Package evaluation of ClusteredLowRankSolver on Julia 1.10.8 (92f03a4775*) started at 2025-02-25T08:20:12.504 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 5.32s ################################################################################ # Installation # Installing ClusteredLowRankSolver... Resolving package versions... Installed ClusteredLowRankSolver ─ v1.0.14 Updating `~/.julia/environments/v1.10/Project.toml` [cadeb640] + ClusteredLowRankSolver v1.0.14 Updating `~/.julia/environments/v1.10/Manifest.toml` [c3fe647b] + AbstractAlgebra v0.44.8 [fb37089c] + Arblib v1.2.1 [0a1fb500] + BlockDiagonals v0.1.42 [d360d2e6] + ChainRulesCore v1.25.1 [cadeb640] + ClusteredLowRankSolver v1.0.14 [861a8166] + Combinatorics v1.0.2 [34da2185] + Compat v4.16.0 [ffbed154] + DocStringExtensions v0.9.3 [1a297f60] + FillArrays v1.13.0 [26cc04aa] + FiniteDifferences v0.12.32 [14197337] + GenericLinearAlgebra v0.3.15 [92d709cd] + IrrationalConstants v0.2.4 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.0 [0b1a1467] + KrylovKit v0.9.5 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.15 [2edaba10] + Nemo v0.48.4 [65ce6f38] + PackageExtensionCompat v1.0.2 [aea7be01] + PrecompileTools v1.2.1 [21216c6a] + Preferences v1.4.3 [fb686558] + RandomExtensions v0.4.4 [708f8203] + Richardson v1.4.2 [af85af4c] + RowEchelon v0.2.1 [276daf66] + SpecialFunctions v2.5.0 [90137ffa] + StaticArrays v1.9.12 [1e83bf80] + StaticArraysCore v1.4.3 [409d34a3] + VectorInterface v0.5.0 [e134572f] + FLINT_jll v300.100.301+0 ⌅ [656ef2d0] + OpenBLAS32_jll v0.3.24+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [56f22d72] + Artifacts [2a0f44e3] + Base64 [ade2ca70] + Dates [76f85450] + LibGit2 [8f399da3] + Libdl [37e2e46d] + LinearAlgebra [ca575930] + NetworkOptions v1.2.0 [de0858da] + Printf [9a3f8284] + Random [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization [2f01184e] + SparseArrays v1.10.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs [4ec0a83e] + Unicode [e66e0078] + CompilerSupportLibraries_jll v1.1.1+0 [781609d7] + GMP_jll v6.2.1+6 [e37daf67] + LibGit2_jll v1.6.4+0 [29816b5a] + LibSSH2_jll v1.11.0+1 [3a97d323] + MPFR_jll v4.2.0+1 [c8ffd9c3] + MbedTLS_jll v2.28.2+1 [4536629a] + OpenBLAS_jll v0.3.23+4 [05823500] + OpenLibm_jll v0.8.1+4 [bea87d4a] + SuiteSparse_jll v7.2.1+1 [8e850b90] + libblastrampoline_jll v5.11.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 6.67s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 66.48s ################################################################################ # Testing # Testing ClusteredLowRankSolver Status `/tmp/jl_WlB8r2/Project.toml` [c3fe647b] AbstractAlgebra v0.44.8 [cadeb640] ClusteredLowRankSolver v1.0.14 [2edaba10] Nemo v0.48.4 [1fd47b50] QuadGK v2.11.2 [276daf66] SpecialFunctions v2.5.0 [9a3f8284] Random [8dfed614] Test Status `/tmp/jl_WlB8r2/Manifest.toml` [c3fe647b] AbstractAlgebra v0.44.8 [fb37089c] Arblib v1.2.1 [0a1fb500] BlockDiagonals v0.1.42 [d360d2e6] ChainRulesCore v1.25.1 [cadeb640] ClusteredLowRankSolver v1.0.14 [861a8166] Combinatorics v1.0.2 [34da2185] Compat v4.16.0 [864edb3b] DataStructures v0.18.20 [ffbed154] DocStringExtensions v0.9.3 [1a297f60] FillArrays v1.13.0 [26cc04aa] FiniteDifferences v0.12.32 [14197337] GenericLinearAlgebra v0.3.15 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.0 [0b1a1467] KrylovKit v0.9.5 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.15 [2edaba10] Nemo v0.48.4 [bac558e1] OrderedCollections v1.8.0 [65ce6f38] PackageExtensionCompat v1.0.2 [aea7be01] PrecompileTools v1.2.1 [21216c6a] Preferences v1.4.3 [1fd47b50] QuadGK v2.11.2 [fb686558] RandomExtensions v0.4.4 [708f8203] Richardson v1.4.2 [af85af4c] RowEchelon v0.2.1 [276daf66] SpecialFunctions v2.5.0 [90137ffa] StaticArrays v1.9.12 [1e83bf80] StaticArraysCore v1.4.3 [409d34a3] VectorInterface v0.5.0 [e134572f] FLINT_jll v300.100.301+0 ⌅ [656ef2d0] OpenBLAS32_jll v0.3.24+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [56f22d72] Artifacts [2a0f44e3] Base64 [ade2ca70] Dates [b77e0a4c] InteractiveUtils [76f85450] LibGit2 [8f399da3] Libdl [37e2e46d] LinearAlgebra [56ddb016] Logging [d6f4376e] Markdown [ca575930] NetworkOptions v1.2.0 [de0858da] Printf [9a3f8284] Random [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization [2f01184e] SparseArrays v1.10.0 [fa267f1f] TOML v1.0.3 [8dfed614] Test [cf7118a7] UUIDs [4ec0a83e] Unicode [e66e0078] CompilerSupportLibraries_jll v1.1.1+0 [781609d7] GMP_jll v6.2.1+6 [e37daf67] LibGit2_jll v1.6.4+0 [29816b5a] LibSSH2_jll v1.11.0+1 [3a97d323] MPFR_jll v4.2.0+1 [c8ffd9c3] MbedTLS_jll v2.28.2+1 [4536629a] OpenBLAS_jll v0.3.23+4 [05823500] OpenLibm_jll v0.8.1+4 [bea87d4a] SuiteSparse_jll v7.2.1+1 [8e850b90] libblastrampoline_jll v5.11.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 26.7 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 1.95e+10 7.42e-01 7.10e-01 3.00e-01 2 28.2 3.995e+19 1.999e+11 -2.907e+09 1.03e+00 2.58e+09 2.58e-01 5.65e+09 7.46e-01 7.17e-01 3.00e-01 3 28.3 1.576e+19 3.079e+11 -4.779e+09 1.03e+00 6.53e+08 6.53e-02 1.60e+09 7.32e-01 7.31e-01 3.00e-01 4 28.3 6.100e+18 4.277e+11 -6.725e+09 1.03e+00 1.75e+08 1.75e-02 4.31e+08 7.20e-01 7.22e-01 3.00e-01 5 28.3 2.433e+18 5.963e+11 -9.362e+09 1.03e+00 4.92e+07 4.92e-03 1.20e+08 7.11e-01 7.14e-01 3.00e-01 6 28.3 9.953e+17 8.401e+11 -1.309e+10 1.03e+00 1.42e+07 1.42e-03 3.42e+07 7.07e-01 7.10e-01 3.00e-01 7 28.3 4.128e+17 1.191e+12 -1.842e+10 1.03e+00 4.16e+06 4.16e-04 9.93e+06 7.05e-01 7.07e-01 3.00e-01 8 28.3 1.725e+17 1.693e+12 -2.598e+10 1.03e+00 1.23e+06 1.23e-04 2.91e+06 7.04e-01 7.06e-01 3.00e-01 9 28.3 7.238e+16 2.410e+12 -3.671e+10 1.03e+00 3.64e+05 3.64e-05 8.56e+05 7.03e-01 7.05e-01 3.00e-01 10 28.3 3.044e+16 3.431e+12 -5.194e+10 1.03e+00 1.08e+05 1.08e-05 2.53e+05 7.03e-01 7.04e-01 3.00e-01 11 28.3 1.281e+16 4.886e+12 -7.353e+10 1.03e+00 3.20e+04 3.20e-06 7.48e+04 7.03e-01 7.04e-01 3.00e-01 12 28.3 5.398e+15 6.956e+12 -1.042e+11 1.03e+00 9.51e+03 9.51e-07 2.21e+04 7.03e-01 7.04e-01 3.00e-01 13 28.3 2.275e+15 9.899e+12 -1.476e+11 1.03e+00 2.82e+03 2.82e-07 6.55e+03 7.03e-01 7.04e-01 3.00e-01 14 28.3 9.587e+14 1.407e+13 -2.094e+11 1.03e+00 8.38e+02 8.38e-08 1.94e+03 7.04e-01 7.05e-01 3.00e-01 15 28.4 4.036e+14 1.993e+13 -2.971e+11 1.03e+00 2.48e+02 2.48e-08 5.71e+02 7.06e-01 7.09e-01 3.00e-01 16 28.4 1.692e+14 2.789e+13 -4.222e+11 1.03e+00 7.31e+01 7.31e-09 1.66e+02 7.12e-01 7.22e-01 3.00e-01 17 28.4 7.003e+13 3.756e+13 -6.021e+11 1.03e+00 2.10e+01 2.10e-09 4.62e+01 7.31e-01 7.65e-01 3.00e-01 18 28.4 2.773e+13 4.485e+13 -8.676e+11 1.04e+00 5.66e+00 5.66e-10 1.08e+01 7.79e-01 9.17e-01 3.00e-01 19 28.4 9.540e+12 3.941e+13 -1.292e+12 1.07e+00 1.25e+00 1.25e-10 8.99e-01 9.22e-01 1.00e+00 3.00e-01 20 28.4 2.995e+12 1.720e+13 -1.811e+12 1.24e+00 9.79e-02 9.79e-12 2.39e-52 1.00e+00 1.00e+00 3.00e-01 21 28.4 8.988e+11 4.388e+12 -1.903e+12 2.53e+00 7.60e-65 0.00e+00 1.44e-51 1.00e+00 1.00e+00 3.00e-01 22 28.4 2.696e+11 1.339e+12 -5.487e+11 2.39e+00 1.73e-65 0.00e+00 2.92e-52 8.90e-01 8.90e-01 1.00e-01 23 28.5 5.361e+10 2.688e+11 -1.065e+11 2.31e+00 3.30e-66 5.93e-67 4.78e-53 8.70e-01 8.70e-01 1.00e-01 24 28.5 1.161e+10 5.819e+10 -2.310e+10 2.32e+00 2.30e-66 7.42e-68 7.81e-54 8.52e-01 8.52e-01 1.00e-01 25 28.5 2.713e+09 1.355e+10 -5.443e+09 2.34e+00 4.19e-67 1.85e-68 1.16e-54 8.36e-01 8.36e-01 1.00e-01 26 28.5 6.711e+08 3.370e+09 -1.328e+09 2.30e+00 3.11e-68 2.32e-68 1.87e-55 8.30e-01 8.30e-01 1.00e-01 27 28.5 1.696e+08 8.422e+08 -3.452e+08 2.39e+00 1.85e-68 9.27e-69 3.14e-56 8.10e-01 8.10e-01 1.00e-01 28 28.5 4.599e+07 2.340e+08 -8.791e+07 2.20e+00 2.90e-69 2.61e-69 5.99e-57 8.18e-01 8.18e-01 1.00e-01 29 28.5 1.213e+07 5.873e+07 -2.619e+07 2.61e+00 8.69e-70 5.80e-70 1.09e-57 7.63e-01 7.63e-01 1.00e-01 30 28.5 3.798e+06 2.001e+07 -6.576e+06 1.98e+00 2.90e-70 1.81e-71 2.58e-58 8.24e-01 8.24e-01 1.00e-01 31 28.5 9.800e+05 4.616e+06 -2.245e+06 2.89e+00 1.20e-70 1.81e-71 4.53e-59 7.75e-01 7.75e-01 1.00e-01 32 28.5 2.963e+05 1.559e+06 -5.151e+05 1.99e+00 3.43e-71 2.26e-72 1.02e-59 8.39e-01 8.39e-01 1.00e-01 33 28.5 7.263e+04 3.436e+05 -1.649e+05 2.85e+00 6.49e-72 2.83e-73 1.64e-60 7.97e-01 7.97e-01 1.00e-01 34 28.5 2.051e+04 1.063e+05 -3.733e+04 2.08e+00 2.12e-72 7.07e-73 3.33e-61 8.41e-01 8.41e-01 1.00e-01 35 28.6 4.988e+03 2.366e+04 -1.125e+04 2.81e+00 6.18e-73 3.54e-74 5.29e-62 8.01e-01 8.01e-01 1.00e-01 36 28.6 1.393e+03 7.141e+03 -2.612e+03 2.15e+00 1.56e-73 6.19e-74 1.06e-62 8.38e-01 8.38e-01 1.00e-01 37 28.6 3.422e+02 1.603e+03 -7.929e+02 2.96e+00 2.79e-74 0.00e+00 1.71e-63 7.97e-01 7.97e-01 1.00e-01 38 28.6 9.665e+01 4.860e+02 -1.905e+02 2.29e+00 1.22e-74 4.97e-75 3.46e-64 8.39e-01 8.39e-01 1.00e-01 39 28.6 2.366e+01 1.051e+02 -6.048e+01 3.71e+00 1.52e-75 2.76e-76 5.57e-65 8.03e-01 8.03e-01 1.00e-01 40 28.6 6.562e+00 2.998e+01 -1.595e+01 3.28e+00 4.32e-76 2.42e-76 1.10e-65 8.57e-01 8.57e-01 1.00e-01 41 28.6 1.499e+00 4.629e+00 -5.866e+00 8.49e+00 1.38e-76 8.64e-77 1.57e-66 8.75e-01 8.75e-01 1.00e-01 42 28.6 3.183e-01 -4.666e-01 -2.695e+00 7.05e-01 2.59e-77 0.00e+00 1.95e-67 9.64e-01 9.64e-01 1.00e-01 43 28.6 4.224e-02 -1.900e+00 -2.195e+00 7.22e-02 1.73e-77 3.45e-77 7.10e-69 9.83e-01 9.83e-01 1.00e-01 44 28.6 4.861e-03 -2.089e+00 -2.123e+00 8.08e-03 8.64e-78 2.59e-77 1.19e-70 9.97e-01 9.97e-01 1.00e-01 45 28.6 5.004e-04 -2.110e+00 -2.114e+00 8.29e-04 8.64e-78 2.59e-77 3.86e-73 9.99e-01 9.99e-01 1.00e-01 46 28.6 5.050e-05 -2.113e+00 -2.113e+00 8.37e-05 8.64e-78 8.64e-78 2.28e-75 1.00e+00 1.00e+00 1.00e-01 47 28.7 5.060e-06 -2.113e+00 -2.113e+00 8.38e-06 8.64e-78 2.59e-77 3.87e-75 1.00e+00 1.00e+00 1.00e-01 48 28.7 5.062e-07 -2.113e+00 -2.113e+00 8.39e-07 8.64e-78 2.59e-77 3.73e-75 1.00e+00 1.00e+00 1.00e-01 49 28.7 5.063e-08 -2.113e+00 -2.113e+00 8.39e-08 8.64e-78 1.73e-77 1.05e-74 1.00e+00 1.00e+00 1.00e-01 50 28.7 5.064e-09 -2.113e+00 -2.113e+00 8.39e-09 8.64e-78 0.00e+00 9.88e-75 1.00e+00 1.00e+00 1.00e-01 51 28.7 5.064e-10 -2.113e+00 -2.113e+00 8.39e-10 8.64e-78 2.59e-77 2.83e-74 1.00e+00 1.00e+00 1.00e-01 52 28.7 5.065e-11 -2.113e+00 -2.113e+00 8.39e-11 1.73e-77 3.45e-77 1.41e-73 1.00e+00 1.00e+00 1.00e-01 53 28.7 5.065e-12 -2.113e+00 -2.113e+00 8.39e-12 8.64e-78 1.73e-77 1.09e-73 1.00e+00 1.00e+00 1.00e-01 54 28.7 5.066e-13 -2.113e+00 -2.113e+00 8.39e-13 1.73e-77 1.73e-77 3.13e-73 1.00e+00 1.00e+00 1.00e-01 55 28.7 5.066e-14 -2.113e+00 -2.113e+00 8.39e-14 1.73e-77 1.73e-77 6.37e-73 1.00e+00 1.00e+00 1.00e-01 56 28.7 5.067e-15 -2.113e+00 -2.113e+00 8.39e-15 1.73e-77 2.59e-77 6.52e-73 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 28.763242 seconds (1.51 M allocations: 72.944 MiB, 0.46% gc time, 98.16% compilation time: <1% of which was recompilation) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:-2.112913881423601867227831601925072673630957656309219736421745350341242318334107 Dual objective:-2.112913881423605414388974515744021771215142713337541344859750145706993837741542 Duality gap:8.394003120761060711956408524701929713594723908023336520010527688204291254157072e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.2 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 2.10e+11 7.15e-01 8.46e-01 3.00e-01 2 0.4 4.213e+19 -7.841e+09 2.996e+11 1.05e+00 2.85e+09 2.85e-01 3.23e+10 7.79e-01 1.00e+00 3.00e-01 3 0.5 1.478e+19 1.359e+09 5.379e+11 9.95e-01 6.29e+08 6.29e-02 4.20e-65 8.20e-01 1.00e+00 3.00e-01 4 0.7 4.264e+18 4.397e+08 8.578e+11 9.99e-01 1.13e+08 1.13e-02 2.01e-64 8.92e-01 1.00e+00 3.00e-01 5 0.8 7.344e+17 4.931e+07 1.370e+12 1.00e+00 1.22e+07 1.22e-03 3.07e-64 8.98e-01 1.00e+00 3.00e-01 6 1.0 1.198e+17 4.867e+06 2.189e+12 1.00e+00 1.24e+06 1.24e-04 6.35e-64 8.95e-01 1.00e+00 3.00e-01 7 1.1 2.010e+16 5.242e+05 3.499e+12 1.00e+00 1.30e+05 1.30e-05 9.21e-64 8.99e-01 1.00e+00 3.00e-01 8 1.2 3.262e+15 5.203e+04 5.596e+12 1.00e+00 1.32e+04 1.32e-06 2.37e-63 8.97e-01 1.00e+00 3.00e-01 9 1.4 5.394e+14 5.483e+03 8.950e+12 1.00e+00 1.37e+03 1.37e-07 2.42e-63 8.99e-01 1.00e+00 3.00e-01 10 1.5 8.742e+13 5.525e+02 1.430e+13 1.00e+00 1.38e+02 1.38e-08 6.44e-63 8.99e-01 1.00e+00 3.00e-01 11 1.7 1.453e+13 6.378e+01 2.266e+13 1.00e+00 1.40e+01 1.40e-09 8.13e-63 8.96e-01 1.00e+00 3.00e-01 12 1.8 2.995e+12 1.385e+01 3.308e+13 1.00e+00 1.45e+00 1.45e-10 1.52e-62 8.80e-01 1.00e+00 3.00e-01 13 2.0 1.001e+12 9.125e+00 2.897e+13 1.00e+00 1.74e-01 1.74e-11 1.07e-62 8.85e-01 1.00e+00 3.00e-01 14 2.1 3.229e+11 8.728e+00 1.226e+13 1.00e+00 2.01e-02 2.01e-12 1.22e-62 8.77e-01 1.00e+00 3.00e-01 15 2.2 9.802e+10 8.791e+00 3.989e+12 1.00e+00 2.47e-03 2.47e-13 2.96e-63 1.00e+00 1.00e+00 3.00e-01 16 2.4 2.964e+10 8.979e+00 1.245e+12 1.00e+00 5.18e-77 2.59e-77 5.82e-64 1.00e+00 1.00e+00 3.00e-01 17 2.5 8.892e+09 9.036e+00 3.735e+11 1.00e+00 4.32e-77 2.59e-77 3.80e-65 9.97e-01 9.97e-01 1.00e-01 18 2.7 9.112e+08 9.041e+00 3.827e+10 1.00e+00 5.18e-77 2.59e-77 2.36e-66 1.00e+00 1.00e+00 1.00e-01 19 2.8 9.117e+07 9.046e+00 3.829e+09 1.00e+00 6.05e-77 4.32e-77 8.90e-67 1.00e+00 1.00e+00 1.00e-01 20 2.9 9.118e+06 9.050e+00 3.830e+08 1.00e+00 3.45e-77 1.73e-77 2.06e-68 1.00e+00 1.00e+00 1.00e-01 21 3.1 9.119e+05 9.054e+00 3.830e+07 1.00e+00 6.05e-77 1.73e-77 6.95e-69 1.00e+00 1.00e+00 1.00e-01 22 3.2 9.120e+04 9.058e+00 3.830e+06 1.00e+00 5.18e-77 1.73e-77 2.45e-70 1.00e+00 1.00e+00 1.00e-01 23 3.4 9.121e+03 9.061e+00 3.831e+05 1.00e+00 3.45e-77 3.45e-77 5.43e-71 1.00e+00 1.00e+00 1.00e-01 24 3.5 9.123e+02 9.064e+00 3.832e+04 1.00e+00 2.59e-77 2.59e-77 6.23e-72 1.00e+00 1.00e+00 1.00e-01 25 3.6 9.154e+01 9.069e+00 3.854e+03 9.95e-01 4.32e-77 2.59e-77 1.49e-72 9.96e-01 9.96e-01 1.00e-01 26 3.8 9.453e+00 9.090e+00 4.061e+02 9.56e-01 2.59e-77 1.73e-77 4.86e-74 9.67e-01 9.67e-01 1.00e-01 27 3.9 1.226e+00 9.266e+00 6.078e+01 7.35e-01 3.45e-77 1.73e-77 6.08e-75 8.41e-01 8.41e-01 1.00e-01 28 4.1 2.985e-01 1.028e+01 2.281e+01 3.79e-01 6.91e-77 2.59e-77 2.25e-75 7.57e-01 7.57e-01 1.00e-01 29 4.2 9.522e-02 1.184e+01 1.584e+01 1.45e-01 5.18e-77 2.59e-77 3.75e-75 5.18e-01 5.18e-01 1.00e-01 30 4.4 5.085e-02 1.263e+01 1.477e+01 7.79e-02 6.91e-77 2.59e-77 6.44e-75 6.13e-01 6.13e-01 1.00e-01 31 4.5 2.282e-02 1.280e+01 1.376e+01 3.61e-02 3.45e-77 1.73e-77 8.05e-75 8.46e-01 8.46e-01 1.00e-01 32 4.7 5.436e-03 1.307e+01 1.330e+01 8.66e-03 5.10e-77 1.73e-77 1.49e-74 8.46e-01 8.46e-01 1.00e-01 33 4.8 1.296e-03 1.314e+01 1.319e+01 2.07e-03 6.41e-77 4.32e-77 6.91e-74 8.17e-01 8.17e-01 1.00e-01 34 4.9 3.428e-04 1.315e+01 1.317e+01 5.47e-04 9.53e-77 2.59e-77 3.38e-73 8.07e-01 8.07e-01 1.00e-01 35 5.1 9.373e-05 1.316e+01 1.316e+01 1.50e-04 5.18e-77 2.59e-77 1.24e-72 7.58e-01 7.58e-01 1.00e-01 36 5.2 2.978e-05 1.316e+01 1.316e+01 4.75e-05 9.67e-77 2.59e-77 1.60e-72 8.83e-01 8.83e-01 1.00e-01 37 5.4 6.117e-06 1.316e+01 1.316e+01 9.76e-06 4.75e-77 2.59e-77 1.34e-72 8.72e-01 8.72e-01 1.00e-01 38 5.5 1.315e-06 1.316e+01 1.316e+01 2.10e-06 4.28e-77 1.73e-77 2.18e-72 9.01e-01 9.01e-01 1.00e-01 39 5.6 2.487e-07 1.316e+01 1.316e+01 3.97e-07 9.76e-77 1.73e-77 1.21e-71 9.70e-01 9.70e-01 1.00e-01 40 5.8 3.167e-08 1.316e+01 1.316e+01 5.05e-08 1.39e-76 1.73e-77 2.92e-71 9.98e-01 9.98e-01 1.00e-01 41 5.9 3.234e-09 1.316e+01 1.316e+01 5.16e-09 1.58e-76 1.73e-77 1.71e-71 9.98e-01 9.98e-01 1.00e-01 42 6.1 3.294e-10 1.316e+01 1.316e+01 5.26e-10 6.91e-77 1.73e-77 2.28e-71 1.00e+00 1.00e+00 1.00e-01 43 6.2 3.303e-11 1.316e+01 1.316e+01 5.27e-11 5.38e-77 3.45e-77 2.00e-71 1.00e+00 1.00e+00 1.00e-01 44 6.3 3.303e-12 1.316e+01 1.316e+01 5.27e-12 7.90e-77 3.45e-77 2.13e-71 1.00e+00 1.00e+00 1.00e-01 45 6.5 3.304e-13 1.316e+01 1.316e+01 5.27e-13 1.07e-76 1.73e-77 2.64e-71 1.00e+00 1.00e+00 1.00e-01 46 6.6 3.304e-14 1.316e+01 1.316e+01 5.27e-14 5.59e-77 3.45e-77 2.20e-71 1.00e+00 1.00e+00 1.00e-01 47 6.8 3.304e-15 1.316e+01 1.316e+01 5.27e-15 8.24e-77 1.73e-77 1.79e-71 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 6.798711 seconds (17.48 M allocations: 897.115 MiB, 7.31% gc time, 1.68% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:13.15831434739029877947090550359345694586679798111469196017972168513813301939082 Dual objective:13.15831434739031265886855955253256744816265093447158266200014431381253462815655 Duality gap:5.274002918467153872632428040766445126302956329553995185939330033645163280750341e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.2 1.000e+20 1.585e-02 1.585e-02 0.00e+00 1.00e+10 3.02e+20 8.43e+10 7.03e-01 7.57e-01 3.00e-01 2 0.4 4.190e+19 -2.320e+10 -2.620e+08 9.78e-01 2.97e+09 8.99e+19 2.04e+10 7.89e-01 7.78e-01 3.00e-01 3 0.6 1.306e+19 -4.643e+10 -1.742e+09 9.28e-01 6.28e+08 1.90e+19 4.53e+09 8.17e-01 7.43e-01 3.00e-01 4 0.9 3.686e+18 -7.438e+10 -1.494e+09 9.61e-01 1.15e+08 3.48e+18 1.17e+09 8.25e-01 8.15e-01 3.00e-01 5 1.1 9.725e+17 -1.038e+11 1.515e+08 1.00e+00 2.01e+07 6.09e+17 2.16e+08 7.94e-01 7.63e-01 3.00e-01 6 1.3 3.020e+17 -1.438e+11 3.329e+09 1.05e+00 4.16e+06 1.26e+17 5.11e+07 7.09e-01 7.99e-01 3.00e-01 7 1.5 1.203e+17 -1.906e+11 1.626e+10 1.19e+00 1.21e+06 3.65e+16 1.03e+07 7.49e-01 8.14e-01 3.00e-01 8 1.7 4.286e+16 -2.882e+11 3.009e+10 1.23e+00 3.03e+05 9.15e+15 1.92e+06 7.63e-01 8.17e-01 3.00e-01 9 2.0 1.468e+16 -4.788e+11 5.004e+10 1.23e+00 7.18e+04 2.17e+15 3.51e+05 7.82e-01 6.89e-01 3.00e-01 10 2.2 4.729e+15 -8.435e+11 8.455e+10 1.22e+00 1.57e+04 4.74e+14 1.09e+05 6.46e-01 6.36e-01 3.00e-01 11 2.4 2.321e+15 -1.155e+12 1.377e+11 1.27e+00 5.54e+03 1.67e+14 3.98e+04 6.72e-01 6.11e-01 3.00e-01 12 2.6 1.063e+15 -1.592e+12 1.951e+11 1.28e+00 1.81e+03 5.49e+13 1.55e+04 5.62e-01 9.01e-01 3.00e-01 13 2.8 6.779e+14 -2.021e+12 2.787e+11 1.32e+00 7.94e+02 2.40e+13 1.53e+03 8.24e-01 9.11e-01 3.00e-01 14 3.1 1.835e+14 -5.984e+12 4.300e+11 1.15e+00 1.40e+02 4.23e+12 1.36e+02 8.55e-01 1.00e+00 3.00e-01 15 3.3 4.247e+13 -1.546e+13 6.864e+11 1.09e+00 2.03e+01 6.13e+11 3.26e-48 8.97e-01 1.00e+00 3.00e-01 16 3.5 7.181e+12 -1.302e+13 1.093e+12 1.18e+00 2.08e+00 6.30e+10 1.75e-48 8.89e-01 1.00e+00 3.00e-01 17 3.7 1.329e+12 -3.359e+12 1.724e+12 3.11e+00 2.31e-01 6.99e+09 3.70e-48 8.33e-01 1.00e+00 3.00e-01 18 3.9 3.857e+11 -8.933e+11 2.306e+12 2.26e+00 3.86e-02 1.17e+09 9.93e-49 7.07e-01 1.00e+00 3.00e-01 19 4.2 1.766e+11 -3.434e+11 1.375e+12 1.67e+00 1.13e-02 3.42e+08 2.12e-47 8.44e-01 8.41e-01 3.00e-01 20 4.4 4.903e+10 -9.837e+10 7.115e+11 1.32e+00 1.77e-03 5.34e+07 1.72e-47 8.56e-01 1.00e+00 3.00e-01 21 4.6 1.622e+10 -2.672e+10 4.770e+11 1.12e+00 2.54e-04 7.67e+06 2.85e-47 7.71e-01 1.00e+00 3.00e-01 22 4.8 5.589e+09 -9.867e+09 1.839e+11 1.11e+00 5.81e-05 1.76e+06 5.80e-48 8.65e-01 8.10e-01 3.00e-01 23 5.1 2.102e+09 -2.786e+09 8.647e+10 1.07e+00 7.86e-06 2.38e+05 3.25e-48 7.54e-01 1.00e+00 3.00e-01 24 5.3 6.491e+08 -1.160e+09 2.539e+10 1.10e+00 1.93e-06 5.84e+04 1.04e-48 9.04e-01 9.19e-01 3.00e-01 25 5.5 2.210e+08 -2.876e+08 9.863e+09 1.06e+00 1.86e-07 5.62e+03 2.79e-48 9.41e-01 1.00e+00 3.00e-01 26 5.7 6.517e+07 -7.947e+07 3.067e+09 1.05e+00 1.11e-08 3.34e+02 8.78e-48 1.00e+00 1.00e+00 3.00e-01 27 5.9 1.954e+07 -1.955e+07 9.380e+08 1.04e+00 1.15e-63 2.01e-43 9.50e-48 1.00e+00 1.00e+00 3.00e-01 28 6.2 5.862e+06 -5.862e+06 2.814e+08 1.04e+00 1.58e-63 1.55e-43 6.71e-48 1.00e+00 1.00e+00 1.00e-01 29 6.4 5.873e+05 -5.873e+05 2.819e+07 1.04e+00 1.45e-63 3.70e-43 1.18e-49 1.00e+00 1.00e+00 1.00e-01 30 6.6 5.874e+04 -5.874e+04 2.819e+06 1.04e+00 1.12e-63 5.60e-44 1.93e-50 1.00e+00 1.00e+00 1.00e-01 31 6.8 5.874e+03 -5.874e+03 2.820e+05 1.04e+00 1.32e-63 5.43e-43 1.20e-51 1.00e+00 1.00e+00 1.00e-01 32 7.0 5.875e+02 -5.874e+02 2.820e+04 1.04e+00 1.05e-63 3.15e-43 8.33e-53 1.00e+00 1.00e+00 1.00e-01 33 7.3 5.876e+01 -5.866e+01 2.821e+03 1.04e+00 1.33e-63 1.33e-43 2.73e-53 1.00e+00 1.00e+00 1.00e-01 34 7.5 5.883e+00 -5.788e+00 2.825e+02 1.04e+00 2.24e-63 2.97e-44 7.46e-55 9.99e-01 9.99e-01 1.00e-01 35 7.7 5.954e-01 -4.995e-01 2.867e+01 1.04e+00 1.67e-63 5.91e-43 1.14e-55 9.88e-01 9.88e-01 1.00e-01 36 7.9 6.616e-02 3.259e-02 3.274e+00 9.80e-01 1.40e-63 1.90e-43 2.77e-55 9.22e-01 9.22e-01 1.00e-01 37 8.1 1.126e-02 1.068e-01 6.584e-01 5.52e-01 1.74e-63 2.06e-43 2.72e-56 8.48e-01 8.48e-01 1.00e-01 38 8.4 2.667e-03 1.882e-01 3.188e-01 1.31e-01 1.27e-63 5.38e-43 8.09e-56 8.38e-01 8.38e-01 1.00e-01 39 8.6 6.553e-04 2.394e-01 2.715e-01 3.21e-02 1.05e-63 2.56e-44 2.48e-56 8.06e-01 8.06e-01 1.00e-01 40 8.8 1.798e-04 2.495e-01 2.583e-01 8.81e-03 1.34e-63 4.23e-43 7.58e-57 8.23e-01 8.23e-01 1.00e-01 41 9.0 4.661e-05 2.526e-01 2.549e-01 2.28e-03 2.19e-63 1.98e-43 1.38e-56 7.89e-01 7.89e-01 1.00e-01 42 9.3 1.350e-05 2.534e-01 2.540e-01 6.61e-04 1.03e-63 2.80e-43 5.36e-55 7.75e-01 7.75e-01 1.00e-01 43 9.5 4.080e-06 2.536e-01 2.538e-01 2.00e-04 1.55e-63 1.41e-42 2.16e-55 7.61e-01 7.61e-01 1.00e-01 44 9.7 1.286e-06 2.537e-01 2.538e-01 6.30e-05 1.10e-63 6.96e-43 4.66e-55 9.61e-01 9.61e-01 1.00e-01 45 9.9 1.739e-07 2.537e-01 2.537e-01 8.52e-06 1.38e-63 3.75e-43 1.11e-54 9.60e-01 9.60e-01 1.00e-01 46 10.2 2.369e-08 2.537e-01 2.537e-01 1.16e-06 1.93e-63 2.09e-42 5.69e-55 9.77e-01 9.77e-01 1.00e-01 47 10.4 2.854e-09 2.537e-01 2.537e-01 1.40e-07 3.13e-63 1.69e-42 7.00e-55 9.93e-01 9.93e-01 1.00e-01 48 10.6 3.031e-10 2.537e-01 2.537e-01 1.49e-08 1.69e-63 6.30e-43 6.91e-55 9.99e-01 9.99e-01 1.00e-01 49 10.8 3.050e-11 2.537e-01 2.537e-01 1.49e-09 1.88e-63 4.20e-43 4.82e-55 1.00e+00 1.00e+00 1.00e-01 50 11.0 3.051e-12 2.537e-01 2.537e-01 1.49e-10 1.35e-63 1.70e-44 7.56e-55 1.00e+00 1.00e+00 1.00e-01 51 11.3 3.051e-13 2.537e-01 2.537e-01 1.50e-11 3.08e-63 1.59e-42 1.18e-54 1.00e+00 1.00e+00 1.00e-01 52 11.5 3.051e-14 2.537e-01 2.537e-01 1.50e-12 1.70e-63 2.22e-42 9.24e-55 1.00e+00 1.00e+00 1.00e-01 53 11.7 3.052e-15 2.537e-01 2.537e-01 1.50e-13 1.79e-63 8.77e-43 1.15e-54 1.00e+00 1.00e+00 1.00e-01 54 11.9 3.052e-16 2.537e-01 2.537e-01 1.50e-14 1.61e-63 1.49e-42 3.96e-55 1.00e+00 1.00e+00 1.00e-01 55 12.1 3.052e-17 2.537e-01 2.537e-01 1.50e-15 1.49e-63 3.95e-43 5.04e-55 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 12.166183 seconds (27.23 M allocations: 1.280 GiB, 6.07% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:0.2537404272210647350088294550641457915825349948873420931320959416896161455262874 Dual objective:0.2537404272210648845843982746186062149195109140163499062793876644526473732949857 Duality gap:1.495755688195544604233369759191290078131472917227630312277686983445433308225477e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 1.6 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 8.43e+10 6.32e-01 5.24e-01 3.00e-01 2 3.0 5.118e+19 7.190e+07 1.164e+10 9.88e-01 3.68e+09 3.68e-01 4.01e+10 6.36e-01 6.99e-01 3.00e-01 3 4.4 2.570e+19 6.028e+07 2.506e+10 9.95e-01 1.34e+09 1.34e-01 1.21e+10 7.82e-01 7.56e-01 3.00e-01 4 5.8 8.263e+18 1.502e+07 4.098e+10 9.99e-01 2.93e+08 2.93e-02 2.94e+09 8.07e-01 8.00e-01 3.00e-01 5 7.2 2.367e+18 3.547e+06 6.396e+10 1.00e+00 5.64e+07 5.64e-03 5.87e+08 8.04e-01 7.46e-01 3.00e-01 6 8.6 7.008e+17 8.038e+05 9.568e+10 1.00e+00 1.11e+07 1.11e-03 1.49e+08 8.14e-01 7.81e-01 3.00e-01 7 10.0 1.972e+17 1.837e+05 1.446e+11 1.00e+00 2.06e+06 2.06e-04 3.27e+07 7.79e-01 7.96e-01 3.00e-01 8 11.3 6.361e+16 4.687e+04 2.206e+11 1.00e+00 4.56e+05 4.56e-05 6.67e+06 7.28e-01 7.70e-01 3.00e-01 9 12.7 2.470e+16 1.204e+04 3.288e+11 1.00e+00 1.24e+05 1.24e-05 1.54e+06 7.29e-01 7.91e-01 3.00e-01 10 14.1 9.586e+15 3.109e+03 5.041e+11 1.00e+00 3.37e+04 3.37e-06 3.21e+05 7.58e-01 7.85e-01 3.00e-01 11 15.4 3.375e+15 7.627e+02 8.164e+11 1.00e+00 8.17e+03 8.17e-07 6.90e+04 6.24e-01 7.24e-01 3.00e-01 12 16.8 1.763e+15 3.251e+02 1.508e+12 1.00e+00 3.07e+03 3.07e-07 1.91e+04 5.66e-01 4.74e-01 3.00e-01 13 18.2 1.006e+15 3.029e+02 2.709e+12 1.00e+00 1.33e+03 1.33e-07 1.00e+04 6.70e-01 6.86e-01 3.00e-01 14 19.6 4.647e+14 3.925e+02 4.272e+12 1.00e+00 4.40e+02 4.40e-08 3.14e+03 5.67e-01 6.23e-01 3.00e-01 15 21.0 2.709e+14 6.587e+02 6.050e+12 1.00e+00 1.91e+02 1.91e-08 1.18e+03 4.25e-01 9.14e-01 3.00e-01 16 22.3 2.367e+14 6.300e+01 9.859e+12 1.00e+00 1.10e+02 1.10e-08 1.01e+02 7.83e-01 1.00e+00 3.00e-01 17 23.7 8.205e+13 7.894e+01 1.584e+13 1.00e+00 2.37e+01 2.37e-09 3.98e-58 8.13e-01 1.00e+00 3.00e-01 18 25.1 2.463e+13 1.886e+01 2.504e+13 1.00e+00 4.43e+00 4.43e-10 1.13e-57 8.84e-01 1.00e+00 3.00e-01 19 26.5 4.808e+12 2.447e+00 3.732e+13 1.00e+00 5.16e-01 5.16e-11 2.26e-57 8.88e-01 1.00e+00 3.00e-01 20 27.6 1.084e+12 3.495e-01 3.941e+13 1.00e+00 5.77e-02 5.77e-12 8.94e-57 8.56e-01 1.00e+00 3.00e-01 21 28.9 3.431e+11 1.295e-01 2.400e+13 1.00e+00 8.33e-03 8.33e-13 2.75e-57 8.25e-01 1.00e+00 3.00e-01 22 30.3 1.158e+11 9.545e-02 1.061e+13 1.00e+00 1.46e-03 1.46e-13 6.15e-58 8.40e-01 8.07e-01 3.00e-01 23 31.6 4.557e+10 8.306e-02 4.818e+12 1.00e+00 2.34e-04 2.34e-14 2.21e-58 7.20e-01 1.00e+00 3.00e-01 24 33.0 1.417e+10 8.217e-02 1.436e+12 1.00e+00 6.54e-05 6.54e-15 2.67e-60 8.96e-01 8.18e-01 3.00e-01 25 34.4 5.688e+09 7.650e-02 6.445e+11 1.00e+00 6.79e-06 6.79e-16 1.95e-59 9.34e-01 1.00e+00 3.00e-01 26 35.8 1.690e+09 7.658e-02 1.988e+11 1.00e+00 4.49e-07 4.49e-17 3.02e-59 1.00e+00 1.00e+00 3.00e-01 27 37.2 5.061e+08 7.648e-02 6.022e+10 1.00e+00 3.87e-74 3.82e-51 3.18e-59 1.00e+00 1.00e+00 3.00e-01 28 38.6 1.518e+08 7.648e-02 1.807e+10 1.00e+00 3.56e-74 5.54e-51 1.81e-58 1.00e+00 1.00e+00 1.00e-01 29 39.9 1.524e+07 7.648e-02 1.814e+09 1.00e+00 3.68e-74 4.28e-51 1.50e-60 1.00e+00 1.00e+00 1.00e-01 30 41.3 1.524e+06 7.649e-02 1.814e+08 1.00e+00 4.94e-74 6.75e-51 7.92e-61 1.00e+00 1.00e+00 1.00e-01 31 42.7 1.525e+05 7.649e-02 1.814e+07 1.00e+00 3.08e-74 3.87e-51 3.70e-62 1.00e+00 1.00e+00 1.00e-01 32 44.1 1.525e+04 7.649e-02 1.814e+06 1.00e+00 2.63e-74 5.41e-51 2.52e-63 1.00e+00 1.00e+00 1.00e-01 33 45.4 1.525e+03 7.649e-02 1.815e+05 1.00e+00 3.00e-74 4.55e-51 4.77e-64 1.00e+00 1.00e+00 1.00e-01 34 46.8 1.525e+02 7.649e-02 1.815e+04 1.00e+00 2.88e-74 2.12e-51 2.50e-65 1.00e+00 1.00e+00 1.00e-01 35 48.2 1.529e+01 7.653e-02 1.820e+03 1.00e+00 3.34e-74 4.70e-51 2.79e-66 9.97e-01 9.97e-01 1.00e-01 36 49.6 1.564e+00 7.692e-02 1.862e+02 9.99e-01 2.63e-74 2.44e-51 2.69e-67 9.76e-01 9.76e-01 1.00e-01 37 51.0 1.897e-01 8.062e-02 2.266e+01 9.93e-01 2.82e-74 6.58e-51 7.40e-69 8.77e-01 8.77e-01 1.00e-01 38 52.4 3.990e-02 1.073e-01 4.856e+00 9.57e-01 3.04e-74 9.30e-51 5.70e-69 9.21e-01 9.21e-01 1.00e-01 39 53.8 6.811e-03 1.612e-01 9.717e-01 7.15e-01 3.65e-74 1.98e-51 1.01e-68 8.71e-01 8.71e-01 1.00e-01 40 55.2 1.473e-03 2.059e-01 3.812e-01 1.75e-01 3.48e-74 5.34e-51 8.58e-69 8.63e-01 8.63e-01 1.00e-01 41 56.6 3.291e-04 2.437e-01 2.829e-01 3.92e-02 3.97e-74 5.13e-51 3.23e-69 8.93e-01 8.93e-01 1.00e-01 42 58.0 6.458e-05 2.517e-01 2.594e-01 7.69e-03 5.02e-74 8.69e-51 1.04e-69 8.48e-01 8.48e-01 1.00e-01 43 59.4 1.529e-05 2.532e-01 2.550e-01 1.82e-03 6.45e-74 5.08e-51 9.04e-68 8.38e-01 8.38e-01 1.00e-01 44 60.7 3.758e-06 2.536e-01 2.540e-01 4.47e-04 7.57e-74 5.25e-51 2.79e-67 8.60e-01 8.60e-01 1.00e-01 45 62.0 8.506e-07 2.537e-01 2.538e-01 1.01e-04 3.17e-74 5.89e-51 4.84e-67 9.32e-01 9.32e-01 1.00e-01 46 63.3 1.372e-07 2.537e-01 2.538e-01 1.63e-05 3.68e-74 3.73e-51 6.45e-67 9.60e-01 9.60e-01 1.00e-01 47 64.7 1.861e-08 2.537e-01 2.537e-01 2.21e-06 4.90e-74 4.09e-51 1.77e-66 9.53e-01 9.53e-01 1.00e-01 48 66.0 2.646e-09 2.537e-01 2.537e-01 3.15e-07 3.55e-74 5.28e-51 6.84e-67 9.65e-01 9.65e-01 1.00e-01 49 67.4 3.469e-10 2.537e-01 2.537e-01 4.13e-08 4.30e-74 6.94e-51 4.19e-66 9.73e-01 9.73e-01 1.00e-01 50 68.8 4.314e-11 2.537e-01 2.537e-01 5.13e-09 4.48e-74 6.08e-51 3.16e-66 9.75e-01 9.75e-01 1.00e-01 51 70.2 5.269e-12 2.537e-01 2.537e-01 6.27e-10 4.51e-74 6.71e-51 2.21e-65 9.79e-01 9.79e-01 1.00e-01 52 71.6 6.243e-13 2.537e-01 2.537e-01 7.43e-11 5.55e-74 1.05e-50 5.42e-64 9.96e-01 9.96e-01 1.00e-01 53 73.0 6.487e-14 2.537e-01 2.537e-01 7.72e-12 5.11e-74 8.32e-51 3.91e-63 1.00e+00 1.00e+00 1.00e-01 54 74.3 6.499e-15 2.537e-01 2.537e-01 7.73e-13 4.38e-74 1.06e-50 2.37e-62 1.00e+00 1.00e+00 1.00e-01 55 75.7 6.500e-16 2.537e-01 2.537e-01 7.73e-14 4.00e-74 4.38e-51 1.24e-61 1.00e+00 1.00e+00 1.00e-01 56 76.9 6.500e-17 2.537e-01 2.537e-01 7.74e-15 3.68e-74 7.65e-51 1.27e-60 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 76.937351 seconds (163.58 M allocations: 8.291 GiB, 6.30% gc time, 0.19% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:0.25374042722106456998734956146878664456434175067901117411944694099159367447880546957161105326 Dual objective:0.25374042722106534362683887198288226583559048054843091123488977032813393313662780270154522945 Duality gap:7.7363948931051409562127124872986941973711544282933654025865782233312993417619036175582901238e-16 [ Info: Creating the univariate constraint [ Info: Constructing trivariate constraint iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.5 1.000e+06 1.000e+00 5.001e+03 1.00e+00 1.00e+03 0.00e+00 1.12e+06 6.53e-01 5.28e-01 3.00e-01 2 1.0 5.015e+05 5.164e+02 3.088e+03 7.13e-01 3.47e+02 0.00e+00 5.30e+05 4.22e-01 6.07e-01 3.00e-01 3 1.6 3.499e+05 6.688e+02 8.065e+03 8.47e-01 2.00e+02 0.00e+00 2.08e+05 5.84e-01 4.21e-01 3.00e-01 4 2.1 2.030e+05 5.414e+02 1.758e+04 9.40e-01 8.32e+01 0.00e+00 1.20e+05 4.22e-01 9.53e-01 3.00e-01 5 2.7 1.588e+05 3.876e+02 6.630e+04 9.88e-01 4.81e+01 0.00e+00 5.61e+03 7.78e-01 1.00e+00 3.00e-01 6 3.2 5.705e+04 1.104e+02 1.123e+05 9.98e-01 1.07e+01 0.00e+00 1.06e-67 8.24e-01 1.00e+00 3.00e-01 7 3.8 1.728e+04 2.822e+01 1.690e+05 1.00e+00 1.88e+00 0.00e+00 9.64e-68 8.75e-01 1.00e+00 3.00e-01 8 4.3 4.993e+03 1.126e+01 1.883e+05 1.00e+00 2.35e-01 0.00e+00 5.08e-67 8.48e-01 9.86e-01 3.00e-01 9 4.9 1.681e+03 9.036e+00 9.790e+04 1.00e+00 3.57e-02 0.00e+00 2.54e-66 8.19e-01 1.00e+00 3.00e-01 10 5.5 5.450e+02 8.700e+00 3.672e+04 1.00e+00 6.44e-03 0.00e+00 1.34e-66 8.33e-01 1.00e+00 3.00e-01 11 6.0 1.723e+02 8.588e+00 1.271e+04 9.99e-01 1.08e-03 0.00e+00 4.17e-66 1.00e+00 1.00e+00 3.00e-01 12 6.6 5.146e+01 8.519e+00 4.074e+03 9.96e-01 1.02e-73 0.00e+00 6.06e-67 1.00e+00 1.00e+00 3.00e-01 13 7.1 1.544e+01 8.502e+00 1.228e+03 9.86e-01 2.74e-73 0.00e+00 1.23e-68 9.92e-01 9.92e-01 1.00e-01 14 7.7 1.654e+00 8.507e+00 1.392e+02 8.85e-01 2.20e-73 0.00e+00 3.24e-70 9.78e-01 9.78e-01 1.00e-01 15 8.3 1.981e-01 8.562e+00 2.421e+01 4.77e-01 8.12e-74 0.00e+00 1.01e-69 8.60e-01 8.60e-01 1.00e-01 16 8.8 4.484e-02 8.877e+00 1.242e+01 1.66e-01 1.42e-73 0.00e+00 2.43e-69 8.02e-01 8.02e-01 1.00e-01 17 9.4 1.245e-02 9.486e+00 1.047e+01 4.93e-02 1.43e-73 0.00e+00 1.14e-69 7.62e-01 7.62e-01 1.00e-01 18 9.9 3.917e-03 9.841e+00 1.015e+01 1.55e-02 6.74e-74 0.00e+00 5.17e-70 7.52e-01 7.52e-01 1.00e-01 19 10.5 1.267e-03 9.941e+00 1.004e+01 5.01e-03 1.27e-73 0.00e+00 4.04e-70 8.14e-01 8.14e-01 1.00e-01 20 11.0 3.392e-04 9.983e+00 1.001e+01 1.34e-03 7.24e-74 0.00e+00 3.46e-70 7.89e-01 7.89e-01 1.00e-01 21 11.6 9.835e-05 9.995e+00 1.000e+01 3.89e-04 7.41e-74 0.00e+00 5.37e-70 9.42e-01 9.42e-01 1.00e-01 22 12.2 1.496e-05 9.999e+00 1.000e+01 5.91e-05 1.32e-73 0.00e+00 2.06e-70 9.79e-01 9.79e-01 1.00e-01 23 12.7 1.780e-06 1.000e+01 1.000e+01 7.03e-06 9.89e-74 0.00e+00 1.49e-70 9.89e-01 9.89e-01 1.00e-01 24 13.3 1.951e-07 1.000e+01 1.000e+01 7.71e-07 7.78e-74 0.00e+00 4.35e-70 9.97e-01 9.97e-01 1.00e-01 25 13.8 2.009e-08 1.000e+01 1.000e+01 7.94e-08 2.03e-73 0.00e+00 5.87e-70 1.00e+00 1.00e+00 1.00e-01 26 14.4 2.016e-09 1.000e+01 1.000e+01 7.96e-09 1.29e-73 0.00e+00 3.85e-70 1.00e+00 1.00e+00 1.00e-01 27 14.9 2.017e-10 1.000e+01 1.000e+01 7.97e-10 1.12e-73 0.00e+00 2.23e-70 1.00e+00 1.00e+00 1.00e-01 28 15.5 2.017e-11 1.000e+01 1.000e+01 7.97e-11 1.44e-73 0.00e+00 7.62e-70 1.00e+00 1.00e+00 1.00e-01 29 16.1 2.017e-12 1.000e+01 1.000e+01 7.97e-12 4.15e-74 0.00e+00 5.12e-70 1.00e+00 1.00e+00 1.00e-01 30 16.6 2.018e-13 1.000e+01 1.000e+01 7.97e-13 1.73e-73 0.00e+00 4.48e-70 1.00e+00 1.00e+00 1.00e-01 31 17.2 2.018e-14 1.000e+01 1.000e+01 7.97e-14 5.86e-74 0.00e+00 7.26e-71 1.00e+00 1.00e+00 1.00e-01 32 17.8 2.018e-15 1.000e+01 1.000e+01 7.97e-15 1.75e-73 0.00e+00 1.67e-70 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 17.860432 seconds (41.42 M allocations: 2.036 GiB, 6.54% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:9.999999999999988697828762980687239877476483286545720202621339677268199676728914 Dual objective:10.0000000000000046419631866560701898706163171007474720848203859230095025755514 Duality gap:7.972067211837694129777881032820096917604476111296258202022511043773237342544146e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.0 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 2.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.0 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 0.00e+00 2.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.0 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 2.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.0 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 2.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.0 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 0.00e+00 2.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.0 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 2.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.0 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 2.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.0 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 2.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.0 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 0.00e+00 1.99e+02 1.00e+00 9.05e-01 3.00e-01 10 0.0 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 1.90e+01 1.00e+00 9.47e-01 3.00e-01 11 0.0 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e+00 3.00e-01 12 0.0 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 3.00e-01 13 0.1 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 14 0.1 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 15 0.1 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 16 0.1 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 17 0.1 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 18 0.1 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 19 0.1 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 20 0.1 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.1 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 22 0.1 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 4.91e-91 9.98e-01 9.98e-01 1.00e-01 23 0.1 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 0.00e+00 0.00e+00 9.78e-01 9.78e-01 1.00e-01 24 0.1 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 0.00e+00 1.47e-90 8.86e-01 8.86e-01 1.00e-01 25 0.1 2.642e-01 1.213e+00 6.845e-01 2.78e-01 0.00e+00 0.00e+00 4.91e-91 9.25e-01 9.25e-01 1.00e-01 26 0.1 4.423e-02 1.057e+00 9.685e-01 4.37e-02 9.82e-91 0.00e+00 9.82e-91 9.82e-01 9.82e-01 1.00e-01 27 0.1 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 0.00e+00 9.82e-91 9.90e-01 9.90e-01 1.00e-01 28 0.1 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 0.00e+00 1.47e-90 9.98e-01 9.98e-01 1.00e-01 29 0.1 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 30 0.1 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.1 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.1 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 33 0.1 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 34 0.1 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.1 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 36 0.1 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 37 0.1 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 38 0.1 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 0.00e+00 2.45e-90 1.00e+00 1.00e+00 1.00e-01 39 0.1 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.102033 seconds (69.02 k allocations: 4.782 MiB, 52.45% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279668 Dual objective:0.9999999999999994308276721633712720975914346046825898890655777243547660499609509826264801335 Duality gap:5.691723278366352070451840708486824389848583387797514538933756972301949865323277923806982379e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.0 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 1.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.0 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 8.43e-81 1.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.0 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 1.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.0 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 1.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.0 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 3.37e-80 1.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.0 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 1.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.0 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 1.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.0 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 1.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.0 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 2.70e-79 9.95e+01 1.00e+00 9.05e-01 3.00e-01 10 0.0 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 9.50e+00 1.00e+00 9.47e-01 3.00e-01 11 0.0 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 5.00e-01 1.00e+00 1.00e+00 3.00e-01 12 0.0 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 5.40e-79 0.00e+00 1.00e+00 1.00e+00 3.00e-01 13 0.0 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 14 0.0 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 1.35e-79 2.45e-91 1.00e+00 1.00e+00 1.00e-01 15 0.0 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 1.69e-80 1.23e-90 1.00e+00 1.00e+00 1.00e-01 16 0.0 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 17 0.1 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 2.64e-82 1.23e-90 1.00e+00 1.00e+00 1.00e-01 18 0.1 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 1.65e-83 9.82e-91 1.00e+00 1.00e+00 1.00e-01 19 0.1 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 1.03e-84 7.36e-91 1.00e+00 1.00e+00 1.00e-01 20 0.1 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.1 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 1.61e-86 4.91e-91 1.00e+00 1.00e+00 1.00e-01 22 0.1 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 7.36e-91 9.98e-01 9.98e-01 1.00e-01 23 0.1 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 1.10e-88 9.82e-91 9.78e-01 9.78e-01 1.00e-01 24 0.1 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 1.77e-89 4.91e-91 8.86e-01 8.86e-01 1.00e-01 25 0.1 2.642e-01 1.213e+00 6.845e-01 2.78e-01 9.82e-91 9.82e-91 1.47e-90 9.25e-01 9.25e-01 1.00e-01 26 0.1 4.423e-02 1.057e+00 9.685e-01 4.37e-02 4.91e-91 9.82e-91 1.47e-90 9.82e-01 9.82e-01 1.00e-01 27 0.1 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 9.82e-91 4.91e-91 9.90e-01 9.90e-01 1.00e-01 28 0.1 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 9.82e-91 2.45e-90 9.98e-01 9.98e-01 1.00e-01 29 0.1 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 1.96e-90 4.91e-91 1.00e+00 1.00e+00 1.00e-01 30 0.1 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.1 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 9.82e-91 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.1 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 33 0.1 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 34 0.1 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 9.82e-91 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.1 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 36 0.1 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 9.82e-91 4.91e-91 1.00e+00 1.00e+00 1.00e-01 37 0.1 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 38 0.1 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 1.96e-90 1.96e-90 1.00e+00 1.00e+00 1.00e-01 39 0.1 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 9.82e-91 1.58e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.090274 seconds (73.69 k allocations: 5.023 MiB, 50.48% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279658 Dual objective:0.99999999999999943082767216337127209759143460468258988906557772435476604996095098262648013301 Duality gap:5.6917232783663520704518407084868243898485833877975145389337569723019498653208233770743335244e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.0 1.000e+20 1.000e+00 7.000e+10 1.00e+00 1.00e+10 0.00e+00 7.05e+10 6.66e-01 6.95e-01 3.00e-01 2 0.1 4.559e+19 1.338e+10 7.193e+10 6.86e-01 3.34e+09 0.00e+00 2.15e+10 7.05e-01 7.53e-01 3.00e-01 3 0.1 1.822e+19 2.640e+10 9.901e+10 5.79e-01 9.85e+08 0.00e+00 5.31e+09 6.16e-01 7.88e-01 3.00e-01 4 0.1 8.970e+18 3.260e+10 1.789e+11 6.92e-01 3.78e+08 0.00e+00 1.12e+09 7.73e-01 1.00e+00 3.00e-01 5 0.1 3.189e+18 1.238e+10 3.561e+11 9.33e-01 8.58e+07 0.00e+00 3.51e-142 8.40e-01 1.00e+00 3.00e-01 6 0.1 8.172e+17 2.052e+09 5.731e+11 9.93e-01 1.37e+07 0.00e+00 9.17e-142 8.95e-01 1.00e+00 3.00e-01 7 0.2 1.367e+17 2.121e+08 9.202e+11 1.00e+00 1.44e+06 0.00e+00 1.70e-141 8.90e-01 1.00e+00 3.00e-01 8 0.2 2.412e+16 2.361e+07 1.476e+12 1.00e+00 1.58e+05 0.00e+00 4.84e-141 8.97e-01 1.00e+00 3.00e-01 9 0.2 3.957e+15 2.403e+06 2.364e+12 1.00e+00 1.62e+04 0.00e+00 1.92e-141 8.94e-01 1.00e+00 3.00e-01 10 0.2 6.738e+14 2.573e+05 3.785e+12 1.00e+00 1.73e+03 0.00e+00 1.09e-141 8.99e-01 1.00e+00 3.00e-01 11 0.2 1.095e+14 2.604e+04 6.056e+12 1.00e+00 1.75e+02 0.00e+00 1.71e-140 8.99e-01 1.00e+00 3.00e-01 12 0.3 1.816e+13 2.738e+03 9.636e+12 1.00e+00 1.76e+01 0.00e+00 4.85e-140 9.13e-01 1.00e+00 3.00e-01 13 0.3 3.342e+12 3.449e+02 1.456e+13 1.00e+00 1.53e+00 0.00e+00 4.45e-140 1.00e+00 1.00e+00 3.00e-01 14 0.3 1.007e+12 1.188e+02 1.410e+13 1.00e+00 2.86e-152 0.00e+00 1.28e-140 1.00e+00 1.00e+00 3.00e-01 15 0.3 3.022e+11 1.198e+02 4.231e+12 1.00e+00 4.77e-153 0.00e+00 1.11e-141 9.99e-01 9.99e-01 1.00e-01 16 0.3 3.062e+10 1.199e+02 4.287e+11 1.00e+00 1.91e-152 0.00e+00 1.08e-142 1.00e+00 1.00e+00 1.00e-01 17 0.4 3.063e+09 1.200e+02 4.288e+10 1.00e+00 1.91e-152 0.00e+00 3.25e-143 1.00e+00 1.00e+00 1.00e-01 18 0.4 3.063e+08 1.201e+02 4.288e+09 1.00e+00 1.91e-152 0.00e+00 5.97e-144 1.00e+00 1.00e+00 1.00e-01 19 0.4 3.063e+07 1.202e+02 4.289e+08 1.00e+00 1.91e-152 0.00e+00 2.10e-145 1.00e+00 1.00e+00 1.00e-01 20 0.4 3.064e+06 1.202e+02 4.289e+07 1.00e+00 9.55e-153 0.00e+00 7.93e-146 1.00e+00 1.00e+00 1.00e-01 21 0.4 3.064e+05 1.203e+02 4.290e+06 1.00e+00 9.55e-153 0.00e+00 9.13e-147 1.00e+00 1.00e+00 1.00e-01 22 0.5 3.065e+04 1.203e+02 4.292e+05 9.99e-01 9.55e-153 0.00e+00 3.74e-148 1.00e+00 1.00e+00 1.00e-01 23 0.5 3.075e+03 1.204e+02 4.317e+04 9.94e-01 9.55e-153 0.00e+00 4.29e-149 9.97e-01 9.97e-01 1.00e-01 24 0.5 3.167e+02 1.211e+02 4.554e+03 9.48e-01 9.55e-153 0.00e+00 5.58e-150 9.70e-01 9.70e-01 1.00e-01 25 0.5 4.021e+01 1.274e+02 6.904e+02 6.88e-01 9.55e-153 0.00e+00 6.28e-151 8.70e-01 8.70e-01 1.00e-01 26 0.5 8.743e+00 1.689e+02 2.913e+02 2.66e-01 9.55e-153 0.00e+00 4.43e-151 9.15e-01 9.15e-01 1.00e-01 27 0.6 1.547e+00 2.316e+02 2.532e+02 4.47e-02 4.77e-153 0.00e+00 1.39e-150 9.82e-01 9.82e-01 1.00e-01 28 0.6 1.800e-01 2.389e+02 2.414e+02 5.25e-03 3.82e-152 0.00e+00 2.88e-151 9.89e-01 9.89e-01 1.00e-01 29 0.6 1.986e-02 2.399e+02 2.401e+02 5.79e-04 1.91e-152 0.00e+00 1.44e-151 9.97e-01 9.97e-01 1.00e-01 30 0.6 2.030e-03 2.400e+02 2.400e+02 5.92e-05 1.91e-152 0.00e+00 3.48e-151 1.00e+00 1.00e+00 1.00e-01 31 0.6 2.034e-04 2.400e+02 2.400e+02 5.93e-06 1.91e-152 0.00e+00 1.39e-151 1.00e+00 1.00e+00 1.00e-01 32 0.7 2.035e-05 2.400e+02 2.400e+02 5.93e-07 1.91e-152 0.00e+00 2.14e-151 1.00e+00 1.00e+00 1.00e-01 33 0.7 2.035e-06 2.400e+02 2.400e+02 5.94e-08 1.91e-152 0.00e+00 2.95e-151 1.00e+00 1.00e+00 1.00e-01 34 0.7 2.035e-07 2.400e+02 2.400e+02 5.94e-09 1.91e-152 0.00e+00 6.79e-151 1.00e+00 1.00e+00 1.00e-01 35 0.7 2.035e-08 2.400e+02 2.400e+02 5.94e-10 1.91e-152 0.00e+00 1.95e-150 1.00e+00 1.00e+00 1.00e-01 36 0.7 2.036e-09 2.400e+02 2.400e+02 5.94e-11 9.55e-153 0.00e+00 2.89e-151 1.00e+00 1.00e+00 1.00e-01 37 0.8 2.036e-10 2.400e+02 2.400e+02 5.94e-12 1.91e-152 0.00e+00 1.16e-150 1.00e+00 1.00e+00 1.00e-01 38 0.8 2.036e-11 2.400e+02 2.400e+02 5.94e-13 1.91e-152 0.00e+00 1.43e-150 1.00e+00 1.00e+00 1.00e-01 39 0.8 2.036e-12 2.400e+02 2.400e+02 5.94e-14 9.55e-153 0.00e+00 1.89e-150 1.00e+00 1.00e+00 1.00e-01 40 0.8 2.036e-13 2.400e+02 2.400e+02 5.94e-15 1.91e-152 0.00e+00 1.75e-150 1.00e+00 1.00e+00 1.00e-01 41 0.8 2.037e-14 2.400e+02 2.400e+02 5.94e-16 1.91e-152 0.00e+00 6.42e-150 1.00e+00 1.00e+00 1.00e-01 42 0.9 2.037e-15 2.400e+02 2.400e+02 5.94e-17 1.91e-152 0.00e+00 4.99e-150 1.00e+00 1.00e+00 1.00e-01 43 0.9 2.037e-16 2.400e+02 2.400e+02 5.94e-18 1.91e-152 0.00e+00 1.12e-149 1.00e+00 1.00e+00 1.00e-01 44 0.9 2.037e-17 2.400e+02 2.400e+02 5.94e-19 1.91e-152 0.00e+00 3.46e-149 1.00e+00 1.00e+00 1.00e-01 45 0.9 2.037e-18 2.400e+02 2.400e+02 5.94e-20 1.91e-152 0.00e+00 2.16e-149 1.00e+00 1.00e+00 1.00e-01 46 0.9 2.038e-19 2.400e+02 2.400e+02 5.94e-21 9.55e-153 0.00e+00 1.05e-149 1.00e+00 1.00e+00 1.00e-01 47 1.0 2.038e-20 2.400e+02 2.400e+02 5.94e-22 9.55e-153 0.00e+00 2.26e-148 1.00e+00 1.00e+00 1.00e-01 48 1.0 2.038e-21 2.400e+02 2.400e+02 5.94e-23 1.91e-152 0.00e+00 2.32e-149 1.00e+00 1.00e+00 1.00e-01 49 1.0 2.038e-22 2.400e+02 2.400e+02 5.94e-24 1.91e-152 0.00e+00 1.08e-147 1.00e+00 1.00e+00 1.00e-01 50 1.0 2.038e-23 2.400e+02 2.400e+02 5.95e-25 1.91e-152 0.00e+00 7.75e-148 1.00e+00 1.00e+00 1.00e-01 51 1.0 2.039e-24 2.400e+02 2.400e+02 5.95e-26 1.91e-152 0.00e+00 1.73e-147 1.00e+00 1.00e+00 1.00e-01 52 1.1 2.039e-25 2.400e+02 2.400e+02 5.95e-27 1.91e-152 0.00e+00 2.08e-147 1.00e+00 1.00e+00 1.00e-01 53 1.1 2.039e-26 2.400e+02 2.400e+02 5.95e-28 1.91e-152 0.00e+00 9.26e-148 1.00e+00 1.00e+00 1.00e-01 54 1.1 2.039e-27 2.400e+02 2.400e+02 5.95e-29 1.91e-152 0.00e+00 2.27e-146 1.00e+00 1.00e+00 1.00e-01 55 1.1 2.039e-28 2.400e+02 2.400e+02 5.95e-30 1.91e-152 0.00e+00 1.63e-146 1.00e+00 1.00e+00 1.00e-01 56 1.1 2.040e-29 2.400e+02 2.400e+02 5.95e-31 1.91e-152 0.00e+00 9.71e-146 1.00e+00 1.00e+00 1.00e-01 57 1.2 2.040e-30 2.400e+02 2.400e+02 5.95e-32 1.91e-152 0.00e+00 3.83e-145 1.00e+00 1.00e+00 1.00e-01 58 1.2 2.040e-31 2.400e+02 2.400e+02 5.95e-33 1.91e-152 0.00e+00 7.02e-145 1.00e+00 1.00e+00 1.00e-01 59 1.2 2.040e-32 2.400e+02 2.400e+02 5.95e-34 1.91e-152 0.00e+00 6.09e-145 1.00e+00 1.00e+00 1.00e-01 60 1.2 2.040e-33 2.400e+02 2.400e+02 5.95e-35 1.91e-152 0.00e+00 2.55e-144 1.00e+00 1.00e+00 1.00e-01 61 1.2 2.041e-34 2.400e+02 2.400e+02 5.95e-36 9.55e-153 0.00e+00 2.29e-144 1.00e+00 1.00e+00 1.00e-01 62 1.3 2.041e-35 2.400e+02 2.400e+02 5.95e-37 1.91e-152 0.00e+00 7.45e-144 1.00e+00 1.00e+00 1.00e-01 63 1.3 2.041e-36 2.400e+02 2.400e+02 5.95e-38 1.91e-152 0.00e+00 4.51e-144 1.00e+00 1.00e+00 1.00e-01 64 1.3 2.041e-37 2.400e+02 2.400e+02 5.95e-39 1.91e-152 0.00e+00 3.93e-143 1.00e+00 1.00e+00 1.00e-01 65 1.3 2.041e-38 2.400e+02 2.400e+02 5.95e-40 1.91e-152 0.00e+00 1.49e-144 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 1.322758 seconds (2.74 M allocations: 136.975 MiB, 16.26% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:239.999999999999999999999999999999999999985708311410639886863370642783085671249365549403173581120853234206634480516187336044977448643185294402610680696868398 Dual objective:240.00000000000000000000000000000000000001429168858936011313662935721691432875066968933697023613154220751428853019432872076470455882575583730775176387162672 Duality gap:5.95487024556671380692889884038097031277169581954096979389353610576126034961278804610538717621332646867154881642464332234459580754908533493158047963259332724e-41 ** Starting computation of basis transformations ** Block 3 of size 1 x 1 Block 6 of size 1 x 1 Block 1 of size 1 x 1 Block 4 of size 1 x 1 Block 0 of size 1 x 1 Block 0 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 2 of size 1 x 1 Block 5 of size 1 x 1 Block B of size 3 x 3 Block B has 2 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block A of size 4 x 4 Block A has 4 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 ** Finished computation of basis transformations (8.544242084s) ** ** Transforming the problem and the solution ** (17.884352185s) ** Projection the solution into the affine space ** Reducing the system from 7 columns to 7 columns Constructing the linear system... (6.4283743s) Preprocessing to get an integer system... (5.4469e-5s) Finding the pivots of A using RREF mod p... (0.000320377 7.6149e-5 s) Solving the system of size 7 x 7 using the pseudoinverse... 0.693909286s ** Finished projection into affine space (9.597396695s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.193549814) [ Info: Creating the univariate constraint [ Info: Constructing trivariate constraint iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.4 1.000e+06 1.000e+00 5.001e+03 1.00e+00 1.00e+03 0.00e+00 1.12e+06 6.53e-01 5.28e-01 3.00e-01 2 0.9 5.015e+05 5.164e+02 3.088e+03 7.13e-01 3.47e+02 0.00e+00 5.30e+05 4.22e-01 6.07e-01 3.00e-01 3 1.5 3.499e+05 6.688e+02 8.065e+03 8.47e-01 2.00e+02 0.00e+00 2.08e+05 5.84e-01 4.21e-01 3.00e-01 4 2.0 2.030e+05 5.414e+02 1.758e+04 9.40e-01 8.32e+01 0.00e+00 1.20e+05 4.22e-01 9.53e-01 3.00e-01 5 2.5 1.588e+05 3.876e+02 6.630e+04 9.88e-01 4.81e+01 0.00e+00 5.61e+03 7.78e-01 1.00e+00 3.00e-01 6 3.1 5.705e+04 1.104e+02 1.123e+05 9.98e-01 1.07e+01 0.00e+00 1.06e-67 8.24e-01 1.00e+00 3.00e-01 7 3.7 1.728e+04 2.822e+01 1.690e+05 1.00e+00 1.88e+00 0.00e+00 9.64e-68 8.75e-01 1.00e+00 3.00e-01 8 4.3 4.993e+03 1.126e+01 1.883e+05 1.00e+00 2.35e-01 0.00e+00 5.08e-67 8.48e-01 9.86e-01 3.00e-01 9 4.9 1.681e+03 9.036e+00 9.790e+04 1.00e+00 3.57e-02 0.00e+00 2.54e-66 8.19e-01 1.00e+00 3.00e-01 10 5.5 5.450e+02 8.700e+00 3.672e+04 1.00e+00 6.44e-03 0.00e+00 1.34e-66 8.33e-01 1.00e+00 3.00e-01 11 6.0 1.723e+02 8.588e+00 1.271e+04 9.99e-01 1.08e-03 0.00e+00 4.17e-66 1.00e+00 1.00e+00 3.00e-01 12 6.6 5.146e+01 8.519e+00 4.074e+03 9.96e-01 1.02e-73 0.00e+00 6.06e-67 1.00e+00 1.00e+00 3.00e-01 13 7.2 1.544e+01 8.502e+00 1.228e+03 9.86e-01 2.74e-73 0.00e+00 1.23e-68 9.92e-01 9.92e-01 1.00e-01 14 7.7 1.654e+00 8.507e+00 1.392e+02 8.85e-01 2.20e-73 0.00e+00 3.24e-70 9.78e-01 9.78e-01 1.00e-01 15 8.3 1.981e-01 8.562e+00 2.421e+01 4.77e-01 8.12e-74 0.00e+00 1.01e-69 8.60e-01 8.60e-01 1.00e-01 16 8.9 4.484e-02 8.877e+00 1.242e+01 1.66e-01 1.42e-73 0.00e+00 2.43e-69 8.02e-01 8.02e-01 1.00e-01 17 9.5 1.245e-02 9.486e+00 1.047e+01 4.93e-02 1.43e-73 0.00e+00 1.14e-69 7.62e-01 7.62e-01 1.00e-01 18 10.0 3.917e-03 9.841e+00 1.015e+01 1.55e-02 6.74e-74 0.00e+00 5.17e-70 7.52e-01 7.52e-01 1.00e-01 19 10.6 1.267e-03 9.941e+00 1.004e+01 5.01e-03 1.27e-73 0.00e+00 4.04e-70 8.14e-01 8.14e-01 1.00e-01 20 11.2 3.392e-04 9.983e+00 1.001e+01 1.34e-03 7.24e-74 0.00e+00 3.46e-70 7.89e-01 7.89e-01 1.00e-01 21 11.8 9.835e-05 9.995e+00 1.000e+01 3.89e-04 7.41e-74 0.00e+00 5.37e-70 9.42e-01 9.42e-01 1.00e-01 22 12.3 1.496e-05 9.999e+00 1.000e+01 5.91e-05 1.32e-73 0.00e+00 2.06e-70 9.79e-01 9.79e-01 1.00e-01 23 12.9 1.780e-06 1.000e+01 1.000e+01 7.03e-06 9.89e-74 0.00e+00 1.49e-70 9.89e-01 9.89e-01 1.00e-01 24 13.5 1.951e-07 1.000e+01 1.000e+01 7.71e-07 7.78e-74 0.00e+00 4.35e-70 9.97e-01 9.97e-01 1.00e-01 25 14.1 2.009e-08 1.000e+01 1.000e+01 7.94e-08 2.03e-73 0.00e+00 5.87e-70 1.00e+00 1.00e+00 1.00e-01 26 14.6 2.016e-09 1.000e+01 1.000e+01 7.96e-09 1.29e-73 0.00e+00 3.85e-70 1.00e+00 1.00e+00 1.00e-01 27 15.2 2.017e-10 1.000e+01 1.000e+01 7.97e-10 1.12e-73 0.00e+00 2.23e-70 1.00e+00 1.00e+00 1.00e-01 28 15.8 2.017e-11 1.000e+01 1.000e+01 7.97e-11 1.44e-73 0.00e+00 7.62e-70 1.00e+00 1.00e+00 1.00e-01 29 16.3 2.017e-12 1.000e+01 1.000e+01 7.97e-12 4.15e-74 0.00e+00 5.12e-70 1.00e+00 1.00e+00 1.00e-01 30 16.9 2.018e-13 1.000e+01 1.000e+01 7.97e-13 1.73e-73 0.00e+00 4.48e-70 1.00e+00 1.00e+00 1.00e-01 31 17.5 2.018e-14 1.000e+01 1.000e+01 7.97e-14 5.86e-74 0.00e+00 7.26e-71 1.00e+00 1.00e+00 1.00e-01 32 18.0 2.018e-15 1.000e+01 1.000e+01 7.97e-15 1.75e-73 0.00e+00 1.67e-70 1.00e+00 1.00e+00 1.00e-01 33 18.6 2.018e-16 1.000e+01 1.000e+01 7.97e-16 6.08e-74 0.00e+00 2.13e-70 1.00e+00 1.00e+00 1.00e-01 34 19.2 2.018e-17 1.000e+01 1.000e+01 7.97e-17 1.03e-73 0.00e+00 3.83e-70 1.00e+00 1.00e+00 1.00e-01 35 19.8 2.019e-18 1.000e+01 1.000e+01 7.97e-18 9.45e-74 0.00e+00 2.30e-70 1.00e+00 1.00e+00 1.00e-01 36 20.3 2.019e-19 1.000e+01 1.000e+01 7.97e-19 3.98e-74 0.00e+00 8.37e-70 1.00e+00 1.00e+00 1.00e-01 37 20.9 2.019e-20 1.000e+01 1.000e+01 7.98e-20 1.12e-73 0.00e+00 2.61e-69 1.00e+00 1.00e+00 1.00e-01 38 21.5 2.019e-21 1.000e+01 1.000e+01 7.98e-21 6.91e-74 0.00e+00 2.78e-69 1.00e+00 1.00e+00 1.00e-01 39 22.0 2.019e-22 1.000e+01 1.000e+01 7.98e-22 2.09e-73 0.00e+00 1.77e-69 1.00e+00 1.00e+00 1.00e-01 40 22.6 2.020e-23 1.000e+01 1.000e+01 7.98e-23 3.26e-74 0.00e+00 2.22e-68 1.00e+00 1.00e+00 1.00e-01 41 23.2 2.020e-24 1.000e+01 1.000e+01 7.98e-24 7.41e-74 0.00e+00 2.44e-68 1.00e+00 1.00e+00 1.00e-01 42 23.7 2.020e-25 1.000e+01 1.000e+01 7.98e-25 8.18e-74 0.00e+00 4.39e-68 1.00e+00 1.00e+00 1.00e-01 43 24.3 2.020e-26 1.000e+01 1.000e+01 7.98e-26 3.51e-74 0.00e+00 1.22e-67 1.00e+00 1.00e+00 1.00e-01 44 24.9 2.020e-27 1.000e+01 1.000e+01 7.98e-27 3.92e-74 0.00e+00 9.42e-68 1.00e+00 1.00e+00 1.00e-01 45 25.5 2.021e-28 1.000e+01 1.000e+01 7.98e-28 4.31e-74 0.00e+00 6.81e-67 1.00e+00 1.00e+00 1.00e-01 46 26.1 2.021e-29 1.000e+01 1.000e+01 7.98e-29 1.95e-73 0.00e+00 7.47e-67 1.00e+00 1.00e+00 1.00e-01 47 26.6 2.021e-30 1.000e+01 1.000e+01 7.98e-30 1.55e-73 0.00e+00 7.95e-67 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 26.702228 seconds (60.80 M allocations: 2.987 GiB, 7.61% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:9.999999999999999999999999999988680863295008436833819664546322945335036725038421 Dual objective:10.00000000000000000000000000000464893114669296344325263779882502540994272899198 Duality gap:7.984033925842263304716486626253702794826491859520144403250637881615537005227784e-31 ** Starting computation of basis transformations ** Block (:trivariatesos, 4, 3) of size 1 x 1 Block (:F, 4) of size 1 x 1 Block (:F, 4) has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block (:trivariatesos, 2, 2) of size 1 x 1 Block (:trivariatesos, 1, 2) of size 2 x 2 Block (:trivariatesos, 4, 1) of size 2 x 2 Block (:F, 3) of size 2 x 2 Block (:F, 3) has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block (:trivariatesos, 5, 3) of size 3 x 3 Block (:trivariatesos, 5, 3) has 2 kernel vectors. The maximum numerator and denominator are 1 and 2 After reduction, the maximum number of the basis transformation matrix is 2 Block (:trivariatesos, 3, 3) of size 3 x 3 Block (:trivariatesos, 3, 3) has 1 kernel vectors. The maximum numerator and denominator are 7 and 6 After reduction, the maximum number of the basis transformation matrix is 7 Block (:F, 2) of size 3 x 3 Block (:F, 2) has 1 kernel vectors. The maximum numerator and denominator are 1 and 2 After reduction, the maximum number of the basis transformation matrix is 2 Block (:trivariatesos, 5, 1) of size 4 x 4 Block (:trivariatesos, 5, 1) has 3 kernel vectors. The maximum numerator and denominator are 1 and 6 After reduction, the maximum number of the basis transformation matrix is 3 Block (:univariatesos, 2) of size 4 x 4 Block (:univariatesos, 2) has 1 kernel vectors. The maximum numerator and denominator are 22 and 27 After reduction, the maximum number of the basis transformation matrix is 27 Block (:F, 1) of size 4 x 4 Block (:trivariatesos, 3, 1) of size 4 x 4 Block (:trivariatesos, 3, 1) has 1 kernel vectors. The maximum numerator and denominator are 49 and 36 After reduction, the maximum number of the basis transformation matrix is 49 Block (:univariatesos, 1) of size 5 x 5 Block (:univariatesos, 1) has 2 kernel vectors. The maximum numerator and denominator are 35 and 81 After reduction, the maximum number of the basis transformation matrix is 81 Block (:F, 0) of size 5 x 5 Block (:F, 0) has 1 kernel vectors. The maximum numerator and denominator are 23 and 144 After reduction, the maximum number of the basis transformation matrix is 144 Block (:trivariatesos, 2, 3) of size 6 x 6 Block (:trivariatesos, 2, 3) has 2 kernel vectors. The maximum numerator and denominator are 13 and 36 After reduction, the maximum number of the basis transformation matrix is 36 Block (:trivariatesos, 2, 1) of size 7 x 7 Block (:trivariatesos, 2, 1) has 2 kernel vectors. The maximum numerator and denominator are 67 and 36 After reduction, the maximum number of the basis transformation matrix is 66 Block (:trivariatesos, 1, 1) of size 11 x 11 Block (:trivariatesos, 1, 1) has 3 kernel vectors. The maximum numerator and denominator are 49 and 432 After reduction, the maximum number of the basis transformation matrix is 432 Block (:trivariatesos, 1, 3) of size 11 x 11 Block (:trivariatesos, 1, 3) has 2 kernel vectors. The maximum numerator and denominator are 67 and 72 After reduction, the maximum number of the basis transformation matrix is 72 ** Finished computation of basis transformations (4.213368545s) ** ** Transforming the problem and the solution ** (5.219006996s) ** Projection the solution into the affine space ** Reducing the system from 161 columns to 161 columns Constructing the linear system... (2.196914459s) Preprocessing to get an integer system... (0.012278953s) Finding the pivots of A using RREF mod p... (0.016788479 0.008237391 s) Solving the system of size 50 x 52 using the pseudoinverse... 0.247149101s ** Finished projection into affine space (3.399114894s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.240532074) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.2 1.000e+20 1.000e+00 1.900e+11 1.00e+00 1.00e+10 0.00e+00 2.18e+11 3.69e-01 5.95e-01 3.00e-01 2 1.0 6.494e+19 1.223e+10 1.739e+11 8.69e-01 6.31e+09 0.00e+00 8.84e+10 7.31e-01 6.03e-01 3.00e-01 3 1.1 2.817e+19 3.102e+10 2.208e+11 7.54e-01 1.70e+09 0.00e+00 3.51e+10 6.85e-01 7.10e-01 3.00e-01 4 1.2 1.230e+19 3.546e+10 3.600e+11 8.21e-01 5.34e+08 0.00e+00 1.02e+10 5.57e-01 1.00e+00 3.00e-01 5 1.3 8.216e+18 2.178e+10 8.065e+11 9.47e-01 2.37e+08 0.00e+00 1.51e-78 7.69e-01 1.00e+00 3.00e-01 6 1.4 3.035e+18 5.560e+09 1.290e+12 9.91e-01 5.47e+07 0.00e+00 1.04e-77 8.01e-01 1.00e+00 3.00e-01 7 1.6 9.665e+17 1.150e+09 2.064e+12 9.99e-01 1.09e+07 0.00e+00 3.47e-77 8.65e-01 1.00e+00 3.00e-01 8 1.7 2.092e+17 1.573e+08 3.302e+12 1.00e+00 1.47e+06 0.00e+00 9.67e-77 8.98e-01 1.00e+00 3.00e-01 9 1.8 3.428e+16 1.603e+07 5.284e+12 1.00e+00 1.51e+05 0.00e+00 3.21e-76 8.88e-01 1.00e+00 3.00e-01 10 1.9 6.127e+15 1.797e+06 8.453e+12 1.00e+00 1.68e+04 0.00e+00 2.65e-76 8.99e-01 1.00e+00 3.00e-01 11 2.0 9.935e+14 1.816e+05 1.352e+13 1.00e+00 1.71e+03 0.00e+00 5.55e-76 8.93e-01 1.00e+00 3.00e-01 12 2.2 1.699e+14 1.946e+04 2.163e+13 1.00e+00 1.82e+02 0.00e+00 7.12e-76 9.00e-01 1.00e+00 3.00e-01 13 2.3 2.794e+13 2.009e+03 3.442e+13 1.00e+00 1.82e+01 0.00e+00 3.29e-75 8.98e-01 1.00e+00 3.00e-01 14 2.4 5.597e+12 2.662e+02 5.231e+13 1.00e+00 1.86e+00 0.00e+00 5.65e-76 8.79e-01 1.00e+00 3.00e-01 15 2.5 2.030e+12 9.171e+01 5.562e+13 1.00e+00 2.25e-01 0.00e+00 1.23e-75 7.97e-01 1.00e+00 3.00e-01 16 2.6 7.056e+11 7.350e+01 2.417e+13 1.00e+00 4.58e-02 0.00e+00 3.21e-76 8.24e-01 1.00e+00 3.00e-01 17 2.8 2.136e+11 7.073e+01 7.703e+12 1.00e+00 8.06e-03 0.00e+00 5.84e-77 1.00e+00 1.00e+00 3.00e-01 18 2.9 6.305e+10 6.979e+01 2.396e+12 1.00e+00 6.28e-89 0.00e+00 1.15e-75 1.00e+00 1.00e+00 3.00e-01 19 3.0 1.891e+10 6.985e+01 7.188e+11 1.00e+00 3.14e-89 0.00e+00 7.58e-75 9.94e-01 9.94e-01 1.00e-01 20 3.1 1.996e+09 6.986e+01 7.583e+10 1.00e+00 6.28e-89 0.00e+00 1.59e-76 1.00e+00 1.00e+00 1.00e-01 21 3.2 2.003e+08 6.986e+01 7.613e+09 1.00e+00 6.28e-89 0.00e+00 2.01e-77 1.00e+00 1.00e+00 1.00e-01 22 3.4 2.005e+07 6.987e+01 7.618e+08 1.00e+00 6.28e-89 0.00e+00 1.31e-78 1.00e+00 1.00e+00 1.00e-01 23 3.5 2.005e+06 6.987e+01 7.619e+07 1.00e+00 6.28e-89 0.00e+00 1.46e-79 1.00e+00 1.00e+00 1.00e-01 24 3.6 2.005e+05 6.988e+01 7.620e+06 1.00e+00 6.28e-89 0.00e+00 3.27e-80 1.00e+00 1.00e+00 1.00e-01 25 3.7 2.006e+04 6.988e+01 7.622e+05 1.00e+00 6.28e-89 0.00e+00 7.83e-82 1.00e+00 1.00e+00 1.00e-01 26 3.8 2.007e+03 6.989e+01 7.635e+04 9.98e-01 3.14e-89 0.00e+00 1.06e-82 9.99e-01 9.99e-01 1.00e-01 27 4.0 2.026e+02 6.998e+01 7.768e+03 9.82e-01 6.28e-89 0.00e+00 1.54e-83 9.90e-01 9.90e-01 1.00e-01 28 4.1 2.205e+01 7.086e+01 9.087e+02 8.55e-01 6.28e-89 0.00e+00 3.30e-84 9.26e-01 9.26e-01 1.00e-01 29 4.2 3.666e+00 7.788e+01 2.172e+02 4.72e-01 6.28e-89 0.00e+00 1.01e-83 8.10e-01 8.10e-01 1.00e-01 30 4.3 9.925e-01 1.015e+02 1.392e+02 1.57e-01 6.28e-89 0.00e+00 3.02e-84 6.72e-01 6.72e-01 1.00e-01 31 4.4 3.920e-01 1.120e+02 1.269e+02 6.23e-02 6.28e-89 0.00e+00 3.51e-84 8.04e-01 8.04e-01 1.00e-01 32 4.6 1.082e-01 1.179e+02 1.220e+02 1.71e-02 3.14e-89 0.00e+00 1.48e-84 8.72e-01 8.72e-01 1.00e-01 33 4.7 2.330e-02 1.195e+02 1.204e+02 3.69e-03 6.28e-89 0.00e+00 2.85e-84 9.67e-01 9.67e-01 1.00e-01 34 4.8 3.027e-03 1.199e+02 1.201e+02 4.79e-04 3.14e-89 0.00e+00 1.64e-84 9.83e-01 9.83e-01 1.00e-01 35 4.9 3.477e-04 1.200e+02 1.200e+02 5.51e-05 6.28e-89 0.00e+00 2.16e-84 9.94e-01 9.94e-01 1.00e-01 36 5.0 3.680e-05 1.200e+02 1.200e+02 5.83e-06 1.26e-88 0.00e+00 1.31e-84 9.99e-01 9.99e-01 1.00e-01 37 5.2 3.724e-06 1.200e+02 1.200e+02 5.90e-07 6.28e-89 0.00e+00 2.12e-84 1.00e+00 1.00e+00 1.00e-01 38 5.3 3.730e-07 1.200e+02 1.200e+02 5.91e-08 6.28e-89 0.00e+00 1.02e-84 1.00e+00 1.00e+00 1.00e-01 39 5.4 3.731e-08 1.200e+02 1.200e+02 5.91e-09 6.28e-89 0.00e+00 3.66e-84 1.00e+00 1.00e+00 1.00e-01 40 5.5 3.732e-09 1.200e+02 1.200e+02 5.91e-10 1.26e-88 0.00e+00 1.81e-84 1.00e+00 1.00e+00 1.00e-01 41 5.6 3.732e-10 1.200e+02 1.200e+02 5.91e-11 6.28e-89 0.00e+00 2.82e-84 1.00e+00 1.00e+00 1.00e-01 42 5.8 3.733e-11 1.200e+02 1.200e+02 5.91e-12 6.28e-89 0.00e+00 3.37e-84 1.00e+00 1.00e+00 1.00e-01 43 5.9 3.733e-12 1.200e+02 1.200e+02 5.91e-13 3.14e-89 0.00e+00 4.05e-84 1.00e+00 1.00e+00 1.00e-01 44 6.0 3.733e-13 1.200e+02 1.200e+02 5.91e-14 3.14e-89 0.00e+00 6.83e-84 1.00e+00 1.00e+00 1.00e-01 45 6.1 3.734e-14 1.200e+02 1.200e+02 5.91e-15 6.28e-89 0.00e+00 1.13e-84 1.00e+00 1.00e+00 1.00e-01 46 6.2 3.734e-15 1.200e+02 1.200e+02 5.91e-16 6.28e-89 0.00e+00 2.24e-84 1.00e+00 1.00e+00 1.00e-01 47 6.4 3.735e-16 1.200e+02 1.200e+02 5.91e-17 1.26e-88 0.00e+00 7.86e-83 1.00e+00 1.00e+00 1.00e-01 48 6.5 3.735e-17 1.200e+02 1.200e+02 5.91e-18 1.89e-88 0.00e+00 2.10e-83 1.00e+00 1.00e+00 1.00e-01 49 6.6 3.735e-18 1.200e+02 1.200e+02 5.91e-19 6.28e-89 0.00e+00 1.06e-82 1.00e+00 1.00e+00 1.00e-01 50 6.7 3.736e-19 1.200e+02 1.200e+02 5.91e-20 6.28e-89 0.00e+00 6.58e-83 1.00e+00 1.00e+00 1.00e-01 51 6.9 3.736e-20 1.200e+02 1.200e+02 5.92e-21 6.28e-89 0.00e+00 4.42e-82 1.00e+00 1.00e+00 1.00e-01 52 7.0 3.736e-21 1.200e+02 1.200e+02 5.92e-22 1.26e-88 0.00e+00 9.41e-82 1.00e+00 1.00e+00 1.00e-01 53 7.1 3.737e-22 1.200e+02 1.200e+02 5.92e-23 6.28e-89 0.00e+00 2.60e-82 1.00e+00 1.00e+00 1.00e-01 54 7.2 3.737e-23 1.200e+02 1.200e+02 5.92e-24 6.28e-89 0.00e+00 3.43e-81 1.00e+00 1.00e+00 1.00e-01 55 7.4 3.738e-24 1.200e+02 1.200e+02 5.92e-25 1.26e-88 0.00e+00 5.61e-81 1.00e+00 1.00e+00 1.00e-01 56 7.5 3.738e-25 1.200e+02 1.200e+02 5.92e-26 6.28e-89 0.00e+00 1.64e-80 1.00e+00 1.00e+00 1.00e-01 57 7.6 3.738e-26 1.200e+02 1.200e+02 5.92e-27 6.28e-89 0.00e+00 4.11e-80 1.00e+00 1.00e+00 1.00e-01 58 7.7 3.739e-27 1.200e+02 1.200e+02 5.92e-28 6.28e-89 0.00e+00 2.86e-80 1.00e+00 1.00e+00 1.00e-01 59 7.8 3.739e-28 1.200e+02 1.200e+02 5.92e-29 3.14e-89 0.00e+00 6.13e-80 1.00e+00 1.00e+00 1.00e-01 60 8.0 3.739e-29 1.200e+02 1.200e+02 5.92e-30 3.19e-89 0.00e+00 1.03e-79 1.00e+00 1.00e+00 1.00e-01 61 8.1 3.740e-30 1.200e+02 1.200e+02 5.92e-31 6.28e-89 0.00e+00 4.57e-79 1.00e+00 1.00e+00 1.00e-01 62 8.2 3.740e-31 1.200e+02 1.200e+02 5.92e-32 1.26e-88 0.00e+00 2.16e-78 1.00e+00 1.00e+00 1.00e-01 63 8.3 3.741e-32 1.200e+02 1.200e+02 5.92e-33 3.14e-89 0.00e+00 6.70e-79 1.00e+00 1.00e+00 1.00e-01 64 8.4 3.741e-33 1.200e+02 1.200e+02 5.92e-34 6.28e-89 0.00e+00 1.20e-78 1.00e+00 1.00e+00 1.00e-01 65 8.6 3.741e-34 1.200e+02 1.200e+02 5.92e-35 1.26e-88 0.00e+00 1.18e-77 1.00e+00 1.00e+00 1.00e-01 66 8.7 3.742e-35 1.200e+02 1.200e+02 5.92e-36 1.26e-88 0.00e+00 1.28e-77 1.00e+00 1.00e+00 1.00e-01 67 8.8 3.742e-36 1.200e+02 1.200e+02 5.92e-37 1.26e-88 0.00e+00 2.05e-77 1.00e+00 1.00e+00 1.00e-01 68 8.9 3.742e-37 1.200e+02 1.200e+02 5.93e-38 6.28e-89 0.00e+00 8.36e-77 1.00e+00 1.00e+00 1.00e-01 69 9.1 3.743e-38 1.200e+02 1.200e+02 5.93e-39 6.28e-89 0.00e+00 6.43e-77 1.00e+00 1.00e+00 1.00e-01 70 9.2 3.743e-39 1.200e+02 1.200e+02 5.93e-40 6.28e-89 0.00e+00 2.97e-76 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 9.192310 seconds (21.31 M allocations: 1.050 GiB, 14.80% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:119.99999999999999999999999999999999999999176427167606683527965030363373174562692565324923316 Dual objective:120.00000000000000000000000000000000000000598962059922411979661796099364963954411151921400526 Duality gap:5.9272287179822018820698572332991224654941662902975812131535298798355013568151311032701235123e-41 ** Starting computation of basis transformations ** Block 14 of size 1 x 1 Block 3 of size 1 x 1 Block 17 of size 1 x 1 Block 6 of size 1 x 1 Block 9 of size 1 x 1 Block 12 of size 1 x 1 Block 12 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 1 of size 1 x 1 Block 15 of size 1 x 1 Block 4 of size 1 x 1 Block 18 of size 1 x 1 Block 0 of size 1 x 1 Block 0 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 7 of size 1 x 1 Block 10 of size 1 x 1 Block 13 of size 1 x 1 Block 2 of size 1 x 1 Block 16 of size 1 x 1 Block 5 of size 1 x 1 Block 8 of size 1 x 1 Block 11 of size 1 x 1 Block B of size 9 x 9 Block B has 6 kernel vectors. The maximum numerator and denominator are 18 and 2 After reduction, the maximum number of the basis transformation matrix is 10 Block A of size 10 x 10 Block A has 8 kernel vectors. The maximum numerator and denominator are 12 and 1 After reduction, the maximum number of the basis transformation matrix is 1 ** Finished computation of basis transformations (5.637459403s) ** ** Transforming the problem and the solution ** (7.176564452s) ** Projection the solution into the affine space ** Reducing the system from 26 columns to 26 columns Constructing the linear system... (1.839065633s) Computing an approximate solution in the extension field... (0.480085939s) Preprocessing to get an integer system... (0.004995712s) Finding the pivots of A using RREF mod p... (0.004288259 0.003656145 s) Solving the system of size 38 x 40 using the pseudoinverse... 0.074726774s ** Finished projection into affine space (4.132318822s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.204165123) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 1.000e+00 7.000e+10 1.00e+00 1.00e+10 0.00e+00 7.05e+10 6.66e-01 6.95e-01 3.00e-01 2 0.1 4.559e+19 1.338e+10 7.193e+10 6.86e-01 3.34e+09 0.00e+00 2.15e+10 7.05e-01 7.53e-01 3.00e-01 3 0.1 1.822e+19 2.640e+10 9.901e+10 5.79e-01 9.85e+08 0.00e+00 5.31e+09 6.16e-01 7.88e-01 3.00e-01 4 0.1 8.970e+18 3.260e+10 1.789e+11 6.92e-01 3.78e+08 0.00e+00 1.12e+09 7.73e-01 1.00e+00 3.00e-01 5 0.1 3.189e+18 1.238e+10 3.561e+11 9.33e-01 8.58e+07 0.00e+00 2.15e-142 8.40e-01 1.00e+00 3.00e-01 6 0.2 8.172e+17 2.052e+09 5.731e+11 9.93e-01 1.37e+07 0.00e+00 7.28e-142 8.95e-01 1.00e+00 3.00e-01 7 0.2 1.367e+17 2.121e+08 9.202e+11 1.00e+00 1.44e+06 0.00e+00 4.00e-141 8.90e-01 1.00e+00 3.00e-01 8 0.2 2.412e+16 2.361e+07 1.476e+12 1.00e+00 1.58e+05 0.00e+00 4.06e-141 8.97e-01 1.00e+00 3.00e-01 9 0.2 3.957e+15 2.403e+06 2.364e+12 1.00e+00 1.62e+04 0.00e+00 7.81e-141 8.94e-01 1.00e+00 3.00e-01 10 0.2 6.738e+14 2.573e+05 3.785e+12 1.00e+00 1.73e+03 0.00e+00 5.62e-141 8.99e-01 1.00e+00 3.00e-01 11 0.3 1.095e+14 2.604e+04 6.056e+12 1.00e+00 1.75e+02 0.00e+00 1.80e-141 8.99e-01 1.00e+00 3.00e-01 12 0.3 1.816e+13 2.738e+03 9.636e+12 1.00e+00 1.76e+01 0.00e+00 1.10e-140 9.13e-01 1.00e+00 3.00e-01 13 0.3 3.342e+12 3.449e+02 1.456e+13 1.00e+00 1.53e+00 0.00e+00 5.81e-140 1.00e+00 1.00e+00 3.00e-01 14 0.3 1.007e+12 1.188e+02 1.410e+13 1.00e+00 1.91e-152 0.00e+00 2.68e-140 1.00e+00 1.00e+00 3.00e-01 15 0.3 3.022e+11 1.198e+02 4.231e+12 1.00e+00 1.91e-152 0.00e+00 3.30e-141 9.99e-01 9.99e-01 1.00e-01 16 0.4 3.062e+10 1.199e+02 4.287e+11 1.00e+00 9.55e-153 0.00e+00 1.45e-142 1.00e+00 1.00e+00 1.00e-01 17 0.4 3.063e+09 1.200e+02 4.288e+10 1.00e+00 4.77e-153 0.00e+00 1.70e-143 1.00e+00 1.00e+00 1.00e-01 18 0.4 3.063e+08 1.201e+02 4.288e+09 1.00e+00 9.55e-153 0.00e+00 1.31e-143 1.00e+00 1.00e+00 1.00e-01 19 0.4 3.063e+07 1.202e+02 4.289e+08 1.00e+00 9.55e-153 0.00e+00 1.80e-145 1.00e+00 1.00e+00 1.00e-01 20 0.4 3.064e+06 1.202e+02 4.289e+07 1.00e+00 2.86e-152 0.00e+00 2.50e-146 1.00e+00 1.00e+00 1.00e-01 21 0.5 3.064e+05 1.203e+02 4.290e+06 1.00e+00 9.55e-153 0.00e+00 1.24e-146 1.00e+00 1.00e+00 1.00e-01 22 0.5 3.065e+04 1.203e+02 4.292e+05 9.99e-01 9.55e-153 0.00e+00 3.59e-148 1.00e+00 1.00e+00 1.00e-01 23 0.5 3.075e+03 1.204e+02 4.317e+04 9.94e-01 9.55e-153 0.00e+00 1.05e-149 9.97e-01 9.97e-01 1.00e-01 24 0.5 3.167e+02 1.211e+02 4.554e+03 9.48e-01 9.55e-153 0.00e+00 1.23e-149 9.70e-01 9.70e-01 1.00e-01 25 0.5 4.021e+01 1.274e+02 6.904e+02 6.88e-01 1.91e-152 0.00e+00 1.14e-150 8.70e-01 8.70e-01 1.00e-01 26 0.6 8.743e+00 1.689e+02 2.913e+02 2.66e-01 9.55e-153 0.00e+00 4.99e-151 9.15e-01 9.15e-01 1.00e-01 27 0.6 1.547e+00 2.316e+02 2.532e+02 4.47e-02 1.91e-152 0.00e+00 2.94e-151 9.82e-01 9.82e-01 1.00e-01 28 0.6 1.800e-01 2.389e+02 2.414e+02 5.25e-03 1.91e-152 0.00e+00 9.79e-151 9.89e-01 9.89e-01 1.00e-01 29 0.6 1.986e-02 2.399e+02 2.401e+02 5.79e-04 1.91e-152 0.00e+00 7.52e-152 9.97e-01 9.97e-01 1.00e-01 30 0.6 2.030e-03 2.400e+02 2.400e+02 5.92e-05 1.91e-152 0.00e+00 2.05e-151 1.00e+00 1.00e+00 1.00e-01 31 0.7 2.034e-04 2.400e+02 2.400e+02 5.93e-06 1.91e-152 0.00e+00 1.05e-150 1.00e+00 1.00e+00 1.00e-01 32 0.7 2.035e-05 2.400e+02 2.400e+02 5.93e-07 1.91e-152 0.00e+00 1.19e-150 1.00e+00 1.00e+00 1.00e-01 33 0.7 2.035e-06 2.400e+02 2.400e+02 5.94e-08 3.82e-152 0.00e+00 2.45e-151 1.00e+00 1.00e+00 1.00e-01 34 0.7 2.035e-07 2.400e+02 2.400e+02 5.94e-09 3.82e-152 0.00e+00 1.23e-150 1.00e+00 1.00e+00 1.00e-01 35 0.7 2.035e-08 2.400e+02 2.400e+02 5.94e-10 1.91e-152 0.00e+00 1.21e-150 1.00e+00 1.00e+00 1.00e-01 36 0.8 2.036e-09 2.400e+02 2.400e+02 5.94e-11 1.91e-152 0.00e+00 2.45e-151 1.00e+00 1.00e+00 1.00e-01 37 0.8 2.036e-10 2.400e+02 2.400e+02 5.94e-12 1.91e-152 0.00e+00 1.84e-151 1.00e+00 1.00e+00 1.00e-01 38 0.8 2.036e-11 2.400e+02 2.400e+02 5.94e-13 1.91e-152 0.00e+00 1.02e-150 1.00e+00 1.00e+00 1.00e-01 39 0.8 2.036e-12 2.400e+02 2.400e+02 5.94e-14 1.91e-152 0.00e+00 7.25e-151 1.00e+00 1.00e+00 1.00e-01 40 0.8 2.036e-13 2.400e+02 2.400e+02 5.94e-15 1.91e-152 0.00e+00 2.13e-150 1.00e+00 1.00e+00 1.00e-01 41 0.9 2.037e-14 2.400e+02 2.400e+02 5.94e-16 9.55e-153 0.00e+00 4.32e-150 1.00e+00 1.00e+00 1.00e-01 42 0.9 2.037e-15 2.400e+02 2.400e+02 5.94e-17 1.91e-152 0.00e+00 1.82e-151 1.00e+00 1.00e+00 1.00e-01 43 0.9 2.037e-16 2.400e+02 2.400e+02 5.94e-18 9.55e-153 0.00e+00 1.13e-149 1.00e+00 1.00e+00 1.00e-01 44 0.9 2.037e-17 2.400e+02 2.400e+02 5.94e-19 1.91e-152 0.00e+00 3.63e-149 1.00e+00 1.00e+00 1.00e-01 45 0.9 2.037e-18 2.400e+02 2.400e+02 5.94e-20 1.91e-152 0.00e+00 1.94e-149 1.00e+00 1.00e+00 1.00e-01 46 0.9 2.038e-19 2.400e+02 2.400e+02 5.94e-21 1.91e-152 0.00e+00 1.67e-149 1.00e+00 1.00e+00 1.00e-01 47 1.0 2.038e-20 2.400e+02 2.400e+02 5.94e-22 9.55e-153 0.00e+00 2.83e-148 1.00e+00 1.00e+00 1.00e-01 48 1.0 2.038e-21 2.400e+02 2.400e+02 5.94e-23 1.91e-152 0.00e+00 6.92e-148 1.00e+00 1.00e+00 1.00e-01 49 1.0 2.038e-22 2.400e+02 2.400e+02 5.94e-24 1.91e-152 0.00e+00 4.29e-148 1.00e+00 1.00e+00 1.00e-01 50 1.0 2.038e-23 2.400e+02 2.400e+02 5.95e-25 1.91e-152 0.00e+00 1.76e-147 1.00e+00 1.00e+00 1.00e-01 51 1.0 2.039e-24 2.400e+02 2.400e+02 5.95e-26 3.82e-152 0.00e+00 4.60e-147 1.00e+00 1.00e+00 1.00e-01 52 1.1 2.039e-25 2.400e+02 2.400e+02 5.95e-27 1.91e-152 0.00e+00 1.87e-146 1.00e+00 1.00e+00 1.00e-01 53 1.1 2.039e-26 2.400e+02 2.400e+02 5.95e-28 1.91e-152 0.00e+00 1.47e-146 1.00e+00 1.00e+00 1.00e-01 54 1.1 2.039e-27 2.400e+02 2.400e+02 5.95e-29 1.91e-152 0.00e+00 3.95e-146 1.00e+00 1.00e+00 1.00e-01 55 1.1 2.039e-28 2.400e+02 2.400e+02 5.95e-30 1.91e-152 0.00e+00 1.26e-146 1.00e+00 1.00e+00 1.00e-01 56 1.1 2.040e-29 2.400e+02 2.400e+02 5.95e-31 1.91e-152 0.00e+00 5.63e-146 1.00e+00 1.00e+00 1.00e-01 57 1.2 2.040e-30 2.400e+02 2.400e+02 5.95e-32 3.82e-152 0.00e+00 3.18e-145 1.00e+00 1.00e+00 1.00e-01 58 1.2 2.040e-31 2.400e+02 2.400e+02 5.95e-33 3.82e-152 0.00e+00 3.88e-145 1.00e+00 1.00e+00 1.00e-01 59 1.2 2.040e-32 2.400e+02 2.400e+02 5.95e-34 1.91e-152 0.00e+00 5.49e-145 1.00e+00 1.00e+00 1.00e-01 60 1.2 2.040e-33 2.400e+02 2.400e+02 5.95e-35 1.91e-152 0.00e+00 7.64e-145 1.00e+00 1.00e+00 1.00e-01 61 1.3 2.041e-34 2.400e+02 2.400e+02 5.95e-36 1.91e-152 0.00e+00 2.76e-144 1.00e+00 1.00e+00 1.00e-01 62 1.3 2.041e-35 2.400e+02 2.400e+02 5.95e-37 1.91e-152 0.00e+00 8.37e-144 1.00e+00 1.00e+00 1.00e-01 63 1.3 2.041e-36 2.400e+02 2.400e+02 5.95e-38 9.55e-153 0.00e+00 1.45e-143 1.00e+00 1.00e+00 1.00e-01 64 1.3 2.041e-37 2.400e+02 2.400e+02 5.95e-39 1.91e-152 0.00e+00 2.92e-143 1.00e+00 1.00e+00 1.00e-01 65 1.3 2.041e-38 2.400e+02 2.400e+02 5.95e-40 1.91e-152 0.00e+00 4.94e-143 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 1.337167 seconds (2.74 M allocations: 136.979 MiB, 20.73% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:239.999999999999999999999999999999999999985708469320769999322987426806722590420696424285764120096636890240337026668799140129542132424280269825944339510688416 Dual objective:240.000000000000000000000000000000000000014291530679230000677012573193277409579338813675672092080504102103274823792399452983674642939004827767399759914919111 Duality gap:5.9548044496791669487552388305322539913838311228974941633056691381120410674167314074543364447776977041692421061052676245728044049015651171572515166002276323e-41 [ Info: Empty constraint found and removed. [ Info: Empty constraint found and removed. [ Info: The coefficient for the PSD variable 1 has an empty decomposition in a constraint, so we remove it from that constraint. [ Info: The matrix variable 1 is not used in any constraint and will be removed. Test Summary: | Pass Total Time ClusteredLowRankSolver.jl | 36 36 8m12.6s Testing ClusteredLowRankSolver tests passed Testing completed after 504.26s PkgEval succeeded after 586.85s