Package evaluation of EvoTrees on Julia 1.10.8 (92f03a4775*) started at 2025-02-25T12:36:22.181 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 5.01s ################################################################################ # Installation # Installing EvoTrees... Resolving package versions... Updating `~/.julia/environments/v1.10/Project.toml` [f6006082] + EvoTrees v0.16.9 Updating `~/.julia/environments/v1.10/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [fbb218c0] + BSON v0.3.9 [324d7699] + CategoricalArrays v0.10.8 [34da2185] + Compat v4.16.0 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.20 [e2d170a0] + DataValueInterfaces v1.0.0 [31c24e10] + Distributions v0.25.117 [ffbed154] + DocStringExtensions v0.9.3 [f6006082] + EvoTrees v0.16.9 [411431e0] + Extents v0.1.5 [1a297f60] + FillArrays v1.13.0 [68eda718] + GeoFormatTypes v0.4.4 [cf35fbd7] + GeoInterface v1.4.1 [5c1252a2] + GeometryBasics v0.5.5 [34004b35] + HypergeometricFunctions v0.3.27 [92d709cd] + IrrationalConstants v0.2.4 [c8e1da08] + IterTools v1.10.0 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.0 [2ab3a3ac] + LogExpFunctions v0.3.29 [e80e1ace] + MLJModelInterface v1.11.0 [e1d29d7a] + Missings v1.2.0 [46757867] + NetworkLayout v0.4.9 [bac558e1] + OrderedCollections v1.8.0 [90014a1f] + PDMats v0.11.32 [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [3cdcf5f2] + RecipesBase v1.3.4 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.0 [79098fc4] + Rmath v0.8.0 [30f210dd] + ScientificTypesBase v3.0.0 [a2af1166] + SortingAlgorithms v1.2.1 [276daf66] + SpecialFunctions v2.5.0 [90137ffa] + StaticArrays v1.9.12 [1e83bf80] + StaticArraysCore v1.4.3 [64bff920] + StatisticalTraits v3.4.0 [82ae8749] + StatsAPI v1.7.0 [2913bbd2] + StatsBase v0.34.4 [4c63d2b9] + StatsFuns v1.3.2 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.0 [5ae413db] + EarCut_jll v2.2.4+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [0dad84c5] + ArgTools v1.1.1 [56f22d72] + Artifacts [2a0f44e3] + Base64 [ade2ca70] + Dates [f43a241f] + Downloads v1.6.0 [7b1f6079] + FileWatching [9fa8497b] + Future [b77e0a4c] + InteractiveUtils [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 [8f399da3] + Libdl [37e2e46d] + LinearAlgebra [56ddb016] + Logging [d6f4376e] + Markdown [ca575930] + NetworkOptions v1.2.0 [44cfe95a] + Pkg v1.10.0 [de0858da] + Printf [3fa0cd96] + REPL [9a3f8284] + Random [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization [6462fe0b] + Sockets [2f01184e] + SparseArrays v1.10.0 [10745b16] + Statistics v1.10.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs [4ec0a83e] + Unicode [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] + LibCURL_jll v8.4.0+0 [e37daf67] + LibGit2_jll v1.6.4+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.2+1 [14a3606d] + MozillaCACerts_jll v2023.1.10 [4536629a] + OpenBLAS_jll v0.3.23+4 [05823500] + OpenLibm_jll v0.8.1+4 [bea87d4a] + SuiteSparse_jll v7.2.1+1 [83775a58] + Zlib_jll v1.2.13+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 [8e850ede] + nghttp2_jll v1.52.0+1 [3f19e933] + p7zip_jll v17.4.0+2 Installation completed after 8.1s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 127.68s ################################################################################ # Testing # Testing EvoTrees Status `/tmp/jl_jSgx9z/Project.toml` [fbb218c0] BSON v0.3.9 [052768ef] CUDA v5.6.1 [324d7699] CategoricalArrays v0.10.8 [a93c6f00] DataFrames v1.7.0 [31c24e10] Distributions v0.25.117 [f6006082] EvoTrees v0.16.9 [a7f614a8] MLJBase v1.7.0 [e80e1ace] MLJModelInterface v1.11.0 [72560011] MLJTestInterface v0.2.8 [46757867] NetworkLayout v0.4.9 [3cdcf5f2] RecipesBase v1.3.4 [2913bbd2] StatsBase v0.34.4 [bd369af6] Tables v1.12.0 [9a3f8284] Random [10745b16] Statistics v1.10.0 [8dfed614] Test Status `/tmp/jl_jSgx9z/Manifest.toml` [621f4979] AbstractFFTs v1.5.0 [7d9f7c33] Accessors v0.1.41 [79e6a3ab] Adapt v4.2.0 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.4.0 [a9b6321e] Atomix v1.1.0 [ab4f0b2a] BFloat16s v0.5.0 [fbb218c0] BSON v0.3.9 [198e06fe] BangBang v0.4.3 [9718e550] Baselet v0.1.1 [fa961155] CEnum v0.5.0 [052768ef] CUDA v5.6.1 [1af6417a] CUDA_Runtime_Discovery v0.3.5 [324d7699] CategoricalArrays v0.10.8 [af321ab8] CategoricalDistributions v0.1.15 [d360d2e6] ChainRulesCore v1.25.1 [3da002f7] ColorTypes v0.12.0 [5ae59095] Colors v0.13.0 [34da2185] Compat v4.16.0 [a33af91c] CompositionsBase v0.1.2 [ed09eef8] ComputationalResources v0.3.2 [187b0558] ConstructionBase v1.5.8 [6add18c4] ContextVariablesX v0.1.3 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [a93c6f00] DataFrames v1.7.0 [864edb3b] DataStructures v0.18.20 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [8bb1440f] DelimitedFiles v1.9.1 [31c24e10] Distributions v0.25.117 [ffbed154] DocStringExtensions v0.9.3 [f6006082] EvoTrees v0.16.9 [e2ba6199] ExprTools v0.1.10 [411431e0] Extents v0.1.5 [cc61a311] FLoops v0.2.2 [b9860ae5] FLoopsBase v0.1.1 [1a297f60] FillArrays v1.13.0 [53c48c17] FixedPointNumbers v0.8.5 [0c68f7d7] GPUArrays v11.2.2 [46192b85] GPUArraysCore v0.2.0 [61eb1bfa] GPUCompiler v1.2.0 [68eda718] GeoFormatTypes v0.4.4 [cf35fbd7] GeoInterface v1.4.1 [5c1252a2] GeometryBasics v0.5.5 [076d061b] HashArrayMappedTries v0.2.0 [34004b35] HypergeometricFunctions v0.3.27 [22cec73e] InitialValues v0.3.1 [842dd82b] InlineStrings v1.4.3 [3587e190] InverseFunctions v0.1.17 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.0 [b14d175d] JuliaVariables v0.2.4 [63c18a36] KernelAbstractions v0.9.34 [929cbde3] LLVM v9.2.0 [8b046642] LLVMLoopInfo v1.0.0 [b964fa9f] LaTeXStrings v1.4.0 ⌅ [92ad9a40] LearnAPI v0.1.0 [2ab3a3ac] LogExpFunctions v0.3.29 [c2834f40] MLCore v1.0.0 [a7f614a8] MLJBase v1.7.0 [e80e1ace] MLJModelInterface v1.11.0 [72560011] MLJTestInterface v0.2.8 [d8e11817] MLStyle v0.4.17 [f1d291b0] MLUtils v0.4.7 [1914dd2f] MacroTools v0.5.15 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [872c559c] NNlib v0.9.27 ⌅ [5da4648a] NVTX v0.3.5 [71a1bf82] NameResolution v0.1.5 [46757867] NetworkLayout v0.4.9 [bac558e1] OrderedCollections v1.8.0 [90014a1f] PDMats v0.11.32 [d96e819e] Parameters v0.12.3 [2dfb63ee] PooledArrays v1.4.3 [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [8162dcfd] PrettyPrint v0.2.0 [08abe8d2] PrettyTables v2.4.0 [92933f4c] ProgressMeter v1.10.2 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [74087812] Random123 v1.7.0 [e6cf234a] RandomNumbers v1.6.0 [3cdcf5f2] RecipesBase v1.3.4 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.0 [79098fc4] Rmath v0.8.0 [321657f4] ScientificTypes v3.1.0 [30f210dd] ScientificTypesBase v3.0.0 [7e506255] ScopedValues v1.3.0 [6c6a2e73] Scratch v1.2.1 [91c51154] SentinelArrays v1.4.8 [efcf1570] Setfield v1.1.1 [605ecd9f] ShowCases v0.1.0 [699a6c99] SimpleTraits v0.9.4 [a2af1166] SortingAlgorithms v1.2.1 [276daf66] SpecialFunctions v2.5.0 [171d559e] SplittablesBase v0.1.15 [90137ffa] StaticArrays v1.9.12 [1e83bf80] StaticArraysCore v1.4.3 [c062fc1d] StatisticalMeasuresBase v0.1.2 [64bff920] StatisticalTraits v3.4.0 [82ae8749] StatsAPI v1.7.0 [2913bbd2] StatsBase v0.34.4 [4c63d2b9] StatsFuns v1.3.2 [892a3eda] StringManipulation v0.4.1 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.0 [a759f4b9] TimerOutputs v0.5.27 [28d57a85] Transducers v0.4.84 [3a884ed6] UnPack v1.0.2 [013be700] UnsafeAtomics v0.3.0 ⌅ [4ee394cb] CUDA_Driver_jll v0.10.4+0 ⌅ [76a88914] CUDA_Runtime_jll v0.15.5+0 [5ae413db] EarCut_jll v2.2.4+0 [9c1d0b0a] JuliaNVTXCallbacks_jll v0.2.1+0 [dad2f222] LLVMExtra_jll v0.0.35+0 [e98f9f5b] NVTX_jll v3.1.1+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [1e29f10c] demumble_jll v1.3.0+0 [0dad84c5] ArgTools v1.1.1 [56f22d72] Artifacts [2a0f44e3] Base64 [ade2ca70] Dates [8ba89e20] Distributed [f43a241f] Downloads v1.6.0 [7b1f6079] FileWatching [9fa8497b] Future [b77e0a4c] InteractiveUtils [4af54fe1] LazyArtifacts [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 [8f399da3] Libdl [37e2e46d] LinearAlgebra [56ddb016] Logging [d6f4376e] Markdown [a63ad114] Mmap [ca575930] NetworkOptions v1.2.0 [44cfe95a] Pkg v1.10.0 [de0858da] Printf [3fa0cd96] REPL [9a3f8284] Random [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization [6462fe0b] Sockets [2f01184e] SparseArrays v1.10.0 [10745b16] Statistics v1.10.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test [cf7118a7] UUIDs [4ec0a83e] Unicode [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [deac9b47] LibCURL_jll v8.4.0+0 [e37daf67] LibGit2_jll v1.6.4+0 [29816b5a] LibSSH2_jll v1.11.0+1 [c8ffd9c3] MbedTLS_jll v2.28.2+1 [14a3606d] MozillaCACerts_jll v2023.1.10 [4536629a] OpenBLAS_jll v0.3.23+4 [05823500] OpenLibm_jll v0.8.1+4 [bea87d4a] SuiteSparse_jll v7.2.1+1 [83775a58] Zlib_jll v1.2.13+1 [8e850b90] libblastrampoline_jll v5.11.0+0 [8e850ede] nghttp2_jll v1.52.0+1 [3f19e933] p7zip_jll v17.4.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ┌ Info: EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.5 │ - gamma: 0.1 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 16 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123, (0, 1002, 0, 800)) ┌ Info: initialization └ metric = 0.1285054236650467 ┌ Info: iter 25 └ metric = 0.021750634536147118 ┌ Info: iter 50 └ metric = 0.020412476733326912 ┌ Info: iter 75 └ metric = 0.020412830635905266 ┌ Info: iter 100 └ metric = 0.020485317334532738 ┌ Info: EvoTreeRegressor{EvoTrees.LogLoss} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.5 │ - gamma: 0.1 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123, (0, 1002, 0, 800)) ┌ Info: initialization └ metric = 0.6703526377677917 ┌ Info: iter 25 └ metric = 0.47962743043899536 ┌ Info: iter 50 └ metric = 0.4349091053009033 ┌ Info: iter 75 └ metric = 0.42034342885017395 ┌ Info: iter 100 └ metric = 0.41411060094833374 ┌ Info: EvoTreeRegressor{EvoTrees.Gamma} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.5 │ - gamma: 0.1 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123, (0, 1002, 0, 800)) ┌ Info: initialization └ metric = 1.4709550142288208 ┌ Info: iter 25 └ metric = 0.32610952854156494 ┌ Info: iter 50 └ metric = 0.30085092782974243 ┌ Info: iter 75 └ metric = 0.2962430417537689 ┌ Info: iter 100 └ metric = 0.29673075675964355 ┌ Info: EvoTreeRegressor{EvoTrees.Tweedie} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.5 │ - gamma: 0.1 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123, (0, 1002, 0, 800)) ┌ Info: initialization └ metric = 0.5471090078353882 ┌ Info: iter 25 └ metric = 0.1559978425502777 ┌ Info: iter 50 └ metric = 0.11321545392274857 ┌ Info: iter 75 └ metric = 0.10234956443309784 ┌ Info: iter 100 └ metric = 0.100061796605587 ┌ Info: EvoTreeRegressor{EvoTrees.L1} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.5 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 16 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123, (0, 1002, 0, 800)) ┌ Info: initialization └ metric = 0.32020843029022217 ┌ Info: iter 25 └ metric = 0.20671051740646362 ┌ Info: iter 50 └ metric = 0.1563587784767151 ┌ Info: iter 75 └ metric = 0.129248708486557 ┌ Info: iter 100 └ metric = 0.11566969007253647 ┌ Info: EvoTreeRegressor{EvoTrees.Quantile} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.5 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 16 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123, (0, 1002, 0, 800)) ┌ Info: initialization └ metric = 0.16010421514511108 ┌ Info: iter 25 └ metric = 0.06665664911270142 ┌ Info: iter 50 └ metric = 0.051511265337467194 ┌ Info: iter 75 └ metric = 0.049108609557151794 ┌ Info: iter 100 └ metric = 0.049054332077503204 [ Info: The following kwargs are not supported and will be ignored: [:loss]. ┌ Info: EvoTreeCount{EvoTrees.Poisson} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.5 │ - gamma: 0.1 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123, (0, 1002, 0, 800)) ┌ Info: initialization └ metric = 0.29576486349105835 ┌ Info: iter 25 └ metric = 0.09861209988594055 ┌ Info: iter 50 └ metric = 0.07009350508451462 ┌ Info: iter 75 └ metric = 0.06052471697330475 ┌ Info: iter 100 └ metric = 0.056582193821668625 ┌ Info: EvoTreeMLE{EvoTrees.GaussianMLE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 10.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 16 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123, (0, 1002, 0, 800)) ┌ Info: initialization └ metric = 0.5254025459289551 ┌ Info: iter 25 └ metric = 1.6796438694000244 ┌ Info: iter 50 └ metric = 1.7593154907226562 ┌ Info: iter 75 └ metric = 1.5544557571411133 ┌ Info: iter 100 └ metric = 1.5220974683761597 ┌ Info: EvoTreeMLE{EvoTrees.LogisticMLE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 10.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 16 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123, (0, 1002, 0, 800)) ┌ Info: initialization └ metric = -1.7957830429077148 ┌ Info: iter 25 └ metric = -0.0885191559791565 ┌ Info: iter 50 └ metric = -0.2151053249835968 ┌ Info: iter 75 └ metric = -0.328294575214386 ┌ Info: iter 100 └ metric = -0.3560096323490143 ┌ Info: EvoTreeGaussian{EvoTrees.GaussianMLE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 10.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 16 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123, (0, 1002, 0, 800)) ┌ Info: initialization └ metric = 0.5254025459289551 ┌ Info: iter 25 └ metric = 1.6796438694000244 ┌ Info: iter 50 └ metric = 1.7593154907226562 ┌ Info: iter 75 └ metric = 1.5544557571411133 ┌ Info: iter 100 └ metric = 1.5220974683761597 ┌ Info: EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.5 │ - gamma: 0.1 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 16 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123) ┌ Info: EvoTreeClassifier{EvoTrees.MLogLoss} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.3 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary └ - rng: MersenneTwister(1994638984) ┌ Info: EvoTreeClassifier{EvoTrees.MLogLoss} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.3 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary └ - rng: MersenneTwister(1994638984) ┌ Info: EvoTreeClassifier{EvoTrees.MLogLoss} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.3 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary └ - rng: MersenneTwister(1994638984) ┌ Info: EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 200 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: oblivious └ - rng: MersenneTwister(123, (0, 2004, 1002, 598)) ┌ Info: initialization └ metric = 0.13038957118988037 ┌ Info: iter 25 └ metric = 0.012286867015063763 ┌ Info: iter 50 └ metric = 0.004691367968916893 ┌ Info: iter 75 └ metric = 0.002263386268168688 ┌ Info: iter 100 └ metric = 0.0013307810295373201 ┌ Info: iter 125 └ metric = 0.0009321333491243422 ┌ Info: iter 150 └ metric = 0.0007339680450968444 ┌ Info: iter 175 └ metric = 0.000638530240394175 ┌ Info: iter 200 └ metric = 0.0005851167952641845 ┌ Info: EvoTreeRegressor{EvoTrees.LogLoss} │ - nrounds: 200 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: oblivious └ - rng: MersenneTwister(123, (0, 2004, 1002, 598)) ┌ Info: initialization └ metric = 0.6824027299880981 ┌ Info: iter 25 └ metric = 0.41121602058410645 ┌ Info: iter 50 └ metric = 0.383105993270874 ┌ Info: iter 75 └ metric = 0.37144172191619873 ┌ Info: iter 100 └ metric = 0.36528101563453674 ┌ Info: iter 125 └ metric = 0.3618107736110687 ┌ Info: iter 150 └ metric = 0.3594982922077179 ┌ Info: iter 175 └ metric = 0.35791245102882385 ┌ Info: iter 200 └ metric = 0.3567737638950348 ┌ Info: EvoTreeRegressor{EvoTrees.Quantile} │ - nrounds: 200 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: oblivious └ - rng: MersenneTwister(123, (0, 2004, 1002, 598)) ┌ Info: initialization └ metric = 0.16202571988105774 ┌ Info: iter 25 └ metric = 0.04000483453273773 ┌ Info: iter 50 └ metric = 0.024839557707309723 ┌ Info: iter 75 └ metric = 0.018065698444843292 ┌ Info: iter 100 └ metric = 0.01421225443482399 ┌ Info: iter 125 └ metric = 0.012194428592920303 ┌ Info: iter 150 └ metric = 0.010665226727724075 ┌ Info: iter 175 └ metric = 0.009889934211969376 ┌ Info: iter 200 └ metric = 0.009328466840088367 ┌ Info: EvoTreeRegressor{EvoTrees.L1} │ - nrounds: 200 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: oblivious └ - rng: MersenneTwister(123, (0, 2004, 1002, 598)) ┌ Info: initialization └ metric = 0.3240514397621155 ┌ Info: iter 25 └ metric = 0.13767774403095245 ┌ Info: iter 50 └ metric = 0.08941688388586044 ┌ Info: iter 75 └ metric = 0.06840011477470398 ┌ Info: iter 100 └ metric = 0.05573507770895958 ┌ Info: iter 125 └ metric = 0.045757342129945755 ┌ Info: iter 150 └ metric = 0.039157334715127945 ┌ Info: iter 175 └ metric = 0.03408438712358475 ┌ Info: iter 200 └ metric = 0.0302757378667593 ┌ Info: EvoTreeRegressor{EvoTrees.Gamma} │ - nrounds: 200 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: oblivious └ - rng: MersenneTwister(123, (0, 2004, 1002, 598)) ┌ Info: initialization └ metric = 1.35107421875 ┌ Info: iter 25 └ metric = 13.538475036621094 ┌ Info: iter 50 └ metric = 1.44353449344635 ┌ Info: iter 75 └ metric = 0.6693938970565796 ┌ Info: iter 100 └ metric = 0.4668451249599457 ┌ Info: iter 125 └ metric = 0.3467889130115509 ┌ Info: iter 150 └ metric = 0.27195560932159424 ┌ Info: iter 175 └ metric = 0.22249466180801392 ┌ Info: iter 200 └ metric = 0.19097940623760223 ┌ Info: EvoTreeRegressor{EvoTrees.Tweedie} │ - nrounds: 200 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: oblivious └ - rng: MersenneTwister(123, (0, 2004, 1002, 598)) ┌ Info: initialization └ metric = 0.5394082069396973 ┌ Info: iter 25 └ metric = 0.058856260031461716 ┌ Info: iter 50 └ metric = 0.023161834105849266 ┌ Info: iter 75 └ metric = 0.01451699249446392 ┌ Info: iter 100 └ metric = 0.011430804617702961 ┌ Info: iter 125 └ metric = 0.009545471519231796 ┌ Info: iter 150 └ metric = 0.008359222672879696 ┌ Info: iter 175 └ metric = 0.007589627988636494 ┌ Info: iter 200 └ metric = 0.007102351635694504 ┌ Info: EvoTreeCount{EvoTrees.Poisson} │ - nrounds: 200 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: oblivious └ - rng: MersenneTwister(123, (0, 2004, 1002, 598)) ┌ Info: initialization └ metric = 0.29837360978126526 ┌ Info: iter 25 └ metric = 0.037789445370435715 ┌ Info: iter 50 └ metric = 0.014368334785103798 ┌ Info: iter 75 └ metric = 0.0069135804660618305 ┌ Info: iter 100 └ metric = 0.004017531871795654 ┌ Info: iter 125 └ metric = 0.002805836731567979 ┌ Info: iter 150 └ metric = 0.0022382643073797226 ┌ Info: iter 175 └ metric = 0.0019868973176926374 ┌ Info: iter 200 └ metric = 0.001820261008106172 ┌ Info: EvoTreeMLE{EvoTrees.GaussianMLE} │ - nrounds: 200 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 8.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: oblivious └ - rng: MersenneTwister(123, (0, 2004, 1002, 598)) ┌ Info: initialization └ metric = 0.5180503726005554 ┌ Info: iter 25 └ metric = 1.0875798463821411 ┌ Info: iter 50 └ metric = 1.464343547821045 ┌ Info: iter 75 └ metric = 1.733241319656372 ┌ Info: iter 100 └ metric = 1.9205900430679321 ┌ Info: iter 125 └ metric = 2.0139412879943848 ┌ Info: iter 150 └ metric = 2.0636789798736572 ┌ Info: iter 175 └ metric = 2.1103556156158447 ┌ Info: iter 200 └ metric = 2.157722234725952 ┌ Info: EvoTreeMLE{EvoTrees.LogisticMLE} │ - nrounds: 200 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 8.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: oblivious └ - rng: MersenneTwister(123, (0, 2004, 1002, 598)) ┌ Info: initialization └ metric = -1.9062025547027588 ┌ Info: iter 25 └ metric = -0.20996643602848053 ┌ Info: iter 50 └ metric = 0.23715250194072723 ┌ Info: iter 75 └ metric = 0.3656861186027527 ┌ Info: iter 100 └ metric = 0.4394267201423645 ┌ Info: iter 125 └ metric = 0.5046214461326599 ┌ Info: iter 150 └ metric = 0.5554330945014954 ┌ Info: iter 175 └ metric = 0.6037527322769165 ┌ Info: iter 200 └ metric = 0.6462991237640381 ┌ Info: EvoTreeClassifier{EvoTrees.MLogLoss} │ - nrounds: 200 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 32 │ - alpha: 0.5 │ - tree_type: oblivious └ - rng: MersenneTwister(123, (0, 2004, 1002, 598)) ┌ Info: initialization └ metric = 0.6782814264297485 ┌ Info: iter 25 └ metric = 0.19514018297195435 ┌ Info: iter 50 └ metric = 0.12145228683948517 ┌ Info: iter 75 └ metric = 0.09427497535943985 ┌ Info: iter 100 └ metric = 0.0814461037516594 ┌ Info: iter 125 └ metric = 0.074638232588768 ┌ Info: iter 150 └ metric = 0.07058083266019821 ┌ Info: iter 175 └ metric = 0.06783214956521988 ┌ Info: iter 200 └ metric = 0.06609634310007095 ┌ Info: EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.5 │ - gamma: 0.1 │ - eta: 0.05 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 16 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123, (0, 1002, 0, 800)) ┌ Info: EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.5 │ - gamma: 0.1 │ - eta: 0.05 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 16 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123, (0, 15030, 14028, 272)) ┌ Info: initialization └ metric = 0.12692689895629883 ┌ Info: iter 25 └ metric = 0.03485753387212753 ┌ Info: iter 50 └ metric = 0.02188374474644661 ┌ Info: iter 75 └ metric = 0.019843434914946556 ┌ Info: iter 100 └ metric = 0.019498445093631744 ┌ Info: EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.5 │ - gamma: 0.1 │ - eta: 0.05 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 16 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123, (0, 29058, 28056, 544)) ┌ Info: EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.5 │ - gamma: 0.1 │ - eta: 0.05 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 16 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123, (0, 43086, 42084, 17)) ┌ Info: initialization └ metric = 0.12692689895629883 ┌ Info: iter 25 └ metric = 0.035147134214639664 ┌ Info: iter 50 └ metric = 0.022139327600598335 ┌ Info: iter 75 └ metric = 0.019963815808296204 ┌ Info: iter 100 └ metric = 0.01965385116636753 ┌ Info: EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.5 │ - gamma: 0.1 │ - eta: 0.05 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 16 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123, (0, 57114, 56112, 289)) ┌ Info: EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.5 │ - gamma: 0.1 │ - eta: 0.05 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 16 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123, (0, 71142, 70140, 761)) [ Info: The following kwargs are not supported and will be ignored: [:device]. ┌ Info: EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 200 │ - L2: 0.0 │ - lambda: 1.0 │ - gamma: 0.0 │ - eta: 0.05 │ - max_depth: 6 │ - min_weight: 0.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123) ┌ Info: initialization └ metric = 0.02036040835082531 ┌ Info: iter 25 └ metric = 0.004349107854068279 ┌ Info: iter 50 └ metric = 0.0013789711520075798 ┌ Info: iter 75 └ metric = 0.0008224270422942936 ┌ Info: iter 100 └ metric = 0.0007158371736295521 ┌ Info: iter 125 └ metric = 0.0006959998863749206 ┌ Info: iter 150 └ metric = 0.0006921181920915842 ┌ Info: iter 175 └ metric = 0.0006909396615810692 ┌ Info: iter 200 └ metric = 0.0006905276677571237 [ Info: The following kwargs are not supported and will be ignored: [:device]. ┌ Info: EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 200 │ - L2: 0.0 │ - lambda: 1.0 │ - gamma: 0.0 │ - eta: 0.5 │ - max_depth: 6 │ - min_weight: 0.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict(1 => 1) │ - tree_type: binary └ - rng: MersenneTwister(123) ┌ Info: initialization └ metric = 0.02036040835082531 ┌ Info: iter 25 └ metric = 0.0024124239571392536 ┌ Info: iter 50 └ metric = 0.0024110707454383373 ┌ Info: iter 75 └ metric = 0.0024122465401887894 ┌ Info: iter 100 └ metric = 0.00241235108114779 ┌ Info: iter 125 └ metric = 0.0024120109155774117 ┌ Info: iter 150 └ metric = 0.00241161254234612 ┌ Info: iter 175 └ metric = 0.0024125627242028713 ┌ Info: iter 200 └ metric = 0.0024116968270391226 [ Info: The following kwargs are not supported and will be ignored: [:device]. ┌ Info: EvoTreeRegressor{EvoTrees.LogLoss} │ - nrounds: 200 │ - L2: 0.0 │ - lambda: 0.05 │ - gamma: 0.0 │ - eta: 0.05 │ - max_depth: 6 │ - min_weight: 0.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123) ┌ Info: initialization └ metric = 0.4738384485244751 ┌ Info: iter 25 └ metric = 0.3649347126483917 ┌ Info: iter 50 └ metric = 0.33836615085601807 ┌ Info: iter 75 └ metric = 0.33043116331100464 ┌ Info: iter 100 └ metric = 0.3275209963321686 ┌ Info: iter 125 └ metric = 0.32623955607414246 ┌ Info: iter 150 └ metric = 0.32558995485305786 ┌ Info: iter 175 └ metric = 0.32521945238113403 ┌ Info: iter 200 └ metric = 0.3249880075454712 [ Info: The following kwargs are not supported and will be ignored: [:device]. ┌ Info: EvoTreeRegressor{EvoTrees.LogLoss} │ - nrounds: 200 │ - L2: 0.0 │ - lambda: 0.05 │ - gamma: 0.0 │ - eta: 0.05 │ - max_depth: 6 │ - min_weight: 0.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict(1 => 1) │ - tree_type: binary └ - rng: MersenneTwister(123) ┌ Info: initialization └ metric = 0.4738384485244751 ┌ Info: iter 25 └ metric = 0.37152576446533203 ┌ Info: iter 50 └ metric = 0.34896141290664673 ┌ Info: iter 75 └ metric = 0.3434516489505768 ┌ Info: iter 100 └ metric = 0.341949999332428 ┌ Info: iter 125 └ metric = 0.3414995074272156 ┌ Info: iter 150 └ metric = 0.3413655459880829 ┌ Info: iter 175 └ metric = 0.34130987524986267 ┌ Info: iter 200 └ metric = 0.3412889540195465 [ Info: The following kwargs are not supported and will be ignored: [:device, :metric]. ┌ Info: EvoTreeGaussian{EvoTrees.GaussianMLE} │ - nrounds: 200 │ - L2: 0.0 │ - lambda: 1.0 │ - gamma: 0.0 │ - eta: 0.05 │ - max_depth: 6 │ - min_weight: 0.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123) ┌ Info: initialization └ metric = 1.4467309713363647 ┌ Info: iter 25 └ metric = 2.3835630416870117 ┌ Info: iter 50 └ metric = 2.9986820220947266 ┌ Info: iter 75 └ metric = 3.405792713165283 ┌ Info: iter 100 └ metric = 3.644848585128784 ┌ Info: iter 125 └ metric = 3.7724838256835938 ┌ Info: iter 150 └ metric = 3.8453266620635986 ┌ Info: iter 175 └ metric = 3.8830883502960205 ┌ Info: iter 200 └ metric = 3.893998861312866 [ Info: The following kwargs are not supported and will be ignored: [:device, :metric]. ┌ Info: EvoTreeGaussian{EvoTrees.GaussianMLE} │ - nrounds: 200 │ - L2: 0.0 │ - lambda: 1.0 │ - gamma: 0.0 │ - eta: 0.5 │ - max_depth: 6 │ - min_weight: 0.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict(1 => 1) │ - tree_type: binary └ - rng: MersenneTwister(123) ┌ Info: initialization └ metric = 1.4467309713363647 ┌ Info: iter 25 └ metric = 2.730233907699585 ┌ Info: iter 50 └ metric = 2.730408191680908 ┌ Info: iter 75 └ metric = 2.73030948638916 ┌ Info: iter 100 └ metric = 2.7303237915039062 ┌ Info: iter 125 └ metric = 2.738657236099243 ┌ Info: iter 150 └ metric = 2.738638401031494 ┌ Info: iter 175 └ metric = 2.7388112545013428 ┌ Info: iter 200 └ metric = 2.7389094829559326 ┌ Info: EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.5 │ - gamma: 0.1 │ - eta: 0.05 │ - max_depth: 3 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 16 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123) ┌ Info: EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.5 │ - gamma: 0.1 │ - eta: 0.05 │ - max_depth: 3 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 16 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123, (0, 14028, 13026, 674)) ┌ Warning: To track eval metric in logger, both `metric` and `deval` must be provided. └ @ EvoTrees ~/.julia/packages/EvoTrees/73o4j/src/fit.jl:380 ┌ Info: EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.5 │ - gamma: 0.1 │ - eta: 0.05 │ - max_depth: 3 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 16 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123, (0, 28056, 27054, 146)) ┌ Info: EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.5 │ - gamma: 0.1 │ - eta: 0.05 │ - max_depth: 3 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 16 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123, (0, 41082, 40080, 620)) ┌ Info: EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.5 │ - gamma: 0.1 │ - eta: 0.05 │ - max_depth: 3 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 16 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123, (0, 41082, 40080, 620)) ┌ Info: EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.5 │ - gamma: 0.1 │ - eta: 0.05 │ - max_depth: 3 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 16 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123, (0, 42084, 41082, 418)) ┌ Info: EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.5 │ - gamma: 0.1 │ - eta: 0.05 │ - max_depth: 3 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 1.0 │ - nbins: 16 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary └ - rng: MersenneTwister(123, (0, 42084, 41082, 418)) ┌ Info: Training machine(EvoTreeRegressor{EvoTrees.LogLoss} │ - nrounds: 10 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.05 │ - max_depth: 5 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) └ , …). ┌ Info: Updating machine(EvoTreeRegressor{EvoTrees.LogLoss} │ - nrounds: 20 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.05 │ - max_depth: 5 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 2004, 1002, 908)) └ , …). ┌ Info: Training machine(EvoTreeClassifier{EvoTrees.MLogLoss} │ - nrounds: 10 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.05 │ - max_depth: 4 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary │ - rng: MersenneTwister(123) └ , …). ┌ Info: Updating machine(EvoTreeClassifier{EvoTrees.MLogLoss} │ - nrounds: 60 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.05 │ - max_depth: 4 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 1002, 0, 510)) └ , …). [ Info: The following kwargs are not supported and will be ignored: [:loss, :metric]. ┌ Info: Training machine(EvoTreeCount{EvoTrees.Poisson} │ - nrounds: 10 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) └ , …). ┌ Info: Updating machine(EvoTreeCount{EvoTrees.Poisson} │ - nrounds: 20 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 3006, 2004, 106)) └ , …). ┌ Info: Training machine(EvoTreeGaussian{EvoTrees.GaussianMLE} │ - nrounds: 10 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) └ , …). ┌ Info: Updating machine(EvoTreeGaussian{EvoTrees.GaussianMLE} │ - nrounds: 20 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 3006, 2004, 106)) └ , …). ┌ Info: Training machine(EvoTreeMLE{EvoTrees.LogisticMLE} │ - nrounds: 10 │ - L2: 0.0 │ - lambda: 1.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 32.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) └ , …). ┌ Info: Updating machine(EvoTreeMLE{EvoTrees.LogisticMLE} │ - nrounds: 20 │ - L2: 0.0 │ - lambda: 1.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 32.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 3006, 2004, 106)) └ , …). ┌ Info: Training machine(EvoTreeClassifier{EvoTrees.MLogLoss} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary │ - rng: MersenneTwister(123) └ , …). ┌ Info: Training machine(EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) └ , …). ┌ Info: Training machine(EvoTreeRegressor{EvoTrees.LogLoss} │ - nrounds: 10 │ - L2: 0.0 │ - lambda: 1.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 32.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) └ , …). ┌ Info: Updating machine(EvoTreeRegressor{EvoTrees.LogLoss} │ - nrounds: 20 │ - L2: 0.0 │ - lambda: 1.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 32.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 3006, 2004, 106)) └ , …). ┌ Info: Training machine(EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) └ , …). ┌ Info: Not retraining machine(EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 18036, 17034, 866)) └ , …). Use `force=true` to force. ┌ Info: Training machine(EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) └ , …). ┌ Info: Not retraining machine(EvoTreeRegressor{EvoTrees.MSE} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 18036, 17034, 866)) └ , …). Use `force=true` to force. ┌ Info: Training machine(EvoTreeClassifier{EvoTrees.MLogLoss} │ - nrounds: 100 │ - L2: 0.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary │ - rng: MersenneTwister(123) └ , …). Test Summary: | Pass Total Time EvoTrees | 105 105 9m34.0s Testing EvoTrees tests passed Testing completed after 587.03s PkgEval succeeded after 736.63s