.25 [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [c84ed2f1] Ratios v0.4.5 [3cdcf5f2] RecipesBase v1.3.4 [731186ca] RecursiveArrayTools v3.30.0 [f2c3362d] RecursiveFactorization v0.2.23 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.0 [79098fc4] Rmath v0.8.0 [7e49a35a] RuntimeGeneratedFunctions v0.5.13 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 [0bca4576] SciMLBase v2.75.0 [c0aeaf25] SciMLOperators v0.3.12 [53ae85a6] SciMLStructures v1.6.1 [efcf1570] Setfield v1.1.1 [699a6c99] SimpleTraits v0.9.4 ⌃ [57bfcd06] SimplexGridFactory v1.0.1 [a2af1166] SortingAlgorithms v1.2.1 [47a9eef4] SparseDiffTools v2.23.1 [e56a9233] Sparspak v0.3.9 [276daf66] SpecialFunctions v2.5.0 [aedffcd0] Static v1.1.1 [0d7ed370] StaticArrayInterface v1.8.0 [90137ffa] StaticArrays v1.9.12 [1e83bf80] StaticArraysCore v1.4.3 [82ae8749] StatsAPI v1.7.0 [2913bbd2] StatsBase v0.34.4 [4c63d2b9] StatsFuns v1.3.2 [7792a7ef] StrideArraysCore v0.5.7 ⌅ [09ab397b] StructArrays v0.6.21 [2efcf032] SymbolicIndexingInterface v0.3.38 ⌃ [19f23fe9] SymbolicLimits v0.2.1 ⌅ [d1185830] SymbolicUtils v2.1.3 ⌅ [0c5d862f] Symbolics v5.36.0 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.0 [62fd8b95] TensorCore v0.1.1 ⌅ [8ea1fca8] TermInterface v0.4.1 [8290d209] ThreadingUtilities v0.5.2 [a759f4b9] TimerOutputs v0.5.27 [3bb67fe8] TranscodingStreams v0.11.3 [d5829a12] TriangularSolve v0.2.1 [f7e6ffb2] Triangulate v2.4.0 [410a4b4d] Tricks v0.1.10 [3a884ed6] UnPack v1.0.2 [a7c27f48] Unityper v0.1.6 [4004b06d] VTKBase v1.0.1 [3d5dd08c] VectorizationBase v0.21.71 [19fa3120] VertexSafeGraphs v0.2.0 [efce3f68] WoodburyMatrices v1.0.0 [64499a7a] WriteVTK v1.21.1 [5ae413db] EarCut_jll v2.2.4+0 [1d5cc7b8] IntelOpenMP_jll v2025.0.4+0 [94ce4f54] Libiconv_jll v1.18.0+0 [856f044c] MKL_jll v2025.0.1+1 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [5639c1d2] Triangle_jll v1.6.2+0 [02c8fc9c] XML2_jll v2.13.6+1 [1317d2d5] oneTBB_jll v2022.0.0+0 [0dad84c5] ArgTools v1.1.1 [56f22d72] Artifacts [2a0f44e3] Base64 [ade2ca70] Dates [8ba89e20] Distributed [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching [9fa8497b] Future [b77e0a4c] InteractiveUtils [4af54fe1] LazyArtifacts [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 [8f399da3] Libdl [37e2e46d] LinearAlgebra [56ddb016] Logging [d6f4376e] Markdown [a63ad114] Mmap [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.10.0 [de0858da] Printf [3fa0cd96] REPL [9a3f8284] Random [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization [1a1011a3] SharedArrays [6462fe0b] Sockets [2f01184e] SparseArrays v1.10.0 [10745b16] Statistics v1.10.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test [cf7118a7] UUIDs [4ec0a83e] Unicode [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.4.0+0 [e37daf67] LibGit2_jll v1.6.4+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.2+1 [14a3606d] MozillaCACerts_jll v2023.1.10 [4536629a] OpenBLAS_jll v0.3.23+4 [05823500] OpenLibm_jll v0.8.1+4 [bea87d4a] SuiteSparse_jll v7.2.1+1 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.52.0+1 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... ===================== Testing DataFunctions ===================== Test Summary: | Pass Total Time DataFunctions | 11 11 17.4s ============================= Testing QuadratureRules in 1D ============================= ┌ Warning: 10237880 allocations during ITEMTYPE_CELL volume calculation └ @ ExtendableGrids ~/.julia/packages/ExtendableGrids/XFxI3/src/derived.jl:937 EG = Edge1D | order = 1 (midpoint rule, 1 points) | error = 0.0 EG = Edge1D | order = 2 (Simpson's rule, 3 points) | error = -2.220446049250313e-16 EG = Edge1D | order = 3 (generic Gauss rule of order 3, 2 points) | error = -2.220446049250313e-16 EG = Edge1D | order = 4 (generic Gauss rule of order 4, 3 points) | error = -4.440892098500626e-16 EG = Edge1D | order = 5 (generic Gauss rule of order 5, 3 points) | error = -4.440892098500626e-16 EG = Edge1D | order = 6 (generic Gauss rule of order 6, 4 points) | error = 2.220446049250313e-16 EG = Edge1D | order = 7 (generic Gauss rule of order 7, 4 points) | error = -2.220446049250313e-16 EG = Edge1D | order = 8 (generic Gauss rule of order 8, 5 points) | error = 0.0 EG = Edge1D | order = 9 (generic Gauss rule of order 9, 5 points) | error = -2.220446049250313e-16 EG = Edge1D | order = 10 (generic Gauss rule of order 10, 6 points) | error = 0.0 EG = Edge1D | order = 11 (generic Gauss rule of order 11, 6 points) | error = 2.220446049250313e-16 EG = Edge1D | order = 12 (generic Gauss rule of order 12, 7 points) | error = 2.220446049250313e-16 ============================= Testing QuadratureRules in 2D ============================= EG = Triangle2D | order = 1 (midpoint rule, 1 points) | error = [0.0, -2.7755575615628914e-17] EG = Triangle2D | order = 2 (face midpoints rule, 3 points) | error = [-6.661338147750939e-16, 5.551115123125783e-17] EG = Triangle2D | order = 3 (generic Stroud rule of order 3, 4 points) | error = [2.220446049250313e-16, 1.1102230246251565e-16] EG = Triangle2D | order = 4 (generic Stroud rule of order 4, 9 points) | error = [-6.661338147750939e-16, 2.220446049250313e-16] EG = Triangle2D | order = 5 (generic Stroud rule of order 5, 9 points) | error = [-1.7763568394002505e-15, 1.1102230246251565e-16] EG = Triangle2D | order = 6 (generic Stroud rule of order 6, 16 points) | error = [1.7763568394002505e-15, 3.3306690738754696e-16] EG = Triangle2D | order = 7 (generic Stroud rule of order 7, 16 points) | error = [4.440892098500626e-16, 5.551115123125783e-16] EG = Triangle2D | order = 8 (symmetric rule order 8, 16 points) | error = [4.440892098500626e-16, 4.440892098500626e-16] EG = Triangle2D | order = 9 (generic Stroud rule of order 9, 25 points) | error = [0.0, 4.440892098500626e-16] EG = Triangle2D | order = 10 (generic Stroud rule of order 10, 36 points) | error = [0.0, 0.0] EG = Triangle2D | order = 11 (generic Stroud rule of order 11, 36 points) | error = [2.220446049250313e-15, -4.440892098500626e-16] EG = Triangle2D | order = 12 (symmetric rule order 14, 46 points) | error = [-1.7763568394002505e-15, -1.1102230246251565e-16] EG = Triangle2D | order = 13 (symmetric rule order 14, 46 points) | error = [0.0, -1.1102230246251565e-16] EG = Triangle2D | order = 14 (symmetric rule order 14, 46 points) | error = [-8.881784197001252e-16, 5.551115123125783e-16] EG = Triangle2D | order = 15 (generic Stroud rule of order 15, 64 points) | error = [6.661338147750939e-16, 9.992007221626409e-16] EG = Triangle2D | order = 16 (generic Stroud rule of order 16, 81 points) | error = [-4.440892098500626e-16, 1.7763568394002505e-15] EG = Triangle2D | order = 17 (generic Stroud rule of order 17, 81 points) | error = [6.661338147750939e-16, 5.551115123125783e-16] EG = Triangle2D | order = 18 (generic Stroud rule of order 18, 100 points) | error = [1.5543122344752192e-15, -2.220446049250313e-16] EG = Triangle2D | order = 19 (generic Stroud rule of order 19, 100 points) | error = [2.886579864025407e-15, 1.4432899320127035e-15] EG = Triangle2D | order = 20 (generic Stroud rule of order 20, 121 points) | error = [-2.6645352591003757e-15, -1.7763568394002505e-15] EG = Parallelogram2D | order = 1 (midpoint rule, 1 points) | error = [0.0, 0.0] EG = Parallelogram2D | order = 2 (generic Gauss tensor rule of order 2, 4 points) | error = [-1.1102230246251565e-15, 1.6653345369377348e-16] EG = Parallelogram2D | order = 3 (generic Gauss tensor rule of order 3, 4 points) | error = [-6.661338147750939e-16, 2.220446049250313e-16] EG = Parallelogram2D | order = 4 (generic Gauss tensor rule of order 4, 9 points) | error = [-8.881784197001252e-16, 3.3306690738754696e-16] EG = Parallelogram2D | order = 5 (generic Gauss tensor rule of order 5, 9 points) | error = [-6.661338147750939e-16, 1.1102230246251565e-16] EG = Parallelogram2D | order = 6 (generic Gauss tensor rule of order 6, 16 points) | error = [-4.440892098500626e-16, -2.220446049250313e-16] EG = Parallelogram2D | order = 7 (generic Gauss tensor rule of order 7, 16 points) | error = [0.0, -4.440892098500626e-16] EG = Parallelogram2D | order = 8 (generic Gauss tensor rule of order 8, 25 points) | error = [0.0, -3.3306690738754696e-16] EG = Parallelogram2D | order = 9 (generic Gauss tensor rule of order 9, 25 points) | error = [-1.5543122344752192e-15, -1.1102230246251565e-16] EG = Parallelogram2D | order = 10 (generic Gauss tensor rule of order 10, 36 points) | error = [-2.220446049250313e-16, -5.551115123125783e-16] EG = Parallelogram2D | order = 11 (generic Gauss tensor rule of order 11, 36 points) | error = [-2.220446049250313e-16, -5.551115123125783e-16] EG = Parallelogram2D | order = 12 (generic Gauss tensor rule of order 12, 49 points) | error = [0.0, 0.0] EG = Parallelogram2D | order = 13 (generic Gauss tensor rule of order 13, 49 points) | error = [-2.220446049250313e-16, -8.881784197001252e-16] EG = Parallelogram2D | order = 14 (generic Gauss tensor rule of order 14, 64 points) | error = [-1.1102230246251565e-15, -2.220446049250313e-16] EG = Parallelogram2D | order = 15 (generic Gauss tensor rule of order 15, 64 points) | error = [-1.5543122344752192e-15, 2.220446049250313e-16] EG = Parallelogram2D | order = 16 (generic Gauss tensor rule of order 16, 81 points) | error = [-2.220446049250313e-16, -4.440892098500626e-16] EG = Parallelogram2D | order = 17 (generic Gauss tensor rule of order 17, 81 points) | error = [-6.661338147750939e-16, -7.771561172376096e-16] EG = Parallelogram2D | order = 18 (generic Gauss tensor rule of order 18, 100 points) | error = [0.0, 3.3306690738754696e-16] EG = Parallelogram2D | order = 19 (generic Gauss tensor rule of order 19, 100 points) | error = [-6.661338147750939e-16, 8.881784197001252e-16] EG = Parallelogram2D | order = 20 (generic Gauss tensor rule of order 20, 121 points) | error = [-4.884981308350689e-15, 3.3306690738754696e-16] ============================= Testing QuadratureRules in 3D ============================= EG = Parallelepiped3D | order = 1 (midpoint rule, 1 points) | error = [0.0, 0.0, 0.0] EG = Parallelepiped3D | order = 2 (generic Gauss tensor rule of order 2, 8 points) | error = [1.1102230246251565e-16, -1.1102230246251565e-15, 1.6653345369377348e-16] EG = Parallelepiped3D | order = 3 (generic Gauss tensor rule of order 3, 8 points) | error = [3.3306690738754696e-16, -8.881784197001252e-16, 3.885780586188048e-16] EG = Parallelepiped3D | order = 4 (generic Gauss tensor rule of order 4, 27 points) | error = [1.3322676295501878e-15, -6.661338147750939e-16, 2.220446049250313e-16] EG = Parallelepiped3D | order = 5 (generic Gauss tensor rule of order 5, 27 points) | error = [8.881784197001252e-16, -4.440892098500626e-16, 6.661338147750939e-16] EG = Parallelepiped3D | order = 6 (generic Gauss tensor rule of order 6, 64 points) | error = [1.3322676295501878e-15, -4.440892098500626e-16, 5.551115123125783e-16] EG = Parallelepiped3D | order = 7 (generic Gauss tensor rule of order 7, 64 points) | error = [-2.220446049250313e-16, 8.881784197001252e-16, -3.3306690738754696e-16] EG = Parallelepiped3D | order = 8 (generic Gauss tensor rule of order 8, 125 points) | error = [9.992007221626409e-16, 2.220446049250313e-16, 5.551115123125783e-16] EG = Parallelepiped3D | order = 9 (generic Gauss tensor rule of order 9, 125 points) | error = [-2.886579864025407e-15, -2.6645352591003757e-15, 7.771561172376096e-16] EG = Parallelepiped3D | order = 10 (generic Gauss tensor rule of order 10, 216 points) | error = [-1.7763568394002505e-15, 6.661338147750939e-16, -7.771561172376096e-16] EG = Parallelepiped3D | order = 11 (generic Gauss tensor rule of order 11, 216 points) | error = [1.2212453270876722e-15, 0.0, 1.2212453270876722e-15] EG = Parallelepiped3D | order = 12 (generic Gauss tensor rule of order 12, 343 points) | error = [2.4424906541753444e-15, -6.661338147750939e-16, -1.1102230246251565e-16] EG = Tetrahedron3D | order = 1 (midpoint rule, 1 points) | error = [5.551115123125783e-17, 8.881784197001252e-16, 1.734723475976807e-17] EG = Tetrahedron3D | order = 2 (order 2 rule, 4 points) | error = [5.551115123125783e-16, 0.0, 5.551115123125783e-17] EG = Tetrahedron3D | order = 3 (order 3 rule, 5 points) | error = [-6.661338147750939e-16, 8.881784197001252e-16, 1.1102230246251565e-16] EG = Tetrahedron3D | order = 4 (order 4 rule, 11 points) | error = [8.881784197001252e-16, 4.440892098500626e-16, 1.1102230246251565e-16] EG = Tetrahedron3D | order = 5 (symmetric rule order 8, 46 points) | error = [-2.9976021664879227e-15, -3.552713678800501e-15, 0.0] EG = Tetrahedron3D | order = 6 (symmetric rule order 8, 46 points) | error = [0.0, 1.5543122344752192e-15, -2.1094237467877974e-15] EG = Tetrahedron3D | order = 7 (symmetric rule order 8, 46 points) | error = [1.6653345369377348e-15, -3.552713678800501e-15, 1.9984014443252818e-15] EG = Tetrahedron3D | order = 8 (symmetric rule order 8, 46 points) | error = [1.1102230246251565e-15, -2.220446049250313e-16, -1.3322676295501878e-15] Test Summary: | Pass Total Time QuadratureRules | 72 72 29.9s ============================ Testing Operator Evaluations ============================ EG = Triangle2D | operator = Laplacian | error = 0.0 EG = Triangle2D | operator = Hessian | error = 1.1102230246251565e-16 EG = Triangle2D | operator = SymmetricHessian{1} | error = 1.1102230246251565e-16 EG = Triangle2D | operator = SymmetricHessian{√2} | error = 2.482534153247273e-16 eval test BLF | error = 0.0 eval test LF1 | error = 0.0 eval test LF2 | error = 7.896312771987667e-33 ┌ Warning: PDEOperator was recasted into LinearForm pattern before, trying to cope with it... └ @ GradientRobustMultiPhysics ~/.julia/packages/GradientRobustMultiPhysics/zicPX/src/pdeoperators.jl:936 ┌ Warning: PDEOperator was recasted into LinearForm pattern before, trying to cope with it... └ @ GradientRobustMultiPhysics ~/.julia/packages/GradientRobustMultiPhysics/zicPX/src/pdeoperators.jl:913 recast test BLF >> LF1 | error = 0.0 recast test BLF >> LF2 | error = 1.5792625543975334e-32 Test Summary: | Pass Total Time Operators | 2 2 54.2s ========================= Testing Point Evaluations ========================= Test Summary: | Pass Total Time Operators | 1 1 2.0s ===================================== Testing Orientations/FaceJumpAssembly ===================================== EG = Triangle2D | left-right-error = 0.0 EG = Triangle2D | disc = Jump | AP = LinearForm | error = 0.0 EG = Triangle2D | disc = Average | AP = LinearForm | error = -2.7755575615628914e-16 EG = Triangle2D | disc = Parent | AP = LinearForm | error = 0.0 EG = Triangle2D | disc = Jump | AP = BilinearForm | error = [-8.881784197001252e-16, 0.0, 0.0] EG = Triangle2D | disc = Average | AP = BilinearForm | error = [-8.271161533457416e-15, 0.0, 0.0] EG = Parallelogram2D | left-right-error = 0.0 EG = Parallelogram2D | disc = Jump | AP = LinearForm | error = 0.0 EG = Parallelogram2D | disc = Average | AP = LinearForm | error = 0.0 EG = Parallelogram2D | disc = Parent | AP = LinearForm | error = 0.0 EG = Parallelogram2D | disc = Jump | AP = BilinearForm | error = [0.0, 0.0, 0.0] EG = Parallelogram2D | disc = Average | AP = BilinearForm | error = [0.0, 0.0, 0.0] EG = Tetrahedron3D | left-right-error = 7.780756975324433e-32 EG = Tetrahedron3D | disc = Jump | AP = LinearForm | error = 4.930699911076927e-16 EG = Tetrahedron3D | disc = Average | AP = LinearForm | error = 9.46465128492946e-15 EG = Tetrahedron3D | disc = Parent | AP = LinearForm | error = 0.0 EG = Tetrahedron3D | disc = Jump | AP = BilinearForm | error = [-6.661338147750939e-16, 0.0, 0.0] EG = Tetrahedron3D | disc = Average | AP = BilinearForm | error = [3.788636071533347e-14, 0.0, 0.0] Test Summary: | Pass Total Time FaceJumpAssembly | 18 18 42.9s ============================ Testing Interpolations in 1D ============================ FEType = L2P0{1} ON_CELLS | ndofs = 6 | order = 0 | error = [0.0, 0.0, 0.0] FEType = L2P0{1} broken ON_CELLS | ndofs = 6 | order = 0 | error = [0.0, 0.0, 0.0] FEType = H1P1{1} ON_CELLS | ndofs = 7 | order = 1 | error = [0.0, 8.308148362110448e-16, 0.0] FEType = H1P1{1} broken ON_CELLS | ndofs = 12 | order = 1 | error = [0.0, 8.308148362110448e-16, 0.0] FEType = H1P2{1,1} ON_CELLS | ndofs = 13 | order = 2 | error = [2.1232293057132944e-16, 1.6168797435042724e-15, 1.8346134549116834e-14, 7.592163282843009e-16] FEType = H1P2{1,1} broken ON_CELLS | ndofs = 18 | order = 2 | error = [2.1232293057132944e-16, 1.6168797435042724e-15, 1.8346134549116834e-14, 7.592163282843009e-16] FEType = H1P3{1,1} ON_CELLS | ndofs = 19 | order = 3 | error = [4.1491748073807686e-16, 1.207098495965038e-14, 4.087045000411569e-13, 8.148819335256721e-15] FEType = H1P3{1,1} broken ON_CELLS | ndofs = 24 | order = 3 | error = [4.1491748073807686e-16, 1.207098495965038e-14, 4.087045000411569e-13, 8.148819335256721e-15] FEType = H1Pk{1,1,3} ON_CELLS | ndofs = 19 | order = 3 | error = [3.680351419178699e-16, 1.141696663691672e-14, 4.844734443659827e-13, 1.0425977141359633e-14] FEType = H1Pk{1,1,3} broken ON_CELLS | ndofs = 24 | order = 3 | error = [3.680351419178699e-16, 1.141696663691672e-14, 4.844734443659827e-13, 1.0425977141359633e-14] FEType = H1Pk{1,1,4} ON_CELLS | ndofs = 25 | order = 4 | error = [4.200713305587545e-16, 2.020334823656426e-14, 1.2649879931888645e-12] FEType = H1Pk{1,1,4} broken ON_CELLS | ndofs = 30 | order = 4 | error = [4.200713305587545e-16, 2.020334823656426e-14, 1.2649879931888645e-12] FEType = H1Pk{1,1,5} ON_CELLS | ndofs = 31 | order = 5 | error = [3.530057936995396e-16, 1.924036733756376e-14, 2.230144411409179e-12] FEType = H1Pk{1,1,5} broken ON_CELLS | ndofs = 36 | order = 5 | error = [3.530057936995396e-16, 1.924036733756376e-14, 2.230144411409179e-12] ============================ Testing Interpolations in 2D ============================ FEType = HCURLN0{2} ON_CELLS | ndofs = 28 | order = 0 | error = [0.0, 0.0, 0.0] FEType = HCURLN0{2} broken ON_CELLS | ndofs = 48 | order = 0 | error = [0.0, 0.0, 0.0] FEType = HDIVRT0{2} ON_CELLS | ndofs = 28 | order = 0 | error = [0.0, 0.0, 0.0] FEType = HDIVRT0{2} broken ON_CELLS | ndofs = 48 | order = 0 | error = [0.0, 0.0, 0.0] FEType = HDIVBDM1{2} ON_CELLS | ndofs = 56 | order = 1 | error = [3.3949798594906925e-16, 0.0, 0.0] FEType = HDIVBDM1{2} broken ON_CELLS | ndofs = 96 | order = 1 | error = [3.3949798594906925e-16, 0.0, 0.0] FEType = HDIVRT1{2} ON_CELLS | ndofs = 88 | order = 1 | error = [5.519492833555346e-16, 0.0, 0.0] FEType = HDIVRT1{2} broken ON_CELLS | ndofs = 128 | order = 1 | error = [5.519492833555346e-16, 0.0, 0.0] FEType = HDIVBDM2{2} ON_CELLS | ndofs = 132 | order = 2 | error = [1.5691455839364168e-15, 0.0, 0.0] FEType = HDIVBDM2{2} broken ON_CELLS | ndofs = 192 | order = 2 | error = [1.5691455839364168e-15, 0.0, 0.0] FEType = L2P0{2} ON_CELLS | ndofs = 32 | order = 0 | error = [0.0, 0.0, 0.0] FEType = L2P0{2} broken ON_CELLS | ndofs = 32 | order = 0 | error = [0.0, 0.0, 0.0] FEType = H1P1{2} ON_CELLS | ndofs = 26 | order = 1 | error = [0.0, 0.0, 0.0] FEType = H1P1{2} broken ON_CELLS | ndofs = 96 | order = 1 | error = [0.0, 0.0, 0.0] FEType = H1Q1{2} ON_CELLS | ndofs = 26 | order = 1 | error = [0.0, 0.0, 0.0] FEType = H1Q1{2} broken ON_CELLS | ndofs = 96 | order = 1 | error = [0.0, 0.0, 0.0] FEType = H1CR{2} ON_CELLS | ndofs = 56 | order = 1 | error = [4.5324665183683945e-17, 3.8459253727671276e-16, 0.0] FEType = H1CR{2} broken ON_CELLS | ndofs = 96 | order = 1 | error = [4.5324665183683945e-17, 3.8459253727671276e-16, 0.0] FEType = H1MINI{2,2} ON_CELLS | ndofs = 58 | order = 1 | error = [8.633966911639094e-16, 3.629607989079354e-14, 3.7459128862826967e-13] FEType = H1MINI{2,2} broken ON_CELLS | ndofs = 128 | order = 1 | error = [8.633966911639094e-16, 3.629607989079354e-14, 3.7459128862826967e-13] FEType = H1P1TEB{2} ON_CELLS | ndofs = 54 | order = 1 | error = [3.2684100275071786e-16, 1.5857156540161844e-15, 4.766465574234763e-14] FEType = H1P1TEB{2} broken ON_CELLS | ndofs = 144 | order = 1 | error = [3.2684100275071786e-16, 1.5857156540161844e-15, 4.766465574234763e-14] FEType = H1BR{2} ON_CELLS | ndofs = 54 | order = 1 | error = [3.1332023847832507e-16, 1.5857156540161844e-15, 4.2632564145606005e-14] FEType = H1BR{2} broken ON_CELLS | ndofs = 144 | order = 1 | error = [3.1332023847832507e-16, 1.5857156540161844e-15, 4.2632564145606005e-14] FEType = H1P2{2,2} ON_CELLS | ndofs = 82 | order = 2 | error = [5.500713547018478e-16, 4.00389611084255e-15, 4.94811468515935e-14, 3.0674044808505136e-15] FEType = H1P2{2,2} broken ON_CELLS | ndofs = 192 | order = 2 | error = [5.500713547018478e-16, 4.00389611084255e-15, 4.94811468515935e-14, 3.0674044808505136e-15] FEType = H1P2B{2,2} ON_CELLS | ndofs = 114 | order = 2 | error = [7.159990982763795e-16, 1.5307719033640283e-14, 3.125311880036022e-13, 1.2144580807386644e-14] FEType = H1P2B{2,2} broken ON_CELLS | ndofs = 224 | order = 2 | error = [7.159990982763795e-16, 1.5307719033640283e-14, 3.125311880036022e-13, 1.2144580807386644e-14] FEType = H1Q2{2,2} ON_CELLS | ndofs = 82 | order = 2 | error = [5.500713547018478e-16, 4.00389611084255e-15, 4.94811468515935e-14, 3.0674044808505136e-15] FEType = H1Q2{2,2} broken ON_CELLS | ndofs = 192 | order = 2 | error = [5.500713547018478e-16, 4.00389611084255e-15, 4.94811468515935e-14, 3.0674044808505136e-15] FEType = H1P3{2,2} ON_CELLS | ndofs = 170 | order = 3 | error = [6.33273869153641e-16, 1.2125119985914504e-14, 2.8146831658790275e-13, 1.0671029087951642e-14] FEType = H1P3{2,2} broken ON_CELLS | ndofs = 320 | order = 3 | error = [6.33273869153641e-16, 1.2125119985914504e-14, 2.8146831658790275e-13, 1.0671029087951642e-14] FEType = H1Pk{2,2,3} ON_CELLS | ndofs = 170 | order = 3 | error = [6.737149949292396e-16, 1.2675120726289122e-14, 2.7393719192144697e-13, 1.0354884425824366e-14] FEType = H1Pk{2,2,3} broken ON_CELLS | ndofs = 320 | order = 3 | error = [6.737149949292396e-16, 1.2675120726289122e-14, 2.7393719192144697e-13, 1.0354884425824366e-14] FEType = H1Pk{2,2,4} ON_CELLS | ndofs = 290 | order = 4 | error = [1.3076327299321822e-15, 3.7137403289748365e-14, 1.5170856617131803e-12] FEType = H1Pk{2,2,4} broken ON_CELLS | ndofs = 480 | order = 4 | error = [1.3076327299321822e-15, 3.7137403289748365e-14, 1.5170856617131803e-12] FEType = H1Pk{2,2,5} ON_CELLS | ndofs = 442 | order = 5 | error = [1.765671738620153e-15, 8.155151331225163e-14, 5.392748767703348e-12] FEType = H1Pk{2,2,5} broken ON_CELLS | ndofs = 672 | order = 5 | error = [1.765671738620153e-15, 8.155151331225163e-14, 5.392748767703348e-12] FEType = HCURLN0{2} ON_CELLS | ndofs = 12 | order = 0 | error = [0.0, 0.0, 0.0] FEType = HCURLN0{2} broken ON_CELLS | ndofs = 16 | order = 0 | error = [0.0, 0.0, 0.0] FEType = HDIVRT0{2} ON_CELLS | ndofs = 12 | order = 0 | error = [0.0, 0.0, 0.0] FEType = HDIVRT0{2} broken ON_CELLS | ndofs = 16 | order = 0 | error = [0.0, 0.0, 0.0] FEType = HDIVBDM1{2} ON_CELLS | ndofs = 24 | order = 1 | error = [3.311277686126547e-16, 0.0, 0.0] FEType = HDIVBDM1{2} broken ON_CELLS | ndofs = 32 | order = 1 | error = [3.311277686126547e-16, 0.0, 0.0] ┌ Warning: HDIVRT1{2} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:286 ┌ Warning: HDIVRT1{2} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:286 ┌ Warning: HDIVBDM2{2} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:286 ┌ Warning: HDIVBDM2{2} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:286 FEType = L2P0{2} ON_CELLS | ndofs = 8 | order = 0 | error = [0.0, 0.0, 0.0] FEType = L2P0{2} broken ON_CELLS | ndofs = 8 | order = 0 | error = [0.0, 0.0, 0.0] ┌ Warning: H1P1{2} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:286 ┌ Warning: H1P1{2} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:286 FEType = H1Q1{2} ON_CELLS | ndofs = 18 | order = 1 | error = [3.081368953213664e-16, 0.0, 0.0] FEType = H1Q1{2} broken ON_CELLS | ndofs = 32 | order = 1 | error = [3.081368953213664e-16, 0.0, 0.0] FEType = H1CR{2} ON_CELLS | ndofs = 24 | order = 1 | error = [2.6481677458197434e-16, 0.0, 0.0] FEType = H1CR{2} broken ON_CELLS | ndofs = 32 | order = 1 | error = [2.6481677458197434e-16, 0.0, 0.0] FEType = H1MINI{2,2} ON_CELLS | ndofs = 26 | order = 1 | error = [1.9208016630313705e-15, 1.4793695765981954e-14, 1.448714705903761e-13] FEType = H1MINI{2,2} broken ON_CELLS | ndofs = 40 | order = 1 | error = [1.9208016630313705e-15, 1.4793695765981954e-14, 1.448714705903761e-13] ┌ Warning: H1P1TEB{2} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:286 ┌ Warning: H1P1TEB{2} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:286 FEType = H1BR{2} ON_CELLS | ndofs = 30 | order = 1 | error = [2.7761143305392026e-16, 7.364386412590294e-16, 0.0] FEType = H1BR{2} broken ON_CELLS | ndofs = 48 | order = 1 | error = [2.7761143305392026e-16, 7.364386412590294e-16, 0.0] ┌ Warning: H1P2{2,2} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:286 ┌ Warning: H1P2{2,2} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:286 ┌ Warning: H1P2B{2,2} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:286 ┌ Warning: H1P2B{2,2} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:286 FEType = H1Q2{2,2} ON_CELLS | ndofs = 50 | order = 2 | error = [6.8865113634525e-16, 5.754263479472092e-15, 5.2873664905036725e-14] FEType = H1Q2{2,2} broken ON_CELLS | ndofs = 72 | order = 2 | error = [6.8865113634525e-16, 5.754263479472092e-15, 5.2873664905036725e-14] ┌ Warning: H1P3{2,2} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:286 ┌ Warning: H1P3{2,2} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:286 ┌ Warning: H1Pk{2,2,3} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:286 ┌ Warning: H1Pk{2,2,3} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:286 ┌ Warning: H1Pk{2,2,4} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:286 ┌ Warning: H1Pk{2,2,4} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:286 ┌ Warning: H1Pk{2,2,5} (broken = false) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:286 ┌ Warning: H1Pk{2,2,5} (broken = true) not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:286 ============================ Testing Interpolations in 3D ============================ FEType = HCURLN0{3} ON_CELLS | ndofs = 98 | order = 0 | error = [0.0, 0.0, 0.0] FEType = HCURLN0{3} broken ON_CELLS | ndofs = 288 | order = 0 | error = [0.0, 0.0, 0.0] FEType = HDIVRT0{3} ON_CELLS | ndofs = 120 | order = 0 | error = [7.166458808248762e-17, 0.0, 0.0] FEType = HDIVRT0{3} broken ON_CELLS | ndofs = 192 | order = 0 | error = [7.166458808248762e-17, 0.0, 0.0] FEType = HDIVBDM1{3} ON_CELLS | ndofs = 360 | order = 1 | error = [1.2235970443337213e-15, 0.0, 0.0] FEType = HDIVBDM1{3} broken ON_CELLS | ndofs = 576 | order = 1 | error = [1.2235970443337213e-15, 0.0, 0.0] FEType = HDIVRT1{3} ON_CELLS | ndofs = 504 | order = 1 | error = [1.192638811669899e-15, 0.0, 0.0] FEType = HDIVRT1{3} broken ON_CELLS | ndofs = 720 | order = 1 | error = [1.192638811669899e-15, 0.0, 0.0] FEType = L2P0{3} ON_CELLS | ndofs = 144 | order = 0 | error = [0.0, 0.0, 0.0] FEType = L2P0{3} broken ON_CELLS | ndofs = 144 | order = 0 | error = [0.0, 0.0, 0.0] FEType = H1P1{3} ON_CELLS | ndofs = 81 | order = 1 | error = [3.595344314058503e-16, 0.0, 0.0] FEType = H1P1{3} broken ON_CELLS | ndofs = 576 | order = 1 | error = [3.595344314058503e-16, 0.0, 0.0] FEType = H1Q1{3} ON_CELLS | ndofs = 81 | order = 1 | error = [3.595344314058503e-16, 0.0, 0.0] FEType = H1Q1{3} broken ON_CELLS | ndofs = 576 | order = 1 | error = [3.595344314058503e-16, 0.0, 0.0] FEType = H1CR{3} ON_CELLS | ndofs = 360 | order = 1 | error = [6.978237953888281e-16, 2.43870286592438e-15, 0.0] FEType = H1CR{3} broken ON_CELLS | ndofs = 576 | order = 1 | error = [6.978237953888281e-16, 2.43870286592438e-15, 0.0] FEType = H1MINI{3,3} ON_CELLS | ndofs = 225 | order = 1 | error = [1.0983552428506246e-15, 1.9762918066107927e-14, 6.927505305048248e-13] FEType = H1MINI{3,3} broken ON_CELLS | ndofs = 720 | order = 1 | error = [1.0983552428506246e-15, 1.9762918066107927e-14, 6.927505305048248e-13] FEType = H1P1TEB{3} ON_CELLS | ndofs = 179 | order = 1 | error = [5.143890258486396e-16, 2.252822804716173e-15, 2.5510982866352577e-14] FEType = H1P1TEB{3} broken ON_CELLS | ndofs = 864 | order = 1 | error = [5.143890258486396e-16, 2.252822804716173e-15, 2.5510982866352577e-14] FEType = H1BR{3} ON_CELLS | ndofs = 201 | order = 1 | error = [4.736801781579391e-16, 4.259954892022355e-15, 1.298436089027099e-13] FEType = H1BR{3} broken ON_CELLS | ndofs = 768 | order = 1 | error = [4.736801781579391e-16, 4.259954892022355e-15, 1.298436089027099e-13] FEType = H1P2{3,3} ON_CELLS | ndofs = 375 | order = 2 | error = [4.3115125752191035e-16, 4.415580642419151e-15, 3.041227617537451e-14, 1.8217184220313005e-15] FEType = H1P2{3,3} broken ON_CELLS | ndofs = 1440 | order = 2 | error = [4.3115125752191035e-16, 4.415580642419151e-15, 3.041227617537451e-14, 1.8217184220313005e-15] FEType = H1P3{3,3} ON_CELLS | ndofs = 1029 | order = 3 | error = [1.177352510356678e-15, 1.5772340300630322e-14, 3.66005036643769e-13, 1.1686461005193725e-14] FEType = H1P3{3,3} broken ON_CELLS | ndofs = 2880 | order = 3 | error = [1.177352510356678e-15, 1.5772340300630322e-14, 3.66005036643769e-13, 1.1686461005193725e-14] ┌ Warning: HCURLN0{3} (broken = false) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:300 ┌ Warning: HCURLN0{3} (broken = true) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:300 FEType = HDIVRT0{3} ON_CELLS | ndofs = 36 | order = 0 | error = [0.0, 0.0, 0.0] FEType = HDIVRT0{3} broken ON_CELLS | ndofs = 48 | order = 0 | error = [0.0, 0.0, 0.0] ┌ Warning: HDIVBDM1{3} (broken = false) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:300 ┌ Warning: HDIVBDM1{3} (broken = true) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:300 ┌ Warning: HDIVRT1{3} (broken = false) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:300 ┌ Warning: HDIVRT1{3} (broken = true) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:300 FEType = L2P0{3} ON_CELLS | ndofs = 24 | order = 0 | error = [0.0, 0.0, 0.0] FEType = L2P0{3} broken ON_CELLS | ndofs = 24 | order = 0 | error = [0.0, 0.0, 0.0] ┌ Warning: H1P1{3} (broken = false) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:300 ┌ Warning: H1P1{3} (broken = true) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:300 FEType = H1Q1{3} ON_CELLS | ndofs = 81 | order = 1 | error = [4.032977495514336e-16, 7.328010758342068e-16, 0.0] FEType = H1Q1{3} broken ON_CELLS | ndofs = 192 | order = 1 | error = [4.032977495514336e-16, 7.328010758342068e-16, 0.0] ┌ Warning: H1CR{3} (broken = false) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:300 ┌ Warning: H1CR{3} (broken = true) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:300 ┌ Warning: H1MINI{3,3} (broken = false) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:300 ┌ Warning: H1MINI{3,3} (broken = true) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:300 ┌ Warning: H1P1TEB{3} (broken = false) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:300 ┌ Warning: H1P1TEB{3} (broken = true) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:300 ┌ Warning: H1BR{3} (broken = false) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:300 ┌ Warning: H1BR{3} (broken = true) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:300 ┌ Warning: H1P2{3,3} (broken = false) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:300 ┌ Warning: H1P2{3,3} (broken = true) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:300 ┌ Warning: H1P3{3,3} (broken = false) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:300 ┌ Warning: H1P3{3,3} (broken = true) not defined on Parallelepiped3D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:300 Test Summary: | Pass Total Time Interpolations | 102 102 13m49.0s =================================== Testing L2-Bestapproximations in 1D =================================== ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by L2P0{1} (broken), ndofs = 6) ┌ Warning: `SciMLBase.solve(cache::LinearCache, args...; kwargs...)` is deprecated, use `SciMLBase.solve!(cache::LinearCache, args...; kwargs...)` instead. │ caller = macro expansion at solvers.jl:659 [inlined] └ @ Core ~/.julia/packages/GradientRobustMultiPhysics/zicPX/src/solvers.jl:659 [ Info: overall residual = 0.0 FEType = L2P0{1} | ndofs = 6 | order = 0 | error = 0.0 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by L2P0{1} (broken), ndofs = 6) [ Info: overall residual = 0.0 FEType = L2P0{1} broken | ndofs = 6 | order = 0 | error = 0.0 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P1{1}, ndofs = 7) [ Info: overall residual = 2.7755575615628914e-17 FEType = H1P1{1} | ndofs = 7 | order = 1 | error = 2.389416733018319e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P1{1} (broken), ndofs = 12) [ Info: overall residual = 3.925231146709438e-17 FEType = H1P1{1} broken | ndofs = 12 | order = 1 | error = 1.5370341782520676e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P2{1,1}, ndofs = 13) [ Info: overall residual = 4.706186817419514e-17 FEType = H1P2{1,1} | ndofs = 13 | order = 2 | error = 3.5383571404382917e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P2{1,1} (broken), ndofs = 18) [ Info: overall residual = 4.615798956820346e-17 FEType = H1P2{1,1} broken | ndofs = 18 | order = 2 | error = 3.722268485936919e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P3{1,1}, ndofs = 19) [ Info: overall residual = 5.374844106186573e-17 FEType = H1P3{1,1} | ndofs = 19 | order = 3 | error = 3.251249262542408e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P3{1,1} (broken), ndofs = 24) [ Info: overall residual = 3.784719799586234e-17 FEType = H1P3{1,1} broken | ndofs = 24 | order = 3 | error = 2.323620905625628e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1Pk{1,1,3}, ndofs = 19) [ Info: overall residual = 5.099024833164444e-17 FEType = H1Pk{1,1,3} | ndofs = 19 | order = 3 | error = 3.2146436312732976e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1Pk{1,1,3} (broken), ndofs = 24) [ Info: overall residual = 4.263327790606129e-17 FEType = H1Pk{1,1,3} broken | ndofs = 24 | order = 3 | error = 3.030878349687719e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1Pk{1,1,4}, ndofs = 25) [ Info: overall residual = 4.252726876253798e-17 FEType = H1Pk{1,1,4} | ndofs = 25 | order = 4 | error = 2.595611853468187e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1Pk{1,1,4} (broken), ndofs = 30) [ Info: overall residual = 3.982314576450942e-17 FEType = H1Pk{1,1,4} broken | ndofs = 30 | order = 4 | error = 2.7763009772295435e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1Pk{1,1,5}, ndofs = 31) [ Info: overall residual = 7.110250420355456e-17 FEType = H1Pk{1,1,5} | ndofs = 31 | order = 5 | error = 3.4845164079669106e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1Pk{1,1,5} (broken), ndofs = 36) [ Info: overall residual = 3.847802807769244e-17 FEType = H1Pk{1,1,5} broken | ndofs = 36 | order = 5 | error = 3.350386295906752e-16 =================================== Testing L2-Bestapproximations in 2D =================================== ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HCURLN0{2}, ndofs = 28) [ Info: overall residual = 4.1910000110727263e-16 FEType = HCURLN0{2} | ndofs = 28 | order = 0 | error = 6.730369402342474e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HCURLN0{2} (broken), ndofs = 48) [ Info: overall residual = 2.830524433501838e-16 FEType = HCURLN0{2} broken | ndofs = 48 | order = 0 | error = 6.473657049138938e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HDIVRT0{2}, ndofs = 28) [ Info: overall residual = 3.8459253727671276e-16 FEType = HDIVRT0{2} | ndofs = 28 | order = 0 | error = 8.706583865735264e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HDIVRT0{2} (broken), ndofs = 48) [ Info: overall residual = 2.830524433501838e-16 FEType = HDIVRT0{2} broken | ndofs = 48 | order = 0 | error = 6.473657049138938e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HDIVBDM1{2}, ndofs = 56) [ Info: overall residual = 1.0094123226303843e-15 FEType = HDIVBDM1{2} | ndofs = 56 | order = 1 | error = 5.52249293502444e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HDIVBDM1{2} (broken), ndofs = 96) [ Info: overall residual = 7.92542740657353e-16 FEType = HDIVBDM1{2} broken | ndofs = 96 | order = 1 | error = 5.144376504171584e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HDIVRT1{2}, ndofs = 88) [ Info: overall residual = 8.534134300527137e-16 FEType = HDIVRT1{2} | ndofs = 88 | order = 1 | error = 2.3554801273080005e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HDIVRT1{2} (broken), ndofs = 128) [ Info: overall residual = 9.244123136296675e-16 FEType = HDIVRT1{2} broken | ndofs = 128 | order = 1 | error = 2.919670987569546e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HDIVBDM2{2}, ndofs = 132) [ Info: overall residual = 2.8884826502278876e-15 FEType = HDIVBDM2{2} | ndofs = 132 | order = 2 | error = 1.4077485181337763e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HDIVBDM2{2} (broken), ndofs = 192) [ Info: overall residual = 2.0680599610301367e-15 FEType = HDIVBDM2{2} broken | ndofs = 192 | order = 2 | error = 1.6655872387082503e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by L2P0{2} (broken), ndofs = 32) [ Info: overall residual = 0.0 FEType = L2P0{2} | ndofs = 32 | order = 0 | error = 0.0 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by L2P0{2} (broken), ndofs = 32) [ Info: overall residual = 0.0 FEType = L2P0{2} broken | ndofs = 32 | order = 0 | error = 0.0 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P1{2}, ndofs = 26) [ Info: overall residual = 9.646060876762511e-17 FEType = H1P1{2} | ndofs = 26 | order = 1 | error = 5.728966410758501e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P1{2} (broken), ndofs = 96) [ Info: overall residual = 3.12370669354625e-17 FEType = H1P1{2} broken | ndofs = 96 | order = 1 | error = 3.0751123600514706e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1CR{2}, ndofs = 56) [ Info: overall residual = 0.0 FEType = H1CR{2} | ndofs = 56 | order = 1 | error = 1.5370341782520676e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1CR{2} (broken), ndofs = 96) [ Info: overall residual = 0.0 FEType = H1CR{2} broken | ndofs = 96 | order = 1 | error = 1.5370341782520676e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1MINI{2,2}, ndofs = 58) [ Info: overall residual = 2.1657697426142492e-16 FEType = H1MINI{2,2} | ndofs = 58 | order = 1 | error = 3.6651328734686134e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1MINI{2,2} (broken), ndofs = 128) [ Info: overall residual = 1.144486214387641e-16 FEType = H1MINI{2,2} broken | ndofs = 128 | order = 1 | error = 3.872046875709646e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P1TEB{2}, ndofs = 54) [ Info: overall residual = 1.8728588746211403e-16 FEType = H1P1TEB{2} | ndofs = 54 | order = 1 | error = 1.3902288781201732e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P1TEB{2} (broken), ndofs = 144) [ Info: overall residual = 8.737229086439615e-17 FEType = H1P1TEB{2} broken | ndofs = 144 | order = 1 | error = 2.229127277098024e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1BR{2}, ndofs = 54) [ Info: overall residual = 1.8559927526510322e-16 FEType = H1BR{2} | ndofs = 54 | order = 1 | error = 1.364342769206762e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1BR{2} (broken), ndofs = 144) [ Info: overall residual = 7.867969735775901e-17 FEType = H1BR{2} broken | ndofs = 144 | order = 1 | error = 2.247688953879943e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P2{2,2}, ndofs = 82) [ Info: overall residual = 5.672761752399569e-17 FEType = H1P2{2,2} | ndofs = 82 | order = 2 | error = 7.100580419270552e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P2{2,2} (broken), ndofs = 192) [ Info: overall residual = 4.007384673017213e-17 FEType = H1P2{2,2} broken | ndofs = 192 | order = 2 | error = 6.482504048320786e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P2B{2,2}, ndofs = 114) [ Info: overall residual = 1.0285565524960494e-16 FEType = H1P2B{2,2} | ndofs = 114 | order = 2 | error = 3.3637813350614295e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P2B{2,2} (broken), ndofs = 224) [ Info: overall residual = 8.48824851344116e-17 FEType = H1P2B{2,2} broken | ndofs = 224 | order = 2 | error = 4.078790459093135e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P3{2,2}, ndofs = 170) [ Info: overall residual = 4.2079968291901167e-17 FEType = H1P3{2,2} | ndofs = 170 | order = 3 | error = 6.977157200728582e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P3{2,2} (broken), ndofs = 320) [ Info: overall residual = 4.538112640201279e-17 FEType = H1P3{2,2} broken | ndofs = 320 | order = 3 | error = 7.758170562989959e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1Pk{2,2,3}, ndofs = 170) [ Info: overall residual = 5.396953924958488e-17 FEType = H1Pk{2,2,3} | ndofs = 170 | order = 3 | error = 7.428727545454494e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1Pk{2,2,3} (broken), ndofs = 320) [ Info: overall residual = 3.743584822265368e-17 FEType = H1Pk{2,2,3} broken | ndofs = 320 | order = 3 | error = 8.082672318077919e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1Pk{2,2,4}, ndofs = 290) [ Info: overall residual = 4.761486536175409e-17 FEType = H1Pk{2,2,4} | ndofs = 290 | order = 4 | error = 9.930723159120811e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1Pk{2,2,4} (broken), ndofs = 480) [ Info: overall residual = 3.7206658632609783e-17 FEType = H1Pk{2,2,4} broken | ndofs = 480 | order = 4 | error = 9.054486599597288e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1Pk{2,2,5}, ndofs = 442) [ Info: overall residual = 3.88647066769391e-17 FEType = H1Pk{2,2,5} | ndofs = 442 | order = 5 | error = 1.8084298181498543e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1Pk{2,2,5} (broken), ndofs = 672) [ Info: overall residual = 3.842153280298616e-17 FEType = H1Pk{2,2,5} broken | ndofs = 672 | order = 5 | error = 1.8729483303051086e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HCURLN0{2}, ndofs = 12) [ Info: overall residual = 4.577566798522237e-16 FEType = HCURLN0{2} | ndofs = 12 | order = 0 | error = 1.831026719408895e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HCURLN0{2} (broken), ndofs = 16) [ Info: overall residual = 4.577566798522237e-16 FEType = HCURLN0{2} broken | ndofs = 16 | order = 0 | error = 1.831026719408895e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HDIVRT0{2}, ndofs = 12) [ Info: overall residual = 4.577566798522237e-16 FEType = HDIVRT0{2} | ndofs = 12 | order = 0 | error = 1.831026719408895e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HDIVRT0{2} (broken), ndofs = 16) [ Info: overall residual = 4.577566798522237e-16 FEType = HDIVRT0{2} broken | ndofs = 16 | order = 0 | error = 1.831026719408895e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HDIVBDM1{2}, ndofs = 24) [ Info: overall residual = 7.796303550071736e-16 FEType = HDIVBDM1{2} | ndofs = 24 | order = 1 | error = 2.01934330838686e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HDIVBDM1{2} (broken), ndofs = 32) [ Info: overall residual = 6.0332475458014115e-16 FEType = HDIVBDM1{2} broken | ndofs = 32 | order = 1 | error = 1.8534024619254245e-15 ┌ Warning: HDIVRT1{2} not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:404 ┌ Warning: HDIVBDM2{2} not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:404 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by L2P0{2} (broken), ndofs = 8) [ Info: overall residual = 0.0 FEType = L2P0{2} | ndofs = 8 | order = 0 | error = 0.0 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by L2P0{2} (broken), ndofs = 8) [ Info: overall residual = 0.0 FEType = L2P0{2} broken | ndofs = 8 | order = 0 | error = 0.0 ┌ Warning: H1P1{2} not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:404 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1CR{2}, ndofs = 24) [ Info: overall residual = 1.5118988401161635e-16 FEType = H1CR{2} | ndofs = 24 | order = 1 | error = 7.517499790448796e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1CR{2} (broken), ndofs = 32) [ Info: overall residual = 9.798116851180973e-17 FEType = H1CR{2} broken | ndofs = 32 | order = 1 | error = 6.487865800153258e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1MINI{2,2}, ndofs = 26) [ Info: overall residual = 1.4035285682055978e-16 FEType = H1MINI{2,2} | ndofs = 26 | order = 1 | error = 1.280106696293427e-14 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1MINI{2,2} (broken), ndofs = 40) [ Info: overall residual = 1.8456675185782847e-16 FEType = H1MINI{2,2} broken | ndofs = 40 | order = 1 | error = 1.2963219347476914e-14 ┌ Warning: H1P1TEB{2} not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:404 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1BR{2}, ndofs = 30) [ Info: overall residual = 2.8178611565162844e-16 FEType = H1BR{2} | ndofs = 30 | order = 1 | error = 4.778480521588493e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1BR{2} (broken), ndofs = 48) [ Info: overall residual = 1.6314703087871144e-16 FEType = H1BR{2} broken | ndofs = 48 | order = 1 | error = 5.268847484900268e-15 ┌ Warning: H1P2{2,2} not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:404 ┌ Warning: H1P2B{2,2} not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:404 ┌ Warning: H1P3{2,2} not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:404 ┌ Warning: H1Pk{2,2,3} not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:404 ┌ Warning: H1Pk{2,2,4} not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:404 ┌ Warning: H1Pk{2,2,5} not defined on Parallelogram2D (skipping test case) └ @ Main ~/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:404 =================================== Testing L2-Bestapproximations in 3D =================================== ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HCURLN0{3}, ndofs = 98) [ Info: overall residual = 4.130471628357801e-16 FEType = HCURLN0{3} | ndofs = 98 | order = 0 | error = 1.2573971639224057e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HCURLN0{3} (broken), ndofs = 288) [ Info: overall residual = 1.558918350923102e-16 FEType = HCURLN0{3} broken | ndofs = 288 | order = 0 | error = 7.852194128289612e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HDIVRT0{3}, ndofs = 120) [ Info: overall residual = 1.3806132209855328e-15 FEType = HDIVRT0{3} | ndofs = 120 | order = 0 | error = 1.0560583758198499e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HDIVRT0{3} (broken), ndofs = 192) [ Info: overall residual = 8.914791032611997e-16 FEType = HDIVRT0{3} broken | ndofs = 192 | order = 0 | error = 1.1143566429002412e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HDIVBDM1{3}, ndofs = 360) [ Info: overall residual = 6.334636230149463e-15 FEType = HDIVBDM1{3} | ndofs = 360 | order = 1 | error = 1.9712926992381647e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HDIVBDM1{3} (broken), ndofs = 576) [ Info: overall residual = 7.327282840887643e-15 FEType = HDIVBDM1{3} broken | ndofs = 576 | order = 1 | error = 2.560012044839852e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HDIVRT1{3}, ndofs = 504) [ Info: overall residual = 4.133349677658728e-15 FEType = HDIVRT1{3} | ndofs = 504 | order = 1 | error = 2.8538134179815305e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by HDIVRT1{3} (broken), ndofs = 720) [ Info: overall residual = 4.256503516497235e-15 FEType = HDIVRT1{3} broken | ndofs = 720 | order = 1 | error = 3.440744303271441e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by L2P0{3} (broken), ndofs = 144) [ Info: overall residual = 0.0 FEType = L2P0{3} | ndofs = 144 | order = 0 | error = 0.0 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by L2P0{3} (broken), ndofs = 144) [ Info: overall residual = 0.0 FEType = L2P0{3} broken | ndofs = 144 | order = 0 | error = 0.0 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P1{3}, ndofs = 81) [ Info: overall residual = 8.782037597132586e-17 FEType = H1P1{3} | ndofs = 81 | order = 1 | error = 8.437846665436995e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P1{3} (broken), ndofs = 576) [ Info: overall residual = 1.9692017236930964e-17 FEType = H1P1{3} broken | ndofs = 576 | order = 1 | error = 7.122223075681021e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1CR{3}, ndofs = 360) [ Info: overall residual = 7.585100245184027e-17 FEType = H1CR{3} | ndofs = 360 | order = 1 | error = 1.0299488331377908e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1CR{3} (broken), ndofs = 576) [ Info: overall residual = 4.4712586759618085e-17 FEType = H1CR{3} broken | ndofs = 576 | order = 1 | error = 9.459021456021654e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1MINI{3,3}, ndofs = 225) [ Info: overall residual = 1.794110833984073e-16 FEType = H1MINI{3,3} | ndofs = 225 | order = 1 | error = 1.9234970644001154e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1MINI{3,3} (broken), ndofs = 720) [ Info: overall residual = 5.958721570116291e-17 FEType = H1MINI{3,3} broken | ndofs = 720 | order = 1 | error = 2.139372757348563e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P1TEB{3}, ndofs = 179) [ Info: overall residual = 2.3162913416713356e-16 FEType = H1P1TEB{3} | ndofs = 179 | order = 1 | error = 2.472347434350917e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P1TEB{3} (broken), ndofs = 864) [ Info: overall residual = 6.040587782413726e-17 FEType = H1P1TEB{3} broken | ndofs = 864 | order = 1 | error = 1.9525380198863503e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1BR{3}, ndofs = 201) [ Info: overall residual = 1.787521082461558e-16 FEType = H1BR{3} | ndofs = 201 | order = 1 | error = 1.6990115709170134e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1BR{3} (broken), ndofs = 768) [ Info: overall residual = 4.997615726008275e-17 FEType = H1BR{3} broken | ndofs = 768 | order = 1 | error = 1.7886882955533597e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P2{3,3}, ndofs = 375) [ Info: overall residual = 7.975889753960687e-17 FEType = H1P2{3,3} | ndofs = 375 | order = 2 | error = 1.1166371132819709e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P2{3,3} (broken), ndofs = 1440) [ Info: overall residual = 2.4278451424218423e-17 FEType = H1P2{3,3} broken | ndofs = 1440 | order = 2 | error = 9.94369752794755e-16 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P3{3,3}, ndofs = 1029) [ Info: overall residual = 4.2175093429302143e-17 FEType = H1P3{3,3} | ndofs = 1029 | order = 3 | error = 1.8043681816737744e-15 ┌ Info: ========== Solving L2-Bestapproximation problem ========== └ Equation (1.1) L2-bestapproximation equation for user action (discretised by H1P3{3,3} (broken), ndofs = 2880) [ Info: overall residual = 2.825192593067422e-17 FEType = H1P3{3,3} broken | ndofs = 2880 | order = 3 | error = 2.035181331116063e-15 Test Summary: | Pass Total Time L2-Bestapproximations | 86 86 10m04.4s =================================== Testing H1-Bestapproximations in 1D =================================== ┌ Info: ========== Solving H1-Bestapproximation problem ========== └ Equation (1.1) H1-bestapproximation equation for user action (discretised by H1P1{1}, ndofs = 7) [ Info: overall residual = 0.0 FEType = H1P1{1} | ndofs = 7 | order = 0 | error = 0.0 ┌ Info: ========== Solving H1-Bestapproximation problem ========== └ Equation (1.1) H1-bestapproximation equation for user action (discretised by H1P2{1,1}, ndofs = 13) [ Info: overall residual = 9.39959687352353e-15 FEType = H1P2{1,1} | ndofs = 13 | order = 1 | error = 2.440597494877195e-15 ┌ Info: ========== Solving H1-Bestapproximation problem ========== └ Equation (1.1) H1-bestapproximation equation for user action (discretised by H1P3{1,1}, ndofs = 19) [ Info: overall residual = 4.015651750236131e-14 FEType = H1P3{1,1} | ndofs = 19 | order = 2 | error = 1.1919707149690398e-15 ┌ Info: ========== Solving H1-Bestapproximation problem ========== └ Equation (1.1) H1-bestapproximation equation for user action (discretised by H1Pk{1,1,3}, ndofs = 19) [ Info: overall residual = 5.1022912497224613e-14 FEType = H1Pk{1,1,3} | ndofs = 19 | order = 3 | error = 7.949333757486693e-15 ┌ Info: ========== Solving H1-Bestapproximation problem ========== └ Equation (1.1) H1-bestapproximation equation for user action (discretised by H1Pk{1,1,4}, ndofs = 25) [ Info: overall residual = 8.008160569073118e-14 FEType = H1Pk{1,1,4} | ndofs = 25 | order = 3 | error = 1.7675152531873532e-14 ┌ Info: ========== Solving H1-Bestapproximation problem ========== └ Equation (1.1) H1-bestapproximation equation for user action (discretised by H1Pk{1,1,5}, ndofs = 31) [ Info: overall residual = 2.1793231964436179e-13 FEType = H1Pk{1,1,5} | ndofs = 31 | order = 4 | error = 8.859133746163281e-15 ┌ Info: ========== Solving H1-Bestapproximation problem ========== └ Equation (1.1) H1-bestapproximation equation for user action (discretised by H1Pk{1,1,6}, ndofs = 37) [ Info: overall residual = 5.682306699612209e-13 FEType = H1Pk{1,1,6} | ndofs = 37 | order = 5 | error = 5.573354960322321e-14 ┌ Info: ========== Solving H1-Bestapproximation problem ========== └ Equation (1.1) H1-bestapproximation equation for user action (discretised by H1Pk{1,1,7}, ndofs = 43) [ Info: overall residual = 6.99736941453122e-13 FEType = H1Pk{1,1,7} | ndofs = 43 | order = 6 | error = 2.0293473957403385e-13 =================================== Testing H1-Bestapproximations in 2D =================================== ┌ Info: ========== Solving H1-Bestapproximation problem ========== └ Equation (1.1) H1-bestapproximation equation for user action (discretised by H1Q1{2}, ndofs = 50) ┌ Warning: 8356824 allocations during ITEMTYPE_CELL volume calculation └ @ ExtendableGrids ~/.julia/packages/ExtendableGrids/XFxI3/src/derived.jl:937 [ Info: overall residual = 4.280262764974439e-15 FEType = H1Q1{2} | ndofs = 50 | order = 1 | error = 1.785985302381088e-15 ┌ Info: ========== Solving H1-Bestapproximation problem ========== └ Equation (1.1) H1-bestapproximation equation for user action (discretised by H1CR{2}, ndofs = 96) [ Info: overall residual = 1.2252591989485496e-14 FEType = H1CR{2} | ndofs = 96 | order = 1 | error = 7.367582760960497e-15 ┌ Info: ========== Solving H1-Bestapproximation problem ========== └ Equation (1.1) H1-bestapproximation equation for user action (discretised by H1MINI{2,2}, ndofs = 98) [ Info: overall residual = 3.858074930349486e-15 FEType = H1MINI{2,2} | ndofs = 98 | order = 1 | error = 8.338387347546706e-16 ┌ Info: ========== Solving H1-Bestapproximation problem ========== └ Equation (1.1) H1-bestapproximation equation for user action (discretised by H1BR{2}, ndofs = 98) [ Info: overall residual = 7.066078378213174e-15 FEType = H1BR{2} | ndofs = 98 | order = 1 | error = 3.614953345538158e-15 ┌ Info: ========== Solving H1-Bestapproximation problem ========== └ Equation (1.1) H1-bestapproximation equation for user action (discretised by H1Q2{2,2}, ndofs = 162) [ Info: overall residual = 1.344976340958893e-14 FEType = H1Q2{2,2} | ndofs = 162 | order = 2 | error = 5.507777555162769e-15 =================================== Testing H1-Bestapproximations in 3D =================================== ┌ Info: ========== Solving H1-Bestapproximation problem ========== └ Equation (1.1) H1-bestapproximation equation for user action (discretised by H1P1{3}, ndofs = 81) [ Info: overall residual = 1.6788745550666546e-15 FEType = H1P1{3} | ndofs = 81 | order = 1 | error = 6.873090192562007e-16 ┌ Info: ========== Solving H1-Bestapproximation problem ========== └ Equation (1.1) H1-bestapproximation equation for user action (discretised by H1MINI{3,3}, ndofs = 225) [ Info: overall residual = 2.131272263502362e-15 FEType = H1MINI{3,3} | ndofs = 225 | order = 1 | error = 1.35259720160554e-15 ┌ Info: ========== Solving H1-Bestapproximation problem ========== └ Equation (1.1) H1-bestapproximation equation for user action (discretised by H1P1TEB{3}, ndofs = 179) [ Info: overall residual = 5.423208079256462e-15 FEType = H1P1TEB{3} | ndofs = 179 | order = 1 | error = 1.1899029650330358e-15 ┌ Info: ========== Solving H1-Bestapproximation problem ========== └ Equation (1.1) H1-bestapproximation equation for user action (discretised by H1CR{3}, ndofs = 360) [ Info: overall residual = 6.606784304086105e-15 FEType = H1CR{3} | ndofs = 360 | order = 1 | error = 1.5226943067194905e-15 ┌ Info: ========== Solving H1-Bestapproximation problem ========== └ Equation (1.1) H1-bestapproximation equation for user action (discretised by H1BR{3}, ndofs = 201) [ Info: overall residual = 4.882067227526406e-15 FEType = H1BR{3} | ndofs = 201 | order = 1 | error = 2.1335555789401456e-15 ┌ Info: ========== Solving H1-Bestapproximation problem ========== └ Equation (1.1) H1-bestapproximation equation for user action (discretised by H1P2{3,3}, ndofs = 375) [ Info: overall residual = 7.043531070203223e-15 FEType = H1P2{3,3} | ndofs = 375 | order = 1 | error = 1.574393851422872e-15 ┌ Info: ========== Solving H1-Bestapproximation problem ========== └ Equation (1.1) H1-bestapproximation equation for user action (discretised by H1P3{3,3}, ndofs = 1029) [ Info: overall residual = 1.424389809339315e-14 FEType = H1P3{3,3} | ndofs = 1029 | order = 2 | error = 2.7909751499249414e-15 Test Summary: | Pass Total Time H1-Bestapproximations | 20 20 5m54.3s ┌ Info: ----- Preparing time control solver for time-dependent test problem for BackwardEuler time integration rule using BackwardEuler ----- └ Equation (1.1) test equation for u (discretised by (H1P2{1,1}, ndofs = 13), timedependent = yes [ Info: Advancing in time from 0.0 until 1.0 STEP | TIME | LSRESIDUAL | RUNTIME | CHANGE | | (total) | (s) u ┌ Warning: `SciMLBase.solve(cache::LinearCache, args...; kwargs...)` is deprecated, use `SciMLBase.solve!(cache::LinearCache, args...; kwargs...)` instead. │ caller = macro expansion at solvers_timedependent.jl:471 [inlined] └ @ Core ~/.julia/packages/GradientRobustMultiPhysics/zicPX/src/solvers_timedependent.jl:471 1 | 1.0000e-01 | 1.4752e-17 | 1.010e+01 | 1.6934e-01 2 | 2.0000e-01 | 3.5392e-17 | 1.874e-02 | 1.6934e-01 3 | 3.0000e-01 | 4.9097e-17 | 1.879e-02 | 1.6934e-01 4 | 4.0000e-01 | 6.3620e-17 | 1.844e-02 | 1.6934e-01 5 | 5.0000e-01 | 1.1617e-16 | 1.837e-02 | 1.6934e-01 6 | 6.0000e-01 | 6.3597e-17 | 1.847e-02 | 1.6934e-01 7 | 7.0000e-01 | 8.8049e-17 | 1.837e-02 | 1.6934e-01 8 | 8.0000e-01 | 1.2738e-16 | 1.887e-02 | 1.6934e-01 9 | 9.0000e-01 | 8.8050e-17 | 1.912e-02 | 1.6934e-01 10 | 1.0000e+00 | 2.3552e-16 | 1.971e-02 | 1.6934e-01 BackwardEuler | order = 1 | error = 1.6875400373894212e-16 ┌ Info: ----- Preparing time control solver for time-dependent test problem for CrankNicolson time integration rule using CrankNicolson ----- └ Equation (1.1) test equation for u (discretised by (H1P2{1,1}, ndofs = 13), timedependent = yes [ Info: Advancing in time from 0.0 until 1.0 STEP | TIME | LSRESIDUAL | RUNTIME | CHANGE | | (total) | (s) u ┌ Warning: `SciMLBase.solve(cache::LinearCache, args...; kwargs...)` is deprecated, use `SciMLBase.solve!(cache::LinearCache, args...; kwargs...)` instead. │ caller = macro expansion at solvers_timedependent.jl:471 [inlined] └ @ Core ~/.julia/packages/GradientRobustMultiPhysics/zicPX/src/solvers_timedependent.jl:471 1 | 1.0000e-01 | 4.3598e-18 | 4.282e-01 | 1.6934e-02 2 | 2.0000e-01 | 1.5613e-17 | 2.550e-02 | 5.0802e-02 3 | 3.0000e-01 | 4.1652e-17 | 2.679e-02 | 8.4670e-02 4 | 4.0000e-01 | 6.2088e-17 | 2.593e-02 | 1.1854e-01 5 | 5.0000e-01 | 6.5192e-17 | 2.636e-02 | 1.5241e-01 6 | 6.0000e-01 | 6.3698e-17 | 2.565e-02 | 1.8627e-01 7 | 7.0000e-01 | 1.2438e-16 | 2.628e-02 | 2.2014e-01 8 | 8.0000e-01 | 1.2738e-16 | 2.652e-02 | 2.5401e-01 9 | 9.0000e-01 | 1.7772e-16 | 2.529e-02 | 2.8788e-01 10 | 1.0000e+00 | 5.2388e-16 | 2.525e-02 | 3.2175e-01 CrankNicolson | order = 2 | error = 2.0167775566942834e-16 ===================================== Testing Stokes elements on Triangle2D ===================================== ┌ Info: ========== Solving incompressible Stokes-Problem ========== │ Equation (1.1) momentum equation for u (discretised by H1CR{2}, ndofs = 56) └ Equation (1.2) incompressibility constraint for p (discretised by L2P0{1} (broken), ndofs = 16) [ Info: overall residual = 3.5663041271866135e-14 EG = Triangle2D | FETypes = Any[H1CR{2}, L2P0{1}] | orders (V/P) = [1, 0] | errorV = 3.1927408458071208e-15 | errorP = 2.155372251033619e-14 ┌ Info: ========== Solving incompressible Stokes-Problem ========== │ Equation (1.1) momentum equation for u (discretised by H1MINI{2,2}, ndofs = 58) └ Equation (1.2) incompressibility constraint for p (discretised by H1P1{1}, ndofs = 13) [ Info: overall residual = 6.565992559748377e-15 EG = Triangle2D | FETypes = Any[H1MINI{2,2}, H1P1{1}] | orders (V/P) = [1, 1] | errorV = 3.631105015467361e-16 | errorP = 8.658393964832354e-15 ┌ Info: ========== Solving incompressible Stokes-Problem ========== │ Equation (1.1) momentum equation for u (discretised by H1BR{2}, ndofs = 54) └ Equation (1.2) incompressibility constraint for p (discretised by L2P0{1} (broken), ndofs = 16) [ Info: overall residual = 3.9342177477772887e-14 EG = Triangle2D | FETypes = Any[H1BR{2}, L2P0{1}] | orders (V/P) = [1, 0] | errorV = 1.0279409980262632e-15 | errorP = 1.789330557320412e-14 ┌ Info: ========== Solving incompressible Stokes-Problem ========== │ Equation (1.1) momentum equation for u (discretised by H1P1TEB{2}, ndofs = 54) └ Equation (1.2) incompressibility constraint for p (discretised by H1P1{1}, ndofs = 13) [ Info: overall residual = 1.9057185782552673e-14 EG = Triangle2D | FETypes = Any[H1P1TEB{2}, H1P1{1}] | orders (V/P) = [1, 1] | errorV = 1.1290517846986943e-15 | errorP = 1.664104549263418e-14 ┌ Info: ========== Solving incompressible Stokes-Problem ========== │ Equation (1.1) momentum equation for u (discretised by H1P2{2,2}, ndofs = 82) └ Equation (1.2) incompressibility constraint for p (discretised by H1P1{1}, ndofs = 13) [ Info: overall residual = 2.0765942128024756e-13 EG = Triangle2D | FETypes = Any[H1P2{2,2}, H1P1{1}] | orders (V/P) = [2, 1] | errorV = 6.1778705534552315e-15 | errorP = 4.580962811416578e-14 ┌ Info: ========== Solving incompressible Stokes-Problem ========== │ Equation (1.1) momentum equation for u (discretised by H1P2B{2,2}, ndofs = 114) └ Equation (1.2) incompressibility constraint for p (discretised by H1P1{1} (broken), ndofs = 48) [ Info: overall residual = 2.332278294297445e-13 EG = Triangle2D | FETypes = Any[H1P2B{2,2}, H1P1{1}] | orders (V/P) = [2, 1] | errorV = 4.307501070752516e-15 | errorP = 1.1847996926262496e-13 ┌ Info: ========== Solving incompressible Stokes-Problem ========== │ Equation (1.1) momentum equation for u (discretised by H1P3{2,2}, ndofs = 170) └ Equation (1.2) incompressibility constraint for p (discretised by H1P2{1,2}, ndofs = 41) [ Info: overall residual = 8.010770882096998e-14 EG = Triangle2D | FETypes = Any[H1P3{2,2}, H1P2{1,2}] | orders (V/P) = [3, 2] | errorV = 4.343766770101806e-15 | errorP = 1.23199688344937e-13 ┌ Info: ========== Solving incompressible Stokes-Problem ========== │ Equation (1.1) momentum equation for u (discretised by H1P2{2,2}, ndofs = 210) └ Equation (1.2) incompressibility constraint for p (discretised by H1P1{1} (broken), ndofs = 144) [ Info: overall residual = 7.502766223469238e-13 EG = Triangle2D | FETypes = Any[H1P2{2,2}, H1P1{1}] | orders (V/P) = [2, 1] | errorV = 1.1161171538966517e-14 | errorP = 6.688139810527844e-13 ========================================== Testing Stokes elements on Parallelogram2D ========================================== ┌ Info: ========== Solving incompressible Stokes-Problem ========== │ Equation (1.1) momentum equation for u (discretised by H1CR{2}, ndofs = 80) └ Equation (1.2) incompressibility constraint for p (discretised by L2P0{1} (broken), ndofs = 16) [ Info: overall residual = 1.9842209454637346e-14 EG = Parallelogram2D | FETypes = Any[H1CR{2}, L2P0{1}] | orders (V/P) = [1, 0] | errorV = 1.6728844763209544e-15 | errorP = 2.2475487547630488e-14 ┌ Info: ========== Solving incompressible Stokes-Problem ========== │ Equation (1.1) momentum equation for u (discretised by H1BR{2}, ndofs = 90) └ Equation (1.2) incompressibility constraint for p (discretised by L2P0{1} (broken), ndofs = 16) ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 186 running 1 of 1 signal (10): User defined signal 1 jl_decode_value at /source/src/ircode.c:639 jl_decode_value_expr at /source/src/ircode.c:554 [inlined] jl_decode_value at /source/src/ircode.c:685 jl_decode_value_array at /source/src/ircode.c:501 jl_decode_value at /source/src/ircode.c:680 ijl_uncompress_ir at /source/src/ircode.c:902 retrieve_code_info at ./compiler/utilities.jl:143 [inlined] InferenceState at ./compiler/inferencestate.jl:430 typeinf_edge at ./compiler/typeinfer.jl:920 abstract_call_method at ./compiler/abstractinterpretation.jl:633 abstract_call_gf_by_type at ./compiler/abstractinterpretation.jl:95 abstract_call_known at ./compiler/abstractinterpretation.jl:2101 abstract_call at ./compiler/abstractinterpretation.jl:2184 abstract_call at ./compiler/abstractinterpretation.jl:2177 abstract_call at ./compiler/abstractinterpretation.jl:2369 abstract_eval_call at ./compiler/abstractinterpretation.jl:2385 abstract_eval_statement_expr at ./compiler/abstractinterpretation.jl:2395 abstract_eval_statement at ./compiler/abstractinterpretation.jl:2639 abstract_eval_basic_statement at ./compiler/abstractinterpretation.jl:2928 typeinf_local at ./compiler/abstractinterpretation.jl:3113 typeinf_nocycle at ./compiler/abstractinterpretation.jl:3201 _typeinf at ./compiler/typeinfer.jl:247 typeinf at ./compiler/typeinfer.jl:216 typeinf_edge at ./compiler/typeinfer.jl:930 abstract_call_method at ./compiler/abstractinterpretation.jl:633 [ Info: overall residual = 5.0541608910423436e-14 EG = Parallelogram2D | FETypes = Any[H1BR{2}, L2P0{1}] | orders (V/P) = [1, 0] | errorV = 1.4894764696768052e-15 | errorP = 3.388662760901632e-14 abstract_call_gf_by_type at ./compiler/abstractinterpretation.jl:95 abstract_call_known at ./compiler/abstractinterpretation.jl:2101 abstract_call at ./compiler/abstractinterpretation.jl:2184 abstract_call at ./compiler/abstractinterpretation.jl:2177 abstract_call at ./compiler/abstractinterpretation.jl:2369 abstract_eval_call at ./compiler/abstractinterpretation.jl:2385 abstract_eval_statement_expr at ./compiler/abstractinterpretation.jl:2395 abstract_eval_statement at ./compiler/abstractinterpretation.jl:2639 abstract_eval_basic_statement at ./compiler/abstractinterpretation.jl:2928 typeinf_local at ./compiler/abstractinterpretation.jl:3113 ┌ Info: ========== Solving incompressible Stokes-Problem ========== │ Equation (1.1) momentum equation for u (discretised by H1Q2{2,2}, ndofs = 162) └ Equation (1.2) incompressibility constraint for p (discretised by L2P1{1} (broken), ndofs = 48) typeinf_nocycle at ./compiler/abstractinterpretation.jl:3201 _typeinf at ./compiler/typeinfer.jl:247 typeinf at ./compiler/typeinfer.jl:216 typeinf_edge at ./compiler/typeinfer.jl:930 abstract_call_method at ./compiler/abstractinterpretation.jl:633 abstract_call_gf_by_type at ./compiler/abstractinterpretation.jl:95 abstract_call_known at ./compiler/abstractinterpretation.jl:2101 abstract_call at ./compiler/abstractinterpretation.jl:2184 abstract_call at ./compiler/abstractinterpretation.jl:2177 abstract_call at ./compiler/abstractinterpretation.jl:2369 abstract_eval_call at ./compiler/abstractinterpretation.jl:2385 abstract_eval_statement_expr at ./compiler/abstractinterpretation.jl:2395 abstract_eval_statement at ./compiler/abstractinterpretation.jl:2639 abstract_eval_basic_statement at ./compiler/abstractinterpretation.jl:2928 typeinf_local at ./compiler/abstractinterpretation.jl:3113 typeinf_nocycle at ./compiler/abstractinterpretation.jl:3201 _typeinf at ./compiler/typeinfer.jl:247 typeinf at ./compiler/typeinfer.jl:216 typeinf_ext at ./compiler/typeinfer.jl:1051 typeinf_ext_toplevel at ./compiler/typeinfer.jl:1082 typeinf_ext_toplevel at ./compiler/typeinfer.jl:1078 jfptr_typeinf_ext_toplevel_35711.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] jl_type_infer at /source/src/gf.c:394 jl_generate_fptr_impl at /source/src/jitlayers.cpp:512 jl_compile_method_internal at /source/src/gf.c:2481 [inlined] jl_compile_method_internal at /source/src/gf.c:2368 _jl_invoke at /source/src/gf.c:2887 [inlined] ijl_apply_generic at /source/src/gf.c:3077 vect at ./array.jl:186 _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 #assemble!#384 at /home/pkgeval/.julia/packages/GradientRobustMultiPhysics/zicPX/src/assemblypatterns/bilinearform.jl:162 assemble! at /home/pkgeval/.julia/packages/GradientRobustMultiPhysics/zicPX/src/assemblypatterns/bilinearform.jl:92 [inlined] assemble! at /home/pkgeval/.julia/packages/GradientRobustMultiPhysics/zicPX/src/assemblypatterns/bilinearform.jl:92 [inlined] #assemble_operator!#423 at /home/pkgeval/.julia/packages/GradientRobustMultiPhysics/zicPX/src/pdeoperators.jl:984 assemble_operator! at /home/pkgeval/.julia/packages/GradientRobustMultiPhysics/zicPX/src/pdeoperators.jl:978 unknown function (ip: 0x7dedd77adbe5) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 #assemble!#425 at /home/pkgeval/.julia/packages/GradientRobustMultiPhysics/zicPX/src/pdeoperators.jl:1029 assemble! at /home/pkgeval/.julia/packages/GradientRobustMultiPhysics/zicPX/src/pdeoperators.jl:1013 unknown function (ip: 0x7dedd779e286) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 macro expansion at ./timing.jl:395 [inlined] #assemble!#472 at /home/pkgeval/.julia/packages/GradientRobustMultiPhysics/zicPX/src/solvers.jl:571 unknown function (ip: 0x7dedd78b9c9c) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 assemble! at /home/pkgeval/.julia/packages/GradientRobustMultiPhysics/zicPX/src/solvers.jl:397 unknown function (ip: 0x7dedd78a2eaa) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 macro expansion at /home/pkgeval/.julia/packages/GradientRobustMultiPhysics/zicPX/src/solvers.jl:630 [inlined] macro expansion at ./timing.jl:395 [inlined] #solve_direct!#477 at /home/pkgeval/.julia/packages/GradientRobustMultiPhysics/zicPX/src/solvers.jl:624 solve_direct! at /home/pkgeval/.julia/packages/GradientRobustMultiPhysics/zicPX/src/solvers.jl:622 unknown function (ip: 0x7dedd9bf68d5) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 #solve!#484 at /home/pkgeval/.julia/packages/GradientRobustMultiPhysics/zicPX/src/solvers.jl:1386 solve! at /home/pkgeval/.julia/packages/GradientRobustMultiPhysics/zicPX/src/solvers.jl:1354 unknown function (ip: 0x7dedd78a2629) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 test_Stokes at /home/pkgeval/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:624 test_Stokes at /home/pkgeval/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:607 [inlined] macro expansion at /home/pkgeval/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:662 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.10/Test/src/Test.jl:1577 [inlined] run_stokes_tests at /home/pkgeval/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:643 run_all_tests at /home/pkgeval/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:858 unknown function (ip: 0x7deddc85e682) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] do_call at /source/src/interpreter.c:126 eval_value at /source/src/interpreter.c:223 eval_stmt_value at /source/src/interpreter.c:174 [inlined] eval_body at /source/src/interpreter.c:635 jl_interpret_toplevel_thunk at /source/src/interpreter.c:775 jl_toplevel_eval_flex at /source/src/toplevel.c:934 jl_toplevel_eval_flex at /source/src/toplevel.c:877 ijl_toplevel_eval_in at /source/src/toplevel.c:985 eval at ./boot.jl:385 [inlined] include_string at ./loading.jl:2146 _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 _include at ./loading.jl:2206 include at ./client.jl:494 unknown function (ip: 0x7dedfaf7e125) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] do_call at /source/src/interpreter.c:126 eval_value at /source/src/interpreter.c:223 eval_stmt_value at /source/src/interpreter.c:174 [inlined] eval_body at /source/src/interpreter.c:635 jl_interpret_toplevel_thunk at /source/src/interpreter.c:775 jl_toplevel_eval_flex at /source/src/toplevel.c:934 jl_toplevel_eval_flex at /source/src/toplevel.c:877 ijl_toplevel_eval_in at /source/src/toplevel.c:985 eval at ./boot.jl:385 [inlined] exec_options at ./client.jl:296 _start at ./client.jl:557 jfptr__start_82985.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] true_main at /source/src/jlapi.c:582 jl_repl_entrypoint at /source/src/jlapi.c:731 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7dedfbde2249) __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) unknown function (ip: (nil)) ============================================================== Profile collected. A report will print at the next yield point ============================================================== ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_wait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/epoll.c:236 uv_run at /workspace/srcdir/libuv/src/unix/core.c:400 ijl_task_get_next at /source/src/partr.c:478 poptask at ./task.jl:999 wait at ./task.jl:1008 #wait#645 at ./condition.jl:130 wait at ./condition.jl:125 [inlined] wait at ./process.jl:661 jfptr_wait_74890.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 subprocess_handler at /source/usr/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:2048 #130 at /source/usr/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:1992 withenv at ./env.jl:257 #117 at /source/usr/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:1840 with_temp_env at /source/usr/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:1721 #115 at /source/usr/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:1810 #mktempdir#24 at ./file.jl:766 unknown function (ip: 0x728f37ada780) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 mktempdir at ./file.jl:762 mktempdir at ./file.jl:762 [inlined] #sandbox#114 at /source/usr/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:1768 sandbox at /source/usr/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:1759 unknown function (ip: 0x728f37ad30ed) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 #test#127 at /source/usr/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:1971 test at /source/usr/share/julia/stdlib/v1.10/Pkg/src/Operations.jl:1915 [inlined] #test#146 at /source/usr/share/julia/stdlib/v1.10/Pkg/src/API.jl:444 test at /source/usr/share/julia/stdlib/v1.10/Pkg/src/API.jl:423 unknown function (ip: 0x728f37ad2be0) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 #test#77 at /source/usr/share/julia/stdlib/v1.10/Pkg/src/API.jl:159 unknown function (ip: 0x728f37ad24a0) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 test at /source/usr/share/julia/stdlib/v1.10/Pkg/src/API.jl:148 #test#75 at /source/usr/share/julia/stdlib/v1.10/Pkg/src/API.jl:147 [inlined] test at /source/usr/share/julia/stdlib/v1.10/Pkg/src/API.jl:147 [inlined] #test#74 at /source/usr/share/julia/stdlib/v1.10/Pkg/src/API.jl:146 [inlined] test at /source/usr/share/julia/stdlib/v1.10/Pkg/src/API.jl:146 unknown function (ip: 0x728f37aceb99) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] do_call at /source/src/interpreter.c:126 eval_value at /source/src/interpreter.c:223 eval_stmt_value at /source/src/interpreter.c:174 [inlined] eval_body at /source/src/interpreter.c:635 eval_body at /source/src/interpreter.c:544 eval_body at /source/src/interpreter.c:544 jl_interpret_toplevel_thunk at /source/src/interpreter.c:775 jl_toplevel_eval_flex at /source/src/toplevel.c:934 jl_toplevel_eval_flex at /source/src/toplevel.c:877 ijl_toplevel_eval_in at /source/src/toplevel.c:985 eval at ./boot.jl:385 [inlined] include_string at ./loading.jl:2146 _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 _include at ./loading.jl:2206 include at ./Base.jl:495 jfptr_include_46609.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 exec_options at ./client.jl:323 _start at ./client.jl:557 jfptr__start_82985.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:2876 [inlined] ijl_apply_generic at /source/src/gf.c:3077 jl_apply at /source/src/julia.h:1982 [inlined] true_main at /source/src/jlapi.c:582 jl_repl_entrypoint at /source/src/jlapi.c:731 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x728f388e8249) __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) unknown function (ip: (nil)) ============================================================== Profile collected. A report will print at the next yield point ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.10/Profile/src/Profile.jl:1225 Overhead ╎ [+additional indent] Count File:Line; Function ========================================================= Thread 1 Task 0x0000728f2b200010 Total snapshots: 1. Utilization: 0% ╎1 @Base/client.jl:557; _start() ╎ 1 @Base/client.jl:323; exec_options(opts::Base.JLOptions) ╎ 1 @Base/Base.jl:495; include(mod::Module, _path::String) ╎ 1 @Base/loading.jl:2206; _include(mapexpr::Function, mod::Module, _path::S… ╎ 1 @Base/loading.jl:2146; include_string(mapexpr::typeof(identity), mod::M… ╎ 1 @Base/boot.jl:385; eval ╎ ╎ 1 @Pkg/src/API.jl:146; kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(… ╎ ╎ 1 @Pkg/src/API.jl:146; #test#74 ╎ ╎ 1 @Pkg/src/API.jl:147; test ╎ ╎ 1 @Pkg/src/API.jl:147; #test#75 ╎ ╎ 1 @Pkg/src/API.jl:148; kwcall(::@NamedTuple{julia_args::Cmd}, ::typ… ╎ ╎ ╎ 1 @Pkg/src/API.jl:159; test(pkgs::Vector{Pkg.Types.PackageSpec}; i… ╎ ╎ ╎ 1 @Pkg/src/API.jl:423; kwcall(::@NamedTuple{julia_args::Cmd, io::… ╎ ╎ ╎ 1 @Pkg/src/API.jl:444; test(ctx::Pkg.Types.Context, pkgs::Vector… ╎ ╎ ╎ 1 …/src/Operations.jl:1915; test ╎ ╎ ╎ 1 …src/Operations.jl:1971; test(ctx::Pkg.Types.Context, pkgs::… ╎ ╎ ╎ ╎ 1 …src/Operations.jl:1759; kwcall(::@NamedTuple{preferences::… ╎ ╎ ╎ ╎ 1 …src/Operations.jl:1768; sandbox(fn::Function, ctx::Pkg.Ty… ╎ ╎ ╎ ╎ 1 @Base/file.jl:762; mktempdir ╎ ╎ ╎ ╎ 1 @Base/file.jl:762; mktempdir(fn::Function, parent::Strin… ╎ ╎ ╎ ╎ 1 @Base/file.jl:766; mktempdir(fn::Pkg.Operations.var"#11… ╎ ╎ ╎ ╎ ╎ 1 …c/Operations.jl:1810; (::Pkg.Operations.var"#115#120"… ╎ ╎ ╎ ╎ ╎ 1 …c/Operations.jl:1721; with_temp_env(fn::Pkg.Operatio… ╎ ╎ ╎ ╎ ╎ 1 …/Operations.jl:1840; (::Pkg.Operations.var"#117#122… ╎ ╎ ╎ ╎ ╎ 1 @Base/env.jl:257; withenv(::Pkg.Operations.var"#130… ╎ ╎ ╎ ╎ ╎ 1 …Operations.jl:1992; (::Pkg.Operations.var"#130#13… ╎ ╎ ╎ ╎ ╎ ╎ 1 …Operations.jl:2048; subprocess_handler(cmd::Cmd,… ╎ ╎ ╎ ╎ ╎ ╎ 1 …se/process.jl:661; wait(x::Base.Process) ╎ ╎ ╎ ╎ ╎ ╎ 1 …/condition.jl:125; wait ╎ ╎ ╎ ╎ ╎ ╎ 1 …condition.jl:130; wait(c::Base.GenericConditi… ╎ ╎ ╎ ╎ ╎ ╎ 1 …ase/task.jl:1008; wait() ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 …ase/task.jl:999; poptask(W::Base.IntrusiveL… [186] signal (15): Terminated in expression starting at /home/pkgeval/.julia/packages/GradientRobustMultiPhysics/zicPX/test/runtests.jl:864 PkgEval terminated after 2727.11s: test duration exceeded the time limit